

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

ISAR: An Authoring System for
Interactive Tabletops

Zardosht Hodaie, M.Sc.

FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Forschungs- und Lehreinheit I
Angewandte Softwaretechnik

ISAR: An Authoring System for
Interactive Tabletops

Zardosht Hodaie

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Michael Georg Bader

Prüfer der Dissertation: 1. Prof. Dr. Bernd Brügge

2. Prof. Gudrun Johanna Klinker, Ph.D.

Die Dissertation wurde am 15.04.2020 bei der Technischen Universität München eingereicht
und durch die Fakultät für Informatik am 03.08.2020 angenommen.

To my beloved parents.
To Sara. Sat Nam.

Acknowledgements

This work would not have been possible without the support of many people.

First of all I would like to thank my advisor Prof. Bernd Brügge, for his continuous support
and providing me the opportunity to grow and gain experience in his group. To me he is not
only an advisor, but a teacher and great person. I learned from him to realize the potential
in every person and the value of having a positive forward-oriented view of the world. I
also would like to thank Prof. Gudrun Klinker for accepting to be my second advisor and
providing me with valuable advice to improve my work.

I am grateful to the advice and support given to me by Dr. Asa MacWilliams, Dr. Markus
Sauer, and Dr. Hubertus Hohl from Siemens Corporate Technology. The opportunity to talk
and work with them, specially the iPraktikum projects with Dr. MacWilliams, gave me great
insights into my work.

I am very thankful to my dear colleagues and friends from Chair for Applied Software
Engineering, specially Juan Haladjian, Sajjad Taheri, Jan Knobloch, and Jan Ole Johanßen
for their warm support and help. I am also very grateful to the help and support from our
chair staff Ms. Markel, Ms. Schneider, Ms. Demmel, and Ms. Weber. I would like to thank
my dear friends Amin Abouee for very fruitful discussions, and Hamid Momeny and Faraz
Zareian for their caring and nice occasional messages.

And most of all I want to express my thanks, gratitude, and love to may dear parents, to my
sisters Nazli and Shirin, to Arne, Hasan, Valentin, Leandra, and to my dearest Sara. Without
your love and warm support I would have never achieved many things in my life. To Sara,
I am also most grateful for her patience and love in the hard times and teaching me to be
mindful, take a deep breath and continue.

The responsibility concerning the content in this dissertation is left to me, the author.

Abstract

Authoring systems and end user development toolkits allow end users to develop mixed-
reality applications tailored to their specific needs. Many authoring systems are available
for augmented reality applications for head-mounted, hand-held, and stationary displays.
However, authoring systems for the development of projected display applications are missing.
Projected display applications offer advantages when bi-manual interaction and ergonomic
convenience are important, in particular in application domains such as preschool education,
manual assembly, manual activities like cooking, and medical rehabilitation. Developing
augmented reality tabletop systems involves several challenges, in particular a high entrance
barrier that prevents end users and experts from non-technical domains, such as education, to
experiment with this technology.

This dissertation introduces ISAR, an authoring system for augmented reality tabletops
targeting users from non-technical domains. ISAR allows these users to create interactive
applications for a tabletop without technical expertise. ISAR consists of an interactive
tabletop with a camera-projector setup, a framework and a reference implementation. By
hiding the low-level technical complexities, ISAR allows end users to experiment with the
development of their own tabletop application in their specific application domain.

ISAR was evaluated in a qualitative usage study with focus on usability and user experience
as well as two demonstrations cases. The usage study showed that users without technical
background can develop interactive augmented reality applications. The demonstration cases
showed that ISAR can be used to create interactive tabletop applications for different domains
ranging from manufacturing and medical rehabilitation.

Table of contents

List of figures xi

List of tables xvii

1 Introduction 1
1.1 Objectives and Scope . 3
1.2 Research Process . 5
1.3 Contributions . 8
1.4 Organization of the Thesis . 9

2 Foundations 11
2.1 Augmented Reality . 11

2.1.1 Method of Augmentation and AR Displays 12
2.1.2 Components of an AR System . 17

2.2 Tangible User Interfaces and Interactive Tabletops 20
2.2.1 Tangible User Interfaces . 21
2.2.2 Interactive Tabletops . 27

2.3 Authoring Systems . 30
2.3.1 Authoring for Augmented Reality 32
2.3.2 Authoring for Tangible Tabletops 40

3 Requirement Specification 51
3.1 As-Is Scenario: Teaching Mainboard Assembly 51
3.2 Visionary Scenarios . 53

3.2.1 Situated Learning of Taxonomies and Domain-specific Vocabulary . 53
3.2.2 Guidance through a Workflow . 55
3.2.3 Rehabilitation for Hand Motor Skills 56

