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ABSTRACT

Gene regulatory networks (GRNs) and gene expres-
sion data form a core element of systems biology-
based phenotyping. Changes in the expression of
transcription factors are commonly believed to have
a causal effect on the expression of their targets.
Here we evaluated in the best researched model or-
ganism, Escherichia coli, the consistency between
a GRN and a large gene expression compendium.
Surprisingly, a modest correlation was observed be-
tween the expression of transcription factors and
their targets and, most noteworthy, both activating
and repressing interactions were associated with
positive correlation. When evaluated using a sign
consistency model we found the regulatory network
was not more consistent with measured expression
than random network models. We conclude that, at
least in E. coli, one cannot expect a causal relation-
ship between the expression of transcription and fac-
tors their targets, and that the current static GRN
does not adequately explain transcriptional regula-
tion. The implications of this are profound as they
question what we consider established knowledge
of the systemic biology of cells and point to method-
ological limitations with respect to single omics anal-
ysis, static networks and temporality.

INTRODUCTION

The uncovering of genome-wide gene regulatory networks
is a key tool in systems biology allowing researchers to un-
derstand the complex mechanisms of transcriptional gene
regulation and to model the expressional behavior of genes
in accordance to changing internal and environmental con-
ditions. Collectively, these models form the basis of our
current understanding of the complex systems biology of

cells and multicellular organisms. The inference of regula-
tory interactions through computational methods has be-
come a standard tool and with the rapidly growing body
of available gene expression studies currently available, the
reconstruction of transcriptional gene regulatory networks
(GRNs) using gene expression data is becoming more and
more promising.

The problem of inferring a gene regulatory network from
gene expression data has received significant attention. It
was the focus of four separate DREAM challenges, with
DREAM5 in 2010 being the most recent one. A wide array
of gene expression-based network inference methods have
been developed (1,2). Despite these efforts, previous evalu-
ations found that gene expression-based inference methods
achieve very modest performance when applied to real data,
despite performing well on in silico generated data (2,3). Ad-
ditional methods incorporate multiple types of data such
as network topology, sequence information and gene set
enrichment (4–8) to improve predictive performance over
a purely gene expression-based approach. Gene regulatory
networks have commonly been modeled using Boolean net-
works (9,10), Bayesian networks (11,12) and ordinary dif-
ferential equations (13–16). However, given that currently
available regulatory information is provided as binary in-
teraction networks, it is important to assess the validity of
such networks regardless of the modeling approach taken.

The consistency between GRNs and gene expression
studies has previously been studied in E. coli for a set of
well-studied genes under four different conditions (17). The
sign consistency model introduced by Siegel et al. (18) pro-
vided a mathematical framework for evaluating inconsis-
tencies in signed interaction graphs. Several methods, often
Cytoscape (19) plugins, have subsequently been developed
for automating the detection of inconsistencies based on the
sign consistency model. COMA (20) uses a Boolean net-
work model to detect inconsistent interactions in the net-
work with respect to a single expression study; BioQuali
(21) detects inconsistent genes in the network and can sug-
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gest changes to the expression profile in order to better ex-
plain the experimental data; CytoASP (22) uses an answer
set programming approach to identify inconsistent genes
and suggest possible ways to repair them, either by chang-
ing expression profiles, changing the influence of an in-
teraction, or by introducing new interactions. Finally, the
SigNetTrainer tool (23) uses an integer linear programming
approach to repair inconsistent signs in a single gene expres-
sion experiment to match a given interaction network, or
identify insertions and deletions of interactions in the net-
work to best match a given set of experiments.

Informed by our current understanding of transcrip-
tional regulation it is generally assumed that an up- or
downregulation of the genes coding for a transcriptional
factor will result in a corresponding change in the expres-
sion of the genes regulated by that transcription factor. To
investigate this assumption, we analyzed the consistency be-
tween a state of the art experimentally validated gene regu-
latory network of E. coli and a large compendium of gene
expression profiles. We aimed to quantify how well the cur-
rent gene regulatory network of E. coli corresponds to mea-
sured gene expression levels, and how well the transcrip-
tional influence of TFs is reflected in the expression of their
target genes. Our analysis revealed that both activating and
repressing interactions were associated with positive corre-
lation, which directly contradicted our preunderstanding.
Furthermore, we show that, when evaluated using a sign
consistency model, the regulatory network is not more con-
sistent with measured gene expression than random net-
work models. This implies that one cannot expect to see
a causal relationship between the expression of transcrip-
tion factors and their targets when evaluating the cell at a
system-wide level.

