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Mixing times for the simple exclusion process in
ballistic random environment
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Abstract

We consider the exclusion process on segments of the integers in a site-dependent
random environment. We assume to be in the ballistic regime in which a single particle
has positive linear speed. Our goal is to study the mixing time of the exclusion process
when the number of particles is linear in the size of the segment. We investigate the
order of the mixing time depending on the support of the environment distribution.
In particular, we prove for nestling environments that the order of the mixing time is
different than in the case of a single particle.
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1 Introduction

The exclusion process is one of the most studied examples of an interacting particle
system. Intuitively, it can be described in the following way: Suppose that we are given
a graph and a set of indistinguishable particles, which we initially place on distinct sites
of the graph. Each particle independently performs a random walk on the graph. If a
particle would move to a site, which is already occupied by another particle, then the
move is suppressed. A variety of situations such as cars in a traffic jam or molecules in a
low-density gas can be modeled by the exclusion process. For a general introduction to
the exclusion process we refer to Liggett [14].

In the following, we assume that the underlying graph is a segment of the integers.
We call the resulting process the simple exclusion process. Seen as an ergodic Markov
process, our goal is to understand the speed of convergence towards the stationary
distribution. More precisely, we are interested in understanding the mixing times. A
comprehensive introduction to mixing times can be found in the book of Levin, Peres
and Wilmer [12] which also treats the case of the simple exclusion process with constant
transition rates. In this paper, we consider the case, where the transition rates of the
simple exclusion process are chosen i.i.d. according to some fixed distribution.
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Mixing times for SEP in random environment

1.1 The model

First, we define the simple exclusion process on finite boxes of Z in fixed environment.
The simple exclusion process in environment ω = {ω(x)}x∈{1,...,N} on a segment of
size N with k particles is a Feller process (ηt)t≥0 with state space ΩN,k for

ΩN,k :=

{
η ∈ {0, 1}N :

N∑
x=1

η(x) = k

}
and generator

Lf(η) =

N−1∑
x=1

ω(x) η(x)(1− η(x+ 1))
[
f(ηx,x+1)− f(η)

]
+

N∑
x=2

(1− ω(x)) η(x)(1− η(x− 1))
[
f(ηx,x−1)− f(η)

]
where ω(x) ∈ (0, 1] for all x ∈ {1, . . . , N}. Here, ηx,y denotes the configuration where we
exchange the values at positions x and y in η. For a configuration η, we say that a site
x is occupied by a particle if η(x) = 1 and vacant otherwise. A particle at a vertex x
moves to the right at rate ω(x) and to the left at rate 1 − ω(x) whenever the target is
a vacant site. For the exclusion process on ΩN,k in a random environment, we choose
the transition probabilities {ω(x)}x∈{1,...,N} to be i.i.d. according to some probability
distribution on (0, 1] and denote the law of the environment by P. Since ω(x) ∈ (0, 1] for
all x ∈ {1, . . . , N}, the simple exclusion process has a unique essential class and so a
unique stationary distribution πNω . We denote the quenched law of the exclusion process
in a fixed environment ω with starting distribution λ by Pω,λ. If λ is the Dirac measure
on some configuration ψ ∈ ΩN,k, we will write Pω,ψ. Define the (quenched) ε-mixing
time of the exclusion process (ηt)t≥0 to be

tω,Nmix (ε) := inf

{
t ≥ 0 : max

ψ∈ΩN,k
‖Pω,ψ (ηt ∈ · )− πNω ‖TV < ε

}
for ε ∈ (0, 1), where ‖ · ‖TV denotes the total-variation distance between two probability
measures. We will refer to tNmix := tω,Nmix ( 1

4 ) simply as the mixing time. Our goal is to
study the order of tNmix when N goes to infinity. Before we come to the main results, we
give some remarks on the notation. We will write [N ] instead of {1, . . . , N} for N ∈ N.
For asymptotic estimates, we use the Landau notation with respect to N . For functions
f, g : N→ R we have that

f = O(g) ⇔ ∃c > 0 s.t. lim sup
N→∞

∣∣∣∣f(N)

g(N)

∣∣∣∣ ≤ c (1.1)

and

f = Ω(g) ⇔ ∃c > 0 s.t. lim inf
N→∞

∣∣∣∣f(N)

g(N)

∣∣∣∣ ≥ c . (1.2)

We write f = Θ(g) if and only if f = Ω(g) and f = O(g) holds. Moreover, we have that
f = o(g) if (1.1) is satisfied for all c > 0. We say that an asymptotic estimate holds with
high probability if for some fixed c > 0, the respective inequality in (1.1) or (1.2) holds
with probability tending to one.

1.2 Main results

For the rest of this article, assume that the number of particles k = k(N) satisfies

0 < lim inf
N→∞

k(N)

N
≤ lim sup

N→∞

k(N)

N
< 1 .
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Mixing times for SEP in random environment

We present now our main results on the mixing time of the simple exclusion process in a
random environment.

Theorem 1.1. Let (ηt)t≥0 denote the simple exclusion process in random environment
ω with state space ΩN,k and mixing time tNmix. Further, assume that

E

[
1− ω(1)

ω(1)

]
< 1 (1.3)

holds, i.e. we are in the ballistic regime for a random walk in random environment with
a drift to the right-hand side, see [20]. We distinguish three different cases:

(i) Non-nestling case: If we have that

P

(
ω(1) ≥ 1

2
+ ε

)
= 1 (1.4)

for some ε > 0, then it holds that tNmix = Θ(N) for almost all environments.

(ii) Marginal nestling case: Assume that

P

(
ω(1) ≥ 1

2

)
= 1 (1.5)

holds, but (1.4) is not satisfied.

(a) There exists a function f : N→ R+ with lim
N→∞

f(N) =∞ such that

lim
N→∞

P
(
tNmix ≤ f(N)N

)
= 0 (1.6)

holds. If we have in addition that

P

(
ω(1) =

1

2

)
> 0 (1.7)

holds, then f can be chosen to be in Θ(log(N)).
(b) For all environments which satisfy (1.5), we have that tNmix = O(N log3(N))

holds with high probability.

(iii) Plain nestling case: If we have that

P

(
ω(1) <

1

2

)
> 0 (1.8)

then it holds with high probability that tNmix = Ω(N1+δ) for some δ > 0 depending
only on the environment distribution.

1.3 Related work

Mixing times for particle systems were intensively studied during the last decades.
For the simple exclusion process in homogeneous environments, i.e. if

P (ω(1) = p) = 1

holds for some constant p ∈ [0, 1], mixing properties are well-understood. For p = 1
2 , we

obtain the symmetric simple exclusion process. In 2001, Wilson introduced his famous
lower bound technique which allowed him to estimate the mixing time, which is of order
N2 log(min(k,N − k)), within a factor of 2 provided that limN→∞min(k,N − k) = ∞,
see [19]. His proof is based on an explicit calculation of the spectral gap and the
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Mixing times for SEP in random environment

corresponding eigenfunction of the transition matrix using Fourier analysis. Lacoin
proved that Wilson’s presented lower bound is tight [9]. Moreover, he showed that the
cutoff phenomenon, a sharp transition in the distance from the stationary distribution,
occurs whenever limN→∞min(k,N − k) =∞ holds.

For p 6= 1
2 , we refer to the resulting process as asymmetric simple exclusion process

(ASEP). Benjamini et al. studied the mixing time of the ASEP in the context of biased
card shuffling and showed that it is asymptotically of order N for any number of particles
k ∈ [N − 1], see [1]. We will follow their approach for an upper bound on the mixing
time in the marginal nestling case. Labbé and Lacoin refined this bound for the ASEP
and proved cutoff, see [7]. The proof relies on an explicit calculation of the spectral gap
which was independently obtained by Levin and Peres [11]. They studied the mixing
time of the ASEP when the bias vanishes for N going to infinity. Recently, cutoff results
were established in this regime by Labbé and Lacoin [8].

For general (edge-)weighted graphs G = (V,E), one can consider the exclusion
process in which particles jump to a neighbor site according to the rates given by the
weights on the corresponding edge. This is known as the varying speed model of the
exclusion process. Oliveira showed that the mixing time of the exclusion process is in
O
(
tRmix · log (|V |)

)
, where tRmix denotes the mixing time of the random walk on G, see [16].

Recently, this result was improved by Hermon and Pymar [4].

