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Abstract

The high temporal and intensity resolution of modern accelerometers gives the opportunity

of detecting even tiny body movements via motion-based sensors. In this paper, we demon-

strate and evaluate an approach to identify pulse waves and heartbeats from acceleration

data of the human wrist during sleep. Specifically, we have recorded simultaneously full-

night polysomnography and 3d wrist actigraphy data of 363 subjects during one night in a

clinical sleep laboratory. The acceleration data was segmented and cleaned, excluding

body movements and separating episodes with different sleep positions. Then, we applied a

bandpass filter and a Hilbert transform to uncover the pulse wave signal, which worked well

for an average duration of 1.7 h per subject. We found that 81 percent of the detected pulse

wave intervals could be correctly associated with the R peak intervals from independently

recorded ECGs and obtained a median Pearson cross-correlation of 0.94. While the low-

frequency components of both signals were practically identical, the high-frequency compo-

nent of the pulse wave interval time series was increased, indicating a respiratory modula-

tion of pulse transit times, probably as an additional contribution to respiratory sinus

arrhythmia. Our approach could be used to obtain long-term nocturnal heartbeat interval

time series and pulse wave signals from wrist-worn accelerometers without the need of

recording ECG or photoplethysmography. This is particularly useful for an ambulatory moni-

toring of high-risk cardiac patients as well as for assessing cardiac dynamics in large cohort

studies solely with accelerometer devices that are already used for activity tracking and

sleep pattern analysis.

1 Introduction

Full-night polysomnography (PSG) has been regarded as the reference standard in sleep medi-

cine since 1968 [1, 2]. Besides signals used for sleep stage classification, respiratory activity and

an electrocardiogram (ECG) are usually recorded and analyzed [3]. However, the applicability
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of PSG for the assessment of sleep characteristics in large prospective studies is limited due to

its costs and its intricacy, requiring many electrodes and cables attached to the subject’s head

and chest.

Alternatively to PSGs, actigraphy (or accelerometry) is commonly used to monitor human

sleep/wake cycles [4–8]. Usually, the accelerometer is placed on the subjects’ wrist of the non-

dominant arm. Advantages of accelerometry are low costs, higher availability, easy recording

of multiple nights, and a less disturbed natural sleep [9, 10]. However, its accuracy varies

between different sleep variables and depends on population-specific characteristics [7, 9, 11].

Yet, recent technological progress has led to advanced recording devices with high temporal

resolution (above 100 Hz), high acceleration resolution (down to 3 mg� 0.03 m/s2), and sepa-

rate recording of all three spatial directions (see e.g., [12] for a review).

First investigations that demonstrated physiological relevance in the distribution and auto-

correlations of wrist activity fluctuations independent of level of physical activity were pub-

lished by Hu et al. [13, 14]. In later studies it has been shown that wrist activity fluctuations are

also related to the circadian rhythm and to the role of the suprachiasmatic nucleus in the brain

[15, 16] that is responsible for regulating many different body functions on a 24-hour cycle.

In this paper, we present an approach for exploiting nocturnal wrist accelerometry record-

ings to identify pulse waves and heartbeats, and assess detection accuracy of individual

heartbeats. By comparing with simultaneously recorded ECGs (as part of clinical PSG), we

demonstrate that accelerometry could help assessing sleep-related changes not only in heart

rate but also in heart rate variability (HRV), including measures that rely on changes between

neighboring inter-beat intervals. In Section 2, we summarize previous efforts to derive heart

activity without electrodes. In Section 3, we describe our database and present the methods

and data processing approaches. Section 4 reports our results including the achieved heartbeat

detection reliability, statistics for pulse transit times, and influences of respiration on pulse

wave intervals, including age dependences. We conclude in Section 5.

2 Alternative approaches for assessing heart activity

Besides the ECG as gold standard for heart rate and HRV measurements [17], there are several

other methods to detect heartbeats not requiring electrodes attached to the body.

Plethysmography

A common approach for measuring pulse waves is photoplethysmography. It relies on the

propagation of pulse waves throughout the body. During heart contraction, blood is pumped

into the arteries, creating a pressure (“pulse”) wave. The velocity and shape of the pulse wave

depend mainly on arterial stiffness that is affected by age, physical fitness, heart rate, body

height, and gender [18]. According to O’Rourke et al. [18], the ideal aortic pulse wave profile is

described as “sharp upstroke, straight rise to the first systolic peak, a definite sharp incisura,

and near exponential pressure decay in late diastole”. With the pulse waves’ propagation to the

periphery, the systolic pressure increases, while diastolic and mean pressures decrease due to

increased arterial stiffness and incoming reflected pulse waves [19]. Pulse wave measurements

on the wrist typically show wave profiles that are a superposition of three waves: an incident

wave due to blood flow as well as two reflected waves from the hand and from the lower body,

respectively [19, 20]. In plethysmography the pulse wave is recorded by light reflexion and

light absorption [21]. We refer to [22] for an early application of using pulse wave intervals

from plethysmography to study cardiac dynamics and investigate HRV during rest and exer-

cise without ECG electrodes.
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Seismocardiography

