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Abstract

One of the main concepts of computer vision is teaching computers and machines visual
perception. Similar to how humans interact with their environment, as a first step such devices
must localize themselves within their surroundings. For machines this often means localizing,
or estimating the pose of the visual sensor, the camera, by estimating its orientation and
position in reference to the scene. Therefore, camera pose estimation has become a vital part
in tasks such as SLAM, autonomous driving, robotics and navigation or augmented reality.

Due to the low costs of RGB and RGB-D cameras and their availability on most devices, a
plethora of research has focused on image-based localization, assuming single RGB or RGB-D
images as sole input for the localization system. However, accurate and efficient localization
from a single image still remains a challenging task. Therefore, in this thesis, we cover two
main aspects to optimize regression models for camera localization systems.

First, we address the uncertainty of a model’s predictions arising from noisy input data or
the model itself. Due to the availability of geometric information, RGB-D methods are very
accurate. However, they rely on feature descriptor matching which easily fails in ambiguous
environments, often introduced by texture-less regions or repetitive structures. In addition
current methods depend on computationally expensive camera pose refinement strategies
to handle outliers in the matched correspondences. Therefore, to address these aspects, we
employ deep learning methods for confidence prediction in correspondence matching as well
as uncertainty estimation in direct camera pose regression methods from RGB images and
estimate continuous multimodal distributions on the 6D camera pose space that are well
suited to explain ambiguities arising in the scene.

Second, feature extraction is currently a vital part of most state-of-the-art methods and can be
used for retrieval or correspondence matching in camera localization applications. Regardless
of whether those features are hand-crafted or learned their representation strongly influences
the accuracy and robustness of the underlying system. Therefore, we evaluate the influence
of deeply learned feature representations on the accuracy of predicted poses. In particular,
we discuss 1) a multi-task learning framework that is leveraging the task of learning object
relevant features as well as direct pose regression and 2) how a learned feature representation
can be used to refine the camera pose solely relying on RGB information.

In summary, the presented methods in this thesis focus on regression approaches in camera
localization applications with deep learning and solely rely on image information. Extensive
evaluation and analysis show the merit of such approaches for the task of camera localization
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and as a result can be applied to indoor, outdoor as well as highly ambiguous environments.
In this way this thesis opens the path for intelligent computer vision systems to more precisely
localize themselves in arbitrary environments and thus paves the way towards fully automatic
systems for a diverse set of applications.
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Zusammenfassung

Eines der Hauptthemen in Computer Vision ist es dem Computer oder einer Maschine räumli-
che visuelle Wahrnehmung beizubringen. Ähnlich dazu wie Menschen mit ihrer Umgebung
interagieren, ist ein erster Schritt hierfür sich selbst in seiner Umgebung wiederzufinden. Für
Maschinen bedeutet dies häufig ihre eigene Position oder die eines visuellen Sensors, einer
Kamera, in Referenz zu einer vordefinierten Umgebung zu bestimmen, indem die Orientierung
und Position des Sensors definiert wird. Daher ist die Bestimmung der Position einer Kamera
zu einem essentiellen Bestandteil von verschiedenen Anwendungen wie SLAM, autonomen
Fahren, Robotik und Navigation oder Augmented Reality geworden.

Aufgrund des niedrigen Kostenaufwands von RGB und RGB-D Kameras und deren Kompati-
bilität mit den meisten Systemen, hat sich eine Vielzahl an wissenschaftlichen Arbeiten mit
der Lokalisierung einer Kamera anhand von Bilddaten beschäftigt. Diese Systeme nehmen als
Grundlage ein einzelnes RGB oder RGB-D Bild als Eingabe für das Lokalisierungssystem an.
Allerdings stellt die genaue und gleichzeitig effiziente Ortsbestimmung einer Kamera von nur
einem aufgenommenen Bild immer noch eine schwierige Aufgabe dar. Daher werden in dieser
Dissertation zwei Aspekte zur Optimierung von Regressionsverfahren zur Lokalisierung einer
Kamera von Bilddaten behandelt.

Zum Einen wird das Problem der Unsicherheit in die Ergebnisse eines Modells behandelt,
welche entweder durch ungenaue Eingabedaten oder Fehler des Modells selbst entstehen
können. Durch die Verfügbarkeit von geometrischen Informationen liefern RGB-D Methoden
sehr genaue Ergebnisse. Allerdings, basieren diese darauf, ähnliche Merkmale zwischen
korrespondierenden Punkten zu finden, welche in mehrdeutigen Umgebungen, die oft durch
texturlose Oberflächen oder sich wiederholende Strukturen entstehen, häufig fehleranfällig
sind. Zusätzlich verwenden diese Methoden rechenaufwändige Verfahren um die Position der
Kamera nachträglich zu verfeinern und so den Einfluss von fehlerbehafteten Korrespondenzen
zu lindern. Unter diesen Aspekten werden in dieser Dissertation Deep Learning Methoden
analysiert die zum Einen die Wahrscheinlichkeit einer korrekten Punktkorrespondenz schätzen
und zum Anderen ein Maß an Unsicherheit in die Schätzung von Modellen bestimmen,
welche eine Kameraposition direkt von Bilddaten bestimmen. Für diesen Zweck werden
kontinuierliche multimodale Wahrscheinlichkeitsverteilungen über die sechs Freiheitsgrade
einer Kamera bestimmt, welche gut dafür geeignet sind die Mehrdeutigkeiten in einem Raum
oder einer Szene zu beschreiben.

Zum Anderen ist die Bestimmung von aussagekräftigen Merkmalen anhand von Bilddaten
ein essentieller Teil des derzeitigen Standes der Technik und wird in Anwendungen zur
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Kameralokalisierung zur Suche in vorhandenen Datenbanken und von Korrespondenzpunkten
verwendet. Egal ob diese Merkmale durch spezielle Algorithmen oder durch maschinelles
Lernen erstellt wurden, bestimmen diese stark die Genauigkeit und Fehlertoleranz des zu
Grunde liegenden Systems. Daher werden in dieser Dissertation der Einfluss von maschinell
erlernten Merkmalen auf die Genauigkeit der geschätzten Kamerapositionen analysiert. Im
Genauen wird 1) ein System analysiert, welches mehrere Probleme gleichzeitig lösen kann
und dadurch objektspezifische Merkmale und deren Orientierung gleichzeitig erlernt und 2)
analysiert wie erlernte Merkmale dafür verwendet werden können um die Ortsbestimmung
einer Kamera nur mit Hilfe von RGB Informationen der Bilddaten zu verbessern.

Zusammenfassend fokussieren die in dieser Arbeit vorgestellten Methoden Regressionsver-
fahren unter Verwendung von Deep Learning zum Zweck der Lokalisierung einer Kamera,
basierend einzig und allein auf Bilddaten. Umfangreiche Untersuchungen and Analysen derer
zeigen die Vorteile dieser Verfahren zur Bestimmung der Kameraposition und können als
Resultat sowohl in Räumen als auch im Freien und in mehrdeutigen Umgebungen ange-
wendet werden. Auf diese Art und Weise öffnet diese Dissertation den Weg für intelligente
Computer Vision Systeme, welche sich besser an verschiedenste Umgebungen anpassen kön-
nen und legt eine Grundlage für zunehmend automatische Systeme in unterschiedlichsten
Anwendungsfällen.
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1Introduction

1.1 Motivation

How do humans interact with their environment? The human perception of their surroundings
is mostly based upon three of our five senses, namely sight, hearing and touch. Out of these
senses our visual perception provides us with 3D information of our environment as well as
our role in that environment. According to David Marr "Vision is the process of discovering from
images what is present in the world, and where it is." ([138], p. 3). After we have obtained this
information and know what surrounds us, we can infer where we are and localize ourselves in
the environment. Finally based on this process we can interact with said environment.

The human perception system has long been an inspiration and foundation of research
conducted in the area of computer vision. Therefore, one could describe computer vision
as the task of teaching machines to learn perception based on visual information, similar
to how humans perceive their environment. Early developments in this area date back to
1982 when Spoehr and Lehmkuhle [206] as well as Marr [138] compare a human’s visual
system to an information processing system. Over the years, tasks like instance segmentation,
object classification or action recognition, that humans seemingly apply automatically and
simultaneously, have become well-studied research topics. In addition, with the increasing
interest in artificial intelligence and the necessary hardware improvements, machines and
computers have started to become competitive to the performance of their human counterparts
or, in few cases, even better. Some of the most prominent examples for current artificial
intelligence systems reside within the area of board and computer games. For instance, most
recently AlphaGo [44], an AI program developed at Google, was able to beat the best human
player in the popular and complex Asian board game Go. Few methods, however, have been
able to present similar performance when solely relying on visual information. Very recently
AI systems, which are trained on 2D pixel information of the input image as well the overall
aim of increasing the games output score, were able to show competitive performance to
human players on a series of popular Atari games [148, 149].

However, even though the number of possible interactions in games such as Go are highly
complex, specific rules define the validity of interactions and apply to solve the task at hand.
In perception tasks, such as interaction with the environment, such rules can not easily be
defined as the concepts of a room or an environment depend on the specific situation. While
human beings are able to learn from few examples, for example to identify an object, machines
currently require huge datasets to acquire similar knowledge. Therefore, in perception tasks
the performance of computers has not yet been close to reaching the level of a human being.
At its core for successful interaction with the environment, lies localization. Being able to tell
where you are in the environment as well as where your surroundings are, is the first step
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to a core number of visual computer vision tasks and builds part of the foundation for truly
autonomous and automatic systems. To name a few, such applications include augmented
reality, autonomous driving, simultaneous localization and mapping (SLAM) and robotics and
navigation.

In this dissertation, the task of localizing oneself in the environment is defined as localizing
the camera sensor. Assuming the camera as the main sensor used for localization, the task
then becomes related to understanding the connection of visual information, in the form of 2D
images captured by the sensor, to the 3D environment. Specifically the aim is to estimate the
six degrees-of-freedom (DoF) of a camera, describing its orientation and position in reference
to a given scene. With this aspect in mind, we will now outline the broad range of applications
and importance of the topic for each application as well as give a general overview of current
state of the art for each application.

1.2 Applications

Localizing oneself in the environment is the basis of a number of computer-assisted applications
and enables merging the virtual world of a machine or a device and the real world of us humans.
To highlight a few, augmented reality, simultaneous localization and mapping, robotics and
autonomous driving are most related to the work focused on in this dissertation.

With the recent advances and developments in GPU performance, deep learning methods
have become increasingly popular in most computer vision application. While deep learning
frameworks have so far been mostly focused on in research areas, companies and industrial
applications are starting to bridge the gap between research and commercial products utilizing
deep learning methods. With this aspect in mind the aforementioned applications have been
no exception and have become the subject of recent research utilizing deep neural networks.
As this thesis mainly addresses deep learning approaches, we now highlight the general related
work of these applications in the context of localization tasks as well as specifically highlight
most recent deep learning methods.

1.2.1 Virtual and Augmented Reality

Virtual and Augmented Reality have become an increasingly interesting possibility for indus-
trial applications and social interactions. The main focus of these applications is to provide a
virtual environment for the user to interact with. Depending on the application this world can
either be completely virtual or augmented with the real environment by placing virtual content
into the real world. To enable such augmentation the user and device must be localized within
the environment. For this aim, a number of techniques have been developed over the years,
such as marker-based and marker-free tracking methods as well as head mounted displays that
often use infrared tracking.

4 Chapter 1 Introduction



Marker-based Tracking
Visual cues, in the form of markers, have commonly been deployed to specify the position
of the camera with respect to the scene. In this case, markers are designed in such a way,
that they can easily be detected in an image and depending on the viewpoint associated
to the camera view. For this aim, the design is specifically chosen to include strong visual
information, often resembling barcode like structures. Therefore, tracking essentially boils
down to detection of the marker, which in turn provides feedback to the system that can be
used for accurate alignment and positioning of virtual objects [102].

One obvious drawback of such methods is the requirement of positioning physical markers
in the scene which limits the applicability of such methods. If the environment is known in
advance and markers can be positioned the camera can accurately be tracked. However, in
dynamic environments or larger-scale rooms these methods quickly become infeasible.

Marker-free Tracking and Augmented Reality on Mobile Devices
On the other hand marker-free methods solely rely on the image content to track the camera
and have, among others, become a popular choice for augmented reality applications on
mobile devices. For instance, Klein and Murray [111] adapt a simultaneous localization
and mapping approach, PTAM [110], for efficient tracking of the camera for augmented
reality applications on mobile devices. Specifically the limited computational power as well as
frequently occurring problems such as motion blur are addressed.

Due to their availability, large and attractive market and already established consumer access,
mobile devices have been a main focus for augmented reality applications. In those applications
tracking of the device itself is a crucial step for accurate alignment of the real world and virtual
content. For this aim, augmented reality libraries such as ARKit [139] for iOS and ARCore
[128] as a successor of Project Tango [137] have been developed by large companies such as
Apple and Google. Such libraries enable the implementation of augmented reality applications
on mobile devices through device motion tracking and scene processing. Inertial sensors as
well as visual odometry are used to track the device, where features are matched between
image frames and used to compute the relative motion of the camera. However, the accuracy
of said tracking strongly influences the user experience as tracking errors or failure can lead
to misplacement of virtual content in the scene. In addition the limited computational power
of such devices poses an additional challenge for such applications.

Head Mounted Displays and Infrared Tracking
Successfully used in the gaming industry to provide the user with a more interactive experience
using virtual reality, head mounted displays and devices such as HTC Vive [161] or Oculus Rift
[119] have been developed. For such devices head tracking and inertial measurements allow
the user to change the viewpoint in the virtual world. Additional sensors such as infrared
sensors and accordingly tailored devices and controls further allow tracking of the user and
interaction with the virtual environment in small-scale rooms. In this case, initial calibration of
the system is of crucial necessity for good user experience and accurate deployment. Further
two aspects are of most importance for such devices, 1) accurate position and orientation
tracking of the system and 2) low latency between physical movement of the user and update
of the displayed virtual environment.
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In contrast mixed reality devices such as HoloLens [43] have found their way into industrial
applications and have become especially promising in planning and manufacturing. The
relatively light-weight device enables interaction with the virtual content while retaining
the users field-of-view and freedom of physical movement. For future applications such as
virtual meetings these devices have shown to be an important step towards remote work
environments, such that multiple people will be able to view the same virtual content in 3D
even though physically not in the same place. Collaborators can join the virtual space of a host
from standard tablet or laptop devices without the need of their own wearable device [43].

In the field of robotics augmented reality is starting to become an attractive possibility for
assisting remote control of robots. By providing a virtual or augmented view of the robot’s
environment the user obtains additional information that can help in planning and conducting
the robot’s movement to solve the task at hand. Especially in medical applications 3D overlays
have been shown to aid during surgical interventions for human surgeons [157, 158, 201] as
well as steerable robots that enable precise operations needed during surgeries [127, 167].

1.2.2 Robotic Navigation and Grasping

Further, automation with robotics has already made its way into industrial applications such
as automatic packing and transportation in warehouses. Consumer robots often aiding in
house-hold task such as unloading the dishwasher or lawn mowing are either already available
or currently being developed [187]. Localization in this context is two-fold, 1) the robot must
navigate its way from his starting location to the target and 2) once arrived the target object
needs to be localized with respect to the robot to allow for successful grasping.

Reinforcement learning [101] as well as imitation learning [91, 93, 196] have shown to be
promising directions for teaching robots such tasks. In this overview, however, we focus on
vision-related methods that target robotic grasping applications and are more related to the
topic addressed in this thesis. Many more methods that focus on path planning and robotic
steering, the kinematics of the task at hand and force control [12], however, do exist.

If the location of the object is unknown, a first step to successful robotic manipulation of the
object is the detection of said object and inference of its 3D position in the scene. There has
been a vast amount of research addressing this topic, ranging from general object detection
methods [74, 129, 175, 176], not specifically only applicable to robotics, to full pose estimation
methods based on CAD models of the objects as prior knowledge [90, 104, 164, 208, 238].

Once detected, a decision how to best grasp the object has to be made. Saxena et al. [194, 195],
therefore, aim to identify good grasp locations from multiple views of an object in a supervised
fashion. Without any additional knowledge, such as a CAD model or 3D reconstruction,
points are located with logistic regression and triangulated from the multiple views based on
visual information. Once located the robot can be steered towards grasping the target and
subsequent tasks. Recently deep-learning based solutions have started to emerge to predict
grasp locations from 2D images [27, 72, 121].
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Robotic navigation on the other hand is still highly related to the next application we discuss
within the scope of this thesis, simultaneous localization and mapping. Originating in robotic
navigation, it is still a highly researched topic within the robotics as well as in the computer
vision community.

1.2.3 Simultaneous Localization and Mapping

Simultaneous localization and mapping, in the beginning also mentioned as robotic mapping
or concurrent mapping and localization [213], describes the task of localizing the used device
or robot and at the same time creating a map or 3D reconstruction of the environment while
moving in it. The two tasks, in this case, are highly correlated, as accurate localization is
essential for computing a precise map and at the same time good map information is needed
to estimate correct camera poses. One issue of these methods, often addressed as drift of the
camera, is the accumulation of small errors in location of the camera over time. To prevent
this, loop closure detection is used to detect already visited locations and use that information
to correct the global map and camera locations. Global localization, which we address in
this dissertation, is especially important for these applications and can help to correct drift
and detect loop closures. Further, global localization can aid in recovering the system in case
of tracking failure, in this context commonly called re-localization. Occlusions, illumination
changes or rapid camera motion can cause the tracking system to fail, in which case the system
would have to be re-initialized and the map rebuild. Re-localization methods can prevent such
a restart of the entire system by localizing the global pose of the camera such that tracking
can be resumed at that specific position.

Early works on SLAM have been divided into individual steps, including landmark detection,
state estimation and state as well as landmark update. These methods then commonly solved
the problem at hand using Extended Kalman Filters [4, 39, 59].

More recently vision-based solutions using stereo as well as monocular [55] camera informa-
tion have emerged, solely relying on image information. Visual odometry plays an essential
role in such methods and focuses on estimating the relative motion of a camera between image
frames. Over time the relative motion between frames is computed and so called key-frames
chosen according to a certain criteria, e.g. a very simple solution would be within a certain
rotational and translational distance from each other. The global map is then represented as a
graph, where each node is represented by a pose for each key-frame and the edges correspond
to the relative motion between frames. Global pose graph optimization [114] further reduces
errors in the map. A common division for SLAM systems is the separation between sparse and
dense methods.

Sparse Methods
Sparse methods for SLAM focus on identifying sparse key-points in images and matching the
features extracted at these points between frames, resulting in a sparse reconstruction of the
environment in the form of a point cloud.

One popular example of such a method is ORB-SLAM [151] by Mur-Artal et al., a monocular
camera approach that uses ORB [179] features for tracking, mapping, localization and loop
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closure, as well as the extension of the method to a stereo-system setup [152]. Another
prominent example by Klein and Murray is Parallel Tracking and Mapping [110], PTAM, which
introduces parallel processing for efficient SLAM, where two threads run simultaneously, one
for tracking the camera and another one for optimizing the global map. Bundle adjustment
[217], globally optimizing the camera trajectory and generated map, is for a first time applied
in a real-time scenario. Due to its high computational burden, bundle adjustment was for a
long time considered to not be applicable in real-time.

Dense Methods
In comparison to sparse methods dense methods aim, as the name suggests, at using pixel-level
information to create a dense reconstruction of the environment and surfaces contained in it
[16, 63, 108, 160, 188].

Dense Tracking and Mapping, DTAM [160] by Newcombe et al., is one of the first works in
this direction and enables the reconstruction of a dense map by multi-view reconstruction
and depth estimation. In comparison, LSD-SLAM [63], by Engel et al., restricts the depth
estimation to certain regions to achieve fast computational times and, as a result, a semi-dense
reconstruction.

Subsequent works have focused on different aspects of the SLAM pipeline. For instance, Kerl
et al. [108] estimate visual odometry by optimizing over photometric as well as geometric
constraints between frames using RGB-D image streams as input. A probabilistic formulation
of the error is used that additionally allows for key-frame selection based on the distance to
the previous key-frame with increasing entropy.

With the advent of deep learning and re-evaluation of existing methods in almost all aspects of
computer vision, SLAM approaches have been no exception and have recently been extensively
studied in the context of deep learning [16, 212]. CodeSLAM [16] by Bloesch et al., for
example, learns a more compact but dense representation of the scene by training an auto-
encoder on depth information conditioned on the RGB intensity image. A variational auto-
encoder is trained to predict depth as well as pixel-wise uncertainty values. For image pairs
with unknown poses and codes, geometric and photometric losses are used to optimize both
codes and relative poses.

Re-Localization in SLAM
One main problem of SLAM approaches using visual odometry is the error in estimation of
the camera motion that accumulates over time, resulting in drift of the camera and an overall
inconsistent camera trajectory. Re-localization in the global map, however, can be used to
correct the drift. For this aim, most often key-frames are used to correct drift as well as detect
loop closures. Revisiting a certain location can then, in its most simple form, be detected
by comparing a frame to the already stored key-frames. In addition, re-localization enables
revisiting the environment as otherwise it would not be possible to use a previously built
map anymore and can prevent the need for re-building the entire map in case of tracking
failure. A couple of methods presented in this thesis are specifically designed for the task
of re-localization from images. Therefore, we now highlight the development and current
research in camera re-localization for SLAM systems.
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Birds-Eye ViewObject Detection Trajectory Estimation

Fig. 1.1. Perception of the vehicle’s environment and its localization are core requirements for autonomous control
and navigation. Images are adapted from the KITTI Dataset [70].

Especially applied in key-frame based SLAM, place recognition and matching of frames to
a given database has frequently been applied for re-localization, such that tracking can be
resumed from the nearest neighbor key-frame [67, 69, 75]. However, the computational
expenses of such methods significantly increase with the size of the map and additionally are
restricted to the viewpoints contained in the database. In sparse SLAM methods, fast retrieval
of corresponding matches for real-time re-localization plays an important role. Williams et al.
[225] for instance propose fast matching based on decision trees and a binary encoding of
features.

To alleviate the computation burden of the matching step, object-related re-localization has
recently been used for indoor SLAM approaches, simultaneously building a map of objects
present in the scene that are then used as landmarks [124] and matched to a query for
re-localization and matching to the global map [20, 142, 181].

Recently, and most related to the work presented in this dissertation, visual localization
methods have emerged addressing machine learning and deep learning techniques specifically
designed to meet the requirements of image-based re-localization. For this aim, extensive
research and analysis has been conducted in the last couple of years, ranging from regression
forests [42, 199, 220] to deep learning methods that rely on a 3D model of the environment
[21, 24] to directly regression the camera pose [105, 107].

Simultaneous localization and mapping has been a popular topic in robotic navigation and
has, due to its success, found its way into several applications, one of which is autonomous
driving.

1.2.4 Autonomous Driving

Self-driving cars, in general, need good navigational systems and therefore accurate localiza-
tion in the environment for successful deployment. As illustrated in Figure 1.1, detection of
objects in the car’s surrounding such as other vehicles, pedestrians as well as traffic signs and
localization of the car itself, are the core requirements for successful and safe autonomous
control. The additionally large-scale nature of this application poses further challenges as the
potential environment size ranges from city- to eventually world-scale. Further, in contrast to
indoor applications, varying seasonal and weather conditions, such as snow, rain, fog, night
and day-time pose strong illumination and structural variations. Feature-based methods that
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rely on strong visual information such as geometry, edges, and lines and consistent geometric
movement of such features between frames have difficulty adapting to such environments.
In the context of autonomous driving, the vehicle’s movement must be tracked, a process
commonly addressed as ego-motion estimation. Further, localization of its position in the map
is required, for which we highlight current works on place recognition.

Ego-Motion Estimation

Relative camera pose estimation as well as optical flow and depth prediction are tightly coupled
tasks, restricted by geometric constraints. Therefore, a plethora of research has focused on
multi-task learning frameworks in the context of autonomous systems, incorporating the three
tasks into deep models and leveraging the constraints between them to steer the learning
process. Focusing on ego-motion estimation, Yin and Shi [235] propose to jointly learn
camera motion, depth and optical flow estimation from video sequences. Pose and depth
predictions are used to obtain the rigid flow estimation and geometric as well as photometric
constraints leveraged to obtain an unsupervised learning framework. Similar, Bian et al. [11]
use photometric and epipolar constraints on subsequent frames to learn depth, ego-motion
of the camera and optical flow simultaneously. Chen et al. [47] address how to incorporate
scale-consistency into the network’s ego-motion estimation to obtain global scale-consistent
camera trajectories over video sequences. Geometric constraints between frames are used on
the predicted depth maps to obtain an overall consistent depth prediction over the sequence.
Specifically focusing on how to handle moving objects in the scene that can easily affect the
models performance, Ranjan et al. [174] propose to decouple static and non-static objects.

Semantic Information

In terms of visual place recognition, a significant amount of research has focus on incorporating
semantic information in the context of autonomous driving to handle the particular challenges
of this application such as seasonal changes and varying weather conditions. To solve this
problem, a line of research has proposed the use of semantic information, that should be
invariant to the aforementioned changes. In this context, as seasonal changes should not
affect semantic labels of a captured view, Schönberger et al. [198] propose to learn features
capturing geometric as well as semantic information to be robust against such conditions.
Based on the semantic segmentation of a query image and its depth map a 3D semantic
map is build and features extracted using a variational autoencoder. The features are then
used to find matches with a given database of the global 3D scene from the training set and
the alignment with the best match is confirmed with the semantic labels. Toft et al. [215]
extend traditional structure-based methods to include a semantic consistency score to handle
erroneous 2D-3D matches. A semantically labeled structure from motion model is used to
project points into the image plane and their semantic labels identified to additionally score
the quality of in- and outliers. In case semantic labels are not available, the authors of [118]
propose to cluster pixels according to learned features from a neural network and use the
resulting classes as additional constraints similar to semantic information.

All of the aforementioned applications and methods depend on camera localization, where a
strong trend towards image-based methods and visual localization is highlighted. Although
many more exist, in this dissertation, we explore methods aiming at improving camera
localization approaches mostly from single RGB and RGB-D images. Note that more specific
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and technical related work for each framework presented in this dissertation is described in
the individual chapter.

1.3 Thesis Outline

In the next chapter, we start with a brief overview of the necessary mathematical background
and computer vision fundamentals this thesis is based on. In particular we cover different
rotation parameterizations such as rotation matrices, quaternions and exponential maps and
general rigid transformations in SE(3) and se(3). We outline the camera model used in this
dissertation, the pinhole camera model. Further, estimation of the camera pose from 2D-3D
and 3D-3D point correspondences are described and robust estimation with RANSAC briefly
explained.

Part II In this part, we focus on retrieval-based methods for object recognition and pose
estimation as well as large scale visual localization. We introduce a multi-task learning
framework for manifold learning, that is guided by pose information to learn suitable features
for the task at hand. We synthetically create object renderings and use feature learning to
bridge the domain gap for successful object recognition as well as pose estimation. Further,
we extend our framework to large scale visual place recognition with a geo-tagged database
of RGB images. Part of this content is included in the publication

Mai Bui, Sergey Zakharov, Shadi Albarqouni, Slobodan Ilic, Nassir Navab, ’When Regression
meets Manifold Learning for Object Recognition and Pose Estimation’, Proceedings of IEEE

International Conference on Robotics and Automation (ICRA).

Part III We then focus on structure-based methods, that generally rely on explicit or implicit
feature matching and subsequent pose estimation from point correspondences. We introduce
a general method for implicit correspondence learning from 2D-3D or 3D-3D correspondences
depending on the information available. Most importantly we introduce a confidence predic-
tion for the found correspondences with deep learning to enable robust localization in the
presence of a large amount of outliers. The related publication is:

Mai Bui, Shadi Albarqouni, Slobodan Ilic, Nassir Navab, ’Scene Coordinate and Correspondence
Learning for Image-Based Localization’, Proceedings of the British Machine Vision Conference

(BMVC)

Part IV In this part, we cover two methods based on direct camera pose regression.

First, we explore the possibility of RGB-based camera pose refinement in Chapter 8. Inspired
by the concept of generative adversarial networks we opt for classification by a discriminator
network of joint poses and image features. During inference said network is then used for
iterative pose refinement pushing the regressed pose towards the manifold of the learned pose
distribution. This work is covered in the publication
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Mai Bui, Christoph Baur, Nassir Navab, Slobodan Ilic, Shadi Albarqouni, ’Adversarial Networks
for Camera Pose Regression and Refinement’, Workshop on Deep Learning for Visual SLAM,

Proceedings of the International Conference on Computer Vision (ICCVW).

Secondly, in Chapter 9 we propose a variational learning framework suitable to capture the
multimodal nature of ambiguous environments using Bingham and Gaussian Mixture Models.
Such distributions are suitable to capture the pose space parameterized by quaternions and
Euclidean translations and in addition provide a measure of uncertainty in the predicted poses.
Further, we show how to alleviate common problems such as mode collapse that frequently
arise in training such models by incorporating a multiple hypothesis training strategy. The
related publication is described in

Mai Bui, Tolga Birdal, Haowen Deng, Shadi Albarqouni, Leonidas Guibas, Slobodan Ilic,
Nassir Navab, ’6D Camera Relocalization in Ambiguous Scenes via Continuous Multimodal

Inference’, European Conference on Computer Vision (ECCV).

Part V We conclude this dissertation with a summary of the work presented in this thesis,
possible limitations of our and current state-of-the-art methods, discussion about possible
solutions and future directions and applications that have not been covered within the scope
of this dissertation.

Appendix In the appendix, we provide a list of the publications covered in this dissertation as
well as additional publications not discussed here. For those publications we include a short
description and overview as an appendix.
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2Mathematical Background

In this chapter, we briefly describe the fundamental principles and mathematical background
of this dissertation. We start with introducing commonly used rotation parameterizations that
can be used to describe the orientation of a camera. We then relate the 3D world to image
pixels and explain the assumed projective geometry of this thesis using rigid transformations.
Lastly, we discuss commonly used algorithms to estimate a camera pose from correspondences
and how a robust solution with RANSAC can be computed.

2.1 Rotation Parameterization

The orientation of a camera can be parameterized in a number of ways. Most frequently
used in current state-of-the art methods are rotation matrices, quaternions or the axis-angle
representation. Therefore, we will shortly summarize these parameterizations as well as
highlight advantages and drawbacks that can arise when training deep neural networks for
orientation regression.

Rotation matrices Rotation matrices are members of the 3D special orthogonal group, SO(3),
where R ∈ R3×3 are orthogonal matrices such that RRT = RR−1 = I and det(R) = 1.

Using rotation matrices in an optimization process results in an over-representation of the
otherwise three DoF of a rotation to nine DoF. Further, the orthogonality of the matrix has to
be ensured during the optimization to obtain a valid solution.

Axis-Angle Equally any orientation can be represented by a rotation of an angle θ ∈ [0, 2π)
around an axis w ∈ R3, where θ = cos−1( tr(R)−1

2 ). The vector w can be derived from

log(R) = θ

2sinθ
· (R −RT ). (2.1)

Reducing the current four DoF to only three, the Lie algebra, so(3), introduces a way to merge
the angular and axis component into a one vector representation, w ∈ R3. An element of
so(3) has the form

w1G1 +w2G2 +w3G3 ∈ so(3), (2.2)
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a linear combination of w and the skew-symmetric generator matrices

G1 =


0 0 0

0 0 −1

0 1 0

 , G2 =


0 0 1

0 0 0

−1 0 0

 , G3 =


0 −1 0

1 0 0

0 0 0

 . (2.3)

Then, according to Rodrigues formula the corresponding rotation matrix ofw can be computed
by the exponential map:

exp(w×) = exp


0 −w3 w2

w3 0 −w1

−w2 w1 0

 = I + sinθ
θ
w× + 1− cosθ

θ2 w2
×, (2.4)

where w× is the skew-symmetric matrix of w [62]. A matrix is considered skew-symmetric if
wT
× = −w×

Quaternion Quaternions are vectors on the 3-sphere S3. Given a rotation of angle θ around
axis w, the associated quaternion can be computed as

q = [cos
θ

2 ,wsin
θ

2 ]. (2.5)

As quaternions reside on the unit sphere, normalization is required during any optimization
procedure to obtain a valid quaternion. Further, quaternions are redundant in the sense that
q and −q represent the same rotation, which additionally should be addressed. Although
quaternions are defined by vectors of R4 instead of the minimal amount of parameters required
in R3, they have extensively been used in recent literature utilizing neural networks to estimate
the orientation of an object or a camera.

When predicting samples of the aforementioned representations with neural networks, it is
important to keep the properties of each representation in mind to obtain a valid solution and
to not over-complicate the learning process.

Distance metrics on rotations A distance between two rotation matrices, R1 and R2, can be
computed from the difference rotation matrix R = R1RT

2 or the geodesic distance between
R1 and R2:

d(R1,R2) = ‖log(R1RT
2 )‖ = ‖log(R)‖ (2.6)

Retrieving the angle of R as

θ = arccos
trR − 1

2 , (2.7)

with trR = 1 + 2cosθ, provides an intuitive measure of distance between two rotation
matrices.
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Fig. 2.1. Mapping from 3D world to a 2D image using the camera pinhole model. The extrinsic parameters, R
and t, of a camera describe the transformation between world and camera coordinate frame, whereas its
intrinsic matrix K relates the information of 3D points to the 2D image plane.

Similar a distance between two quaternions, q1 and q2, can be computed as

θ = 2arccos(|q1q2|), (2.8)

where q1q2 = cos θ2 and is computed as the dot product between q1 and q2. Both metrics
result in values of θ ∈ [0, π] [95].

2.2 Projective Geometry

The mapping between a 3D point Xw ∈ R3 or later also called the scene coordinate and an
image pixel p is described by the underlying camera model. One of the most commonly
used models, which we will also use in this dissertation, is the camera pinhole model, which
describes the camera by its extrinsic and intrinsic parameters. Although the model does not
account for distortion, it has been widely used in computer vision applications. Now, assuming
the camera pinhole model, as visualized in Figure 2.1, first Xw is mapped into the camera’s
coordinate frame using the extrinsics, or the camera pose, as xc = RXw+t, where R ∈ SO(3)
represents the camera’s orientation, t ∈ R3 its translation and xc ∈ R3 is the 3D coordinate of
point Xw in the camera coordinate frame. Given the camera’s intrinsic parameters, the focal
length f (distance between the camera center and its image plane), and its optical center
c = (cx, cy) (intersection of principal axis and the image plane), the projected pixel location
p of xc = (x, y, z)T can be computed as p = ( fxz + cx,

fy
z + cy)T . P = K[R|t] is called the

camera matrix, with

K =


f 0 cx

0 f cy

0 0 1

 . (2.9)

Note that in the above equation we assume the scaling factors of x- and y-direction to have
equal length in pixels, f . The mapping from image pixels to 3D coordinates is commonly
called back-projection.
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2.3 Rigid Transformations

If we write P using homogeneous coordinates, we obtain a rigid transformation in the 3D
space. These transformations form a group P ∈ SE(3) and preserve relative distances
and angles among points. Using Lie Algebra any matrix P can be represented as a vector
(u,w)T ∈ se(3) with u,w ∈ R3. The exponential map defines the mapping from se(3) to
SE(3) and can be computed as

exp

u
w

 =

R V u

0 1

 , (2.10)

with
R = I +Aw× +Bw2

× (2.11)

and
V = I +Bw× + Cw2

×, (2.12)

where A = sinθ
θ , B = 1−cosθ

θ2 , C = 1−A
θ2 and θ = wwT [62]. I in this formula is the identity

matrix.

Distance metric Given two rigid transformations P1 and P2, we can define a distance metric
in exponential coordinates as

d(P1,P2) = ‖log(P1P
−1
2 )‖, (2.13)

which can be seen as the amount of movement required to move from P1 to P2.

2.4 3D/3D and 2D/3D Camera Pose Estimation

The connection between image plane and the 3D world is defined by its geometric information
and, for instance, can be leveraged to estimate the most likely camera pose connecting two
point sets.