In this article, we investigate the case of one-dimensional i.i.d. environments in which
the particles move at a constant speed. For a single particle, this is the classical model of
a random walk in random environment, which was studied by Kesten, Kozlov, Solomon,
Spitzer among others, see [6, 18, 20]. If in addition condition (1.3) holds, the resulting
process is called the random walk in ballistic random environment. In this case, Gantert
and Kochler proved that the mixing time is with high probability linear in the size of the
underlying segment. Moreover, they showed that cutoff occurs [3].

For the simple exclusion process in ballistic random environment, results on the
mixing time were so far only available in the non-nestling case. For any (deterministic)
environment with a uniform bound on the drift, Miracle and Streib showed that the
mixing time is linear in the size of the segment using path coupling, see [15].

1.4 Outline of the paper

This paper is organized as follows. In the remainder of the first section we give an
outlook on open problems on mixing times of the simple exclusion process. The different
parts of our main result will be shown in Sections 2 to 5. In the second section, we
exploit the structure of the state space ΩN,k and define the canonical coupling for the
exclusion process in non-homogeneous environments. This allows us to directly deduce
Theorem 1.1 (i) in Section 3. In Section 4, the lower bounds on the mixing time for
nestling environments are established. As a key step, we identify an area of small drift
and then use a comparison to the boundary driven exclusion process. A corresponding
upper bound is shown in the following section. Using the censoring inequality, we control
the particle speed within the simple exclusion process. We then reduce the statement on
the upper bound of the mixing time to a hitting time estimate, which we solve recursively.

1.5 Open problems

In this article, we give bounds on the mixing time for the simple exclusion process in
ballistic random environment. However, we can only give the correct order of the mixing
time in the non-nestling case.

Question 1.2. What are the correct orders of the mixing time in the ballistic regime?

In Remark 4.8, we will point out that the presented methods lead to lower bounds of
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order at most N
3
2 .

Conjecture 1.3. For any ballistic random environment, the mixing time of the respective
exclusion process is with high probability at most of order N

3
2 .

For the random walk in random environment, Gantert and Kochler showed the cutoff
phenomenon in the ballistic regime [3].

Question 1.4. Does the exclusion process in the ballistic regime exhibit cutoff?

In the varying speed model for weighted graphs G = (V,E), the mixing time of the
exclusion process differs from the mixing time of the random walk on G by at most
a factor of order log(|V |), see [16]. Theorem 1.1 (iii) shows that this relation does in
general not hold in our model, the constant speed model of the exclusion process.

Question 1.5. Does a similar relation as shown by Oliveira in [16] hold for the constant
speed model of the exclusion process?

2 Canonical coupling for the exclusion process

We now want to exploit the structure of the state space ΩN,k. We define a partial
order on ΩN.k by

η � ζ ⇔
J∑
j=1

η(j) ≤
J∑
j=1

ζ(j) for all J ∈ [N ] (2.1)

for configurations η, ζ ∈ ΩN,k. In other words, we say that η � ζ if and only if the ith

particle in η is to the right of the ith particle in ζ for all i ∈ [k] where the particles are
counted from the left-hand side to the right-hand side. Observe that for any k,N ∈ N
with k ∈ [N − 1], we have unique minimal and maximal elements ϑN,k and θN,k on the
state space ΩN,k given by

ϑN,k(i) := 1{i>N−k} (2.2)

θN,k(i) := 1{i≤k} (2.3)

for all i ∈ [N ]. We call ϑN,k the ground state on ΩN,k. This terminology refers to ϑN,k
being the unique state of minimal energy in the potential associated to the environment
in the non-nestling case. For homogeneous environments, it is straightforward to give
a grand coupling which respects this partial order on ΩN,k. For general environments,
we will now define such a coupling which is inspired by the ideas of Lacoin’s proof of
the cutoff phenomenon for the symmetric simple exclusion process, see [9, Section 8.1].
We call this the canonical coupling of the simple exclusion process and denote by P

the associated probability measure. The canonical coupling will be defined with respect
to a common space for all initial conditions and all environments. It will be monotone
for the partial order on ΩN,k as well as for the partial order on the set of all possible
environments given by

ω � ω̄ ⇔ 1− ω(x) ≤ 1− ω̄(x) ∀x ∈ [N ] (2.4)

for environments ω and ω̄. Constructively, we obtain a pair (ηt, ζt)t≥0 in the canonical cou-
pling of the exclusion processes (ηt)t≥0 and (ζt)t≥0 in environments ω and ω̄, respectively,
as follows:
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Place exponential-2-clocks on all vertices x ∈ [N ]. Whenever a clock rings at a site x
at time t, we flip a fair coin and sample a Uniform-[0, 1] random variable U indepen-
dently. If the coin shows HEAD and x 6= N , then we proceed according to U as follows:

If U ≤ ω(x) and ηt(x) = 1 − ηt(x + 1) = 1 hold, we move the particle from site x to
site x + 1 in ηt. If U ≤ ω̄(x) as well as ζt(x) = 1 − ζt(x + 1) = 1 are satisfied, then
move the particle from site x to site x+ 1 in configuration ζt.

We apply the following update rule when the coin shows TAIL and x 6= 1:

If U > ω(x) and ηt(x) = 1 − ηt(x − 1) = 1 hold, we move the particle from site x to
site x − 1 in ηt. If U > ω̄(x) as well as ζt(x) = 1 − ζt(x − 1) = 1 are satisfied, then
move the particle from site x to site x− 1 in configuration ζt.

If none of the rules applies, we leave the current configuration unchanged.

The following lemma is immediate from the construction of the canonical coupling.

Lemma 2.1. Let (ηt)t≥0 and (ζt)t≥0 be exclusion processes in environments ω and ω̄,
respectively, according to the canonical coupling. If η0 � ζ0 and ω � ω̄, it holds that

P (ηt � ζt ∀t ≥ 0) = 1 .

3 Mixing times for non-nestling environments

In order to show Theorem 1.1 (i), we compare the exclusion process in random
environment ω to an exclusion process in constant environment using Lemma 2.1. We
define the hitting time τϑN,k of the ground state ϑN,k for an exclusion process (ηt)t≥0

to be

τϑN,k := inf (t ≥ 0: ηt = ϑN,k) . (3.1)

The hitting time is related to the mixing time as follows.

Proposition 3.1. Let tNmix and τϑN,k denote the mixing time and the hitting time of the
exclusion process (ηt)t≥0 in environment ω, respectively. If

Pω,θN,k
(
τϑN,k ≥ s

)
≤ 1

4
(3.2)

holds for some s ≥ 0, then tNmix ≤ s.

Proof. Since the states ϑN,k and θN,k are extremal with respect to a monotone coupling,
the hitting time serves as a bound for the coupling time of all initial states. Hence, the
statement follows from Corollary 5.5 of [12] which allows us to control the mixing time
in terms of the coupling time.

Proof of Theorem 1.1 (i). Let (ηt)t≥0 denote the simple exclusion process in environment
ω, where ω satisfies (1.4). Let (ζt)t≥0 be the exclusion process with respect to a constant
environment ω̄ given by

P
(
ω̄(x) =

1

2
+ ε
)

= 1

for all x ∈ [N ] and ε > 0 taken from assumption (1.4). Benjamini et al. showed that the
hitting time τϑN,k for the process (ζt)t≥0 satisfies

Pω̄,θN,k
(
τϑN,k > CN

)
≤ 1

4
(3.3)
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for all N ∈ N and some C > 0 depending only on ε, see [1, Theorem 1.9]. From Lemma
2.1, we obtain that the process (ηt)t≥0 is almost surely dominated by (ζt)t≥0 when we
start both processes from configuration θN,k. Hence, for almost all environments ω, the
process (ηt)t≥0 satisfies assumption (3.2) of Proposition 3.1 for s = CN and we obtain
the desired upper bound. It is straightforward to verify that a corresponding lower
bound of order N holds almost surely, e.g. one can consider the position of the rightmost
particle in the exclusion process with initial configuration θN,k and compare it to the
position of the rightmost particle in equilibrium.