Recording chest wall motion via radar-facilitated distance measurements is a possible but

rather intricate approach [23]. Another not frequently used method is seismocardiography,

where acceleration sensors placed on the chest wall measure the vibrations caused by heart-

beats [24]. With higher resolution of acceleration sensors this technique became more interest-

ing in the last years [25–27]. Seismocardiography is closely related to ballistocardiography, a

method which measures whole body motions (or vibrations) caused by the heartbeat. Sensors

are commonly placed on the chair or bed of the subject [26]. Seismocardiography and ballisto-

cardiography are often used as synonyms.

Measurements of seismocardiography not only detect heartbeats but also respiratory activ-

ity. Beside respiration (< 1 Hz), low frequency (0.6 to 5 Hz) chest wall motions related with

heart muscle contraction and high frequency (> 5 Hz) chest wall vibrations related with acous-

tic waves of the valve closing are measured [25, 28]. Both signals can be used to detect respira-

tion and heartbeats [29].

Accelerometry

In spectral analysis of nocturnal wrist-worn acceleration measurements also two distinct peaks

have been identified [6]. As shown in Fig 1, there is a rather narrow peak at� 0.3 Hz reflecting

respiratory activity and a much broader peak around 10 Hz, which we somewhat incorrectly

coined “tremor peak” in the original publication. Both peaks are most pronounced if the

variations of acceleration are at an intermediate level for the nocturnal recording, i.e., there is

neither strong motion activity (often corresponding to wakefulness episodes or turns, Fig 1

Fig 1. Spectral intensity of wrist acceleration during different levels of motion activity. Periodograms are shown

for five exponentially increasing acceleration variance thresholds (black: smallest threshold; magenta: largest

threshold). Peaks related with respiratory motion (at� 0.3 Hz) and pulse waves (at� 6 − 10 Hz) are most clearly

visible for intermediate acceleration variance levels (red and green curves) (after [6]).

https://doi.org/10.1371/journal.pone.0226843.g001
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magenta curve), nor hardly any motion at all (probably corresponding to time intervals when

the arm is practically fixed between other body parts and the bed; Fig 1 black curve). Hence,

when exploiting these peaks, we cannot expect to get reliable data at all times, but only when

there is an intermediate level of total acceleration variations.

Looking closer at the high-frequency (� 10 Hz) peak, we have recently identified the main

reason for its broadness—the corresponding oscillation is strongly damped, being triggered

approximately each second, but then decaying within� 0.2 s. By comparing with a simulta-

neously recorded ECG, the origin of this “tremor peak” finally became clear to us—it is

caused by the pulse wave transversing the subject’s wrist shortly after the heartbeat and proba-

bly triggering a short wiggling of the wrist and/or the recording device attached to it. These

high frequency vibrations in the wrist caused by the arrival of the pulse wave have some anal-

ogy to the above mentioned high frequency chest wall vibrations (> 5 Hz) as detected by

seismocardiography.

3 Materials and methods

Measurements

All sleep recordings were performed at the clinical sleep laboratory of the Charité-Universitäts-

medizin Berlin, Germany, between April 2017 and December 2018. The study was approved

by the ethics committee of the Charité-Universitätsmedizin Berlin and registered at the Ger-

man Clinical Trial Register (DRKS) with ID DRKS00016908. In total, 392 subjects were

included and signed informed consent. During their first diagnostic night at the sleep labora-

tory, all subjects wore a SOMNOwatch™ plus device, recording simultaneously 3d wrist accel-

eration of the non-dominant arm at 128 Hz sampling rate and a one channel ECG at 256 Hz.

Furthermore, full PSG (including electroencephalography (EEG), electrooculography (EOG),

electromyography (EMG), ECG, respiratory effort, etc.) was recorded using either an ALICE,

an Embla1, or a SOMNOscreen™ PSG system.

Due to noisy or low quality ECG recordings, 29 subjects were excluded from further analy-

sis. The final 363 subjects (180 females, 183 males), aged between 18 and 80 years (mean

50.1 ± 13.7 years) with average body mass index 28.0 ± 5.8 kg/m2, had an average time in bed

(TiB) of 7.6 ± 0.8 h. All subjects were reffered to the sleep laboratory with complaints and an

indication to test for sleep disorders. In Table 1 we list the frequency of sleep disorders classi-

fied by ICSD-3.