3D/3D If two sets of corresponding points {x1
c ,x2

c , ...,xNc } and {X1
w,X2

w, ...,XN
w } in camera

and world coordinate frame are available, the associated camera pose, R and t can be recov-
ered using Kabsch algorithm [100] or sometimes also called orthogonal Procrustes alignment. In
short, the algorithm finds the optimal rotation that aligns the two sets of points by minimizing
the root mean squared error (RMSE). Having obtained the optimal rotation, the translation
can be recovered as a next step. Given the two 3D point sets {Xi

w}Ni=1 and {xic}Ni=1 the
algorithm finds an optimal solution R and t such that

arg min
R,t

N∑
i=1
‖xc − (RXw + t)‖2 (2.14)
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For this aim, the rotation matrix R is retrieved from the matrix Σ with covariances between
the two point sets:

Σ =
N∑
i=1

(Xi
w −Xw)(xic − xc)T , (2.15)

where Xw and xc are the mean point of point sets {Xi
w}Ni=1 and {xic}Ni=1 respectively. The

rotation matrix R can then be retrieved from the singular value decomposition of Σ as

RT = UVT , (2.16)

where
Σ = USVT . (2.17)

The matrix S is a diagonal matrix and contains the singular values of Σ. The case that the
matrix RT results in a reflection, det(RT ) = −1, instead of a rotation matrix can easily be
handled by changing the sign of the last column of U. The translation vector t is then given
by

t = −RXw + xc. (2.18)

2D/3D In a lot of applications direct 3D to 3D correspondences might not be available due to
the lack of depth or similar information. However, if it is possible to retrieve correspondences
between the 3D world and 2D image space, the camera pose can still be approximated. This
is called solving the perspective-n-point (PnP) problem between two sets {p1,p2, ...,pN} and
{X1

w,X2
w, ...,XN

w }. Various methods have been proposed to solve this problem, depending on
if the intrinsics of the camera are known or not. If not the Direct Linear Transform (DLT) is
one of the most popular approaches. However, in this thesis we generally assume the camera’s
intrinsic parameters to be known. As the camera pose has six degrees of freedom, a minimum
of three corresponding points are necessary to retrieve a solution, therefore introducing the
perpective-three-point problem (P3P) or in photogrammetry often called the Resection problem.
This problem has been known for a long period of time and first solutions date back to 1841
[82]. In short to solve the P3P problem, angles between the rays from the camera center to
each of the 3D points are used and equations formed that result from geometric properties
of triangles between the camera center and the 3D points. Solving for these equations then
retrieves the depth of each point and thus the solutions to the possible camera poses can be
computed. Since at its core quadratic equations need to be solved, four possible solutions are
obtained and generally a fourth point is used to solve for these ambiguities. Although this is a
well- and long-known problem, much research is still conducted to develop more robust and
efficient solutions such as [89, 103].

As a general solution, for n > 3, EPnP [122] has been proposed. EPnP expresses the point
set as a weighted sum of four virtual control points and essentially reduces the problem to
solving for the camera coordinates of these control points. Having obtained corresponding
camera and world coordinates, as a second step the pose of the camera can be retrieved.

Handling outliers In case of perfect, error-free, data the camera pose can be retrieved using
the aforementioned algorithms. However in real world applications, due to noise and errors
in computation, the obtained data is almost never perfect, which can result in severe lack of
performance. Therefore, strategies such as Random Sample Consensus (RANSAC) [66] have
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become well adapted to handle outliers and compute a robust solution. An outline of the

Algorithm 1 RANSAC Pseudocode

Input: N data points
Output: estimated model
while True do

randomly sample M points, the minimum number of data required;
estimate a model;
check which points agree with this solution based on a certain criteria;
if good solution then

re-estimate the solution based these points
exit

end if
end while

algorithm in its basic form is depicted in Algorithm 1. It is an iterative algorithm, that starts
by computing an initial solution from the minimum amount of data required, in our case three
point correspondences. Based on this initial hypothesis, the inlier set is computed over all
available data points. Here, a point is considered to be an inlier if a chosen distance threshold,
commonly the re-projection error, is within a user-specified threshold. The hypothesis is then
recomputed based on the inlier set. Repeating this computation N times ensures finding an
optimal solution with probability p, where N can be computed based on the probability of
observing an inlier pin as

1− p = (1− pMin)N , (2.19)

where M is the minimal number of data points used to compute a model hypothesis. Based
on its ability to handle a large amount of outliers, RANSAC is still a widely used approach
in camera as well as object pose estimation or in fundamental matrix estimation to find the
relation between correspondences in stereo images [131].

Algorithm 2 Pre-emptive RANSAC for Camera Pose Estimation

Input: N 2D-3D point correspondences
Output: estimated camera pose [R, t]
K times randomly sample three point correspondences;
estimate K solutions by solving the PnP;
while K > 1 do

sample N points for each solution;
score← count the inliers in N for each solution;
discard worst K/2 hypotheses;
K ← K/2;
refine each hypothesis on the enlarged inlier set;

end while

An adapted version of RANSAC, pre-emptive RANSAC, has been widely used in camera local-
ization methods [41, 199, 220]. Therefore, we will shortly outline the procedure in Algorithm
2. An initial set of hypothesis is sampled using the minimum amount of required points. Then
for each hypothesis a scoring function is computed, based on the inlier count, and only half
of the hypotheses with the highest scores are kept and updated using their inlier set. This
process is repeated until only one hypothesis remains.
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2.5 Error Metrics

In this section, we define common metrics used in the remainder of this thesis across all
chapters. Application or method specific metrics are further explained in each chapter
separately.

Given a ground truth camera pose, consisting of a rotation, represented by a quaternion q,
and its translation t, we compute the angular error between ground truth q and predicted
quaternion q̂ as

dq(q, q̂) = 2 arccos(|q ◦ q̂|). (2.20)

For translations we use the norm of the difference between ground truth t and predicted
translation t̂

dt(t, t̂) = ‖t− t̂‖2 (2.21)

to compute the error in position of the camera. We can then provide statistical measures of
these errors over the entire dataset, such as the median, mean and standard deviation.

In addition, we evaluate the performance of our models with respect to the accuracy of the
predicted camera poses by computing the recall of ours and the baseline models. We consider
a camera pose estimate to be correct if both rotation and translation are below a pre-defined
threshold:

E[ρ((dq(q, q̂) < thq) ∧ (dt(t, t̂) < tht))], (2.22)

where ρ(·) is 1 if its argument holds true and 0 otherwise. The thresholds are defined for
rotation and translation, namely thq and tht, and strongly influence the measure.

In the next chapter, this definition is of particular importance for our method, as it, in addition
of being used as an evaluation measure, also defines a distance function between images,
which we use and incorporate in our first proposed framework for image-retrieval based on
neural networks in the context of pose estimation tasks.
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Part II

Pose Estimation with Image-Retrieval





3Introduction

3.1 Motivation

For centuries image retrieval methods have been used to solve a majority of computer vision
tasks such as image or object classification [112, 203] or scene recognition [204, 243]. In
general these methods rely on a pre-computed database of images and associated labels,
that depend on the task at hand for example classes, categories, geo-locations or camera
poses. Given a query image for which the associated label is unknown a nearest neighbor
search in the given database will effectively retrieve the most likely label, a process which
is depicted in Figure 3.1. For successful and efficient matching, first a lower dimensional
representation of the database as well as the query image is computed. As the performance of
these methods naturally depends on the chosen representation, various works have focused
on finding general as well as task-specific features that can be used to encode the input image.
For this aim, traditional methods have relied on hand-crafted features such as histogram of
oriented gradients (HoG) [54], that has been designed to encode specific image properties
such as strong edge gradients which often relate to the shapes and surfaces contained in the
environment or scale-invariant feature transform (SIFT) [130] and speeded up robust features
(SURF) [8], that first detect keypoints in an image and then extract features at those locations.
Resulting descriptors are designed to have certain properties, such as scale as well as rotation
invariance or robustness to illumination changes such as depicted in Figure 3.2, where images
of the same location have a large variation in visual appearance due to illumination conditions.
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Fig. 3.1. General image retrieval pipeline. Common retrieval methods rely on feature matching between the
query and a pre-computed database to retrieve the nearest neighbor and thus most likely match or label.
Features originally were mostly hand-crafted to extract specific information such as edges and strong
gradients. Recently the use of learned feature representations have shown to be superior in a number of
applications.
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Fig. 3.2. Example images of the same location under varying illumination conditions of the Tokyo 24/7 dataset
[216]. In a retrieval application, extracted features should be invariant to such conditions and produce
similar descriptors for successful matching.

Preferably for successful retrieval of the nearest neighbor such images should still be close to
each other in the descriptor space.

Further, these often local features can be combined in a global descriptor for image retrieval
using bag-of-words approaches. Originally a popular method used in Natural Language
Processing for text retrieval, bag-of-words approaches have been used to describe the content
of text documents based on the histogram of word occurrences. Similar, to describe image
appearances, local features can be clustered and aggregated to obtain visual words. All
visual words of an image, the bag of visual words, is then used to represent an image [168].
Matching of images is then a result of comparing the frequency of visual words appearing in
two images.

However, with the advent of machine and deep learning, learned feature representations have
been shown to provide powerful and rich encodings that can outperform their traditional
counterparts and in addition can easily be adapted to adjust to a specific task [226]. In most
cases this corresponds to adapting the loss function, such that features are learned to be
close to each other if the input images or labels correspond to a predefined distance function.
Assuming, for example, the task of object recognition, feature descriptors should be learned
such that descriptors for the same object class appear similar whereas they should be well
differentiable from features of other object classes. The distance functions used commonly
directly relate to the problems at hand, such as classes, geometric or visual distance measures.

For this aim, in this chapter we present a multi-task learning framework that is specifically
designed to learn a representation encapsulating what is shown in the image as well as
from which viewpoint it is seen. For instance, we evaluate our method on the task of object
recognition and pose estimation, where features are required to be discriminative enough to
be able to differentiate between object classes regardless of their viewpoint. In addition, the
viewpoint information should not be neglected as it provides important clues about the object
and is required to infer the exact object’s pose. Further, we evaluate the performance of our
model in large-scale environments on the task of place recognition, where features have to be
robust to strong illumination changes for successful recognition of the environment.
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3.2 Related Work

In the context of six DoF pose estimation, the database normally consists of features extracted
from RGB or depth images and associated object or camera poses. Finding the nearest neighbor
of a query image according to the resulting features will in this case also retrieve the closest
pose. This can be done at large scale considering geolocations as labels or in smaller scale on
scenes and objects to retrieve the six DoF camera/object pose.

3.2.1 Place Recognition and Camera Pose Estimation

We first review large scale place recognition and camera pose estimation methods where the
main focus is to compute a discriminative yet compact representation that can efficiently be
indexed in large databases. We then move towards smaller scale object retrieval.

Place Recognition
At large-scale, i.e. city or world-scale, this problem has originally been posed as recognition of
the place a query image is taken at, relying on landmarks that are often covered in a query
image and associated geo-locations. Due to strong illumination changes such as day/night
or seasonal changes as snow/rain, extracted descriptors have to be carefully designed to be
invariant to the aforementioned effects [48, 49]. For this aim, Relja et al. [3] construct a
new feature aggregation layer, inspired by the vector of locally aggregated descriptors (VLAD)
[99], which can be included in any existing convolutional neural network and clusters local
features into a global descriptor similar to bag-of-visual-words. However, instead of counting
occurrences it stores the sum of residual vectors between the feature vector and its visual
word (cluster center). NetVLAD [216] then shows how to incorporate VLAD descriptor into a
neural network, where the visual words as well as the cluster assignment for each descriptor
are introduced as learnable parameters. It shows great capabilities in aiding image retrieval
tasks for place recognition and therefore has been used in several subsequent works [189,
211, 216].

On the other hand, in [29] Budvytis et al. propose the use of semantic information for effective
retrieval. Here, a neural network is trained to predict semantic labels, which in turn are then
used for matching with a given database by comparing the histogram of predicted labels and
database images.

In contrast to RGB images, a LiDAR scan is less affected by changes in illumination or weather
conditions. Therefore, numerous works propose to solve the task of place recognition from
a LiDAR point cloud [2, 84, 241]. Uy and Lee propose PointNetVLAD [2], which combines
PointNet [172] to learn local descriptors for each point in the cloud, that are then aggregated
using a NetVLAD [3] layer and finally reduced to a lower dimensional feature representation
trained on a triplet loss. In PCAN [241] the authors, Zhang and Xiao, propose to predict
attention weights for the learned local features that can be used to compute a weighted
aggregation. Intuitively points that correspond to dynamic objects such as pedestrians passing
by should not influence the learned descriptor.
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Six DoF Pose Estimation
Depending on the application, retrieving a coarse estimate of the query place or geo-location
might not be accurate enough. In augmented reality applications for instance an exact pose
prediction is necessary to provide a reliable user experience and accurately position virtual
content into the real world environment. Therefore, Taira et al. [211] additionally propose
to learn dense features using a convolutional neural network for camera pose estimation.
After retrieval of nearest neighbor database images, dense features at different layers of the
network are used to find 2D-3D correspondences, given that depth information or a model,
for example from structure-from-motion (SfM), is available for the database images, from
which the pose can be computed. Additionally, the estimated pose is verified by comparing
the query image and the synthesized view obtained using the 3D model and retrieved camera
pose. Similarly, Sarlin et al. propose HF-Net [189], which applies a coarse to fine strategy,
first retrieving the nearest database image and then matching 2D-3D correspondences using
learned features at learned keypoint locations. Knowledge distillation is used effectively to
obtain an efficient model that can be employed on mobile devices. Zamir et al. [239] use a
siamese network architecture to compute features based on object-centric viewpoint matches
for camera pose estimation. Further, they show that the resulting model generalizes well to
other tasks, including object pose estimation. Still, this method as is has not been shown to
generalize to multiple objects in a cluttered environment. Balntas et al. propose RelocNet [5],
a convolutional neural network aiming at learning a feature representation between image
pairs that corresponds to the camera frustum overlap of the associated camera poses. In
combination with a predicted relative pose, nearest neighbor camera poses can be inferred
from the learned feature representation and the pose of a query image with respect to the
nearest neighbor computed.

3.2.2 Object Recognition and Pose Estimation

On a smaller scale, considering objects instead of places or entire scenes, the problem becomes
recognizing an object instance and/or its pose with respect to the camera. The idea, however,
remains similar and can easily be applied to this very related topic.

Manifold learning
As a pioneer in this line of research Wohlhart and Lepetit [226] present a manifold learning
approach for object recognition based on the triplet and pairwise losses. In their work, for
each RGB-D image patch containing a specific object, triplets are formed in such a way that
a query image patch is matched with a similar patch if they contain the same object, and a
dissimilar patch, depicting a different object category. Features are then learned in such a
way that descriptors will be close in Euclidean space if the image patches contain the same
object and highly dissimilar otherwise. Zakharov et al. [236] include in-plane rotations to
the above mentioned method and improve it by introducing an updated triplet loss function
in which the margin term value is set to be dynamic depending on the type of the negative
sample, as opposed to the former method. Sundermeyer et al. [208] propose a convolutional
auto-encoder to learn representative features solely based on image appearance which can
then be used to retrieve the most similar pose of a query patch. Concurrently to our work
Balntas et al.[5] show the positive effect a pose-guided neural network can have on its learned
feature representation by enforcing features to be correlated to the distance in pose space
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of the object’s pose. These methods, except for [236], however, do not include in-plane
rotations.

Domain Adaption and Randomization

Obtaining a high amount of annotated images with pose labels is necessary for supervised
learning methods. While realistic renderings can nowadays be created thanks to modern
visualization and rendering techniques, the creation of such data remains a time-consuming
and tedious task. Therefore to alleviate this problem synthetic images can be generated from
predefined poses. CAD models of objects are very often available and a theoretically infinite
number of rendered images with corresponding poses can easily be computed. Unfortunately,
due to illumination conditions clutter and occlusion occurring in real environments, these
renderings often significantly differ from real images, which can easily reduce the performance
of deep learning models to be applied in real world applications, a problem commonly known
as domain shift [52].

Several methods have therefore aimed at solving the domain shift problem. Very often a
limited amount of real labels is available or can be obtained, introducing domain adaption
and domain randomization methods.

Domain Adaption

Specifically in deep learning methods, it has been shown that neural networks can, to some
extent, generalize to the real data when trained on synthetic data in addition to a small
amount of real ones. To further improve this effect explicit manifold learning can be applied to
push features from different domains, e.g. real and synthetic, to be close in the features space.
This technique for instance has been shown to work well on the task of object recognition
[226].

In case no real images and labels are available, generative models have been another widely
used approach to handle the domain shift problem. For instance real images can be created
from synthetic ones [200, 210] or vice versa [98, 208, 237] or models directly trained to map
from one domain to a target one [18]. These methods in general aim at bridging the domain
shift by finding common feature representations across domains [218] or domain-specific
ones [19] that can then further be processed or used to acquire additional data. A drawback
of such methods, however, is that they require paired samples from the source to the target
domain, which might not easily be available. Therefore, a line of research has focused on
domain adaption techniques that learn from unpaired examples [109, 248].

Domain Randomization

On the other hand domain randomization has been proposed to introduce variability in the
training set and only rely on synthetic renderings that can still be used to generalize to real
data. For this aim, a line of research [208, 236] applies heavy data augmentation, such as
varying image contrast and brightness or inserting random background images, for example
from the Pascal VOC dataset [64], in addition to mimicking occlusions. Such augmentations
have shown to perform well on the task of object pose estimation. At medium to larger scale
synthetic renderings of indoor scenes are created for robotic applications [17, 185, 214].

3.2 Related Work 27



The method presented in this thesis utilizes both domain randomization as well as domain
adaptation on the task of object pose estimation. This way, our method is able to leverage a
large amount of synthetic renderings to learn a model for object recognition as well as pose
estimation. In the next chapter we will therefore explain and describe our proposed method in
more detail and show extensive evaluation on the task of object pose estimation. Further, we
provide experiments on the task of place recognition, showing the generalization possibilities
of our method to several applications.
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4Manifold Learning with Regression
Optimization

In this chapter we now describe our proposed method for object recognition as well as pose
estimation based on manifold learning, before showing its generalization capabilities on the
task of place recognition. The following work has, in parts, been published in the following
paper

’When Regression Meets Manifold Learning for Object Recognition and Pose Estimation’ by Mai
Bui, Sergey Zakharov, Shadi Albarqouni, Slobodan Ilic and Nassir Navab, International

Conference on Robotics and Automation (ICRA), 2018, Copyright 2018 IEEE [36].

4.1 Methodology

Our methodology starts with training a convolutional neural network on a given training
set Strain = {s1, . . . , sN} = {(X1, C1,q1), . . . , (XN , CN ,qN )}, which consists of N samples.
Each sample s comprises a depth image patch X ∈ Rn×n of dimension n× n of an object, that
can be identified by its class C ∈ N, together with the corresponding pose vector p = [q, t],
where we focus on estimating q ∈ R4. We choose to represent the pose as the orientation of
the object, parameterized by quaternions. An overview of our method is depicted in Figure 4.1.
Note that we leave the detection of the object to future work. However, any state-of-the-art
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object detection method that provides a 2D bounding box such as [175] could be applied here
and used to retrieved the translation t.

Therefore, our objective becomes the task of modeling the mapping function µΓ(X) : Rn×n 7→
R4, such that for a given input patch X the predicted pose vector q̂ is obtained as

q̂ = µ(X; Γ), (4.1)

where Γ are the model parameters, in our case the weights of a neural network. While the
primary objective is to obtain an accurate pose estimation for any unseen data, having a well
clustered feature space is of high interest as well such that our model can scale to multiple
classes, in comparison to recent state-of-the-art methods that train one model per object. The
resulting features can then be used to identify the objects class. For this aim, we model the
problem as a multi-task learning framework, namely we train our model to simultaneously
solve the two tasks, pose regression and descriptor learning. Finally, we formulate the overall
objective function as

LMTL(Γ|X,q) = (1− λ)Lpose(Γ|X,q) + λLd(Γ|X), (4.2)

where λ is a regularization parameter. Lpose(Γ|X,q) and Ld(Γ|X) are the objective functions
for the pose regression and the descriptor learning task respectively that we will describe in
more detail in the following.

4.1.1 Pose Regression

During training, our neural network maps a given input image patch X to a lower dimensional
feature vector fΓ(X) ∈ Rd. As depicted in Figure 4.1, we obtain the feature vector as the
output of the last fully connected layer before it is further utilized to regress the pose in a
subsequent layer. To finally regress the pose we use the following loss function:

Lpose(Γ|X,q) = ‖q − q̂
‖q̂‖‖

2
2, (4.3)

where ‖ · ‖2 is the l2-norm and q is the corresponding ground truth pose, a loss function
commonly used in recent pose regression literature [107].

4.1.2 Descriptor Learning

To create robust feature descriptors that can be used for object recognition as well as pose
estimation, object identities as well as poses should be well distinguishable in the feature
space and create a compact clustering of object classes as well as a respective pose mapping
within the clusters. Further, to reduce the requirement of real annotated data and to be able
to mainly train our model on synthetic images, we need to map synthetic and real images to
the same domain to ensure generalization of our model to real applications. Here, we make
use of the triplet and pairwise loss, originally introduced by Wohlhart and Lepetit [226]. For
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this aim, the loss functions encapsulate both class separation as well as domain adaptation
aspects.

As depicted in Figure 4.1, our model is trained on a set of triplets (si, sj , sk) ∈ T , where the
sample si, called anchor, corresponds to the current depth image Xi and sj is chosen so that
the image corresponds to the same object Ci viewed from a similar pose qj . For this aim,
we call sj the puller. However, sk is chosen so that the image Xk corresponds either to a
different object Ck or the same object Ci, but viewed under a very different pose qk and is
therefore called the pusher. The resulting loss, Ltriplets(Γ|X), defined over a batch of triplets
is formulated as

Ltriplets(Γ|X) =
∑

(si,sj ,sk)∈T

max
(

0, 1− ||fΓ(Xi)− fΓ(Xk)||22
||fΓ(Xi)− fΓ(Xj)||22 +m

)
, (4.4)

pulling viewpoints under similar poses close together and pushing dissimilar ones or different
objects further apart. As appeared in [236], m corresponds to a dynamic margin defined as:

m =

2 arccos(|qi · qj |) if Ci = Cj ,

γ else,
(4.5)

where γ > 2π. The dynamic margin ensures that objects of different classes get pushed farther
away while the margin for the same objects depends on the angular distance between the
current viewpoints qi and qj .

In addition, the pair-wise loss Lpairs(Γ|X) is used to push together the sample feature descrip-
tors of the same object under the same or very similar pose but with different backgrounds or
coming from different domains, i.e. synthetic or real. The pair-wise loss is computed on pairs
(si, sj) ∈ P and is defined as:

Lpairs(Γ|X) =
∑

(si,sj)∈P

||fΓ(Xi)− fΓ(Xj)||22, (4.6)

fΓ(Xi) being the feature descriptor extracted from the neural network for image Xi. Overall,
for descriptor learning we obtain the following loss function Ld, where

Ld(Γ|X) = Ltriplets(Γ|X) + Lpairs(Γ|X), (4.7)

consisting of pairwise Lpairs(Γ|X), as well as triplet Ltriplets(Γ|X), loss functions.

4.2 Experimental Setup

In this section, we first describe how we create our datasets by combining simulated object
renderings with background noise and real images taken from the LineMOD dataset [90].
Then we give an overview of our experimental setup before demonstrating and evaluating the
results.
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(a) Training Renderings (b) Test Patches

Fig. 4.2. Example patches for our a) synthetically rendered training and b) real test sets.

4.2.1 Dataset Generation

The LineMOD dataset is a by the state-of-the-art widely used dataset. Considering that both
former closely related feature descriptor learning and pose estimation methods [226, 236]
utilize the LineMOD dataset for their experiments as well, we chose this dataset to be able to
evaluate our algorithm’s performance in comparison to the baseline method.

The LineMOD dataset consists of fifteen distinct 3D mesh models and respective RGB-D
sequences of them together with the camera poses. This data is used to create the training
Strain, the database Sdb, and the test set Stest. Each set consists of samples s = (X, C,q),
where X stands for a depth image patch, C and q are the corresponding object class and pose,
respectively. The training set Strain, as its name suggests, is used exclusively for training. The
test Stest and database set Sdb are exclusively used in the evaluation phase, where the samples
of Sdb are used to construct a descriptor database used for the nearest neighbor search that is
matched against samples from Stest. Examples patches for our synthetically created rendering
as well as the real test patches can be found in Figure 4.2.

We now describe in more detail how our training, database and test sets are created. First, we
render each of the fifteen objects from different viewpoints covering their upper hemisphere,
depicted in Figure 4.3a. Here, following previous methods [226, 236], viewpoints are defined
as vertices of an icosahedron centered around the object. By repeatedly subdividing each
triangular face of the icosahedron additional viewpoints and a denser representation can be
created. In one subdivision the midpoint of each triangle edge is chosen as a new vertex such
that the new edges between the midpoints form additional faces. In our case, the training
set Strain is sampled by recursively applying three consecutive subdivisions on the initial
icosahedron structure. The resulting viewpoints can be seen in Figure 4.3a. Furthermore,
following the method of [236], we add in-plane rotations at each vertex position and rotate
the camera from -45 to 45 degrees using a stride of 15 degrees.

As a next step, we extract patches from the depth sequences covering the objects from both
rendered and real images. The bounding box is defined by a bounding cube of size 40 cm3

centered on the object. All the values beyond the bounding cube are clipped. Upon extraction
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(a) Regular (b) Symmetric (c) Rotation-inv.

Fig. 4.3. Sampling points for different objects types: vertices represent camera positions from which the object is
rendered. We choose different sampling strategies for symmetric as well as rotation invariant objects to
handle ambiguous viewpoints.

of the patches, each of them is normalized and stored together with its object class C and
pose q. As a result we obtain a single sample s.

The training set Strain is then generated by combining the samples from the renderings,
created as described above, and 50% of the real data, obtained from the depth sequences. This
results in approximately 18% in the training set Strain being real data. The selection of the
real samples is performed by choosing the most similar poses to the ones used for synthetically
rendered samples. The remaining real samples are used to generate the test set Stest, ensuring
variation from the training set with respect to the contained poses. The database set Sdb is
created by using only the synthetic part of the training set Strain.

Treating Rotation-invariant Objects

Four out of fifteen objects of the LineMOD dataset have a property of rotation-invariance
and introduce an ambiguity to the generation of triplets needed for the triplet classification
loss. For instance, the bowl object is fully rotation-invariant, whereas the cup, eggbox and
glue object are only rotation-invariant around a single plane or, in other words, symmetric.
Therefore, in comparison to the others, these four objects need to be handled with care, such
that stable network training can be ensured. This stems from the fact that, in the case of
rotation-invariant objects, samples representing different poses might visually look the same.
This introduces ambiguous views, which can in turn result in a faulty triplet required for the
triplet loss function as well as hinder the network to accurately learn the object’s pose.

To solve this problem, we restrict the viewpoints rendered for those objects, such that every
image patch is ensured to be unique. Sample vertices for different object types are demon-
strated in Figure 4.3b and 4.3c. Since both training set Strain, and test set Stest also include
real samples we omit ambiguous poses in them and only retain those that are close to the
rendered samples. Note that this sampling also results in an unbalanced percentage of real
images included for each object. Therefore, to consider this in our evaluation, we create
datasets of five, ten and fifteen objects and only include the rotation-invariant objects when
using the full LineMOD dataset of fifteen objects.
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(a) Noise augmented depth patches (b) Noise augmented rgb patches

Fig. 4.4. Example depth and RGB renderings with augmented noise as background information.

Data Augmentation

The synthetic samples coming from the renderer have a black background, which introduces
a domain gap between synthetic and real samples. Since we have a limited amount of the
real data available and cannot cover all the possible poses to train our model, we augment
the training samples with a background noise whenever the real sample for this pose is
not available. This way, we ensure the network learns a mapping corresponding to the
pose information regardless of the background information given. Augmented samples are
included in the training set Strain during training in an online fashion, generating different
noise patterns for each anchor sample on the fly. The noise type we use for our pipeline is
purely synthetic and is present in both [226] and [236] showing the best performance among
synthetic noise types. It is referred to as fractal noise and is based on a combination of several
octaves of simplex noise first introduced in [166]. It provides a smooth non-interrupting noise
pattern and is often used for landscape generation by game developers. We visualize examples
of our augmented patches in Figure 4.4.

4.2.2 Implementation Details

With this training and testing setup, we extract patches of size n = 64. We then train our
convolutional neural network, where, if not stated otherwise, we use the network architecture
introduced in [226], with the single exception of our feature descriptor dimensionality being
set to d = 64. As it is mentioned in [226] the methods performance saturates with increasing
feature descriptor size. As for our multi-task learning framework we found a similar effect
during our experiments, in which we experienced d = 64 to be a good trade-off between
nearest neighbor and regression performance. During our experiments, we set γ = 10.0 for
the dynamic margin. The network was trained on a Linux-based system with 64GB RAM
and 8GB NVIDIA GeForce GTX 1080 graphics card. All experiments are implemented using
TensorFlow [1] with Adam optimizer and an initial learning rate of 1e−3, while the batch size
was set to 300.

4.2.3 Baseline Models

To analyze the performance of our model as well as the effect of multi-task learning, i.e.
regression and learning robust feature descriptors together, we report the results in comparison
to the baseline method [236]. For this aim, we train a model on the loss function Ld(Γ|X) and
compare the results by obtaining the nearest neighbor pose. The baseline is in the following
abbreviated as NN. However, in comparison, the baseline method in their original work uses
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RGB-D data and includes normals as additional information whereas we only rely on the depth
information. Including surface normals as an additional input could give extra information
and can be included in our model. We leave this investigation to future work. Nevertheless,
all experiments were run using a Python implementation of their pipeline provided by the
authors, so that we were able to run and compare the results using depth images only. In
addition, we conduct our own baseline for a regression only model (R), trained solely to
regress the object’s pose, and report the results. Furthermore, to evaluate our method, we
report the results obtained by our multi-task learning framework, where we report both the
end-to-end regression (Rours), as well as the results obtained by using the resulting features
for nearest neighbor retrieval (NNours).

4.2.4 Evaluation Metrics

To evaluate the performance of our method, we use the angular error comparing the ground
truth pose q and the predicted one q̂ for a given image Xi:

θ(qi, q̂i) = 2 · arccos(|qi · q̂i|). (4.8)

In our framework, the pose can either be obtained by nearest neighbor lookup or directly
estimated by the neural network. Furthermore, we report the angular accuracy, where each
query image is considered a true positive if its angular error is below a threshold t. For this
aim, we choose threshold of t ∈ [10, 20, 40] degrees.

Finally, to qualitatively evaluate the resulting feature descriptors, we visualize the features in
a lower dimensional space for which we use PCA and t-SNE [132].

4.3 Evaluation

In this section, we first give a detailed analysis of our method compared to the baseline and
discuss several aspects of our method. We start with the influence of the network architecture
on the methods performance. Further, we analyze the scalability of our method in term of
computational time and provide ablation studies on the hyper-parameter λ, that balances the
influence of each task during training as well as the input modality used to train our model
and the effect of rotation parameterization used to describe the object’s pose.

4.3.1 Comparison to the Baseline Methods

We first evaluated our method on models trained on five, ten and fifteen objects, for which the
mean angular error is reported in Table 4.1. Note that for nearest neighbor pose retrieval only
the poses of correctly classified objects are considered during the evaluation. In comparison
for regression the whole test set is used, as in this case features are not trained to directly
infer the object’s class.

4.3 Evaluation 35



Tab. 4.1. Angular error of the baseline method (NN), direct orientation regression (R) and our multi-task learning
approach (Rours, NNours) as well as classification accuracy. The results indicate that a model trained to
perform recognition as well as regression benefits from both tasks, which is reflected in its performance.

15 Objects 10 Objects 5 Objects

Mean (Median) ± Std Class. Acc. Mean (Median) ± Std Class. Acc. Mean (Median) ± Std Class Acc.

NN [236] 25.3◦ (11.8◦) ± 40.8◦ 92.5% 19.9◦ (10.6◦) ± 34.8◦ 92.6% 24.2◦ (10.7◦) ± 43.3◦ 99.3%

NNours 17.7◦ (11.6◦) ± 25.8◦ 97.1% 14.7◦ (11.5◦) ± 15.0◦ 97.5% 13.1◦ (10.3◦) ± 15.2◦ 99.9%

R 38.2◦ (26.2◦) ± 34.7◦ - 29.2◦ (20.7◦) ± 28.0◦ - 22.1◦ (15.6◦) ± 24.4◦ -

Rours 27.3◦ (19.3◦) ± 27.3◦ - 23.1◦ (17.6◦) ± 21.3◦ - 19.2◦ (13.8◦) ± 21.5◦ -

Overall, we were able to obtain a significant improvement in performance for both regression
as well as nearest neighbor search accuracy by our proposed method. During training, the
usually more difficult regression task, seems to be easier for the network to achieve when
provided with a meaningful embedding. As a result the mean angular error is improved by
28.8% in comparison to a model trained purely on regression. Since poses as well as objects
are already well-distinguished and the feature descriptors separated by the triplets and pair
loss functions, the regression can leverage the information contained in the features and, in
turn, more easily be learned.

As for the performance of nearest neighbor search we found an improvement in robustness and
accuracy of our multi-task learning framework compared to the baseline as well. The standard
deviation as well as the mean angular error of our model, NNours, decreases significantly,
making the method more robust. Here we can report a relative improvement of 30.0% for the
mean angular error while training on the full LineMOD dataset, meaning fifteen objects.

Both methods, regression and nearest neighbor retrieval, benefit from jointly learning robust
features and poses. The choice of which model to choose now becomes a trade-off between
time complexity and accuracy, which we will address further in section 4.3.5.

Next, to analyze our resulting feature descriptors, we compare our method using nearest
neighbor search, NNours to the baseline method, for which we report the classification and
pose accuracy in Table 4.2. Again, our experimental results show that the feature descriptors
provided by the model trained on both tasks seem to be better suited for the overall aim. As
a result the nearest neighbor pose retrieval accuracy improves upon the baseline method.
Additionally, we are able to improve upon the classification accuracy compared to the state-of-
the art method.

4.3.2 Qualitative Evaluation

Figure 4.5 shows a qualitative comparison between the top nearest neighbors retrieved by our
method when trained and evaluated on depth information. We show results on ten objects of
the LineMOD dataset, where the first row corresponds to the query image and subsequent
rows show the top k-th retrieved neighbor. Based on the results, one can see that our method
is well able to retrieve correct object classes as well as corresponding viewpoints to the one of
the query image patch.
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Fig. 4.5. Query patch and its top five retrieved nearest neighbors from the database obtained from our method
NNours when trained and evaluated on depth information.

Angular error
Classification

10◦ 20◦ 40◦

NN [236] 35.98% 71.56% 82.72% 92.46%
NNours 37.89% 79.61% 92.27% 97.07%
NNoursdeeper 41.32% 82.52% 93.51% 97.26%

Tab. 4.2. Influence of the network architecture on the performance of our method. A comparison between the
classification and angular accuracy of the baseline method, NN, and our results on fifteen objects of the
LineMod dataset is reported.

4.3.3 Influence of Network Architecture

To explore the methods performance with respect to network architectures with varying
depths, we additionally run our model using the network architecture described in [32]. This
architecture in comparison to the one used so far adds two more convolutional layers to
the network and removes max pooling layers by including convolutional layers with stride
two. Stated by the authors of [226], a deeper network architecture did not seem to improve
the accuracy of the method significantly. While for our baseline model we experienced the
same behavior, by using our multi-task learning framework and testing on a deeper network
architecture we found that we can improve the pose estimation accuracy even further. Here we
were able to achieve the results seen in Table 4.2, abbreviated as NNoursdeeper. We can report
a relative improvement of 7.2% using nearest neighbor search and 9.0% in the mean angular
error of our regression results by using a deeper network architecture. Results are reported
while training on the full LineMOD dataset of fifteen objects. However, further experiments
are necessary to analyze and optimize the network and assess the effect on the regression
accuracy with respect to the network architecture.
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(a) Obtained using direct pose regression. (b) Obtained using our multi-task learning framework.

Fig. 4.6. Feature visualization using left: PCA and right: t-SNE [132] for five objects of the LineMOD [90] dataset.
Object classes are used for color coding. By using a multi-task learning framework, we are able to
improve feature descriptors learned for object pose estimation resulting in a well clustered feature
representation.

4.3.4 Feature Visualization

The resulting improvement of our method in comparison to the baseline stems from a better
suited feature representation learned. Therefore, to qualitatively assess the improvement in
accuracy for both pose regression and nearest neighbor pose retrieval, we visualize the learned
features for both pure pose regression and in comparison our multi-task learning framework.
Nevertheless, the learned features live in a high-dimensional space that is not easy for us to
understand. For a clear visualization, we therefore map the high-dimensional features to a
2D or 3D space. For this purpose, we use PCA and t-SNE to visualize the descriptors as both
methods are suitable to map the dimensionality of the descriptors into the lower dimensional
3D-space.

We use TensorBoard [134] to create the feature visualizations. For t-SNE, we use a perplexity
of 100 and a learning rate of 10 until convergence. When using PCA, the variance including
the best three components resulted in 53.2%. The resulting clusters for five objects can be seen
in Figure 4.6, showing that features belonging to the same object class are nicely clustered
by our method. In comparison the features extracted by a direct pose regression method
naturally show no clear distinction between classes as this information is not the aim of such
methods.