4 Lower bounds for nestling environments

In order to show the lower bounds in (ii) and (iii) of Theorem 1.1, we first study the
stationary distribution for the exclusion process in more detail. In Section 4.2, we prove
a lower bound of order N log(N) for environments where P

(
ω(1) ≤ 1

2

)
> 0. We extend

this result in Section 4.3 for marginal nestling and in Section 4.4 for plain nestling
environments. In all parts, we assume that (1.3) holds for all environments as well as
that 2k ≤ N as we can exchange the roles of particles and empty sites otherwise.

4.1 Stationary distribution for ballistic random environments

In this section, we investigate the stationary distribution for the exclusion process in
a ballistic random environment. For a configuration η ∈ ΩN,k, let zi denote the position
of the ith leftmost particle. Whenever ω(x) ∈ (0, 1) for all x ∈ [N ] in a fixed environment
ω, we can check reversibility to see that the respective stationary distribution for the
exclusion process in ω is given by

πNω (η) =
1

Z

k∏
i=1

zi−1∏
x=1

ω(x)

1− ω(x+ 1)
, (4.1)

where Z is a normalizing constant. Using this explicit form of the stationary distribution,
Lemma 4.1 provides a set of configurations which has with high probability (with respect
to the environment law P) an exponentially small probability under the stationary
distribution πNω . For the proof, we follow the arguments which were used to show
Proposition 11 in [11].

Lemma 4.1. Let (ηt)t≥0 denote the exclusion process in ballistic random environment ω
with stationary distribution πNω and define

A :=

{
∃x ≤ N

4
s.t. η(x) = 1

}
. (4.2)

Then with high probability, we have that πNω (A) ≤ e−cN holds for some c > 0 not
depending on N .

Proof. If the environment distribution has an atom at 1, the statement follows immedi-
ately from the observation that the event

B =

{
∃x ∈

[
N

4
,
N

2

]
: ω(x) = 1

}
occurs with high probability. Whenever B occurs, we have that πNω (A) = 0.

Suppose that there is no atom at 1 and hence the stationary distribution of (ηt)t≥0

has the form given in (4.1) for almost every ω. Define L(η) and R(η) to be the leftmost
particle and rightmost empty site of a configuration η, respectively. Further, we set

Xj,l := {η : L(η) = j, R(η) = l}
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for j, l ∈ [N ]. We define a function T : Xj,l → ΩN,k which maps η ∈ Xj,l to the configu-
ration T (η), where we obtain T (η) from η by moving the particle from position L(η) to
position R(η). Using (4.1) as well as that T is injective, we get that for j < l

πNω (Xj,l) =

 l∏
x=j+1

1− ω(x+ 1)

ω(x)

 ∑
η∈Xj,l

πNω (T (η)) ≤

 l∏
x=j+1

1− ω(x+ 1)

ω(x)

 .

Note that R(η) ≥ N/2 holds for all η ∈ ΩN,k since 2k ≤ N . Moreover, L(η) ≤ N/4 is
satisfied for all η ∈ A by the definition of the event A. We conclude that for almost all
environments ω

πNω (A) ≤
∑

j≤N4 ,l≥
N
2

πNω (Xj,l) ≤ N2 · max
j≤N4 ,l≥

N
2


l∏

x=j+1

1− ω(x+ 1)

ω(x)

 (4.3)

holds. Note that the right-hand side of (4.3) is with high probability exponentially
decreasing in N . This finishes the proof of Lemma 4.1.

Our strategy for providing lower bounds will be the same in all three remaining parts
of Section 4. We give a time t ≥ 0 depending on N such that

Pω,λ(ηt ∈ A) ≥ 1

2
(4.4)

holds with high probability for some initial distribution λ of (ηt)t≥0. Together with Lemma
4.1, we see that with high probability

‖Pω,λ (ηt ∈ · )− πNω ‖TV ≥ Pω,λ (ηt ∈ A)− πNω (A) >
1

4

is satisfied by all N large enough.

4.2 Proof for environments with sites of non-positive drift

In this section, we consider the exclusion process in ballistic random environment for
which the respective environment distribution P satisfies

P

(
ω(1) ≤ 1

2

)
= α (4.5)

for some α > 0, i.e. with positive probability we have sites with zero or negative drift.
Note that this includes the case of plain nestling environments as well as marginal
nestling environments which in addition satisfy assumption (1.7). The following proposi-
tion is the main result of this section.

Proposition 4.2. Let tNmix denote the mixing time of an exclusion process (ηt)t≥0 in
environment ω where the environment distribution satisfies (4.5). Then with high
probability, we have that tNmix = Ω(N log(N)) holds.

In order to show Proposition 4.2, we proceed as follows. First, we define a modified
exclusion process for which it suffices to verify that condition (4.4) holds with high
probability. We then introduce the boundary driven exclusion process and state some of
its well-known properties. Moreover, we provide a coupling to the modified exclusion
process on a subinterval of the line segment. We show that the subinterval can be chosen
in such a way that it acts as a barrier and so with high probability, the modified exclusion
process remains in A, defined in (4.2), for a time of order N log(N).
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For a fixed environment ω ∈ [0, 1]N , let ω̃ be the environment given by

ω̃(i) =
1

2
1{ω(i)≤ 1

2} + 1{ω(i)> 1
2} (4.6)

for all i ∈ [N ] and note that the law of ω̃ satisfies (1.3). Moreover, for every environment
ω, we fix two distinct sites xω, yω ∈ [N ] on the line segment which satisfy xω < yω. For
the exclusion process (ηt)t≥0 in environment ω, we define the corresponding modified
exclusion process (ξt)t≥0 with respect to ω to be the interacting particle system on ΩN,k
with the following transition rules. (ξt)t≥0 obeys the same transitions as an exclusion
process in environment ω̃, but with the following three exceptions:

1. If xω is not occupied and the clock of the rightmost particle on the left-hand side of
xω rings, then move it to position xω.

2. At yω particles move to the left at rate 1− ω̃(y) and are set to the rightmost empty
site at rate 1.

3. All particle moves from site yω + 1 to the left are suppressed.

Let P̃ω,λ denote the quenched law of (ξt)t≥0 with respect to ω and initial distribution λ.
For a suitable coupling of (ηt)t≥0 and (ξt)t≥0 with identical initial conditions, one has
that ηt � ξt holds for all t ≥ 0. Since A is an increasing event, we conclude that

Pω,λ (ηt ∈ A) ≥ P̃ω,λ (ξt ∈ A) (4.7)

holds for almost every environment ω and initial distribution λ. Hence, it suffices to
show that the right-hand side of (4.7) is with high probability larger than 1

2 for some
initial distribution λ and t = Ω(N log(N)).

In order to analyze the modified exclusion process, we introduce the boundary
driven symmetric simple exclusion process which is the Markov process (σt)t≥0

with state space {0, 1}M and generator

Af(σ) =

M−1∑
x=1

1

2

[
f(σx,x+1)− f(σ)

]
+ (1− σ(1))

[
f(σ1)− f(σ)

]
+ σ(M)

[
f(σM )− f(σ)

]
(4.8)

where σi denotes the configuration in which we flip the value of configuration σ at
position i ∈ [M ]. Intuitively, the particles perform independent symmetric random
walks with an exclusion constraint on the segment of size M . Moreover, particles are
generated at rate 1 at site 1 and annihilated at rate 1 at site M . Note that (σt)t≥0 forms
an irreducible Markov process on {0, 1}M with stationary distribution µ. The following
characterization of the particle density in µ is a known result, see [10].

Lemma 4.3. The stationary distribution µ of the process (σt)t≥0 satisfies

Eµ[σ(i)] =
1

M

(
M +

1

2
− i
)

(4.9)

for all i ∈ [M ], where Eµ[ . ] denotes the expectation with respect to µ.

Sketch of the proof. Define the function ρ : {0, 1, . . . ,M + 1} → R to be

ρ(x) :=


Eµ[σ(x)] if x ∈ [M ]

2− Eµ[σ(1)] if x = 0

−Eµ[σ(M)] if x = M + 1 .
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Using the generator A, note that ρ satisfies (∆ρ)(x) = 0 for all x ∈ [M ], where ∆ denotes
the discrete Laplacian given by

(∆ρ)(x) = ρ(x+ 1) + ρ(x− 1)− 2ρ(x) .

Since ρ is a solution to the one-dimensional Dirichlet problem with boundary conditions
1 + 1

2M at x = 0 and − 1
2M at x = M + 1, we know that ρ has the form stated in (4.9).

Let Zt denote the number of annihilated particles in vertex M until time t, i.e.

