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bstract

Being at the crux of human cognition and behaviour, imitation has become the target of investigations ranging from experimental psychology
nd neurophysiology to computational sciences and robotics. It is often assumed that the imitation is innate, but it has more recently been argued,
oth theoretically and experimentally, that basic forms of imitation could emerge as a result of self-observation. Here, we tested this proposal on
realistic experimental platform, comprising an associative network linking a 16 degrees of freedom robotic hand and a simple visual system.
e report that this minimal visuomotor association is sufficient to bootstrap basic imitation. Our results indicate that crucial features of human
mitation, such as generalization to new actions, may emerge from a connectionist associative network. Therefore, we suggest that a behaviour as
omplex as imitation could be, at the neuronal level, founded on basic mechanisms of associative learning, a notion supported by a recent proposal
n the developmental origin of mirror neurons. Our approach can be applied to the development of realistic cognitive architectures for humanoid
obots as well as to shed new light on the cognitive processes at play in early human cognitive development.

2008 Elsevier Inc. All rights reserved.
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. Introduction

In the course of human development, imitation entails two
ey abilities: social interaction and learning of motor skills [29].
acing an imitator triggers a positive emotional response from

nfants around 1 year of age, who later engage in reciprocal
mitation [24]. Motor learning can be achieved with a “look-
t-me and do-like-me” procedure more efficiently than through
trial-and-error”, even though these procedures are not mutually
xclusive and are probably used in alternation. Cultural learning,
nother essential aspect of human cognition, also uses imitation
o spread codes shared by a group within and between genera-
ions, a process Tomasello called the ratchet effect [39]. The fact
hat autism, characterized by abnormalities of social behaviours,
as been associated with impairment in infants’ imitation capac-
ties highlights the putative fundamental role of this behaviour

n normal social development.

Imitation covers a set of behaviours sharing a common fac-
or, the transformation of an observed action into an executed

∗ Corresponding author. Present address: Institut de Neurosciences Cognitives
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rance.
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ction, widely differing in terms of what type of action and
hat part of the action is imitated, or whether the imitator has

ccess to the internal representation of the goal of the model.
t covers a continuum of behaviours ranging from simple, auto-
atic and involuntary action contagion to intentional imitation

nd emulation [7]. Jacobs and Jeannerod recently emphasized
hat “[imitation] is a folk psychology concept whose bound-
ries are presently too ill-defined for scientific purposes” [18].
t is difficult to realize the number of complex mechanisms
nvolved in imitation, from body correspondence to extraction
f task-relevant features [4]. Because of this complexity, the
nderstanding of imitation benefited from the multi-disciplinary
pproach inherent to cognitive neuroscience [37], built on a
ariety of scientific fields such as experimental psychology and
europsychology, neurophysiology or computational sciences.
ur aim here is not to investigate or review the whole scope of

mitative behaviours. Instead, we used the opportunity offered
y robotics and computational sciences to test a specific hypoth-
sis. We did not take an engineering stance but a cognitive
cience perspective in order to test the hypothesis that auto-
atic and non-intentional imitation of a simple action, or action
ontagion, can emerge from the intrinsic properties of a neu-
al associative network fed by spontaneous actions and visual
eedback of these actions available during neonates’ motor bab-
ling.

mailto:tchamina@gmail.com
dx.doi.org/10.1016/j.brainresbull.2008.01.016
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Most developmental theories emphasize that social inter-
ctions, in particular understanding of other individual’s
ntentions, could be first achieved through imitation, yet the dis-
ussion on the origin of low-level imitative abilities is often
eglected, referring instead to the possibility of its innateness.
he question of the origin of imitation has indeed been highly
ontroversial following the seminal paper reporting neonatal
mitation [25]. The finding that ‘neonates between 12 and 21
ays of age can imitate both facial and manual gestures’ is often
ited as evidence of innate abstract representational systems of
ctions. Yet despite its elegance, this finding has been criticized
n two separate fronts, its results and their interpretation [2]. The
oor reproducibility of the neonatal imitation has shed doubts
n their validity so that altogether, it has been claimed that only
ongue protrusion has been repeatedly shown to be imitated by
eonates [2].

Other lines of evidence suggest that newborn infants come
nto the world with innately specified, though crude, visual
epresentation of faces [38]. Using 2-dimensional stimuli, it
as found that neonates preferably track a schematic face-

ike pattern than other patterns consisting of the same facial
eatures in different, not face-like, arrangements. This led to
he proposal that neonates were provided with innate modules
uch as a face-detecting device consisting of a perceptual sys-
em sensitive to specific arrangements of 2-dimensional shapes
reviewed in 38]. Recent finding of neonates imitation of oral
estures in chimpanzees [28] suggests a release mechanism
bility that is likely to have evolved in relation to feeding
ehaviours and to be restricted to oral gestures. In an evolu-
ionary psychology perspective, these mechanisms could have
een positively selected for the advantages they provide to
eonates not only in feeding but also in initiating social interac-
ions. It is noteworthy that innate recognition and imitation of
acial and oral gestures in humans facilitate early social inter-
ction with caregivers and are important for social cognitive
evelopment.

