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ABSTRACT Line feature constitutes important geometric structure information in image processing and is
significant in visual navigation and 3-D structure contour extraction of 3-D objects. The current state-of-
the-art line extraction methods exhibit fast extracting speed and good extracting results. However, most line
extraction methods face a problem, wherein a long line is easily fragmented. Thus, a long line is broken into
several short segments due to local small changes or disturbances. To obtain longer and more useful line
segments without the aid of external information, this paper proposes an improved line extraction method
called affine-lines, which is based on an affine camera model. First, the affine camera model is used to
simulate affine projections from different viewing angles, and a sequence of affine simulated images is
obtained via affine transformation matrices. Subsequently, line segments are extracted from the original
image and each simulated image. Each set of line segments on the simulated image is back-projected on the
original image based on its corresponding inversely affine transformation matrix. Finally, the line segments
on the original image are used as references to sequentially purify and optimize subsequent lines. Several
defined geometric constraints are used to eliminate pseudo lines and combine short lines. Thus, fragmented
lines are connected, and short lines are converted into long lines. Given several sets of close-range and aerial
images, experiments are performed and compared via a state-of-the-art line extraction algorithm, called the
line segment detector (LSD). The results indicate that the proposedmethod significantly increases the lengths
of the obtained line segments, significantly reduces the fragmentation effect, and obtains more useful line
segments. The extracted improved line segments are applied to line matching for building structures, and
promising results are obtained.

INDEX TERMS Affine camera model, line extraction, fragmentation effect, LSD.

I. INTRODUCTION
Line and point features constitute important geometric infor-
mation in computer vision, robotics and photogrammetry
communities. Lines exhibit certain special advantages when
compared with points. For example, a line does not require
two specific end-points in the case of occlusions. Addi-
tionally, it is difficult to extract feature points in low tex-
tured scenes although it is easier to obtain the lines. Thus,

The associate editor coordinating the review of this manuscript and
approving it for publication was Filbert Juwono.

the lines are considered as good alternatives in low textured
scenes with few feature points. The geometric relationships
between lines are robust, and this is helpful in improv-
ing accuracy. The structural information of line features is
more abundant and more visualized to express the edge con-
tours of three-dimensional (3D) objects. Extant studies used
the advantage of lines in practical engineering projects and
achieved good results. Partovi et al. [1] used line features
to perform contour extraction and regularization of build-
ing outlines. Trinh and Jo [2] analyzed the shape of build-
ings via extracting line segments from building surfaces.
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Wang et al. [3] used linematches to generate better orthopho-
tos. Zhang and Ghosh [4] and Crowley [5] utilized line seg-
ments for mapping and navigation. Elqursh and Elgammal [6]
added line features into bundle adjustment model to per-
form the pose estimation of captured images. Gerke [7]
and Von Schmude et al. [8] used horizontal or vertical line
segments as constraints to achieve indirect orientation for
cameras. Yu et al. [9] detected cracks in pipes via determining
whether lines are continuous. Santos et al. [10] conducted
powerline inspection of unmanned aerial vehicles (UAVs) via
the line extraction method.

Several methods based on points are significantly mature,
and several extant studies explored the same. The earliest
example of a famous line extraction algorithm corresponds
to the Hough Transformation [11]. The method is suitable for
scenes with a single background texture. Several wrong seg-
ments appear when the background texture is complex. The
edge extraction and fitting method based on Canny operator
involves several parameters [12], and thus it is necessary to
set fixed thresholds and results in more false positives or false
negatives in the final extracted line segments. Additionally,
progressive probabilistic Hough transform (PPHT) [13] is
an improved version of the Hough method. This method
increases the processing speed via randomly selecting a few
edge points. However, the error detection mechanism of this
method can only aid in extracting evident long lines, and
this is useless for short line segments. Von Gioi et al. [14]
proposed the multi-segments method that introduced the
Helmholtz principle, which calculates and compares all pos-
sible segment combinations for acquired initial segments and
screens final segments that work well. However, the method
exhibits an especially high computational complexity and is
difficult to accept in conventional applications. Specifically,
the line segment detector (LSD) is an extremely popular line
extraction method that was proposed by Von Gioi et al. [15]
and is available on the Image Processing On Line (IPOL)
website. It is designed to work on any digital image with-
out necessitating manual adjustment of parameters and can
extract lines in sub-pixel precision. However, the disadvan-
tage of the method is that the extracted long lines are sig-
nificantly fragmented into short line segments due to the
discrepancy in one or several pixels. Akinlar and Topal [16]
provided an edge drawing method termed as EDLines that is
faster than LSD algorithm. The method is especially suitable
for real-time and fast processing scenarios although it exhibits
a disadvantage wherein the extracted segments are divided
into several lines, thereby resulting in more short lines. To a
certain extent, the CannyLines [17], [18] method alleviates
the problem of LSD and EDLines by merging and extend-
ing line segments and obtains longer and more meaningful
line segments. However, the effect of its promotion is not
extremely evident, and it is unable to solve the fragmentation
and short-line effects. FIGURE 1 shows the results of an
aerial image using LSD, EDLines, and CannyLines methods.
As shown by the yellow rectangles, each method exhibits the
phenomenon of fragmentation.

FIGURE 1. Fragmentation effect of three state-of-the-art line extraction
methods. (a) LSD. (b) EDLines. (c) CannyLines.

