
Decoupling of Distributed Consensus, Failure
Detection and Agreement in SDN Control Plane

Ermin Sakic∗†, Wolfgang Kellerer∗
∗Technical University Munich, Germany, † Siemens AG, Germany

E-Mail:∗{ermin.sakic, wolfgang.kellerer}@tum.de, † ermin.sakic@siemens.com

Abstract—Centralized Software Defined Networking (SDN)
controllers and Network Management Systems (NMS) introduce
the issue of controller as a single-point of failure (SPOF). The
SPOF correspondingly motivated the introduction of distributed
controllers, with replicas assigned into clusters of controller
instances replicated for purpose of enabling high availability. The
replication of the controller state relies on distributed consensus
and state synchronization for correct operation. Recent works
have, however, demonstrated issues with this approach. False
positives in failure detectors deployed in replicas may result in
oscillating leadership and control plane unavailability.

In this paper, we first elaborate the problematic scenario. We
resolve the related issues by decoupling failure detector from
the underlying signaling methodology and by introducing event
agreement as a necessary component of the proposed design.
The effectiveness of the proposed model is validated using an
exemplary implementation and demonstration in the problematic
scenario. We present an analytic model to describe the worst-
case delay required to reliably agree on replica failures. The
effectiveness of the analytic formulation is confirmed empirically
using varied cluster configurations in an emulated environment.
Finally, we discuss the impact of each component of our design
on the replica failure- and recovery-detection delay, as well as
on the imposed communication overhead.

I. INTRODUCTION

In recent years, distributed controller designs have been
proposed to tackle the issue of network control plane sur-
vivability and scalability. Two main operation models for
achieving redundant operation exist: i) the Replicated State
Machine (RSM) approach, where each controller replica of a
single cluster executes each submitted client request [1]–[3];
ii) the distributed consensus approach, where particular replics
execute client requests and subsequently synchronize the re-
sulting state updates with the remaining cluster members [4]–
[10]. The latter model necessarily leverages the distributed
consensus abstraction as a mean of ensuring a single leader
and serialized client request execution at all times.

For example, in Raft [11], the leader is in charge of
serialization of message updates and their dissemination to
the followers. In the face of network partitions and unreliable
communication channels between replicas, the simple timeout-
based failure detector of Raft cannot guarantee the property
of the stable leader [8]. Zhang et al. [8] demonstrate the
issue of the oscillating leadership and unmet consensus in
two scenarios involving Raft. To circumvent the issues, the
authors propose a solution - redundant controller-to-controller
connections with packet duplication over disjoint paths. This
solution is expensive for a plethora of reasons: a) additional
communication links impose significant communication over-
head and thus negatively impact the system scalability; b)

selection of the paths that would alleviate the failures is not
a trivial task, especially when the locality and the expected
number of link/node failures is unknown; c) certain restrictions
on topology design are imposed - their solution requires
disjoint paths between any two controller replicas. In another
recent evaluation of Raft in ONOS [6], Hanmer et al. [12]
confirm that a Raft cluster may continuously oscillate its leader
and crash under overload. This behavior may arise due to
increasing computation load and incurred delays in heartbeat
transmissions in the built-in signaling mechanism. This issue
is unsolvable using disjoint flows alone [8].

In contrast to [8], we identify and associate the core issue of
unreliable Raft consensus with the lacking design of its failure
detector. In fact, the issue is not limited to ONOS alone -
state-of-the-art control plane solutions, i.e., OpenDaylight [4],
Kubernetes [13], Docker (Swarm) [14] all tightly couple Raft
leader election procedure with the follower-leader failure de-
tection, thus allowing for false failure suspicions and arbitrary
leader elections as a side-effect of network anomalies.

A. Our contribution

We solve the issue of oscillating consensus leadership and
unmet consensus as follows: We alleviate the possibility of
reaching false positives for suspected controller replicas by
disaggregating the process of distributed agreement on the
failure event, from the failure detection. Namely, we require
that an agreement is reached among active controller processes
on the status of the observed member of the cluster, prior to
committing and reacting to a status update.

To this end, we make the following contributions:

• We propose a model for realizing robust distributed event
detection, comprising four entities: signaling, dissemina-
tion, event agreement, and failure detection.

• We validate correctness of the proposed model using
implementation of two instances of each of the four
entities in a problematic scenario [8].

• We evaluate all instance couplings with varied
parametrizations. Metrics of failure and recovery
detection, as well as the per-replica communication
overhead; are presented and discussed.

• We formulate a model for computation of worst-case
agreement period for an observed replica’s status, based
on incurred per-entity delays. The correctness of the
formulation is confirmed by empirical measurements in
an emulated environment.

To our best knowledge, this paper is the first to raise the
issue of close coupling of Raft consensus and underlying
failure detection.

Paper structure: Sec. II motivates this work with an exem-
plary scenario of the oscillating Raft leader election in the face
of link failures. Sec. III presents the assumed system model.
Sec. IV presents the reference model of the reliable event
detection framework and details the designs of two exemplary
instances for each of the four entities. Sec. V discusses the
evaluation methodology. Sec. VI presents the empirical results
of our event detection framework for varied control plane
configurations. Sec. VII presents the related work. Sec. VIII
concludes the paper.

II. BACKGROUND AND PROBLEM STATEMENT

With single-leader consensus, e.g., in Raft-based clusters,
the controller replicas agree on a maximum of a single leader
during the current round (called term in Raft). The leader
replica is in charge of: i) collecting the client update requests
from other Raft nodes (i.e., followers); ii) serializing the
updates in the underlying replicated controller data-store; iii)
disseminating the committed updates to the followers.

In the case of a leader failure, the remaining active replicas
block and wait on leader heartbeats for the duration of the
expiration period (i.e., the follower timeout [11]). If the
leader has not recovered, the follower replicas announce their
candidature for the new leader for the future term. The replicas
assign their votes and, eventually, the majority of the replicas
vote for the same candidate and commonly agree on the new
leader. During the re-election period, the distributed control
plane is unavailable for serving incoming requests [10]. How-
ever, not just the leader failures, but also unreliable follower-
leader connections as well as link failures, may lead to
arbitrary connection drops between members of the cluster and
thus the reinitialization of the leader election procedure [8].
Realizations of the Raft consensus protocol [4], [6] implement
the controller-to-controller synchronization channel as a point-
to-point connection, thus realizing |V|·(|V|−1)

2 bidirectional
connections per replica cluster.