MATERIALS AND METHODS

Data set preparation

We obtained a compendium of E. coli gene expression
data from the DREAM5 challenge data set (3). The com-
pendium contained expression for 4297 genes from 805
samples, all obtained with the Affymetrix E. coli An-
tisense Genome Array. The compendium contains ex-
pression from a wide range of experients including wild
type, drug perturbations, environmental perturbations,
gene knockout/knockdown and time series. The expression
data was normalized using Robust Multi-array Averaging
(RMA) and quantile normalization then log-scaled.

We obtained a set of regulatory interactions from the
RegulonDB database (24), consisting of 4564 experimen-
tally validated transcription factor (TF) to gene interac-
tions and 2154 TF to transcription unit (TU) interactions.
A transcriptional gene regulatory network was constructed
as a directed bi-partite graph containing a vertex for each
TF, and one for each gene and TU, respectively. An edge
between pairs of vertices (TF to gene/TU) was added for
each transcriptional interaction reported in RegulonDB.
Each interaction in the regulatory network was labeled as
either an activation (↑) or repression (↓). Interactions with
dual or unknown regulatory effect were removed (0.4% and
2%, respectively). Annotation of 214 transcription factors
and 1036 transcription units were also obtained from from

RegulonDB. TFs and TUs where one or more of its con-
stituent genes had no expression profile were removed from
the network (12% and 24%, respectively). The resulting net-
work contained 175 TFs, 1865 targets and 4503 interactions,
where 54% of interactions were activating and the remain-
ing 46% were repressing.

Genes in a TU are regulated together and thus we expect
them to have similar expression. Because this is not always
the case, we defined the expression of a TU as the mean ex-
pression of its constituent genes for each sample. For tran-
scription factor complexes (i.e. several genes coding for pro-
teins acting as TF complex together) we defined the expres-
sion level as the minimum level among the genes for each
sample.

For comparison we also obtained an in silico generated
data set from the DREAM5 challenge containing a simu-
lated regulatory network and corresponding gene expres-
sion compendium. The in silico regulatory network was gen-
erated to have topology similar to known regulatory net-
works of model organisms using the method described in
(25). The simulated gene expression data was generated
based on the regulatory network using GeneNetWeaver
(26). The generated data simulates wild types, as well as
drug/environmental perturbations, knockout/knockdown
experiments and time series. The in silico network contained
178 TFs, 1498 targets and 4012 interactions, where 56% of
interactions were activating and the remaining 44% were re-
pressing.

Inconsistency detection

We evaluated the consistency between the regulatory net-
works and the gene expression compendia using a sign con-
sistency model. We first computed contrasts from raw ex-
pression values in order to identify genes that were up- or
downregulated in each experiment with respect to some ref-
erence. For each experiment in each compendium we iden-
tified an unperturbed sample to use as reference. Contrasts
were then computed as the log-ratio between the reference
and each other case in the experiment. In both the E. coli
and in silico data set this resulted in 655 contrasts.

To assess the consistency between the regulatory network
and the gene expression studies we identified a set of cases
that we define to be inconsistent. We used an inconsistency
model similar to the models used in BioQuali and COMA,
but extended to include rules for genes that are unchanged.
Each vertex (TF, gene or TU) was labeled as either upreg-
ulated (+), downregulated (−) or unchanged (0) for each
contrast in the data set. Vertices were labeled according to
the log-ratio between case and control and some threshold
t, where vertices were considered downregulated when the
log-ratio was less than −t, upregulated when greater than t
and unchanged otherwise.

Intuitively, when a TF (or TF complex) is upregulated,
we expect its target genes (or TUs) to be upregulated if it
is an activator, and downregulated if it is a repressor. Simi-
larly, if a TF is downregulated, we expect its target genes to
not be upregulated if it is an activator, and not downregu-
lated if it is a repressor. When the TF is unchanged the in-
teraction is considered consistent regardless of the labeling
of the target gene/TU and type of interaction. When the
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Table 1. Overview of regulatory interactions considered inconsistent ac-
cording to the expression of the transcription factor and target genes.