3.3 Functional Requirements . 57

viii Table of contents

3.3.1 Creating ISAR Applications . 58
3.3.2 Executing ISAR Applications . 63
3.3.3 Extending ISAR . 63

3.4 Non-functional Requirements . 64

4 ISAR Framework and Authoring Environment 69
4.1 ISAR Framework . 69

4.1.1 Scene . 70
4.1.2 Interaction . 74
4.1.3 Object Detection and Tracking . 76
4.1.4 ISAR Framework as a Meta-model 80

4.2 Authoring and Execution Environment . 82
4.3 Architecture . 88

4.3.1 Design Goals . 88
4.3.2 Subsystem Decomposition . 90
4.3.3 Control Flow . 92
4.3.4 Packaging and Distribution of an ISAR Application 95

5 Evaluation 97
5.1 Usage Study: An Interactive Tabletop Application for Vocabulary Learning 98

5.1.1 Study Setup . 98
5.1.2 Results . 101

5.2 Demonstration Case Studies . 111
5.2.1 Workflow Guidance: Mainboard Assembly 112
5.2.2 Rehabilitation: Hand-Eye Coordination Exercise 123

6 Conclusions and Future Work 133
6.1 Summary . 133

6.1.1 Limitations . 134
6.2 Future Work . 135

Appendix A Annotations 137
A.1 Geometric Shapes . 137

A.1.1 Line . 137
A.1.2 Rectangle . 138
A.1.3 Ellipse . 138
A.1.4 Arrow . 139

Table of contents ix

A.1.5 Curve . 139
A.2 Multimedia Annotations . 140

A.2.1 Text . 140
A.2.2 Image . 141
A.2.3 Audio . 141
A.2.4 Video . 141

A.3 Dynamic Annotations . 142
A.3.1 Timer . 142
A.3.2 Counter . 143
A.3.3 Relationship . 144
A.3.4 Animation . 144

A.4 Interaction Annotations . 145
A.4.1 ActionButton . 145
A.4.2 Checkbox . 146
A.4.3 ObjectPlacementArea . 146
A.4.4 Feedback . 147

Appendix B Object Detection and Tracking 149

Appendix C Extending ISAR Framework 153
C.1 Adding New Annotation Types . 153
C.2 Adding New Event Types . 155
C.3 Adding New Action Types . 156

Appendix D User Study 159

References 165

List of figures

1.1 The diffusion of innovation theory [Rog03] describes how usage of new
technologies is propagated with the time in the communities. The focus of
this dissertation is on early adapters and early majority. 4

1.2 In a formative research approach the development is guided by iterative
evaluation and refinement of the artifacts. 5

1.3 Some of the related projects, implemented in course of this dissertation, that
gave insights into requirements of ISAR. 6

2.1 Milgram’s virtuality continuum describes mixed-reality applications that
integrate virtual elements into the real world, with the completely real and
completely virtual environments at the extremes. [SH16]. 12

2.2 Three main methods of augmentation for combining digital content withe
the real world: optical see-through (left), video see-through (middle), and
spatial AR (right) [SH16]. 13

2.3 Different AR display categories based on the distance from user’s eye. [SH16]. 15
2.4 Examples of AR displays according to categorization based on distance from

the user’s eye: (left) Microsoft Hololesn, a head-mounted optical see-through
display [SSDM17], (middle) handheld display [GMOF13], (right) stationary
display for screen-based video see-through AR [BGW+02]. 16

2.5 Examples of projected spatial AR displays: (left) illuminating 3D non-planar
objects with shader lamps [RWLB01], (middle) painting by light using
dynamic shader lamps [BRF01], (right) the Magic Table, an example of an
augmented surface [BGW+02]. 17

xii List of figures

2.6 Main components of an augmented reality system and how they contribute to
the human-computer feedback loop. The integration of virtual content into
the view of the world should happen at real time, meaning the user should
preferably not perceive any delays in rendering of the augmentation onto the
view of world. [SH16]. 18

2.7 Marker-based tracking vs. natural feature tracking 19
2.8 Schematic representation and examples of different types of tangible user

interfaces according to Ullmer et. al [UIJ05]: (left) Interactive surfaces,
Urp [UI99]; (middle) Constructive assembly, FlowBlocks [ZAR05]; (right)
Token+Constraint, SenseBoard [JIPP02] 23

2.9 Examples of TUIs for educational applications: (left) Tern [HSCJ09] for
teaching programming; (right) An interactive tabletop by Price et al. [PFSR09]
for teaching optics. 26

2.10 Early works in the area of interactive tabletops: Digital Desk [Wel91] an
interactive tabletop interface with touch interaction (top left); BUILD-IT
[FBR97] support design tasks by tangible interaction on a projected tabletop
(top right); Two applications,Urp and Illuminating Light, from Luminous
Room project [UUI99] (bottom) . 28

2.11 TinkerLamps [ZJLD09] and two of its applications: Warehouse logistics
simulation and training [SJZD10] and collaborative creation of concept maps
[DLKD09] . 29

2.12 Classification of AR Authoring tools based on the application interface
abstractions and concept abstractions [HSGB06]. 32

2.13 Examples of two different approaches for interaction with high-level AR
authoring system: separate authoring and runtime environments [WZLL13]
(top) vs. immersive authoring [LNBK04] (bottom). 34