C1

C2

C3

C4 C5

C1

C2

C3

C4 C5
a) b)

Fig. 1. Non-failure (a) and exemplary failure case (b) scenarios with injected
communication link failures (loosely dotted). In the non-failure case, direct
any-to-any connectivity between the replicas is available. The depiction is
agnostic of the physical topology and represents a logical connectivity graph.

To demonstrate a possible issue with the consensus design,
consider the task of reaching consensus in the multi-controller
scenario comprising |V| = 5 controllers, depicted in Fig. 1 a):

1) Assume all depicted controller replicas execute the
Raft [8] consensus protocol. Let replica C2 be selected

the leader in term T1 as the outcome of the leader election
procedure.

2) Assume multiple concurrently or sequentially induced
link failures, i.e., on the logical links (C2, C4) and
(C2, C5). Following the expiration of the follower
timeout, C4 and C5 automatically increment the current
term to T2 and initiate the leader re-election procedure
by advertising their candidate status to C1 and C3. Since
a higher-than-current term T2 is advertised by the new
candidate(s), C1 and C3 accept the term T2, eventually
vote for the same candidate, resulting in its election as
leader. Depending on whose follower timer had expired
first, either C4 or C5 is thus elected as the leader for T2.

3) After learning about T2, C2 steps away from its lead-
ership and increments its term to T2. As it is unable
to reach C4 and C5, C2’s follower timeout eventually
expires as well. Thus, C2 proceeds to increment its
term to T3 and eventually acquires the leadership by
collecting the votes from C1 and C3. Term T3 begins.
The oscillation of leadership between C4/C5 and C2
can thus repeat indefinitely.

4) Should either C4/C5 or C2 individually apply a client
update to their data-store during their leadership period,
the replicas C1 and C3 will replicate these updates and
thus forward their log correspondingly. This in return
leads to the state where only replicas C1 and C3 are aware
of the most up-to-date data-store log at all times. As per
the rules of Raft algorithm [15], from then onwards, only
C1 and C3 are eligible for the leadership status.

5) Since the link/connection (C1, C3) is also unavailable
(ref. Fig. 1 b)), the leadership begins to oscillate between
replicas C1 and C3, following the logic from Steps 1-3.

Hence, in the depicted scenario, the Raft cluster leadership
oscillates either between C2 and C4/C5, or C1 and C3. Zhang
et al. [8] have empirically evaluated the impact of the oscillat-
ing leadership on system availability (the period during which
a leader is available for serving client requests). During a 3-
minute execution of an oscillating leadership scenario using
LogCabin’s Raft implementation and 5 replicas, the authors
observed an unavailability of ∼58% and 248 leadership shifts,
even though the network itself was not partitioned.

We introduce a generic design that alleviates these issues
completely. We ensure the above Step 2 never occurs, by
requiring all active replicas to reach agreement on the inactive
replica prior to restarting the leader election.

III. SYSTEM MODEL

We assume a distributed network control model (e.g., an
OpenFlow [16] model), where controller replicas synchronize
and serialize their internal state updates to keep a consis-
tent view of the replicated data-store. Following a data-store
change the controller initiating the state update propagates the
change to the current Raft leader. The leader is in charge
of proxying the update to all members, and committing the
update into the persistent store after at least d |V|+1

2 e controllers
have agreed on the update ordering.

The communication topology between replicas is modeled
by a connectivity graph G = (V, E) where V is the set of
controller replicas and E is the set of active communication
links between the replicas. An active link (i, j) denotes an
available point-to-point connection between the replicas i and
j. The communication link between two replicas may be
realized using any available mean of data-plane forwarding,
e.g., provisioned by OpenFlow flow rule configuration in each
hop of the path between i and j, or by enabled MAC-learning
in non-OpenFlow data plane. The controllers are assumed to
synchronize in either in-band or out-of-band [17] manner.
We assume non-Byzantine [2], [18] operation of network
controllers.

Let D contain the guaranteed worst-case delays between any
two directly reachable replicas. In the non-failure case (ref.
Fig. 1 a)), ∀(i, j) ∈ E : ∃di,j ∈ D. In the failure case, depicted
in Fig. 1 b), we assume that partitions in the connectivity
graph have occurred (e.g., due to flow rule misconfigurations
or link failures). Connectivity between the replicas i and j may
then require message relaying across (multiple) other replicas
on the path Pi,j , with Pi,j ⊆ E . In both non-failure and
failure cases, direct communication or communication over
intermediate proxy (relay) replicas, respectively, is possible
between any two active replicas at all times.

Replicas that are: a) physically partitioned as a result of
one or more network failures, and are thus unreachable either
directly or over a relayed connection by the replicas belonging
to majority partition; or are b) disabled / faulty; are eventually
considered inactive by all active replicas in the majority
partition.

Each controller replica executes a process instance in-
corporating the components for failure detection and event
agreement, together with signaling and dissemination methods
(ref. Sec. IV). Any correct proposed combination of these
methods must fulfill the properties of:
• Strong Completeness: Eventually all inactive replicas are

suspected by all active replicas.
• Eventual Strong Accuracy: Eventually all active replicas

(e.g., still suspected but already recovered) are not sus-
pected by any other active replica.

TABLE I
NOTATION USED IN SECTION IV

Notation Definition
V Set of controller replicas
E Set of active communication links
D Set of unidir. delays between directly reachable replicas
tS Fixed signaling interval
φ Suspicion threshold for ϕ-FD failure detector
tT Timeout threshold for T-FD failure detector
lM Confirmation multiplier for list-based L-EA event agreement

IV. REFERENCE MODEL OF OUR FRAMEWORK

The abstract reference model depicted in Fig. 2 portrays the
interactions between the four core entities:
• Failure Detection (*-FD): Triggers the suspicion of a

failed replica by means of local observation - e.g., an
active replica may suspect a remote replica inactive
following a missing acquisition of replica’s heartbeats.

• Event Agreement (*-EA): Deduces the suspected replica
as inactive or recovered following the collection and eval-
uation of matching confirmations from at least d |V|+1

2 e
active replicas. It uses the underlying Failure Detection
to update its local view of other replicas’ state.