Keeping in mind that imitation is not a unitary behaviour but
overs a range of different behaviours, this attractive scenario on
he innate origin of oral and facial gestures imitation cannot be
eneralized to other, in particular visible, body parts. Interest-
ngly, another visuomotor ability has been clearly demonstrated
n human neonates less than a month old despite the poor res-
lution of their visual system: they can control their actions
urposefully in order to bring their hand back in the field of
iew, even when it is being pulled by an external force [41].
his shows that babies perceive their hands as objects of par-

icular interest, and can make use of spontaneous arm waving
o build an embodied frame of reference for their actions [41].
he central aspect of our hypothesis is derived from this result.
e propose that in the case of hand movements the temporal

ynchrony between the motor command and the correspond-
ng visual (and somatosensory) feedback is sufficient to acquire
isuomotor associations which can sustain early forms of imi-

ation. The observation of another agent would automatically
etrieve the visuomotor association which execution results in a
ensory input corresponding, in a loose sense, to the observed
ne. Such a visuomotor association would thus uphold action

o
p
m
t

h Bulletin 75 (2008) 775–784

ontagion, an early form of involuntary imitation. This devel-
pmental path could be particularly important when compelling
vidence about innate mechanisms are absent, as in the case of
and and finger gestures.

Recent neurophysiological findings on the cerebral bases of
erception, imitation and understanding of actions provide us
ith a rich set of results [9,13,17]. Of particular interest are
irror neurons, activated both when monkeys perform a goal-

irected action and when they see the same action performed
y an experimenter. These neurons were found in the recipro-
ally connected ventral premotor region F5 and inferior parietal
egion PF [36], and it has been proposed that a similar mirror
ystem exists in humans. These neurons are the best example
f a motor resonance system, in which not only brain activity
elated to both observation and execution of action, but also
ehavioural markers of this activity, have a reciprocal influence
n each other. In the most classical behavioural example, observ-
ng an action hinders the execution of a different one [22,32].
ey regions for the human imitation are the left inferior pari-

tal lobule [9], possible homolog to the monkey’s PF, and the
entral premotor cortex [17], putative homolog to F5 [34]. Both
isual and motor properties have been reported for these two
eciprocally connected regions. One study showed that parietal
nd premotor cortices involved in producing a specific action
re recruited when understanding the precise goal of another
ndividual performing a similar action [8].

A classical view related to synaptic plasticity and learning in
he brain is Hebbian learning (‘when an axon of cell A is near
nough to excite a cell B and repeatedly or persistently takes
art in firing it, some growth process or metabolic change takes
lace in one or both cells such that A’s efficiency, as one of the
ells firing B, is increased’). In its original form this learning is
ot very useful from a computational point of view. However,
light relaxations to the original statement allow one to con-
truct so-called associative memories [30]. The crucial property
f an associative memory is its ability to retrieve a stored pattern
ased on a partial representation of it. So these architectures are
lso called content addressable memories. Assuming that simi-
ar mechanisms are at work in the cerebral cortex, we can think
f how early automatic forms of imitation ability may emerge.
hen the system (a learning robot or an infant) generates motor

ommands, the representations of this command and the sensed
ffects of the command can be associated through Hebbian-like
earning.

These associations between motor command and their sen-
ory effects are reminiscent of internal models, defined as central
epresentations of movement which mimic the input–output
elationships of a controlled system, the human body, for
ovement generation. The model that predicts the sensory con-

equences of a motor command is referred to as a forward model
26,43]. Conversely, the model that outputs the required motor
ommand to reach a desired sensory state is called an inverse
odel. A computational structure storing input–output relations
f a control system and capable of retrieving the input–output
air given either the input or the output, as in an auto-associative
emory, is effectively a combined inverse and forward model of

he whole system (e.g. the MOSAIC control architecture [44],
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hat employs explicit multiple paired inverse and forward models
nd has been proposed to sustain imitation [42]).

Thus, in the computational framework our hypothesis can
e stated as follows: motor babbling could induce Hebbian-like
cquisition of sensory-motor associations able to sustain early
mitative abilities. The synchrony between motor commands and
ensory feedback during motor babbling could allow Hebbian
earning of the associations between the two types of events,
.e. motor and sensory, in infants. The activation of such mul-
imodal representations when actions from another person are
erceived could result in automatic and involuntary production
f the motor output, a behaviour that would be considered as
ction contagion. This Hebbian acquisition of sensory-motor
ssociations and its relation with mirror neurons and imitation
ave been proposed elsewhere [15,21]. The proposal that asso-
iative learning could provide the developmental link between
utomatic imitation and the representation of goal-directed and
eaningful actions by mirror neurons is particularly interest-

ng. Other studies have used Hebbian-like associative learning
uring self-observation to bootstrap early forms of imitation in
mbodied agents [23].