Zt := #

{
s ∈ (0, t] :

M∑
i=1

σs−(i) >

M∑
i=1

σs(i)

}
. (4.10)

From the characterization of the stationary distribution µ of (σt)t≥0 in Lemma 4.3, we
deduce the following result about (Zt)t≥0.

Lemma 4.4. The number of annihilated particles (Zt)t≥0 in (σt)t≥0 satisfies

Eµ[Zt] = t · Eµ[σ(M)] =
t

2M

for all t ≥ 0, where Eµ[ . ] denotes the expectation with respect to the boundary driven
symmetric simple exclusion process started from µ.

Sketch of the proof. Since µ is stationary for (σt)t≥0, we have that

1

t
Eµ[Zt] = ∂sEµ[Zs]|s=0 (4.11)

holds for all t > 0. Using the definition of the generator A in (4.8) and Lemma 4.3, we
can deduce that the right-hand side of (4.11) is equal to 1

2M .

We now want to relate the modified exclusion process (ξt)t≥0 to the boundary driven
symmetric simple exclusion process (σt)t≥0. For N ∈ N, let M = M(N) be

M =
1

2 log(α−1)
log(N)

for α > 0 from equation (4.5) and observe that the event

C :=

{
∃x ∈

[
N

8
,
N

4
− (M + 1)

]
s.t. ω(y) ≤ 1

2
for all y ∈ [x, x+M − 1]

}
holds with high probability. To see this, partition [N/8, N/4] into disjoint intervals of
length M . We then apply a Chernoff bound to the indicator random variables that an
interval consists only of vertices x which satisfy ω(x) ≤ 1

2 .
For ω ∈ C, let I(ω) denote the leftmost interval of length M in which all vertices

y ∈ I(ω) satisfy ω(y) ≤ 1
2 and choose the sites xω and yω in the definition of the modified

exclusion process with respect to ω to be the endpoints of the interval I(ω). For ω /∈ C,
the vertices xω and yω are chosen according to an arbitrary rule. Recall that L(η) denotes
the position of the leftmost particle for a configuration η ∈ ΩN,k. For a fixed environment
ω, we define

τ∗ := inf {t ≥ 0: L(ξt) ≥ xω}

to be the first time at which (ξt)t≥0 has no particles in the interval [xω − 1].
Note that the modified exclusion process with respect to ω is constructed in such a

way that up to time τ∗, it has the law of a boundary driven symmetric simple exclusion
process on the interval I(ω). This is formalized in the following lemma which we state
without proof.
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Lemma 4.5. For every ω ∈ C and initial distribution λ on ΩN,k, we find a coupling of
(ξt)t≥0 with respect to ω started from configuration ψ chosen according to λ and (σt)t≥0

on {0, 1}M with initial configuration ψ|I(ω) such that

Pω,λ (ξt(xω − 1 + i) = σt(i) for all i ∈ [M ] and t ≤ τ∗) = 1

where Pω,λ denotes the probability measure associated to the coupling.

Proof of Proposition 4.2. We claim that for all ω ∈ C, we can choose an initial distribution
λ such that

P̃ω,λ (ξt ∈ A) ≥ 1

2
(4.12)

holds for some t ∈ Θ(N log(N)). In all configurations according to λ, we first place k/8
particles on the positions in [k/8]. On I(ω), we let the particles be distributed according
to the stationary distribution µ of (σt)t≥0. Finally, we fill up the rightmost empty sites of
[N/2, N ] such that we have in total k particles present in the constructed configuration.

Observe that by the definition of τ∗ and the event A

P̃ω,λ (ξt ∈ A) ≥ P̃ω,λ (t ≤ τ∗) (4.13)

holds for all t ≥ 0. Let Rt denote the number of particles which move from vertex yω to
the right in the modified exclusion process (ξt)t≥0 until time t. Since we have initially
k/8 particles at the positions in [N/8], we get that

{t ≤ τ∗} ⊇
{
Rt <

k

8
−M

}
for all t ≥ 0. Using Lemma 4.5, we conclude that

Pω,λ

(
Rt <

k

8
−M

)
= Pω,λ

(
Rt <

k

8
−M, t ≤ τ∗

)
= Pω,λ

(
Zt <

k

8
−M

)
(4.14)

where Zt is defined in (4.10). Combining (4.13) and (4.14), we obtain that

P̃ω,λ (ξt ∈ A) ≥ Pω,λ

(
Zt <

k

8
−M

)
≥ 1− Eµ[Zt]

k
8 −M

using Markov’s inequality in the last step. Since k = Θ(N) and P(ω ∈ C) = 1− o(1) hold,
Lemma 4.4 gives us that with high probability the inequality (4.12) is satisfied for some
t = Θ(NM). This finishes the proof of Proposition 4.2.

4.3 Proof for marginal nestling environments

In this section, we show that for all marginal nestling environments, we can find a
function f : N→ R tending to infinity such that

Pω,λ(ηt ∈ A) ≥ 1

2
(4.15)

holds with high probability for some initial distribution λ and t = Nf(N). This will give
part (a) of Theorem 1.1 (ii). We follow the arguments of Section 4.2 and describe the
necessary changes in the proof of Proposition 4.2.

For general marginal nestling environments, the probability in (4.5) may be zero.
Hence, we will have to replace the condition of sites having no positive drift by the
condition of sites having “almost” no positive drift in our definitions. Formally, for every
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N ∈ N, we fix a c = c(N) ≥ 0 and M = M(N) ∈ N. We denote by (ξ̃t)t≥0 the modified
exclusion process with respect to ω where we replace the environment ω̃ in (4.6) by

ω̃(i) =

(
1

2
+ c

)
1{ω(i)≤ 1

2 +c} + 1{ω(i)> 1
2 +c} (4.16)

for all i ∈ [N ]. Moreover, let xω and yω denote the endpoints of the leftmost interval
Ĩ(ω) ⊆ [N/8, N/4 − 1] of length M in which all vertices x satisfy ω(x) ≤ 1

2 + c and let
them being chosen according to an arbitrary rule if no such interval exists. Let (σ̃t)t≥0

be the boundary driven exclusion process on {0, 1}M with generator

Ãf(σ̃) =

M−1∑
x=1

(
1

2
+ c

)
σ̃(x)

(
f(σ̃x,x+1)− f(σ̃)

)
+

M∑
x=2

(
1

2
− c
)
σ̃(x)

(
f(σ̃x,x−1)− f(σ̃)

)
(4.17)

+ (1− σ̃(1)) (f(σ̃1)− f(σ̃)) + σ̃(M)(f(σ̃M )− f(σ̃)) .

The following statement is the analogue of Lemma 4.4.

Lemma 4.6. Let µ̃ denote the stationary distribution of the boundary driven exclusion
process (σ̃t)t≥0. We have that

Eµ̃[σ̃(M)] ≤ 2cM +
2

M + 1
(4.18)

holds where Eµ̃[ . ] denotes the expectation with respect to µ̃.

Proof. Define the function ρ̃ : {0, 1, . . . ,M + 1} → R to be

ρ̃(x) :=


Eµ̃[σ̃(x)] if x ∈ [M ]

2− Eµ̃[σ̃(1)] if x = 0

−Eµ̃[σ̃(M)] if x = M + 1 .

Using the definition of the generator Ã in (4.17), note that ρ̃ satisfies |∆ρ̃(x)| ≤ 4c for all
x ∈ [M ]. Observe that the function g given by

g(x) = ρ̃(x) + 2c
(
x2 − (M + 1)x

)
for all x ∈ {0, . . . ,M+1} is discrete-convex and satisfies g(0) = ρ̃(0) as well as g(M+1) =

ρ̃(M + 1). Hence, we obtain that

g(M) ≤ M − 1

M
ρ̃(M + 1) +

1

M + 1
ρ̃(0) .

Using that ρ̃(M + 1) = −ρ̃(M) and ρ̃(0) ≤ 2, we obtain the desired result.

Let the event C̃ be given as

C̃ :=

{
∃x ∈

[
N

8
,
N

4
− (M + 1)

]
s.t. ω(y) ≤ 1

2
+ c for all y ∈ [x, x+M − 1]

}
and define

τ̃∗ := inf
{
t ≥ 0: L(ξ̃t) ≥ xω

}
.