• Signaling (*-S): Dictates the semantics of the interaction
between processes, e.g., the protocol (ping-reply or pe-
riodic heartbeat exchange), and configurable properties
(e.g., periodicity of view exchange). Signaling ensures
that the local view of one replica’s observations is peri-
odically advertised to all other reachable replicas.

• Dissemination (*-D): Dictates the communication spread
(e.g., broadcast/unicast or relay using gossiping). As
depicted in Fig. 2, the Dissemination is leveraged for pe-
riodic signaling of replica’s status view (by the Signaling
entity), as well as for triggering asynchronous updates on
newly discovered failures (by the Failure Detection).

Dissemination Failure
Detection

Signaling Event
Agreement

uses

us
es

us
es

uses

Fig. 2. The proposed event detection reference model.

We next identify two exemplary instances for each of the
four entities and provide an analytic expression for the worst-
case delay, specific to that instance. The sum of the delays
introduced by each of the components denotes the predicted
waiting period to reach agreement on an observed remote
replica’s status. Note that the worst-case convergence time can
be determind only in scenarios where all active replicas can
communicate either directly or through relay replicas.

A. Dissemination

In our model: i) replicas learn about the status of other
members (active or inactive) using local Failure Detection;
and ii) confirm those assumptions by collecting information
from active remote members in the Event Agreement module.
Dissemination governs how the information containing repli-
cas’ local view of other cluster members’ state is exchanged.
We exemplarily distinguish Round Robin Gossip (RRG-D) and
Best Effort Broadcast (BEB-D) dissemination:

1) Round Robin Gossip (RRG-D) Dissemination: In RRG-
D, message transmissions occur periodically on a per-round
basis. During each round, the gossip sender selects the receiver
based on the current round number. This ensures that in a
fault-free setup, given periodic heartbeat message exchange,
each state view update is propagated to all cluster members in
a maximum of dlog2(|V|)e subsequent rounds. The heartbeat
destination identifier IDDst is selected based on current round
Ri as:

IDDst = IDSrc + 2Ri−1 mod |V| : 1 ≤ Ri ≤ dlog2(|V|)e.

Non-Failure case: The worst case incurred by the gossip trans-
mission between i and j in the non-failure case corresponds

to the sum of delays on the longest directional gossip path
(but limited by log2(|V|)) and the signaling interval TS :

TD(i, j) =

log2(|V|)∑
l=1

(hl + TS) : hl ∈
log2(|V|)⋃
k=1

Hi,jk ,

where set Hi,jk contains the k-th largest element of delay set
Di,j ⊆ D (union of delays for all links of all unidirectional
gossip paths between i and j), determined using induction:

Hi,jk = {a ∈ Di,jk−1; a ≥ b∀b ∈ Di,jk−1}
with Di,j0 = Di,j ;Di,jk = Di,jk−1 \ H

i,j
k

Failure case: For the failure case, we assume an availability
of only one path between the replicas i and j, hence the worst-
case dissemination delay corresponds to the sum of all delays
across all replica pairs on the longest gossip path Pi,j and the
periodic signaling interval TS :

TD(i, j) =
∑

(k,l)∈Pi,j

(dk,l + TS) : dk,l ∈ D

2) Best Effort Broadcast (BEB-D) Dissemination: With
BEB-D, heartbeats are propagated from source replica to all
remaining cluster members concurrently in a single round. In
contrast to RRG-D, in the non-failure case messages must
not be relayed, and each message transmission incurs an
overhead of O(|V| − 1) concurrent transmissions. The worst
case delivery time between replicas i and j in the non-failure
case corresponds to the sum of the worst-case uni-directional
delay di,j and the signaling period TS . In the failure case,
intermediate replicas must relay the message, hence the worst-
case equals the gossip variant:

TD(i, j) =


di,j + TS : di,j ∈ D if non-failure case∑
(k,l)∈Pi,j

(dk,l + TS) : dk,l ∈ D if failure case

B. Signaling

We leverage the unidirectional heartbeats and ping-replies
as carriers for transmission of the Event Agreement payloads.

1) Uni-Directional Heartbeat (UH-S): In UH-S, communi-
cating controllers advertise their state to the cluster members
in periodic intervals. The periodic messages are consumed by
the failure detectors (ϕ-FD and T-FD, ref. Sec. IV-C) to update
the liveness status for an observed replica. The parametrizable
interval tS denotes the round duration between transmissions.

2) Ping-Reply (PR-S): With PR-S signaling, transmissions
by the sender are followed by the destination’s reply message
containing any concurrently applied updates to the desti-
nation’s Event Agreement views (i.e., the local or global
agreement matrix or the agreement list).

Incurred waiting time for both UH-S and PR-S equals the
configurable waiting period between transmissions TS = tS .

C. Failure Detection

1) ϕ-Accrual Failure Detector (ϕ-FD): We next outline the
worst-case waiting time for a successful local failure detection
of an inactive replica using the ϕ-FD [19].

To reliably detect a failure, the ϕ-FD must detect a suspicion
confidence value higher than the configurable threshold φ. The
function ϕ(∆T) is used for computation of the confidence
value. To guarantee the trigger, it must hence hold ϕ(∆T) ≥ φ,
where ∆T represents the time difference between last observed
heartbeat arrival and the local system time. The accrual failure
detection ϕ(∆T) leverages the probability that a future heart-
beat will arrive later than ∆T , given a window of observations
of size φW containing the previous inter-arrival times:

ϕ(∆T) = −log10(P ′µ,σ(∆T))

Assuming normally distributed inter-arrivals for previous
inter-arrival observations, P ′µ,σ(∆T) is the complementary
CDF of a normal distribution with mean µ and standard
deviation σ. We are particularly interested in the earliest time
difference ∆F

T at which the failure suspicion is triggered, i.e.,
the time difference for which it holds ϕ(∆F

T) = φ. From here
we can directly expand the expression to:

ϕ(∆F
T) = φ

−log10(P ′µ,σ(∆F
T)) = φ

−log10(1− Pµ,σ(∆F
T)) = φ

1− Pµ,σ(∆F
T) = 10−φ

1− 1

2
(1 + erf(

∆F
T − µ√
2 · σ

)) = 10−φ

where erf() is the error function and erfinv() its inverse.
Resolving after ∆F

T evaluates to:

∆F
T =
√

2 · σ · erfinv(1− 2 · 10−φ) + µ (1)

Note, however, that the recalculation of ϕ(·) executes in
discrete intervals. Thus, to estimate the worst-case waiting
period after which ϕ-FD triggers, we must also include the
configurable recalculation interval ϕR: TFD = ∆F

T + ϕR.
2) Timeout-based Failure Detector (T-FD): T-FD triggers a

failure detection after a timeout period tT has expired, without
incoming heartbeats transmissions for the observed replica.
Compared to the accrual ϕ-FD detector, it is less reliable and
prone to false positives in the case of highly-varying network
delays. The worst-case waiting period introduced by T-FD
corresponds to the longest tolerable period without incoming
heartbeats TFD = tT , where tT is the configurable timeout
interval. In contrast to ϕ-FD, its parameter is intuitive to select.
Furthermore, its analytical solution does not require collection
of current samples for µ and σ estimation (ref. Eq. 1).

D. Event Agreement - Reaching Consensus on Replica State

The replica i can become suspected as inactive by replica
j, following either the failure of the observed replica i or
the failure of the communication link (i, j). Since individual
replicas may lose connection to a particular non-failed but
unreachable replica (e.g., as a consequence of failed physical

link / node undermining the logical link (i, j)), a subset of
replicas may falsely consider an active replica as inactive. To
alleviate this issue, we introduce the Event Agreement entity.

To reach agreement on a replica’s state, the observing
replicas must first acknowledge the failure of the suspected
replica in an agreement phase. We distinguish two types of
event agreement - "local" and "global" agreement:

• Local Agreement on failure (recovery) is reached when a
replica observes that at least d |V|+1

2 e active replicas have
marked the suspected replica as INACTIVE (ACTIVE).

• Global Agreement is reached when a replica observes that
that at least d |V|+1

2 e active replicas have confirmed their
Local Agreement for the suspected replica.

The global agreement imitates the semaphore concept, so to
ensure that active replicas have eventually reached the same
conclusion regarding the status of the observed replica. We
assume that physical network partitions may occur. To this
end, the majority confirmation is necessary in order to enable
progress only among the active replicas in the majority parti-
tion. Reaching the event agreement in a minority partition is
thus impossible. We propose two Event Agreement instances:

1) List-based Event Agreement (L-EA): With L-EA, reach-
ing the agreement on the status of an observed replica requires
collecting a repeated unbroken sequence of a minimum of
lM · (|V| − 1) matching observations from active replicas. lM
is the confirmation multiplier parameter allowing to suppress
false positives created e.g., by repeated bursts of same events
stemming from a single replica.

L-EA maintains a per-replica local and global counter of
matching observations in the local and global failure (and
recovery) lists of length |V|− 1, respectively. On suspicion of
a failed replica, the observer replica increments the counter
of suspected replica and forwards its updated local failure
list to other active replicas. After receiving the updated list,
the receiving replicas similarly update their own counter for
any replica whose counter is set to a non-zero value in the
received list. The active replicas continue to exchange and
increment the local failure counter until eventually lM ·(|V|−1)
matching heartbeats are collected and thus the local agreement
on replica’s failed status is reached. The suspected replica’s
counter in the global failure list is then incremented as well,
and process continues for the global agreement. If any active
replicas identify the suspected replica as recovered, they reset
the corresponding counter in both local and global lists and
distribute the updated vector, forcing all other active replicas
to similarly reset their counters for the suspected replica.

After simplification, the worst-case delay of global agree-
ment on the monitored replica’s state can be expressed as:

TC = 2 · lM · O(C) · (max
i,j∈V

TD(i, j) + 1)

where maxi,j∈V TD(i, j) corresponds to the worst-case dis-
semination time between any two active replicas i and j and
C is the computational overhead of list processing time in the
source and destination replicas (merger and update trigger).

2) Matrix-based Event Agreement (M-EA): Another real-
ization of the Event Agreement entity is the matrix-based M-
EA. Our design extends [20] to cater for the recovery of failed
replicas and to feature the global agreement capability.

In short, all replicas in the system maintain a status matrix,
and periodically inform all other active replicas of their own
status matrix view. The status matrix contains the vector with
the locally perceived status for each observed replica, as well
as the vectors corresponding to other replicas’ views. Thus,
each replica maintains its own view of the system state through
interaction with local failure detector instance, but also collects
and learns new and global information from other active
replicas. The status matrix is a |V|x|V| matrix with elements
corresponding to a value from set {ACTIVE, INACTIVE,
RECOVERING}. RECOVERING state is necessary in order
to consistently incorporate a previously failed but recovered
replica, so that all active replicas are aware of its reactivation.

Following a failure of a particular replica or a communi-
cation link to that replica, the Failure Detection of an active
neighboring replica initiates a trigger and starts suspecting the
unreachable replica. The observing replica proceeds to mark
the unreachable replica as INACTIVE in its perceived vector
and subsequently asynchronously informs remaining replicas
of the update. The remaining replicas store the state update
in their own view matrix and evaluate the suspected replica
for failure agreement. Agreement is reached when all active
replicas have marked the suspected replica as INACTIVE.

In M-EA, each replica maintains two matrix instances:
1) local agreement matrix, where each locally perceived sus-

picion results in a state flip from ACTIVE→ INACTIVE,
and where a newly seen heartbeat for a previously failed
replica leads to a state flip INACTIVE→ RECOVERING.
As soon as all active replicas have marked the suspected
replica as INACTIVE (RECOVERING for a recovered
replica), the local agreement has been reached (state flip
RECOVERING→ ACTIVE occurs for recovered replica).

2) global agreement matrix, where state flip from ACTIVE
→ INACTIVE, and INACTIVE→ ACTIVE, occurs only
if the local agreement was previously reached for the
updated state of the observed replica.

Dissemination triggers: Dissemination of the matrices is
triggered periodically (according to the Signaling entity). If a
replica has, however, observed a failure using its local failure
detector or has received a heartbeat from a replica considered
inactive, it triggers the matrix dissemination asynchronously.