This bootstrapping of imitation could be particularly impor-
ant for certain body parts, most notably the hands in the visual
omain and the vocal tract in the auditory domain, whose cir-
uits appear to overlap on the human cortex [3,35]. To assess the
xtent of imitation features that can be bootstrapped we com-
ined a robotic human-like hand with a minimal visual retina
ia biologically inspired associative network to reproduce an
nfant’s early visuomotor experiences. Results indicate that this
imple system depicts contagion of finger postures demonstrated
y an external agent, and, more importantly, that it can gener-
lize to unseen hand postures, raising the possibility that this
echanism is at play during early infancy.

. Methods

.1. Associative memory and hardware
As detailed in Section 1, accumulating evidence suggests that visual and
otor processing overlap in most aspects of the sensory-motor transformation,
hich at the neuronal level can be realized through a Hebbian-like learning.
he goal of the present experiment is to explore to what extent the features of
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ig. 1. Flow of visual and motor information, which form the input pattern when com
attern of the HHOP network.
h Bulletin 75 (2008) 775–784 777

mitation, such as the ability to produce unseen postures through generalization,
an be bootstrapped via self-observation and Hebbian-like association. In the
ext section, we describe the visuomotor representations that are stored in the
igher order Hopfield (HHOP) network, the associative memory we used for
his study. The details of HHOP network are given in the following sections.

.1.1. Visuomotor representation: the HHOP encoding
Fig. 1 shows the flow of visual and motor information converging onto HHOP

etwork forming a visuomotor representation over the array of units making up
he HHOP network. The visual input initiates from a video source. We have
ircumvented the requirement for extensive computer vision algorithms (e.g.
kin colour tracking, body segmentation, etc.) by providing a background-free
isual input in an approximately fixed angle. The image processing we applied
mulates a very simple retina: the colour video is converted into greyscale and
moothed. A bounding rectangle is determined based on the smoothed image,
nd the contents are scaled to a fixed size set by the HHOP network (in this study:
idth 32, height 12). Thresholding and removal of isolated points complete the
reprocessing of the input video resulting in a reduced image, referred to as the
etina from now on.

The retina is directly connected to the visual units of the HHOP network,
hich receive binary pixels (+1 or −1) in a one-to-one manner, where +1 indi-

ates the existence of a bit at the corresponding location on the retina. The motor
ode that is used to drive the Gifu hand is represented by five bits for each finger,
lso directly connected to the HHOP network. The units that receive motor input
re referred to as motor units. The representation in the motor units is redundant
s in the current setting, fingers can only be in two states (up or down) which
ould be coded by one bit per finger, but will allow additional flexibility in future
evelopments, for example encoding of joints angles. The motor units of HHOP
eceive these representations of motor patterns whose values are +1 or −1. The
isuomotor representation produced by the combination of the retina and motor
nputs form an input pattern (orange square in Fig. 1) which can be either stored
r used to retrieve a stored pattern by the HHOP network. We will often use ‘pat-
ern’ to indicate a visuomotor memory trace, which has been stored or supplied
s a key for the retrieval of a visuomotor memory trace. In most sophisticated
rchitectures, one could revert to a feature space framework and extract a set of
owerful features (e.g. higher order moments) with desirable invariance prop-
rties and use those as visual input to the HHOP network. The result would be a
obust imitation engine, thanks to the sophisticated feature encoding. However,
n this study our concern is not so much to provide robust imitation but rather to
resent a simple but yet biologically realistic connectionist framework that may
e thought of as a model for the origin of action contagion. For this purpose we
ave avoided complex computer vision and pattern recognition techniques.

.1.2. HHOP: higher order Hopfield network

The standard Hopfield network [16] is a classical associative memory, which

s composed of units that are fully connected with symmetrical weights. The
omputation of the connection strength between units in a Hopfield network
ollows a Hebbian-like update rule, and is thus considered as a biologically
lausible network. Although Hopfield network is suitable for small problems,

bined together. The whole retina and all fingers are associated to form the input
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ig. 2. Illustration of the higher order Hopfield network (HHOP) with three
nits i, j and k. The weight wijk represents the higher order effect of units j and
on unit i.

n its standard form, the performance of the network degrades when the patterns
o be stored are too closely correlated (e.g. overlapping patterns). Preliminary
xperiments showed that Hopfield network was not suitable for storing visuo-
otor patterns since the patterns are highly correlated. Motivated with the fact

hat the use of higher order units increases the computational power of neural
etworks [14], we implemented an extension of the Hopfield network using
igher order units (named higher order Hopfield network or HHOP [31]). Here
e present the basic equations that are sufficient to implement the HHOP net-
ork on a computer. The HHOP network representation is bipolar (i.e. −1, +1).
ach unit in a HHOP network receives input from all possible products of the
ther units as illustrated in Fig. 2. Output of a unit (Si) is given by

i = sgn

(∑
jk

wijkSjSk

)
(1)

here sgn(·) is defined as

gn(x) =
{

−1, x < 0

+1, x ≥ 0

enoting the pth pattern to be stored with ξp, and representing the kth bit of
attern p with ξ

p

k
, the connection weight of the product to unit k is calculated

sing

ijk = 1

N

∑
p

ξ
p

i ζ
p

j ζ
p

k
(2)