4.3.5 Scalability

Our proposed method, to some extent, can be trained on multiple objects considering some
loss in accuracy in pose estimation. However, with an increasing number of objects, nearest
neighbor search shows a natural increase in computational time as well. Therefore, in this
section we analyze the time complexity and accuracy of our models when trained for different
numbers of objects. For nearest neighbor search we use a standard OpenCV matcher. Figure
4.7 shows the mean time of our models and the corresponding angular error. The mean time
for regression is calculated as one forward pass of the neural network. For nearest neighbor
methods only the matching time is reported. To obtain the total computational time required,
the constant time of one forward pass should be added to the shown results for matching. One
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Fig. 4.7. Average time and median angular error of nearest neighbor pose retrieval, regression and our approach
evaluated on the LineMOD dataset.

can see nicely that regression has a constant time, regardless of how many objects are used,
whereas for nearest neighbor searches the time increases with additional objects. Depending
on the application, this and the drop in accuracy with increasing number of objects should be
taken into account.

4.3.6 Sensitivity to Regularization Parameter λ

Since our loss function includes a regularization parameter λ balancing the two components
of regression and manifold learning, we conducted experiments on the sensitivity of this
parameter using ten objects of the LineMOD dataset. By choosing different values for λ and
thus weighing either the Ld loss or the pose loss Lpose more, we found that the results improve
for nearest neighbor pose retrieval, if the two terms are equally weighted, and decreases
when focusing more on the regression loss. Regarding regression, we observed similar results:
improvement when additionally focusing on the Ld loss, enhancing the feature representation
and decrease, if the model is only trained on regression. Nevertheless, it can be seen that
regression has a much stronger influence on the nearest neighbor pose retrieval in terms of
performance than the other way around. Thus, to obtain an optimal balance, we set λ = 0.5
in our experiments.

The results, depicted in Figure 4.8, emphasize our assumption that the two terms are beneficial
to one another, i.e. both features and pose regression are mutually optimized. Note that we
omit the regression result in case the model was only trained on the feature representation,
since the regression layer in this case is not included in training and will not provide meaningful
results.
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Fig. 4.8. Sensitivity of λ in our loss function LMT L = (1− λ)Lpose + λLd. Depicted is the influence of different
weighting parameters on the mean angular error for regression as well as nearest neighbor pose retrieval.

4.3.7 Effect of the Input Modality

We evaluate in influence of the chosen input modality on the performance of the baseline and
our method. We compare between RGB, Depth and RGB-D image patches that are used as an
input to the neural network. In terms of classification accuracy the combination of RGB and
Depth information seems to be performing the best. When only relying on RGB information,
objects can be easily misclassified due to similar color and appearance, which is also visible
in Figure 4.9, where we show the five top nearest neighbors for an example query image
obtained by our method when relying only on RGB information. Due to similar colors and
shape resulting from certain viewpoints, the iron object is misclassified and predicted as the
benchvise object. Therefore, depth information can aid in such cases and provide additional
shape information. The accuracy of predicted poses, however, strongly depends on the input
modality, although only relying on RGB information seems to perform worse for all methods.

Tab. 4.3. Angular error of the baseline method (NN), regression (R) and our approach (Rours, NNours) for different
input modalities, i.e. only RGB, only depth or both, RGB-D. We report the results on our subset of 10
objects from the LineMOD dataset.

RGB Depth RGB-D

Mean (Median) ± Std Class. Acc. Mean (Median) ± Std Class. Acc. Mean (Median) ± Std Class. Acc.

NN [236] 24.2◦ (14.6◦) ± 31.8◦ 97.0% 20.0◦ (10.6◦) ± 34.8◦ 92.6% 22.7◦ (13.8◦) ± 31.8◦ 98.4%

NNours 20.9◦ (14.7◦) ± 22.5◦ 97.8% 14.7◦ (11.5◦) ± 15.0◦ 97.5% 18.3◦ (13.6◦) ± 18.8◦ 98.9%

R 25.7◦ (15.8◦) ± 28.1◦ - 29.2◦ (20.7◦) ± 28.0◦ - 25.3◦ (16.1◦) ± 28.3◦ -

Rours 27.5◦ (18.5◦) ± 28.0◦ - 23.1◦ (17.6◦) ± 21.3◦ - 23.5◦ (16.6◦) ± 24.0◦ -
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Fig. 4.9. Query patch and its top five retrieved nearest neighbors from the database obtained by our method
NNours when trained on RGB information.

4.3.8 Influence of Rotation Parameterization

Further, we study the effect of different rotation parameterizations on the performance of our
model. In particular we compare to the recently proposed continuous six dimensional repre-
sentation of Zhou et al. [247]. In their work the authors address the issues of various rotation
parameterizations when used to train neural networks and elaborate on which representation
is best suited for such a task. Further the authors propose a continuous representation and
show the advantages such a representation has when training neural networks in comparison
for example to euler angles or rotation matrices that are not continuous. In our application,
we observe similar performance in nearest neighbor retrieval and an improved performance
in regression accuracy, which we summarize in Table 4.4. This leads us to assume that the dif-
ferent parameterization does not highly affect the properties of the learned features, however,
the improved regression performance stems from the in general better suited representation
for rotation learning with neural networks.

Tab. 4.4. Angular error of our approach (Rours, NNours) for different rotation parameterizations. We report the
results on our subset of ten objects from the LineMOD dataset.

Parameterization Method Mean Median ± Std Classification

Quaternion
NNours 14.7◦ 11.5◦ ± 15.0◦ 97.5%

Rours 23.1◦ 17.6◦ ± 21.3◦ -

6D
NNours 15.8◦ 12.4◦ ± 15.4◦ 95.3%

Rours 20.2◦ 16.3◦ ± 16.8◦ -
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4.3.9 Remarks on Object Pose Estimation

Before moving to the next application, we now briefly summarize the findings and conclusions
of the presented method. In the previous sections we have described a multi-task learning
framework for object recognition and pose estimation. Once determined the results can aid in
a number of applications, such as navigation in robotic grasping. By introducing a novel loss
function, combining regression and manifold learning, we were able to improve both direct
pose regression as well as nearest neighbor pose retrieval by a large margin, compared to
the baseline methods. Thus, we conducted a detailed analysis of feature descriptor learning,
direct regression and the effect that both tasks have on each other in the context of object
pose estimation.

Using our proposed loss we were able to improve the pose regression performance and
robustness with respect to only using a direct regression model. Additionally, the viewpoint
descriptors learned with this loss seem to be much more discriminative compared to those
learned with the triplet loss by itself. Therefore, when we use them for the nearest neighbor
search we get the best performance. Pose regression seems to be more difficult problem to
solve alone, but when applied on a manifold learned features, where discrete poses are already
well separated it becomes easier to perform pose regression and achieve better performance
than by standalone direct pose regression.

While we were able to improve the regression performance using our multi-task learning
framework, its accuracy remain inferior to the nearest neighbor pose retrieval. This overall
difference between the regression accuracy and the improved pose retrieval, based on nearest
neighbor search, might partially be due to the non-constrained space on which the poses are
predicted. In our training set, we constrain the poses as well as in-plane rotations to a certain
amount of degrees. However, while predicting the pose, no such constraint is enforced by the
neural network. By constraining the network during training and enforcing geometric bounds,
we should be able to improve the pose regression performance further.

By including real data we were able to match synthetic and real images onto the same domain.
Still it might not be possible to fully cover the pose space, which we found to significantly
impact the pose regressions performance as some poses might not be mapped sufficiently. It
is, however, still possible for the synthetic samples. In the ideal case, only rendered samples
should be used in the training set, which would then also result in removing this limitation as
additional renderings can easily be created. Future work therefore includes improving our
methods generalization capabilities by only using synthetic images for training, and removing
the need to rely on real data at all. This can include the use of more sophisticated and extensive
data augmentation, which especially considering depth information can become very similar in
appearance to real renderings. In terms of RGB information, where illumination, texture and
shading significantly changes the appearance of an object in the rendering, this task becomes
more challenging. Various methods, however, addressing recent domain adaptation, image
synthesis techniques or incorporating physics-based rendering could be applied. We leave this
as future work, but believe that such optimization can push the performance of our regression
approach beyond the one of nearest neighbor pose retrieval and create a generalized model.
As a result we would obtain a model that scales well with the number of objects and in turn
optimizes the method’s memory consumption and efficiency as well.
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4.4 Evaluation on Place Recognition

In our second application, we evaluate our method on the task of large-scale place recognition.
Our aim in this case is to retrieve the correct geo-location for a given query RGB image. Our
labels, in this case, consist of GPS coordinates of the locations at which an image was taken.
We first describe our experimental setup and changes made to adapt our method to the task at
hand. We then introduce the used datasets before presenting the results and evaluation of our
method for this task.

4.4.1 Experimental Setup

As neither dense depth images nor accurate 3D models of the scene are commonly available in
place recognition datasets, we adjust our method to meet the requirements for this particular
application. For this aim we utilize RGB instead of depth images as an input and estimate
the GPS location of a query image instead of its rotation. Our model, therefore, now aims
to estimate the mapping µΓ(X) : RW×H×3 7→ R2, where W and H are the width and height
of the RGB image X. To train the parameters of the neural network Γ we remain with our
original loss function LMTL(Γ|X) of Equation 4.2. Given that synthetic renderings are not
available, our aim becomes reducing the domain shift between seasonal and illumination
variations. For this purpose, we construct triplets as well as pairs accordingly and remain with
our triplet and pair-wise loss functions.

Further, we adjust our network architecture. In particular, we employ a ResNet-18 as our
backbone network. Due to the absence of a proper model and the possibility to create
realistic synthetic renderings on-the-fly during training, we utilize a on ImageNet pre-trained
network. We remove the classification layers and add one fully-connected layer with output
dimensionality d, which we use to train a robust feature representation. For our regression
model we add one additional fully-connected layer with respective dimensionality according
to the task, here two, for GPS longitude and latitude values. We augment the training data by
applying random brightness changes for further robustness to illumination changes. For this
particular application, we set a constant margin of m = 0.1.

Datasets
We evaluate our method on the Tokyo 24/7 [216] and the symphony seasons [81] dataset.
Both datasets are commonly used for long-term visualization to evaluate place recognition as
well as camera localization methods in dynamic and changing environments.

Tokyo 24/7 This dataset consists of images taken in Tokyo at varying times of the day. For
each location there are three categories, daytime, sunset and night, during which images are
taken. In addition the camera’s orientation is changed in each location, such images with very
different viewpoints are taken at the same GPS location. Example images of the dataset can
be seen in Figure 8.3.

Symphony Seasons The symphony seasons dataset, depicts the shore of Symphony Lake in
France. The reference and query images were captured by a camera on an unmanned boat.

4.4 Evaluation on Place Recognition 43



Fig. 4.10. Example images of the Tokyo 24/7 dataset. (Columns) At each viewpoint images are taken during
daytime, sunset and night. (Rows) Further, at each GPS location the viewpoint of the camera is changed,
resulting in highly different images with similar location labels.

The boat is deployed at changing periods of time, capturing one traversal each time with
varying seasonal changes and illumination conditions. All images were recorded in sequences.
The Symphony Seasons dataset represents an autonomous driving/monitoring scenario, where
it is necessary to localize images taken under varying seasonal conditions such as dusk or
winter. It further shows little texture and human-made features, which challenges existing
localization methods.

4.4.2 Experiments

We first present our results on the Tokyo 24/7 dataset before describing our findings on the
symphony seasons dataset, for which we present quantitative as well as qualitative evaluations
in comparison to the baseline method.

Evaluation on the Tokyo 24/7 dataset

The Tokyo 24/7 dataset is in the original publication used for validation only. Due to the
design of the dataset, however, it perfectly fits the requirements of our method. Therefore,
we extract two third of overall 1125 images and use them as our training set. We test on the
remaining images, where we choose the daytime and night images as our training set and
test on the sunset category. We construct our triplets the following way, we choose daytime
images as our anchor images and images with the same GPS coordinates as our puller. Pusher
images will be chosen as images with GPS coordinates different from the anchor. Note that
due to the design of this dataset, the anchor and puller images can have highly different visual
information. An example triplet can be found in Figure 4.11. We compare to our baseline
method, NN, and perform nearest neighbor retrieval using the features learned from the neural
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(a) Anchor (b) Puller (c) Pusher

Fig. 4.11. Example Triplet of the Tokyo 24/7 dataset. a) The anchor image depicted at sunset, b) shows an image
taken at the same location but under very different illumination conditions, i.e. night and daytime, and,
c) an image taken at a different GPS location.

Tab. 4.5. Percentage of correctly localized query images for ours and the baseline method on the Tokyo 24/7
dataset. With our learned feature representation we are able to improve upon the baseline method by a
large margin.

kNN

Method d 1 2 5 10 20 50

NN
64 1.2% 3.5% 7.2% 12.0% 20.7% 43.4%

512 2.7% 4.5% 9.3% 19.2% 32.0% 59.2%

64 10.7% 18.4% 36.0% 49.3% 63.7% 82.1%
NNours

512 29.9% 41.6% 57.6% 72.3% 83.5% 94.7%

network trained purely on the triplet loss. We evaluate two versions of our method, where we
set the dimensionality of the resulting feature descriptor to d = 64 and d = 512. We report our
results in Table 4.5, showing the percentage of correctly localized frames considering the top
k nearest neighbors where k ∈ [1, 2, 5, 10, 20, 50]. As there are only few images in the dataset
and multiple viewpoints are covered at the same location we employ a very strict threshold
and only consider an image to be correctly matched if the location corresponds exactly to the
ground truth one. Again by employing our multi-task learning framework, in this case aiming
to regress longitude and latitude of the geo-location, we are able to learn more representative
feature representations for the task at hand.

Evaluation on the Symphony Seasons Dataset

For the Symphony Seasons dataset we choose five sequences for training and two for testing,
resulting in around 10k and 3.5k images with GPS labels. Each sequence is assigned to a
specific weather condition, such as dusk or winter. In this case we consider an image to be
matched correctly if the retrieved nearest neighbor position is within a ten meter distance
to the ground truth one. Based on this, we form triplets and choose the puller to be within
this distance. We randomly assign a pusher image such that its distance is larger than ten
meter from the ground truth. Table 4.6 shows the percentage of correctly localized frames
of our method and the nearest neighbor baseline, NN. The results support our previously
made conclusion and show a significant improvement in performance when training with our
multi-task learning framework.
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Tab. 4.6. Percentage of correctly localized query images for ours and the baseline method on the Symphony
Seasons dataset. A localized image is considered correct if the predicted location is within 10 meters of
the ground truth.

kNN

Method d 1 2 5 10 20 50

NN 512 55.4% 64.3% 71.4% 75.0% 78.3% 81.8%

NNours 512 69.9% 76.0% 81.3% 83.3% 85.0% 87.2%

NN

1st 2nd 3rd 4th 5th

NNours

Query 6th 7th 8th 9th 10th

NN

NNours

Fig. 4.12. Query patch and its top ten retrieved nearest neighbors from the database obtained by our method
NNours and the baseline NN.

Further, we show qualitative result of the baseline, NN, and our method in Figure 4.12. In this
case, we depict the query image in the first column and show the corresponding retrieved k-th
nearest neighbor in the remaining columns. As one can see, the dataset contains challenging
views as the variation in vegetation or occurrence of distinguishable landmarks is limited.
Further, the changing weather and illumination conditions pose an additional challenge.
Nevertheless, in comparison to the baseline, our method is able to capture small details that
correctly reflect the position of the query image and retrieve an appropriate nearest neighbor
view.

Remarks and Future Work

Although our method is showing promising results on the task of place recognition, the
construction of triplets and pairs that our method relies on poses an additional challenge. As
synthetic renderings are difficult to obtain for this particular application, domain changes
mostly occur due to seasonal and illumination variation. However, obtaining such datasets
with exact viewpoints might not be feasible. Analyzing and incorporating approaches that aim
to solve the domain shift problem without relying on available ground truth pairs into our
method would therefore be of high interest and value. We leave this investigation to future
work.
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4.5 Conclusion

We have presented a general framework for robust feature learning by leveraging a multi-task
learning framework. By incorporating manifold learning as well as pose/location regression,
we have shown that in comparison to a baseline image retrieval method, our framework is
well able to leverage the viewpoint information for better retrieval performance and have
demonstrated the effectiveness of our method on object recognition and pose estimation as
well as large-scale and long-term place recognition.

However, nearest neighbor retrieval methods are naturally restricted to the information
contained in the given database. Therefore, in the next chapters, we move on to methods that
entirely rely on regression and, theoretically, can output the entire range of possible values for
a given task at hand. Moving from place recognition, we evaluate these methods on camera
localization, predicting the six degrees of a camera pose instead of relying on coarse GPS
information.
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5Introduction

5.1 Motivation

In classical simultaneous localization and mapping or structure from motion (SfM) scenarios
the camera is tracked in an unknown environment and a corresponding sparse 3D map or
reconstruction of the environment is built. Each 3D point in the map has a corresponding
image feature descriptor associated to it. Therefore, the main component of these methods
is the detection of key-points in a query image and feature extraction, e.g. SIFT features,
at these respective points. 2D to 2D point correspondences between pairs of images can be
established using feature matching and used to compute the relative camera motion between
frames. Inferring the relationship between consecutive frame pairs constructs a graph of
viewpoints and a 3D map of the environment can be reconstructed via triangulation. Finally,
bundle adjustment can be used to jointly refine the reconstruction as well as inferred camera
parameters.

Once established, the constructed map defines the coordinate frame of the scene and 2D
to 3D point correspondences between the image and the 3D model can be established in a
similar fashion as earlier described using feature descriptor matching. Finally, given these
correspondences, depending on the application the absolute camera pose can be computed by
solving the perspective-n-point problem and used, e.g. for re-localization in the global map.

Due to the rich geometric information available these methods usually provide accurate
camera localization accuracy, however, can easily fail in case of texture-less surfaces as a result
of the absence of significant features. Moreover, efficient feature matching techniques are
required to achieve reasonable computational times for camera re-localization applications.
To address this issue, in the following, we explore methods that do not require explicit feature
matching but are designed to implicitly find corresponding points such that the initially
required matching step can be bypassed efficiently.

Additionally, outliers, which we illustrate in Figure 5.1, in the established correspondences
most often hinder a direct computation of an accurate camera pose estimate. A most prominent
solution proposed is RANSAC, repeatedly sampling a minimal subset of correspondences to
compute a camera pose and finally choosing the hypothesis with the largest inlier set. Although
able to find a robust solution, the probability of finding such a solution significantly decreases
with the number of outliers and correspondence quality, resulting in high computational times
to ensure an accurate estimate is found. Instead, we aim to directly infer the quality of found
point correspondences by regressing confidences for each correspondence depending on their
accuracy. This way, based on their confidence values, erroneous predictions, or outliers, can
be easily identified.
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3D Scene

2D Point

3D Point

Fig. 5.1. Structure-based methods rely on point correspondences between a 2D image view and the 3D scene
to estimate the corresponding camera pose. Correct matches, most commonly called inliers (shown in
green) can provide highly accurate camera pose estimates, whereas outlier (depicted in red) hinder such
computation.

5.2 Related Work

In this context, related work on structure-based methods can be divided into three main
directions. A first category includes feature matching methods, which rely on the traditional
pipeline of extracting features, matching them to the 3D model and subsequent pose estimation
[155, 190, 191, 192, 197, 215]. In the context of recent developments in deep learning each
step of the pipeline has been analyzed and, if sensible, their traditional counterparts exchanged
or improved with learned methods of machine or deep learning. As such, we consider scene
coordinate regression forests as another main direction, in which matches are implicitly given
by the trained forest [41, 42, 86, 199, 220]. Further, deep learning based methods quickly
emerged, in addition relying on predicting 3D coordinates, so called scene coordinates, with
no necessity of an additional matching step [21, 24, 40].

Feature Matching For this purpose, Sattler et al. [190, 191, 192] propose an optimized
prioritization scheme based on vocabulary-based quantization for efficient feature matching.
Additionally, by using co-visibility constraints or semantic consistency checks [215], wrong
matches can be removed, which further improves the methods accuracy.

In contrast, Schmidt et al. [197] focus on optimizing extracted features used for correspon-
dence matching. Here, a deep learning method is applied and a neural network is trained on
a contrastive loss function, pushing features of pixels to be similar only if they correspond to
the same 3D point.

D2-Net [61] jointly learns feature descriptors as well as key-points, replacing traditional
hand-crafted feature extraction and key-point detection. A 3D feature map learned by a
convolutional neural network is interpreted as an attention map, where the maximum of a
particular descriptor over the feature dimensionality is considered a key-point at a specific
pixel location if that pixel location at the same time corresponds to a local maximum in the 2D
feature map. At the same time, feature descriptors can be used to find corresponding matches
between images and are trained by a triplet loss to handle strong illumination and viewpoint
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changes. An additional loss term is added for detecting key-points such that distinctive
correspondences obtain high attention scores.

In [71] the authors Geppert et al. propose an efficient matching for 2D-3D correspondences
in a multi-camera setting. Given the additional information obtained from multiple cameras,
efficient strategies to find plausible matches become increasingly important. The method
builds upon Active Search, however, adds an extra cost term for prioritization matching
that enforces the feature distribution to be spread amongst the cameras. Pose priors are
additionally included to obtain robust and reliable pose estimates and additional constraints
of visual odometry measurements included to enable drift-free localization.

Scene Coordinate Regression Forests Implicitly giving a mapping between image pixels and
3D points without the need for feature matching, Shotton et al. [199] train a regression forest
on RGB and depth features extracted at pixel locations to estimate the corresponding scene
coordinate directly. All coordinates in a leaf are then clustered using mean shift and the mode
of the largest cluster used as a label scene coordinate for that leaf. A pose is obtained by
back-projecting the image pixels their depth information and the camera’s parameter and then
applying Kabsch algorithm on the 3D camera coordinates and predicted 3D scene coordinates.
However, as predictions can be noisy and contain a lot of outliers, a pre-emptive RANSAC
is applied to obtain a robust and accurate solution. Further extensions and analysis of this
method have been proposed, including backtracking schemes [145], comparison to neural
networks [140] and uncertainty of the forests predictions [220]. In this work, in the leaves of
the regression forest anisotropic Gaussian mixture models are fitted over the scene coordinate
clusters instead of obtaining a single mode. This allows for uncertainty estimation over the
predictions as well as continuous pose optimization.

Additional information in the form of line segments is used in [146] by Meng et al. to further
remove outliers. Line segments are extracted from the RGB image and used to sample points.
Further outliers are removed by backprojecting the sampled points and fitting a 3D line with
RANSAC.

An ensemble prediction of regression forests is proposed in [86] by Guzman-Rivera et al.
predicting multiple pose hypothesis, clustering them and then choosing the best one according
to a scoring function dependent on the 3D model. In addition rendered views of the pose
hypothesis are used to further refine the final predicted camera pose.

As of now, most presented methods are trained scene-specific and can therefore only be applied
in that, assumed to be static, scene. Therefore an online adaption method of the regression
forest has been proposed in [42] by Cavallari et al. While training is still scene-specific,
the model can be adapted to any new scene within a couple of query frames. For this aim,
assuming the camera poses of these frames are correctly tracked, the frames are passed to the
regression forest, the distribution at the leaves of the forest from the old scene discarded and
updated with the 3D coordinates of the new scene. The authors extend their work in [41] for
further optimization of the method within a relocalization cascade while remaining real-time
performance. All the above methods, however, heavily rely on 3D or depth information.
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Scene Coordinate Neural Networks Switching from regression forests to convolutional
neural networks, Brachmann et al. [21] propose an end-to-end trainable pipeline, consisting
of a scene coordinate regression and a pose hypothesis scoring network, connected by a
differentiable version of RANSAC, which they call DSAC. A hypothesis is then chosen by a
probabilistic selection, making RANSAC differentiable and enabling end-to-end training with
neural networks. The method shows remarkable results in retrieving accurate camera poses,
however, still requires depth information or a 3D model. Therefore, the authors propose
DSAC++ [24], assuming a constant scene-dependent depth prior to initialize the training
procedure after which accurate coordinates can be learned optimizing for the re-projection
error.

Although, showing good performance, generalization to large-scale scenes of the method
still remains challenging. Therefore, a line of research followed, utilizing scene coordinate
regression with neural networks [23, 25, 30, 244]. For instance, Budvytis et al. [30] propose
to jointly learn local object scene coordinates and global instance labels. Based on the semantic
information normalized scene coordinates are learned enabling city-scale scene coordinate
regression.

Similar to [199, 220] the aforementioned methods are scene-specific, therefore, Cavallari et
al. [40] propose a method to leverage the already trained network to obtain predictions for
a new scene in an online fashion. First, a regular grid is placed on the training scene, such
that for each predicted 3D coordinate a grid cell index can be computed. Each grid cell in
turn storing the predicted scene coordinates falling into that grid. For any new scene, given a
couple of frames, the database can be filled with scene coordinates of the new scene online.
Similar to the leaves of a regression forest, coordinates contained in each cell can be clustered
and their covariance used for robust camera pose estimation with pre-emptive RANSAC, pose
refinement on the inlier correspondences and final refinement using ICP.

The work presented in this thesis falls into the category of scene coordinate regression with
neural networks. However, compared to the recent methods, which usually employ RANSAC
to obtain a robust pose estimate from the established point correspondences, we propose
to regress confidences of these correspondences, which allows us to immediately discard
erroneous predictions and improve the initial pose estimates. Finally, the resulting confidences
can be used to score initial pose hypothesis and aid in pose refinement, offering a generalized
solution to solve this task.
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6Coordinate Regression with
Confidence Learning

Scene coordinate regression is becoming a highly researched topic in the computer vision
community and an essential part of current camera relocalization methods. Different versions,
such as regression forests and deep learning methods, have been successfully applied to
estimate the corresponding camera pose given a single input image. In this work, we propose
to regress the scene coordinates pixel-wise for a given RGB image by using deep learning. For
this aim, we first introduce our methodology developed within the scope of this thesis and
presented in large portions in the publication

’Scene Coordinate and Correspondence Learning for Image-Based Localization’ by Mai Bui, Shadi
Albarqouni, Slobodan Ilic and Nassir Navab, published in Proceedings of the British Machine

Vision Conference (BMVC), 2018 [31].

We then present evaluations of said method, ablation studies and a comparison to the state of
the art on publicly available benchmark datasets for camera re-localization.

6.1 Methodology

In comparison to the method presented in the previous chapters, that has focused on predicting
an object’s orientation or geo-position of an image, our aim is now to estimate the full six
degrees of freedom for a camera pose in reference to a given scene. Therefore, given an
input RGB image X ∈ RW×H×3 of a scene, where H and W are the image height and width,
respectively, our goal is to estimate the corresponding camera pose, given by its orientation
R ∈ R3×3 and position t ∈ R3. As described in Chapter 2 the camera pose describes the
mapping between the camera, xc, and the scene coordinates, Xw ∈ R3, as

xc = RXw + t. (6.1)

The relation between the 3D camera coordinates Xw ∈ R3 and the image pixels px ∈ R2

depends on the camera’s focal length fx, fy and the optical center cx, cy, and is defined as

px = (fxx
z

+ cx,
fyy

z
+ cy)T , (6.2)

with xc = (x, y, z)T being a point in the camera coordinate frame, given by its coordinates
x, y and its depth value z. In case the camera pose is unknown, it can be retrieved given the
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Fig. 6.1. Outline of our re-localization framework. Scene coordinates, Xw, are densely regressed for each pixel in
the input RGB image. Confidences, δ, are predicted for a subset of the point correspondences and finally
used to compute the camera pose estimate.

minimal number of required correspondences. In case of 3D-3D correspondences between
xc and Xw, assuming that depth information is available, the camera pose can be retrieved
using the Kabsch, or sometimes called Procrustes algorithm. Solving the perspective-n-point
problem, e.g. using a PnP solver such as EPnP [122], in turn provides the camera pose from
the 2D-3D correspondences between the image points px and Xw.

The method proposed in this chapter focuses on retrieving the camera pose from these
two scenarios. In comparison to feature-based methods, however, we provide an implicit
correspondence matching using neural networks. For this aim, we propose a learning-based
solution that consists of three steps: (1) scene coordinate regression, in which we densely
predict scene coordinates, and in this context, add a novel regularization, (2) confidence
prediction, in which we aim to estimate the quality of our coordinate predictions, and (3) pose
estimation, in which we employ the aforementioned algorithms to compute the camera pose
estimate for the most confident predictions Nbest categorized by our model in step (2). An
overview of our framework is given in Figure 6.1, in which steps (1) and (2) are implemented
by neural networks.

6.1.1 Scene Coordinate Regression

In the following each step of our framework is described in more detail, starting with scene
coordinate regression with convolutional neural networks. Our regression model is trained
with two loss functions, the main coordinate regression loss and a coordinate smoothing loss,
acting as regularization on our model.

Coordinate regression. As the first step, our aim is to model the function µΓ(X) : RW×H×3 7→
RW×H×3, obtaining the predicted scene coordinates X̂w, as X̂w = µΓ(X), where Γ are the
model parameters. Therefore, as ground truth scene coordinates Xw we can either rely on a
reconstruction, for instance computed using structure from motion, or infer the coordinates
from the corresponding depth information by backprojecting the 2D pixels according to the
camera parameters and ground truth pose. The ground truth is then used to train a model and
regress the scene coordinates of each pixel in the RGB input image, in which case we obtain
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an output map of RW×H×3 from our model. For this purpose, we use the Tukey’s Biweight
loss function [9] to regress the 3D coordinates, given as

Lcoords(Γ|X) = 1
W ·H

W ·H∑
i=1

S∑
s=1

ρ(ri,s) , (6.3)

with ρ(ri,s) =

 c2

6 [1− (1− ( ri,s

c )2)3], if |ri,s| ≤ c
c2

6 , otherwise
(6.4)

where ri,s = Xi,s
w − X̂i,s

w is the residual, S = 3 is the number of coordinates to regress and ρ(·)
is Tukey’s Biweight function. In Tukey’s Biweight function the choice of the tuning constant c
plays a crucial role, which is proposed to be chosen according to the median absolute deviation
over the residuals assuming a Gaussian distribution. Nevertheless, we propose to choose
the parameter c depending on the spatial extent of the current scene, where, after empirical
evaluation, we found half of the scenes diameter given in meters to provide consistent results.
In case of missing depth values and thus missing ground truth scene coordinates, we omit
these pixels during training in order not to negatively influence the network.

Coordinate smoothing. The graph Laplacian regularization, has been successfully applied
for image denoising on image patches [162] and is computed on a neighborhood of pixels,
motivating us to consider the neighborhood of a given scene coordinates. Minimizing the
graph Laplacian regularizer enables us to smooth the image patches with respect to the given
graph. Similarly, we consider the scene coordinates as vertices and compute weights according
to the depth value at the corresponding pixel. Thus, we apply a local smoothing term on this
neighborhood during training, to ensure similarity between neighboring points. Since this
assumption does not hold true in case of edges where large depth differences occur, we weigh
each point in a surrounding neighborhood based on their depth difference given by

wij = e−|di−dj |∑
k∈K,k 6=i e

−|di−dk|
, (6.5)

where, given a pixel position i, we compute weights wij for each index j in a given neighbor-
hood K. In this case, di represent the depth value at index i. Finally, we obtain the additional
smoothing term in our loss function

Lsmooth(Γ|X) =
Nk∑
i

∑
j∈K

wij · ‖X̂
i

w − X̂
j

w‖2, (6.6)

where X̂w corresponds to the predicted scene coordinates at a given pixel index. This term
loosely pushes the surrounding points closer together, given the fact that their depth values
are similar; otherwise, a larger difference between points is accepted.

Overall, we train the model using our loss function, described as L(Γ|X) = Lcoords(Γ|X) +
Lsmooth(Γ|X).
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6.1.2 Confidence Prediction

The regressed coordinates can be used to obtain a pose estimate. However, these correspon-
dences usually include a large amount of erroneous correspondences, which can be addressed
using RANSAC.
In order not to restrict ourselves in terms of error given by an inlier definition and inspired by
[234], which classifies point correspondences between image pairs, we train a neural network
to estimate the probabilities of 2D-3D correspondence to directly obtain a measure of the
quality of our predicted correspondences. Instead of solving this as a classification problem
as in [234], we consider this task as a regression problem. Therefore, we use the output of
the model described in the previous section to create probabilities for each scene coordinate
prediction and construct the training set Sconfidence = {(pX̂1

w
, X̂

1
w, δ1), .., (pX̂Nk

w
, X̂

Nk

w , δNk
)},

where
δi = e−(s·‖Xi

w−X̂i
w‖2). (6.7)

Here, s is used as a scale, such that accurate coordinates are given a high probability. In
this step, the objective is to compute the function µΩ : R5 7→ R1, described by the model
parameters Ω, so that δ = µΩ(pX̂w

, X̂w). To this end, we feed Nk points containing the image
pixel and the predicted scene coordinates to our model. As an output, we obtain a probability
for each point according to whether it is likely to be a good correspondence or not. As a loss
function, we use the l2 loss to train this model,

Lconfidence(Γ|X) =
Nk∑
i

‖δi − δ̂i‖2. (6.8)

The pose predictions can then easily be obtained by sampling the most confident point
correspondences, while removing the initial erroneous predictions right away.

6.1.3 Pose Estimation and Refinement

The initial pose hypothesis, computed from the aforementioned correspondences, is refined as
a post-processing step. Following previous works [21], hp pose hypotheses are sampled, in our
case, using Nk number of point correspondences for each. Out of these correspondences, only
the 10% points with highest confidence are kept. However, even though we are able to greatly
improve the quality of the point correspondences used to compute pose estimates with this
step, the initial randomly selected points might still be highly inaccurate, leading to erroneous
predictions included in the confidence sampled subset. To overcome this problem, only one
hypothesis out of the hp is chosen, by scoring each hypothesis using the mean confidence over
the probabilities of the correspondences used to compute the pose estimate.

Finally, the best hypothesis is refined by repeatedly sampling Nk randomly selected points
and re-running the PnP or Kabsch algorithm, including the additional 10% most confident
correspondences in this point set. An outline of our algorithm is summarized in Algorithm
3.
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Algorithm 3 Confidence-Based Pose Refinement

Input: 2D-3D or 3D-3D point correspondences
Output: estimated camera pose
hp times randomly sample Nk point correspondences;
{δ̂}i ← µΩ(pX̂w

, X̂w): estimate confidence for the Nk points
estimate hp poses on most confident points by solving the PnP/Kabsch;
score← mean confidence of point set;
for N iterations do

sample Nk points
predict their confidence
refine best hypothesis on most confident points

end for

6.1.4 Implementation Aspects

For scene coordinate regression, a U-Net [178] is deployed as the network architecture, as
it could easily be used to regress correspondence maps and has been shown to train well on
few input images [178]. Four convolutional layers with pooling layers and dropout applied
after each, and four up-sampling layers are used, which gives a final feature map of size
W ×H × 8. By applying a last convolutional layer, we obtain the final correspondence map of
size W ×H × 3.

For confidence prediction, we deploy a PointNet [172] network architecture. The authors
of PointNet, originally deployed for the task of classification and segmentation of a point
cloud, designed their network with regard to certain properties aiming to solve the task
at hand. Most importantly as a point cloud is an unordered set of points, the prediction
of the network should not be dependent on the order of the input cloud. To achieve such
permutation-invariance, single multi-layer perceptrons are shared for each of the input points
and symmetric functions used for further processing in the network. Second, a point cloud
can undergo a rigid transformation and still provide the same geometric structure. Therefore,
similar to Spatial Transformer Networks [97], the point cloud is processed by learning a
rigid transformation. Finally, global as well as local features provide important information
and are therefore extracted to capture the overall structure of the point cloud as well as the
relationship between points. We change PointNet with respect to our specific input, N × 5
and output, N × 1, requirements. As our aim is to predict confidences for a subset of point
correspondences, we mimic the input for solving the PnP and, keeping our final objective in
mind, we feed randomly selected points to the network. This way, the network learns to be
independent of the order in which the points are fed and could still be used in scenarios where
a dense representation of point correspondences is not given. For the final regression layer,
following [234], we first apply a hyperbolic tangent followed by a ReLu activation, so the
network can easily predict low confidence for highly inaccurate points. Mostly for evaluation
purposes, s (see Equation 6.7) is computed, such that the inlier points have a lower bound
probability of 0.75, resulting in s = 2.8768.

We set Nk = 500 out of which only the most confident points are used to estimate a camera
pose, resulting in only Nbest = 50 points. For pose refinement, we follow the parameter
settings of [21] and sample hp = 256 initial hypotheses. Then the best one according to its
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confidence is refined for eight iterations on the additional most confident points out of the
randomly sampled points. To solve the PnP, we use OpenCV’s implementation of [122].

Both networks are trained separately for 800 epochs with batch size of 20 using RMSprop
Optimizer with an initial learning rate of 5 · 10−4. All experiments were conducted on a
Linux-based system with 64-GB RAM and 8-GB NVIDIA GeForce GTX 1080 graphics card and
implemented in TensorFlow [1].