Specifically, several short lines are not required. First, the
geometric features of the short segments are not as evident
as those of the long segments. In several cases, it is easy
to screen the long lines. Second, the positioning accuracy
of the short segments is typically worse than that of the
long segments. Inaccurate endpoints of the short segment
cause more serious errors than those of the long segment.
Additionally, several broken segments lead to excessive cal-
culations in the later procedure and exacerbate the ambiguity
and misidentification of data such as in line matching and
3D reconstruction. However, the appearance of short lines
is related to information on the original image. The photo-
sensitivity difference (for e.g., partial blurring or sharpening)
of the camera’s charge coupled device (CCD) and appear-
ance of interferences on the object surface (occlusion) results
in a non-uniform transition or anomaly in several certain
pixels, thereby resulting in the interruption of a long line
segment. The original image corresponds to a single data
source, and thus it is difficult to solve the problem with-
out requiring external information. Simultaneously, several
excellent line extraction algorithms (for e.g., LSD, EDLines,
and CannyLines) mainly rely on the gradient strength and
gradient direction of edge pixels. Therefore, more use-
ful line information is obtained if it is possible to create
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additional observations and change the gradient distribution
of the edge pixels without damaging the original image
content.

With respect to the fragmentation effect of the
aforementioned excellent line extraction methods,
Zhang and Koch [19] employed a scale-space pyramidmodel
that consisted of N octave images that were generated via
down-sampling the original image with a set of scale factors.
However, this led to limited improvement. The present study
proposes an improved line extraction method based on an
affine camera model that is termed as Affine-Lines. First,
the affine camera model is used to simulate different viewing
angles, and this is used to construct different affine transfor-
mationmatrixes. Thus, we obtain additional observation data,
namely a series of simulated affine images. Subsequently, line
extraction is performed on the original and each simulated
image to obtain a series of line segment sets. Finally, line
segments on the simulated images are normalized to the
original image. The line segments on the original image
serve as the reference, and thus redundant line segments
are eliminated and merged and useful line segments are
retained. Longer and more meaningful line segments are
obtained due to optimization and purification. The workflow
of Affine-Lines is shown in Figure 2.

FIGURE 2. Workflow of Affine-Lines.

The study is organized as follows: The second part ana-
lyzes the principle and fragmentation problems of the LSD
algorithm. The third part introduces the affine camera model
and acquisition of the affine transformation matrix and the
simulated images. The fourth part proposes a method to
purify and optimize sets of line segments. The fifth part
details the experiment and analysis. The sixth part discusses
the simulation parameters, extraction accuracy, and precision
of the proposed method, and application of line matching.
The last part provides the conclusion.

II. ANALYSIS OF THE FRAGMENTATION EFFECT
OF THE LSD ALGORITHM
Specifically, LSD is a line extraction algorithm that is widely
appreciated for its rapidity and effectiveness. However, it is a
self-growing method. When a long line segment encounters
obstruction, blurring, or noise, it is fragmented into multiple

short lines, and this is termed as the fragmentation effect. The
LSD line extraction procedure is as follows:

(1) Gaussian sub-sampling is performed on the original
image at a scale of 0.8 to solve the aliasing problem (Gaussian
kernel is determined by σ = 0.75, which is a good balance
value.

(2) We calculate the Level-Line Angle (LLA)(i.e., the
level-line orientation is orthogonal to the gradient orientation)
and gradient magnitude for each pixel.

(3) Based on the gradient magnitude of pixels, a pseudo-
ordering algorithm is used to sort the values between the
smallest and the highest values. Gradient magnitudes are clas-
sified into 1024 bins and given the initial state of ‘UNUSED’.

(4) The state of pixels with a magnitude of gradient less
than ρ(ρ = 5.2) is termed as ‘USED’. Thus, the pixels
are rejected and not used in the construction of line-support
regions.

(5) The highest value in the bins of unused pixels is consid-
ered as the seed P0, and a region growing algorithm is applied
to form a line-support region. The initial angle of the region
θregion denotes the LLA of P0.
a. Thus, P0 is used as the first seed of the region. Subse-

quently, a search is conducted along its eight- neighborhood
for the point with status corresponding to UNUSED and
satisfying the condition

∣∣LLA− θregion∣∣ < τ (τ = 22.5◦). The
point P1 is incorporated into the region and set as USED.

b. We update P1 as the current point and update θregion
based on the current θregion and LLA of P1.
Steps a and b are iterative looped to obtain the final θregion.
(6) Rectangle approximation. We create a rectangle R to

cover the line-support region.
(7) We determine the relationship between the density of

aligned points and threshold D. If the density does not exceed
or equal D, then region R is cut into several smaller regions
until the criterion is satisfied.

(8) Rectangle improvement.
(9) We calculate the number of lines that are in fact not

lines. This corresponds to the number of false alarms (NFA),
and the validity of R is determined. If the NFA is less than or
equal to the threshold ε, then it is considered as a meaningful
R (ε-meaningful) and R is output. If not, then we continue to
improve R until it is satisfied. At this moment, all points in R
are denoted as USED.

(10) We continue to process the next seed that is denoted
as UNUSED and follow steps 5) to 9) to obtain a new R. The
loop is completed when all UNUSED points are used up.

(11) We process all regions to obtain all line segments.
As shown in the aforementioned LSD line extraction pro-

cess, a point can only belong to a certain line, and thus
the extracted lines do not intersect. If two lines are about
to intersect, they are broken and correspond to four lines.
Additionally, with respect to a specific line segment, it is
potentially broken in steps 5) and 7). This is because the
region-growing is terminated when the difference between
the LLA of the current point and main direction angle of
the line segment neighborhood θregion exceeds threshold τ .
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This is also because the rectangular frameR is truncatedwhen
the density of aligned points is insufficient. The two situations
are explored below.