Similar to Lemma 4.5, the modified exclusion process (ξ̃t)t≥0 can be related to the
boundary driven exclusion process (σ̃t)t≥0 as follows.
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Lemma 4.7. For every ω ∈ C̃ and initial distribution λ on ΩN,k, we find a coupling of
(ξ̃t)t≥0 with respect to ω started from configuration ψ chosen according to λ and (σ̃t)t≥0

on {0, 1}M with initial configuration ψ|Ĩ(ω) such that

P̃ω,λ
(
ξ̃t(xω − 1 + i) = σ̃t(i) for all i ∈ [M ] and t ≤ τ̃∗

)
= 1

where P̃ω,λ denotes the probability measure associated to the coupling.

Following the proof of Proposition 4.2, we obtain a lower bound of order NM provided
that c = o( 1

M2 ) and C̃ occurs with high probability. Note that we can choose (c(N))N∈N
to be a sequence tending to zero and satisfying

P

(
ω(1) ≤ 1

2
+ c(N)

)
≥ 1

log(N)

for all N ∈ N. Moreover, note that the event C̃ holds with high probability if

lim
N→∞

N

M

(
1

log(N)

)M
=∞ . (4.19)

Again, this follows from the observation that we can partition the interval [N/8, N/4]

into disjoint intervals of length M and apply a Chernoff bound to the indicator random
variables that an interval consists only of vertices x satisfying ω(x) ≤ 1

2 + c. Both
conditions in order to show a lower bound order NM are met when we choose

f(N) = M(N) = min

{
c(N)−

1
3 ,

log(N)

2 log log(N)

}
for all N ∈ N. Since lim

N→∞
f(N) =∞, we obtain part (a) of Theorem 1.1 (ii). �

4.4 Proof for plain nestling environments

We now prove Theorem 1.1 (iii). For plain nestling environments, there exist parame-
ters 0 < β, γ < 1 not depending on N such that

P

(
ω(1) ≤ 1

2
− γ
)

= β (4.20)

holds. Set c = c(N) = −γ and

M = M(N) = δ̃
log(N)

log(β−1)
(4.21)

for all N ∈ N and some 0 < δ̃ < 1. For plain nestling environments, we consider the
processes (ξ̃t)t≥0 and (σ̃t)t≥0 defined in Section 4.3 with these choices for c and M . Note
that the coupling described in Lemma 4.7 remains valid for negative values of c. Set
q := 1/2−c

1/2+c > 1. Blythe et al. showed that

Eµ̃[σ̃(M)] = Θ
(
q−

M
2

)
where Eµ̃[ . ] denotes the expectation with respect to the stationary distribution µ̃ of
(σ̃t)t≥0, see [2, equation (72)]. (In fact, they consider a boundary driven exclusion process

which is a factor of
(

1
2 + c

)−1
faster than (σ̃t)t≥0, but has the same stationary distribution

µ̃.) Note that for plain nestling environments, the event C̃ occurs with high probability
for our choices of c and M . Applying the same arguments as for Proposition 4.2, we
obtain that

tNmix = Ω
(
N · qM2

)
= Ω

(
N

1+δ̃
log(q)

2 log(β−1)

)
holds. Choosing δ := δ̃ log(q)

2 log(β−1) gives us Theorem 1.1 (iii). �
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Remark 4.8. Note that the parameter δ in the proof must be less than 1
2 . This follows

from the observation that for the parameters q and β, q < β−1 holds since

1 > E

[
1− ω(1)

ω(1)

]
≥ 1/2− c

1/2 + c
· β = q · β .

Hence, the lower bound in Theorem 1.1 (iii) can be at most of order N
3
2 using the

presented techniques. This bound can for example be obtained when

P

(
ω(1) =

1

4

)
= 1− P (ω(1) = 1) = β

for β < 1
3 arbitrarily close to 1

3 . We believe that this is the best possible upper bound
which holds with high probability for any ballistic environment distribution P, see
Conjecture 1.3.

5 Upper bound for marginal nestling environments

We now show the upper bound in Theorem 1.1 (ii). For the entire section, we assume
to have a marginal nestling environment.

5.1 Road map for the proof

In the proof, we combine various techniques and results for the simple exclusion
process. Hence, we first want to give an overview of the strategy for the proof.

• We establish a censoring inequality for the simple exclusion process in marginal
nestling environment, see Proposition 5.1. In words, this inequality says that under
certain assumptions, leaving out transitions of a Markov process does not reduce
the distance from stationarity.

• We study the speed of the particles on the segment when starting from the configu-
ration with all particles at the left-hand side. In general, the speed will no longer
be at a linear scale. However, when we extend the line segment to a larger size, say
N2, we can show that with high probability, the particles have traveled a distance
of N log(N) until a time of order N log3(N). This is formalized in Proposition 5.2.
For the proof, we partition the segment into boxes according to a censoring scheme
such that with high probability, each box contains at most one particle at a time.
The isolated particles perform independent random walks within their boxes. This
allows us to control the particle movements with respect to their local equilibria
simultaneously.

• The remaining part of the proof follows the ideas of Benjamini et al. in [1]. We
extend the simple exclusion process to the integers and study the hitting time of
the ground state. As a key tool, we will use the exclusion process with second class
particle, see [14, Section III.1]. We get an upper bound on the hitting time which
is of order N log3(N) plus the hitting time of the ground state in a system with a
different starting configuration, see Proposition 5.7. We iterate this argument until
the remaining hitting time is with high probability of order at most N .

5.2 The censoring inequality

In order to state the censoring inequality, we introduce the following notations. We
say for two probability measures ν and ν̃ defined on a poset Γ that ν stochastically
dominates ν̃ if

∫
g dν̃ ≤

∫
g dν holds for all increasing functions g : Γ → R and write

ν � ν̃. Let E = {{n, n+ 1} : n ∈ [N − 1]} denote the set of edges of the segment of size
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N . For the simple exclusion process, a censoring scheme is a deterministic càdlàg
function

C : R+
0 → P (E)

where P (E) denotes the set of all subsets of E. In the censored dynamics, a transition
along an edge e at time t is performed if and only if e /∈ C(t). Lacoin showed that the
censoring inequality holds for the symmetric simple exclusion process, see [9]. The
following proposition extends this result to marginal nestling environments.

Proposition 5.1. Let C be a censoring scheme for the simple exclusion process (ηt)t≥0

in environment ω started from θN,k, defined in (2.3), and let P Cω,θN,k denote the law of the

censored dynamics (ηCt )t≥0 with the same initial conditions. Then the law of the censored
dynamics stochastically dominates the law of the simple exclusion process, i.e.

P Cω,θN,k(ηCt ∈ ·) � Pω,θN,k(ηt ∈ ·)

holds for all t ≥ 0 and almost every environment ω.

Proof. Let H : ΩN,k → RN−1 be a function given by

η 7→ H(η) = (Hη(x))x∈[N−1]

where

Hη(x) :=

x∑
z=1

η(z)− xk

N

for all η ∈ ΩN,k and x ∈ [N − 1]. Note that H is injective and let H∗πNω denote the
pushforward of πNω . Moreover, for configurations η � ζ, we have that Hη(x) ≥ Hζ(x)

holds for all x ∈ [N − 1]. Using these observations, one can show that(
{H(η), η ∈ ΩN,k}, {Hη(x), η ∈ ΩN,k, x ∈ [N − 1]}, [N − 1], H∗π

N
ω

)
(5.1)

is a monotone system with top configuration θN,k in the sense of [17, Section 1.1].
Note that the censoring of an edge {n, n + 1} for some n ∈ [N − 1] is in one-to-one
correspondence to keeping the value H.(n) fixed. Hence, we obtain Proposition 5.1 by
applying Theorem 1.1 of [17] for the system in (5.1).

Next, we want to use the censoring inequality to give a lower bound on the speed
of the particles within the simple exclusion process. In order to define the speed on a
suitable scale, we will from now on consider the simple exclusion process (ηt)t≥0 defined
with respect to the line segment of size N2 and k ∈ [N − 1] particles. Recall that L(η)

denotes the position of the leftmost particle in a configuration η.

Proposition 5.2. For the simple exclusion process (ηt)t≥0 with initial configuration
θN2,k, we have that with P-probability at least 1−N−2

Pω,θN2,k
(L(ηTN ) ≥ N log(N) +N) ≥ 1− 2

N2
(5.2)

holds for TN = cN log3(N), where c > 0 is a sufficiently large constant.