2.14 TagTile boards and the Tag Trainer authoring environment [TVG+15]. The
physiotherapist defines an application as a sequence of object placement and
moving and audio-visual feedback. Objects are detected and tracked by RFID. 45

2.15 KitVision authoring environment and three example applications (Tangram,
shopping list, counting) [BMBC19]. Authoring is done by defining interac-
tive areas and associating a list of objects and feedback content to them. . . 48

3.1 High level use cases of ISAR. The application creator (author) defines appli-
cation content and interactions. In the execution mode the application user
sees the content projected on the tabletops and interacts with the application
and physical objects. 57

List of figures xiii

3.2 Defining Scenes and Workflows in ISAR authoring mode. The application
creator defines the scene by adding annotations and physical objects. Work-
flows are defined as a sequence of scenes and the navigation rules between
them. 59

3.3 Interaction definition use cases in ISAR authoring. The application cre-
ator can define interactions by configuring events and actions and defining
interaction rules that connect events to actions. 60

3.4 In order to add new physical objects to ISAR, they must be first defined. To
define a physical object it must be assigned a name, a reference image, and a
marker-based or markerless object recognition and tracking model must be
integrated into ISAR that recognizes this object. 62

3.5 The application user sees the scenes projected on the tabletop and interacts
with the objects and digital content according to the interaction rules defined
by the application author. 64

3.6 The framework extender extends ISAR by adding new annotation types, new
event types, and new action types to the framework. 65

4.1 Overview of Application Content Model in ISAR. Application content con-
sists of a sequence of scenes consisting of multimedia annotation and physical
objects. The interaction with the application is governed by interaction rules. 70

4.2 Scene model: Annotations and physical objects are added to the scene.
Annotations can be fixed on the scene or attached to physical objects. For
extensibility AnnotationProperty is the super class for different annotation
properties. 71

4.3 Different kinds of annotations can be used to define scenes for various scenarios. 72
4.4 A workflow is an ordered sequence of steps, each associated with a scene. . 73
4.5 Different kinds of exercises that can be defined in ISAR by combining

different annotations and interaction rules. 74
4.6 Overview of the interaction model in ISAR. The application creator defines

an InteractionRule as a pair of Event-Action. As the application user interacts
with the tables, e.g. by manipulating physical objects, Events are triggered.
If the triggered event matches the event of an interaction rule, the Action
of that rule is performed, which affects the state of the table, for example
toggling visibility of an annotation or playing a sound. 75

4.7 Interaction model classes in details. Event sources trigger events. Actions
affect targets. Events and Actions can have properties for their parameters. . 76

xiv List of figures

4.8 Different kinds of events in ISAR. Events are triggered for Annotations,
Physical Objects, or Scene. 77

4.9 Different kinds of actions in ISAR. Action can have Annotation, Physical
Object, or Scene as target. 77

4.10 Object detection model of ISAR. New object detection packages can be
add as plugins by dropping them into the respective plugin folder or by
integrating them into ISAR application package. 79

4.11 ISAR Framework can be considered a meta-model at level M2 of the Meta
Object Facility. This meta model is used by application creator to create an
ISAR application for a specific scenario. 81

4.12 Camera-Projector setup. Using a projector and a webcam, every ordinary
tabletop can be used for ISAR applications. 83

4.13 The WYSIWYG authoring environment of ISAR. In the authoring mode,
the application creator sees the scenes exactly as they would be projected at
execution mode. 84

4.14 Interaction rules are defined as event-action pairs. The application creators
uses the interaction dialog to configure the events and actions that are then
used to create interaction rules. 85

4.15 In execution mode the application content is projected on the tabletop. Physi-
cal objects are tracked and annotations attached to them are rendered accord-
ing to their position and orientation. The interactions of the application user
and response of the system is governed by the defined interaction rules. . . 86

4.16 To determine the transformation between the camera and the projector co-
ordinates a known chessboard pattern is projected on the tabletop and the
transformation is determined from set of correspondence points. The image
on the right shows the reprojected chessboard points designated using circles.
The markers for scene boundaries can be seen as well. 87

4.17 ISAR subsystems. Authoring and Execution environments both depend on
Scene Renderer to present the scenes and annotations. The state of the scenes
and annotations are updated by Object Detection and Tracking component
and the Interaction component. 90

4.18 The flow of control at each cycle of the tracking and rendering loop. The
scene is updated by object tracking and interaction component and rendered
by scene render. 93

List of figures xv

4.19 The flow of control at each cycle of the tracking and rendering loop. The
scene is updated by object tracking and interaction component and rendered
by scene render. 94

5.1 Tools used for the vocabulary learning study. 100
5.2 A scene designed by one of the participants in the authoring environment

(left) and testing it in the execution environment (right). If the user selects
pincers, a positive feedback sound is played back. 104