A. LLA
The gradient of each pixel is expressed via a 2× 2 template.
If the gray value at the pixel (x, y) corresponds toi(x, y), then
its gradient calculation formula is as follows:

gx(x, y)

=
i(x + 1, y)+ i(x + 1, y+ 1)− i(x, y)− i(x, y+ 1)

2
gy(x, y)

=
i(x, y+ 1)+ i(x + 1, y+ 1)− i(x, y)− i(x + 1, y)

2
(1)

Thus, LLA is obtained as follows:

LLA = arctan(gx(x, y)/− gy(x, y)) (2)

Additionally, the region angle value is as follows:

θregion = arctan

(∑
j sin

(
LLAj

)∑
j cos

(
LLAj

)) (3)

where the index j runs over the pixels in the region.
The gradient magnitude is as follows::

G(x, y) =
√
g2x(x, y)+ g2y(x, y) (4)

As shown in Figure 3, for a series of pixels that should be
on a line, if one of the pixels exhibits a mutation (indicated
by yellow), then its LLA inevitably produces a big difference
with other pixels, and the region growing is interrupted at
the yellow pixel, and thus the complete area is divided into
areas 1 and 2. Hence, the line segment is fragmented and
induces the fragmentation effect.

FIGURE 3. Fragmentation caused via pixel mutation.

B. DENSITY OF THE ALIGNED POINTS
After a certain region grows, it is necessary to construct a
minimum envelope rectangle for the region and to determine
whether the density of aligned points satisfies the threshold
requirement. The density of the aligned points is defined
as the ratio of the number of all the aligned points in the

rectangle to the number of pixels in the area of the rectangle.
This is expressed as follows:

density =
k

height(R) · width(R)
(5)

where k denotes the number of all the aligned points in the
minimum envelope rectangle.

In several cases, two blurred pixels can appear on the edge
with LLA similar to those in R2 as shown in Figure 4(a).
The LLAs of three gray and three red pixels on the right part
satisfy the threshold condition. However, the three gray pixels
are closer to R2. Thus, they form a line support region in
which the envelope corresponds to R1. However, its density is
less than the threshold, and thus R1 is trimmed and adjusted.
Hence, the farther pixels are rejected, and R2 that satisfies the
density requirement is obtained. Evidently, the length of the
line segment decreases.

FIGURE 4. Fragmentation caused by insufficient density of the aligned
points.

Another excellent line extraction algorithm corresponds
to CannyLines. It uses an unconstrained Canny operator to
construct an edge map. The key principle is similar to that of
LSD and uses gradient information to identify line segments.
However, CannyLines exclusively uses a strategy of extend-
ing and merging to solve the ‘‘gap’’ problem in LSD and
obtains a longer andmore complete line segment. The extend-
ing strategy is as follows: If a pixel suddenly changes, then the
LLA does not satisfy the condition of region growing, and it
does not directly give up. Conversely, it seeks to determine
k(1 ≤ k ≤ 3) close neighbors in the eight-neighborhoods of
the pixel. The vertical distance of the k points to the current
line (fitted with the existing line support region) should be
within 1 pixel. Subsequently, it determines whether edge
pixels exist near the k points. If they exist and if the difference
between LLA and θregion is lower than the threshold, then it
is considered as in the same direction as the existent region
and merges into the area to realize the growing region. Thus,
this bridges the mutation pixel and increases the line length.
However, the method exhibits a limited improvement in terms
of the line length. In several cases, the improvement effect is
not extremely evident.

A solution to solve the problems of aforementioned two
methods involves changing the gradient difference between
the yellow pixel and surrounding pixels in Figure 3. Thus,
regions 1 and 2 are connected to solve the fragmentation prob-
lem. Simultaneously, with respect to the blurring problem at
edges, if the LLA of the two layers of blurred pixels changes,
then the LLAof the red pixels is closer to themain direction of
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the region. Subsequently, the rectangular region corresponds
to R3 (as shown in Figure 4(b)), and the density condition is
also satisfied, thereby obtaining longer line segments. There-
fore, the next attempt involves determining a transformation
method that does not damage the effective content of the
image or change the basic geometrical characteristics of the
line and only changes the local gradient distribution of the
pixels and the LLA. An affine transformation is a simple
and effective solution. Simultaneously, more different affine
transformations are required to cope with more scenarios.
Therefore, an affine camera model that can be used to con-
struct multiple simulations is adopted.

III. AFFINE CAMERA MODEL AND AFFINE
TRANSFORMATION MATRIX
A. AFFINE CAMERA MODEL
When an object corresponds to perfect plane and lambert
body, it can be observed at any tilt angle. However, several
objects in the real world are non-planar and non-Lambertian
with occlusion and non-uniformity. An affine camera model
observes ‘more information’ to the maximum possible extent
via establishing different viewing angles. The affine camera
model was proposed by Yu and Morel [20] to solve the point
feature matching problem of large viewing-angle images,
and the ASIFT (Affine Scale Invariant Feature Transform)
method was created. Simultaneously, the group member Yu
proved that ASIFT corresponds to a complete affine invariant
feature [21]. Specifically, ASIFT simulates all possible linear
deformations caused via changes in the camera’s viewing
angle. Furthermore, ASIFT [22] adds two simulations of
the affine deformation factor (i.e., longitude and latitude)
based on SIFT. The SIFT algorithm is invariant to translation,
rotation, and zoom. Therefore, ASIFT exhibits translation,
rotation, scale, and affine invariance.