6.2 Experiments

To evaluate our method, we define baseline models, which are described in Section 6.2.2, and
use the following metrics. For this purpose, inliers and outliers are defined as ‖Xw − X̂w‖2 <
tinlier, with tinlier = 0.1 m being a common threshold chosen to define inliers [21, 199,
220]. Every inlier point is therefore counted as a true positive in our evaluations. For pose
estimation we compute the metrics described in Section 2.5 and calculate the median rotation,
the translation error and the pose accuracy, where a pose is considered correct if the rotation
and translation error are below 5◦ and 5 cm, respectively.

6.2.1 Dataset

Our method is evaluated on the publicly available 7-Scenes dataset from Microsoft, which
consists of seven indoor scenes with varying volumes ranging from 1 to 18 m3. RGB and depth
images of each scene and their corresponding ground truth camera poses are available. For
each scene images in the range of 1K to 7K are provided, including very difficult frames due
to motion blur, reflecting surfaces and repeating structures, for example, in case of the Stairs
scene. The images were captured using a Kinect RGB-D sensor and the ground truth poses
obtained using KinectFusion. Following the state of the art, we use the training and test sets
specified for this dataset. No augmentation as proposed in [156, 227] was performed and our
models were trained individually for each scene.

6.2.2 Baseline Models

First, we evaluate each individual component of our model and create the baseline models
for comparison. To start with, the first step of our pipeline, the scene coordinate regression is
evaluated. To this aim, a model is trained on scene coordinate regression by using different
loss functions. Mainly we compare between `1 and the Lcoords loss as described in section
6.1.1. In this case, a pose estimate is computed by randomly sampling Nk number of points.
Results are given for a single pose estimate. Further, we abbreviate these model as P`1 and
Ptukey. Next, to evaluate the scene coordinate regression quality, regularization is added in
the form of the introduced smoothness term Lsmooth, corresponding to model Psmooth.

Further, and more importantly, the second step of our pipeline, the confidence prediction is
analyzed. The predicted scene coordinates and associated image points are used to train a
model and regress the confidence of each correspondence. For pose estimation, in this case,
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Fig. 6.2. Normalized histograms of the regressed scene coordinate errors on the 7-Scenes dataset. A random
subset of points as well as, the most confident points, as indicated by our model, out of the randomly
drawn samples is shown. Results indicate that our method can successfully identify outliers and provide
confidence values according to the quality of regressed correspondences.

only the most confident correspondences out of the initial randomly sampled Nk points are
kept. We abbreviate this model as Pconfidence.

6.2.3 Evaluation of Baseline Models

Each of our models is evaluated, comparing the error between the regressed and ground
truth scene coordinates, and the camera pose error. We compare our models trained on the
scene coordinate regression and additionally regularizing the model using the smoothness
term. Within this evaluation, we found a slight improvement in terms of the regressed
coordinates as well as the pose estimates comparing our models with and without additional
regularization. Using our proposed confidence prediction, the point errors of the sampled
set used to compute a pose estimate significantly decrease, successfully eliminating most
of the erroneous predictions and greatly boosting the pose estimation accuracy. Figure 6.2
illustrates our findings. As a result, the estimated poses also improve significantly, as seen
in Table 6.1. Specifically, the translation error greatly decreases. It should be noted, that
only the most confident point correspondences are used to compute a pose estimate for
this model. As a result, more accurate poses are obtained using a much smaller number of
points. Additionally, the percentage of inliers in the sampled points used to compute initial
pose hypothesis significantly increases. For further evaluation of our proposed confidence
prediction, we sampled hp pose hypotheses and keep the pose hypothesis with the highest
inlier score as a final result. Due to the very low amount of inliers, it is difficult to apply
RANSAC and obtain satisfactory results without pose refinement or additional confidence
prediction. Furthermore, we analyze the quality of our model’s coordinate regression and
confidence prediction. For this purpose, example error and probability maps are shown in
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Tab. 6.1. Median rotation and translation error on the Heads scene for our baseline models. Camera pose
estimates are computed using Kabsch algorithm for 3D-3D or PnP for 2D-3D correspondences. Results
are computed using hp number of pose hypotheses without any further refinement. In addition, the
percentage of inliers for a set of correspondences used to compute a single pose hypothesis is reported.

Model hp P`1 Ptukey Psmooth Pconfidence

Kabsch
1 18.0◦, 0.29m 8.77◦, 0.15m 6.67◦, 0.12m 5.77◦, 0.07m

256 14.7◦, 0.25m 6.23◦, 0.11m 5.88◦, 0.09m 4.86◦, 0.06m

PnP
1 50.3◦, 0.44m 41.3◦, 0.44m 44.3◦, 0.43m 10.6◦, 0.18m

256 33.7◦, 0.46m 25.9◦, 0.43m 26.3◦, 0.37m 5.09◦, 0.10m

Inliers 1 5.1% 7.8% 11.9% 50.7%
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Fig. 6.3. a) ROC comparison between regression and classification for the task of confidence prediction on
the training images of the Heads and Stairs scenes. Example images showing b) an input RGB, c) a
color-coded corresponding pixel-wise scene coordinate error map computed with respect to the ground
truth and d) a confidence map for each pixel predicted by our model.

Figure 6.3. In our case, since we densely regress the scene coordinates, high error values
usually correspond to missing depth values and therefore missing ground truth coordinates in
the image. Although it seems difficult for the network to accurately predict low confidences in
regions with unusually large error, in regions of inlier predictions, the model is able to predict
corresponding high confidences.

6.2.4 Evaluation of Confidence Prediction

The quality of our proposed confidence prediction is essential for further pose estimation.
Therefore, we now first evaluate how to train a confidence estimation network, comparing
between a regression and classification approach, and second, evaluate the influence of our
confidence based sampling on the resulting accuracy of the estimated camera poses.

Regression versus Classification To assess the quality of regressing correspondence prob-
abilities, a model is trained on simple classification, where a point correspondence could
be labeled either as an inlier or an outlier depending on the threshold tinlier. The model is
trained using cross-entropy loss. As a second step, we train our proposed model, regressing
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Fig. 6.4. Quality of camera pose estimates with respect to the ground truth when correspondences are randomly
sampled in comparison to the proposed confidence-based sampling. Reported are the median rotation
and translation errors per scene of the 7-Scenes dataset, showing a clear improvement when using the
proposed sampling strategy.

probabilities in the range of δ ∈ [0, 1] instead and plot the resulting ROC curves as shown in
Figure 6.3a. As a result, we assess that the performance of regression in this case is more
or less equal to classification. However, we do not restrict the model to a specific threshold
chosen for the inlier definition, which needs to be adapted for each scene depending on the
quality of scene coordinate regression. In comparison, a classification model trained on the
challenging Stairs scene results in a drop of relative rotation and translation error of 4.4% and
31.5%, respectively, because very few inliers were available during training.

Influence on the camera pose accuracy Further, to assess the quality of our confidence
prediction, we compute a camera pose estimate from the regressed correspondences. For
comparison we either randomly sample a subset of points that is used to compute a pose
estimate or use the most confident points indicated by the predictions of our model. Figure 6.4
shows the resulting camera pose errors with respect to the ground truth for both evaluations.
In comparison to simply sampling random correspondences a clear improvement can be
observed when using the proposed confidence based sampling strategy. This further shows
that our network is capable of learning a measure of quality for given point correspondence,
estimating high confidence for the most accurate predictions.
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Tab. 6.2. Median rotation and translation error on the 7-Scenes dataset in degrees and cm of the state of the art
and our method. Percentages are given for poses below 5◦ and 5cm threshold.

Method / Scene Chess Fire Heads Office Pumpkin Kitchen Stairs Average

R
G

B
In

fo
rm

at
io

n

LSTM [222] 5.7◦, 24cm 11.9◦, 34cm 13.7◦, 21cm 8.0◦, 30cm 7.0◦, 33cm 8.8◦, 37cm 13.7◦, 40cm 9.8◦, 31.3cm

PoseNet [105] 4.8◦, 13cm 11.3◦, 27cm 13.0◦, 17cm 5.5◦, 19cm 4.7◦, 26cm 5.3◦, 23cm 12.4◦, 35cm 8.1◦, 22.9cm

VLocNet [219] 1.7◦, 3cm 4.9◦, 4cm 5.0◦, 5cm 1.5◦, 3cm 1.9◦, 4cm 1.7◦, 3cm 5.0◦, 7cm 3.1◦, 4cm

DSAC [21] 1.2◦, 2cm 1.5◦, 4cm 2.7◦, 3cm 1.6◦, 4cm 2.0◦, 5cm 2.0◦, 5cm 33.1◦, 117cm 6.3◦, 20cm

1.3◦, 3cm 2.9◦, 6cm 3.2◦, 4cm 2.1◦, 6cm 2.9◦, 4cm 2.7◦, 5cm 6.3◦, 13cm 3.1◦, 5.8cm
Ours2D-3D

83.0% 42.4% 59.6% 42.5% 62.2% 58.2% 9.9% 51.1%

R
G

B
-D

in
f. 1.2◦, 3cm 2.7◦, 5cm 3.1◦, 3cm 2.0◦, 5cm 1.3◦, 3cm 1.3◦, 4cm 6.1◦, 13cm 2.5◦, 5.2cm

Ours3D-3D
85.7% 48.8% 60.1% 49.2% 66.6% 66.4% 11.6% 55.5%

SCoRe [199] 92.6% 82.9% 49.4% 74.9% 73.7% 71.8% 27.8% 67.6%

6.2.5 Comparison to the State of the Art

Finally, we report the results of our framework using a combination of scene coordinate
regression and confidence prediction, described as Pconfidence. We compare our results to the
current state-of-the art methods, namely PoseNet [105], which directly regresses the camera
poses from the RGB input images and refines the trained models by optimizing on the re-
projection error. The median rotation and translation errors evaluated on the 7-Scenes dataset
can be found in Table 6.2, where we report the results obtained using PnP (Ours2D-3D) as well
as, given depth information is available, using Kabsch algorithm (Ours3D-3D). Our model does
not depend in any way on the algorithm used to compute pose predictions; therefore, we can
easily interchange these algorithms without the need to train additional models.

In most cases, we found a significant improvement in pose accuracy compared to PoseNet [105]
and adaptation of this method PoseNet LSTM [222]. A recent method, namely VLocNet [219],
has achieved comparable results to our method, however using previous pose information in a
direct regression framework. In turn this work should be considered as a tracking scenario
instead of a re-localization one.

In addition, we compare to recent works on scene coordinate regression, [21]. With the
exception of the challenging Stairs scene, the state-of-the art method shows slightly better
accuracy in terms of RGB pose estimation considering each scene individually. On average our
method shows good performance compared to the state of the art.

Although our confidence prediction significantly improves the results, the initial scene co-
ordinate regression still seems erroneous, which will be further explored in future work
considering optimizations in handling missing depth and thus ground truth scene coordinates
as well. Given that the depth information is available, improvements of the accuracy using
RGB-D information can easily be obtained since neither the models nor the pose refinement
rely on these algorithms. The results including RGB-D information can be seen in Table 6.2,
for which we give a comparison to the state-of-the art scene coordinate regression forest
approach [199]. Further, since we only depend on the most confident points, our results were
obtained using a smaller set of points. Further, RANSAC based optimization, as applied in
most state-of-the art methods, could be easily applied to obtain more accurate pose estimates.
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For evaluation and comparison to current RGB methods, we keep the parameter settings for
pose refinement as proposed in [21].

6.3 Remarks and Conclusion

In this work, we present a framework for dense scene coordinate regression in the context
of camera re-localization using a single RGB image as the input. When depth information is
available for obtaining the camera coordinates, the corresponding scene coordinates could be
regressed and used to obtain a camera pose estimate. We incorporate this information into the
network and analyze how the scene coordinate regression can be further optimized using a
smoothing term in the loss function. In addition and more importantly, we predict confidences
for the resulting image point to scene coordinate correspondences, from which the camera
pose can be inferred, thus eliminating most of the outliers in advance and greatly improving
the accuracy of the estimated camera poses. As a final step, the resulting confidences can be
used to refine the initial pose estimates, which further improves the accuracy of our method.

Acquiring reliable correspondences is of high importance for a large number of computer vision
applications. With the advent of deep learning numerous works have shown the potential
of neural networks in this regard [57]. Most recently, Brachmann et al. [25] incorporate a
deep learning based approach into RANSAC-based frameworks. Instead of trying to remove
RANSAC, a neural network is trained in such a way that good correspondences are more
likely to be chosen for hypotheses prediction. By including this approach into their previous
work for camera localization [24], they show significant improvements for the task at hand,
which underlines the importance and potential of deep learning solutions to handle erroneous
predictions and outliers. Uncertainty estimation within this context is yet to be explored by
the computer vision community and would pose another interesting research direction for
future work.

Although, in general providing good localization performance, structure-based methods in one
form or the other rely on a reconstruction of the scene as prior information and if not available
or inaccurate can lead to poor performance. Building an accurate reconstruction becomes
more challenging with increasing scene size, which for instance is of particular interest in
autonomous driving scenarios, that naturally require maps of large scale. In the next chapter,
we therefore analyze methods solely relying on 2D image information. In particular we aim to
assess methods that directly regress the camera pose of a corresponding RGB image.
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7Introduction

7.1 Motivation

RGB cameras have become available on most systems as well as mobile devices and thus
provide important visual information at a low cost. Therefore, a lot of recent research has
focused on solving computer vision tasks such as object pose estimation or camera localization,
solely relying on RGB information.

In this context, very recently (in 2015), direct camera pose regression approaches have started
to emerge, mainly using convolutional neural networks to estimate the rotation, most often
represented as quaternions, and position of the camera given a single RGB image as input.
With only one forward pass of the neural network, these methods can be applied in real-time
applications and due to low memory footprint can easily be deployed on mobile devices as
well.

However, without the additional 3D information in comparison to for example structure-
based methods, systems have to become more robust to handle challenges such as varying
illumination conditions or occlusions.

In outdoor environments, especially in autonomous driving scenarios, where mounted RGB
cameras can be part of the standard equipment, visual cues are used to detect important
information such as traffic signs and process the environment for a secure movement of
the vehicle. Additionally the information can be used for large-scale navigation, especially
when other sources of information, such as GPS, fail. Nevertheless, long-term and large scale
localization has posed a challenging task. Highly dynamic environments, created by moving
vehicles/objects and pedestrians, as well as strong weather and seasonal changes such as rain,
snow, daylight and night conditions can make localization from RGB images unreliable.

Considering indoor environments, direct regression methods have shown to lack generalization
capabilities. The need for training a scene-specific model first limits their applicability for
online applications such as SLAM. Further currently these methods lack the general accuracy
in comparison to structure-based methods. In their defense, however, structure-based methods
rely on computationally rather expensive outlier handling such as RANSAC and camera pose
refinement strategies, that are essential to provide accurate and robust solutions. Furthermore,
due to visual similarities, direct regression methods have difficulty in handling ambiguity
arising in the scene due to symmetries and repetitive structures. Therefore, images taken
at highly different viewpoints can result in visually similar appearances and as such easily
confuse methods that solely rely on RGB information.
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In this thesis, in the latter, we mainly attempt to address two aspects that occur in direct
camera pose regression methods to improve said methods while retaining the advantages they
have to offer. First, we attempt to refine a camera pose estimate of a direct regression method,
however, still solely relying on RGB information. Due to the lack of geometric information
available this poses a highly challenging task. Further, the computational burden of any
refinement process has to be kept in mind such that the advantage of fast deployment of direct
regression methods can be maintained. And second, we propose a framework specifically
designed to handle ambiguities arising in the scene while maintaining the original accuracy
with minimal computational overhead in non-ambiguous environments.

7.2 Related Work

Before describing the work conducted in the scope of this thesis, we start with a general
introduction of direct camera pose regression methods with neural networks that have recently
been proposed and published at high value computer vision conferences.

7.2.1 Absolute Pose Estimation

Starting with the introduction of PoseNet [107], Kendall et al. presented a computationally
very fast solution for solving the camera pose estimation problem relying solely on RGB
information and also showing great capabilities when being applied on large-scale scenes.
Given an RGB input image, the methods uses a convolutional neural network to directly
regress the camera pose with one forward pass of the network. This, on the other hand, came
at a large drop in general accuracy compared to earlier state-of-the-art methods. Thus, several
extensions and modifications of this method have been proposed. In a subsequent work
Kendall et al. [105] propose the use of a novel loss functions for direct camera pose regression,
which includes learning the homoscedastic task uncertainty. Further, in case depth information
is available during training, the authors additionally apply a loss based on minimizing the
re-projection error between projections of the 3D points when using the ground truth and
predicted camera poses.

Relative and temporal constraints to improve global localizaton have been enforced in a line of
works [26, 50, 186, 222, 229]. For instance, Walch et al. [222] use Long-Short-Term-Memory
(LSTM) units to reduce the dimensionality of the learned feature representation of the neural
network for improved localization accuracy and to alleviate over-fitting. Usually applied
to temporal data LSTM units have been shown to perform well on task such as language
modeling [209] and understanding [233] or action recognition [221]. In [222] the authors
instead apply four LSTM units to find correlations in image representations and in turn learn
more suitable features for direct pose regression.
VidLoc [50] uses recurrent neural networks for localization in image sequences. Assuming tem-
poral information is available, LSTM units are used to leverage relevant information, such as
movement between frames, for camera pose estimation. In addition mixture density networks
are used to regress distributions over the pose space and obtain a measure of uncertainty in
the network’s prediction.
AnchorNet [186] defines anchor points and proposes offset regression relative to these anchor
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points for improved localization. Intuitively based on how humans localize themselves, anchor
points are defined in intervals over the map and the best suited anchor point, as well as its
offset to it, is predicted by a neural network. This way, performance can be improved in
comparison to directly regression all 6 DoF of the camera pose.
MapNet [26] proposes to include relative pose constraints to guide direct camera pose regres-
sion, such that the relative pose between predicted camera poses are forced to correspond
to the ground truth relative pose or visual odometry of associated image pairs. They further
show how to incorporate prior information, if available, such as GPS coordinates. Finally,
the resulting camera poses are optimized by applying pose graph optimization. In this case
absolute poses, nodes of the graph, are refined such that they comply with the constraints of
the relative poses between nodes.

Recently Huang et al. [94] extend pose regression methods to appropriately handle dynamic
environments, such as pedestrians or moving objects, that should not affect the final camera
pose. An estimated segmentation mask is used to provide probabilities for such objects, that
during training as well as testing can be used to apply dropout at pixels and remove such
misleading information. Additionally a self-attention module is used to estimate weights, that,
in turn weigh the influence of each feature map to the final camera pose regression layers.
Finally, multiple hypothesis are sampled using Dropout and the camera pose estimates refined
with a uncertainty-aware pose graph optimization.

Another line of research includes uncertainty estimation [106] approximating Bayesian Infer-
ence by utilizing Dropout in neural networks, utilizing mixture density networks to predict
uncertainty as the variance of the predicted distribution [50], or combining learned feature
representations and Gaussian process regressors [38]. However this particular research direc-
tion will be in more detail addressed in Chapter 9. Although there has been a vast amount of
research addressing direct camera pose regression, the accuracy gap and lack in generalization
capabilities of the aforementioned methods in comparison to their geometric counterparts
remains significant.

Sattler et al. [193] therefore investigate the limitations of direct camera pose regression
methods and their connection to the underlying network architecture and shows that current
architectures mostly learn a conditional average and interpolate between the poses seen
during training, therefore strongly resembling a nearest neighbor estimation of the pose.

7.2.2 Relative Pose Estimation

However, inferring the relative pose between two frames has shown to be less affected by the
problems absolute camera pose regression methods suffer from. Therefore a line of research
has aimed to use relative pose information between pairs of frames for accurate absolute pose
prediction. The basis of these methods is a two stage approach, first retrieving the nearest
neighbor of a database associated with absolute poses. Then, as a second stage the predicted
relative pose between the database and the query image is used to predict the absolute pose
for the query image. The general framework of such methods is depicted in Figure 7.1 For
robust prediction, in most cases, k nearest neighbors are used instead of a single one and the
query pose computed by triangulation [6, 144].
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Fig. 7.1. General pipeline for relative pose estimation methods. Features are extracted for the training images to
form a database of features and associated pose labels. For a given query image the nearest neighbor in
the feature space is retrieved and with the nearest neighbor image and the query fed to a neural network
that is trained to predict the relative camera motion between two frames. The nearest neighbor pose is
then updated with the relative motion resulting in the estimated camera pose of the query.

Melekhov et al. [144] show that learned feature representations using convolutional neural
networks can outperform traditional ones, like SIFT, for nearest neighbor retrieval. Later, the
authors show the benefits of relative pose regression in generalization to unknown scenes.

In [6] the authors of RelocNet propose a novel similarity measure for training localization
specific features based on the volume of the camera frustum overlap between to cameras such
that image pairs with high overlap are close in feature space. Relative poses are regressed
directly in SE(3) and in addition the method shows to some extend generalization to novel
scenes that have not been used during training.

With CamNet [58], Ding et al. propose a coarse to fine learning strategy, training several
branches of a neural network to predict either coarse or fine relative poses. For a query image
the camera pose can then be obtained by applying the relative motion in stages, each stage
providing a more accurate solution.

Instead of predicting the relative pose, NC-EssNet [246] proposes to estimate the essential
matrix and retrieve the relative pose from the essential to alleviate the problems of balancing
rotation and translation in direct regression methods. The authors further highlight the
problems of current regression methods in comparison to traditional methods, for example
using a simple SIFT feature matching and essential matrix computation from obtained 2D-2D
image matches using RANSAC.

In the next chapters we aim at addressing some of the problems arising in direct camera pose
regression methods. First, as RANSAC is a rather computationally expensive procedure, we
investigate a deep learning based solution for camera pose refinement that solely relies on
RGB information.
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8Learning Pose Refinement

8.1 Motivation

Direct camera pose regression methods have shown to provide computationally efficient
alternatives for visual localization, while solely relying on RGB information to provide an initial
pose estimate. However, in comparison to their structure-based counterparts, a significant
gap in general accuracy can be observed. Due to the lack of geometric information and
sufficient training sets available these methods often do not generalize well to novel viewpoints.
Considering structure-based methods, however, initial pose estimate are no more accurate
than those of direct regression methods, but can be refined using the 3D information of the
corresponding scene. With only color information considered, direct regression methods do
not offer the same refinement possibilities and thus such methods have not yet been proposed
in the current literature. With the recent advances of deep learning, however, the possibility
of simple RGB refinement has become an actual alternative. Therefore, in this chapter, we aim
to explore a deep learning alternative for the task of camera pose refinement. While solely
relying on RGB input images, the idea is to capture the geometric information between a
camera pose and the corresponding RGB images with a neural network, and implicitly encode
such information. For this aim, we are inspired by the concept of generative adversarial
networks, that allow us to model the distribution, in our case the joint distribution of camera
poses and input images.

8.2 Background

Before diving into the details of our method, we briefly describe some of the major refinement
strategies used for object as well as camera pose refinement in computer vision applications.
A general approach, mainly used for registration but not limited to it and applied in various
other applications such as object pose estimation [104] or reconstrucion [159] and operating
on points clouds, is the iterative closes point (ICP). In the context of camera localization this
entails an adaption of RANSAC, which is currently commonly used in structure-based methods.
Further, we briefly describe the concept of GANs that in large parts inspired our proposed
framework.

8.2.1 Camera Pose Refinement

We start by summarizing two main strategies used for camera pose refinement, the iterative
closest point algorithm and RANSAC-based refinement.
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Point Matching Optimization Aligned Output

Fig. 8.1. Schematic overview over the ICP algorithm. The alignment of two models is computed by estimating the
transformation between them in an iterative fashion. Each iteration consists of two steps, point matching
(based on their distance) and transformation optimization.

Iterative Closest Point

If a 3D point cloud is available, iterative closest point [10] can be computed between a model
and for instance the point cloud or partial estimation of it transformed by a predicted pose.
The algorithm iteratively tries to align the point clouds by matching a point to its closest
point in the reference and minimizing the alignment error between the matches. A schematic
overview is depicted in Figure 8.1 Starting from an initial alignment of two points clouds an
optimal transformation is computed that minimizes a cost function, e.g. the distance between
the known points of the known model and the transformed corresponding points. As a result
one obtains the transformation that best aligns the two points clouds, preferably obtaining a
more precise pose estimate as well. Variations of the method have been proposed throughout
the years [183, 231], addressing for instance which points to use for the computation [141,
224], how to match points between the two clouds, weighting [78] and rejection of point
matches [141] and the choice of the objective function. For example Chen and Medioni [45]
propose a point-to-plane instead of point-to-point distance. Another prominent example that
uses point-to-plane distance metric and ICP for alignment of a RGB-D frame to the model is
KinectFusion [159], that as a first method, computes a dense reconstruction from a hand-held
device and RGB-D videos in real-time.

RANSAC-based Refinement

Due to large amount of outliers or noise in the data, most state-of-the art localization methods
currently employ a version of RANSAC or ICP to obtain a robust solution to the camera pose
estimation problem. The performance of RANSAC, however, strongly depends on the number
of outliers in the data, which in turn correlates with the computational time required to
guarantee an accurate solution. In addition, these methods most often rely on 3D information
to perform 2D-3D matching. Subsequent pose refinement is then applied by recomputing
the camera pose on the enlarged set of inliers found and iteratively computed until a certain
criteria is met. An outline of such an algorithm can be found in Chapter 2.
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8.2.2 Generative Adversarial Networks

Introduced by Goodfellow et al., Generative Adversarial Networks (GANs) [79] have recently
shown great success in generating images as well as improving the performance of deep neural
networks trained for tasks such as object detection [223], human pose estimation [46, 232]
or realistic image composition [126]. Such GANs consist of two networks, a generator G
that captures the underlying data distribution and a discriminator D. The generator tries
to reconstruct a sample X from the latent variable z and the discriminator tries to estimate
the probability of a sample coming from the actual distribution D(X) or the generated one
D(G(z)), i.e. can tell the real distribution and distribution of generated data apart. During
training, the two networks are in competition with each other as the generator tries to better
mimic the ground truth data distribution such that it becomes more and more difficult for the
discriminator to correctly classify a sample representation. More precisely, in every training
step, the generator is updated in a way such that it is more likely to fool the discriminator.
This results in a min-max game with the following objective function:

min
G

max
D
L(D,G) = EX∼pdata(X)[logD(X)] + Ez∼pz(z)[log(1−D(G(z)))]. (8.1)

Conditional GANs A conditional version of GANs was proposed in [147], additional feeding
prior information to the GAN framework. Depending on the application, the condition can
vary, such as class labels, so that the generator learns to reconstruct an image of a type of
object for instance. The condition is fed to both the Generator and the discriminator as
additional information, such that given a condition y the objective function becomes

min
G

max
D
L(D,G) = EX∼pdata(X)[logD(X|y)] + Ez∼pz(z)[log(1−D(G(z|y)))]. (8.2)

Conditional GAN have successfully been used in various applications such as image-to-image
translation [96], domain adaptation [218] or segmentation [205].

8.3 Related Work

Since in this work, we want to explore re-localization methods utilizing RGB information only,
we build on top of recent research on direct camera pose regression methods. In that sense,
direct camera pose regression methods such as PoseNet [107] and related works are strongly
relevant for ours. However, we additionally attempt to model the connection between an RGB
image and its camera pose implicitly, rather than trying to simply learn this mapping directly.
For this purpose, we show the advantage that leveraging an adversarial network can have
on such methods. Therefore, we propose a framework based on a camera pose regression
network and a discriminator network that, given a regressed pose conditioned on the input
image, learns to distinguish between regressed and ground truth poses. Further, once the
model has learned a representation of this connection, as our main contribution, we show
how the trained model can be used for camera pose refinement. By leveraging the learned
information encoded in the discriminator network, the localization accuracy can be improved
beyond the one of a simple camera pose regression network.
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Generative Adversarial Networks [79], allow to model both unconditional and conditional
data distributions and have recently shown great success in improving the performance of
deep neural networks trained for tasks such as object detection [223], human pose estimation
[46, 232] or realistic image composition [126]. However, to the best of our knowledge GANs
have not yet been explored in the context of camera pose estimation.

There have been several methods addressing pose refinement in the context of an object’s
as well as a camera’s pose with neural networks. For instance, Manhardt et al. [136] and Li
et al. [125] propose a neural network that given a pose estimate used the CAD model of an
object to render that object from the predicted viewpoint and refine the pose by minimizing
the error between rendering and observed view in an iterative fashion. DSAC [21, 24] in
comparison relies on RANSAC and iterative refinement on inlier point correspondences to
obtain an accurate camera pose prediction.

The above methods, however, rely on additional information in the form of a model or depth
information or produce rather computationally expensive refinement strategies.

8.4 Methodology

Our methodology is inspired by GANs in the sense that we are aiming to train a discriminator
network that tries to predict whether a pose estimate and the corresponding input image are
part of the distribution seen during training or significantly varies from said distribution. The
work presented in the following is part of the published paper

’Adversarial Networks for Camera Pose Regression and Refinement’ by Mai Bui, Christoph Baur,
Nassir Navab, Slobodan Ilic and Shadi Albarqouni, published in Proceedings of the

International Conference of Computer Vision (ICCV), 2nd Workshop on Deep Learning for
Visual SLAM, 2019, Copyright 2019 IEEE [33].

As introduced by previous camera pose regression approaches, our baseline model consists of
a convolutional neural network, parameterized by Γ. We hereby referred to this network as
the pose regressor, which learns the mapping µΓ(X) : RW×H×3 7→ R7 between an input RGB
image X ∈ RW×H×3 and an absolute camera pose p ∈ R7.

Additionally we attempt to learn the distribution of camera poses and their respective RGB
images captured by the camera. More precisely, we aim to train a pose discriminator network
that should be able to distinguish between regressed and ground truth camera poses with
respect to the corresponding input image. Following the general GAN framework, the pose
regressor and discriminator are trained in an alternating manner, where the pose regressors
goal is to fool the discriminator, such that it can not clearly distinguish between regressed and
real camera poses anymore. Finally, once the discriminator has learned the joint distribution
of camera poses and input images, that is, has modeled the geometric mapping between an
input image and a camera pose, we leverage the information captured by the discriminator
to update and refine the regressed camera pose. By freezing the discriminator networks
weights and optimizing solely the regressed camera pose according to the computed gradient
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Fig. 8.2. Given an RGB image, a corresponding camera pose is estimated with a pose regression network.
Alongside the estimated pose, a feature representation of the corresponding image is extracted and
used to train a discriminator network. This network is trained to distinguish between ground truth and
regressed poses considering the input image and can then be leveraged to refine the regressed camera
pose.

information, we aim at pushing the regressed pose closer towards the manifold of real poses
to ultimately better fit the input image and preferable obtain a more accurate camera pose.
An overview of our method is depicted in Figure 8.2.

Camera Pose Regression Given an RGB image X ∈ RW×H×3, with W and H being the image
width and height respectively, our objective is to predict the camera pose p = [q, t] given as
orientation, represented as vector q, and translation t ∈ R3. For this aim, a convolutional
neural network is trained on the homoscedastic loss function

Lpose(Γ|X,p) = ‖t− t̂‖e−β + β + ‖q − q̂‖e−α + α, (8.3)

where t̂ and q̂ represent the predicted translation and rotation, respectively. The parameters
β and α are trainable and used to balance both distances, and ‖ · ‖ is chosen to be the `1 norm.
Readers are referred to [105] for further details about the loss function and its derivation.

The parameterization used to regress the rotational component of an object or a camera
pose with neural networks has been extensively addressed in many recent literature [26,
60]. In this work, we experiment with two representations. First, we choose to evaluate our
method on the representation of quaternions, which is already well established in image-based
localization method. In this case, a quaternion can be described as q = [w,u] ∈ R4 where w
is a real valued scalar and u ∈ R3. Normalization during the training has to be applied, to
ensure that the resulting quaternions lie on the unit sphere. The use of `1 or `2 norm in the
loss function results in an approximation of the true distance between two quaternions on the
unit sphere. However, as mentioned in [105], the resulting quaternions become sufficiently
close to the ground truth such that there is no significant difference in `1 norm and spherical
distance, therefore no additional constraints have to be enforced while training the pose
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regression network. As a second representation, we use the logarithm of a unit quaternion, or
axis angle representation, which is computed as

qlog = log q =

 u
‖u‖ arccos(w), if ‖u‖ 6= 0

0, otherwise
, (8.4)

and has the advantages of not being over-parameterized, reducing the number of parameters
to the minimum of three. Further, it relaxes the need of normalization during the training.
The the unit quaternion can be recovered by q = [cos(‖qlog‖), qlog

‖qlog‖sin(‖qlog‖)].

Discriminator Both the regressed poses p̂, and the ground-truth poses p, and a lower di-
mensional representation, f(X), of the corresponding input images, form "fake" and "real"
examples, respectively. These pairs of samples are then used to train the discriminator network.
The aim of this network is to minimize the following loss function defined as

LD(Γ|X,p) = σ({f(X),p}, Creal) + σ({f(X), p̂}, Cfake), (8.5)

where σ(·, ·) is the binary cross-entropy loss, Creal and Cfake are set to 1 and 0, respec-
tively. Therefore, the discriminator models the conditional distribution P (y| p, f(X)) of
y ∈ {Creal, Cfake} conditioned on the pose p and image features f(X), and thus implicitly
captures the joint distribution of p and X. Our framework is, in fact, inspired by GANs to
ensure that the geometric mapping between camera poses and the corresponding RGB images
are exploited in the network. However it differs from the original GAN framework as our pose
regression network is purely discriminative. Providing a feature representation of the image
in combination with the pose has shown to be crucial in our experiments, see 8.5.3. Based
on intuition this is a result of providing the network with the necessary visual information in
combination with the pose, that is with the mapping we are aiming to learn.

Feature Extraction A pre-trained network architecture on ImageNet [184], see Section 8.5.3,
is used to extract a feature representation f(X) given an RGB input image. The weights of the
network are frozen during the training, as its purpose is mainly to provide the discriminator
with a lower dimensional representation of the image. Given the fact that most of the state-
of-the-art network architectures produce a rather high dimensional feature representation
(compared to the six or seven dimensional camera pose vector), we apply a linear mapping to
better balance the dimensionality between feature representation and camera pose. For this
aim, we draw inspiration from the concept of dimensionality reduction. To easily integrate the
linear mapping into the network architecture, we simply add one additional fully-connected
layer, without bias or activation function, right after the trained feature representation layer,
and keep its weights frozen during training. This way, the discriminator is discouraged to adapt
the extracted features during training and solely base its decision on the features themselves.
More sophisticated dimensionality reduction techniques could be applied instead. We leave
this as future work. The camera pose vector is then copied, to fit the dimensionality of the
extracted feature representation, and concatenated with said representation to form a feature
map that is used as the input to the discriminator network. Intuitively we would want the
discriminator to learn the connection between RGB images and corresponding camera poses.
Therefore, such that the network is discouraged to solely focus on the information provided
by either one, the design choices described above were made. However, in addition we have
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experimented with fine-tuning the feature extraction network as well as only fine-tuning
individual layers. Both resulted in worse performance.

Adversarial Learning Following the training procedure introduced for generative adversarial
networks, we alternate between training the camera pose regressor and the discriminator
network, updating the regressor on

LG(Γ|X,p) = Lpose(Γ|X,p) + λσ({f(X), p̂}, Creal)︸ ︷︷ ︸
Ladv(Γ|X,p)

, (8.6)

such that the network learns to predict reasonable poses with regard to the ground truth as
well as more and more realistic poses that should eventually be able to fool the discriminator.
Here, the parameter λ balances the influence of the adversarial loss on the pose regressor.
Therefore, the adversarial loss acts as an additional regularization to the pose regression
network.

Pose Refinement At the end of training the model should be converged and the discriminator
successfully "fooled", meaning it can not distinguish properly between regressed and ground
truth poses with respect to the input image. Once trained the discriminator network can be
used during testing to refine the regressed camera poses. For this aim, the test image is fed to
the pose regression network as well as the feature extractor to obtain an initial pose estimate
and feature representation. Then, the predicted pose together with the extracted feature
representation of the image is used as input to the discriminator, same as during the training
stage. However, in succession, the weights of the discriminator are frozen, and the initially
regressed pose p̂ for the image X is updated in an iterative fashion by optimizing the pose
parameters over the following loss function:

Lref (Γ|X,p) = σ({f(X), p̂}, c), (8.7)

where the class label c is set to 0.5. This stems from the fact, that at the end of training, the
discriminator will not be able to distinguish between regressed and ground truth camera pose
anymore, thus predicting values close to 0.5 in both cases, which we have found to be true
by experimental evaluation. Intuitively, this amounts to moving along the manifold towards
a region where the discriminator reliably confuses real and regresses poses with respect to
the input image. Therefore, any predicted pose of an unseen query image should be pushed
towards this manifold. As the gradients coming from the discriminator do not necessarily
follow a geometrically meaningful direction, we add an additional constraint in the update
of the pose vector. Therefore, in case of using the quaternion representation, we restrict the
quaternion update, such that its movement along the unit sphere is enforced [14, 37]. This
results in an update for one iteration of the following form

qt = qt−1 cos(γl) + v
γ

sin(γl), (8.8)
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with γ = ‖v‖2, l being the step size, and v ∈ R4 being the projection of the quaternion gradient
∇q into the tangent space. The projection is given as

v = (I4×4 −∇q∇qT )∇q, (8.9)

where I4×4 is the identity matrix. To further ensure that the resulting poses are valid, the
updated quaternion is normalized after each iteration. However, no such constraints have to
be or can be enforced to update the translational component of the camera pose. Though, for
simplicity, it is updated with the same step size l.