Table 1. Overview of all subjects included in the analysis. Subjects with multiple diagnoses are counted in each appropriate diagnosis line, i.e., multiple times. The last

line reports data for all subjects irrespective of diagnosis. The column “duration” reports the median total duration (per subject) of all pulse wave intervals (PWI) correctly

associated with corresponding heartbeat intervals from the ECG at an accuracy limit of 0.1 s (see Methods and also Table 2). It is followed by the median fraction of cor-

rectly associated PWI and the corresponding median Pearson cross correlation r in the subsequent columns (see Results section for details).

Diagnosis females males duration cor. PWI r

No sleep disorders 19 18 1.2 h 0.82 0.89

Sleep-related breathing disorders 67 115 1.2 h 0.79 0.93

Insomnia 65 25 1.3 h 0.84 0.93

Central disorders of hypersomnolence 36 20 1.3 h 0.78 0.95

Sleep-related movement disorder 35 26 1.0 h 0.80 0.94

Parasomnias 9 7 1.0 h 0.74 0.95

Circadian rhythm sleep-wake disorders 1 9 1.7 h 0.86 0.95

Other sleep disorders 8 7 1.3 h 0.83 0.95

All subjects 180 183 1.3 h 0.81 0.94

https://doi.org/10.1371/journal.pone.0226843.t001
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Data segmentation and stationarity transform

Fig 2 shows a section of a typical nocturnal recording of a three-axis wrist accelerometer.

There are segments of nearly constant acceleration, e.g., from t = 2500 s to t� 4100 s, from t�
4200 s to t� 5250 s, etc. During such segments, the broad orientation of the wrist with respect

to the gravitational field (i.e., the vertical direction) is constant, so that all three components of

acceleration (€x, €y, and €z) represent mainly the constant projections of the gravitational acceler-

ation g0 = 9.81 m/s2 on each axis of the device. Specifically, the x axis points towards the hand,

while y and z are orthogonal to x and to each other with directions possibly changing between

the subjects and throughout the night.

Segments of nearly constant acceleration components (due to gravitational force only) are

interrupted by obvious changes of the wrist orientation with respect to the gravitational field.

In order to automatically identify such broad orientation changes, we calculated a mean ampli-

tude deviation (MAD) very similar to MAD5s introduced by Vähä-Ypyä et al. [30],

MAD1sðtÞ ¼
1

128

Xt�128Hzþ64

i¼t�128Hz� 63

jai � haiij; ð1Þ

with ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
€x2
i þ €y2

i þ €z2
i

p
and haii ¼ 1

128

Pt�128Hzþ64

i¼t�128Hz� 63
ai, considering non-overlapping windows

of one second here. In our cleaning procedure, all acceleration data are set to zero, if their cor-

responding MAD1s(t) values exceed the ad-hoc threshold of 5 mg (= 0.005 g0).

In the following, we refer to continuous time segments not interrupted by MAD1s values

above the 5 mg threshold as sleeping position segments (SPS). We assume that the subjects

did not change their sleeping positions without increased motion activity. In each SPS and for

each acceleration component (€xi, €yi, and €zi), we eliminated the offsets (caused by gravity) by

Fig 2. Raw acceleration signals and MAD. A typical nocturnal 100 minute part of the raw data is shown with all three

directions (€x—red, €y—green, €z—black) of the acceleration signal according to the left vertical axis. Furthermore, one-

second mean amplitude deviation (MAD) values are plotted in blue with the MAD threshold of 5 mg shown as dashed

gray line according to the right vertical axis. Time periods in which the MAD1s values are above this threshold were

labeled as a position change (i.e., change in wrist orientation, see for example the peak at 4150 s).

https://doi.org/10.1371/journal.pone.0226843.g002
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subtracting the mean values of each second. Fig 3 shows two examples for this acceleration

data preprocessing procedure. We note that a subtraction of mean values of each second

turned out to be sufficient, since—besides the stronger motions exceeding the threshold—

there are only very slowly drifting wrist orientation changes with respect to the gravitational

axis, see, e.g., Fig 2 in the range from t = 6800 s to 7200 s. The subtraction of one-second aver-

ages also turned out to be sufficient for an elimination of the slow (� 0.3 Hz) respiratory signal

often superimposed on the acceleration recordings via tiny turns of the wrist, see also Fig 4(a)

and 4(b). Approximately stationary acceleration data with zero means and only short interrup-

tions have thus been obtained in the data cleaning procedure.