The affine cameramodel is shown in Figure 5. Specifically,
u denotes the object’s plane,C denotes the current location of
camera, C

′

denotes the zenith point, and θ and φ are termed
as latitude and longitude, respectively. The hemisphere is
divided by longitude and latitude, and the camera moves over
the entire hemisphere. The black dots indicate the sampling
points (i.e., the intersections of the longitudes and latitudes)
that correspond to the positions where the camera is located.
With respect to the perspective of camera motion, φ denotes
the rotation and θ represents the tilt angle that exhibits the
relationship t = 1/ cos θ . Additionally, ψ parameterizes
the camera spin, and λ corresponds to the zoom based on
camera’s distance. The longitude φ leads to the rotation of
camera, and latitudes θ causes the camera to sample in the
longitude direction, and this causes the image distortion.
The mathematical expression of affine projection is given by
combining the aforementioned geometric model as follows:

A = HλR1(91)TtR2(φ)

= λ

[
cos9 − sin9
sin9 cos9

] [
t 0
0 1

] [
cosφ − sinφ
sinφ cosφ

]
(6)

where, λ > 0, θ ∈ [0, 90), φ ∈ [0, π), ψ ∈ [0, 2π).

FIGURE 5. Affine camera model.

In (6), an image is first rotated using the longitude angle φ,
and the rotated image undergoes t-subsampling in the latitu-
dinal direction, thereby causing non-uniform scaling in the x
and y directions. Thus, a deformed image is obtained. With
respect to a certain line segment, it causes a change in the
area of its neighborhood wherein the neighborhood pixels
are resampled. Finally, ψ and λare used to perform overall
rotation and scaling of the deformed image. The final overall
rotation and scaling does not affect the internal distribution of
the image, and thus it can generally be omitted, i.e., ψ = 0,
λ = 1. At this point, the affine transformation matrix under
the affine model is reduced as follows:

A =
[
t 0
0 1

] [
cosφ − sinφ
sinφ cosφ

]
=

[
1/ cos θ 0

0 1

] [
cosφ − sinφ
sinφ cosφ

]
= A1A2 (7)

The aforementioned affine transformation expression is
simple and also does not change the shape of the line segment
and relative geometric relationship between line segments.
Given this type of transformation, the generation of affine
simulated images and line extraction of the simulated images
are performed.

B. GENERATION OF SIMULATION IMAGES UNDER THE
AFFINE TRANSFORMATION
Based on the aforementioned affine camera model and affine
transformation matrix, a series of simulated images is gener-
ated. The production process is as follows:

(1) With respect to latitude θ , perform sampling based on
geometric sequences t = 1, a, a2, . . . , an(a > 1) and subse-
quently obtain different degrees of tilt. Specifically, a =

√
2

corresponds to a good compromise between accuracy and
sparsity. The value n can increase to 5 or more.

(2) Under different values of t , longitudeφ is sampled by
following a sequences 0, b/t, . . . , kb/t(kb/t < 180◦). Thus,
we obtain a series of affine matrices and simulated images,
and b = 72◦ constitutes a good compromise.
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Therefore, the generation of simulated images is performed
via rotating from the original images based on A2 and subse-
quently tilting subsampling based on A1. The rotated images
are obtained via bilinear interpolation and typically accom-
panied by edge aliasing. In order to eliminate aliasing to
obtain better line segments, Gaussian convolution is used
prior to t-subsampling. One-dimensional Gaussian filtering
is performed on each column of the rotated image along the
X direction. The filter function is as follows:

Gxσ (x, y) = (1/
√
2πcσ ) exp{−

x2

2(cσ )2
} (8)

where, c denotes the scale of Gauss sampling, and its value
in the study corresponds to 0.8. σ = c

√
t2 − 1.

A series of simulated images is obtained after rotation,
filtering and subsampling,. The conversion formula of the
original image and simulated image is as follows:

I ′ = A∗I (9)

where, I denotes the original image, and I ′ denotes the sim-
ulated image.

Figure 6 and Figure 7 show an original image and simu-

lated images of UAV, respectively, where t =
(√

2
)3

(n = 3).
As shown in Figure 7, a series of images at different

viewing angles is sequentially simulated via the camera affine
model. The images represent almost all observations from all
directions of the scene.

FIGURE 6. Original UAV image.

FIGURE 7. Sixteen simulated images.

As shown in the parts of the original image and first
simulated image, the distribution of white dots above the
house undergoes major changes via the affine transforma-
tion. Several white spots are ablated and blurred in the
Gaussian resampling via a template operation among pixels,
thereby resulting in changes in the LLAs of several pixels.
Given the change, the breakage problem of region growth in
Figure 3 and Figure 4 is resolved.