Training Procedure and Implementation Details There are some aspects to be considered
when training generative adversarial networks. Therefore, we now briefly describe our
training procedure as well as give implementation details, before moving on to the analysis
and experimental evaluation of our method.

Training Stage Stable training and convergence has shown to be an issue in training generative
adversarial networks, which we have found to be true in our case as well. Therefore we
carefully adjust our training procedure to obtain a good performance of the model. As a
first step, the pose regression network is trained for a few epochs to initially give reasonable
poses, such that the discriminator can actually be provided with meaningsul information.
We then include the adversarial loss in the training procedure and train the discriminator.
The parameters β and α are set following the state-of-the-art method of Brahmbhatt et al.
[26] and λ is set to 1 · 10−3. Afterwards, the pose regressor and discriminator are alternately
trained on the LG(Γ|X,p) and LD(Γ|X,p) loss functions, respectively, such that regressor
and discriminator are in competition with one another as originally described in the GAN
framework.

Instead of injecting random noise into the pose regressor, as originally required for the con-
ditional GAN framework, we also experimented with placing dropout layers before every
convolutional layer and kept them active both during training and testing. This strategy
has already been employed for Image-to-Image translation [96], where it has been pointed
out that explicit noise would simply be ignored by the model. However, we have not found
significant changes in either training nor the overall performance of the method by employing
this strategy.

Implementation Following the state of the art [26], input RGB images are resized to a
resolution of 256 pixels in height, normalized, and then used to form mini batches of size 64
to train the neural networks. As the base network of the camera pose regressor a ResNet-34
network architecture is employed, where the final classification layer is removed and instead
two fully connected layers for camera pose regression are added after the average pooling layer.
The discriminator is formed by a simple network architecture consisting of three convolutional
layers, where exponential linear units are deployed as activation functions. All networks are
implemented in PyTorch [163]. For Optimization we chose Adam Optimizer with a learning
rate of 1 · 10−4 and train our models for 300 epochs on an 11GB NVIDIA GeForce RTX 2080
graphics card. Once the networks are trained, the regressed camera poses are refined as
described in Section 8.4 until convergence, but up to a maximum of 50 iterations at a step
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size of l = 1 · 10−3. An analysis of the effect of the step size and the number of iterations on
the resulting pose accuracy can also be found in more detail in Section 8.5.2.

8.5 Experiments and Evaluation

We evaluate our method on the publicly available 7-Scenes [199] dataset, which is widely
used for analysis of camera localization methods and which we have already experimented
with in Chapter 6. To briefly summarize, the dataset consists of RGB-D frames of seven indoor
scenes, captured with a hand-held Kinect sensor, and corresponding ground truth camera
poses computed using Kinect Fusion. The scenes are of varying spatial extent and also differ
significantly in the amount of training data available for each scene. Training and test data
are specified and consist of distinct camera trajectories. It has been widely used to evaluate
camera re-localization methods as it contains several challenging scenarios such as motion
blur, repeating structures and texture-less surfaces.

For evaluation, we utilize the base model of the recent state-of-the-art method and implemen-
tation of MapNet [26]. We focus on directly regressing the camera pose without the aid of
temporal or geometric information as introduced as part of the method’s contribution. We
investigate the effect of our method on models regressing quaternions themselves, which
would result in a PoseNet [107] model where the base network is exchanged with a ResNet.
Further, we evaluate the logarithm of a quaternion, therefore comparing to the baseline
models of [26].

To summarize, for evaluation of our framework, we introduce the following baseline models
and naming conventions:

• Baseline: As a baseline model, we train the camera pose regression network on the
Lpose loss, which, as already mentioned, effectively results in the state-of-the art baseline
method of [26]. However, we abbreviate this model as Base Model whenever experiments
are conducted by us to explicitly highlight re-trained models and to better analyze the
effect of our contributions.

• Adversarial Pose Regression: To analyze the effect of adversarial training on the
camera pose regression, the regression model is trained on the LG loss function (Eq.8.6),
which includes a pose regression loss Lpose as well as an adversarial loss term Ladv,
abbreviated as Ours.

• Pose Refinement: Finally, during testing, the trained discriminator network is used to
further improve the regressed poses using the Lref loss. The models are then abbreviated
as Ours+Ref.

For the remainder of this section, these models will be used to validate our method. We
start by investigating the effect of optimizing a camera pose regression network including the
adversarial loss, after which we quantitatively as well as qualitatively analyze the effect of
the proposed pose refinement on the localization accuracy. Finally, setting our method in the
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Tab. 8.1. Effect of adversarial training and pose refinement on the camera pose accuracy, evaluated on the Heads
scene. Median rotation and translation errors are reported. Optimizing the camera pose regression
network with the adversarial loss results in an improvement in accuracy, which is further increased by
our proposed camera pose refinement.

Scene Base Model Ours Ours+Ref.

Heads
Rotation 14.5◦ 14.1◦ 12.4◦

Translation 0.18m 0.17m 0.16m

0 5 10 15 20 25 30 35 40
Rotation Error [°]

0

0.02
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0.06

0.08
Ours
Ours+Ref

0 0.1 0.2 0.3 0.4 0.5
Translation Error [m]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Ours
Ours+Ref

Fig. 8.3. Normalized histograms of rotation and translation errors before and after pose refinement on the Heads
scene. Results without refinement (Ours) are shown in blue, whereas errors after refinement (Ours+Ref.)
are displayed in green.

context of recent research, we compare our results to the current state-of-the-art methods on
direct camera pose regression.

8.5.1 Adversarial Learning

First, to investigate the effect of adversarial learning on the camera pose regression framework,
we compare rotation and translation errors of our baseline, Base Model, and the model Ours.
The results can be seen in Table 8.1, showing median rotation and translation errors of the
described models on the Heads scene. That adversarial training can help in training deep
networks has already been shown, for example in [232] for the task of human pose estimation,
which, however differs significantly from the task of predicting the camera pose from a
corresponding image. Nevertheless, we found slight improvements in rotation, as well as in
translation accuracy by simply including adversarial training into a camera pose regression
framework due to better and more stable convergence of the model.

8.5.2 Pose Refinement

As a second step, we evaluate our proposed pose refinement strategy utilizing the trained
discriminator network.
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15.3◦-11.0◦, 9cm-6cm 8.8◦-3.1◦, 9cm -6cm 8.0◦-3.6◦, 5cm-1cm 15.7◦-11.5◦, 36cm-37cm

6.9◦-1.5◦, 15cm - 14cm 13.9◦-9.2◦, 15cm - 5cm 13.4◦-9.5◦, 38cm - 17cm 7.4◦-3.0◦, 32cm - 35cm

Fig. 8.4. RGB input images (second row) and the corresponding camera poses (first row), visualized in a
reconstruction of the given scene. For each frame, the ground truth (green), initially regressed pose
(red) and optimized pose using the proposed refinement (blue) are displayed. Below each visualization
the respective rotation and translation errors before and after refinement are given.

Performance Evaluation

Surprisingly, even though the gradients coming from the discriminator have not specifically
been trained to have geometric meaningful information, we can assume that to some extent
this information has implicitly been encoded in the network. Therefore, we can use the
gradients to update the regressed poses for any test image, given the constraints described in
Section 8.4 on the quaternion update. Table 8.1 and Figure 8.3 summarize our findings. We
report the median rotation and translation error in Table 8.1. Figure 8.3 shows the overall
distribution of the aforementioned errors on the Heads scene of the 7-Scenes dataset. Overall
we can report an improvement in pose accuracy by applying the proposed pose refinement.
Further, we qualitatively assess the accuracy of our predictions, examples of which can be
found in Figure 8.4. It can be seen both quantitatively and qualitatively that the regressed
pose can effectively be pushed further towards the ground truth pose by the deep learning
based refinement step. As as result, for example in comparison to our baseline method Ours
(log q) we obtained a relative improvement in rotation of 12.0% and 31.1% for the Heads and
Stairs scene respectively when using the proposed refinement (Ours+Ref. (log q)), see Table
8.4.
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Fig. 8.5. Effect of different numbers of iterations as well as step sizes on the median rotation and translation
errors for the proposed refinement, shown on the Heads scene. Our refinement can significantly improve
the localization accuracy even in a few iterations of optimization.

Analysis of Optimization Parameters

Further, we investigate the effect of the step size l as well as the number of iterations on the
localization accuracy of the proposed pose refinement. The results of our investigation are
summarized in Figure 8.5, where we show median rotation and translational error on the
Heads scenes for different numbers of refinement iterations as well as step sizes. A lower
step size usually leads to smaller changes in the pose, but, therefore, can also require a
higher number of iterations to converge to the desired pose. Since this optimization process
is required during testing, increasing the number of iterations is directly proportional to an
increase in computational time. Experiments with larger step sizes (l > 10−3) resulted in
deterioration of the camera poses due to the optimization procedure becoming unstable.
Usually only a few iterations of refinement are sufficient, though, to improve the regressed
poses and provide a good improvement in camera pose accuracy, whereas the run-time of
RANSAC-based methods, for example, depends on the quality of correspondences found. As a
trade-off, we chose the parameter setting described in Section 8.4. For example, on average
the refinement has a computational time of 42ms for 30 iterations, but grows linearly with the
number of iterations. Although we were able to achieve promising results with the proposed
pose refinement strategy, it should be noted that it remains an optimization procedure itself,
and thus depends on factors such as the quality of initialization. Therefore, in some cases
the refinement might result in a solution that is not preferable to the initially regressed pose
or difficult to recover from, if the predicted pose is far away from the ground truth one, an
example of which is shown in Figure 8.4 d).

8.5.3 Influence of Feature Extractor

We have seen in Chapter 4 that a learned feature representation can have a high impact on the
performance of deep learning models, especially for pose regression. Naturally, we assume the
extracted feature descriptor of a query vector to possibly have a high influence on our model.
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Tab. 8.2. Relative decrease, in percentage, of the median rotation and translation error after refinement in
comparison to initially regressed poses. Evaluated are different network architectures used to obtain a
feature representation of the RGB image input, showing the influence of the feature extractor on the
proposed refinement. Higher values correspond to improved pose accuracy.

Heads Without f(X) AlexNet [112] VGG-16 [203] ResNet-18 [87]

Rotation 4.25% 3.56% 8.32% 12.18%

Translation -3.0% 2.88% 4.7% 4.39%

Therefore, to evaluate the effect of the feature extraction network on the discriminator and
subsequently the camera pose refinement, we evaluated our method using several different
network architectures. We compare between AlexNet [112], VGG16 [203] and ResNet-18 [87]
pre-trained on ImageNet for the task of image classification. For all models the refinement is
run for thirty iterations.

Additionally we experiment with feeding only the regressed camera poses to train the dis-
criminator network. For this experiment, to keep the complexity of the models on the same
level, we replace the convolutional layers of the discriminator network with fully connected
layers of roughly equal number of trainable parameters as the convolutional counterpart of
the discriminator. Since by design of our method for each architecture we have to train a
new model, we report the relative decrease in rotation and translation error over the initially
regressed pose quality of the respective model. The results are summarized in Table 8.2. We
found that our proposed refinement is fairly robust to the extracted features and were able
to obtain improved pose accuracy regardless of the network architecture used, except when
using pose information only, without additional information about the corresponding image
representation. Nevertheless, we found an increase in localization performance depending on
the choice of network architecture with the best performing model resulting in the ResNet-18
[87] network architecture.

8.5.4 Runtime Evaluation

In comparison to computationally expensive refinement strategies based on RANSAC, we
are aiming to provide a reasonably fast RGB-based alternative. Therefore, we now report
the computational requirements of our method, as well as of each individual part of our
framework. Table 8.3 shows the computational times of the individual steps of our method
evaluated for a single frame. Pose refinement is calculated for thirty iterations. The method is
implemented in Python and PyTorch and run on a 11GB NVIDIA GeForce RTX 2080 graphics
card and 64 GB Intel Core i7. To mention, state-of-the-art method such as [199] and [21]
report run-times of one or two hundred milliseconds, although programmed in C++ and run
on different systems.
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Tab. 8.3. Computational times for our pipeline as well as each individual step, initial pose regression, feature
extraction and subsequent iterative pose refinement for thirty iterations.

Pose regression Feature extraction Pose refinement Overall

4.5ms 3ms 42ms ∼ 50ms

Tab. 8.4. Comparison between recent state-of-the-art direct camera pose regression methods and our results
without (Ours) and with pose refinement (Ours+Ref.). Following the state of the art, displayed is the
median rotation and translation error in meter and degrees evaluated on the 7-Scenes dataset.

Scene Chess Fire Heads Office Pumpkin Kitchen Stairs Average

DSAC++
RGB [24]

0.7◦, 0.02m 1.1◦, 0.03m 6.7◦, 0.12m 0.8◦, 0.03m 1.1◦, 0.05m 1.3◦, 0.05m 5.1◦, 0.29m 2.4◦, 0.08m

PoseNet
RGB [105]

4.5◦, 0.14m 11.8◦, 0.27m 12.1◦, 0.18m 5.7◦, 0.20m 4.8◦, 0.25m 5.5◦, 0.24m 10.6◦, 0.37m 7.9◦, 0.24m

MapNet [26] 4.2◦, 0.11m 11.7◦, 0.29m 13.1◦, 0.20m 6.4◦, 0.19m 5.8◦, 0.23m 5.8◦, 0.27m 12.4◦, 0.31m 8.5◦, 0.23m

Ours 4.9◦, 0.13m 11.0◦, 0.30m 14.5◦, 0.17m 6.7◦, 0.22m 6.7◦, 0.23m 5.9◦, 0.27m 13.5◦, 0.32m 9.0◦, 0.23m

Ours+Ref. 4.8◦, 0.12m 10.2◦, 0.29m 12.0◦, 0.15m 6.6◦, 0.21m 6.5◦, 0.22m 5.8◦, 0.26m 12.2◦, 0.30m 8.3◦, 0.22m

lo
g

q

MapNet [26] 4.3◦, 0.11m 12.1◦, 0.27m 12.2◦, 0.19m 6.4◦, 0.19m 5.1◦, 0.22m 5.3◦, 0.25m 11.3◦, 0.30m 8.1◦, 0.22m

Ours 5.0◦, 0.13m 11.8◦, 0.28m 14.1◦, 0.17cm 7.1◦, 0.20m 5.4◦, 0.22m 6.2◦, 0.26m 12.2◦, 0.29m 8.8◦, 0.22m

Ours+Ref. 4.8◦, 0.12m 11.6◦, 0.27m 12.4◦, 0.16m 6.8◦, 0.19m 5.2◦, 0.21m 6.0◦, 0.25m 8.4◦, 0.28m 7.9◦, 0.21m

8.5.5 Comparison to the State of the Art

As our main focus in this work is to investigate the effect of our proposed framework on direct
camera pose regression methods that rely on RGB information only, we show a comparison to
recent methods in this regard, namely PoseNet [105] and MapNet [26], which also forms our
baseline model. We choose PoseNet and MapNet versions solely relying on single RGB input
image. In comparison to the original PoseNet [107], [105] uses a more sophisticated loss
function, which incorporates homoscedastic uncertainty and if available refines the trained
network using a geometric re-projection loss function to further improve the regressed camera
poses. However, due to our restriction to RGB methods we report the results of the method
withour said geometric loss function. The results can be seen in Table 8.4. We evaluate both
models trained to predict quaternions as well as the logarithm of quaternions to show the
effectiveness of our method regardless of the baseline representation used. In comparison to
both [105] and [26], we found overall improvements in pose accuracy using the proposed
refinement, where the effect of our method seems to be most profound on scenes for which
only a small number of training images is available, such as Heads and Stairs. In addition we
include a recent scene coordinate regression method, DSAC++ [24], that given a constant
depth prior, can be trained solely relying on RGB information as well. As can be seen, the
regressed 3D information, and following pose refinement, greatly improve the accuracy of
the predicted camera poses, which leads to the method outperforming direct camera pose
regression methods and ours. This, however, comes at a significant drop in computational
time. Lastly, although we focus on RGB only solutions in this paper, it should be mentioned
that our core regression method could be easily extended to include further information, like
relative pose information or geometric constraints as in [26].

86 Chapter 8 Learning Pose Refinement



8.6 Disscusion and Conclusion

In conclusion, we have presented a novel approach for camera re-localization applications
solely relying on RGB information. Building on top of direct camera pose regression methods,
we use the regressed camera poses and features extracted from the input image to train a
discriminator network that tries to distinguish between generated and ground truth poses,
and thus implicitly tries to learn the geometric connection between RGB image and the
corresponding camera pose. We have analyzed each component of our framework to evaluate
this assumption and were able to achieve promising results. Further, we proposed a novel
RGB-based pose refinement, where we use the trained discriminator network to update
and optimize the initially regressed poses, showing that the network can actually learn a
meaningful representation of the camera poses and image space, and in turn can use this
information to further improve localization accuracy.

Although our method obtained promising results, its accuracy in comparison to structure-
based methods still remains significant. However, we believe that this gap is mostly due to
the general problems direct regression methods still suffer from. First of all acquiring large
datasets to train deep learning models for the task of camera localization still remains a
challenging task. Most datasets currently rely on structure from motion or SLAM frameworks
and use the computed camera poses as ground truth. However, this ground truth has its own
associated error depending on the method and environment, a topic recently addressed in
[242] as well. As a result most datasets are first of all not sufficiently accurate in terms of
ground truth and secondly contain few training images, at most a couple of thousands, in
comparison to large scale datasets like ImageNet [184], with millions of images, obtained for
classification tasks.

Naturally as a result direct regression methods tend to overfit to the training set or show
little generalization capabilities when given a query image far from the training set’s camera
trajectories [193]. In turn, we believe that addressing these issues will significantly improve
our method’s performance and leave this as a future task.

A second aspect, that we would like to analyze within the scope of this thesis, is how direct
regression methods perform within highly ambiguous environments. As addressed in Chapter
6, outliers or erroneous predictions can highly impact the performance of a model. Erroneous
predictions can occur through the uncertainty of a model itself as well as due to noisy or
ambiguous input, arising from repetitive structures and symmetries in the scene, and can be a
result of wrong matches or image similarities between viewpoints.
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9Uncertainty-Aware Multimodal
Pose Regression

9.1 Motivation

Direct camera pose regression methods have shown low cost and computationally fast so-
lutions to solving the camera pose estimation problem solely relying on RGB information.
However, due to the lack of 3D information, these methods still suffer in generalization
capabilities. In addition, similar to their feature-based counterparts, repetitive structures and
symmetries arising in the environments, can easily degrade their performance. Visually similar
images, even though captured from highly different viewpoints, as depicted in Figure 9.1, are
problematic to effectively be localized.

In these cases, a single solution, as most current methods predict, might not exist. If not
able to reliably predict a pose, a measure of uncertainty in its prediction provides necessary
information to prevent system failure or at least provide feedback to the system’s user. In the
next sections, we therefore address the task of uncertainty estimation in direct camera pose
regression methods.

Additionally, ambiguities arising in the scene, have to be handled accordingly. If not able to
predict a single correct solution, the range of correct solutions can be provided to identify and
resolve ambiguous queries.

For this aim, we propose a framework that is able to predict an uncertainty estimate for a
pose prediction by predicting a continuous distribution over the pose space such that the
distributions variance is correlated to the pose’s uncertainty. Further, we propose to predict a

Query Image

3D Scene / Modes     Ambiguous Views Camera Pose Hypotheses

Rotations

Translations

seen during training testingunseen during training

Fig. 9.1. In a highly ambiguous environment, similar looking views can easily confuse current camera pose
regression models and lead to incorrect localization results. Instead, given a query RGB image, our
aim is to predict the possible modes as well as the associated uncertainties, which we model by the
parameters of Bingham and Gaussian mixture models.
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range of solutions by incorporating a multiple hypotheses training scheme into our framework
that is able to capture ambiguous views and their corresponding camera poses.

A significant amount of the work presented here is part of the following publication

’6D Camera Relocalization in Ambiguous Scenes via Continuous Multimodal Inference’ by Mai
Bui, Tolga Birdal, Haowen Deng, Shadi Albarqouni, Leonidas Guibas, Slobodan Ilic and Nassir

Navab, 2020 [34].

9.2 Related Work

First, we briefly describe the related work with regard to our method. Object pose estimation
is a highly related field with similar issues arising in this context as well. In this application,
object symmetries have shown to be a main source of ambiguity. Therefore we now highlight
recent research in this area, before moving to uncertainty estimation methods as well as
multiple hypotheses solutions.

Handling Object Symmetries There has been a significant amount of research addressing
object symmetries with respect to object pose estimation and how to handle ambiguous views
arising due to these symmetries [51, 104, 169, 173].
Most methods aim at restricting the pose space for symmetric objects, such that ambiguous
labels are avoided during training [104, 236]. BB8 by Rad and Lepetit [173] for example
restricts the pose space seen during training according to the angle of symmetry of the
corresponding object and further includes a classification step to handle borderline cases.
On the other hand, Corona et al. [51] specifically include multiple correct labels for symmetric
objects in their loss function to handle ambiguities and further classify the degree of symmetry
for a given object, which is inferred from rendered depth images of the object. These methods
mainly rely on prior information in the form of a CAD model, which especially for many
industrial applications is a valid approach. In the context of camera localization, such prior
knowledge of the scene is normally not available and would be highly problematic to acquire.
Therefore, it is not straightforward to apply or adapt such methods to the task addressed in
this thesis.

Multiple Hypotheses Estimation On the other hand, instead of inferring a single pose
estimate, allowing a range of possible solutions has recently become a promising research
direction. Rupprecht et al. [182] show a general framework that extends a simple regression
model to output multiple hypotheses that correspond to a Voronoi tessellation. The method
is easily applicable to a range of applications such as human pose estimation or instance
segmentation.

Further, Manhardt et al. [135] show that multiple hypotheses prediction can be used as an
indication of possible ambiguous cases in object pose estimation. By obtaining multiple object
orientation hypotheses and fitting a Bingham distribution to these samples, [135] are using
the predicted distribution and its variance to identify ambiguous views and symmetries of the
object.
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On top of multiple hypothesis prediction, Makansi et al. [133] fit a mixture model to the
resulting hypothesis, obtaining a predicted, but not directly learned, mixture distribution and
apply their method to movement prediction in autonomous driving scenarios. Neither of the
above methods, however, apply their model to the task at hand, camera localization.

Uncertainty Estimation Typical convolutional neural networks [87, 202] are over-confident
in their predictions [83, 249] and tend to approximate the conditional averages of the target
data [15]. These undesired properties render the immediate outputs of those networks
unsuitable for the quantification of uncertainty. This has fostered numerous works as we will
summarize in the following. Mixture Density Networks (MDN) [15], introduced by Christopher
Bishop, is the pioneer to model the conditional distribution by predicting the parameters of
a Gaussian mixture model. It has been successfully applied in a wide range of applications
such as object detection and localization [153], classification of image parts [120] as well as
speech synthesis [240].

Yet, it is repeatedly reported that optimizing for general mixture models suffers from mode
collapse and numerical instabilities with increasing dimensionality [53, 133]. These issues
can to a certain extent be addressed by using Dropout [68] as a Bayesian approximation, but
even for moderate dimensions these methods still face difficulties in capturing multiple modes
and, due to the sampling procedure applied, have a higher computational complexity.

The problem of the model’s uncertainty in the context of predicting camera poses has less
often been addressed [38, 50, 106]. Initial attempts to capture the uncertainty of camera
re-localization involved random forests [28]. Valentin et al. [220] stored components of
a Gaussian mixture model at the leaves of a scene coordinate regression forest [199]. The
modes are obtained via a mean shift procedure, and the covariance is explained by a 3D
Gaussian. A similar approach later considered the uncertainty in object coordinate labels [22].
It is a shortcoming of random forests that both of these approaches require hand crafted depth
features. Moreover, their uncertainty is on the correspondences and not on the final camera
pose. Thus a costly RANSAC [66] is required to propagate the uncertainty in the leaves to
the camera pose. In [106] the authors of the original PoseNet model extend their approach
as a Bayesian convolutional neural network and use dropout to compute an uncertainty
measure as the variance of the network’s prediction. This requires repeatedly evaluating
the network for one image to obtain a distribution over possible camera poses. As a result,
the method only provides an uncertainty measure for the final pose prediction, whereas we
aim at providing an uncertainty estimate for each sample pose as well. Similar, Huang et al.
[94] use Dropout to remove the influence of features or pixels belonging to dynamic objects,
such as pedestrians, that are not reliable to infer the cameras pose. Although the method
shows promising improvements, it does not capture the uncertainty of a camera pose estimate
either.

In contrast VidLoc [50] re-formulates the problem as Gaussian mixture regression and uses a
mixture density network [15] to additionally predict the model’s uncertainty as the variance
of the resulting mixture model. The authors of [50] do not address the well-known problem
of mode collapse, that mixture density networks suffer from. Further, a Gaussian distribution
is not well suited to model the orientation of a camera when represented as a quaternion.
Instead we propose to model the orientation of a camera using the Bingham distribution,

9.2 Related Work 91



(a) λ1 = −3, λ2 = −3 (b) λ1 = −4, λ2 = −30 (c) λ1 = −40, λ2 = −30

Fig. 9.2. Example 2D visualizations of Bingham distributions for varying concentration parameters λ.

whose qualities perfectly fit to model the properties of quaternions. Therefore, we first start
with describing the properties and qualities of the Bingham distribution in detail.

9.3 The Bingham Distribution

The Bingham distribution [13] is derived from a zero-mean Gaussian conditioned to lie on the
unit sphere Sd−1. Its probability density function is defined as B : Sd−1 → R:

B(x; Λ,V) = 1
F

exp(xTVΛVTx) (9.1)

= 1
F

exp
(∑d

i=1
λi(vTi x)2). (9.2)

In this equation V ∈ Rd×d is an orthogonal matrix (VVT = VTV = Id×d) describing the
orientation and Λ ∈ Rd×d is called the concentration matrix with 0 ≥ λ1 ≥ · · · ≥ λd−1 with

Λ =



0,

λ1

λ2

. . .

λd−1


d×d

. (9.3)

For illustration of the distribution example 2D visualizations of a Bingham distribution in S2

for varying concentration matrices can be seen in Figure 9.2, which visualized a mapping of
the probability density to the unit sphere. The concentration matrix indicates the variance
of the Bingham distribution, where high negative values correspond to less variance of the
distribution. In our work, we use the concentration values to derive a measure of uncertainty
in a neural network’s prediction.

It can be shown that adding a multiple of the identity matrix Id×d to V does not change the
distribution [13]. Moreover, it is possible to swap the columns of Λ without changing the
distribution as long as the same permutation is applied to V. therefore, we can build V in a

92 Chapter 9 Uncertainty-Aware Multimodal Pose Regression



sorted fashion and conveniently force the first entry of Λ to be zero. This allows us to obtain
the mode very easily by taking the first column of V.

F in 9.1 denotes the the normalization constant dependent only on Λ and is of the form:

F , |Sd−1| · 1F1

(1
2 ,
d

2 ,Λ
)
, (9.4)

where |Sd−1| is the surface area of the d-sphere and 1F1 is a confluent hypergeometric function
of matrix argument [88, 115]. The computation of the normalization constant is complex and
computationally expensive, however it can be simplified to be independent of V. Being only a
function of Λ, in practice, we can approximate F by using a pre-computed look-up table and
interpolation. Likewise, to enable backpropagation through a neural network, the look-up
table can in turn be used to approximate the gradients of F with respect to Λ [113, 116].

Relationship to quaternions. The Bingham distribution is an antipodally symmetric proba-
bility distribution. Due to this property it is well suited to explain the topology of quaternions,
i. e., B(x; ·) = B(−x; ·) holds for all x ∈ Sd−1. Bingham distributions have been extensively
used to represent distributions on quaternions [76, 77, 115]; however, to the best of our
knowledge, never for the problem we consider here.

Constructing a Bingham distribution on a given mode Given a quaternion q, there are
multiple ways to construct a corresponding Bingham distribution, in particular in constructing
V. In this thesis, we evaluate three methods, showing different properties in terms of
parameters and their use with neural networks. First, we follow Birdal et al. [14]. Since
creating a Bingham distribution on any given mode q ∈ R4 requires finding a set of vectors
orthonormal to q, we use the parallelizability (d = 1, 2, 4 or 8) of unit quaternions to define
the orthonormal basis V : R4 7→ R4×4 as follows:

V(q) ,



q1 −q2 −q3 q4

q2 q1 q4 q3

q3 −q4 q1 −q2

q4 q3 −q2 −q1


. (9.5)

This results in a matrix composed of four unit vectors: the mode and its orthonormals. The
authors show that it is easy to verify that the matrix valued function V(q) is orthonormal
for every q ∈ R4. V(q) further gives a convenient way to represent quaternions as matrices
paving the way to linear operations, such as quaternion multiplication.

Alternatively, Gram-Schmidt can be used to compute an orthonormal matrix V for a given
matrix M ∈ Rd×d, where the column vectors vi of V are computed from the column vectors
mi as follows

v̂i = mi −
i−1∑
k=1
〈vk,mi〉 · vk ,where vi = v̂i

‖v̂i‖
. (9.6)
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In addition we propose the following procedure using the Cayley transform, which describes
the mapping from skew-symmetric matrices to special orthogonal matrices. Given a vector q
(in this case not necessarily with unit norm), we compute V as

V = (I4×4 − S)−1(I4×4 + S), (9.7)

where I4×4 is the identity matrix and

S(q) ,



0 −q1 q4 q3

q1 0 q3 q2

−q4 −q3 0 −q1

q3 q2 q1 0


. (9.8)

a skew-symmetric matrix of q. As S is a skew-symmetric matrix, I4×4 − S is invertible and the
proposed mapping results in a orthogonal matrix V with det(V) = 1.

Relationship to other representations Note that geometric [7] or measure theoretic [65],
there are multitudes of ways of defining probability distributions on the Lie group of 6D rigid
transformations. A naive choice would be to define Gaussian distribution on the Rodrigues
vector (or exponential coordinates) [154] where the geodesics are straight lines [150].
However, as our purpose is direct regression, in this work we favor quaternions as continuous
and minimally redundant parameterizations without singularities [80] and use the Bingham
distribution that is well suited to their topology. We handle the redundancy q ≡ −q by
mapping all the rotations to the northern hemisphere.

9.4 Continuous Multimodal Inference

We now describe our model for uncertainty prediction following [73, 170]. We consider the
situation where we observe an input image X ∈ RW×H×3, of width W and height H, and
assume the availability of a predictor function µΓ(X) : RW×H×3 7→ R4 parameterized by Γ.

The unimodal case We momentarily assume that µΓ(·) can yield the correct values of the
absolute camera rotation q ∈ R4 with respect to a common origin, admitting a non-ambiguous
prediction, hence a posterior of single mode. We use the predicted rotation to set the most
likely value, the mode, of a Bingham distribution:

pΓ(q |X; Λ) = 1
F

exp
(
q>VµΛV>µ q

)
, (9.9)

and let q differ from this value up to the extent determined by Λ = {λi}. For the sake of
brevity we use Vµ ≡ V(µΓ(X)), the orthonormal basis aligned with the predicted quaternion
µΓ(X) and as defined in 9.5.

While for certain applications, fixing Λ can work, in order to capture the variation in the
input, it is recommended to adapt Λ [170]. Thus, we introduce it among the unknowns. To
this end we define the function ΛΓ(X) or in short ΛΓ for computing the concentration values
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depending on the current image and the parameters Γ. Our final model for the unimodal case
reads:

pΓ(q |X) =
exp

(
q>V(µ(X))ΛΓ(X)V(µ(X))>q

)
F (ΛΓ(X)) (9.10)

=
exp

(
q>VµΛΓV>µ q

)
F (ΛΓ) . (9.11)

The second row follows from the short-hand notations and is included for clarity. Given a
collection of observations i.e., images X = {Xi} and associated rotations Q = {qi}, the
parameters of µΓ(X) and ΛΓ(X) can be obtained simply by maximizing the log-likelihood:

Γ? = arg max
Γ

log Lu(Γ|X ,Q) (9.12)

log Lu(Γ|X ,Q) =
N∑
i=1

q>i VµΛΓV>µqi −
N∑
i=1

logF
(
ΛΓ
)
.

If ΛΓ were to be fixed as in [170], the term on the right would have no effect and minimizing
that loss would correspond to optimizing the Bingham log-likelihood. To ensure 0 ≥ λ1 ≥
· · · ≥ λd−1, we predict λ1 and offsets e2, ..., ed−1 for the remaining concentration parameters,
such that

λ2 = λ1 − e2, ..., λd−1 = λd−2 − ed−1 (9.13)

holds true.

Extension to finite Bingham Mixture Models (BMM) Ambiguities present in the data re-
quires us to take into account the multimodal nature of the posterior. To achieve this, we
now extend the aforementioned model to Bingham Mixture Models [177]. For the finite case,
we use K different components associated with K mixture weights πj(X,Γ) for j = 1, ...,K.
With each component being a Bingham distribution, we can describe the density function as

pΓ(qi |Xi) =
K∑
j=1

πj(Xi,Γ)pΓj(qi |Xi), (9.14)

where pΓj(qi |Xi) are the K component distributions and πj(Xi,Γ) the mixture weights s.t.∑
j πj(Xi,Γ) = 1. The model can again be trained by maximizing the log-likelihood, but this

time of the mixture model [123, 230]:

Γ? = arg max
Γ

log Lm(Γ|X ,Q) (9.15)

log Lm(Γ|X ,Q) =
N∑
i=1

log
K∑
j=1

πj(Xi,Γ)pΓj(qi |Xi).

Deeply modeling µ(·) and Λ(·) Following up on the recent advances, we jointly model µ(·)
and Λ(·) by a deep residual network [87]. Γ denotes the entirety of the trainable parameters.
On the output we have eight quantities per Bingham density: four for the mode quaternion,
three for Λ and one for the weight πj(·). In total, as we have K mixture components, resulting
in K × 8 output entities. While a typical way to train our network is through simultaneously
regressing the output variables, this is known to severely harm the accuracy [182]. Instead
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we exploit modern approaches to training in presence of ambiguities as we detail in what
follows.

MHP training scheme Due to the increased dimensionality, in practice training our variational
network in an unconstrained manner is likely to suffer from mode collapse, where all the
heads concentrate around the same prediction. To avoid this and obtain a diverse set of modes,
instead of training all branches equally by maximizing the log-likelihood of the mixture
model, we follow the multi hypotheses schemes of [133, 182] and train our model using a
Winner-Takes-All loss function, for each branch maximizing the log-likelihood of a unimodal
distribution,

Γ? = arg max
Γ

N∑
i=1

K∑
j=1

wij logLu(Γ|Xi,qi)), (9.16)

according to the associated weights wij for each of the k hypotheses. In this work, we compute
the weights wij during training following RWTA [182] where

wij =

1− ε, if j = arg mink d(qi, q̂ik)
ε

K−1 , otherwise
, (9.17)

for a given distance function d(·). Most often d(·) corresponds to the l1 or l2 norm of difference
between the input vectors, given as

d(q, q̂) = ‖q − q̂‖∗. (9.18)

However, given that we are aiming to optimize the log likelihood of our model, it would most
certainly be possible to choose the best branch on different measures, such as its loglikelihood,
such that

d(q, q̂) = −log pΓ(q |X). (9.19)

Note that WTA [85] would amount to updating only the branch of the best hypothesis and
EWTA [133] the top k branches closest to the ground truth. However, for our problem, we
found RWTA to be a more reliable machinery.