In order to show Proposition 5.2, we provide a censoring scheme C for the simple
exclusion process, see Figure 1. Intuitively, we alternate between two partitions of the
line segment into boxes of logarithmic size. Moreover, in every second iteration, we
release a particle at the left-hand side as long as there are particles available. The time
between the switches of the two partitions and the size of the boxes will be chosen such
that with high probability, up to time TN all particles move to the right half of the box
within each iteration. Formally, we define C as follows:
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t = 0

t = S−

t = S

t = 2S−

t = 2S

Figure 1: Illustration of the censoring scheme used in the proof of Proposition 5.2 with
U = 2. During each period [iS, (i+ 1)S) for i ∈ N0, the particles shown in red are only
allowed to move within their assigned boxes.

The censoring scheme C remains constant within the intervals [iS, (i + 1)S) for all
i ∈ N0 and some S = S(N) which we choose later. For i even, C contains all edges
e = {x, x + 1} such that x = 2jU for some j ∈ N and x ≤ N2 − 2U . Again, the value of
U = U(N) will be determined later on. For i odd, C consists of all edges e = {x, x+ 1}
such that x = (2j + 1)U for some j ∈ N as well as x ≤ N2 − 2U . In both cases, whenever
i < 2k, we let e = {x, x + 1} be the unique edge in C with the smallest x such that
k −

⌊
i
2

⌋
≤ x holds. We remove e from C and add the edge

{
k −

⌊
i
2

⌋
− 1, k −

⌊
i
2

⌋}
. This

ensures that the ith particle from the right will only move from time 2(i− 1)S onward.
Our goal is to control the particle movements within the boxes in the censoring

scheme C. Whenever a particle is allowed to move, it is isolated in a box of size 2U

during an iteration (the first and last box might be larger due to boundary effects but
at most of size 4U ). Consider the ith particle and condition on its position at time jS
for the largest j such that t ≥ jS holds. Let B = B(i, t) denote the interval in which
the ith particle may be placed at time t ≥ 0. Further, let C = C(i, t) denote the set of
the rightmost U vertices in B. Let B be the set of all B(i, t) for some t ≥ 0 and i ∈ [k].
The next lemma gives an estimate on the invariant measure and the mixing time of the
random walk within a box B ∈ B.

Lemma 5.3. Let πω,BRW denote the invariant measure of the random walk on B ∈ B in
environment ω|B. There exists a constant u > 0 such that for U = u log(N), we have with
P-probability at least 1−N−2 that

πω,BRW (C) ≥ 1−N−5 (5.3)

holds for all B ∈ B and N ∈ N. For this choice of U , let tω,BRW (ε) denote the ε-mixing time
of the random walk on B ∈ B in environment ω|B. There exists a constant s > 0 such
that for S = s log3(N) and almost every environment ω

tω,BRW (N−5) ≤ S (5.4)

holds for all B ∈ B and N ∈ N. Hence, with P-probability at least 1−N−2, we have for
all B ∈ B that a random walk started at some point in B is contained in the respective
set C after time S with probability at least 1− 2N−5.
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Proof. Observe that B contains at most N3 elements by construction of the censoring
scheme. For the random walk on B the stationary distribution πω,BRW is given by

πω,BRW (y) ∼
y∏
i=1

ω(i)

1− ω(i+ 1)

for all y ∈ B. Using condition (1.3), we know that E[πω,BRW (y)] is exponentially increasing
in y. Hence, we can choose u > 0 such that with P-probability at least 1−N−5

πω,BRW (C) ≥ 1−N−5

holds for every B ∈ B fixed and N ∈ N. Taking a union bound over all elements in B
gives (5.3). In order to show (5.4), recall that |B| ≤ 4U holds for all B ∈ B. We claim
that the mixing time of the random walk in B satisfies

tω,BRW

(
1

4

)
≤ 64U2

for all B ∈ B and almost every environment ω. Using Proposition 3.1 for k = 1, it suffices
to give a bound on the tail of the hitting time of the rightmost site in B when starting the
random walk from the leftmost site in B. Note that this hitting time is P-almost surely
stochastically dominated by the respective hitting time for a symmetric simple random
walk on B which has mean |B|2. Hence, we obtain (5.4) by using a standard estimate for
the ε-mixing time, see [12, equation (4.34)].

Proof of Proposition 5.2. We start by making the following key observation: Suppose
that for all i ∈ [k] and j ∈ N0 with 2(i− 1) ≤ j ≤ TN/S, the ith particle (counted from the
right-hand side) is contained in the set C(i, jS) at time ((j + 1)S)−, i.e. up to time TN all
the particles reach the right half of their respective boxes within time S whenever they
are able to move. By construction of the censoring scheme C, we then have that up to
time TN , each box contains at most one particle at a time. Moreover, each particle has
moved at least U(TN/S − 2k) to the right-hand side.

Let U = U(N) and S = S(N) of Lemma 5.3 be the size of the boxes and the time
between the switches of the partitions in the censoring scheme C, respectively. We
set TN := S(U−1(N log(N) + N) + 2k) for all N ∈ N. Note that we have at most N
particles and each particle is contained in at most N2 different boxes up to time TN for
all N sufficiently large. Using Lemma 5.3 and the key observation, we obtain that with
probability at least 1−N−2

P Cω,θN2,k

(
L(ηCTN ) ≥ N log(N) +N

)
≥ 1− 2

N2

holds. Since the event in (5.2) is decreasing, we obtain the desired result by applying
Proposition 5.1.

5.3 Comparison to the exclusion process on the integers

Next, we want to compare the simple exclusion process (ηt)t≥0 on {0, 1}N2

to the
simple exclusion process (ηZt )t≥0 on the integers. Formally, (ηZt )t≥0 in environment
ω ∈ (0, 1]Z is a Feller process with state space {0, 1}Z generated by the closure of

L̃f(η) =
∑
x∈Z

ω(x) η(x)(1− η(x+ 1))
[
f(ηx,x+1)− f(η)

]
+
∑
x∈Z

(1− ω(x)) η(x)(1− η(x− 1))
[
f(ηx,x−1)− f(η)

]
. (5.5)
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Theorem 3.9 of [13] ensures that (5.5) indeed gives rise to a Feller process. We will use
the same notation for the quenched law of (ηZt )t≥0 as for the simple exclusion process on
the segment. Note that the partial order as well as the canonical coupling from Section
2 naturally extend to Z when the number of particles is finite. However, we lose the
existence of a unique maximal or minimal element.

In the following, we assume that the environment ω ∈ (0, 1]Z is marginal nestling, i.e.
{ω(x)}x∈Z are i.i.d. and their law satisfies conditions (1.3) and (1.5). Let θZ,k denote the
configuration in {0, 1}Z where the particles are placed on [k].

Lemma 5.4. Let (ηZt )t≥0 be the simple exclusion process on the integers in environment
ω started from θZ,k. Then for all k ∈ [N − 1] with P-probability at least 1−N−2

Pω,θZ,k
(
L(ηZTN ) ≥ N log(N)

)
≥ 1− 4

N2

holds for all N large enough, where TN is taken from Proposition 5.2.

Proof. For the simple exclusion process (ηZt )t≥0 on the integers in environment ω, we
consider its projection to the environment ω̃ := ω|[−N,N2−N ]. Observe that (ηZt )t≥0 is
uniquely determined by its values on ω̃ whenever no particle reaches the sites −N or
N2 −N . We claim that for almost all environments ω the statements

Pω,θZ,k
(
∃t ∈ [0, TN ] : max

{
i ≥ 0 : ηZt (i) = 1

}
≥ N2 −N

)
≤ 1

N2
(5.6)

and

Pω,θZ,k
(
∃t ∈ [0, TN ] : L(ηZt ) ≤ −N

)
≤ 1

N2
(5.7)

hold for all N large enough. The first statement is immediate when we consider the
motion of the rightmost particle in (ηZt )t≥0. For the second statement, notice that the
position of the left-most particle in (ηZt )t≥0 stochastically dominates the position of the
left-most particle in a symmetric simple exclusion process on Z with the same initial
condition. The symmetric simple exclusion process can be seen as an interchange
process in which the particles swap positions along each edge independently at rate 1

2 .
In this case, the particles perform symmetric simple random walks on Z and we can
use Chernoff bounds to conclude. Whenever the events in (5.6) and (5.7) hold, up to
time TN the simple exclusion process (ηZt )t≥0 with initial configuration θZ,k has on the
set [−N,N2 −N ] the same law as a simple exclusion process (ηt)t≥0 in environment ω̃
started from configuration θN2,k. Hence, Proposition 5.2 gives the desired result.