5.3 Results of perceived impression of the participants about usefulness of ISAR. 107
5.4 Workflow guidance using camera-projector augmented reality setups. Funk

et al. [FLM+18] (left) and Uva et al. [UFG+16] (right). 113
5.5 The mainboard assembly workflow. At each step ISAR projects the scene an-

notations and highlights the required objects. Transition to the next scene can
either happen automatically base on user’s interactions or by user selecting
the next scene button on the tabletop. 117

5.6 The mainboard assembly workflow involves of 6 parts. 118
5.7 Defining the scenes for the steps of the mainboard assembly workflow. Top:

Placing the CPU; Bottom: Placing the RAM. 119
5.8 The scenes associated with different steps of the workflow are projected on

the tabletop during execution mode. Top: table preparation scene; middle:
CPU step; bottom: RAM step. 122

5.9 Interactive tabletops for physical and cognitive rehabilitation of upper ex-
tremity. Exercises for reaching, pointing, and grasping by Mousavi Hondori
et al. [HKD+13] (top); building a Tangram pattern on a multi-touch screen
by Augstein et al. [ANRS+13]. (middle); following a projected pattern,
sorting objects, and building a projected pattern by Leitner et al. [LTK+07]
(bottom). 124

5.10 Two kinds of rehabilitation exercises that can be created using ISAR. . . . 125
5.11 A therapist uses ISAR’s Authoring environment to create rehabilitation

exercise. The patient uses ISAR Execution environment to do the exercises
and receive feedback. 126

5.12 The therapist must define target values for each aspect of the exercise, as
well as threshold values for different feedback levels. 127

5.13 Defining the scene for a follow-the-path exercise (top) and performing the
exercise (bottom). To give the patient real-time feedback, the points of the
curve turn green when they are correctly traced. 129

xvi List of figures

5.14 Defining the scene for a catch-the-object exercise (top) and performing the
exercise (bottom). The patient must hit the flies as they move around. . . . 130

A.1 Geometric shape annotations. 138
A.2 Multimedia annotations. 140
A.3 Dynamic annotations. 142
A.4 Interaction annotations. 145

C.1 Example of how to define the class for a new annotation type. 154

List of tables

1.1 Example applications for evaluation of ISAR. 8

5.1 Demographics of the experiment participants. 101
5.2 The most useful features of ISAR as well as its limitations according to the

participants. 105
5.3 Development time that each participant estimated for creating his application

without using ISAR. 108
5.4 Excerpts of the interaction rules defined in different scenes of the mainboard

assembly workflow (not all the scene and the interaction rules are listed).
E=Event A=Action . 120

Chapter 1

Introduction

"Nothing ever becomes real ’til it is
experienced."

John Keats

The early 1980’s witnessed the introduction of graphical user interfaces based on the WIMP
(Window, Icon, Menu, Pointing device) paradigm, which in combination with personal
computing are still after more than three decades the dominant paradigm for human-computer
interaction. Starting around 1990 new hardware technologies and further miniaturization have
opened to door to so-called post-WIMP user interfaces [VD97]. The promise of post-WIMP
user interfaces is to further naturalize the interaction between human and the computer by
decreasing the cognitive barrier that is inevitably imposed by the very existence of a user
interface. Mobile computing and multi-touch interfaces are the most present and already
established examples of post-WIMP user interfaces.

The evolution of user interfaces from batch processing to post-WIMP follows a trend towards
introduction of higher-level abstractions and metaphors that are more familiar to the user
[CMK88]. Shells mimic conversations, WIMP interfaces rely on point and select interaction
abstractions that are aligned with our mental model of the physical worlds. Tangible user
interfaces and interactive tabletops continue this trend by letting users physically interact
with digital content [IU97].

The potential of interactive tabletops and tangible user interfaces has been shown in different
areas such as education [OF04, ER14], manufacturing [UFG+16], as well as smart homes
[ZGN+11]. For example, by providing new forms of interaction, such as direct input and
integration of physical and virtual worlds, interactive mixed-reality learning environments

2 Introduction

support educational settings in which kinesthetic and experiential learning are of importance
[ER14]. However, the development of interactive tabletop applications in educational settings
is still mostly done by computer science experts and not by teachers [SMMM17].

The advances in hardware and software technologies and the reduced cost of equipment have
reached a point that encourages the development of interactive mixed-reality applications by
end users . However, their development and adoption still involves several challenges:

• Levels of Abstraction: Developing augmented reality interactive tabletops spans
different abstraction levels. At the highest level, the end users must understand
different technical terminology and concepts, like throw ratio, or frame-rate. The end
user must also deal with different device configurations and choice of equipment that
are more complex than the familiar desktop PC or handheld mobile devices [Har14].
At the lower level, development of interactive applications for the tabletop requires
different technologies such as object recognition, tracking, and rendering.

• Specifying interactions: Unlike the familiar WIMP paradigm, interactions in the
physical world are much more complex. Development of interactive tabletop appli-
cations involves analyzing and defining these interactions for a specific application.
Since these interactions cannot be foreseen in advance, changing and adopting them
must be easy [WW11]. However, specifying these interactions is a difficult technical
challenge [SWMJ10]. End users should be able to define these interactions themselves,
and adapt them to their specific domain.