Finally, we compare between two models. First, we train the our BMM model as described
in 9.14. However to stabilize training and avoid mode collapse, we add our MHP training
scheme and corresponding loss. Note that, in this case, the mixture coefficient πj(·) are trained
implicitly by the BMM component. This results in the following loss functions used to train
our neural network

Γ? = arg max
Γ

( log Lm(Γ|X ,Q) +w logLu(Γ|X ,Q)), (9.20)

(9.21)

such that the mixture coefficients are trained by our Bingham mixture model loss. In addition,
for stability and diverse predictions, the branches are updated by our unimodal loss according
to weights w = {wij}, which define the best branches during training.
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Second, to obtain the desired continuous distribution, we explicitly train the weights of our
Bingham mixture model using the following loss function:

Lπ(Γ|X ,Q) =
N∑
i=1

K∑
j=1

σ(π̂j(Xi,Γ), yij), (9.22)

where σ(·) is the cross-entropy, π̂(·) the predicted weight of the neural network and yij the
associated label of the mixture model component given as

yij =

1, if j = arg mink d(qi, q̂ik)

0, otherwise
, (9.23)

where q̂ik is the predicted mode of a single Bingham distribution. Our final loss, therefore,
consists of the weighted likelihood for a unimodal distribution of each branch and the loss of
our mixture weights, Lπ(Γ|X ,Q):

Γ? = arg min
Γ

(Lπ(Γ|X ,Q)−w logLu(Γ|X ,Q))). (9.24)

(9.25)

Inference Rather than reporting the conditional average which can result in label blur, we
propose to obtain a single best estimate according to the weighted mode, where we choose
the best mixture component according to its weight and pick the mode as a final prediction.

Definition of Uncertainty The entropy of a Bingham distribution is defined as

HB = logF −Λ∇F (Λ)
F

. (9.26)

In the following we use the entropy of a Bingham distribution as a measure of uncertainty of
a model in its prediction.

9.5 Evaluation Tools

For better analysis of our models, we specifically choose tools to inspect predicted Bingham
distributions as well as uncertainty estimation. Throughout the next sections, we will evaluate
our models using these tools and therefore briefly describe them here.

Sparsification Plot To analyze the performance of our models in terms of uncertainty estima-
tion, we use what we call a sparsification plot. For this aim, we gradually remove the most
uncertain samples, based for example on the predicted entropy and plot the mean rotation
error of the remaining samples. This results in mean rotation errors plotted against the ratio
of remaining samples used for evaluation. An example of such plot can be found in Figure
9.4.

Bingham Distribution Plots For each possible quaternion on the unit sphere, we evaluate the
probability density of the sample using the predicted distribution parameters, Λ and V, of our
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(a) Object ID 01 (b) Object ID 02 (c) Object ID 03 (d) Object ID 15 (e) Object ID 30

Fig. 9.3. Subset of the objects from the TLess dataset used for evaluating our model on orientation estimation.

model. We marginalize the probability density over the angular component of the quaternion
for each axis on the unit sphere. The values are then color coded, resulting in a distribution
plot of the predicted Bingham distribution. Further, the resulting plot gives an intuition about
the variance of the distribution. An example can be found in Figure 9.5.

9.6 Orientation Estimation

Before extending our model to incorporate translations and predict the full 6 DoF of a camera
pose, we evaluate the proposed model on orientation estimation in ambiguous settings.

Dataset For this aim we use the T-Less [92] dataset, which was created for the purpose of
evaluating object pose estimation methods. The dataset contains thirty industrial objects, and
poses very challenging scenarios as the objects are texture-less, often symmetric and can be
contained as parts of each other. However, these challenges make the dataset a perfect fit to
evaluate our method, which is designed to handle ambiguities and object symmetries.

The dataset provides training images for each object, containing rendered views of the objects
on black background sampled from a sphere with discrete viewpoints. The sampling results
in around 1300 images for each object. Images are provided for three different sensors, a
Primesense Carmine, Microsoft Kinect v2 and a Canon IXUS, out of which we chose the
Microsoft Kinect version. We evaluate our method on five objects of the dataset, which can be
seen in Figure 9.3, train object-specific models on a subset of the training images and use the
remaining images (around 17%) for evaluation.

Evaluation on Uncertainty Estimation First, we evaluate our method on uncertainty es-
timation and train a neural network to predict a unimodal Bingham distribution for each
sample. Figure 9.4 depicts the results of our analysis. Given highly ambiguous views from
rotational symmetries our model predicts Bingham distributions accordingly. Depending on
the level and axis of symmetry, this results in a high variance of the distribution. In case of
non-ambiguous views that can be resolved by structural details of the object (last view in
Figure 9.4), the orientation can be predicted with high certainty. Further, we analyze the
correlation between rotation error and uncertainty with a sparsification plot, see Figure 9.5,
showing high correlation between rotation error and uncertainty.
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Query Image

Predicted Bingham 

Distribution

Fig. 9.4. Predicted Bingham distributions of our unimodal modal. The resulting predictions correlate with the level
of uncertainty or symmetry of the object. Symmetries and ambiguous views result in high uncertainty in
the corresponding rotation whereas structural details can lead to non-ambiguous views that the model
can resolve and predict with high certainty.
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(b) Single versus Mutimodal

Fig. 9.5. a) Uncertainty analysis on the five objects of the TLess dataset. By gradually removing samples with high
entropy, a corresponding decrease in mean angular error of the predictions can be observed. b) Analysis
of single versus multimodal model predictions, showing the ratio of correctly estimated rotations (y-axis)
corresponding to various thresholds in degrees (x-axis).

Multimodal Inference A unimodal model can estimate uncertainties but is not able to han-
dle symmetric objects and resulting ambiguous views properly. We therefore introduce a
multimodal mixture model trained with multiple hypothesis prediction for stable training
and without succumbing to mode collapse. Figure 9.5 shows the ratio of samples correctly
predicted by our models for various thresholds used to define when a sample is correctly
predicted. We compare between unimodal predictions and explicitly learning the mixture
coefficient (see Equation 9.24).

9.7 Camera Pose Estimation

As a camera’s pose is defined by its orientation as well as its position, we predict the rotation by
our proposed Bingham Model and now describe in more detail how to model translations.

Incorporating translations Predicting entities that are non-Euclidean easily generalizes to
the prediction of Euclidean quantities such as translations e.g. t ∈ R3. Similar to the
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Fig. 9.6. Forward pass of our network. For an input RGB image we predict K camera pose hypotheses as well
as Bingham concentration parameters, Gaussian variances and component weights to obtain a mixture
model.

previously introduced model, we describe translations by a multivariate Gaussian distribution
and model them using mixture density networks [15]. In more detail, for a sample input
image X ∈ RW×H×3, we obtain a predicted translation t̂ ∈ Rc=3 from a neural network
with parameters Γ. This prediction is set to the most likely value of a multivariate Gaussian
distribution with covariance matrix

Σ =


σ2

1

. . .

σ2
c


c×c

, (9.27)

where σ2 is predicted by our model. As a result our model for a unimodal Gaussian is defined
as:

pΓ(t |X) =
exp(− 1

2 (t− t̂)>Σ−1(t− t̂))
(2π)c/2|Σ|1/2

, (9.28)

where c = 3 and both t̂ as well as Σ are trained by maximizing its log-likelihood.

Similar to forming a Bingham Mixture Model, we can equally compute a Gaussian Mixture
Model with K components and corresponding weights π(X,Γ), such that

∑K
j=1 πj(X,Γ) = 1,

to obtain a multi-modal solution. Again both t̂ and Σ as well as π(X,Γ) are learned by the
network and trained by maximizing the log-likelihood of the mixture model. Note that, in this
case, the components of t̂ are assumed to be statistically independent within each distribution
component. However, it has been shown that any density function can be approximated up to
a certain error by a multivariate Gaussian mixture model with underlying kernel function as
defined in Equation 9.28 [15, 143].

The entropy of a Gaussian Mixture Model is defined as

HG = c

2 + c

2 log(2π) + 1
2 log(|Σ|). (9.29)

To obtain a measure of uncertainty of our model, for a given image we first normalize the
entropy values over all pose hypotheses individually for both rotation and translation estimates,
and finally obtain a measure of (un)certainty as the sum of both rotational and translational
normalized entropy.
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Fig. 9.7. Ground truth training (blue) and test (green) camera trajectories of our real ambiguous scenes and
example RGB images.

On the output we now have fourteen quantities per distribution density: seven for the Bingham
and additional three for translation as well as three for variances of the multivariate Gaussian.
In total as we have K mixture components resulting in K×14 output entities. Our architecture
is shown in Figure 9.6. Once again, during training we apply the MHP scheme explained
above to avoid mode collapse and diversify the predictions. In practice, we first train the
network to predict the translation and its variance. Then, intuitively, recovering the associated
rotation should be an easier task, after which we fine-tune the network on all components of
the distribution.

Network and training details We resize the input images to a height of 256 pixels and use
random crops of size 224× 224 for training. For testing we use the central crop of the image.
As described in the main paper we use a ResNet-34 [87] as our backbone network, which was
pre-trained on ImageNet [184], and remove the final classification layers. Fully-connected
layers are then appended, where we outputK camera pose hypotheses, q and t, corresponding
distribution parameters, Λ and Σ, as well as shared mixture weights π(X,Γ). In case of our
single component and Bingham-MDN models we use a softmax activation function, such that∑K
j=1 πj(X,Γ) = 1 holds true. In our MHP version, we first apply a ReLU activation function,

that, during training, is passed to a cross-entropy loss function. Once trained, we again apply
a softmax on the final weights to form a valid mixture model. If not stated otherwise we use
K = 50 hypotheses for our multimodal models as well as the baselines.

9.7.1 Datasets

We evaluate on the standard datasets of 7-Scenes [199] and Cambridge Landmarks [107],
which are widely used to analyze image-based localization methods. As introduced in the
previous parts of this thesis the 7-Scenes dataset from Microsoft contains seven indoor scenes.
The Cambridge Landmarks dataset on the other hand contains five outdoor scenes located
around the Cambridge Univerity. This dataset provides RGB images for training as well as test
data, captured using a mobile phone and ground truth camera pose computed using structure
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Tab. 9.1. Spatial extent of our newly created ambiguous scenes dataset in meter.

Blue Chairs Meeting Table Seminar Staircase Staircase Ext.

5× 4.6× 1.3 4.3× 5.8× 1.4 5.3× 7.8× 2.6 4.9× 4.4× 5.1 5.6× 5.2× 16.6

from motion. In addition to these two datasets, we created synthetic as well as real datasets,
that are specifically designed to contain repetitive structures and allow us to assess the real
benefits of our approach. For synthetic data we render models from 3DWarehouse1 and create
camera trajectories, e.g. a circular movement around the object, such that ambiguous views
are ensured to be included in our dataset. Specifically we use a dining table and a round
table model with discrete modes of ambiguities. In addition, we create highly ambiguous
real scenes using Google Tango and the graph-based SLAM approach RTAB-Map [117]. We
acquire RGB and depth images as well as distinct ground truth camera trajectories for training
and testing. We also reconstruct those scenes. However, note that only the RGB images and
corresponding camera poses are required to train our model and the reconstructions are used
for visualization only. Figure 9.7 shows ground truth training and testing camera trajectories,
plotted with Open3D [245], as well as example batch images we acquired for our ambiguous
scene dataset. In total our training and test sets consist of 2414 and 1326 frames, respectively.
The spatial extent of our scenes can be found in Table 9.1.

9.7.2 Baselines

We compare our approach to current state-of-the-art direct camera pose regression methods,
PoseNet [105] and MapNet [26], that output a single pose prediction. More importantly, we
assess our performance against two state-of-the-art approaches, namely Bayesian PoseNet
[106] and VidLoc [50], that are most related to our work and predict a distribution over the
pose space by using dropout and mixture density networks, respectively. We further include
the unimodal predictions as well as BMMs trained using mixture density networks [15, 73]
as baselines. We coin the latter Bingham-MDN or in short BMDN. In addition we compare
between explicitly learning the mixture coefficient, Ours-RWTA (see Equation 9.24), and
implicit learning, Ours-BMDN+RWTA (see Equation 9.20). For better understanding, we
summarize the different versions of our models used in the latter evaluations in Table 9.2, to
show the individual aspects of each model.

9.7.3 Experiments and Results

To evaluate our method we consider two cases: (1) camera relocalization in non-ambiguous
scenes, where our aim is to not only predict the camera pose, but the posterior of both rotation
and translation that can be used to associate each pose with a measure of uncertainty; (2)
we create a highly ambiguous environment, where similar looking images are captured from
very different viewpoints. We show the problems current regression methods suffer from in
handling such scenarios and in contrast show the merit of our proposed method.

1https://3dwarehouse.sketchup.com/
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Tab. 9.2. Summary of the provided information by the baseline and our methods. Direct regression, such as
PoseNet, does not provide uncertainty information or multiple hypotheses, whereas MC-Dropout only
includes per pose uncertainty. Except for our unimodal model, our model provides multiple hypotheses
as well as per hypothesis uncertainty estimation.

PoseNet
[107]

Bayesian
PoseNet [106]

Unimodal Bingham-MDN Ours-RWTA Ours-MBDN-RWTA

Uncertainty - (
√

)
√ √ √ √

Multiple Hypotheses -
√

-
√ √ √

Tab. 9.3. Evaluation in non-ambiguous scenes, displayed is the median rotation and translation error on the
7-Scenes dataset.

Dataset 7-Scenes

[◦ / m] Chess Fire Heads Office Pumpkin Kitchen Stairs

PoseNet [105] 4.48 / 0.13 11.3 / 0.27 13.0 / 0.17 5.55 / 0.19 4.75 / 0.26 5.35 / 0.23 12.4 / 0.35

MapNet [26] 3.25 / 0.08 11.69 / 0.27 13.2 / 0.18 5.15 / 0.17 4.02 / 0.22 4.93 / 0.23 12.08 / 0.3

Bayes-PoseNet [106] 7.24 / 0.37 13.7 / 0.43 12.0 / 0.31 8.04 / 0.48 7.08 / 0.61 7.54 / 0.58 13.1/ 0.48-

VidLoc [50] - / 0.18 - / 0.26 - / 0.14 - / 0.26 - / 0.36 - / 0.31 - / 0.26

Ours-Unimodal 4.97 / 0.1 12.87 / 0.27 14.05 / 0.12 7.52 / 0.2 7.11 / 0.23 8.25 / 0.19 13.1 / 0.28

Ours-Bingham-MDN 4.35 / 0.1 11.86 / 0.28 12.76 / 0.12 6.55 / 0.19 6.9 / 0.22 8.08 / 0.21 9.98 / 0.31

Error Metrics Note that, under ambiguities a best mode is unlikely to exist. In those cases,
as long as we can generate a hypothesis that is close to the ground truth, our network is
considered successful. For this reason, in addition to the weighted mode, which we pick
according to the predicted mixture coefficients, we will also speak of the so called Oracle
Error, assuming an oracle that is able to choose the best of all predictions: the one closest
to the ground truth. In addition, we report the Self-EMD (SEMD) [133], the earth movers
distance [180] of turning a multi-modal distribution into a unimodal one. With this measure
we can evaluate the diversity of predictions, where the unimodal distribution is chosen as the
predicted mode of the corresponding method. Note that this measure by itself does not give
any indication about the accuracy of the prediction.

Tab. 9.4. Evaluation in non-ambiguous scenes, displayed is the median rotation and translation error on the
Cambridge Landmarks dataset, where numbers for MapNet are taken from [193].

Dataset Cambridge Landmarks

[◦ / m] Kings
College

Old
Hospital

Shop
Facade

St. Marys
Church

Street

PoseNet [105] 1.04 / 0.88 3.29 / 3.2 3.78 / 0.88 3.32 / 1.57 25.5 / 20.3

MapNet [26] 1.89 / 1.07 3.91 / 1.94 4.22 / 1.49 4.53 / 2.0 / -

Bayes-PoseNet [106] 4.06 / 1.74 5.12 / 2.57 7.54 / 1.25 8.38 / 2.11 -

Ours-Unimodal 1.77 / 0.88 3.71 / 1.93 4.74 / 0.8 6.19 / 1.84 24.08 / 16.8

Ours-Bingham-MDN 2.08 / 0.83 3.64 / 2.16 4.93 / 0.92 6.03 / 1.37 36.88 / 9.69
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(b) Translation Uncertainty

Fig. 9.8. Uncertainty evaluation on the 7-Scenes and Cambridge Landmarks datasets, showing the correlation
between predicted uncertainty and pose error. Based on the entropy of our predicted distribution
uncertain samples are gradually removed. We observe that as we remove the uncertain samples the
overall error drops indicating a strong correlation between our predictions and the actual erroneous
estimations.

Evaluation in non-ambiguous scenes
We first evaluate our method on the publicly available 7-Scenes [199] and Cambridge Land-
marks [107] datasets. As most of the scenes contained in these datasets do not show highly
ambiguous environments, we consider them to be non-ambiguous, although, obviously we
can not guarantee that some ambiguous views can arise in these datasets as well, such as
in the Stairs scene of the 7-Scenes dataset. Both datasets have extensively been used to
evaluate camera pose estimation methods. Thus, we compare to current state-of-the-art
direct camera pose regression methods, PoseNet [105] and MapNet [26], that output a single
pose prediction. More importantly, we assess our performance against two state-of-the-art
approaches, namely BayesianPoseNet [106] and VidLoc [50], that are most related to our
work and predict a distribution over the pose space by using dropout and mixture density
networks, respectively. Following the state of the art, we report the median rotation and
translation errors, the results of which can be found in Tables 9.3 and 9.4. In comparison to
methods that output a single pose prediction, PoseNet [105] and MapNet [26], our methods
achieve similar results, whereas, especially in translation our method outperforms uncertainty
methods, namely BayesianPoseNet [106] and VidLoc [50], on most scenes.

Uncertainty evaluation One benefit of our method is that we can use the resulting variance
of the predicted distribution as a measure of uncertainty in our predictions. The resulting
correlation between pose error and uncertainty can be seen in Figure 9.8, where we gradually
remove the most uncertain predictions and plot the mean error for the remaining samples.
The strong inverse correlation between the actual errors versus our confidence shows that
whenever our algorithm labels a prediction as uncertain it is also likely to be a bad estimate.
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Fig. 9.9. Renderings of the top five camera pose hypotheses according to their uncertainty values for our Bingham-
MDN and MHP version, Ours-RWTA. Further we show the corresponding ground truth query images as
well as the intersection over union of the ground truth and predicted renderings.

It has been shown that current direct camera pose regression methods still have difficulties in
generalizing to views that differ significantly from the camera trajectories seen during training
[193]. In addition these methods face further problems when deployed in a highly ambiguous
environment. For this purpose, we analyze the performance of direct regression methods
when presented with ambiguous views. In this scenario even similar trajectories can confuse
the network and easily lead to wrong predictions, for which our method proposes a solution.

Evaluation in ambiguous scenes

We start with quantitative evaluations on our synthetic as well as real scenes before showing
qualitative results of our and the baseline methods.

Quantitative evaluations Due to the design of our synthetic table scenes, we know that there
are two or four possible modes for each image in dining and round table scenes respectively.
Hence, we analyze the mode predictions of our model by computing the accuracy of correctly
detected modes of the true posterior distribution. A mode is considered as found if there exists
one pose hypothesis that falls into a certain rotational and translational threshold of it. For a
threshold of 5◦ and 10% of the ground truth camera trajectory’s circle’s diameter in translation,
MC-Dropout obtains an accuracy of 50%, finding one mode for each image, whereas the
accuracy of Ours-RWTA on average achieves 96% on our dining table scene. We include
additional results on our second synthetically created scene, a round table. By construction of
this scene, we would expect four modes to exist and be found by our model. On average our
model shows a detection rate of 99.1%, in comparison to 24.8% of MC-Dropout. Furthermore,
we render the models from the predicted poses and compute the intersection over union (IoU)
with the ground truth renderings in Figure 9.9. Considering the hypothesis with the highest
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Tab. 9.5. Ratio of correct poses for several thresholds, evaluated on our ambiguous scenes dataset.

Threshold PoseNet
[107]

Unimodal Bingham-
MDN

MC-Dropout
[106]

Ours-RWTA MC-Dropout
Oracle

Ours-RWTA
Oracle

10◦ / 0.1m 0.19 0.29 0.24 0.39 0.35 0.40 0.58

Blue Chairs 15◦ / 0.2m 0.69 0.73 0.75 0.78 0.81 0.90 0.94

20◦ / 0.3m 0.90 0.86 0.80 0.88 0.82 0.95 1.00

10◦ / 0.1m 0.0 0.02 0.01 0.04 0.05 0.13 0.12

Meeting Table 15◦ / 0.2m 0.05 0.12 0.07 0.13 0.28 0.27 0.56

20◦ / 0.3m 0.10 0.19 0.10 0.22 0.39 0.32 0.78

10◦ / 0.1m 0.14 0.11 0.04 0.13 0.18 0.27 0.19

Staircase 15◦ / 0.2m 0.45 0.48 0.15 0.32 0.50 0.54 0.53

20◦ / 0.3m 0.60 0.62 0.25 0.49 0.68 0.70 0.74

10◦ / 0.1m 0.07 0.06 0.06 0.02 0.09 0.16 0.09

Staircase Extended 15◦ / 0.2m 0.31 0.26 0.21 0.14 0.39 0.45 0.40

20◦ / 0.3m 0.49 0.41 0.32 0.31 0.58 0.64 0.64

10◦ / 0.1m 0.37 0.11 0.06 0.18 0.35 0.46 0.36

Seminar Room 15◦ / 0.2m 0.81 0.36 0.23 0.57 0.83 0.85 0.83

20◦ / 0.3m 0.90 0.57 0.40 0.78 0.95 0.90 0.95

10◦ / 0.1m 0.15 0.12 0.08 0.15 0.20 0.28 0.27

Average 15◦ / 0.2m 0.46 0.39 0.28 0.39 0.56 0.60 0.65

20◦ / 0.3m 0.60 0.53 0.37 0.54 0.68 0.70 0.82

Tab. 9.6. Ratio of correctly detected modes for various translational thresholds. The threshold for rotation is set
to 15.0 ◦.

Threshold

Scene Method 0.1m 0.2m 0.3m 0.4m

Blue Chairs
MC-Dropout 0.11 0.15 0.16 0.16

Ours-RWTA 0.36 0.79 0.80 0.80

Meeting Table
MC-Dropout 0.04 0.07 0.09 0.11

Ours-RWTA 0.10 0.43 0.63 0.73

weight, on average our Bingham-MDN reaches 0.62, whereas our MHP distribution model,
Ours-RWTA, achieves an intersection over union of 0.88.

On our real scenes, we report the ratio of correct poses, where a pose is considered to be
correct if both the rotation and translation errors are below a pre-defined threshold. Table
9.5 shows the accuracy of our baseline methods in comparison to ours for various thresholds.
Especially on our meeting table scene, it can be seen that the performance of direct camera
pose regression methods that suffer from mode collapse significantly drops due to the presence
of ambiguities in the scene. As a result of our diverse mode predictions of Ours-RWTA,
which is indicated by the high Oracle accuracy, we are able to improve upon our baselines
predictions.
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Fig. 9.10. Change in uncertainty prediction in the presence of increasing image blur. For varying kernel sizes of
a Gaussian filter used to blur the input images, we compute the average uncertainty over all images
obtained from the predictions of our model. Reported here are the normalized values.

For our real scenes, we obtain a ground truth estimate by training an autoencoder on recon-
structing the input images and using the resulting feature descriptors to obtain the nearest
neighbor camera poses. Then we cluster the resulting camera poses using a Riemannian Mean
Shift algorithm [207] and use the centroids of the resulting clusters as "ground truth" modes.
We visually verify the results. Table 9.6 shows the percentage of correctly detected modes for
our method in comparison to MC-Dropout. The results support our qualitative observations
that MC-Dropout, suffers from mode collapse such that even with increasing threshold the
number of detected modes does not increase significantly.

Uncertainty evaluation Due to fast camera movements, motion blur easily arises in camera
localization applications and is one factor that can lead to poor localization performance.
As a first step in handling such problems, additional information in the form of uncertainty
predictions could aid in detecting such events. Therefore, to evaluate how our model performs
in the presence of noise, we use our single component model, i.e. K = 1, trained on the
original input images, and blur the test RGB images to evaluate the change in uncertainty
prediction of the model. Ideally, with increasing image blur, we would expect our model to be
less certain in its predictions. For this purpose, we apply a Gaussian filter to the input images,
with varying kernel sizes, and report the change in uncertainty prediction in Figure 9.10 on
the blurred images. We use the entropy over each image to obtain a measure of uncertainty
and compute the mean over our dataset images. For visualization, we show the normalized
values. An increase in uncertainty could be clearly observed with growing kernel size and thus
highly blurred images.

Qualitative evaluations Qualitative results of our proposed model on our synthetic dining
table dataset are shown in Figure 9.11 and 9.12. MC-Dropout as well as our finite mixture
model, Bingham-MDN, suffer from mode collapse. In comparison, the proposed MHP model is
able to capture plausible, but diverse, modes as well as associated uncertainties. In contrast
to other methods that obtain an uncertainty value for one prediction, we obtain uncertainty
values for each hypothesis. This way, we could easily remove non-meaningful predictions,
that for example can arise in the WTA and RWTA training schemes. Resulting predicted
Bingham distributions are further visualized in Figure 9.13. Furthermore, we render the
objects from the predicted camera poses of our models in Figure 9.9. There, we show the most
certain predictions sorted according to the entropy of the resulting Bingham and Gaussian
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Fig. 9.11. Qualitative results on our synthetic dining table dataset. Camera poses are colored according to their
uncertainty. Viewpoints are adjusted for best perception.

Fig. 9.12. Additional qualitative results of our synthetically created round table dataset. If available, camera poses
are colored by their uncertainty.

distributions. Figure 9.14 shows qualitative results on our ambiguous real scenes dataset.
Again, MC-Dropout and Bingham-MDN suffer from mode collapse. More importantly, these
methods are unable to predict reasonable poses given highly ambiguous query images. That
is most profound in our Meeting Table scene, where the predicted camera poses fall on the
opposite side of the ground truth one. Additionally we show a qualitative evaluation of our
predictions in our largest scene, Staircase Extended, in Figure 9.15.

Ablation Studies
To evaluate or method we conduct further ablative studies. We begin with analyzing different
variations on how to effectively optimize a multiple hypotheses network and evaluate recent
network architectures proposed in the literature as our backbone. We then extend our model
and evaluate our proposed implicit learning of mixture coefficients. Further we show the effect
of distance function in multiple hypothesis training to choose the best branches for learning
during training. Then, we compare various mathematical methods on how to construct the
Bingham distribution from a neural network’s prediction. Further we show the effect of
different rotation parameterizations when used in a mixture density network for all of our
and the baseline methods.
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Fig. 9.13. Bingham distributions plotted on the unit sphere. Single model predictions with low uncertainty, higher
uncertainty and the mixture model of Ours-RWTA evaluated on the Blue Chairs scene of our ambiguous
real scenes dataset.

Ours-RWTAMC-Dropout3D Scene (GT) Query Images (2D) Bingham-MDN GT-Symmetries

Fig. 9.14. Qualitative results in our ambiguous dataset. For better visualization, if available, camera poses have
been pruned by their uncertainty values.

Fig. 9.15. Qualitative results of our model on the ambiguous scenes dataset, Staircase Extended scene.
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Tab. 9.7. Comparison between different MHP variants, RWTA [182] and EWTA [133], and Bingham-MDN,
averaged over all scenes.

Threshold Bingham-MDN EWTA(k=50) EWTA (k=25) RWTA (k=1, used)

10◦ / 0.1m 0.08 0.12 0.18 0.20

15◦ / 0.2m 0.28 0.34 0.40 0.56

20◦ / 0.3m 0.37 0.47 0.51 0.68

Tab. 9.8. Averaged ratio of correct poses for different backbone networks over all scenes of our real ambiguous
scenes dataset.

Threshold PoseNet Unimodal Bingham-MDN MC-Dropout Ours-RWTA

10◦ / 0.1m 0.15 0.12 0.08 0.15 0.20

ResNet-34 15◦ / 0.2m 0.46 0.39 0.28 0.39 0.56

20◦ / 0.3m 0.60 0.53 0.37 0.54 0.68

10◦ / 0.1m 0.15 0.16 0.09 0.15 0.19

ResNet-18 15◦ / 0.2m 0.47 0.42 0.29 0.39 0.52

20◦ / 0.3m 0.60 0.54 0.39 0.54 0.66

10◦ / 0.1m 0.20 0.15 0.10 0.15 0.20

ResNet-50 15◦ / 0.2m 0.49 0.36 0.30 0.40 0.55

20◦ / 0.3m 0.62 0.53 0.38 0.53 0.69

10◦ / 0.1m 0.11 0.10 0.11 0.08 0.18

Inception-v3 15◦ / 0.2m 0.38 0.33 0.38 0.31 0.49

20◦ / 0.3m 0.55 0.53 0.52 0.49 0.63

Multiple hypothesis estimation Recently, [133] have proposed EWTA, an evolving version
of WTA, to alleviate the problems arising with the original MHP training schemes proposed
in [182]. Updating the top k hypotheses instead of only the best one, EWTA increases the
number of hypotheses that are actually used during training. This results in fewer wrong mode
predictions that do not match the actual distribution. However, in our case we have found
wrong predictions to have very high uncertainty so that, if desired, they can easily be filtered.
Nevertheless, we evaluated the different versions of MHP training schemes for our particular
application for which the results can be found in Table 9.7. As it is not straightforward how k

should be chosen, we 1) start with k = K, where K is the number of hypotheses and gradually
decrease k until k = 1 (as proposed in [133]) and 2) start with the best half hypotheses, i.e.
k = 0.5 ·K. We set K = 50 in our experiments. We have found this parameter to strongly
influence the accuracy of our model. Therefore, and since wrong predictions can be easily be
identified with our model, we chose to remain with the original version of RWTA to train our
models.

Backbone network To evaluate the effect of different network architectures on our model,
we change the backbone network of ours and the state-of-the-art baseline methods. Namely,
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Tab. 9.9. Inference time of our method, Ours-RWTA, with respect to the number of hypothesis.

PoseNet K = 1 K = 50 K = 200 K = 500

7.23ms 7.27ms 8.11ms 8.19ms 8.74ms
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Fig. 9.16. Influence of the number of hypotheses, i.e. parameter K, on the performance of our method, Ours-RWTA.
We present the ratio of correctly predicted poses under varying parameter values of K.

we compare between resnet variants ResNet-18, ResNet-34 and ResNet-50 and Inception-v3.
Most recent state-of-the-art image based localization methods [6, 26, 165] use a version of
ResNet. All networks remain initialized from a on ImageNet pre-trained model. We report our
findings in Table 9.8. Naturally all methods are, to some extent, dependant on the features
that serve as input to the final pose regression layers. However, it seems MC-Dropout and
Ours-RWTA are less affected by the change in feature representation resulting from different
network architectures.

Number of Hypotheses and Computational Times Incorporating our method into an exist-
ing regression model, simply leads to a change in the last fully-connected layers of the network.
We extend the last layer to output an additional (K − 1) · 4 and (K − 1) · 3 parameters for
predicting the camera pose, as well as overall 6 ·K for uncertainty prediction of both rotation
and translation. Further, we incorporate three extra layers for the mixture coefficients. We run
our model on a 8GB NVIDIA GeForce GTX 1080 graphics card and report the inference time of
our network with respect to K in Table 9.9. In comparison to a direct regression method our
model with K = 50 incurs a negligible computational overhead around 1ms.

Further, we evaluate the effect of hyper-parameter K, i.e. the number of hypothesis to be
regressed, for our proposed method. Based on the results, which are summarized in Figure
9.16, we suspect the optimal number of hypotheses to be dependent on the spatial extent of
the scene and on the ambiguities contained in them. However, due to the increased complexity
of the model as well as instability issues during training, we observed a drop in performance
with high increase of the number of hypotheses.

Implicit learning of mixture coefficients We now evaluate our extended method, Ours-
MBDN+RWTA (see 9.20), that allows for implicit learning of the mixture coefficients without
succumbing to the pitfalls of ordinary mixture density networks such as mode collapse. Table
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9.10 shows the accuracy of our baseline methods in comparison to ours for various thresholds.
We are able to improve upon our baseline model, Ours-RWTA, in overall performance, as well
as in SEMD as reported in Table 9.11. Further, our model is able to provide diverse predictions
and capture multiple modes, which is indicated by the high Oracle accuracy, see Table 9.10.

Tab. 9.10. Ratio of correct poses on our ambiguous scenes for several thresholds. We report the results of our
Ours-RWTA and Ours-MBDN+RWTA for several number of hypotheses K.

Threshold Ours-RWTA Ours-MBDN+RWTA Ours-RWTA
Oracle

Ours-MBDN+RWTA
Oracle

Num. Hypotheses 50 5 10 25 50 50 5 10 25 50

10◦ / 0.1m 0.35 0.40 0.48 0.35 0.39 0.58 0.51 0.54 0.46 0.41

Blue Chairs (A) 15◦ / 0.2m 0.81 0.85 0.92 0.80 0.79 0.94 0.87 0.91 0.92 0.92

20◦ / 0.3m 0.82 0.89 0.96 0.87 0.85 1.0 0.94 0.96 0.97 0.99

10◦ / 0.1m 0.05 0.03 0.07 0.08 0.03 0.12 0.06 0.08 0.12 0.15

Meeting Table (B) 15◦ / 0.2m 0.28 0.26 0.33 0.31 0.32 0.56 0.29 0.42 0.57 0.58

20◦ / 0.3m 0.39 0.34 0.42 0.38 0.41 0.78 0.41 0.55 0.73 0.81

10◦ / 0.1m 0.18 0.20 0.18 0.18 0.17 0.19 0.20 0.23 0.21 0.23

Staircase (C) 15◦ / 0.2m 0.50 0.47 0.47 0.47 0.49 0.53 0.49 0.47 0.51 0.58

20◦ / 0.3m 0.68 0.64 0.66 0.64 0.64 0.74 0.64 0.71 0.71 0.76

10◦ / 0.1m 0.09 0.10 0.06 0.09 0.11 0.09 0.12 0.08 0.10 0.12

Staircase Extended (D) 15◦ / 0.2m 0.39 0.43 0.38 0.44 0.46 0.40 0.41 0.38 0.47 0.47

20◦ / 0.3m 0.58 0.59 0.60 0.62 0.64 0.64 0.56 0.60 0.66 0.69

10◦ / 0.1m 0.35 0.39 0.38 0.35 0.37 0.36 0.41 0.42 0.43 0.41

Seminar Room (E) 15◦ / 0.2m 0.83 0.77 0.78 0.84 0.80 0.83 0.77 0.80 0.88 0.82

20◦ / 0.3m 0.95 0.88 0.93 0.94 0.92 0.95 0.89 0.93 0.95 0.94

10◦ / 0.1m 0.20 0.23 0.24 0.21 0.22 0.27 0.26 0.27 0.27 0.26

Average 15◦ / 0.2m 0.56 0.56 0.58 0.57 0.57 0.65 0.56 0.60 0.67 0.67

20◦ / 0.3m 0.68 0.67 0.71 0.69 0.69 0.82 0.69 0.75 0.80 0.84

The distance function in MHP In addition we provide ablation studies and results on the
chosen distance function, `1 or negative log likelihood, for choosing the best branch in our
MHP training schemes. We report the results in Table 9.12. Overall we have found `1 to
outperform the likelihood version, which we found to be mostly due to the rotation and
translational difference in the log likelihood. `1 seems to be less affected.

Tab. 9.11. SEMD of our methods indicating highly diverse predictions.

Method/Scene Blue Chairs Meeting Table Staircase Staircase Ext. Seminar Room

MC-Dropout 0.06 0.11 0.13 0.26 0.1

Ours-RWTA 1.19 2.13 2.04 3.81 1.70

Ours-MBDN+RWTA 1.20 2.53 2.24 4.35 2.22
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Tab. 9.12. Influence for different distance functions on the MHP training scheme. We report the average recall over
all scenes in our ambiguous scene dataset for different thresholds.

Threshold Ours-RWTA (l1) Ours-MBDN+RWTA (l1) Ours-MBDN+RWTA (logp)

10◦ / 0.1m 0.20 0.22 0.19

15◦ / 0.2m 0.56 0.57 0.53

20◦ / 0.3m 0.68 0.69 0.66

Tab. 9.13. Ratio of correct poses for several thresholds of Gram-Schmidt (G), Skew-Symmetric (S) and Birdal et
al.(B) methods to construct V.