The running of the network is asynchronous. After initial loading (assign-
ent of Sis), the network is run by choosing a random unit and applying the

pdate rule (1) until convergence is reached. In practice it is possible to stop
pdating at a fixed iteration since usually, several passes for each unit suffices to
each equilibrium with HHOP. The network was iterated four times in all sim-
lations reported here. If the initial loaded pattern is close to one of the stored
atterns then the network state converges to that pattern, called the attractor
attern. The main advantage gained by using higher order units is the increased
bility to deal with correlated patterns compared with the standard Hopfield
odel. In addition less iterations are required to reach stable equilibrium states

20].
.1.3. Experimental platform
We used “The Gifu Hand III” (Dainichi Co. Ltd., Japan; referred to as “Gifu

and”1 in this report) as the test-bed for action contagion using HHOP associa-

1 This article includes a word that is a proprietary term. Its inclusion does not
mply it has acquired for legal purposes a non-proprietary or general significance.
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ive memory. The Gifu hand consists of a thumb and four fingers (Fig. 1, left).
he thumb possesses four joints with four degrees of freedom (DOF) while the
ngers possess four joints with 3-DOF. One hand contains a total number of
0 joints, encompassing 16-DOF. These DOF closely approximate those of a
uman hand.

A network control framework was developed for maximal flexibility and
ork load distribution. It contains three computers as shown in Fig. 3. The
ideo Capture computer (C) is connected to a video camera and a video capture
oard. The task of C is to capture frames and transfer them to the target machine
. The colour video is sent at 30 frames/s with a resolution of 320 × 240. The
igh Level Coordinator (H) has three main tasks. The first one is to preprocess

he incoming video as described in the previous section (see also Fig. 1). The
econd task is to run the HHOP network based on the video processing result.
inally the last task is to send commands to the Low-Level Hand Control Server
S) that is directly connected to the Gifu hand. Computer S in return implements
PD servo driving the Gifu hand to the desired postures. In this sense the High
evel Coordinator is the main imitation system while Capture and Controller
ervers (C and S) serve as the input and output channels, similar to the visual
nd motor pathways in humans.

.2. Experimental procedure

.2.1. Network simulations
A first series of simulations were run off-line on synthetic data to ensure

orrect function of the associative network and assess its properties. The aim of
hese simulations was to confirm that HHOP can reliably be used in real-time as
n associative memory bridging video input and controller software that actuates
he Gifu hand. For these simulations the artificial input patterns consisted of
ll possible hand postures with 4 fingers (all but thumb) up or down, and the
xpected retinal images for the posture coded by the motor patterns. The motor
its of the input patterns were set to ones if the corresponding finger was up
nd to zero otherwise (zeros are treated as −1 when loaded to the HHOP). To
btain the retinal image, the 32 columns of the retina were divided into four
qual parts. Each part was used to represent a finger, and its six central columns
ere filled with one if the motor code of the corresponding finger was one and

ero otherwise. The two-pixel gap between fingers was always kept null. Two
ines at the bottom were filled with ones in all postures to represent the palm of
he hand. Thus, a total of 24 = 16 synthetic visuomotor patterns were generated
or testing. Two properties of the HHOP network were tested: its robustness with
egard to noise and its ability to generalize across patterns.

.2.1.1. Noise robustness. To assess noise robustness, random noise was uni-
ormly added to the input patterns by flipping the value of n percent of the bits,
ith n varying from 0 to 100% in 10% increments. Note that the noise con-

amination is applied to the motor and visual units without distinction. Before
esting, HHOP was trained with the full data set of 16 patterns. Then, for each
oise level, the recall capability of the HHOP network was tested by loading each
f the 16 patterns and contaminating them with noise at the appropriate noise
evel. The network was then iterated four times (each unit received 4 updates in
random order) after which the overlap with the original (‘clean’) pattern was

ecorded. This process was repeated 100 times for each pattern. The average
ver repetitions and patterns gives the noise robustness curve of HHOP, given
n Fig. 5A.

.2.1.2. Generalization across patterns. To assess the ability to generalize
cross postures, a random training set was generated which could have n = 1–15
raining patterns. The testing was conducted on the 16 possible hand postures,
6-n of which were not in the training set. For each level of n, 500 randomized
raining and testing session were run. If the network can ‘infer’ the motor patterns
orresponding to patterns which are not in the training set, then m, the number
f correctly recalled motor patterns, must be greater than n (m > n). Notice that
fter a pattern not belonging to the training set is loaded into the network, the

otor part is randomized, and the network is iterated. A correct functioning
ould recover the randomly initialized motor bits such that they reflect the pos-

ure represented by the visual bit patterns. In other words, this generalization
ests the ability of the network to reconstruct the motor information on the basis
f the visual information of a posture the network has never experienced before.
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ig. 3. The network framework built around Gifu hand comprises three comput
espectively. Arrows indicate the flow of information illustrated in Fig. 2.

ig. 5B shows the generalization ability of the HHOP network averaged over
he 500 repetitions.