Lemma 5.4 shows that the particles in (ηZt )t≥0 started from θZ,k have passed a
distance of at least N log(N) to the right-hand side until time TN . We will now ensure
that also for times larger than TN , the particles escape fast enough.

Lemma 5.5. For the simple exclusion process (ηZt )t≥0 in environment ω started from
θZ,k, we have that for all k ∈ [N − 1] with P-probability at least 1− 2N−2

Pω,θZ,k

(
∀t ≥ TN : L(ηZt ) > t

2
3 +N

)
≥ 1− 10

N2

holds for all N large enough with TN taken from Proposition 5.2.

Proof. For a given N , we define the sequences {Ni}i∈N and {ti}i∈N to be

Ni := N

(
( 4

3 )
i−1

)
and ti :=

i∑
j=1

TNj
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for all i ∈ N. By Lemma 5.4, we obtain that with P-probability at least 1−N−2
1

Pω,θZ,k
(
L(ηZt1) ≥ N1 log(N1)

)
≥ 1− 4

N2
1

(5.8)

holds. Suppose the event in (5.8) occurs. Then without loss of generality, we can assume
that the particles are placed on the sites in [N1 log(N1), N1 log(N1)+k] at time t1. Starting
from this configuration, we can apply Lemma 5.4 again to obtain that with P-probability
at least 1−N−2

1 −N−2
2

Pω,θZ,k
(
L(ηZti) ≥ Ni log(Ni) for i ∈ {1, 2}

)
≥ 1− 4

(
1

N2
1

+
1

N2
2

)
holds. Iterating this argument along the sequence {Ni}i∈N, we see that P-probability at
least 1− 2N−2

Pω,θZ,k
(
L(ηZti) ≥ Ni log(Ni) for i ∈ N

)
≥ 1− 8

N2

is satisfied. Observe that

Ni log(Ni) > (ti)
2
3 +N

holds for all i ∈ N and N large enough. Hence, it remains to consider the case of
t ∈ (ti, ti+1) for some i ∈ N. Using the same arguments as for the proof of (5.7), we
obtain that for almost every environment ω

Pω,θZ,k
(
L(ηZt ) ≥ Ni ∀t ∈ [ti, ti+1] | L(ηZti) ≥ Ni log(Ni)

)
≥ 1− 1

N2
i+1

holds for all i ∈ N and N sufficiently large. Since we have that

(ti+1)
2
3 +N < Ni

holds for all i ≥ 2 and N sufficiently large, we obtain the desired result.

Next, we introduce some notations for the simple exclusion process on the integers.
For the simple exclusion process (ηZt )t≥0 in environment ω, we let the configurations
θl,m, ϑn ∈ {0, 1}Z be given by

θl,m(x) := 1{x∈[m]} + 1{x>l} and ϑn(x) := 1{x>n}

for all x ∈ Z and l,m ∈ N, n ∈ Z with m ≤ l. Similar to (2.2) and (3.1), we call ϑn a
ground state of (ηZt )t≥0 for all n ∈ Z and define the hitting time of the ground state
ϑn for (ηZt )t≥0 to be the random variable

τϑn := inf
{
t ≥ 0: ηZt = ϑn

}
.

Moreover, for N ∈ N and k = k(N) ∈ [N −1], we define the ε-hitting time of the ground
state ϑN−k to be

tω,Nhit (ε) := inf
{
t ≥ 0: Pω,θN,k (τϑN−k > t) ≤ ε

}
for all ε ∈ (0, 1). We now relate the ε-hitting time of (ηZt )t≥0 to the ε-mixing time t

ω|[N]

mix (ε)

of the simple exclusion process (ηt)t≥0 on the line segment of size N in environment
ω|[N ]. This follows from the same arguments as Lemma 2.8 in [1].

Lemma 5.6. For almost all environments ω ∈ (0, 1]Z and ε > 0, we have that

t
ω|[N],N

mix (ε) ≤ tω,Nhit (ε) .
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Sketch of the proof. Let (ηZt )t≥0 be the simple exclusion process on the integers in
environment ω with initial configuration θN,k. Let (ηt)t≥0 denote the simple exclusion
process on the line segment in environment ω|[N ] started from configuration θN,k. We
claim that for almost every environment ω ∈ (0, 1]Z, we can provide a coupling of the
processes (ηZt )t≥0 and (ηt)t≥0 such that the hitting time τϑN,k of the ground state ϑN,k
for (ηt)t≥0 is dominated by the hitting time τϑN−k of the ground state ϑN−k for (ηZt )t≥0.
This can for example be achieved by using the canonical coupling on [N ] and making all
other transitions in (ηZt )t≥0 independently. We conclude by applying a similar argument
as in the proof of Proposition 3.1.

In the remainder of the proof of the upper bound in Theorem 1.1 (ii), we follow the
ideas of Benjamini et al. [1]. Intuitively, we want to show that whenever the particles
in the simple exclusion process on the integers have with high probability passed a
distance of at least N to the right-hand side, an associated exclusion process on the
line segment has (almost) reached the ground state. This will be our main idea for the
proof of Proposition 5.7, which states a recursion formula for the ε-hitting time. For
an environment ω ∈ (0, 1]Z and n ∈ Z, we denote by ωn the environment shifted to the
right-hand side by n, i.e.

ωn(x) := ω(x− n) (5.9)

holds for all x ∈ Z.

Proposition 5.7. For a given N ∈ N and k = k(N) ∈ [N − 1], we set N ′ = N
3
4 and

k′ = k(N ′) = 1
2N

3
4 . Consider the simple exclusion process on the integers in a marginal

nestling environment ω. Set n = N − k − N ′ + k′ and recall TN from Proposition 5.2.
Then with P-probability at least 1− 2N−2, we have that

tω,Nhit (ε) ≤ TN + tωn,N
′

hit

(
ε− 12N−2

)
holds for all ε > 0 and N large enough.

In words, Proposition 5.7 states that the ε-hitting time of the ground state can with
high probability be bounded from above by TN plus the ε-hitting time of the ground state
ϑk
′

for the simple exclusion process in the shifted environment ωn. We will see that this
argument can be iterated until we reach a system where the ε-hitting time is with high
probability of order at most N .

In order to show Proposition 5.7, we give a brief introduction to the notion of second
class particles for the exclusion process on Z, see Liggett [14, Section III.1]. For a
configuration ξ ∈ {0, 1, 2}Z, we say that a vertex x ∈ Z is occupied by a first class
particle whenever η(x) = 1 and by a second class particle if η(x) = 2 holds. We assign
priorities to the vertices. Sites with first class particles get the highest priority, then
vertices with second class particles and then empty sites. The exclusion process with
second class particles on Z in environment ω is now given as a Feller process (ξt)t≥0

on the state space {0, 1, 2}Z according to the following description:
We perform the dynamics as in the canonical coupling for the exclusion process

(ηZt )t≥0. Suppose that a vertex x and its neighbor x+ 1 are chosen. If ξ(x) = ξ(x+ 1), we
leave the configuration unchanged. Otherwise exchange the values at positions x and
x+ 1 in ξ with probability ω(x) whenever position x has a higher priority than position
x + 1. If neighbor x − 1 is selected and position x has a higher priority than position
x− 1, exchange the values with probability 1− ω(x).

In order to reobtain a stochastic process on {0, 1}Z, we can consider the following
two projections: Let (ξ2→1

t )t≥0 be the process given by

ξ2→1
t (x) :=

{
1 if ξt(x) 6= 0

0 if ξt(x) = 0
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for all x ∈ Z and t ≥ 0. Similarly, (ξ2→0
t )t≥0 denotes the process where we have

ξ2→0
t (x) :=

{
1 if ξt(x) = 1

0 if ξt(x) 6= 1

for all x ∈ Z and t ≥ 0. We refer to (ξ2→1
t )t≥0 and (ξ2→0

t )t≥0 as particle blindness and
second class-empty site blindness, respectively.