G / S / B Threshold Unimodal Bingham-MDN Ours-RWTA Ours-MBDN+RWTA

10◦ / 0.1m 0.24 / 0.23 / 0.29 0.04 / 0.17 / 0.24 0.30 / 0.12 / 0.35 0.46 / 0.29 / 0.39

Blue Chairs (A) 15◦ / 0.2m 0.63 / 0.58 / 0.73 0.15 / 0.49 / 0.75 0.73 / 0.39 / 0.81 0.82 / 0.66 / 0.79

20◦ / 0.3m 0.76 / 0.73 / 0.86 0.18 / 0.59 / 0.80 0.79 / 0.43 / 0.82 0.86 / 0.71 / 0.85

10◦ / 0.1m 0.02 / 0.07 / 0.02 0.04 / 0.01 / 0.01 0.04 / 0.09 / 0.05 0.07 / 0.09 / 0.03

Meeting Table (B) 15◦ / 0.2m 0.16 / 0.20 / 0.12 0.18 / 0.14 / 0.07 0.12 / 0.23 / 0.28 0.30 / 0.26 / 0.32

20◦ / 0.3m 0.24 / 0.25 / 0.19 0.21 / 0.24 / 0.10 0.18 / 0.27 / 0.39 0.39 / 0.33 / 0.41

10◦ / 0.1m 0.17 / 0.16 / 0.11 0.21 / 0.16 / 0.04 0.17 / 0.14 / 0.18 0.24 / 0.18 / 0.17

Staircase (C) 15◦ / 0.2m 0.46 / 0.51 / 0.62 0.43 / 0.37 / 0.15 0.46 / 0.42 / 0.50 0.52 / 0.47 / 0.49

20◦ / 0.3m 0.62 / 0.64 / 0.62 0.60 / 0.49 / 0.25 0.60 / 0.62 / 0.68 0.63 / 0.62 / 0.64

10◦ / 0.1m 0.04 / 0.04 / 0.06 0.04 / 0.07 / 0.06 0.05 / 0.06 / 0.09 0.08 / 0.05 / 0.11

Staircase Extended (D) 15◦ / 0.2m 0.16 / 0.16 / 0.26 0.19 / 0.29 / 0.21 0.23 / 0.26 / 0.39 0.41 / 0.28 / 0.46

20◦ / 0.3m 0.27 / 0.27 / 0.41 0.31 / 0.41 / 0.32 0.34 / 0.36 / 0.58 0.61 / 0.38 / 0.64

10◦ / 0.1m 0.27 / 0.33 / 0.06 0.30 / 0.35 / 0.06 0.15 / 0.28 / 0.35 0.19 / 0.30 / 0.37

Seminar Room (E) 15◦ / 0.2m 0.69 / 0.69 / 0.23 0.56 / 0.59 / 0.23 0.47 / 0.70 / 0.83 0.52 / 0.63 / 0.80

20◦ / 0.3m 0.82 / 0.80 / 0.40 0.64 / 0.70 / 0.40 0.58 / 0.79 / 0.95 0.63 / 0.77 / 0.92

10◦ / 0.1m 0.15 / 0.16 / 0.11 0.13 / 0.13 / 0.08 0.14 / 0.14 / 0.20 0.21 / 0.18 / 0.22

Average 15◦ / 0.2m 0.42 / 0.43 / 0.36 0.30 / 0.38 / 0.28 0.40 / 0.40 / 0.56 0.51 / 0.46 / 0.57

20◦ / 0.3m 0.54 / 0.54 / 0.50 0.39 / 0.49 / 0.37 0.50 / 0.49 / 0.68 0.63 / 0.56 / 0.69

Constructing V There are multiple ways in which we can construct the orthonormal matrix
V. In particular we compare between the method of Birdal et al., Gram Schmidt orthonor-
malization and the construction using skew-symmetric matrices, for which the results can
be found in Table 9.13. In comparison to Gram Schmidt orthonormalization by using the
remaining methods only four parameters have to be estimated instead of the 16 entries of
the matrix V. For our unimodal as well as multimodal MDN we found the Gram-Schmidt and
Skew-Symmetric construction to outperform Birdal’s. However, for our method, Ours-RWTA,
the latter performs best and additionally achieves overall the best performance in comparison
the the remaining methods and constructions.

Rotation parameterization When training deep learning models, the choice of rotation
parameterization has posed an ongoing debate. PoseNet [107] proposes to use quaternions as
normalization can be easily done during training and the ambiguities they pose resolved by
mapping them to one hemisphere. MapNet [26] further shows improvements in using the
axis angle representation. Recently it has been shown that any representation with four or
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Tab. 9.14. Ratio of correct poses when using the continuous 6d representation of [247] in order to model rotations
instead of a Bingham distribution on the quaternion.

Threshold Geo + `1 Unimodal MDN MC-Dropout 9D-Ours-
RWTA

9D-Ours-
MBDN+RWTA

10◦ / 0.1m 0.41 0.48 0.01 0.26 0.38 0.38

Blue Chairs 15◦ / 0.2m 0.90 0.89 0.14 0.83 0.81 0.79

20◦ / 0.3m 0.96 0.92 0.23 0.91 0.84 0.81

10◦ / 0.1m 0.03 0.03 0.02 0.02 0.06 0.07

Meeting Table 15◦ / 0.2m 0.16 0.16 0.11 0.13 0.29 0.33

20◦ / 0.3m 0.22 0.23 0.14 0.21 0.38 0.42

10◦ / 0.1m 0.17 0.19 0.12 0.12 0.18 0.20

Staircase 15◦ / 0.2m 0.46 0.51 0.36 0.36 0.44 0.49

20◦ / 0.3m 0.62 0.67 0.47 0.56 0.56 0.61

10◦ / 0.1m 0.07 0.01 0.01 0.04 0.08 0.08

Staircase Extended 15◦ / 0.2m 0.30 0.06 0.09 0.18 0.35 0.40

20◦ / 0.3m 0.48 0.13 0.14 0.36 0.55 0.60

10◦ / 0.1m 0.34 0.24 0.30 0.21 0.34 0.42

Seminar Room 15◦ / 0.2m 0.74 0.63 0.65 0.65 0.76 0.77

20◦ / 0.3m 0.84 0.79 0.76 0.82 0.88 0.90

10◦ / 0.1m 0.20 0.19 0.09 0.13 0.21 0.23

Average 15◦ / 0.2m 0.51 0.45 0.27 0.43 0.53 0.56

20◦ / 0.3m 0.63 0.55 0.35 0.57 0.64 0.63

less degrees of freedom suffers from discontinuities in the rotation space that might harm
the performance of deep learning models. Instead, [247], propose a continuous 6D or 5D
representation. Since for rotation matrices the last column can be computed by the cross-
product of the remaining two columns, it is unnecessary to predict all nine parameters of
the matrix. Therefore to obtain the desired 6D representation, the last column can simply
be dropped. To map back from a 6D prediction to a valid rotation matrix, the authors of
[247] propose a Gram-Schmidt like orthogonalization procedure, which in case of rotation
matrices results in computing the cross product of the first two normalized columns. Further
the authors show that the proposed representation outperforms in comparison to euler angles,
quaternions and axis angle representation when learned with a neural network.

To evaluate our method in this context, we map all poses to the proposed 6D representation
and model them using a Gaussian mixture model, similar to a MDN, but treating rotation
and translation separately. Therefore for each camera pose, in total we have 18 parameters
to regress, plus mixture coefficients. Table 9.14 shows our results. ’Geo + `1’ refers to a
direct regression model using the geodesic loss proposed in [247] and an `1 loss on the
translation. When using the proposed 6D representation, we found either improvements or
similar performance to their quaternion counterparts. However, overall our 9D-Ours-RWTA
and 9D-Ours-MBDN+RWTA remain the most promising models. Thus, the specific training
scheme of our model can, regardless of the underlying distribution used, stabilize the training
procedure and avoid mode collapse and therefore improve upon the baseline methods.
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Fig. 9.17. Symmetric objects under rotations around their axis of symmetry introduce ambiguous views, that can
result in erroneous predictions of deep learning models.

Remarks on Camera Localization
We have presented a novel method dealing with problems of direct camera pose regression
methods in highly ambiguous environments where a unique solution to the 6DoF localization
might be nonexistent. Instead, we predict camera pose hypotheses as well as associated
uncertainties that finally form a mixture model. We use the Bingham distribution to model
rotations and multivariate Gaussians to obtain the position of a camera. In contrast to other
methods like MC-Dropout [106] or mixture density networks our training scheme is able to
avoid mode collapse. Thus, we can obtain better mode predictions and improve upon the
performance of camera pose regression methods in ambiguous environments while retaining
the performance in non-ambiguous ones. We have proposed a general approach that we
believe has the potential to foster research in various applications. Therefore, we now apply
our method on an additional application, namely point cloud pose estimation.

9.8 Point Cloud Pose Estimation

With the advancements in autonomous driving and 3D capture, the need for efficient and
accurate processing of 3D data has become a critical issue. At the backbone of numerous 3D
systems lies point cloud processing, an essential tool for understanding the shapes surrounding
us in 3D environments. In many of the cases, as already observed in 2D image views, objects
exhibit symmetries and are observed under varying orientations that can result in ambiguities.
In these situations the machinery of perception has to be made robust to the variations in the
input that do not alter the object geometry. We illustrate this problem in Figure 9.17.

For this aim, we now evaluate our proposed Bingham Model in the context of object pose
estimation from 3D point clouds and show that our model is well suitable to capture the
multi-modality of symmetric objects in term of orientation in 3D as well.

Experimental Setup Therefore, we use objects of the ModelNet10 [228] dataset, which
consists of ten object classes with example objects within each class. We randomly sample
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Tab. 9.15. Point cloud pose estimation results on ModelNet10. We report the chamfer distance, where we scale the
values by 102 for better presentation.

`1 MC-Dropout Uni MBDN Ours-MBDN+RWTA Ours-RWTA

Num. Hypotheses 1 50 1 50 5 10 25 50 50

Average 3.605 3.509 1.477 1.237 0.927 0.838 0.926 0.973 1.201

Fig. 9.18. Multiple hypotheses predictions of our network. The first column shows the object viewed from ground
truth pose. The remaining columns show predicted poses (represented as a local reference frame) and
the corresponding rotated object.

orientations and apply said orientations to the 3D point cloud to generate our training set.
As our backbone network, we use PointNet [172] network architecture that has been widely
used in recent literature to process point clouds with deep learning. The overall pipeline to
predict uni-/multimodal Bingham distributions then remains the same. For this evaluation to
construct V we remain with the method proposed by Birdal et al. [14].

To evaluate our method, we use the Chamfer distance. The chamfer distance measures the
average distance over all points to the closest point in the target point cloud and is therefore
well suited to capture the similarity between orientations of our point cloud samples. For
instance, the angular error might not be as informative as large errors can easily occur in the
presence of ambiguous views.

A summary of our results on the ModelNet10 dataset can be found in Table 9.15, where we
report the results of our unimodal model (Uni), mixture model (MBDN) and MHP-versions,
Ours-RWTA and Ours-MBDN+RWTA, in comparison to a simple regression model using an `1
loss and a MC-Dropout version of such a model. The results indicate that our models overall
show better performance in comparison to the baselines, `1 and M-Dropout. Further multiple
hypotheses prediction models, outperform a unimodal model, as ambiguous views can now
be handled appropriately by the method.

Figure 9.18 shows qualitative results of our multiple hypotheses predictions, showing that
our model is capable of predicting diverse, yet reasonable, orientations in comparison to the
ground truth.

Based on our results, we can conclude that our method provides a general framework that is
easily applicable to orientation regression methods on 2D as well as 3D input information. In
this context, we leave further experiments such as evaluations on six DoF pose estimation on
point cloud data as future work.
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9.9 Conclusion

We have shown an extensive evaluation of our proposed Bingham Model as well as multiple
hypothesis prediction and uncertainty estimation in the context of visual camera localization
as well as point cloud pose estimation [56]. In highly ambiguous environments our method is
well able to capture the multi-modal nature and uncertainty present in such scenarios that can
confuse supervised deep learning models. Further, our method provides a general framework
for pose regression and can easily be transferred to similar applications such as object pose
estimation as well as to various input modalities ranging from 2D data to 3D point clouds.
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10Discussion and Conclusion

10.1 Summary

In this dissertation, we have presented several frameworks addressing issues arising in current
image-based localization methods by relying on deeply learned regression approaches.

First, we have introduced a multi-task learning framework that is trained to predict object
relevant features. In addition, we have shown that providing information about the object’s
pose, in the form of a regression loss, enables the model to learn features that can more effi-
ciently be distinguished and used for object recognition as well as pose retrieval. Furthermore,
we show that our method is able to adapt well to related tasks such as place recognition in
large-scale outdoor environments. Though, it has to be kept in mind that such methods always
depend on the constructed database for retrieval and as such are limited by the database size
in both accuracy and matching efficiency. The combination of such methods, however, for
instance with regression approaches has shown promising results.

To alleviate this issue, next we explore pixel-wise scene coordinate regression assuming a
reconstruction or depth information is available to obtain ground truth scene coordinates. As
long as such a reconstruction of the scene, that covers its main features, is available, we can
train scene specific models and theoretically are able to predict scene coordinates without
restriction. Although due to inaccuracies of the model and noise in the data, outliers remain
unavoidable. Therefore, for each regressed coordinate we additionally regress a corresponding
confidence value in a second stage. These confidences are trained to be correlated to the
error of the regressed coordinate such that outliers with high error can easily be removed by
analyzing its confidence value. The confidences then provide a measure that can be used to
rank camera pose hypothesis computed from the correspondences and used in a subsequent
pose refinement.

Finally, we have moved towards methods relying solely on RGB information without requiring
a reconstruction or 3D model of the scene and explore direct regression of the camera pose.

First, aiming at bridging the gap between the accuracy of direct pose regression methods and
structure-based models, we have proposed a pose refinement strategy that is inspired by the
framework of generative adversarial networks. Therefore providing an approach dependent
only on RGB information with low computational cost.

Second, we analyze the performance of direct regression methods in the context of highly
ambiguous environments. We proposed a method predicting full distributions on the 6D
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pose space that is able to provide reliable uncertainty estimates as well as handle multiple
possible solutions by incorporating a multiple hypotheses training strategy. While maintaining
the benefits of regression approaches in non-ambiguous environments our method is able to
handle ambiguous environments as well and in comparison to the state of the art introduces a
negligible training and inference overhead.

10.2 Limitations and Future Work

Regression methods as demonstrated in this thesis offer great capabilities and potential as
their range of output is theoretically unlimited. However, in practice such methods certainly
show significant challenges and drawbacks. In context of deep learning, the training stage of
such models strongly influences their overall performance and comes with certain problems as
well. The lack of available training data has posed an ongoing challenge for almost all current
deep learning solutions and a multitude of applications in computer vision. In the context
of camera localization, obtaining a large amount of data with accurate ground truth camera
poses is currently not feasible and models, as a result, often lack generalization capabilities.
Few works have presented methods that synthesize additional views, thus, enlarging the
dataset [171]. On the other hand, domain adaption techniques often deployed to handle such
problems, for instance to train models on synthetic data rendered from a CAD model, are not
straightforward to apply for the task at hand. Accurate and large scale models are often not
available and rendering realistic image settings remains computationally demanding.

Similar, unsupervised methods, often deployed to handle the absence of large amounts of
labels, have not yet been investigated for the task of camera localization and are not easily
adapted to handle such a regression task either. Few works have addressed the use of
additional information such as GPS or visual odometry to fine-tune a deep learning model
in an unsupervised fashion [26], however, have not yet shown to solve the generalization
problem or provide fully unsupervised or self-supervised training schemes.

With respect to SLAM applications, scenes are currently assumed to be static. However, this is
rarely the case in real-world scenarios. Dynamic environments readily occur, but as of now
current re-localization systems are not designed to handle even smaller changes in the scene.
As a result, once changed the map has to be recreated to ensure adaptability to the changed
environment. To enable fully autonomous systems, such methods will have to be robust to
movements in the scene, such as objects changing their position and orientation, as well as
to illumination changes and changing lighting conditions. In turn changes in the scene can
introduce ambiguous views that, as shown in this thesis, can easily confuse deep learning
models. A natural next step can be to extend our framework and analyze its ability to handle
such cases. Uncertainty estimation plays a crucial role in this context and can be applied to
detect changes in the environment as a first step to handle such scenarios. As the overall scene
is usually not affected by major changes and most changes occur due to small scale objects or
deformable content, uncertain regions should not influence a model’s prediction to provide
accurate and robust localization, a concept already applied in autonomous driving scenarios
[94].
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10.3 Conclusion

We believe we have demonstrated the potential of image-based localization methods in the
context of camera localization by utilizing deep learning models. As current developments
indicate visual sensors will play a crucial role in the development of fully autonomous systems.
Image retrieval methods are always restricted to the database at hand, making regression
approaches a promising solution to solve a variety of large scale tasks. However, drawbacks
of such methods, that arise in deep learning frameworks have to be addressed with care
such that these methods can develop and show their potential. We believe with the work
presented in this thesis we have taken a step towards optimization of deep learning based
regression methods and shown promising results for the example of camera pose estimation.
Our methods, once trained, can be deployed fully automatic and can thus pave the way
for more accurate as well as automatic computer vision systems in a variety of applications
ranging from augmented reality to robotic navigation and autonomous driving.
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Robust Navigation Support in Lowest Dose Image Settings

Mai Bui, Felix Bourier, Christoph Baur, Fausto Milletari, Nassir Navab, Stefanie Demirci
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Purpose Clinical cardiac electro-physiology (EP) is concerned with diagnosis and treatment of
cardiac arrhythmia describing abnormality or perturbation in the normal activation sequence
of the myocardium. With the recent introduction of lowest dose X-ray imaging protocol for
EP procedures, interventional image enhancement has gained crucial importance for the
well-being of patients as well as medical staff.
Methods In this paper, we introduce a novel method to detect and track different EP catheter
electrodes in lowest dose fluoroscopic sequences based on l1-sparse coding and online robust
PCA (ORPCA). Besides being able to work on real lowest dose sequences, the underlying
methodology achieves simultaneous detection and tracking of three main EP catheters used
during ablation procedures.
Results We have validated our algorithm on 16 lowest dose fluoroscopic sequences acquired
during real cardiac ablation procedures. In addition to expert labels for 2 sequences, we
have employed a crowdsourcing strategy to obtain ground truth labels for the remaining 14
sequences. In order to validate the effect of different training data, we have employed a
leave-one-out cross-validation scheme yielding an average detection rate of 86.9%.
Conclusion Besides these promising quantitative results, our medical partners also expressed
their high satisfaction. Being based on l1-sparse coding and online robust PCA (ORPCA), our
method advances previous approaches by being able to detect and track electrodes attached
to multiple different catheters. [35]
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X-ray PoseNet: 6 DoF Pose Estimation for Mobile X-ray
Devices

Mai Bui, Shadi Albarqouni, Michael Schrapp, Nassir Navab, Slobodan Ilic

Precise reconstruction of 3D volumes from X-ray projections requires precisely pre-calibrated
systems where accurate knowledge of the systems geometric parameters is known ahead.
However, when dealing with mobile X-ray devices such calibration parameters are unknown.
Joint estimation of the systems calibration parameters and 3d reconstruction is a heavily
unconstrained problem, especially when the projections are arbitrary. In industrial applications,
that we target here, nominal CAD models of the object to be reconstructed are usually available.
We rely on this prior information and employ Deep Learning to learn the mapping between
simulated X-ray projections and its pose. Moreover, we introduce the reconstruction loss in
addition to the pose loss to further improve the reconstruction quality. Finally, we demonstrate
the generalization capabilities of our method in case where poses can be learned on instances
of the objects belonging to the same class, allowing pose estimation of unseen objects from the
same category, thus eliminating the need for the actual CAD model. We performed exhaustive
evaluation demonstrating the quality of our results on both synthetic and real data. Copyright
2017 IEEE [32]
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[92] T. Hodaň, P. Haluza, Š. Obdržálek, J. Matas, M. Lourakis, and X. Zabulis. “T-LESS: An RGB-D
Dataset for 6D Pose Estimation of Texture-less Objects”. In: IEEE Winter Conference on Applications
of Computer Vision (WACV) (2017) (cit. on p. 98).

[93] K. Hsiao and T. Lozano-Perez. “Imitation learning of whole-body grasps”. In: 2006 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE. 2006, pp. 5657–5662 (cit. on
p. 6).

[94] Z. Huang, Y. Xu, J. Shi, X. Zhou, H. Bao, and G. Zhang. “Prior guided dropout for robust visual
localization in dynamic environments”. In: Proceedings of the IEEE International Conference on
Computer Vision. 2019, pp. 2791–2800 (cit. on pp. 71, 91, 122).

[95] D. Q. Huynh. “Metrics for 3D rotations: Comparison and analysis”. In: Journal of Mathematical
Imaging and Vision 35.2 (2009), pp. 155–164 (cit. on p. 15).

[96] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. “Image-to-image translation with conditional
adversarial networks”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2017, pp. 1125–1134 (cit. on pp. 75, 80).

[97] M. Jaderberg, K. Simonyan, A. Zisserman, et al. “Spatial transformer networks”. In: Advances in
neural information processing systems. 2015, pp. 2017–2025 (cit. on p. 59).

[98] S. James, P. Wohlhart, M. Kalakrishnan, et al. “Sim-to-real via sim-to-sim: Data-efficient robotic
grasping via randomized-to-canonical adaptation networks”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2019, pp. 12627–12637 (cit. on p. 27).

138 Bibliography



[99] H. Jégou, M. Douze, C. Schmid, and P. Pérez. “Aggregating local descriptors into a compact image
representation”. In: CVPR 2010-23rd IEEE Conference on Computer Vision & Pattern Recognition.
IEEE Computer Society. 2010, pp. 3304–3311 (cit. on p. 25).

[100] W. Kabsch. “A solution for the best rotation to relate two sets of vectors”. In: Acta Crystallographica
Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography 32.5 (1976),
pp. 922–923 (cit. on p. 16).

[101] D. Kalashnikov, A. Irpan, P. Pastor, et al. “Qt-opt: Scalable deep reinforcement learning for
vision-based robotic manipulation”. In: Conference on Robot Learning (2018) (cit. on p. 6).

[102] A. Katiyar, K. Kalra, and C. Garg. “Marker based augmented reality”. In: Advances in Computer
Science and Information Technology (ACSIT) 2.5 (2015), pp. 441–445 (cit. on p. 5).

[103] T. Ke and S. I. Roumeliotis. “An efficient algebraic solution to the perspective-three-point problem”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017, pp. 7225–
7233 (cit. on p. 17).

[104] W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N. Navab. “Ssd-6d: Making rgb-based 3d detection
and 6d pose estimation great again”. In: Proceedings of the IEEE International Conference on
Computer Vision. 2017, pp. 1521–1529 (cit. on pp. 6, 73, 90).

[105] A. Kendall and R. Cipolla. “Geometric loss functions for camera pose regression with deep
learning”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017,
pp. 5974–5983 (cit. on pp. 9, 64, 70, 77, 86, 102–104).

[106] A. Kendall and R. Cipolla. “Modelling uncertainty in deep learning for camera relocalization”. In:
2016 IEEE international conference on Robotics and Automation (ICRA). IEEE. 2016, pp. 4762–
4769 (cit. on pp. 71, 91, 102–104, 106, 115).

[107] A. Kendall, M. Grimes, and R. Cipolla. “Posenet: A convolutional network for real-time 6-dof
camera relocalization”. In: Proceedings of the IEEE international conference on computer vision.
2015, pp. 2938–2946 (cit. on pp. 9, 30, 70, 75, 81, 86, 101, 103, 104, 106, 113).

[108] C. Kerl, J. Sturm, and D. Cremers. “Dense visual SLAM for RGB-D cameras”. In: 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE. 2013, pp. 2100–2106 (cit. on
p. 8).

[109] T. Kim, M. Cha, H. Kim, J. K. Lee, and J. Kim. “Learning to discover cross-domain relations with
generative adversarial networks”. In: Proceedings of the 34th International Conference on Machine
Learning-Volume 70. JMLR. org. 2017, pp. 1857–1865 (cit. on p. 27).

[110] G. Klein and D. Murray. “Parallel tracking and mapping for small AR workspaces”. In: 2007 6th
IEEE and ACM international symposium on mixed and augmented reality. IEEE. 2007, pp. 225–234
(cit. on pp. 5, 8).

[111] G. Klein and D. Murray. “Parallel tracking and mapping on a camera phone”. In: 2009 8th IEEE
International Symposium on Mixed and Augmented Reality. IEEE. 2009, pp. 83–86 (cit. on p. 5).

[112] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “Imagenet classification with deep convolutional
neural networks”. In: Advances in neural information processing systems. 2012, pp. 1097–1105
(cit. on pp. 23, 85).

[113] A. Kume and A. T. Wood. “Saddlepoint approximations for the Bingham and Fisher–Bingham
normalising constants”. In: Biometrika 92.2 (2005), pp. 465–476 (cit. on p. 93).

[114] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. “g 2 o: A general framework
for graph optimization”. In: 2011 IEEE International Conference on Robotics and Automation. IEEE.
2011, pp. 3607–3613 (cit. on p. 7).

[115] G. Kurz, I. Gilitschenski, S. Julier, and U. D. Hanebeck. “Recursive estimation of orientation
based on the Bingham distribution”. In: Information Fusion (FUSION), 2013 16th International
Conference on. IEEE. 2013, pp. 1487–1494 (cit. on p. 93).

Bibliography 139



[116] G. Kurz, I. Gilitschenski, F. Pfaff, et al. “Directional Statistics and Filtering Using libDirectional”.
In: arXiv preprint arXiv:1712.09718 (2017) (cit. on p. 93).

[117] M. Labbé and F. Michaud. “RTAB-Map as an open-source lidar and visual simultaneous localization
and mapping library for large-scale and long-term online operation”. In: Journal of Field Robotics
36.2 (2019), pp. 416–446 (cit. on p. 102).

[118] M. Larsson, E. Stenborg, C. Toft, L. Hammarstrand, T. Sattler, and F. Kahl. “Fine-grained segmen-
tation networks: Self-supervised segmentation for improved long-term visual localization”. In:
Proceedings of the IEEE International Conference on Computer Vision. 2019, pp. 31–41 (cit. on
p. 10).

[119] S. M. LaValle, A. Yershova, M. Katsev, and M. Antonov. “Head tracking for the Oculus Rift”. In:
2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2014, pp. 187–194
(cit. on p. 5).

[120] T.-W. Lee and M. S. Lewicki. “Unsupervised image classification, segmentation, and enhancement
using ICA mixture models”. In: IEEE Transactions on Image Processing 11.3 (2002), pp. 270–279
(cit. on p. 91).

[121] I. Lenz, H. Lee, and A. Saxena. “Deep learning for detecting robotic grasps”. In: The International
Journal of Robotics Research 34.4-5 (2015), pp. 705–724 (cit. on p. 6).

[122] V. Lepetit, F. Moreno-Noguer, and P. Fua. “Epnp: An accurate o (n) solution to the pnp problem”.
In: International journal of computer vision 81.2 (2009), p. 155 (cit. on pp. 17, 56, 60).

[123] C. Ley and T. Verdebout. “Directional Statistics in Machine Learning: A Brief Review Suvrit Sra”.
In: Applied Directional Statistics. Chapman and Hall/CRC, 2018, pp. 275–292 (cit. on p. 95).

[124] J. Li, D. Meger, and G. Dudek. “Semantic Mapping for View-Invariant Relocalization”. In: 2019
International Conference on Robotics and Automation (ICRA). IEEE. 2019, pp. 7108–7115 (cit. on
p. 9).

[125] Y. Li, G. Wang, X. Ji, Y. Xiang, and D. Fox. “Deepim: Deep iterative matching for 6d pose
estimation”. In: Proceedings of the European Conference on Computer Vision (ECCV). 2018, pp. 683–
698 (cit. on p. 76).

[126] C.-H. Lin, E. Yumer, O. Wang, E. Shechtman, and S. Lucey. “St-gan: Spatial transformer generative
adversarial networks for image compositing”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2018, pp. 9455–9464 (cit. on pp. 75, 76).

[127] N. Linder and P. Maes. “LuminAR: portable robotic augmented reality interface design and
prototype”. In: Adjunct proceedings of the 23nd annual ACM symposium on User interface software
and technology. 2010, pp. 395–396 (cit. on p. 6).

[128] J. Linowes and K. Babilinski. Augmented Reality for Developers: Build practical augmented reality
applications with Unity, ARCore, ARKit, and Vuforia. Packt Publishing Ltd, 2017 (cit. on p. 5).

[129] W. Liu, D. Anguelov, D. Erhan, et al. “Ssd: Single shot multibox detector”. In: European conference
on computer vision. Springer. 2016, pp. 21–37 (cit. on p. 6).

[130] D. G. Lowe. “Distinctive image features from scale-invariant keypoints”. In: International journal
of computer vision 60.2 (2004), pp. 91–110 (cit. on p. 23).

[131] Q.-T. Luong and O. D. Faugeras. “The fundamental matrix: Theory, algorithms, and stability
analysis”. In: International journal of computer vision 17.1 (1996), pp. 43–75 (cit. on p. 18).

[132] L. v. d. Maaten and G. Hinton. “Visualizing data using t-SNE”. In: Journal of Machine Learning
Research 9.Nov (2008), pp. 2579–2605 (cit. on pp. 35, 38).

[133] O. Makansi, E. Ilg, O. Cicek, and T. Brox. “Overcoming Limitations of Mixture Density Networks:
A Sampling and Fitting Framework for Multimodal Future Prediction”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2019, pp. 7144–7153 (cit. on pp. 91, 96,
103, 110).

140 Bibliography



[134] D Mané et al. TensorBoard: TensorFlow’s visualization toolkit, 2015 (cit. on p. 38).

[135] F. Manhardt, D. M. Arroyo, C. Rupprecht, et al. “Explaining the Ambiguity of Object Detection
and 6D Pose from Visual Data”. In: IEEE/CVF. 2019 (cit. on p. 90).

[136] F. Manhardt, W. Kehl, N. Navab, and F. Tombari. “Deep model-based 6d pose refinement in rgb”.
In: Proceedings of the European Conference on Computer Vision (ECCV). 2018, pp. 800–815 (cit. on
p. 76).

[137] E. Marder-Eppstein. “Project tango”. In: ACM SIGGRAPH 2016 Real-Time Live! 2016, pp. 25–25
(cit. on p. 5).

[138] D. Marr. “Vision: A computational investigation into the human representation and processing of
visual information”. In: (1982) (cit. on p. 3).

[139] M. Maskrey and W. Wang. “Understanding ARKit”. In: Pro iPhone Development with Swift 4.
Springer, 2018, pp. 389–418 (cit. on p. 5).

[140] D. Massiceti, A. Krull, E. Brachmann, C. Rother, and P. H. Torr. “Random forests versus Neural
Networks—What’s best for camera localization?” In: 2017 IEEE International Conference on
Robotics and Automation (ICRA). IEEE. 2017, pp. 5118–5125 (cit. on p. 53).

[141] T. Masuda, K. Sakaue, and N. Yokoya. “Registration and integration of multiple range images for
3-D model construction”. In: Proceedings of 13th international conference on pattern recognition.
Vol. 1. IEEE. 1996, pp. 879–883 (cit. on p. 74).

[142] J. McCormac, R. Clark, M. Bloesch, A. Davison, and S. Leutenegger. “Fusion++: Volumetric
object-level slam”. In: 2018 international conference on 3D vision (3DV). IEEE. 2018, pp. 32–41
(cit. on p. 9).

[143] G. J. McLachlan and K. E. Basford. Mixture models: Inference and applications to clustering. Vol. 84.
M. Dekker New York, 1988 (cit. on p. 100).

[144] I. Melekhov, J. Ylioinas, J. Kannala, and E. Rahtu. “Relative camera pose estimation using
convolutional neural networks”. In: International Conference on Advanced Concepts for Intelligent
Vision Systems. Springer. 2017, pp. 675–687 (cit. on pp. 71, 72).

[145] L. Meng, J. Chen, F. Tung, J. J. Little, J. Valentin, and C. W. de Silva. “Backtracking regres-
sion forests for accurate camera relocalization”. In: 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE. 2017, pp. 6886–6893 (cit. on p. 53).

[146] L. Meng, F. Tung, J. J. Little, J. Valentin, and C. W. de Silva. “Exploiting points and lines in
regression forests for RGB-D camera relocalization”. In: 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE. 2018, pp. 6827–6834 (cit. on p. 53).

[147] M. Mirza and S. Osindero. “Conditional generative adversarial nets”. In: arXiv preprint arXiv:1411.1784
(2014) (cit. on p. 75).

[148] V. Mnih, K. Kavukcuoglu, D. Silver, et al. “Human-level control through deep reinforcement
learning”. In: nature 518.7540 (2015), pp. 529–533 (cit. on p. 3).

[149] V. Mnih, K. Kavukcuoglu, D. Silver, et al. “Playing atari with deep reinforcement learning”. In:
arXiv preprint arXiv:1312.5602 (2013) (cit. on p. 3).

[150] A Morawiec and D. Field. “Rodrigues parameterization for orientation and misorientation distri-
butions”. In: Philosophical Magazine A 73.4 (1996), pp. 1113–1130 (cit. on p. 94).

[151] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos. “ORB-SLAM: a versatile and accurate monocular
SLAM system”. In: IEEE transactions on robotics 31.5 (2015), pp. 1147–1163 (cit. on p. 7).

[152] R. Mur-Artal and J. D. Tardós. “Orb-slam2: An open-source slam system for monocular, stereo,
and rgb-d cameras”. In: IEEE Transactions on Robotics 33.5 (2017), pp. 1255–1262 (cit. on p. 8).

Bibliography 141



[153] K. Murphy, A. Torralba, D. Eaton, and W. Freeman. “Object detection and localization using local
and global features”. In: Toward Category-Level Object Recognition. Springer, 2006, pp. 382–400
(cit. on p. 91).

[154] R. M. Murray. A mathematical introduction to robotic manipulation. CRC press, 1994 (cit. on
p. 94).

[155] U. Nadeem, M. A. Jalwana, M. Bennamoun, R. Togneri, and F. Sohel. “Direct Image to Point Cloud
Descriptors Matching for 6-DOF Camera Localization in Dense 3D Point Clouds”. In: International
Conference on Neural Information Processing. Springer. 2019, pp. 222–234 (cit. on p. 52).

[156] T. Naseer and W. Burgard. “Deep regression for monocular camera-based 6-dof global localization
in outdoor environments”. In: Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ International
Conference on. IEEE. 2017, pp. 1525–1530 (cit. on p. 60).

[157] N. Navab, A Bani-Kashemi, and M. Mitschke. “Merging visible and invisible: Two camera-
augmented mobile C-arm (CAMC) applications”. In: Proceedings 2nd IEEE and ACM International
Workshop on Augmented Reality (IWAR’99). IEEE. 1999, pp. 134–141 (cit. on p. 6).

[158] N. Navab, S.-M. Heining, and J. Traub. “Camera augmented mobile C-arm (CAMC): calibration,
accuracy study, and clinical applications”. In: IEEE transactions on medical imaging 29.7 (2009),
pp. 1412–1423 (cit. on p. 6).

[159] R. A. Newcombe, S. Izadi, O. Hilliges, et al. “KinectFusion: Real-time dense surface mapping and
tracking”. In: 2011 10th IEEE International Symposium on Mixed and Augmented Reality. IEEE.
2011, pp. 127–136 (cit. on pp. 73, 74).

[160] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. “DTAM: Dense tracking and mapping in
real-time”. In: 2011 international conference on computer vision. IEEE. 2011, pp. 2320–2327
(cit. on p. 8).

[161] D. C. Niehorster, L. Li, and M. Lappe. “The accuracy and precision of position and orientation
tracking in the HTC vive virtual reality system for scientific research”. In: i-Perception 8.3 (2017),
p. 2041669517708205 (cit. on p. 5).

[162] J. Pang and G. Cheung. “Graph Laplacian regularization for image denoising: analysis in the
continuous domain”. In: IEEE Transactions on Image Processing 26.4 (2017), pp. 1770–1785
(cit. on p. 57).

[163] A. Paszke, S. Gross, S. Chintala, et al. “Automatic differentiation in pytorch”. In: (2017) (cit. on
p. 80).

[164] S. Peng, Y. Liu, Q. Huang, X. Zhou, and H. Bao. “Pvnet: Pixel-wise voting network for 6dof pose
estimation”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2019, pp. 4561–4570 (cit. on p. 6).

[165] V. Peretroukhin, B. Wagstaff, M. Giamou, and J. Kelly. “Probabilistic Regression of Rotations using
Quaternion Averaging and a Deep Multi-Headed Network”. In: arXiv preprint arXiv:1904.03182
(2019) (cit. on p. 111).

[166] K. Perlin. “Noise hardware”. In: Real-Time Shading SIGGRAPH Course Notes (2001) (cit. on p. 34).

[167] P. Pessaux, M. Diana, L. Soler, T. Piardi, D. Mutter, and J. Marescaux. “Towards cybernetic
surgery: robotic and augmented reality-assisted liver segmentectomy”. In: Langenbeck’s archives
of surgery 400.3 (2015), pp. 381–385 (cit. on p. 6).

[168] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. “Object retrieval with large vocabularies
and fast spatial matching”. In: 2007 IEEE conference on computer vision and pattern recognition.
IEEE. 2007, pp. 1–8 (cit. on p. 24).

[169] G. Pitteri, M. Ramamonjisoa, S. Ilic, and V. Lepetit. “On Object Symmetries and 6D Pose Estimation
from Images”. In: IEEE. 2019 (cit. on p. 90).