• Choosing the augmented reality display: The choice of augmented reality technol-
ogy has a strong impact on the possible interactions. The advantage of using projected
displays on an interactive tabletop is that it supports bi-manual interaction with world
objects. Head-mounted displays (HMDs) also offer this advantage, but they require
technical knowledge (e.g. battery charge, field of view, resolution) from an essentially
non-technical user. Mobile handheld augmented reality, for example with tablets or
smart phones, restrict the interaction modes when both hands are required.

• Limitation in digital content creation: Tools for content creation by the end user
should offer an WYSIWYG experience. However, most frameworks and tools require
the creation of digital content for augmented reality applications mostly to be done
through programming. Few frameworks address the end users as a separate stakeholder.
This problem has been addressed by several high-level authoring tools that allow end
users to create their own augmented reality applications [ATH+18]. However, these

1.1 Objectives and Scope 3

tools do not provide authoring capabilities for interactive tabletops that require no
programming.

End user development (EUD) environments [NPD13] help to address some of these chal-
lenges by empowering the users in creating their own applications tailored to their specific
requirements. The necessity of end user development environment for utilization and adop-
tion of new technologies is well stated by Gerhard Fischer [Fis13]: "In a world where change
is the norm, EUD is a necessity rather than a luxury; because it is impossible to design
artifacts at design time for all the problems that occur at use time."

The diffusion of innovation theory by Rogers [Rog03] describes how new innovations are
adopted by a community and provides a theoretical framework for motivating end user
development environments. Rogers enumerates five innovation characteristics that influence
its rate of adoption: (1) relative advantage or the perceived improvement over current practice,
(2) compatibility and consistency with the current practice, (3) how difficult it is to learn,
understand and utilize the innovation, (4) trialability or how easy it is to try and experiment
with the innovation, and (5) observability or the degree to which the result of the adoption
of the innovation is visible to the community. It is clear that providing the users with a tool
to create mixed reality interactive applications on their own, allows them to better evaluate
these aspects and improves the adoption rate of the technology.

According to Rogers, adapters of an innovation can be grouped into five categories based
on the time the adapters start using the innovation. Each of these categories is distinguished
by different socio-economic characteristics. The target group we address in this dissertation
are innovators and early adapters. This group is characterized by their willingness to take
risk and try new innovations as well by their higher socio-economic profile such as level
of education, social status, and financial resources. We envision, for example, that ISAR
encourages teachers to start developing their own augmented reality and interactive tabletops
applications for their students.

1.1 Objectives and Scope

The main objective of this dissertation is to provide end users without technical skills
with a solution for creating interactive applications that run on a camera-projector-based
tabletop. Such a solution should address the challenges involved in the development of
interactive spatial AR applications and hide the technical levels of abstraction from users.
Using ISAR end users should be able to create applications for the interactive tabletop

4 Introduction

Fig. 1.1 The diffusion of innovation theory [Rog03] describes how usage of new technologies
is propagated with the time in the communities. The focus of this dissertation is on early
adapters and early majority.

without any programming language skills. The target system should provide the users
with the basic support for crating augmented reality applications, including object tracking,
object recognition, and registration of digital content on physical objects. Furthermore, the
authoring environment should allow users to define interactions with physical objects and
digital content associated with these objects.

Application creators (e.g. teachers) are end users that are able to create interactive applications
combining physical objects and digital content without the need for programming. They
also define the interactions with the tabletop. Application creators don’t need to have the
technical expertise for creating interactive AR applications: ISAR provides them with an
authoring environment for creating their applications. Application users (e.g. students) are
end users of the created applications. They also do not have to have any technical expertise.
ISAR provides the runtime environment for applications users.

In addtion, ISAR supports framework extenders: These are developers with programming
experience, but not necessarily experienced in developing AR applications. They extend the
ISAR framework, authoring and runtime environment to support new application scenar-
ios.

1.2 Research Process 5

Fig. 1.2 In a formative research approach the development is guided by iterative evaluation
and refinement of the artifacts.

1.2 Research Process

We followed a formative research approach for development of ISAR. In a formative research
approach, the research process is guided by repeated evaluation and refinement of the
generated artifacts. In contrast, in a summative approach, one would first develop the
technology and then evaluate it. Following the formative approach, we developed ISAR in
a continuous cycle of implementation, evaluation, and refinements (figure 1.2). Each cycle
resulted in a new set of requirements which where again implemented and evaluated.

Beside the formative approach for the development of ISAR, we gained a lot of insights
into requirements of ISAR from several other research projects, that were accomplished
during the course of this dissertation with industrial partners. Table 1.3 gives a summary
of some of these projects. Although the majority of these projects where based on mobile
augmented reality, working on them gave us insights into the requirements of an authoring
system targeted at end users, most specifically with regard to complexity and cost of the
solution, effort for creating content, and defining of user interactions. The main lesson
learned from these relevant projects was the need for an end user environment for creating
AR applications that hide the involved complexities and allow end users without technical
expertise to create AR applications for their own needs. The subject of this dissertation is to
address this need by developing ISAR, an authoring system and runtime environment for
interactive tabletops.