.2.2. Robotic validation
To assess whether this network depicts action contagion in a real-life situ-

tion, we used real hands, either the Gifu hand or other hands (human hands,

ood hand) to provide visual input to the system in the testing phase. Since our
ypothesis is that a network trained by self-observation displays action conta-
ion when observing another individual, we performed training with the robotic
and: the robot watched its own hand postures while associating the motor com-
ands with the perceived hand postures through the simple retina. The testing

i
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ig. 4. First (top) and second (bottom) sets of 4 finger postures used in the real-life e
he robotic hand which is recorded by the camera, and the bottom row one example o
capture video (C), to control the Gifu hand (S), and to run the simulation (H),

s carried on with other hands as well as the robot hand itself. Two properties
f the HHOP network were tested: its ability to generalize between different
gents and to generalize to new postures.

.2.2.1. Generalization between agents. Generalization between agents entails
he ability of a network trained by self-observation to respond to other agents,

.e. other hands (human hands, wood hand) used to form the retinal bit pattern
preprocessed real-time video). Upon presentation of a posture, the motor part of
he input was set randomly as in the off-line simulations. Then, the network was
terated, yielding a motor code that was send to the robot for visual inspection
f the action contagion behaviour. In addition, the motor code was recorded

xperiment. For each set, the top row shows the image of the posture shown by
f the visual part of the retina after preprocessing of the video signal.
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Table 1
Percentage of finger configuration correctly reproduced by the HHOP networks
during testing

Set of postures Gifu hand Wooden hand EO TC Average

First 100 82 82 98 90.7
Second 100 99 95 94 97.8

The first column indicates which set of postures were used to train the HHOP
networks (simple or complex sets of Gifu hand’s patterns), the second, which set
was used for testing the networks (simple or complex sets of hand patterns), the
f
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ollowing columns whose hand was presented when testing the network (Gifu
and, wooden hand, or one of the experimenters’, EO and TC, hand). The last
olumn gives the average correct recollection rate.

or estimating an average performance value for the generalization. In the real
xperiments with the robot, we used two reduced sets of hand postures as human
ands could not perform all of the sixteen postures that were used in the off-line
imulations. Both sets contain four postures as illustrated by Fig. 4.

The first set consists of 4 postures: all fingers flexed, all extended, index
nger extended, and little finger extended. The second set consists of two or

hree-finger postures. We created four different versions of each set by producing
he respective postures with the respective agent (Gifu hand, wood hand, each
f the two human hands) four times independently. The training, emulating the
elf-observation learning, is carried on by letting the Gifu hand generate all
ostures from one set, and associating the motor code and the retinal feedback
f its posture perceived in one HHOP associative network. The ability of this
etwork to generalize to different agents is tested by recording its responses when
resented with another set of retinal images of hand postures. The other set could
e from the same (Gifu) or another (Wood, Human) hand, and the four versions of
ach set were used for testing in order to take into account the existence of noise
uring posture presentation. For each posture, the number of fingers in the correct
osition on the robotic hand output was counted after iterating the network four
imes. For example, if the output of the robotic hand has two fingers in the correct
osition and two in the incorrect position, the ratio of correct response is 1/2,
hich corresponds to chance level for finger configurations. Finally, for each

et and agent, four networks are formed from each of the four versions of the
et, and each are tested across the four versions of set, so that 4 (postures) × 4
trained network) × 4 (tested sets), i.e. 64, observations are converted into the
ercentage of correct reproduction given in Table 1.

.2.2.2. Generalization between postures. A follow-up was conducted to
pecifically test generalization to new finger postures. Off-line simulation indi-

ates that networks trained with a small number of gestures could not generalize
o the whole set of remaining patterns. The Gifu hand was used for both training
nd testing, allowing the use of all sixteen postures available with four fingers.
ive simple postures were used for training (all fingers up, each of the four finger
p individually), and the trained HHOP networks were tested against a set con-

T
i
m
s

ig. 5. (A) Percentage of bits correctly recalled as a function of the noise added. Dot
verage across the 16 postures. (B) Percentage of generalization (number of new po
etwork during training) as a function of the number of postures used for training. O
h Bulletin 75 (2008) 775–784

aining all possible configurations except the ones used for training. The fully
losed hand was not used in this experiment. We considered that the posture was
orrectly reproduced when all fingers were flexed or extended correctly as this
hows that the motor code that would yield the observed posture was correctly
nferred. Therefore, the chance level for correct imitation was 6.25% in this
xperiment.