IV. PURIFICATION AND OPTIMIZATION OF LINE SETS
A. LINE EXTRACTION AND NORMALIZATION OF
SIMULATED IMAGES
Line extraction is performed on the original image and sim-
ulated images, and a series of line segment sets is obtained.
We assume that there areN−1 simulated images based on the
original image, and they correspond to affine transformation
matrices {A1, . . . ,AN−1}. All the lines sets obtained from the
N images are expressed as ς ′ =

{
L0,L

′

1, . . . ,L
′

N−1

}
. Specif-

ically, L0 comes from the original image, and L
′

1, . . . ,L
′

N−1
correspond to the sets of segments extracted from each
simulated image. The N line sets in ς ′ do not lie in
the same coordinate system, and thus it is necessary to
normalize L

′

1, . . . ,L
′

N−1 to the original image coordinate
system in which L0 is located. We assume that L

′

i ={
l
′1
i , l

′2
i , . . . , l

′Mi
i

}
(i = 1, 2, . . . ,N − 1) where Mi denotes

the number of line segments on each simulated image, and
then each line l

′j
i in L

′

i is back-projected to obtain Li ={
l1i , l

2
i , . . . , l

Mi
i

}
via the affine matrix Ai. The transformation

relationship is as follows:

l ji = A−1i ∗ l
′j
i (10)

where, l
′j
i =

{(
x1
′j
i , y1

′j
i

)
,
(
x2
′j
i , y2

′j
i

)}
,
(
x1
′j
i , y1

′j
i

)
and(

x2
′j
i , y2

′j
i

)
denote the coordinate values of the two ends of l

′j
i .

Thus, the normalized line segment set is expressed
as ς = {L0,L1, . . . ,LN−1}.

B. PURIFICATION AND OPTIMIZATION
With respect to the aforementioned-mentioned line segment
set ς , there exist several line segments that overlap. Addi-
tionally, given the inevitable point back-projection error,
there exists a small deviation between two line segments,
thereby resulting in redundancy and clutter. Therefore, it is
necessary to merge the collinear line segments and remove
the cluttered line segments. Given the possible geometric
relationships between two line segments, the study uses
the constraint conditions of horizontal distance, vertical dis-
tance, angle and intersection to purify and optimize the line
segments. The rules are as follows: While processing of
the ith line in Lk , we set the previous line segment sets
L0L1...Lk−1

(
l1k , l

2
k , . . . , l

i−1
k

)
as references. This is illus-

trated in Figure 9: l2 is processed on the condition that l1
serves as the base line.
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FIGURE 8. Geometric constraints between line segments. (a) Original
image. (b) First simulated image.

FIGURE 9. Geometric constraints between line segments. (a) Horizontal
distance constraint. (b) Vertical distance constraint. (c) Collinear overlap
conditions. (d) Angle and intersection constraint.

1) HORIZONTAL DISTANCE CONSTRAINT
If the distance d between the midpoints of two lines exceeds
half of the total length of the two lines, i.e., d > (length(l1)+
length(l2))/2, then this indicates that l1 and l2 are not related.
Thus, l2 should be denoted as a valid line and retained as
shown in Figure 9(a). Additionally, if d <= (length(l1) +
length(l2))/2, then l2 can be parallel (including collinear) or
disjoint or intersecting with l1. Thus, we continue to deter-
mine the vertical distance.

2) VERTICAL DISTANCE CONSTRAINT
As shown in Figure 11(b), under the condition of d <=

(length(l1) + length(l2))/2, if the average of the sum of the
distances from the endpoints to the lines is less than the
threshold ξd (a pixel in the study), i.e., (d1 + d2) /2 < ξd ,
then it is assumed that l2 and l1 are collinear. Subsequently,
it is necessary to merge l2 and l1 to obtain a long line
segment in which the endpoints correspond to A and D as
shown in Figure 11(c). If ξd < (d1 + d2) /2 < 2.5ξd , then
l2 is considered as the error line and should be removed.

FIGURE 10. Illustration of the line extraction in the scale-space pyramid.

FIGURE 11. Test data.

If (d1 + d2) /2 >= 2.5ξd , then l2 is considered as disjoint
or intersecting l1, and this should be denoted as a valid line
and retained.

Based on the aforementioned-mentioned horizontal and
vertical distance constraints, most line segments can be essen-
tially processed. A few areas are excessively sensitive, and
thus it is easy to extract a few pseudo-line segments. The line
segments can intersect with the reference line segment at a
certain angle. Therefore, it is necessary to reject the same via
angle and intersection constraints.

3) ANGLE AND INTERSECTION CONSTRAINT
If an intersection exists between the two line segments
and the intersection angle θ is between ξθ and 8ξθ (i.e.,
ξθ corresponds to the angle threshold), namely ξθ <

arccos(lT1 l2/
∣∣lT1 ∣∣ |l2|) < 8ξθ , then l2 is considered as a pseudo

line and removed as shown in Figure 9(d). With respect to
most regularized building structures, the intersection angle
between two adjacent intersecting edge lines is not low. In our
tests for several frontal close-range images and down-looking
aerial images, ξθ = 5◦ constitutes an optimal choice.
We assume that the final optimized line segment set corre-

sponds to2, which is initially empty. Based on the aforemen-
tioned three constraints, the processing steps are as follows:
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STEP 1: The first line l10 in the set of L0 that is extracted
from the original image is incorporated into 2.
STEP 2: The second line in L0 should be compared with l10

under the constraints. If the line is denoted as valid, then it is
incorporated into 2, and 2 is updated. The line is discarded
if it does not satisfy constraints.

STEP 3: The third line in L0 is performed as STEP 2.When
all the line segments in L0 are processed in turn, we obtain the
latest 2.
STEP 4: With respect to each line segments in Li

(i = 1, 2, 3, . . . , N − 1), the same operation is performed
to screen and optimize via a comparison with 2 until all line
segments in ς are processed.

Specifically, the merging method in conjunction with the
analysis of accuracy and precision of the extracted lines from
Affine-lines is stated in the discussion section.