Regulation TF exp. Target exp. Consistent

↑ + + yes
↑ + − no
↑ + 0 no
↑ − + no
↑ − − yes
↑ − 0 yes
↓ + + no
↓ + − yes
↓ + 0 no
↓ − + yes
↓ − − no
↓ − 0 yes
↑, ↓ 0 +, −, 0 yes

The symbols in column 1 describe whether the interaction is an activation
(↑) or repression (↓).
The symbols in columns 2 and 3 signify whether the vertex is labeled up-
regulated (+), downregulated (−) or unchanged (0).

target gene/TU is unchanged, we consider an interaction
inconsistent if the TF is upregulated and consistent other-
wise. One could make this model more strict by defining
all interactions where one but not both interactors are un-
changed to be inconsistent, however, it is not well-defined
which of these cases are actually inconsistent. For this rea-
son we chose a more conservative definition in order to re-
duce the number of interactions falsely labeled as inconsis-
tent. Table 1 gives a overview of which interactions were
considered consistent and inconsistent.

Let the inconsistency vector of an edge e be a vector I(e)
∈ {0, 1}n, where n is the number of contrasts and Ii(e) = 1
if e is inconsistent with respect to contrast i and Ii(e) = 0
otherwise. Let the inconsistency vector of a gene or TU $v$
be a vector J(v) ∈ {0, 1}n, where

Ji (v) =
∏

e∈N−(v)

Ii (e), (1)

and N−(v) is the set of incoming edges of v. When a tar-
get gene/TU is subject to multiple regulators, it is consid-
ered consistent with respect to a specific contrast if there
exists at least one incoming regulation that is consistent in
that contrast. If several TFs of different types (i.e. activa-
tors and repressors) regulate the same target gene/TU, it is
generally unclear which regulation is the dominant one. In
our case we are looking for a conservative lower bound (i.e.
the minimum inconsistency load) and resolve such cases by
marking a gene/TU as ‘explained’ if any regulator explains
its over-/underexpression. We define the number of incon-
sistencies for an interaction e as |I(e)|1. Similarly, we define
the number of inconsistencies for a vertex v as |J(v)|1 (Fig-
ure 1). Furthermore, we define the global inconsistency load
for a network as the total number of inconsistencies among
all genes and TUs in the network.

Network perturbation methods

In order to assess the consistency of our regulatory network
compared to random data (the null model), two methods of
perturbation were implemented. The broad distribution of

Figure 1. Example of consistency vectors for a gene g regulated by two
transcription factors t1 and t2. Labels for three different contrasts are
shown in brackets next to the vertices.

node degrees suggests that the degree is an important char-
acteristic for nodes in biological networks (27). For this rea-
son, both perturbation methods preserve the degree of all
nodes in the network to rule out the impact of node degree
distribution on consistency.

The first method perturbs the expression data by uni-
formly redistributing the entire expression profiles of genes
using a Fisher-Yates shuffle. This method produces a regu-
latory network with identical topology to that of the orig-
inal network, but with randomly assigned expression pro-
files. Entire profiles are exchanged in order to keep each
profile internally consistent. If individual expression values
of different genes were to be exchanged instead, we would
no longer quantify how consistent a random set of interac-
tions is wrt. the gene expression compendium, but instead
how consistent random gene expression is wrt. the regula-
tory network.

The second method perturbs the topology of the net-
work while preserving both the in-degree and out-degree all
nodes. This is achieved using a simple numerical algorithm
proposed in (28). The algorithm selects two existing edges
(p, q) and (r, s), and rewires their endpoints such that they
become two new edges, (p, s) and (r, q). If one or both of
these new edges already exist, the procedure is aborted and
another pair is selected instead. This procedure is repeated
10 · |E| times, where |E| is the number of edges in the net-
work. This method produces a network with a randomly
perturbed topology but identical node degree distribution
to that of the original network, while preserving the expres-
sion profiles of individual genes.

RESULTS

Correlation of expression profiles

First we assessed the correlation between gene expression
profiles of known TF and target gene (or TU) interactions
in the regulatory network of E. coli. The correlation was de-
termined using Pearson’s correlation coefficient. We first ex-
amined the distribution of correlations for known TF-target
pairs and observed a mean correlation of 0.12 (Figure 2A).
When evaluating all possible TF-target pairs in the network
we observed a mean correlation of 0.02. Based on the as-
sumption that greater expression of a repressor will lead to
a lower expression of its targets, one would expect the the
repressors to be associated with anti-correlation. However,
when separating the interactions by regulatory influence, we
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A B C
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Figure 2. Distribution of Pearson correlation coefficients for TF and target gene/unit pairs. (A, D) Comparison between correlation of all possible TF-target
pairs and all known interactions. (B, E) Comparison between correlation of known activations and repressions. (C, F) Comparison between correlation
of known activations and repressions where the TF is the only regulator of the target. Dashed vertical lines indicate mean correlation for each set of
interactions.

observe a modest positive correlation in both cases (0.10
and 0.14 for repression and activation, respectively) (Fig-
ure 2B).