The worst-case global agreement duration using M-EA
equals the time taken to exchange the perceived failure updates
and reach global and local agreement on the target’s state:

TC = 4 · (max
i,j∈V

TD(i, j) +O(C))

where maxi,j∈V TD(i, j) corresponds to the worst-case dis-
semination time between any two active replicas i and j, and
C is the computational overhead of matrix processing time in
the source and destination replicas (merger and update trigger).
Two rounds are required to synchronize the update in the local
agreement matrix between: i) the replica that most-recently
lost the connection to the failed replica; and ii) the most remote

other active replica. Correspondingly, global agreement matrix
views are exchanged only after the local agreement is reached,
thus adding additional two delay rounds to TC (total of four).

E. Worst-Case Convergence Time

Upper bound event detection convergence time corresponds
to the sum of the time taken to detect the failure and time re-
quired to reach the global agreement across all active replicas:

TWC = TC + TFD (2)

TC and TFD are both functions of TD, thus signifying
the importance of evaluation of the performance impact in
decoupled manner. In empirical evaluation in Sec. VI, we
conclude that the presented worst-case analysis is pessimistic
and may be hardly reachable in practice. Hence, we also
highlight the importance of evaluation of the average case in
experimental evaluation of different combinations.

V. EVALUATION METHODOLOGY

To evaluate the impact of different instances of the four
entities of our event detection framework, we implement and
inter-connect each as a set of loosely coupled Java modules.
We vary the configurations of particular instances as per Table
II so to analyze the impact of parametrizations.

TABLE II
PARAMETERS USED IN EVALUATION

Param. Intensity Unit Meaning Instance

|V| [4, 6, 8, 10] N/A No. of controller
replicas ALL

lM [2, 3] N/A Confirmation
multiplier L-EA

tS [100, 150, 200] [ms] Signaling interval UH-S,
PR-S

tT [500, 750, 1000] [ms] Timeout threshold T-FD

φ [10, 15, 20] N/A Suspicion
threshold ϕ-FD

ϕW [1000, 1500, 2000] N/A
Window Size of

Inter-arrival Time
Observations

ϕ-FD

ϕR [100, 150, 200] [ms] φ Recalculation
time ϕ-FD

O(C) 1 [ms] Processing
overhead constant

L-EA,
M-EA

We have varied the measurements in two scenarios, the first
comprising 5, and second comprising [4, 6, 8, 10] controllers:

Scenario 1: We realize the connectivity graph depicted in
Fig. 1 and gradually inject the link and replica failures as per
Fig. 1 b). We inject three link failures at runtime. We then
inject a failure in C2 and eventually recover it so to evaluate
the correctness of both failure and recovery detection.

Scenario 2: For the second scenario, we vary the cluster
size between 4 and 10 controllers. We inject a failure in
a randomly selected replica, and subsequently measure the
time required to reach the local and global agreement on
the injected failure. After a fixed period, we recover the
failed replica so to measure the necessary time to reach the
agreement on recovery. Here, we omit link failures so to
measure the raw event detection performance in average case.

We repeat the measurements 20 times for each of the 24

couplings, and for each parametrization extract the metrics:

1) empirically measured time to reach the local agreement
on a remote controller’s failure;

2) empirically measured time to reach the global agreement
on a remote controller’s failure and recovery;

3) the average communication overhead per replica; and
4) analytical worst-case failure detection time (per Eq. 2).
We have used iptables to inject communication link

failures, i.e., to block communication between replicas and
cpuset to attach the processes to dedicated CPU cores.
Replica failures were enforced by sending SIGKILL signal.

VI. DISCUSSION OF EVALUATION RESULTS

A. Reaching agreement on failure

To demonstrate the correctness of the agreement-enabled
consensus, we first evaluate the Scenario 1 case (ref. Fig. 1).

The upper-left subfigure of Fig. 3 depicts the behavior
of replicas during the link failure injections for the BEB-D
scenario. After the missing signaling heartbeats were observed
by the impacted replicas, failure suspicion is triggered for the
unreachable neighbors. Since six unidirectional link failures
were injected (i.e., three bidirectional link failures), six local
suspicions are respectively triggered across the cluster (twice
by C2 and once each by C1, C3, C4 and C5). In the case of
RRG-D dissemination (lower-left subfigure), the local failure
detector never triggers suspicions in any of the five controllers.
This is due to propagation of heartbeats using gossip, where
only a subset of all replicas must be directly reachable in order
to disseminate the heartbeat consistently to all members.

The suspicions in the local failure detectors are insufficient
to agree on the unreachable replicas as inactive, i.e., only
direct neighbors on the failed link start suspecting unreachable
replicas as inactive. The inactive replicas are correctly marked
as such only after an actual failure in C2 (ref. center subfigure
of Fig. 3). All active replicas eventually agree on C2’s failure.

In the right-most subfigure, we recover C2 by restarting
the replica and depict the time when the local and global
agreement on its recovery are reached in the active replicas.

We observe that no replicas ever falsely identify any other
replicas as inactive, even when direct connectivity between
replicas is unavailable. RAFT’s leader election can trigger only
whenever global failure agreement is reached, thus solving the
issue of oscillating leader.

B. Impact of Event Agreement Algorithm Selection

Based on Scenario 2, we next evaluate the matrix-based M-
EA and the list-based L-EA Event Agreement. The results are
depicted in Fig. 4. We vary all other parameters apart from
those of Event Agreement instances and aggregate the results
in the box-plots, hence the large variability in distributions.