V. EXPERIMENT AND ANALYSIS
Three indoor images, three outdoor close-range images,
and three aerial images are selected as research objects as
shown in Figure 11. Outdoor (2) and three aerial images
are from our data, and the other images are available at
http://cvrs.whu.edu.cn/projects/cannyLines/. As mentioned
in the Introduction section, the objective of Zhang’s scale-
space pyramid involves solving the fragmentation problem
of line detection [19]. The method detects lines in differ-
ent image scale-space and subsequently purifies all lines to
obtain longer lines. A theoretical illustration is shown as
in Figure 10. For comparison purposes, Zhang’s method is
hereafter termed as Pyr-LSD.

The proposed method in the study is compared with
LSD [23] and Pyr-LSD. For comparison purposes, the pro-
posed method that is compared with the LSD is termed
Affine-LSD. In the experiment, the tilt parameter of the

affine camera is t =
(√

2
)2
, i.e., n = 2, and the num-

ber of simulated images corresponds to 9. With respect to
Pyr-LSD, the number of layers in the pyramid corresponds
to 3.

In order to visually demonstrate several important pro-
cesses in the method presented in the study, the generation
process of the simulated image of Aerial (1) and line seg-
ments extracted from the corresponding simulated image is
illustrated. As shown in Figure 12, the left column denotes
the original gray image and the nine simulated images, and
the right column denotes the corresponding extracted line
segments via LSD.

As shown in the area of the yellow dashed box in the
original gray image, differences exist in the effect of roof
extraction from different viewing angles. With respect to
the same line structure, the extracted line segment is rel-
atively complete from a certain viewing angle although
the fragmentation effect is evident under a few other
viewing angles. A richer line segment feature is obtained
via complementing the information from different viewing
angles.

FIGURE 12. Simulated image sequence and line extraction. The left
column denotes the original gray image and nine simulated images, and
the right column denotes the corresponding results of the line extraction.

Subsequently, the processed results of the nine test images
are shown in Figure 13-Figure 21. The number of line
segments, average length of the line segments, and total
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FIGURE 13. Comparison of the results of the three extraction methods for Indoor (1). (a) LSD (442/39.9/17635.8). (b) Pyr-LSD(303/43.5/13180.5.9).
(c) Affine-LSD (504/64.4/32457.6).

FIGURE 14. Comparison of the results of the three extraction methods for Indoor (2). (a) LSD (487/53.4/26005.8). (b) Pyr-LSD(299/71.1/21258.9).
(c) Affine-LSD (445/100.5/44722.5).

FIGURE 15. Comparison of the results of the three extraction methods for Indoor (3). (a) LSD (479/45.9/21986.1). (b) Pyr-LSD(522/66.5/34713.0).
(c) Affine-LSD (528/77.0/40656.0).

length of the line segments are denoted below each image.
The unit of length corresponds to pixels. The region of
interest where the line segment changes significantly is
denoted by a yellow rectangle.

1) INDOOR IMAGES
2) OUTDOOR IMAGES
3) AERIAL IMAGES
As shown in the aforementioned results, the line

segments directly extracted via LSD are not complete,
and fragmentation occurs in several images. Specifically,

Pyr-LSD improves the extraction results to a certain extent
via purifying a few redundant lines and merging a few
fragmented lines. However, it is not possible to effectively
solve a few fragmentation problems (and especially those
on structured edges). Nevertheless, the integrity of extracted
line segments is significantly improved via the Affine-LSD.
The fragmentation effect is significantly attenuated as shown
in the yellow rectangles in Figure 13, Figure 15, Figure 16,
Figure 18, Figure 19, Figure 20, and Figure 21. Several trivial
and insignificant line segments are removed and longer and
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FIGURE 16. Comparison of the results of the three extraction methods for Outdoor (1). (a) LSD (265/33.6/8904.0). (b) Pyr-LSD (162/45.6/7387.2).
(c) Affine-LSD (358/82.7/29606.6).

FIGURE 17. Comparison of the results of the three extraction methods for Outdoor (2). (a) LSD (836/37.2/31099.2). (b) Pyr-LSD(510/48.9/24939.0).
(c) Affine-LSD (465/97.4/45291.0).

FIGURE 18. Comparison of the results of the three extraction methods for Outdoor (3). (a) LSD (552/26.7/14738.4). (b) Pyr-LSD(350/33.7/11795.0).
(c) Affine-LSD (679/50.9/34561.1).

meaningful line segments are retained as shown in the yellow
rectangles in Figure 14, Figure 16, and Figure 17. A few line
segments that cannot be extracted via LSD are extracted via
Pyr-LSD and Affine-LSD as shown by the yellow rectangle
in Figure 20. As shown in the number of line segments,
average length of the line segments, and total length of the
line segments, for certain images, the average length of the
line segments increased significantly and the total length of
the line segments exceeds that in the original method despite
decreases in the number of line segments obtained via the
proposed method.

From the aforementioned findings, we conclude that
Pyr-LSD and Affine-LSD improve the extraction effect via

adding observation information and changing the pixels’ gra-
dient distribution. However, Affine-LSD evidently exceeds
Pyr-LSD in terms of the average length of lines and visual
effects. This is potentially because Pyr-LSD only obtains
newly resampled simulated images in the same view direction
and because the number of pyramid layers is limited. Thus,
the Affine-LSD uniformly resamples an image from each
view-angle.

Additionally, Table 1 summarizes the number of initial line
segments of each test image (i.e., the total number of line
segments extracted from the original image and all simulated
images), number of line segments after the optimization,
average length of the line segments, total length of the line
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FIGURE 19. Comparison of the results of the three extraction methods for Aerial (1). (a) LSD (456/30.8/14044.8). (b) Pyr-LSD(330/43.7/14421.0).
(c) Affine-LSD (318/101.7/32340.6).