When looking at the correlation of interactions in iso-
lation, we do not account for more complex relationships
such as multiple TFs regulating the same gene. To investi-
gate whether this has an impact, we examined the distribu-
tion of correlations for only those interactions where the TF
is the sole regulator of the target gene or TU (17% of inter-
actions, 40% of targets). For this reduced set of interactions,
we observe a similar distribution, but with a greater mean
correlation for both types of interactions (0.19 and 0.20
for repressors and activators, respectively) (Figure 2C). Sur-
prisingly, for single-regulator interactions the difference in
mean correlation between activations and repressions was
in fact smaller than for the complete regulatory network.

We repeated this evaluation for the in silico data set and
found highly dissimilar results. The mean correlation of
known interactions was close to zero (0.02), but with high
variance compared to the background distribution (Fig-
ure 2D). When separating interactions by type we observed
a clear separation between the two distributions, with re-
pressors overall associated with negative correlation and
activators associated with positive correlation (mean –0.23
and 0.21, respectively) (Figure 2E). When considering only
single-regulator interactions we observed an even stronger
separation between the distributions with almost no overlap
(Figure 2F).

Inconsistency between regulatory network in expression data

We used an inconsistency model to evaluate how consis-
tent the regulatory network was with the gene expression
data. We use a threshold of ±0.043 for the E. coli data
and ±0.26 for the in silico data. These threshold were cho-
sen such that ≈50% of contrast values were considered ei-
ther up- or downregulated in the model. We first compared
the global inconsistency load (total number of inconsistent
cases among all targets) of the E. coli regulatory network to
two random network models. The first method perturbs the
network by random edge rewiring, while the second method
redistributes gene expression profiles among all genes (see
Methods). For each perturbation method the experiment
was repeated 200 times.

The global inconsistency load for the unperturbed net-
work was 148 959. When perturbing the edges of the net-
work the median global inconsistency load increased to
151 293 (1.6% increase) and when perturbing the expression
profiles instead, the median inconsistency load decreased
to 148 584 (0.3% decrease) (Figure 3A). The high simi-
larity between the consistency load of the regulatory net-
work and the null models suggests that the regulatory net-
work is not significantly more consistent with the expres-
sion data than a random network. In fact, and surpris-
ingly, when redistributing the expression profiles a major-
ity of cases were more consistent than the unperturbed net-
work. When separating the interactions by type we observed
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Figure 3. Evaluation of inconsistency load in regulatory network and perturbed network models. (A, D) Global inconsistency load in regulatory networks
compared to two random networks models. For the random models, each experiment was repeated 200 times. (B, E) Distribution of edge inconsistency for
repressing and activating interactions. (C, F) Distribution of edge inconsistency for repressing and activating interactions targeting genes/TUs with only
one regulator. Dashed vertical lines in (B, C, E, F) indicate mean inconsistency for each set of interactions.

that repressive interactions were on average more inconsis-
tent (mean 178.7) than activating interactions (mean 145.9)
(Figure 3B). For single-regulator targets the mean inconsis-
tency was slightly higher for repression and slightly lower
for activation (181.1 and 135.5, respectively) (Figure 3C).

In the in silico data, we observed that perturbing the net-
work greatly increased the overall inconsistency. The global
inconsistency load for the unperturbed network was 55 247,
increasing to median 84041.5 (52% increase) when rewiring
interactions and median 95 710 (73% increase) (Figure 3D).
When separating interactions by type, the mean number of
interactions is nearly identical (128.2 and 130 for repression
and activation, respectively) (Figure 3E). This was also the
case when considering only single-regulator targets (Fig-
ure 3F).