. Results

.1. Network simulations

.1.1. Noise robustness
Hopfield networks construct associative memories by creat-

ng attractor dynamics around the stored patterns. Given proper
onditions, when loaded with a pattern near a stored one, the net-
ork will settle to an attractor that will coincide with the stored
attern. The ability to return a stored pattern given a noisy ver-
ion of it is thus intrinsic to Hopfield networks including our
igher order Hopfield network.

The effect of noise on the recall performance of HHOP is
llustrated in Fig. 5A. Statistical analysis shows that the effect
f noise on recall performances is highly significant. For levels
f noise between 0 and 30%, recall performance is perfect and
till superior to 90% when the noise amounts to 40%. In other
ords, when 40 out of 100 pixels of canonical hand postures
sed for training are randomly flipped, the HHOP still recognizes
ore than 9 out of 10 postures presented. Recall performance is

educed at 50% noise (32%) and 60% noise (16%), but bounces
ack for increased levels of noise. When the input is at 100%
oise, the input pattern is the inverted version of the original.
he increase in recall performance can be intuitively explained
hen we look closer at the workings of HHOP. Assume we have
ipped some number of bits in the input pattern so that the ratio
f flipped bits to all bits is p (0 ≤ p ≤ 1). The effective input to
unit is all the double products of the input bit patterns (see
q. (1)), which are −1 or +1, therefore p2 + (1 − p)2 of the input
hannels to each unit remains the same as if no noise was applied.

hus, for the first iteration, the ratio of number of disturbed

nput channels to a unit has a maximum at p = 0.5, where we
ay expect to see the worst recall performance. Although, this

imple argument does not consider the subsequent iterations, it

ted lines correspond to individual postures and straight line with squares to the
stures imitated divided by the total number of postures not experienced by the
ther details are available in Section 2 of the main text.
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ives a reasonable approximation of the noise level where the
ecall performance is minimum (p ≈ 0.6; see Fig. 5A).

.1.2. Generalization across patterns
In contrast to their ability to return a stored pattern to the

resentation of a noisy pattern, Hopfield networks are not easy
o craft to generate ‘plausible’ new memories out of the stored
atterns, an essential feature for generalization. It is known that
purious or ‘ghost’ memories will be created when a given set of
atterns is stored, but the possibility that these spurious memo-
ies would coincide with what we understand as generalization is
ot clear. Although, it is possible to understand the ghost mem-
ries of the standard Hopfield network as linear combinations of
he stored patterns, it is harder when higher order or more com-
lex memories are concerned as in HHOP network. Therefore,
e tested the ability to generalize in an off-line simulation before
sing the network in a real-life environment. Results show that
HOP network is capable of correctly inferring motor codes
ther than those used for training (Fig. 5B). On average, when
–12 postures are used for training, the network can correctly
eproduce 3.5 postures that were not part of the training set, and
t extrapolates to the 16 postures when more than 12 postures are
sed for training. Between 5 and 7 postures the network shows
imited ability to generalize, reproducing 1–3 new postures.

.2. Robotic validation

.2.1. Generalization between agents
The two sets of pattern inputs from the Gifu hand shown

n Fig. 4 were repeated four times to investigate generalization
ver agents. HHOP network were trained with one of this set,
nd tested with similar sets, one identical and three different
ersions recorded using the Gifu hand or one of the other hands
vailable, two humans hands and a wood hand. Results, given in
he first lines of Table 1, reveal an average percentage of 90.7%
f correct finger imitation for the first set and of 97.8% for the
econd set.

It appears that the networks trained by self-observation
emonstrate perfect reproduction when tested with the Gifu
and, despite being tested with the exact same set as well as
hree other versions of the same set. The system also depicts
igh level of generalization to other agents. Though the number
f patterns used in the two datasets was similar, generalization to
ther agents is improved in the second dataset. A likely explana-
ion is the similarity of the retinal image of the closed and open
and patterns of the first set due to scaling.

.2.2. Generalization between gestures
Because of the small number of postures available in the pre-

ious simulation, it is not fit to test the generalization ability of
he system. Indeed, the off-line simulation demonstrated pos-
tive generalization results when 5 gestures or more are used.
et technical and practical limitations forbid the use of exten-

ive tests similar to those used in the off-line simulation. To test
eneralization more specifically, a similar experiment was thus
onducted using five simple postures to train the network and all
emaining postures to test it with the Gifu hand. The assumption

u
l
w
b
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ere was that complex postures could be described as combina-
ions of the simple ones. The mean ability to generalize to the
ostures presented in the new data set is about 30%, significantly
igher than the chance level of 6.25% for whole hand configu-
ation. There was a huge variability depending on the postures
ested. In particular, we found that the network was able to imi-
ate perfectly (100%) the two-finger posture involving the index
nd the middle fingers even though it had never produced two-
nger postures during training. This indicates that the system is
ble to reproduce postures it had never experienced before. On
he other hand, there were some postures it was never able to
eproduce.