In addition, we define a third projection (ξ∗t )t≥0 onto {0, 1}Z by removing all first class
particles as well as the sites corresponding to the particles and then applying projection
(ξ2→1
t )t≥0. Since the resulting process is only well-defined up to translations, we initially

place a tagged particle in the origin. For a formal description, assume that a given
configuration ξ ∈ {0, 1, 2}Z satisfies

|{i ∈ Z : ξ(i) = 2}| =∞ .

Let u be an enumeration of the sites without first class particles in ξ, where

u(0) :=

{
inf{i ≤ 0: ξ(i) = 2} if −∞ < inf{i ≤ 0: ξ(i) = 2} < +∞
inf{i > 0: ξ(i) = 2} otherwise

.

We obtain the positions u(j) and u(−j) for j ∈ N recursively by

u(j) := inf{i > u(j − 1) : ξ(i) 6= 1}

and
u(−j) := inf{i > u(−j + 1): ξ(i) 6= 1} .

We can now define ξ∗ as

ξ∗(i) :=

{
1 if ξ(u(i)) = 2

0 if ξ(u(i)) = 0
(5.10)

for all i ∈ Z. In order to obtain a stochastic process (ξ∗t )t≥0, we denote by ut(i) the
position of the particle at time t which is in position u(i) in ξ0 and then apply (5.10)
accordingly. The proof of Proposition 5.7 will now be an interplay of the three projections
(ξ2→1
t )t≥0, (ξ2→0

t )t≥0 and (ξ∗t )t≥0 of a simple exclusion process with second class particles
(ξt)t≥0.

Proof of Proposition 5.7. Let (ξt)t≥0 be the simple exclusion process with second class
particles in environment ω with

ξ0(x) :=


0 if x ≤ 0

1 if x ∈ [k]

0 if x ∈ [k + 1, N ]

2 if x > N

as initial configuration. Observe that the process (ξ2→1
t )t≥0 has the same law as a simple

exclusion process in environment ω started from configuration θN,k. Our goal is to
bound the hitting time of the ground state ϑN−k for the process (ξ2→1

t )t≥0. We make the
following key observation: Suppose that at time t ≥ 0, the two events

K1 :=
{

inf{x ∈ Z : ξt(x) = 1} ≥ t 2
3 +N

}
K2 :=

{
ξ∗t (x) = 1{x≥0} ∀x ∈ Z

}
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occur. Then ξ2→1
t = ϑN−k holds. To see this, note that if K1 occurs, then there exists a

second class particle which is on the left-hand side of the leftmost first-class particle
in ξt. If K2 occurs, then all empty sites are placed on the left-hand side of the leftmost
second class particle in ξt. We claim that with P-probability at least 1− 2N−2, we have
that

Pω,ξ0 (K1 holds for all t ≥ TN ) ≥ 1− 10N−2 (5.11)

holds. Note that the process (ξ2→0
t )t≥0 has the same law as a simple exclusion process

in environment ω started from configuration θZ,k and so (5.11) follows from Lemma 5.5.
We now want give an upper bound on the first time t ≥ TN such that the event K2

occurs. We claim that for almost every marginal nestling environment ω

Pω,ξ0

(
sup{i ≥ 0: ξ∗t = 0} < t

2
3 ∀t ≥ TN

)
≥ 1− 1

N2
(5.12)

holds. Note that the position of the rightmost empty site in the process (ξ∗t )t≥0 is
stochastically dominated by the position of the right-most empty site for a symmetric
simple exclusion process for starting configuration ψ ∈ {0, 1}Z with ψ(x) = 1x≤0 for all
x ∈ Z. The symmetric simple exclusion process can be seen as an interchange process
and hence, we obtain (5.12) by applying Chernoff bounds. Using the same argument for
the position of the leftmost second class particle, we see that

Pω,ξ0

(
inf{i ≤ 0: ξ∗t = 1} > −t 2

3 ∀t ≥ TN
)
≥ 1− 1

N2
(5.13)

holds for almost every environment ω. Observe that if the events in (5.11) and (5.12) hold,
no first-class particle will be next to an empty site for any time t ≥ TN . Since transitions
between first and second class particles do not change a configuration in (ξ∗t )t≥TN , the
process (ξ∗t )t≥TN then has the law of a simple exclusion process in environment ωn.
Hence, the hitting time of the ground state ϑk

′
in the process (ξ∗t )t≥TN started from

ξ∗TN gives an upper bound on the hitting time of the ground state ϑN−k for the process
(ξ2→1
t )t≥0. We now show that it suffices to consider the hitting time of the ground state

for (ξ∗t )t≥TN started from configuration θN
′,k′ at time TN . Observe that the partial order

from (2.1) extends to the set of configurations

A :=

η ∈ {0, 1}Z :

k′∑
i=−∞

η(i) =

∞∑
i=k′+1

(1− η(i)) <∞


i.e. for η, ζ ∈ A, we have that

η � ζ ⇔
j∑

i=−∞
η(i) ≤

j∑
i=−∞

ζ(i) for all j ∈ Z .

Provided that the events in (5.12) and (5.13) occur, we have that ξ∗TN � θ
N ′,k′ holds for

all N sufficiently large. Note that the canonical coupling extended for the exclusion
process on Z preserves the partial order on A. Combining these observations, we obtain
that the hitting time of the ground state ϑN−k for the process (ξ2→1

t )t≥0 is stochastically
dominated by the hitting time of the ground state ϑk

′
in the process (ξ∗t )t≥TN started

from θN
′,k′ at time TN whenever the events in (5.11),(5.12) and (5.13) occur. This gives

the desired result.

Remark 5.8. Note that the assumption of having a marginal nestling environment is
essential in the proof of Proposition 5.7. In the plain nestling case, the arguments in
order to show (5.12) and (5.13) are not applicable.
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The next lemma gives a bound on the ε-hitting time of the ground state when the
parameters in the initial configuration of the simple exclusion process on the integers
are not increasing too fast in N .

Lemma 5.9. For all ε > 0, we find a sequence (MN )N∈N with limN→∞MN = ∞ such
that the ε-hitting time of the ground state ϑMN/2 for a simple exclusion process on the
integers with initial condition θMN ,MN/2 satisfies

P
(
tω,MN

hit (ε) < N
)
≥ 1− 1

M(N)

for all N sufficiently large.

Proof. For every m ∈ Z, define the set of configurations

Am :=

{
η ∈ {0, 1}Z :

m∑
i=−∞

η(i) =

∞∑
i=m+1

(1− η(i)) <∞

}

and note that ϑm, θ2m,m ∈ Am holds for all m ∈ Z. Using Theorem 1.1(b) of [5] and
Theorem B.52 of [14], we have that the exclusion process restricted to Am forms an
ergodic Markov chain for almost every environment ω. Hence, for all m and ε > 0 fixed,
we have that the ε-hitting time of the ground state ϑm for a simple exclusion process
started from θ2m,m satisfies

lim
N→∞

P (tω,mhit (ε) < N) = 1 .

For every N ∈ N, we set

MN := max
{
m ∈ N : P (tω,mhit (ε) < N) ≥ 1−m−1

}
in order to obtain a sequence (MN )N∈N as stated in Lemma 5.9.

Proof of Theorem 1.1(ii) part (b). By Lemma 5.6, it suffices to show that

lim
N→∞

P

(
tω,Nhit

(
1

4

)
< cN log3(N)

)
= 1

holds for some c > 0. For N ∈ N large enough and MN of Lemma 5.9 with respect to
ε = 1

8 , define

IN := min
{
i ∈ N : N( 3

4 )
i

< MN

}
.

We iterate Proposition 5.7 now IN many times to obtain that with probability at least
1− 4M

−3/4
N

tω,Nhit

(
1

4

)
≤

IN∑
i=0

T(
N( 3

4 )
i
) + tωl,MN

hit

(
1

4
−

IN∑
i=0

N−( 3
4 )
i

)

≤ 2TN + tωl,MN

hit

(
1

8

)
holds for all N sufficiently large and some l ∈ Z depending only on N . Since the
shifted environment ωl has the same law as ω, we conclude that with probability at least
1− 5M

−3/4
N

tω,Nhit

(
1

4

)
≤ 2TN +N ≤ cN log3(N)

holds for some c > 0 and N large enough. This finishes the proof of Theorem 1.1.
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