Association between inconsistency and experimental evidence

We examined the inconsistency load for each of the 655 con-
trasts to determine if some experimental conditions were
associated with higher inconsistency. The number of in-
consistencies ranged from 2 to 625, with mean 227.4 (Fig-
ure 4A). We observed that contrasts where the case condi-
tion was subjected to a perturbation (e.g. drugs or environ-
mental perturbations) were associated with a greater incon-
sistency load (mean 267.9 versus 191.2, Mann–Whitney U p
= 5.9e−14) (Figure 4B). However, we further observed that
the perturbed experiments were associated with a higher

variance in fold change and consequently a greater num-
ber of genes marked up- or downregulated in the sign con-
sistency model (Figure 4C) and that the number of up- or
downregulated genes in a contrast was highly correlated
with number of inconsistencies which may explain this dis-
crepancy (Figure 4D).

We also examined whether some interactions reported
in RegulonDB were more inconsistent with the expression
data than others. All interactions in RegulonDB are classi-
fied based on the type and amount of experimental evidence
reported in the database. We observed that the mean incon-
sistency for interactions with strong experimental evidence
was marginally lower than interactions with only weak ev-
idence (mean 159.0 versus 163.7, Mann–Whitney U p =
5.8e−5) (Figure 4E). We further evaluated the overall in-
consistency based on the type of experimental evidence (ex-
cluding uncommon methods, occurring <100 times). Out
of the six evidence types considered, the two methods con-
sidered strong evidence by RegulonDB, namely binding of
purified proteins and site mutation, ranked first and third in
consistency. However, mean inconsistency was very similar
across methods, ranging from 158.5 to 164.0 (Figure 4F).

DISCUSSION

We investigated, in E. coli, the commonly held assumption,
that a change in the expression of a transcription factor
should have a positive or negative causal effect on the ex-
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Figure 4. Evaluation of inconsistency load of E. coli across contrasts and experimental evidence types. (A) Distribution of inconsistency load across
the 655 contrasts. (B) Comparison between inconsistency load in contrasts with and without perturbation (e.g. drugs and experimental contitions). (C)
Comparison between number of up- or downregulated genes in sign consistency model for in contrasts with and without perturbation. (D) Relationship
between number of up- or downregulated genes and inconsistency load in contrasts. (E) Comparison between inconsistency of interactions with strong and
weak experimental evidence. (F) Comparison between different common experimental evidence types for regulatory interactions. Evidence types: binding
of cellular extracts (BCE), site mutation (SM), binding of purified proteins (BPP), gene expression analysis (GEA), human inference based on similarity to
consensus sequences (HIBSCS), automated inference based on similarity to consensus sequences (AIBSCS). Significance in (B, C, E) was computed using
a Mann–Whitney U-test.

pression of its targets, depending on the type of regulation.
This behavior was, however, not observed. Instead we on
average observed a positive correlation between transcrip-
tion factors and their targets, regardless of their regula-
tory influence, with similar distributions for both interac-
tion types. In many cases a gene or TU is regulated by sev-
eral transcription factors. For such targets, it may be too
simplistic to expect each interaction to be reflected in the
mRNA levels. However, when looking at only regulations
of genes/TUs with only one regulator, we observed a sim-
ilar pattern, again with repressive interactions being posi-
tively correlated. The set of regulatory interactions reported
in RegulonDB is most likely far from complete, and thus
some of the targets considered as having a single regulator
may in fact be regulated through other undiscovered inter-
actions. However, this does not explain why the mean corre-
lation coefficient for repression was both greater and more
similar to activation for single-regulator targets.

As expected, no correlation between random pairs of
transcription factors and genes/TUs was observed. This
suggests that the correlation we observe in the unperturbed
data is a property of the network and not simply because
the gene expression experiments are correlated (e.g. genes
having a general, experiment-specific chance of being more

upregulated in one experiment than another one). In this
study we measured correlation using the Pearson correla-
tion coefficient. It could be the case that there is a causal
but non-linear relationship between the expression of TFs
and their targets, which would not be captured with Pearson
correlation. To confirm this was not the case, we repeated
the correlation analysis using Spearman’s rank correlation
coefficient which produced analogous results (Supplemen-
tary Figure S1).

When comparing the total inconsistency load of the
GRN to random network models, we observed a remark-
ably similar degree of consistency. This suggests that the ex-
perimentally validated network does not explain the tran-
scriptome data better than a random network, at least with
respect to our sign consistency model. Repressive interac-
tions were on average associated with a higher degree of
inconsistency than activating interactions. This is not sur-
prising, given that the underlying assumption that repres-
sors and their targets should be anti-correlated is contrary
to what was observed in real gene expression.