Pulse wave peak (PWP) and pulse wave interval (PWI) detection

Fig 3 shows that amplitude variations of typically 10 − 40 mg remain after the acceleration data

have been cleaned. These signals often exhibit a rather periodic behavior, see Fig 4(a) and 4(b)

for details at a high temporal resolution. Note that the corresponding variations of measured

acceleration are quite small and in fact close to the resolution of the recording device, which

digitizes measurements between −6 g0 and +6 g0 at 12 bits, yielding a resolution of 2.9 mg. The

small spikes at an approximate periodicity somewhat below one second already look like indi-

cations of heartbeats. Most probably, pulse wave propagations through the wrist lead to tiny

turns of the wrist with respect to the vertical (gravitational) axis, resulting in changes of the

gravitation vector projections on the axes of the acceleration recording device.

In the next step, for a better identification of the pulse wave events, we applied a fast Fourier

transform (FFT) based band pass filter with a lower cutoff at 5 Hz and an upper cutoff at 14 Hz

Fig 3. Raw and cleaned acceleration data. The upper panel shows raw acceleration data (€x—red, €y—green, €z—black)

during two parts of a recording. A weak steady trend appears in the €y component on the left hand side, and a wrist

position change appears at time 4150 s on the right hand side (as already mentioned in Fig 2). The lower panel shows a

magnification of the cleaned data in both parts, with constant offsets and slow trends removed. All acceleration data

with their corresponding MAD1s values above the MAD threshold were set to zero. The data for €y and €z have been

shifted upwards by multiples of 50 mg for visibility.

https://doi.org/10.1371/journal.pone.0226843.g003
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to the data of each axis. We have empirically optimized these cutoff frequencies by studying

acceleration data of many subjects. A typical result is shown in Fig 4(c), gray line. For a reliable

identification of the pulse wave-related peaks we then applied a Hilbert transform [31] to the

cleaned and band-pass filtered acceleration data ~ai of each axis to supplement the original sig-

nal with an imaginary part and calculate the instantaneous amplitudes A(t) in an analytic sig-

nal approach,

~aðtÞ þ iHT½~aðtÞ� ¼ AðtÞ exp½iφðtÞ�; ð2Þ

(Fig 4(c), green line). Among the first applications of this approach to physiological dynamics

are the works of Ivanov et al. who used Hilbert transform to detect the amplitude of heart rate

variability fluctuations [32, 33].

Finally, a peak detection algorithm was used to identify candidate peaks in these pseudo

pulse wave time series (Fig 4(c) red dots). Specifically, a local maximum of the time series was

accepted as the next pulse wave peak candidate if it exceeded an ad-hoc threshold of 2.9 mg

and has a minimum distance to the previous accepted peak of 0.5 s. Note that, in analogy to R

peak detection from ECGs, we refer to the peaks as pulse wave peaks (PWP) and to the time

intervals between them as pulse wave intervals (PWI). We also note that PWP are not real

pulse (pressure) wave peaks, but closely related to them. Fig 4(d) shows that each detected

PWP is clearly associated with an R peak of the simultaneously recorded ECG. The Figure also

demonstrates the delay of the PWP with respect to the R peaks caused by pulse wave transit

time (PTT) from the heart to the wrist.

Fig 4. Reconstruction of pulse waves from acceleration data. In (a) and (b) the raw (red) and cleaned (blue) x-axis

acceleration data from a typical recording is shown for ten seconds. Panel (c) shows the signal after the 5-14 Hz FFT-

bandpass-filtering (gray), the absolute of the Hilbert transform (green), and the results of the peak detection (red dots).

In (d) the ECG-signal (black) is presented and compared to the pulse wave peak (red vertical lines). Please also note the

impact of respiration in panel (a) leading to a modulation of the acceleration data with a period of about 4 s. These

modulations are removed in panel (b) by subtracting one-second averages.

https://doi.org/10.1371/journal.pone.0226843.g004
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Having three time series of candidate PWP (from each accelerometer axis) we have to select

the best position estimate for each pulse wave. Fig 5 shows that—in this case—the x axis (part

(a)) yields the most consistent PWP positions with respect to the R peaks in the ECG. How-

ever, in order to select candidate PWP without assessing ECG signals, we defined two criteria

to choose—for each SPS—the best acceleration axis. Firstly, the plausibility of the candidate

PWP was checked by calculating average pulse rate, requiring a value of at least 40 beats per

minute for a plausible signal. If no signal was plausible, the considered SPS has not been used

for further analysis. Secondly, if two or all three signals passed the first test, we applied a self-

consistency check. Specifically, we calculated auto-correlation functions for the Hilbert ampli-

tude signals and chose the axis with the highest auto-correlation peak in the range from 0.4 s

to 1.5 s (40 beats/min to 150 beats/min).