FIGURE 20. Comparison of the results of the three extraction methods for Aerial (2). (a) LSD (1064/30.0/31920.0). (b) Pyr-LSD(642/40.8/26193.6).
(c) Affine-LSD (701/78.5/55028.5).

FIGURE 21. Comparison of the results of the three extraction methods for Aerial (3). (a) LSD (513/25.5/13081.5). (b) Pyr-LSD(345/32.1/11074.5).
(c) Affine-LSD (285/64.9/18496.5).

segments, and time consumption. The average length of line
segments and total length of line segments are plotted in
Figure 22-Figure 23.

As shown in Figure 22 and Figure 23, following the use
of the Affine-Lines method proposed in the study, the length
of the line segments is significantly improved, and the aver-
age length and total length of the line segments of several
images reaches more than twice that of the original method.
However, the Affine-Lines method requires a continuous
resampling of images, line extraction, back-projection and
subsequent purification and optimization, and thus its time

cost significantly exceeds that of the original method. The
average time consumption is approximately 10 times that of
the original method as shown in Table 1. Additionally, a slight
error exists due to resampling and back-projection, thereby
resulting in slight deviations in the final line segments.

VI. DISCUSSION
The tilt parameter selected in the experimental corresponds to

t =
(√

2
)3
, and nine simulations are included. Theoretically,

the affine camera model simulates several viewing angles
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TABLE 1. Experimental results of different line extraction methods.

if the sampling interval is set as sufficiently low. However,
increases in the number of simulations improves the effect.
Thus, the tilt parameter value is discussed. Subsequently,
the accuracy and precision of the extracted lines from the
proposed method are evaluated. Finally, the Affine-Lines
method is applied to line matching.

A. DISCUSSION OF THE NUMBER OF AFFINE SIMULATION
We select a new aerial image and extract line segments from
the original image directly (no simulation) and via 9 simu-
lations, 16 simulations, and 26 simulations. Table 2 lists the
number of extracted line segments, average length of the line
segments, and elapsed times.

As shown in Table 2 and Figure 24, the difference in line
extraction between 16 and 26 simulations is not extremely

TABLE 2. Comparison of line extraction results under different
simulation times.

high (special attention focuses on the yellow arrow as indi-
cated to the edge of the building) and especially on the
structure extraction of the house. The average length of the

37162 VOLUME 7, 2019



Q. Wang et al.: Optimization of Line Extraction Based on an Affine Camera Model

FIGURE 22. Comparison of the average length of line segments obtained
under different methods.

FIGURE 23. Comparison of the total length of line segments obtained
under different methods.

line segments changes from 113.4 to 119.66, and the increase
is not significant. Several meaningless segments are added
(see the yellow oval box) although the number of line seg-
ments increases (462 to 572). Simultaneously, it is more time
consuming in terms of time costs. Therefore, in general appli-
cations, the number of simulations is not as high as possible

and generally assumes a moderate value, i.e., t =
(√

2
)2

or

t =
(√

2
)3
.

B. ACCURACY AND PRECISION OF THE EXTRACTED LINES
In this section, we discuss the accuracy and precision of the
extracted lines.

1) PRECISION EVALUATION
First, it is necessary to describe the merging strategy in detail.
In the purification and optimization procedure, the short line
segments are merged to define a longer line. Figure 25 corre-
sponds to the exaggerated show of Figure 9(c). The merging
method of the fragmented lines is as follows: We assume that
l1 (its endpoints are A and B) corresponds to a line segment
that is extracted from the original image and that l2 (i.e., its

FIGURE 24. Comparison of extraction results under different affine

simulation times. (a) t =

(√
2
)0

, no simulation. (b) t =

(√
2
)2

,

9 simulations. (c) t =

(√
2
)3

, 16 simulations. (d) t =

(√
2
)4

,
26 simulations.

FIGURE 25. Merging of two fragmented lines.

endpoints are C and D) corresponds to a back-projected line
segment from the simulated image. We consider l1 as the
benchmark, and C ′ and D′ correspond to the two projected
endpoints of l2. When an overlapping area exists between
l1 and C ′D′ (this is referred to as the horizontal distance
constraint) and the average projection distance from l2 to l1
is less than 1 pixel (this is referred to as the vertical distance
constraint), then they are merged into a new longer line AD′

that replaces l1.
As noted by Von Gioi et al. [23], the LSD yields sub-

pixel precious results. Thus, the precision ρ0 corresponds to
the sub-pixel level for the extracted referenced lines from
the original image. With respect to the other extracted lines
from the simulated images, there are two types. The first
type corresponds to those fragmented lines that should be
merged with the referenced lines as previously described.
They are projected on the referenced lines, and thus error is
not introduced. The second type corresponds to those lines
that are newly produced and independent (i.e., merging is not
required), and it is difficult to calculate or precisely directly
validated their precision although they are mathematically
inferred.
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FIGURE 26. Quantitative accuracy evaluations of LSD and Affine-LS.