. Discussion

The aim of the simulations reported here was to test whether
he ability to imitate could emerge from Hebbian-like learning of
ensory-motor associations resulting from self-observation. Per-
eption of the visual consequences of our hands actions would
uffice to acquire internal models of these actions, which could
hen be triggered by the observation of other individuals’ hand.
his automatic and involuntary action in response to the per-
eption of another individual’s action is referred to as action
ontagion [6], as in contagious yawning. This Hebbian learn-
ng of sensory-motor associations and its relation with imitation
ave been proposed elsewhere [15,21], but not tested empirically
n a robotic hand.

We investigated this hypothesis using a robotic hand and a
imple associative network. First we will describe the properties
f the system in relation to the biological inspiration, and argue
hat associative network was more suitable for the current simu-
ation than another possible approach. Then we will discuss the
esults in relation to the hypothesis, and finally describe possible
xtensions of the system.

.1. Properties of the computational network and robotic
mplementation

In addition to testing a hypothesis derived from cognitive
ciences, one long-term goal of this research is to implement
iologically inspired robotic systems. It was thus not possible to
imit this investigation to the off-line simulation aspects, and the
ystem had to be implemented in a biologically inspired robotic
ystem. The hand was chosen for two reasons: in a biological
erspective, it is one of the effectors clearly visible to infants
rom birth and it is possible to relate our results to developmen-
al psychology studies [41]; in a roboticist perspective, it offers
large number of degrees of freedom in a limited space with

imited security or control issues. Nevertheless, the same princi-
les could be applied to most parts of the human body, the most
otable exceptions being the head and face.

The associative memory we employed is a connectionist
rchitecture relying on Hebbian-like learning mechanisms with

nits resembling neurons, and is thus a credible biological simu-
ation. The experiment setup was voluntarily kept minimal, as a
ay to limit the hypotheses required to describe the homologies
etween our artificial and biological systems. For instance, no
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laims are made here on the biochemical mechanisms that may
nderlie association in the cortex. Two fundamental properties
ere necessary for the associative network (higher order Hop-
eld net, see Section 2) to be used in this experiment. First, in
rder to be usable in real-life environments when implemented
n a robot it needs to be resistant to noise. The ability to return a
tored pattern given a noisy version of it is intrinsic to Hopfield
etworks, and results from the off-line simulations indicate that
hen 40% or less of the pixels of the input pattern used for train-

ng are randomly flipped, the HHOP still retrieves on more than
out of 10 postures presented (see Fig. 5A). This robustness to
oise is fit for correctly reproducing gestures. It was also found
hat the network is capable of generalizing, on average to more
han three new gestures when 8 or more are used for training
Fig. 5B). This series of off-line tests of the associative network
nsures that it is robust to noise and supports generalization.
t can thus be used to test our hypothesis that some imitative
bilities can emerge from self-observation.

.2. Emergence of imitative abilities in the associative
etwork

We investigated this system’s ability to imitate not in an engi-
eering point of view, but from a cognitive science perspective
n order to acquire knowledge on the possibility for simple imi-
ation abilities – comparable to those described by Piaget in
ts early developmental stages – to be bootstrapped by expe-
ience given the simple (innate) capacities of the system (the
ewborn). As explained in the previous parts, efforts were made
or the network to be biologically realistic so that as few a priori
ypotheses as possible are needed.

The main result from the robotic implementation is that this
ssociative network trained by self-observation of hand postures
s capable of action contagion, depicting two features of imi-
ation: reproducing actions regardless of the actor, and more
mportantly exhibiting one-shot imitation, that is without train-
ng the motor code corresponding to a new posture presented
an be inferred, and hence executed. In the first experiment,
e tested the network response when it was tested with either
isual input from itself or from another hand (Table 1). As
xpected, the network was 100% correct when it was tested
ith its own visual input, and largely above chance (superior to
0%) when tested with another hand. This was irrespective of
hich set of finger postures and which hand was used, though

here may be individual differences that are beyond the scope
f the present report. In accordance with the theoretical frame-
ork which inspired this experiment, our interpretation for this

bility is that observation of actions from the self can be used
o associate (near) synchronous visual and motor aspects of an
ction by application of Hebbian type of learning rule. The stored
isuomotor patterns can be seen as internal models of actions.
ands used in the experiment differ in relative size and shape
f fingers, but their general aspect is similar to the Gifu hand.

fter preprocessing, the content of the retina can be regarded as
noisy hand input similar to a stored pattern. In other words,

he differences among the hands are treated like noise by the
ssociative network. Because of robustness to noise, the observa-

t
a
t
o
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ion of another individual’s action can retrieve the visual aspect
f the corresponding stored pattern. The ability of the network
o return a stored pattern to the presentation of a noisy pattern
eads to the retrieval of the original motor code stored along with
he visual code produced during self-observation. If this motor
ode is used to drive the hand, we obtain the action contagion
eported in Table 1. This automatic and involuntary behaviour is
efined as action contagion in psychology, and the present result
uggests self-observation could bootstrap this initial step in the
evelopment of imitative abilities.