In the final step, we calculated the PWI. In analogy with similar approaches for checking

the validity of detected R peaks in an ECG, the duration of each PWI must either be between

0.7 s and 1.5 s (corresponding to instantaneous values of 40 beats/min to 86 beats/min) or in

the range of ± 30 percent of the previous PWI. Furthermore, we accepted only uninterrupted

sequences of at least 20 PWI, thereby excluding very short SPS. This way we obtained time

series of PWI comparable to RR-interval (RRI) time series. For comparing the two types of

time series, we have calculated mean heart rate and the following two standard parameters of

HRV [17]: standard deviation of normal-normal intervals (SDNN) and root mean square of

successive differences (RMSSD).

To derive RRI time series from ECG, these data were processed with the software LibRasch

[34]. We visually verified and manually checked QRS classifications (normal, ventricular

Fig 5. Selection of best axis for pulse wave reconstruction. The bandpass-filtered acceleration signals (gray), the

corresponding Hilbert amplitudes (green) and the automatically identified candidate pulse wave peaks (red) are

compared with the ECG (black) for all three axes of acceleration for another typical ten-second section of the

recordings. Clearly, the detection reliability differs between the axes; in this case the best choice for beat detection is the

x axis shown in panel (a).

https://doi.org/10.1371/journal.pone.0226843.g005
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ectopic, and supra-ventricular ectopic) and corrected them if necessary. Noisy parts where no

QRS detection was possible were manually marked and excluded from further analysis.

Comparison of PWI and RRI

Due to the transition time between each heartbeat and the arrival of the pulse wave at the

wrist, a direct comparison of R peaks and PWP is not appropriate. Hence, we compared RRI

and PWI, defining their temporal positions as the middle of each interval. A PWI matches an

RRI if its position is within 0.0 to 0.3 s after the RRI’s position. Note that the empirical value of

this threshold is post-hoc justified by the distribution of PTT we observe in Fig 9. A matching

PWI is considered as correct, if its value is less than 0.1 s smaller or larger than the correspond-

ing RRI (accuracy limit). This accuracy limit has been varied to check for its effects on the

results (see Table 2 below).

4 Results and discussion

Reliability of reconstructed pulse wave intervals (PWI)

As described in the method section, we have reconstructed PWI from wrist accelerometry

time series independent of the ECG. In our 363 datasets we were able to reconstruct PWI dur-

ing 25.7 percent of the total recording time (in the sleep laboratory), which corresponds to an

average duration of 1.7 h per subject.

Fig 6 shows a direct comparison of tachograms of PWI and RRI derived from the simulta-

neous acceleration and ECG recordings of two subjects. A very close match between the two

curves can be seen, although one ventricular heartbeat in (a) is not correctly identified by the

pulse wave analysis, and there seems to be an increased high-frequency (HF) component in

the PWI data.

In total, 80.9 percent of the detected PWI could be correctly associated with RRI at an

accuracy limit of 0.1 s. In terms of time, 1.3 hours of correct PWI were detected per night.

Table 2 reports median values and inter-quartile ranges regarding the achieved levels of cor-

rectness for the reconstructed PWI also for smaller and larger accuracy limits (see Methods

subsection on Comparison of PWI and RRI above). We find that the results do not strongly

depend on this accuracy limit, since the fraction of correctly reconstructed and associated

PWI varies only between 0.73 and 0.88 for a broad variation of the limit from 0.05 s to 0.25 s

(Table 2). In particular, increasing the limit from 0.2 s to 0.25 s does not change this frac-

tion. Since most correctly detected PWI differ from the RRI by less than 0.05 s (1.2 h total

time per subject) and doubling or tripling the limit increases this total time only by 0.1 h

and 0.2 h, respectively, we conclude that an accuracy limit of 0.1 s is appropriate for a fair

comparison.

Table 2. PWI reconstruction correctness for different accuracy limits. Results are shown for five different maximally

accepted differences between RRI and PWI (accuracy limits). The column “time” reports the median total duration of

all PWI that are correctly associated with RRI (per subject). As in Table 1, it is followed by the fraction of correctly asso-

ciated PWI and the corresponding Pearson cross correlation r. Values are median [0.25 quantile; 0.75 quantile].

accuracy limit time correct PWI r

0.05 s 1.2 [0.4; 2.1] h 0.73 [0.61; 0.83] 0.96 [0.93; 0.98]

0.10 s 1.3 [0.5; 2.3] h 0.81 [0.69; 0.89] 0.94 [0.88; 0.96]

0.15 s 1.4 [0.5; 2.4] h 0.84 [0.74; 0.91] 0.89 [0.82; 0.94]

0.20 s 1.4 [0.5; 2.4] h 0.88 [0.77; 0.94] 0.85 [0.77; 0.91]