M-EA has the advantage of faster agreement on a replica’s
failure and recovery. The increase of L-EA’s multiplier lM
from 2 to 3 showcases the importance of correct parametriza-
tion of the selected agreement instance. With the higher
multiplier, the probability of detecting false positives with
L-EA decreases, at expense of requiring a higher number
of matching messages to confirm the status of an observed

0 2000 4000 6000 8000 10000 12000

Time[ms]

−1

0

1

L
in

k
F

ai
lu

re
In

je
ct

io
n

/L
o
ca

l
D

et
ec

ti
on

(+
1/

-1
)

Injection of Link Failures (BEB-D)

Link Failure Injection

Local Replica Failure Suspicion

0 100 200 300 400 500 600

Time[ms]

−1

0

1

R
ep

li
ca

F
ai

lu
re

In
je

ct
io

n
/G

lo
b

al
A

gr
ee

m
en

t
(+

1/
-1

)

Injection of Replica Failure

Replica Failure Injection

Local Replica Failure Suspicion

Global Failure Agreement

0 50 100 150 200

Time[ms]

−1

0

1

R
ep

li
ca

R
ec

ov
er

y
In

je
ct

io
n

/G
lo

b
al

A
gr

ee
m

en
t

(+
1/

-1
) Injection of Replica Recovery

Replica Recovery Injection

Local Replica Recovery Suspicion

Global Recovery Agreement

0 2000 4000 6000 8000 10000

Time[ms]

−1

0

1
Injection of Link Failures (RRG-D)

Fig. 3. Link failure injections and the suspicions (left); the C2 replica failure injection (center) and; replica C2 recovery injection (right) for evaluation
Scenario 1 (ref. Fig. 1). Subfigures on the left denote the distinct Failure Detection behavior for BEB-D and RRG-D implementations. The center subfigure
depicts the timepoints where the local and, eventually, global agreement are reached among the active replicas. The subfigure on the right depicts the timepoints
where the local and eventually global agreement are reached for the recovered replica C2.

|V
|=

4,
M

-E
A

|V
|=

6,
M

-E
A

|V
|=

8,
M

-E
A

|V
|=

4,
L

-E
A

,
l M

=
2

|V
|=

6,
L

-E
A

,
l M

=
2

|V
|=

8,
L

-E
A

,
l M

=
2

|V
|=

4,
L

-E
A

,
l M

=
3

|V
|=

6,
L

-E
A

,
l M

=
3

|V
|=

8,
L

-E
A

,
l M

=
3

512

1024

2048

4096

D
u

ra
ti

on
[m
s]

Local Agreement on Replica Failure

|V
|=

4,
M

-E
A

|V
|=

6,
M

-E
A

|V
|=

8,
M

-E
A

|V
|=

4,
L

-E
A

,
l M

=
2

|V
|=

6,
L

-E
A

,
l M

=
2

|V
|=

8,
L

-E
A

,
l M

=
2

|V
|=

4,
L

-E
A

,
l M

=
3

|V
|=

6,
L

-E
A

,
l M

=
3

|V
|=

8,
L

-E
A

,
l M

=
3

512

1024

2048

4096

8192

D
u

ra
ti

on
[m
s]

Global Agreement on Replica Failure

|V
|=

4,
M

-E
A

|V
|=

6,
M

-E
A

|V
|=

8,
M

-E
A

|V
|=

4,
L

-E
A

,
l M

=
2

|V
|=

6,
L

-E
A

,
l M

=
2

|V
|=

8,
L

-E
A

,
l M

=
2

|V
|=

4,
L

-E
A

,
l M

=
3

|V
|=

6,
L

-E
A

,
l M

=
3

|V
|=

8,
L

-E
A

,
l M

=
3

0.00

0.02

0.04

0.06

B
an

d
w

id
th

U
ti

li
za

ti
on

[M
bp
s]

Bandwidth Utilization

|V
|=

4,
M

-E
A

|V
|=

6,
M

-E
A

|V
|=

8,
M

-E
A

|V
|=

4,
L

-E
A

,
l M

=
2

|V
|=

6,
L

-E
A

,
l M

=
2

|V
|=

8,
L

-E
A

,
l M

=
2

|V
|=

4,
L

-E
A

,
l M

=
3

|V
|=

6,
L

-E
A

,
l M

=
3

|V
|=

8,
L

-E
A

,
l M

=
3

32

128

512

2048

D
u

ra
ti

on
[m
s]

Global Agreement on Replica Recovery

Fig. 4. Impact of selection of the Event Agreement method. Compared to M-
EA, L-EA takes longer to converge both for failure and recovery agreement.
L-EA, however, offers a lower total communication overhead, computation
and memory footprint. Its detection performance scales inversely proportional
with lM multiplier. None of the depicted combinations result in false positives,
hence the lower values of lM are practical and can be tuned further.

replica. In contrast, M-EA does not have this drawback as its
agreement requires a single confirmation from other replicas.

Theoretical worst-case agreement time bounds for detecting
replica failures (ref. Eq. 2) are depicted as horizontal black
lines for each corresponding configuration in the upper-right
Fig. 4. The measured empirical detection delays have always
stayed below this bound, thus showcasing the correctness and
pessimism of the analytic approach.

Notably, we observe that L-EA converges faster to the
agreement with the higher number of deployed controllers,

but only if BEB-D is used as Dissemination method. M-EA’s
performance decreases with larger cluster sizes.

The payload size of matrix view grows quadratically with
controller cluster size. Compared to L-EA, this makes M-EA
less efficient in terms of communication overhead, as can be
confirmed by the per-controller loads depicted in Fig. 4.

C. Impact of Failure Detection Selection

Fig. 5 portrays the performance of the adaptive ϕ-FD and
the timeout-based T-FD failure detectors. We have evaluated
ϕ-FD with varying observation window sizes ϕW and suspi-
cion thresholds φ, but did not observe important gaps com-
pared to the presented cases. The depicted ϕ-FD parametriza-
tion corresponds to ϕR, ϕW , φ = (150ms, 1500, 15).

For T-FD, we varied the timeout threshold tT . We observe
that for networks inducing transmission delays with little
variation, T-FD provides similar performance as ϕ-FD, given
a low tT (i.e., the tT = 500ms case). For more relaxed
parametrizations of tT , active processes take longer to reach
agreement on the updated replica’s status. Hence, failure
detection agreement time of T-FD is proportional to tT . The
performance of both ϕ-FD and T-FD suffers for larger clusters.

We note that the advantage of ϕ-FD lies in its adaptability
for networks with large delay variations, as it suppresses false
positive detections better than T-FD does. The communication
overhead, as well as the time to reach agreement on replica’s
recovery were not influenced by the failure detector.

D. Impact of Dissemination Selection

Fig. 6 compares the implications of using either BEB-D or
RRG-D as the Dissemination method. BEB-D ensures faster
agreement for inactive replica discovery, at expense of a larger
bandwidth utilization. This is due to the design of RRG-D that
propagates the messages in a round-wise manner, thus strictly
guaranteeing the convergence time of replicas’ states only after
the execution of dlog2(|V|)e rounds (in the non-failure case).
With BEB-D, however, the time required to agree on replica
status scales better with the higher number of controllers.