6 Introduction

Fig. 1.3 Some of the related projects, implemented in course of this dissertation, that gave
insights into requirements of ISAR.

1.2 Research Process 7

ISAR consists of an authoring system for creating the content and a runtime environment
that projects the content on the tabletop. We investigated different aspects of the system in
different research probes which were developed prior to the development of ISAR:

• Semi-automatic authoring of workflows: Using a depth camera, and predefined tracking
areas, this application automatically captured the workflow steps as the expert was
performing it. The expert then could add different multimedia content such as text,
images, and videos to each step. The resulting content could then be projected on
the table to guide the workers performing the workflow. This application however
suffered from many shortcomings, most specifically, the need to fine tune the positions
of content for each execution, as well as lack of object recognition and tracking.

• Workflow guidance for assembly and cooking: This application was the first version
of the runtime environment that projected the content on the table that guided a user
through the steps of a workflow. What should be projected at each step, and its position
on the table, where predefined in a description file. This application also required a
depth camera to track user’s interactions, and its main shortcoming was the lack of
extensibility and reusability of the content for new scenarios.

• Presentation of multimedia content on the tabletop based on object recognition: This
application used object recognition to project different user defined multimedia content
such as text, images, audio, and video registered on the physical objects on a table.
What should be projected and its position was defined using an environment that
showed the topview of the table. The main shortcomings of the this applications were
unreliable object recognition and lack of a way to define interactions with the table.

The development of above research probes revealed many challenges and requirements, such
as need for simple off-the-shelf equipment, robust object recognition, WYSIWYG authoring,
reusability of content, and specification of interactions. We addressed these requirements in
the current version of ISAR.

We evaluate ISAR by demonstrating how it can be used to develop applications in differ-
ent domain (Table 1.1), and how it significantly reduced time and expertise required for
developing interactive applications that involve the physical world and run on a tabletop.
In a user study we asked the participants to use ISAR to create an application for learning
vocabulary. We gave the participants the specification of an application that should help users
learn name of tools for a household toolbox. The purpose of this study was to gain insights
on how participants use ISAR and evaluate its usability. Furthermore this study should give
us indicators on how ISAR can facilitate the development of such interactive applications

8 Introduction

with regard to development time and effort. We further evaluate how ISAR can be used to
create interactive tabletop applications for different domain using two demonstration case
studies. In one case study an interactive application is developed for guiding through a
workflow for mainboard assembly. In the second case study we demonstrate how ISAR can
be used to create an interactive application for hand-eye coordination exercise for post-stroke
rehabilitation.

Application Domain Description

Situated learning
of vocabulary

Education This application shows how a teacher can use
ISAR to create learning content and students’
interactions for situated vocabulary learning
[SLR+14]. In the course of a user study we asked
participants to create an application that helps
users learn the names of tools like screwdriver
and pliers.

Guidance through
a workflow

Assistance Sys-
tems in Manu-
facturing

This application shows how ISAR can be used to
create content that guide users through a work-
flow. We create an application that guides user
on the steps to assemble a computer mainboard.

Hand-eye coordi-
nation exercise

Rehabilitation This application shows how ISAR can be used to
create applications with feedback that help users
gain motor skills, for example for post-stroke
rehabilitation.

Table 1.1 Example applications for evaluation of ISAR.

1.3 Contributions

This dissertation makes the following contributions:

Exploratory review of literature on existing authoring environments for augmented reality
and interactive tabletops targeted at end users
Several authoring frameworks and environments have been developed with the goal of
facilitating development of augmented reality solution. These authoring solutions range
from low-level programming frameworks to high-level content creation tools targeted at end

1.4 Organization of the Thesis 9

users. We provide a review of the existing literature, with focus on high-level authoring
environments for spatial augmented reality and interactive tabletops.

Requirements specification for an authoring system for interactive tabletops
Based on the review of the literature and several research projects we have extracted the
requirement for an end user authoring environment for camera-projector based interactive
tabletops.

Design of a framework for an authoring system for interactive tabletops
Based on the requirements we have developed the ISAR framework to support the creation
and execution of interactive tabletop applications.

Reference implementation of ISAR
We provided a reference implementation of an authoring system for end users to demonstrate
how ISAR can be used for the creation of interactive applications.

Evaluation of ISAR
We evaluated ISAR with a qualitative user study of an application for situated vocabulary
learning, and two demonstration cases: a workflow guidance for computer mainboard
assembly and a hand-eye coordination exercise for motor rehabilitation.