0.25 s 1.4 [0.5; 2.4] h 0.88 [0.77; 0.94] 0.83 [0.74; 0.90]

https://doi.org/10.1371/journal.pone.0226843.t002
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At the 0.1 s accuracy limit, the Pearson cross-correlation coefficient r between the values of

reconstructed PWI and correctly associated RRI is quite large, r = 0.94. Note, that r can only

be calculated with respect to the PWI correctly associated with RRI. As expected, it decreases

somewhat with larger accuracy limits as more and more PWI are included. However, r = 0.85

at the 0.2 s limit is still very good. Note that r is based on only 351 datasets (instead of 363),

since no correct PWI were detected in 12 datasets. In addition, the different ICSD-3 diagnoses

of the subjects have little effect upon our results as shown in the last two columns of Table 1.

Next we want to check the variation of the PWI detection performance of our algorithm

across all 363 subjects. Fig 7 shows histograms for the total time of detected PWI in each sub-

ject and the fraction of correctly reconstructed and associated PWI. Although we have 74

datasets with less than 30 minutes of usable acceleration signals, most recordings—233 data-

sets—yield reconstructed PWI totaling between 30 minutes and 3.5 hours. In five datasets,

we could detect PWI for more than 5.5 hours. The histogram for the fraction of correctly

reconstructed and associated PWI (Fig 7(b)) has a small peak at 0 to 10 percent (15 datasets),

which includes 12 recordings without any correctly detected PWI, and rises to a maximum

at 80 to 90 percent correct detection. In 216 datasets more than 80 percent of the detected

PWI were correct.

These percentages hardly depend on the age of the subjects. No systematic differences

between three age groups of approximately equal size (see Table 3) can be observed when com-

paring the corresponding histograms for each color in Fig 7. This indicates that the reconstruc-

tion of pulse waves from wrist actigraphy as presented in this paper does not depend on age.

Furthermore, the results in Table 3 show that there is no systematic age dependence in the

PWI algorithm selection of particular orientation axes. Across all age groups, the y axis

Fig 6. Comparison of tachograms from RRI and PWI. In these two examples from different subjects, RRI derived

from the ECG (black) and PWI independently derived from wrist accelerometry (red) are plotted versus time. All

detected PWP and all R peaks were used; the PWI are strongly correlated with RRI. However, unexpected heartbeat

events, as for example the premature beat at t = 120 s in (a), are not present in the PWI signal.

https://doi.org/10.1371/journal.pone.0226843.g006
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acceleration data is selected most frequently for the PWI detection, followed by the z axis data.

The x axis, pointing towards the hand, is only quite rarely selected.

Estimation of heart rate and HRV parameters from PWI

Table 4 compares heart rates and two standard HRV parameters [17] across all three steps of

our PWI-RRI matching procedure. Clearly, the effect on resulting mean heart rate is minimal.

In addition, there seems to be only little selection bias regarding correctly reconstructed and

not reconstructed heartbeats, since the SDNN and RMSSD values for the matched RRI subset

are close to the values for the whole (nocturnal) RRI time series. Furthermore, the results for

Fig 7. Histograms for total PWI duration and correctness of PWI identification. (a) Histogram of total duration of all detected PWI for each

night; (b) histogram of fraction of correctly reconstructed and associated PWI (as compared to RRI from ECG) for each night. No clear

differences between the three age groups (see Table 3) can be seen.

https://doi.org/10.1371/journal.pone.0226843.g007

Table 3. Age dependence of SDNN and RMSSD and origin of matched PWI. For three similarly sized age groups the

fractions of matched PWI derived from each of the three accelerometer axes are reported, showing the y axis data is

used for more than half of all PWI correctly associated with RRI. The mean values of the HRV parameters SDNN and

RMSSD and the mean PTT as derived from matched RRI and PWI are shown for comparison with literature [35, 39].

Regarding SDNN and RMSSD, all differences between the young age group and the other two groups are highly signifi-

cant (p� 0.002), while no significant differences occur between the intermediate and the elderly group. The results

indicate that the reduction in SDNN and RMSSD with age is similar in RRI (as derived from the ECG) and PWI (as

reconstructed through wrist actigraphy). The differences between the mean PPT values of the young group and the

other two groups are weak but still highly significant (p = 0.004 and p< 0.001, respectively), but also not significant

between the intermediate and the elderly group.

age range 18-45 y 46-56 y 57-80 y

number of subjects 117 114 120

fraction for x axis 0.13 0.15 0.09

fraction for y axis 0.51 0.53 0.52

fraction for z axis 0.35 0.32 0.39

SDNN from RRI 78.5 ms 65.9 ms 65.7 ms

SDNN from PWI 83.5 ms 72.6 ms 72.3 ms

RMSSD from RRI 54.5 ms 39.8 ms 39.5 ms

RMSSD from PWI 71.9 ms 61.6 ms 61.7 ms

mean PTT 216.9 ms 206.7 ms 200.7 ms

https://doi.org/10.1371/journal.pone.0226843.t003
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the matched PWI closely resemble those for the whole RRI time series. On the other hand,