The choice of fold change threshold for when genes are
considered up- or downregulated may have a significant im-
pact on the results. To investigate this we repeated the incon-
sistency analysis with a lower and higher threshold (Supple-
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mentary Figure S2–S5). We observed that a lower threshold
resulted in a higher consistency load, but the overall pat-
terns were the same: the global inconsistency load in E. coli
was mostly unchanged under random perturbation, but in-
creased significantly in the in silico data, and repressive in-
teractions were on average more inconsistent in E. coli but
almost identical to activating interactions in in silico.

In our signed model TFs, genes and TUs were classified as
either upregulated, downregulated or unchanged. Previous
methods have generally used a binary classification where
genes were simply labeled ‘up’ and ‘down’ (or ‘present’ and
‘not present’), but we included the unchanged state to avoid
small changes in expression being considered a change in
regulation. We implemented a binary consistency model as
well and repeated the inconsistency evaluation for differ-
ent thresholds (Supplementary Text S1.1). We observed that
perturbing the network has little effect on the overall incon-
sistency in E. coli but greatly increases inconsistency in the
in silico data (Supplementary Figure S6–S8). These results
confirm that the poor consistency we observed in this study
is not a result of our model being too conservative.

We acknowledge that our model for evaluating the incon-
sistency is both simplistic and conservative. However, the
stark contrast between the E. coli and in silico data and the
fact that perturbing the in silico data greatly increased the
inconsistency load demonstrates, that our model should be
able to recognize it if the expression data more closely re-
sembled the idealized model emulated in the in silico data.

Several possible explanations exist for the observed lack
of a causal relationship between TFs and targets. In previ-
ous studies on E. coli and S. cerevisiae, the regulatory re-
sponse of target genes has, in some cases, been observed to
be time delayed (29). When this is the case, a regulatory
response cannot be detected by correlating expression of
genes at the same time points. To determine such relation-
ships, a time series analysis is necessary. The lack of cor-
relation could also suggest that many TFs are not signifi-
cantly transcriptionally regulated (30). If a TF is primarily
regulated by post-translational modifications such as phos-
phorylation by two-component signaling (31,32), its activ-
ity not will be reflected significantly in the expression level
of its coding gene. Another reason for the poor correlation
of regulator/target could be a generally modest correlation
of transcriptome and proteome data (33,34). In addition,
even if a TF is transcribed and translated, it may be in an in-
active conformation. The lack of correlation may thus also
be due to TFs not bound by their activator metabolites, or
bound by inactivators, both of which cannot be observed
from transcriptome data.

While these results may be surprising, they are well in line
previous performance evaluations. In the DREAM5 chal-
lenge, even the best performing methods did not achieve
high precision beyond very low recall values despite per-
forming well on the in silico data (3). A similar result was
reported by Madhamshettiwar et al. (2) who compared sev-
eral methods on in silico data and microarray gene expres-
sion from ovarian cancer patients. We argue that our re-
sults bring into question the applicability of previously pub-
lished methods based on the detection of inconsistencies be-
tween known regulations and gene expression, and possibly
even methods based on correlation or mutual information

as well. This does not imply that inconsistency detection
cannot be utilized to produce meaningful results, but it does
suggest that more sophisticated models are needed, for in-
stance, involving mult-omics, more diverse network types,
or temporality. Finally, the clear difference between the real
and synthetic expression data brings into question the va-
lidity of using simulated data for evaluating methods. If sim-
ulated data is to be used for evaluation going forward, one
must ensure that the assumptions underlying the simulated
model accurately reflect gene expression patterns in vivo.

CONCLUSION

We evaluated the overall consistency between the experi-
mentally validated regulatory network of E. coli found in
RegulonDB and a large compendium of microarray gene
expression data. We observed that both activating and re-
pressing interactions were associated with a positive corre-
lation between the expression of transcription factors and
their targets, and that the distributions of correlation for
activating and repressing interactions were remarkably sim-
ilar. When evaluated using a sign consistency model the reg-
ulatory network was not significantly more consistent with
measured gene expression than two random network mod-
els. Our results suggest that one cannot expect a causal re-
lationship between the expression of transcription factors
and their targets and, as such, currently available static gene
regulatory networks do not adequately explain transcrip-
tional gene expression – at least not on a systems-wide level.
As a way forward, we urge to researchers to reconsider this
flawed view on the relationship between transcriptional reg-
ulation and gene expression, and we suggest to base future
methods on more complex models, multi-omics data, using
several network types and/or including temporality.
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3. Marbach,D., Costello,J.C., Küffner,R., Vega,N.M., Prill,R.J.,
Camacho,D.M., Allison,K.R., Aderhold,A., Allison,K.R.,
Bonneau,R., Camacho,D.M. et al. (2012) Wisdom of crowds for
robust gene network inference. Nat. Methods, 9, 796–804.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article-abstract/47/1/85/5193344 by Technische U