The simulated images are obtained from the affine trans-
formation matrix A. With respect to a pixel, the relationship
between its pixel coordinates on the original image (u, v) and
coordinates on the simulated image (u′, v′) is as follows:

(a0, b0)T + A (u, v)T =
(
u′, v′

)T (11)

where a0 and b0 denote constants.
With respect to equation (11), the left-hand-side corre-

sponds to the float value and the right-hand-side must cor-
respond to an integer value. Thus, the precision of extracted
line on the simulated image decreases (i.e., the precision of
the back-projected line segment is simply determined via
its two endpoints). Typically, 0.5 pixel is lost for u′ and v′.
Additionally for a point, the precision loss corresponds to√
2 ∗ 0.5 = 0.7. If a compromised value 0.5 pixel is assigned

for ρ0, then the precision of the second type of lines is
expressed as follows:

ρ =

√
ρ20 + 2∗0.72 = 1.1

It is noted that an error of 1 pixel is visually distinguished.

2) ACCURACY EVALUATION
We adopt the method in [24] to evaluate the performances
of the two line segment extraction methods. If the distances
between the pixels from an extracted line segment and cor-
responding pixels from the ground-truth line segment are all
less than or equal to 1 pixel, then the extracted line segment
is considered as a true result, and otherwise the result is
false. The accuracy result is shown in Figure 26. The overall
accuracy of Affine-LSD is equal to that of the LSD. On an
average, the accuracy of the Affine-LSD is approximately
90%. Evidently, the accuracy slightly decreases with respect
to scenes that contain significantly irregular objects (for e.g.,
Outdoor 1 and Outdoor 3 contain a significant amount of
trees and grasses). The accuracy increases with respect to
regular scenes that contain mainly structured objects (for e.g.,
aerial images are dominated by buildings). The Affine-LSD
also outperforms LSD in Indoor 2 and Outdoor 2 due to the
redundant scenes, and Affine-LSD purifies a few false lines.

C. APPLICATION OF LINE MATCHING
The results of the aforementioned experiment confirm that
Affine-Lines increases the length of the line segments and
improve the fragmentation effect. Subsequently, line match-
ing is used to further explain the significance of the line
extraction improvement.

The basic steps and principles of general line matching are
as follows: first, line segments of two images are extracted
via a line extraction method, and matching is then performed
based on the similarity of line segment neighborhoods. The
range of the neighborhood is related to the length and distribu-
tion of line segments. Hence, increases in the length of the line
segment increase the availability of neighbor information,
increase the reliability of similarity matching, and make it
easier to successfully match. The characteristic number-line
match (CN-LM) [25] corresponds to a state-of-the-art line
segment matching method that is invariant to rotation, scale,
and affine. The principle of matching involves first defining
the neighborhood ranges based on the length and distribution
of the to-be-matched line segments, subsequently determin-
ing more than three matched points in their neighborhoods,
and then constructing a point-to-line invariant via the geo-
metric constraint relationship between the matched point and
line segments. Similarity matching is performed based on the
invariants. Thus, increases in the length of the line segment
increase the number of matched points that exist in its neigh-
borhood, increase the number and probability of constructing
invariants, and increase the stability of matching. As shown
in Figure 27, the red rectangle dotted box represents the
neighborhood of the line segment. When the line segment in
the left picture is short, its neighborhood contains only three
points. When the length of the line segment increases, it can
contain two more points, and thus the geometry of the point-
to-line invariant is more stable.

FIGURE 27. Changes in neighborhood information before and after the
length of the line segment changes. (a) Neighborhood of the original
short segment. (b) Neighborhood after the length of the line segment
increases.

The following group of image pairs are selected for com-
parative experiments, namely the Memorial Hall of Peking
University. A part of line extraction of the CN-LM method
is used by LSD. Therefore, the comparison experiment uses
Affine-LSD to optimize the line extraction, and the improved

37164 VOLUME 7, 2019



Q. Wang et al.: Optimization of Line Extraction Based on an Affine Camera Model

longer line segments are used as the line segments that are
to be matched. Subsequently, the same matching strategy as
CN-LM is adopted. Figure 28 shows the result images, num-
ber of extracted line segments, number of correctly matched
line segments, correct matching rate, and average length of
the matched line segments.

FIGURE 28. Comparison of matching results using CN-LM directly and
using CN-LM after the line segment improvement. (a) Matching results of
CN-LM. Extracted Lines: (612,560), Correct matched lines: 53, Correct
matching rate: 67.1%, Average length: 51.2. (b) Matching results after
using Affine-Lines. Extracted Lines: (442,442), Correct matched lines: 76,
Correct matching rate: 86.4%, Average length: 102.9.

As shown in Figure 28, increases in the length of the
line segment increase the number of correctly matched line
segments, total number ofmatches, correct matching rate, and
average length of the matched line segments. With respect to
the performance on the building: the broken line segments
decrease, and the matched line segments are more complete
and more capable of reflecting the main structural skeleton
of the buildings. The results reveal that the reconstructed 3D
structural line segments are also more complete based on the
aforementioned types of matched line segments.

VII. CONCLUSION
The fragmentation effect, length of the line segment, and
redundancy in line extraction constitute obstacles for subse-
quent target detection, recognition, matching, and 3D recon-
struction. In the study, the causes of the aforementioned
problems were determined via analyzing the LSD algorithm
principle, and an improved method of line extraction based
on an affine camera model was proposed to compensate
for the defects. An affine camera model was used to sim-
ulate an image several times to obtain more line segments
of different lengths without changing the basic content of
the image. Subsequently, purification and optimization were
used to obtain longer, more complete, and more streamlined
line segments. Additionally, the significance and advantages

of the proposed method were verified with respect to line
matching. However, a disadvantage of the proposed method
corresponds to the time cost problem, and this is unable to
satisfy requirements in real-time processing. Subsequently,
it is necessary to reduce time consumption to the maximum
possible extent and perform fast processing for purification
and optimization.
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