SDNN and in particular RMSSD would be a bit overestimated if no ECGs were available for

comparison and these parameters were calculated from all accelerometer-detected PWI (bot-

tom row in Table 4). However, as will be shown below in the results section on the influence

of respiration, this cannot be regarded as a problem of our approach, since indeed SDNN and

RMSSD are increased by influences of respiratory activity on pulse transit times.

Fig 8 shows Bland-Altman plots as a detailed comparison between the SDNN and RMSSD

values derived from RRI and PWI for each subject. Except for six outliers SDNNPWI is larger

than SDNNRRI (Fig 8(a)). We can see a slight linear trend in the Bland-Altman plot with a

Pearson correlation coefficient of 0.53, since the difference between SDNNPWI and SDNNRRI

decreases with higher SDNN. In Fig 8(b) and 8(c) we compared the values of RMSSD, which

is a common HRV parameter to estimate parasympatic activity [17]. Furthermore, RMSSD

is independent of sleep stages [35]. In nearly all subjects RMSSDPWI is clearly larger than

RMSSDRRI; the average difference is approximately equal to two standard deviations. This

relation holds for both, associated RRI and PWI (Fig 8(b)) and all RRI and PWI (Fig 8(c)),

although the difference is much larger in the second case (see also Table 4). The subjects of the

three outliers in panel (b) are a subgroup of the six outliers in the SDNN plot (Fig 8(a)). We

also see a slight linear trend in the Bland-Altman plot of RMSSD for associated RRI and PWI

with a Pearson correlation coefficient of 0.46 (Fig 8(b)), but no clear trend for all RRI and PWI

with a Pearson correlation coefficient 0.005 (Fig 8(c)).

The colored symbols in Fig 8, corresponding to the results of the three age groups (see

Table 3), show no systematic dependence on age, supporting the conclusion from Fig 7 that

our reconstruction of PWI from wrist actigraphy does not depend on age. Furthermore, the

mean SDNN and RMSSD values listed in Table 3 for each of the three groups show that the

reduction of SDNN and RMSSD with age reported by Schmitt et al. [35] similarly occurs for

the HRV parameters derived from RRI and PWI, although their absolute values are different.

Apparently, the decrease occurs before the age of approximately 40−50 years, since our results

for the last two age groups (46−56 and 57−80 years, respectively) are practically identical.

We note that a recent work also used wrist accelerometry in the frequency range from 4

to 11 Hz to estimate heart rates [36]. However, the study focused on average heart rate (and

breathing rate) in intervals of 20 s as determined via spectral analysis, not trying to identify

individual heartbeats or beat-to-beat intervals. Besides that, it was limited to 32 h of sleep

data from three subjects and 72 minutes of daytime data from twelve subjects. Another

recent study determined the average heart rates in 15 subjects using wrist accelerometry [37],

reporting an average deviation of 1.6 percent with respect to heart rate from a pulse-oximeter

attached to the index finger. This deviation is comparable to the deviation of 0.9 percent

we observe between the mean heart rate for all RRI and the PWI-based estimate (Table 4).

Another paper from the same group reported that heart rate can be most reliably estimated

Table 4. Comparison of heart rate and HRV parameters from RRI and PWI. We calculated mean heart rate, SDNN,

and RMSSD for (i) all RRI detected in the ECGs, (ii) all RRI associated with PWI (at an accuracy limit of 0.1 s, see

Table 2), (iii) all PWI associated with RRI, and (iv) the total set of all detected PWI. Group averages over 351 subjects

with detected PWIs are presented.

mean heart rate SDNN RMSSD

all RRI 65.1 1/min 93 ms 52 ms

matched RRI 64.4 1/min 70 ms 45 ms

matched PWI 64.4 1/min 76 ms 65 ms

all PWI 64.4 1/min 115 ms 138 ms

https://doi.org/10.1371/journal.pone.0226843.t004
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Fig 8. Bland-Altman plots of SDNN and RMSSD. The plots show that SDNN and RMSSD values derived from PWI

are larger than those derived in the standard way from RRI for nearly all 351 subjects. There are only six outliers for (a)

SDNN comparing associated RRI and PWI, three for (b) RMSSD comparing associated RRI and PWI, and eight for (c)

RMSSD comparing all RRI and all PWI. In panel (c), one extreme outlier for a subject with 16 percent of ectopic beats

and RMSSDall RRI = 377 ms, RMSSDall PWI = 163 ms does not appear in the plot. No clear differences between the three

age groups (see Table 3) can be seen.

https://doi.org/10.1371/journal.pone.0226843.g008
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via accelerometry, if the sensor is attached to the subjects’ upper forearm or the subjects’ belly

[38].