niversitaet M
uenchen user on 30 April 2020

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gky1176#supplementary-data


92 Nucleic Acids Research, 2019, Vol. 47, No. 1

4. Bar-Joseph,Z., Gerber,G.K., Lee,T.I., Rinaldi,N.J., Yoo,J.Y.,
Robert,F., Gordon,D.B., Fraenkel,E., Jaakkola,T.S., Young,R.A.
et al. (2003) Computational discovery of gene modules and
regulatory networks. Nat. Biotechnol., 21, 1337–1342.

5. Reiss,D.J., Baliga,N.S. and Bonneau,R. (2006) Integrated biclustering
of heterogeneous genome-wide datasets for the inference of global
regulatory networks. BMC Bioinformatics, 7, 280.

6. Veiga,D.F., Vicente,F.F., Nicolás,M.F. and Vasconcelos,A.T.R.
(2008) Predicting transcriptional regulatory interactions with
artificial neural networks applied to E. coli multidrug resistance efflux
pumps. BMC Microbiol., 8, 101.

7. Yu,X., Gao,H., Zheng,X., Li,C. and Wang,J. (2014) A computational
method of predicting regulatory interactions in Arabidopsis based on
gene expression data and sequence information. Comput. Biol. Chem.,
51, 36–41.

8. Chouvardas,P., Kollias,G. and Nikolaou,C. (2016) Inferring active
regulatory networks from gene expression data using a combination
of prior knowledge and enrichment analysis. BMC Bioinformatics,
17, 181.
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Kovács,K.A. (2014) Boolean modelling reveals new regulatory
connections between transcription factors orchestrating the
development of the ventral spinal cord. PLoS ONE, 9, e111430.

11. Friedman,N., Linial,M., Nachman,I. and Pe’er,D. (2000) Using
bayesian networks to analyze expression data. J. Comput. Biol., 7,
601–620.

12. Yu,J., Smith,V.A., Wang,P.P., Hartemink,A.J. and Jarvis,E.D. (2002)
Using Bayesian network inference algorithms to recover molecular
genetic regulatory networks. In: International Conference on Systems
Biology. Vol. 2002.

13. Chen,T., He,H.L., Church,G.M. et al. (1999) Modeling gene
expression with differential equations. In: Pacific symposium on
biocomputing. Vol. 4, p. 4.

14. Sakamoto,E. and Iba,H. (2000) Identifying gene regulatory network
as differential equation by genetic programming. Genome Informatics,
11, 281–283.

15. de Hoon,M., Imoto,S. and Miyano,S. (2002) Inferring gene
regulatory networks from time-ordered gene expression data using
differential equations. In: International Conference on Discovery
Science. Springer, Berlin Heidelberg, pp. 267–274.

16. Vijesh,N., Chakrabarti,S.K. and Sreekumar,J. (2013) Modeling of
gene regulatory networks: a review. J. Biomed. Sci. Eng., 06, 223–231.

17. Gutierrez-Rios,R.M., Rosenblueth,D.A., Loza,J.A., Huerta,A.M.,
Glasner,J.D., Blattner,F.R. and Collado-Vides,J. (2003) Regulatory
network of Escherichia coli: Consistency between literature
knowledge and microarray profiles. Genome Res., 13, 2435–2443.

18. Siegel,A., Radulescu,O., Le Borgne,M., Veber,P., Ouy,J. and
Lagarrigue,S. (2006) Qualitative analysis of the relation between
DNA microarray data and behavioral models of regulation networks.
Biosystems, 84, 153–174.

19. Shannon,P., Markiel,A., Ozier,O., Baliga,N.S., Wang,J.T.,
Ramage,D., Amin,N., Schwikowski,B. and Ideker,T. (2003)
Cytoscape: A software environment for integrated models of
biomolecular interaction networks. Genome Res., 13, 2498–2504.

20. Baumbach,J. and Apeltsin,L. (2008) Linking Cytoscape and the
corynebacterial reference database CoryneRegNet. BMC Genomics,
9, 184.
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