The experiment testing the capacity of the associative net-
ork to generalize to unseen postures in a real-life setting used
nly the robotic hand, with the intention to stress the capability to
eneralize by checking all possible postures which could not be
erformed satisfactorily with a human hand. The results showed
hat the overall ability to generalize (∼30%) is significantly
igher than chance (6.25%) but highly variable. Unexpectedly,
ome new postures are always reproduced while others never
re. This indicates that the system is able to reproduce postures
t had never experienced before, but did not generalize to the
hole data set with the simple and limited number of postures
rovided for training. This result demonstrates that the ability to
mitate postures that are not in its existing repertoire of actions
merged from the associative memory network without any tun-
ng. In accordance with our hypotheses, action resonance could
ventually be used to learn new gestures after some simple visuo-
otor primitives, in this case individual fingers’ patterns, have

een used to form an associative memory. It would be interesting
o compare the present results with the development of gener-
lization capability, or more generally of action contagion, in
nfants.

.3. Possible extensions of the imitation system

.3.1. Acquisition of visuomotor representation of the body
The neonatal ability to recognize faces or to move the hands

o that they remain in the visual field, even when the visual feed-
ack is given through a camera and screen display [41], strongly
uggests innate features detectors for faces and maybe hands too.
n addition, these feature detectors could correspond to brain
reas for which specific activity for faces [Fusiform Face Area
r FFA; see 19 for example] or for body parts [Extrastriate Body
rea or EBA; 10] has been reported. In addition the FFA was

ctivated during face perception in 2-month-old infants using
ositron Emission Tomography (PET [40]), and a recent study
eported different electrophysiological response to normal and
crambled bodies in 3-month-old infants, suggesting that very
oung infants already recognize faces and bodies [12].

The visual processing of information and in particular the
ifficult computational problem of the rotation of point of view
hen watching hands from self and from others, which consti-

utes one of the main difficulties for modelling imitation in an
ssociationist framework, was largely simplified by the segmen-

ation of the visual input. On the basis of very young infants’
bilities, we postulated that their visual system could segment
he visual field so as to isolate a region of interest on the basis
f its intrinsic features, in our case a hand. Alternatively, some
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otor control schemes, such as proposed for reaching [33], could
e extended for viewpoint independent hand posture control.
hus, the issue of the origin of mechanisms used to segment
isual input and isolate visible body parts is still opened. It
s theoretically possible to use a similar visuomotor associa-
ive network approach using motor babbling and first-person
erspective visual feedback to investigate whether it can learn
o recognize its own body parts [23]. As for imitation, self-
bservation could bootstrap recognition of visible body parts.

.3.2. From posture to complex action
Considering the attraction of neonates to dynamic stimuli

11], we believe the extension of the current network to dynamic
ctions is crucial to further explore the current hypothesis in
biologically valid framework. Dynamic features may also

acilitate the acquisition of a body schema through visuomotor
ssociative learning, an hypothesis that could be investigated
ith our model. Dynamic actions require the addition of time

s a variable to the network as the current system does not
onsider the timing of events, and uses static sensory stim-
li. More widely explored, in particular in robotics, is the use
f motion, the time variation of visual stimuli, as input for
mitation [1,23]. A more general system would need to learn
patio-temporal relations over the sensory stimuli, for example
y utilizing spatio-temporal associative memories [5,27]. How-
ver, the use of these networks for complex and highly correlated
et of movement patterns is a challenging task that constitutes a
ogical extension of the current approach.

Here we assumed that the network would be in the learn-
ng phase first, and then in the testing phase. In a biological
etting learning and testing ensue in an interleaved manner.
dditional iterations, similar to reciprocal imitation games dur-

ng development, could improve the efficiency of the system.
e can speculate on the recursive learning possibility provided

y the generalization ability. For example, learning visuomo-
or patterns A and B by self-observation provides the ability
o imitate a novel action C. Then by self-observation associa-
ive learning of C, the repertoire of visuomotor patterns can be
xpanded to store A, B and C. This expanded network could then
llow more new actions D, E to be imitated and learnt. It would
e interesting to expand the one-iteration of generalization
xplored in this article by using such a recursive learning mech-
nism, which would illustrate a “ratchet effect” at the level of
ndividuals.

. Conclusion

This report emphasizes that robotic systems are suited for
esting hypotheses about human visuomotor development by
howing that a biologically realistic neural network coupled
ith a simple visual system and a motor apparatus is capable
f producing imitative skills. The current study is the first step
owards an imitative agent that ‘lives’ in social learning loop,

here the recursive nature of imitation can be expressed by the

gent, better emulating the learning cycle of a growing infant
n a socially active environment. The works building on this
tudy then could help answer questions about imitation includ-

[

[
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ng the self-observation versus innate interpretations of infants’
mitative abilities.
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