Pulse transit times (PTT)

In addition to heartbeat estimation, accelerometer-detected PWP can be used to calculate the

time delay between heart beats and PWP, better known as pulse transit time (PTT), if an ECG

is simultaneously recorded. The histogram of the mean PTT values in all subjects is shown in

Fig 9(a). On average we estimated a PTT of 207 ± 26 ms. This result as well as its range agree

with literature [39]. However, PTT values in young subjects seem to be a bit longer than those

in the elderly, since a slight difference between the young group and the other two groups can

be seen in Fig 9(a) and leads to significantly different means as reported in Table 3. Fig 9(b)

shows that the standard deviation of PTT values in each subject (the temporal PTT variation)

is distributed around 42 ms and thus comparable with the inter-subject PTT variation.

We think that time series of PTT derived this way could be used in a similar way as ECG-

derived RRI are used for studies of HRV, see, e.g., [40]. However, further research will be

needed to identify useful PTT-based parameters comparable to the standard HRV parameters.

Besides, PTT measurements were suggested to be used as an estimate for continuous blood

pressure recording during sleep [41].

Influence of respiration on PWI

In this subsection, we want to address the reason for the increased values of SDNN and partic-

ularly RMSSD as observed when calculating these HRV parameters from acceleration-derived

PWI instead of ECG-derived RRI (Tables 3 and 4). It has been known since 1860 that respira-

tion modulates heartbeat frequency, a phenomenon called respiratory sinus arrhythmia (RSA)

[42]. A closer look at the tachograms of both RRI and PWI data (Fig 10) clearly shows these

periodic oscillations due to RSA. It can also be seen that PWI yield larger variations than RRI

suggesting a stronger respiration related modulation.

In order to investigate this observation in greater detail, we compared the power spectra of

RRI and PWI time series. We selected all uninterrupted episodes of detected PWI of at least

Fig 9. Histograms of mean PTT and its standard deviation. Histograms of average PTT defined as the time delay between ECG R peak and

the associated PWP, as well as the corresponding standard deviations of the reconstructed PTT intervals. Data of 351 subjects is presented

distinguishing three age groups (see Table 3); no PWP were detected in 12 subjects.

https://doi.org/10.1371/journal.pone.0226843.g009
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five minutes duration and calculated the spectra via FFT. Fig 11 shows average power spectra

of at least ten five-minute intervals for six typical subjects. Respiration frequency normally lies

in the LF band of HRV, between 0.15 and 0.4 Hz [17], see also [43]. The spectra in Fig 11(a)

and 11(b) exhibit a high and broad respiratory peak in both, RRI and PWI. The amplitude of

the respiratory peak is considerably higher for PWI than for RRI especially in Fig 11(a). But

also in Fig 11(c) to 11(e) higher respiratory peaks appear for PWI compared with RRI. Besides

this difference the spectra are very similar for both types of intervals. In Fig 11(f) data from a

subject with low RSA is presented. We conclude that respiration tends to modulate PWI stron-

ger than RRI.

Fig 10. Tachogram of respiratory sinus arrhythmia. This plot shows how RRI (black) and PWI (red) follow

oscillations due to respiratory sinus arrhythmia.

https://doi.org/10.1371/journal.pone.0226843.g010

Fig 11. Spectral analysis of PWI and RRI time series. The spectra of PWI data (red) and RRI data (black) are shown

for six subjects. In all cases except for (f), the peak in the (respiratory) HF band (0.15 to 0.4 Hz) is increased in the

PWI-based spectra.

https://doi.org/10.1371/journal.pone.0226843.g011
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Conclusion

Although further development, optimization, and validation is necessary, our work represents

a novel approach for obtaining long-term nocturnal heartbeat interval time series without the

need of ECG recordings (involving electrodes). This could create the possibility to reliably

asses heart rate and HRV in large cohort studies solely through accelerometers already used

for actigraphy measurements (to characterize activity and sleep patterns). Moreover, our

approach could be used to improve plethysmogram-based techniques for measuring heart-

beats at the wrist, as currently done in smart watches.

In physiological terms, we show that respiration affects pulse wave velocity in such a way

that the respiratory sinus arrhythmia of pulse wave intervals is increased compared with

the modulation of RR intervals. However, further research is needed to identify whether the

underlying mechanism of increased RSA in PWI is more related to blood pressure modula-

tions or to arterial stiffness modulations.
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