142 Bibliography



[170] S. Prokudin, P. Gehler, and S. Nowozin. “Deep Directional Statistics: Pose Estimation with
Uncertainty Quantification”. In: Proceedings of the European Conference on Computer Vision
(ECCV). 2018, pp. 534–551 (cit. on pp. 94, 95).

[171] P. Purkait, C. Zhao, and C. Zach. “Synthetic View Generation for Absolute Pose Regression and
Image Synthesis.” In: BMVC. 2018, p. 69 (cit. on p. 122).

[172] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. “Pointnet: Deep learning on point sets for 3d classifi-
cation and segmentation”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2017, pp. 652–660 (cit. on pp. 25, 59, 116).

[173] M. Rad and V. Lepetit. “Bb8: A scalable, accurate, robust to partial occlusion method for predicting
the 3d poses of challenging objects without using depth”. In: Proceedings of the IEEE International
Conference on Computer Vision. 2017, pp. 3828–3836 (cit. on p. 90).

[174] A. Ranjan, V. Jampani, L. Balles, et al. “Competitive collaboration: Joint unsupervised learning
of depth, camera motion, optical flow and motion segmentation”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2019, pp. 12240–12249 (cit. on p. 10).

[175] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. “You only look once: Unified, real-time object
detection”. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016,
pp. 779–788 (cit. on pp. 6, 30).

[176] S. Ren, K. He, R. Girshick, and J. Sun. “Faster r-cnn: Towards real-time object detection with
region proposal networks”. In: Advances in neural information processing systems. 2015, pp. 91–99
(cit. on p. 6).

[177] S. Riedel, Z.-C. Marton, and S. Kriegel. “Multi-view orientation estimation using Bingham mixture
models”. In: 2016 IEEE international conference on automation, quality and testing, robotics (AQTR).
IEEE. 2016, pp. 1–6 (cit. on p. 95).

[178] O. Ronneberger, P. Fischer, and T. Brox. “U-net: Convolutional networks for biomedical image
segmentation”. In: International Conference on Medical image computing and computer-assisted
intervention. Springer. 2015, pp. 234–241 (cit. on p. 59).

[179] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. “ORB: An efficient alternative to SIFT or
SURF”. In: 2011 International conference on computer vision. Ieee. 2011, pp. 2564–2571 (cit. on
p. 7).

[180] Y. Rubner, C. Tomasi, and L. J. Guibas. “The earth mover’s distance as a metric for image retrieval”.
In: International journal of computer vision 40.2 (2000), pp. 99–121 (cit. on p. 103).

[181] M. Runz, M. Buffier, and L. Agapito. “Maskfusion: Real-time recognition, tracking and reconstruc-
tion of multiple moving objects”. In: 2018 IEEE International Symposium on Mixed and Augmented
Reality (ISMAR). IEEE. 2018, pp. 10–20 (cit. on p. 9).

[182] C. Rupprecht, I. Laina, R. DiPietro, et al. “Learning in an uncertain world: Representing ambiguity
through multiple hypotheses”. In: Proceedings of the IEEE International Conference on Computer
Vision. 2017, pp. 3591–3600 (cit. on pp. 90, 95, 96, 110).

[183] S. Rusinkiewicz and M. Levoy. “Efficient variants of the ICP algorithm”. In: Proceedings Third
International Conference on 3-D Digital Imaging and Modeling. IEEE. 2001, pp. 145–152 (cit. on
p. 74).

[184] O. Russakovsky, J. Deng, H. Su, et al. “ImageNet Large Scale Visual Recognition Challenge”. In:
International Journal of Computer Vision (IJCV) 115.3 (2015), pp. 211–252 (cit. on pp. 78, 87,
101).

[185] F. Sadeghi and S. Levine. “Cad2rl: Real single-image flight without a single real image”. In:
Robotics: Science and Systems (2017) (cit. on p. 27).

[186] S. Saha, G. Varma, and C. Jawahar. “Improved visual relocalization by discovering anchor points”.
In: British Machine Vision Conference (2018) (cit. on p. 70).

Bibliography 143



[187] H. Sahin and L. Guvenc. “Household robotics: autonomous devices for vacuuming and lawn
mowing [applications of control]”. In: IEEE Control Systems Magazine 27.2 (2007), pp. 20–96
(cit. on p. 6).

[188] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. Kelly, and A. J. Davison. “Slam++:
Simultaneous localisation and mapping at the level of objects”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2013, pp. 1352–1359 (cit. on p. 8).

[189] P.-E. Sarlin, C. Cadena, R. Siegwart, and M. Dymczyk. “From coarse to fine: Robust hierarchical
localization at large scale”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2019, pp. 12716–12725 (cit. on pp. 25, 26).

[190] T. Sattler, B. Leibe, and L. Kobbelt. “Efficient & effective prioritized matching for large-scale
image-based localization”. In: IEEE transactions on pattern analysis and machine intelligence 39.9
(2016), pp. 1744–1756 (cit. on p. 52).

[191] T. Sattler, B. Leibe, and L. Kobbelt. “Fast image-based localization using direct 2d-to-3d matching”.
In: 2011 International Conference on Computer Vision. IEEE. 2011, pp. 667–674 (cit. on p. 52).

[192] T. Sattler, B. Leibe, and L. Kobbelt. “Improving image-based localization by active correspondence
search”. In: European conference on computer vision. Springer. 2012, pp. 752–765 (cit. on p. 52).

[193] T. Sattler, Q. Zhou, M. Pollefeys, and L. Leal-Taixe. “Understanding the Limitations of CNN-based
Absolute Camera Pose Regression”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2019, pp. 3302–3312 (cit. on pp. 71, 87, 103, 105).

[194] A. Saxena, J. Driemeyer, J. Kearns, and A. Y. Ng. “Robotic grasping of novel objects”. In: Advances
in neural information processing systems. 2007, pp. 1209–1216 (cit. on p. 6).

[195] A. Saxena, J. Driemeyer, and A. Y. Ng. “Robotic grasping of novel objects using vision”. In: The
International Journal of Robotics Research 27.2 (2008), pp. 157–173 (cit. on p. 6).

[196] S. Schaal. “Is imitation learning the route to humanoid robots?” In: Trends in cognitive sciences
3.6 (1999), pp. 233–242 (cit. on p. 6).

[197] T. Schmidt, R. Newcombe, and D. Fox. “Self-supervised visual descriptor learning for dense
correspondence”. In: IEEE Robotics and Automation Letters 2.2 (2016), pp. 420–427 (cit. on
p. 52).

[198] J. L. Schönberger, M. Pollefeys, A. Geiger, and T. Sattler. “Semantic visual localization”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018, pp. 6896–
6906 (cit. on p. 10).

[199] J. Shotton, B. Glocker, C. Zach, S. Izadi, A. Criminisi, and A. Fitzgibbon. “Scene coordinate regres-
sion forests for camera relocalization in RGB-D images”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2013, pp. 2930–2937 (cit. on pp. 9, 18, 52–54, 60, 64,
81, 85, 91, 101, 104).

[200] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb. “Learning from simulated
and unsupervised images through adversarial training”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2017, pp. 2107–2116 (cit. on p. 27).

[201] T. Sielhorst, M. Feuerstein, and N. Navab. “Advanced medical displays: A literature review of
augmented reality”. In: Journal of Display Technology 4.4 (2008), pp. 451–467 (cit. on p. 6).

[202] K. Simonyan and A. Zisserman. “Very Deep Convolutional Networks for Large-Scale Image
Recognition”. In: CoRR abs/1409.1556 (2014) (cit. on p. 91).

[203] K. Simonyan and A. Zisserman. “Very deep convolutional networks for large-scale image recogni-
tion”. In: arXiv preprint arXiv:1409.1556 (2014) (cit. on pp. 23, 85).

[204] J. Sivic and A. Zisserman. “Video Google: A text retrieval approach to object matching in videos”.
In: null. IEEE. 2003, p. 1470 (cit. on p. 23).

144 Bibliography



[205] N. Souly, C. Spampinato, and M. Shah. “Semi supervised semantic segmentation using generative
adversarial network”. In: Proceedings of the IEEE International Conference on Computer Vision.
2017, pp. 5688–5696 (cit. on p. 75).

[206] K. T. Spoehr and S. W. Lehmkuhle. Visual information processing. WH Freeman & Company, 1982
(cit. on p. 3).

[207] R. Subbarao and P. Meer. “Nonlinear mean shift over Riemannian manifolds”. In: International
journal of computer vision 84.1 (2009), p. 1 (cit. on p. 107).

[208] M. Sundermeyer, Z.-C. Marton, M. Durner, M. Brucker, and R. Triebel. “Implicit 3d orientation
learning for 6d object detection from rgb images”. In: Proceedings of the European Conference on
Computer Vision (ECCV). 2018, pp. 699–715 (cit. on pp. 6, 26, 27).

[209] M. Sundermeyer, H. Ney, and R. Schlüter. “From feedforward to recurrent LSTM neural networks
for language modeling”. In: IEEE/ACM Transactions on Audio, Speech, and Language Processing
23.3 (2015), pp. 517–529 (cit. on p. 70).

[210] Y. Taigman, A. Polyak, and L. Wolf. “Unsupervised cross-domain image generation”. In: Interna-
tional Conference on Learning Representations (2017) (cit. on p. 27).

[211] H. Taira, M. Okutomi, T. Sattler, et al. “InLoc: Indoor visual localization with dense matching and
view synthesis”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2018, pp. 7199–7209 (cit. on pp. 25, 26).

[212] K. Tateno, F. Tombari, I. Laina, and N. Navab. “Cnn-slam: Real-time dense monocular slam with
learned depth prediction”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2017, pp. 6243–6252 (cit. on p. 8).

[213] S. Thrun et al. “Robotic mapping: A survey”. In: Exploring artificial intelligence in the new
millennium 1.1-35 (2002), p. 1 (cit. on p. 7).

[214] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. “Domain randomization
for transferring deep neural networks from simulation to the real world”. In: 2017 IEEE/RSJ
international conference on intelligent robots and systems (IROS). IEEE. 2017, pp. 23–30 (cit. on
p. 27).

[215] C. Toft, E. Stenborg, L. Hammarstrand, et al. “Semantic match consistency for long-term visual
localization”. In: Proceedings of the European Conference on Computer Vision (ECCV). 2018,
pp. 383–399 (cit. on pp. 10, 52).

[216] A. Torii, R. Arandjelovic, J. Sivic, M. Okutomi, and T. Pajdla. “24/7 place recognition by view
synthesis”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2015, pp. 1808–1817 (cit. on pp. 24, 25, 43).

[217] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon. “Bundle adjustment—a modern
synthesis”. In: International workshop on vision algorithms. Springer. 1999, pp. 298–372 (cit. on
p. 8).

[218] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. “Adversarial discriminative domain adaptation”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017, pp. 7167–
7176 (cit. on pp. 27, 75).

[219] A. Valada, N. Radwan, and W. Burgard. “Deep Auxiliary Learning for Visual Localization and
Odometry”. In: International Conference on Robotics and Automation (ICRA 2018). IEEE. 2018
(cit. on p. 64).

[220] J. Valentin, M. Nießner, J. Shotton, A. Fitzgibbon, S. Izadi, and P. H. Torr. “Exploiting uncertainty
in regression forests for accurate camera relocalization”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2015, pp. 4400–4408 (cit. on pp. 9, 18, 52–54, 60, 91).

Bibliography 145



[221] V. Veeriah, N. Zhuang, and G.-J. Qi. “Differential recurrent neural networks for action recognition”.
In: Proceedings of the IEEE international conference on computer vision. 2015, pp. 4041–4049
(cit. on p. 70).

[222] F. Walch, C. Hazirbas, L. Leal-Taixe, T. Sattler, S. Hilsenbeck, and D. Cremers. “Image-based
localization using lstms for structured feature correlation”. In: Proceedings of the IEEE International
Conference on Computer Vision. 2017, pp. 627–637 (cit. on pp. 64, 70).

[223] X. Wang, A. Shrivastava, and A. Gupta. “A-fast-rcnn: Hard positive generation via adversary for
object detection”. In: IEEE Conference on Computer Vision and Pattern Recognition. 2017 (cit. on
pp. 75, 76).

[224] S. Weik. “Registration of 3-D partial surface models using luminance and depth information”.
In: Proceedings. International Conference on Recent Advances in 3-D Digital Imaging and Modeling
(Cat. No. 97TB100134). IEEE. 1997, pp. 93–100 (cit. on p. 74).

[225] B. Williams, G. Klein, and I. Reid. “Real-time SLAM relocalisation”. In: 2007 IEEE 11th interna-
tional conference on computer vision. IEEE. 2007, pp. 1–8 (cit. on p. 9).

[226] P. Wohlhart and V. Lepetit. “Learning descriptors for object recognition and 3d pose estimation”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, pp. 3109–
3118 (cit. on pp. 24, 26, 27, 30, 32, 34, 37).

[227] J. Wu, L. Ma, and X. Hu. “Delving deeper into convolutional neural networks for camera
relocalization”. In: Robotics and Automation (ICRA), 2017 IEEE International Conference on. IEEE.
2017, pp. 5644–5651 (cit. on p. 60).

[228] Z. Wu, S. Song, A. Khosla, et al. “3d shapenets: A deep representation for volumetric shapes”. In:
Proceedings of the IEEE conference on computer vision and pattern recognition. 2015, pp. 1912–1920
(cit. on p. 115).

[229] F. Xue, X. Wang, Z. Yan, Q. Wang, J. Wang, and H. Zha. “Local supports global: Deep camera
relocalization with sequence enhancement”. In: Proceedings of the IEEE International Conference
on Computer Vision. 2019, pp. 2841–2850 (cit. on p. 70).

[230] A. Yamaji. “Genetic algorithm for fitting a mixed Bingham distribution to 3D orientations: a tool
for the statistical and paleostress analyses of fracture orientations”. In: Island Arc 25.1 (2016),
pp. 72–83 (cit. on p. 95).

[231] J. Yang, H. Li, and Y. Jia. “Go-ICP Solving 3D Registration Efficiently and Globally Optimally,a
Globally Optimal Solution to 3D”. In: IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 38.11 (2016), pp. 2241–2254 (cit. on p. 74).

[232] W. Yang, W. Ouyang, X. Wang, J. Ren, H. Li, and X. Wang. “3d human pose estimation in the wild
by adversarial learning”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. Vol. 1. 2018 (cit. on pp. 75, 76, 82).

[233] K. Yao, G. Zweig, M.-Y. Hwang, Y. Shi, and D. Yu. “Recurrent neural networks for language
understanding.” In: Interspeech. 2013, pp. 2524–2528 (cit. on p. 70).

[234] K. M. Yi, E. Trulls, Y. Ono, V. Lepetit, M. Salzmann, and P. Fua. “Learning to Find Good Corre-
spondences”. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE. 2018
(cit. on pp. 58, 59).

[235] Z. Yin and J. Shi. “Geonet: Unsupervised learning of dense depth, optical flow and camera
pose”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018,
pp. 1983–1992 (cit. on p. 10).

[236] S. Zakharov, W. Kehl, B. Planche, A. Hutter, and S. Ilic. “3D Object Instance Recognition and
Pose Estimation Using Triplet Loss with Dynamic Margin”. In: Proceedings of the International
Conference on Intelligent Robots and Systems. 2017 (cit. on pp. 26, 27, 31, 32, 34, 36, 37, 40, 90).

146 Bibliography



[237] S. Zakharov, B. Planche, Z. Wu, A. Hutter, H. Kosch, and S. Ilic. “Keep it unreal: Bridging the
realism gap for 2.5 d recognition with geometry priors only”. In: 2018 International Conference
on 3D Vision (3DV). IEEE. 2018, pp. 1–11 (cit. on p. 27).

[238] S. Zakharov, I. Shugurov, and S. Ilic. “Dpod: 6d pose object detector and refiner”. In: Proceedings
of the IEEE International Conference on Computer Vision. 2019, pp. 1941–1950 (cit. on p. 6).

[239] A. R. Zamir, T. Wekel, P. Agrawal, C. Wei, J. Malik, and S. Savarese. “Generic 3d representation
via pose estimation and matching”. In: European Conference on Computer Vision. Springer. 2016,
pp. 535–553 (cit. on p. 26).

[240] H. Zen and A. Senior. “Deep mixture density networks for acoustic modeling in statistical
parametric speech synthesis”. In: 2014 IEEE international conference on acoustics, speech and
signal processing (ICASSP). IEEE. 2014, pp. 3844–3848 (cit. on p. 91).

[241] W. Zhang and C. Xiao. “PCAN: 3D attention map learning using contextual information for point
cloud based retrieval”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2019, pp. 12436–12445 (cit. on p. 25).

[242] Z. Zhang, T. Sattler, and D. Scaramuzza. “Reference Pose Generation for Visual Localization via
Learned Features and View Synthesis”. In: arXiv preprint arXiv:2005.05179 (2020) (cit. on p. 87).

[243] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. “Learning deep features for scene
recognition using places database”. In: Advances in neural information processing systems. 2014,
pp. 487–495 (cit. on p. 23).

[244] L. Zhou, Z. Luo, T. Shen, et al. “KFNet: Learning Temporal Camera Relocalization using Kalman
Filtering”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2020, pp. 4919–4928 (cit. on p. 54).

[245] Q.-Y. Zhou, J. Park, and V. Koltun. “Open3D: A Modern Library for 3D Data Processing”. In:
arXiv:1801.09847 (2018) (cit. on p. 102).

[246] Q. Zhou, T. Sattler, M. Pollefeys, and L. Leal-Taixe. “To Learn or Not to Learn: Visual Localization
from Essential Matrices”. In: IEEE International Conference on Rootics and Automation (2020)
(cit. on p. 72).

[247] Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li. “On the continuity of rotation representations
in neural networks”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2019, pp. 5745–5753 (cit. on pp. 41, 114).

[248] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. “Unpaired image-to-image translation using cycle-
consistent adversarial networks”. In: Proceedings of the IEEE international conference on computer
vision. 2017, pp. 2223–2232 (cit. on p. 27).

[249] M. Zolfaghari, Ö. Çiçek, S. M. Ali, F. Mahdisoltani, C. Zhang, and T. Brox. “Learning Repre-
sentations for Predicting Future Activities”. In: arXiv preprint arXiv:1905.03578 (2019) (cit. on
p. 91).

Bibliography 147





List of Figures

1.1 Perception of the vehicle’s environment and its localization are core requirements
for autonomous control and navigation. Images are adapted from the KITTI
Dataset [70]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Mapping from 3D world to a 2D image using the camera pinhole model. The
extrinsic parameters, R and t, of a camera describe the transformation between
world and camera coordinate frame, whereas its intrinsic matrix K relates the
information of 3D points to the 2D image plane. . . . . . . . . . . . . . . . . . . 15

3.1 General image retrieval pipeline. Common retrieval methods rely on feature
matching between the query and a pre-computed database to retrieve the nearest
neighbor and thus most likely match or label. Features originally were mostly
hand-crafted to extract specific information such as edges and strong gradients.
Recently the use of learned feature representations have shown to be superior in
a number of applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Example images of the same location under varying illumination conditions of the
Tokyo 24/7 dataset [216]. In a retrieval application, extracted features should
be invariant to such conditions and produce similar descriptors for successful
matching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Given an input depth image patch Xi, we create corresponding triplets (Xi,Xj ,Xk)
and pairs (Xi,Xj) to optimize our model on both manifold embedding, creating
robust feature descriptors, and pose regression. Obtaining either a direct pose
estimate q or using the resulting feature descriptor for nearest neighbor search in
the descriptor database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Example patches for our a) synthetically rendered training and b) real test sets. 32

4.3 Sampling points for different objects types: vertices represent camera positions
from which the object is rendered. We choose different sampling strategies for
symmetric as well as rotation invariant objects to handle ambiguous viewpoints. 33

4.4 Example depth and RGB renderings with augmented noise as background infor-
mation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5 Query patch and its top five retrieved nearest neighbors from the database ob-
tained from our method NNours when trained and evaluated on depth information. 37

4.6 Feature visualization using left: PCA and right: t-SNE [132] for five objects of the
LineMOD [90] dataset. Object classes are used for color coding. By using a multi-
task learning framework, we are able to improve feature descriptors learned for
object pose estimation resulting in a well clustered feature representation. . . . 38

4.7 Average time and median angular error of nearest neighbor pose retrieval, re-
gression and our approach evaluated on the LineMOD dataset. . . . . . . . . . . 39

149



4.8 Sensitivity of λ in our loss function LMTL = (1 − λ)Lpose + λLd. Depicted is
the influence of different weighting parameters on the mean angular error for
regression as well as nearest neighbor pose retrieval. . . . . . . . . . . . . . . . 40

4.9 Query patch and its top five retrieved nearest neighbors from the database
obtained by our method NNours when trained on RGB information. . . . . . . . 41

4.10 Example images of the Tokyo 24/7 dataset. (Columns) At each viewpoint images
are taken during daytime, sunset and night. (Rows) Further, at each GPS location
the viewpoint of the camera is changed, resulting in highly different images with
similar location labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.11 Example Triplet of the Tokyo 24/7 dataset. a) The anchor image depicted at
sunset, b) shows an image taken at the same location but under very different
illumination conditions, i.e. night and daytime, and, c) an image taken at a
different GPS location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.12 Query patch and its top ten retrieved nearest neighbors from the database
obtained by our method NNours and the baseline NN. . . . . . . . . . . . . . . . 46

5.1 Structure-based methods rely on point correspondences between a 2D image view
and the 3D scene to estimate the corresponding camera pose. Correct matches,
most commonly called inliers can provide highly accurate camera pose estimates,
whereas outlier hinder such computation. . . . . . . . . . . . . . . . . . . . . . 52

6.1 Outline of our re-localization framework. Scene coordinates, Xw, are densely
regressed for each pixel in the input RGB image. Confidences, δ, are predicted
for a subset of the point correspondences and finally used to compute the camera
pose estimate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2 Normalized histograms of the regressed scene coordinate errors on the 7-Scenes
dataset. A random subset of points as well as, the most confident points, as
indicated by our model, out of the randomly drawn samples is shown. Results
indicate that our method can successfully identify outliers and provide confidence
values according to the quality of regressed correspondences. . . . . . . . . . . 61

6.3 a) ROC comparison between regression and classification for the task of confi-
dence prediction on the training images of the Heads and Stairs scenes. Example
images showing b) an input RGB, c) a color-coded corresponding pixel-wise
scene coordinate error map computed with respect to the ground truth and d) a
confidence map for each pixel predicted by our model. . . . . . . . . . . . . . . 62

6.4 Quality of camera pose estimates with respect to the ground truth when correspon-
dences are randomly sampled in comparison to the proposed confidence-based
sampling. Reported are the median rotation and translation errors per scene of
the 7-Scenes dataset, showing a clear improvement when using the proposed
sampling strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.1 General pipeline for relative pose estimation methods. Features are extracted for
the training images to form a database of features and associated pose labels. For
a given query image the nearest neighbor in the feature space is retrieved and
with the nearest neighbor image and the query fed to a neural network that is
trained to predict the relative camera motion between two frames. The nearest
neighbor pose is then updated with the relative motion resulting in the estimated
camera pose of the query. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

150 List of Figures



8.1 Schematic overview over the ICP algorithm. The alignment of two models is
computed by estimating the transformation between them in an iterative fashion.
Each iteration consists of two steps, point matching (based on their distance) and
transformation optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.2 Given an RGB image, a corresponding camera pose is estimated with a pose
regression network. Alongside the estimated pose, a feature representation of
the corresponding image is extracted and used to train a discriminator network.
This network is trained to distinguish between ground truth and regressed poses
considering the input image and can then be leveraged to refine the regressed
camera pose. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8.3 Normalized histograms of rotation and translation errors before and after pose
refinement on the Heads scene. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.4 RGB input images (second row) and the corresponding camera poses (first row),
visualized in a reconstruction of the given scene. . . . . . . . . . . . . . . . . . 83

8.5 Effect of different numbers of iterations as well as step sizes on the median
rotation and translation errors for the proposed refinement, shown on the Heads
scene. Our refinement can significantly improve the localization accuracy even in
a few iterations of optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

9.1 In a highly ambiguous environment, similar looking views can easily confuse
current camera pose regression models and lead to incorrect localization results.
Instead, given a query RGB image, our aim is to predict the possible modes
as well as the associated uncertainties, which we model by the parameters of
Bingham and Gaussian mixture models. . . . . . . . . . . . . . . . . . . . . . . 89

9.2 Example 2D visualizations of Bingham distributions for varying concentration
parameters λ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

9.3 Subset of the objects from the TLess dataset used for evaluating our model on
orientation estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

9.4 Predicted Bingham distributions of our unimodal modal. The resulting predictions
correlate with the level of uncertainty or symmetry of the object. Symmetries
and ambiguous views result in high uncertainty in the corresponding rotation
whereas structural details can lead to non-ambiguous views that the model can
resolve and predict with high certainty. . . . . . . . . . . . . . . . . . . . . . . . 99

9.5 a) Uncertainty analysis on the five objects of the TLess dataset. By gradually
removing samples with high entropy, a corresponding decrease in mean angular
error of the predictions can be observed. b) Analysis of single versus multimodal
model predictions, showing the ratio of correctly estimated rotations (y-axis)
corresponding to various thresholds in degrees (x-axis). . . . . . . . . . . . . . 99

9.6 Forward pass of our network. For an input RGB image we predict K camera pose
hypotheses as well as Bingham concentration parameters, Gaussian variances
and component weights to obtain a mixture model. . . . . . . . . . . . . . . . . 100

9.7 Ground truth training and test camera trajectories of our real ambiguous scenes
and example RGB images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

List of Figures 151



9.8 Uncertainty evaluation on the 7-Scenes and Cambridge Landmarks datasets,
showing the correlation between predicted uncertainty and pose error. Based
on the entropy of our predicted distribution uncertain samples are gradually
removed. We observe that as we remove the uncertain samples the overall error
drops indicating a strong correlation between our predictions and the actual
erroneous estimations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9.9 Renderings of the top five camera pose hypotheses according to their uncertainty
values for our Bingham-MDN and MHP version, Ours-RWTA. Further we show
the corresponding ground truth query images as well as the intersection over
union of the ground truth and predicted renderings. . . . . . . . . . . . . . . . 105

9.10 Change in uncertainty prediction in the presence of increasing image blur. For
varying kernel sizes of a Gaussian filter used to blur the input images, we compute
the average uncertainty over all images obtained from the predictions of our
model. Reported here are the normalized values. . . . . . . . . . . . . . . . . . 107

9.11 Qualitative results on our synthetic dining table dataset. Camera poses are colored
according to their uncertainty. Viewpoints are adjusted for best perception. . . . 108

9.12 Additional qualitative results of our synthetically created round table dataset. If
available, camera poses are colored by their uncertainty. . . . . . . . . . . . . . 108

9.13 Bingham distributions plotted on the unit sphere. Single model predictions
with low uncertainty, higher uncertainty and the mixture model of Ours-RWTA
evaluated on the Blue Chairs scene of our ambiguous real scenes dataset. . . . . 109

9.14 Qualitative results in our ambiguous dataset. For better visualization, if available,
camera poses have been pruned by their uncertainty values. . . . . . . . . . . . 109

9.15 Qualitative results of our model on the ambiguous scenes dataset, Staircase
Extended scene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

9.16 Influence of the number of hypotheses, i.e. parameter K, on the performance of
our method, Ours-RWTA. We present the ratio of correctly predicted poses under
varying parameter values of K. . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

9.17 Symmetric objects under rotations around their axis of symmetry introduce
ambiguous views, that can result in erroneous predictions of deep learning models. 115

9.18 Multiple hypotheses predictions of our network. The first column shows the
object viewed from ground truth pose. The remaining columns show predicted
poses (represented as a local reference frame) and the corresponding rotated
object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

152 List of Figures



List of Tables

4.1 Angular error of the baseline method (NN), direct orientation regression (R)
and our multi-task learning approach (Rours, NNours) as well as classification
accuracy. The results indicate that a model trained to perform recognition as well
as regression benefits from both tasks, which is reflected in its performance. . . 36

4.2 Influence of the network architecture on the performance of our method. A
comparison between the classification and angular accuracy of the baseline
method, NN, and our results on fifteen objects of the LineMod dataset is reported. 37

4.3 Angular error of the baseline method (NN), regression (R) and our approach
(Rours, NNours) for different input modalities, i.e. only RGB, only depth or both,
RGB-D. We report the results on our subset of 10 objects from the LineMOD dataset. 40

4.4 Angular error of our approach (Rours, NNours) for different rotation parameter-
izations. We report the results on our subset of ten objects from the LineMOD
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Percentage of correctly localized query images for ours and the baseline method
on the Tokyo 24/7 dataset. With our learned feature representation we are able
to improve upon the baseline method by a large margin. . . . . . . . . . . . . . 45

4.6 Percentage of correctly localized query images for ours and the baseline method
on the Symphony Seasons dataset. A localized image is considered correct if the
predicted location is within 10 meters of the ground truth. . . . . . . . . . . . . 46

6.1 Median rotation and translation error on the Heads scene for our baseline models.
Camera pose estimates are computed using Kabsch algorithm for 3D-3D or PnP
for 2D-3D correspondences. Results are computed using hp number of pose
hypotheses without any further refinement. In addition, the percentage of inliers
for a set of correspondences used to compute a single pose hypothesis is reported. 62

6.2 Median rotation and translation error on the 7-Scenes dataset in degrees and cm
of the state of the art and our method. Percentages are given for poses below 5◦

and 5cm threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8.1 Effect of adversarial training and pose refinement on the camera pose accuracy,
evaluated on the Heads scene. Median rotation and translation errors are reported.
Optimizing the camera pose regression network with the adversarial loss results in
an improvement in accuracy, which is further increased by our proposed camera
pose refinement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.2 Relative decrease, in percentage, of the median rotation and translation error
after refinement in comparison to initially regressed poses. Evaluated are different
network architectures used to obtain a feature representation of the RGB image
input, showing the influence of the feature extractor on the proposed refinement.
Higher values correspond to improved pose accuracy. . . . . . . . . . . . . . . . 85

153



8.3 Computational times for our pipeline as well as each individual step, initial pose
regression, feature extraction and subsequent iterative pose refinement for thirty
iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8.4 Comparison between recent state-of-the-art direct camera pose regression meth-
ods and our results without (Ours) and with pose refinement (Ours+Ref.). Fol-
lowing the state of the art, displayed is the median rotation and translation error
in meter and degrees evaluated on the 7-Scenes dataset. . . . . . . . . . . . . . 86

9.1 Spatial extent of our newly created ambiguous scenes dataset in meter. . . . . . 102
9.2 Summary of the provided information by the baseline and our methods. Direct

regression, such as PoseNet, does not provide uncertainty information or multiple
hypotheses, whereas MC-Dropout only includes per pose uncertainty. Except
for our unimodal model, our model provides multiple hypotheses as well as per
hypothesis uncertainty estimation. . . . . . . . . . . . . . . . . . . . . . . . . . 103

9.3 Evaluation in non-ambiguous scenes, displayed is the median rotation and trans-
lation error on the 7-Scenes dataset. . . . . . . . . . . . . . . . . . . . . . . . . 103

9.4 Evaluation in non-ambiguous scenes, displayed is the median rotation and trans-
lation error on the Cambridge Landmarks dataset, where numbers for MapNet
are taken from [193]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

9.5 Ratio of correct poses for several thresholds, evaluated on our ambiguous scenes
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

9.6 Ratio of correctly detected modes for various translational thresholds. The
threshold for rotation is set to 15.0 ◦. . . . . . . . . . . . . . . . . . . . . . . . . 106

9.7 Comparison between different MHP variants, RWTA [182] and EWTA [133], and
Bingham-MDN, averaged over all scenes. . . . . . . . . . . . . . . . . . . . . . . 110

9.8 Averaged ratio of correct poses for different backbone networks over all scenes of
our real ambiguous scenes dataset. . . . . . . . . . . . . . . . . . . . . . . . . . 110

9.9 Inference time of our method, Ours-RWTA, with respect to the number of hypothesis.111
9.10 Ratio of correct poses on our ambiguous scenes for several thresholds. We report

the results of our Ours-RWTA and Ours-MBDN+RWTA for several number of
hypotheses K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

9.11 SEMD of our methods indicating highly diverse predictions. . . . . . . . . . . . 112
9.12 Influence for different distance functions on the MHP training scheme. We report

the average recall over all scenes in our ambiguous scene dataset for different
thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

9.13 Ratio of correct poses for several thresholds of Gram-Schmidt (G), Skew-Symmetric
(S) and Birdal et al.(B) methods to construct V. . . . . . . . . . . . . . . . . . . 113

9.14 Ratio of correct poses when using the continuous 6d representation of [247] in
order to model rotations instead of a Bingham distribution on the quaternion. . 114

9.15 Point cloud pose estimation results on ModelNet10. We report the chamfer
distance, where we scale the values by 102 for better presentation. . . . . . . . . 116

154 List of Tables




	Titlepage
	Abstract
	Acknowledgments
	I Introduction and Fundamentals
	1 Introduction
	1.1 Motivation
	1.2 Applications
	1.2.1 Virtual and Augmented Reality
	1.2.2 Robotic Navigation and Grasping
	1.2.3 Simultaneous Localization and Mapping
	1.2.4 Autonomous Driving

	1.3 Thesis Outline

	2 Mathematical Background
	2.1 Rotation Parameterization
	2.2 Projective Geometry
	2.3 Rigid Transformations
	2.4 3D/3D and 2D/3D Camera Pose Estimation
	2.5 Error Metrics


	II Pose Estimation with Image-Retrieval
	3 Introduction
	3.1 Motivation
	3.2 Related Work
	3.2.1 Place Recognition and Camera Pose Estimation
	3.2.2 Object Recognition and Pose Estimation


	4 Manifold Learning with Regression Optimization
	4.1 Methodology
	4.1.1 Pose Regression
	4.1.2 Descriptor Learning

	4.2 Experimental Setup
	4.2.1 Dataset Generation
	4.2.2 Implementation Details
	4.2.3 Baseline Models
	4.2.4 Evaluation Metrics

	4.3 Evaluation
	4.3.1 Comparison to the Baseline Methods
	4.3.2 Qualitative Evaluation
	4.3.3 Influence of Network Architecture
	4.3.4 Feature Visualization
	4.3.5 Scalability
	4.3.6 Sensitivity to Regularization Parameter 
	4.3.7 Effect of the Input Modality
	4.3.8 Influence of Rotation Parameterization
	4.3.9 Remarks on Object Pose Estimation

	4.4 Evaluation on Place Recognition
	4.4.1 Experimental Setup
	4.4.2 Experiments

	4.5 Conclusion


	III Structure-Based Pose Estimation
	5 Introduction
	5.1 Motivation
	5.2 Related Work

	6 Coordinate Regression with Confidence Learning
	6.1 Methodology
	6.1.1 Scene Coordinate Regression
	6.1.2 Confidence Prediction
	6.1.3 Pose Estimation and Refinement
	6.1.4 Implementation Aspects

	6.2 Experiments
	6.2.1 Dataset
	6.2.2 Baseline Models
	6.2.3 Evaluation of Baseline Models
	6.2.4 Evaluation of Confidence Prediction
	6.2.5 Comparison to the State of the Art

	6.3 Remarks and Conclusion


	IV Direct Pose Regression
	7 Introduction
	7.1 Motivation
	7.2 Related Work
	7.2.1 Absolute Pose Estimation
	7.2.2 Relative Pose Estimation


	8 Learning Pose Refinement
	8.1 Motivation
	8.2 Background
	8.2.1 Camera Pose Refinement
	8.2.2 Generative Adversarial Networks

	8.3 Related Work
	8.4 Methodology
	8.5 Experiments and Evaluation
	8.5.1 Adversarial Learning
	8.5.2 Pose Refinement
	8.5.3 Influence of Feature Extractor
	8.5.4 Runtime Evaluation
	8.5.5 Comparison to the State of the Art

	8.6 Disscusion and Conclusion

	9 Uncertainty-Aware Multimodal Pose Regression
	9.1 Motivation
	9.2 Related Work
	9.3 The Bingham Distribution
	9.4 Continuous Multimodal Inference
	9.5 Evaluation Tools
	9.6 Orientation Estimation
	9.7 Camera Pose Estimation
	9.7.1 Datasets
	9.7.2 Baselines
	9.7.3 Experiments and Results

	9.8 Point Cloud Pose Estimation
	9.9 Conclusion


	V Discussion and Conclusion
	10 Discussion and Conclusion
	10.1 Summary
	10.2 Limitations and Future Work
	10.3 Conclusion


	VI Appendix
	A List of Publications
	B Additional Publications
	C Abstracts of Additional Publications
	Bibliography
	List of Figures
	List of Tables