1.4 Organization of the Thesis

This dissertation is organized in six chapters. Chapter 2 discusses the foundations of aug-
mented reality, tangible user interfaces, and interactive tabletops. It also provides a review of
related work in high-level authoring systems for augmented reality and interactive tabletops.
Chapter 3 discusses the requirements of ISAR in terms of features and requirements for an
authoring system for interactive tabletops. It presents several visionary scenarios which are
then formalized in a use case model and the specification of functional and non-functional
requirements. Chapter 4 introduces the ISAR framework and describes its reference im-
plementation. We discuss design goals and architecture of ISAR and its authoring and
execution environments. Chapter 5 describes the evaluation of ISAR with a user study and
two demonstration cases. Chapter 6 concludes the dissertation and provides directions for
future work.

Chapter 2

Foundations

ISAR is an authoring system for an interactive tabletop based on a camera-projector setup.
In this chapter we provide an overview of the related research areas: augmented reality,
interactive tabletops and tangible user interfaces, and authoring systems that enable end users
to create interactive augmented reality solutions.

2.1 Augmented Reality

Mixed reality is a term used to describe applications that combine the real world with
the elements of computer generated virtual worlds. Milgram el al. [MK94] described
mixed reality applications along the so called virtuality continuum with the real world at
one side and purely virtual worlds, or virtual reality, at the other end (figure 2.1). An
augmented reality system overlays digital content onto the real world in a way that from
user’s perspective the digital information become part of the real world. In this sense an
augmented reality application contains primarily the view of the real world enhanced with
digital information. In contrast, an augmented virtuality application would be primarily set up
in the virtual world with elements of real world, for example body and face of the real users,
integrated into the virtual world. The most widely accepted definition of augmented reality,
provided by Azuma [Azu97], distinguishes an augmented reality system by the following
three characteristics:

• Combining real and virtual: An augmented reality system combines virtual artifacts
and digital information with the real world.

12 Foundations

Fig. 2.1 Milgram’s virtuality continuum describes mixed-reality applications that integrate
virtual elements into the real world, with the completely real and completely virtual environ-
ments at the extremes. [SH16].

• Registered in 3D: The digital information must have a precise 3D geometric alignment
onto the real world objects.

• Interactive in real-time: The projected digital information (the augmentations) change
in real time in response to user’s interaction, for example user’s view point changes.

Azuma’s definition does not limit augmented reality to a specific display technology or even
to the visual content. Nevertheless, visual presentation of digital content is the most common
form of augmentations.

2.1.1 Method of Augmentation and AR Displays

In contrast to a conventional display, that presents only the computer generated digital content,
an AR display needs to combine the view of the real world with the digital content. There
are three major methods of augmentation for achieving this combination: optical see-through
(OST), video see-through (VST), and projection-based or spatial AR (SAR) (figure 2.2). In
see-through displays, the user sees the world through the lens that combines the view of
the real world with the augmentations. In an optical see-through display a semi-transparent
material, such as a half-silvered mirror, is used as the “optical combiner”. The light from
the real world can pass through this material. At the same time the computer-generated
augmentations are reflected on the surface of the display and hence combined with the view
of the world. In a video see-through display the user does not see the world directly but
through a video stream captured by a camera and shown in the display. A “digital combiner”
combines the augmentations with the video stream of the world. In both optical and video
see-through AR the digital content and the image of the world are combined at the display
image plane. In contrast, in spatial AR the digital content are projected directly onto the real
world objects using a projector instead of a display.

2.1 Augmented Reality 13

Fig. 2.2 Three main methods of augmentation for combining digital content withe the real
world: optical see-through (left), video see-through (middle), and spatial AR (right) [SH16].

Each of the above augmentation methods involve specific advantages and challenges [BCL+15].
The main advantage of the optical see-through displays is the direct view of the real world:
the user perceives the real world directly through the optical combiner and not through the
video stream as in the case of video see-through displays. The direct view of the world does
not suffer from limitation of VST displays, such as camera resolution, lens distortion, and
eye displacement. The physical combination of the real world view with the rendered digital
content also requires less computational resources compared digital combiner in a VST
display. At the same time, this direct view of the world is the source of limitations in OST
displays. The spatial relationship between user’s eye and the display need to be determined
in a calibration step. This calibration is often not accurate and its parameters might change
as the AR application is being used. This leads to less accurate registration of digital content
onto the real world compared to VST displays, where computer vision techniques can be
used for pixel-level accurate registration. Furthermore, because of the direct view of the
world maintaining visual consistencies are more challenging in OST displays: achieving
the correct occlusion becomes challenging on the the semi-transparent optical combiner
and lighting conditions affect the perceived brightness of the digital content more. Another
limitation of OST displays over VST displays is the temporal delay between real world view
and registration of the rendered augmentations. This delay is caused by tracking and cannot
be completely avoided, because rendering of the augmentations depends on the result of the
tracking.