Fig. 5. Impact of selection of the Failure Detection method. T-FD’s perfor-
mance is inversely proportional to the timeout threshold tT , and given a low
tT , it provides similar performance as ϕ-FD accrual detector. However, ϕ-FD
is better suited for networks with control channels of high variance latency.

E. Impact of Signaling Selection

We next vary the signaling methods and the corresponding
heartbeat inter-arrival times, but due to space constraints, omit
the visual results. We observe no critical advantage of the
PR-S over the periodic UH-S design. In fact, PR-S comes
at expense of a relatively large communication overhead, as
bidirectional confirmations are transmitted on each transmitted
heartbeat. For both PR-S and UH-S, we note that the heartbeat
periodicity largely impacts the required time to discover and
reach agreement on the replica failure and recovery. The
highest sending rate (at 100ms frequency) shows the best
performance for both above metrics, but clearly comes at
expense of the largest communication overhead.

VII. RELATED WORK

Hayashibara et al. [19] introduce the ϕ-FD. While similar
in performance to other well-known failure detectors at the
time [21], [22], ϕ-FD was shown to provide a greater tolerance
against large delay variance in networks. A minor variant of ϕ-
FD using a threshold-based metric for higher tolerance against
message loss was proposed in [23]. OpenDaylight [4] uses
Akka Remoting and Clustering for remote replica operation
execution as well as its failure detection service. Akka im-
plements the ϕ-FD [19], hence we focus on the original ϕ-
FD variant in this work as well. Another failure detector type,
relying on randomized pinging and distributed failure detection
was proposed by Amazon Dynamo [24], but is not investigated
here as it cannot guarantee the property of strong completeness
in bounded time.

Fig. 6. Impact of Dissemination method selection. The agreement time
of gossip-enabled RRG-D lacks compared to the BEB-D broadcast-based
dissemination. However, the gossip approach comes with the benefit of a
smaller communication overhead. BEB-D scales better with the higher number
of cluster members, due to the direct relation between number of rounds
required to converge on an update with RRG-D and the size of the cluster.

Yang et al. [20] motivate the usage of a matrix-based
approach for reaching agreement on SDN controller failures.
The authors base their evaluation on a binary round robin
gossip variation [25]. We reproduce the same gossip variation
as it allows for deterministic estimation of the worst-case
convergence time. In contrast to [20] and [25], we also vary the
coupling of other components of the event detection, evaluate
the failure detection in failure scenarios, provide for its ana-
lytic evaluation and extend the matrix-approach with global
agreement and replica recovery. Katti et al. [26] introduce
a variation of a list-based detector in order to decrease the
footprint of matrix-based agreement. They, however, do not
provide for a method to converge on replica recovery nor do
they provide for analytical bounds on the expected system
performance. Suh et al. [27], [28] evaluate the Raft leader re-
election time in the scenario of OpenDaylight leader failures.
The authors did not consider data-plane (i.e., link/switch)
failures or partition occurrence between the cluster members.
Similarly, only the built-in variant of OpenDaylight’s failure
detection (with non-gossip dissemination) is considered there.

In [29], Van Renesse et al. propose one of the earliest
failure detectors using gossip dissemination. Katti et al. [26]
propose and evaluate a list-based agreement algorithm with
random-destination gossip dissemination technique. However,
their approach cannot guarantee the upper bound of number
of gossip rounds required to converge updates in all replicas.

Recently, implementations of consensus algorithms in net-
working hardware (e.g., those of Paxos [30], [31], Raft [32]
and Byzantine agreement [33], [34]) have started gaining

traction. Dang et al. [30], [31] portray throughput, latency and
flexibility benefits of network-supported consensus execution
at line speed. We expect to observe similar advantages in event
detection time if our framework was to be realized in network
accelerators and programmable P4 [35] switches.

VIII. CONCLUSION AND OUTLOOK

We have showcased the limitations of tightly coupled fail-
ure detection and consensus processes by reflecting on the
example of non-reachable agreement in a Raft-based SDN
controller cluster. In contrast to existing works, the proposed
failure detection framework considers the possibility of limited
knowledge of occurrence of network partitions in the con-
troller replicas. We have solved the leader oscillation issue by
introducing agreement as a necessary first step to confirming
a particular replica’s status, thus effectively ensuring no false
positive failure / recovery detection ever arises, independent
of the cluster size and the deployed failure detector.

We expect that this work motivates the future evaluations
of distributed failure detectors in combination with consen-
sus protocols as a set of loosely coupled but co-dependent
modules. Furthermore, we consider partial or full offloading
of distributed failure detection to hardware-accelerated data
plane as future research. Exposing event detection as a global
service, as well as enabling faster convergence times (e.g.,
matrix- / list-based merge procedure in hardware) could lead to
a better performing detection and lowered overhead in the end-
host applications, compared to the current model where each
application implements its detection service independently.

Acknowledgment: This work has received funding from the
European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement number 780315 SEMIOTICS.

REFERENCES

[1] P. M. Mohan et al., “Primary-Backup Controller Mapping for Byzantine
Fault Tolerance in Software Defined Networks,” in GLOBECOM 2017-
2017 IEEE Global Communications Conference. IEEE, 2017, pp. 1–7.

[2] E. Sakic et al., “MORPH: An Adaptive Framework for Efficient and
Byzantine Fault-Tolerant SDN Control Plane,” IEEE Journal on Selected
Areas in Communications, vol. 36, no. 10, pp. 2158–2174, 2018.

[3] H. Li et al., “Byzantine-resilient secure software-defined networks with
multiple controllers in cloud,” IEEE Transactions on Cloud Computing,
vol. 2, no. 4, pp. 436–447, 2014.

[4] J. Medved et al., “Opendaylight: Towards a model-driven SDN controller
architecture,” in 2014 IEEE 15th International Symposium on. IEEE,
2014, pp. 1–6.

[5] N. Katta et al., “Ravana: Controller fault-tolerance in software-defined
networking,” in Proceedings of the 1st ACM SIGCOMM symposium on
software defined networking research. ACM, 2015, p. 4.

[6] P. Berde et al., “ONOS: towards an open, distributed SDN OS,” in
Proceedings of the third workshop on Hot topics in software defined
networking. ACM, 2014, pp. 1–6.

[7] E. Sakic et al., “Towards adaptive state consistency in distributed SDN
control plane,” in Communications (ICC), 2017 IEEE International
Conference on. IEEE, 2017, pp. 1–7.

[8] Y. Zhang et al., “When Raft Meets SDN: How to Elect a Leader and
Reach Consensus in an Unruly Network,” in Proceedings of the First
Asia-Pacific Workshop on Networking. ACM, 2017, pp. 1–7.

[9] E. Sakic et al., “Impact of Adaptive Consistency on Distributed SDN
Applications: An Empirical Study,” IEEE Journal on Selected Areas in
Communications, vol. 36, no. 12, pp. 2702–2715, 2018.

[10] E. Sakic and W. Kellerer, “Response time and availability study of
RAFT consensus in distributed SDN control plane,” IEEE Transactions
on Network and Service Management, vol. 15, no. 1, pp. 304–318, 2018.

[11] H. Howard et al., “Raft refloated: do we have consensus?” ACM SIGOPS
Operating Systems Review, vol. 49, no. 1, pp. 12–21, 2015.

[12] R. Hanmer et al., “Friend or Foe: Strong Consistency vs. Overload
in High-Availability Distributed Systems and SDN,” in 2018 IEEE
International Symposium on Software Reliability Engineering Workshops
(ISSREW). IEEE, 2018, pp. 59–64.

[13] H. V. Netto et al., “State machine replication in containers managed by
Kubernetes,” Journal of Systems Architecture, vol. 73, pp. 53–59, 2017.

[14] N. Naik, “Applying computational intelligence for enhancing the de-
pendability of multi-cloud systems using Docker swarm,” in Computa-
tional Intelligence (SSCI), 2016 IEEE Symposium Series on. IEEE,
2016, pp. 1–7.

[15] D. Ongaro, “Consensus: Bridging theory and practice,” Ph.D. disserta-
tion, Stanford University, 2014.

[16] N. McKeown et al., “OpenFlow: enabling innovation in campus net-
works,” ACM SIGCOMM Computer Communication Review, vol. 38,
no. 2, pp. 69–74, 2008.

[17] E. Sakic et al., “Automated bootstrapping of a fault-resilient in-band
control plane,” in Proceedings of the Symposium on SDN Research, ser.
SOSR ’20. Association for Computing Machinery, 2020, p. 1–13.

[18] E. Sakic et al., “BFT Protocols for Heterogeneous Resource Allocations
in Distributed SDN Control Plane,” in ICC 2019 - 2019 IEEE Interna-
tional Conference on Communications (ICC), 2019, pp. 1–7.

[19] N. Hayashibara et al., “The ϕ accrual failure detector,” Proceedings of
the 23rd IEEE International Symposium on Reliable Distributed Systems,
2004., pp. 66–78, 2004.

[20] T.-W. Yang et al., “Failure detection service with low mistake rates for
SDN controllers,” in Network Operations and Management Symposium
(APNOMS), 2016 18th Asia-Pacific. IEEE, 2016, pp. 1–6.

[21] W. Chen et al., “On the quality of service of failure detectors,” IEEE
Transactions on computers, vol. 51, no. 5, pp. 561–580, 2002.

[22] M. Bertier et al., “Implementation and performance evaluation of an
adaptable failure detector,” in Dependable Systems and Networks, 2002.
DSN 2002. Proceedings. International Conference on. IEEE, 2002, pp.
354–363.

[23] B. Satzger et al., “A new adaptive accrual failure detector for dependable
distributed systems,” in Proceedings of the 2007 ACM symposium on
Applied computing. ACM, 2007, pp. 551–555.

[24] G. DeCandia et al., “Dynamo: Amazon’s highly available key-value
store,” in ACM SIGOPS operating systems review, vol. 41, no. 6. ACM,
2007, pp. 205–220.

[25] S. Ranganathan et al., “Gossip-style failure detection and distributed
consensus for scalable heterogeneous clusters,” Cluster Computing,
vol. 4, no. 3, pp. 197–209, 2001.

[26] A. Katti et al., “Scalable and fault tolerant failure detection and
consensus,” in Proceedings of the 22nd European MPI Users’ Group
Meeting. ACM, 2015, p. 13.

[27] D. Suh et al., “On performance of OpenDaylight clustering,” in NetSoft
Conference and Workshops (NetSoft), 2016 IEEE. IEEE, 2016, pp.
407–410.

[28] D. Suh et al., “Toward highly available and scalable software de-
fined networks for service providers,” IEEE Communications Magazine,
vol. 55, no. 4, pp. 100–107, 2017.

[29] R. Van Renesse et al., “A gossip-style failure detection service,” in Pro-
ceedings of the IFIP International Conference on Distributed Systems
Platforms and Open Distributed Processing. Springer-Verlag, 2009.

[30] H. T. Dang et al., “Paxos made switch-y,” ACM SIGCOMM Computer
Communication Review, vol. 46, no. 2, pp. 18–24, 2016.

[31] H. T. Dang et al., “Network hardware-accelerated consensus,” arXiv
preprint arXiv:1605.05619, 2016.

[32] Y. Zhang et al., “Network-Assisted Raft Consensus Algorithm,” in
Proceedings of the SIGCOMM Posters and Demos, ser. SIGCOMM
Posters and Demos ’17. ACM, 2017, pp. 94–96.

[33] E. Sakic et al., “P4BFT: Hardware-Accelerated Byzantine-Resilient Net-
work Control Plane,” in 2019 IEEE Global Communications Conference
(GLOBECOM), 2019, pp. 1–7.

[34] E. Sakic et al., “P4BFT: A Demonstration of Hardware-Accelerated
BFT in Fault-Tolerant Network Control Plane,” in Proceedings of the
ACM SIGCOMM 2019 Conference Posters and Demos, ser. SIGCOMM
Posters and Demos ’19. Association for Computing Machinery, 2019,
p. 6–8.

[35] P. Bosshart et al., “P4: Programming protocol-independent packet pro-
cessors,” ACM SIGCOMM Computer Communication Review, vol. 44,
no. 3, pp. 87–95, 2014.