Realization of OST displays requires specific materials and parts to realize the optical
combiner. In contrast, a video see-through augmented reality system can be realized by any
conventional camera and display. Accordingly, VST systems can be more easily implemented
on a PC, laptop, smartphone or tablet which eases their adoption. By using computer vision
techniques for digital combination of the augmentations with the world view in the video
frames, it is possible to achieve pixel accurate registration and better control over visual
consistency such as lighting, shadows, and colors, and occlusion. Additionally, since the
complete rendered augmented scene is presented to the user through the video frames, there is

14 Foundations

no perceptible time delay between the world view and registered augmentations. Furthermore,
by using wide camera lenses and larger screens it is possible to achieve wider Filed-of-View
(FOV) in VST displays compared to OST displays. The main limitation of VST displays
is however the indirect view of the world which causes limitations in terms of resolution,
distortion, updating delay and eye displacement. Also, because of the digital combination of
world view and the augmentations, the VST displays require more computational resources
compared to OST displays.

Compared to the common realizations of the VST and OST displays, the projection-based
spatial augmented reality (SAR) displays have the advantage of being less obtrusive and
more ergonomically suited for certain tasks. Using a SAR display the user usually does
not have to wear or hold the display (see below). This advantage can be at the same time a
limitation, because in most SAR setups the projector is fixed to a location and hence the AR
application is limited to that locations. Of course body-worn, e.g. [MM09], and portable,
e.g. [GLC15], SAR setups exist that compensate this limitation. SAR systems also need to
overcome the challenges related to projection. The SAR displays require a physical surface
that is appropriate for projection, usually a bright, light-diffusing, texture-less surface. Also,
the depth of focus (sharpest pixels lie on the focus plane) limits the projections to the nearby
objects which causes limitations for application of SAR systems for longer distances in
out-door applications. Additionally, because of the projection, the SAR systems are more
sensitive to lighting condition and cannot be used in a very bright environment.

Apart from the method of augmentation, the augmented reality displays can also be catego-
rized based on their distance from the eye [BR05] (figure 2.3). Figure 2.4 shows examples of
AR displays according to this categorization. Head-attached displays are displays worn by the
user, and lie in the head space in terms of distance from the user’s eye. The most prominent
kind of head space displays are head-mounted displays (HMDs). Although other kinds of
head-attached displays such as retinal displays, and head-mounted projectors have also been
investigated in research [BCL+15]. Head-mounted displays can be categorized into optical
see-through head-mounted displays and video see-through head-mounted displays. Optical
see-through HMDs use an optical combiner that mixes the direct view of the real world with
the reflected augmentations that are usually rendered on miniature LCD display. The video
see-through HMDs feature cameras for capturing the world view and display it along with the
rendered augmentation on the LCD displays. Beside the typical challenges and advantages
of the see-thorough augmentation method (see above), a major issue with the HMDs is the
trade off between the ergonomic design and visual properties of the display. A HMD must
be lightweight, adjustable to different head sizes, and suitable for longer usage. In the case

2.1 Augmented Reality 15

Fig. 2.3 Different AR display categories based on the distance from user’s eye. [SH16].

of an stand-alone (not tethered) HMD, the battery life must also support reasonable period
of usage. Tracking, field-of-view, resolution, and visual consistency are other issues that
need to be addressed on a usable HMD. All these issues have lead to the fact that augmented
reality HMDs are less available and adopted to the general consumers and are mostly used in
large enterprises and still in research and development settings [ME19, KNG16]1.

Handheld AR displays usually offer video see-through AR implemented on a consumer
smartphone and tablet that user holds in the hand. The back camera of the handheld device
captures the view of the world which is presented to the user along with the rendered
augmentations through the device screen. The main advantage of the handheld displays
is the large-scale availability of smartphones and tables to the end users. These devices
mostly feature considerable computing power as well as different sensors that can be used for
tracking. This availability has boosted the development of handheld AR applications and has
positively influenced the adoption of augmented reality into different applications domains
[PROM18, SH16, BCL+15]. The major issue with handheld AR displays is obtrusiveness
and the need to hold the device with at least one hand. This limits the usage of handheld
AR systems for the activities that require both hands. Furthermore, holding the device
might lead to unstable viewpoint which can be limitation for the concentration and accurate
applications.

Moving further form the user’s eyes, are world space or spatial displays. These displays are
not worn or held by the user, but are either stationary in the world, or projected directly onto
the objects. Stationary displays can be used for optical see-through or video see-through
systems. In video see-through systems, a camera records the view of the world, which is

1As an example, Microsoft Hololens 2, one of the latest and most advanced developments in optical see-
through augmented reality HMDs, weighs more than 500 gram and offers a horizontal FOV of 43°and vertical
FOV of 29°and is priced 3500$ (https://www.microsoft.com/en-us/hololens/hardware, last visited
January 2020)

https://www.microsoft.com/en-us/hololens/hardware

16 Foundations

Fig. 2.4 Examples of AR displays according to categorization based on distance from the
user’s eye: (left) Microsoft Hololesn, a head-mounted optical see-through display [SSDM17],
(middle) handheld display [GMOF13], (right) stationary display for screen-based video
see-through AR [BGW+02].

the then displayed along with the rendered augmentations. Stationary displays can be used
in several different setups such as desktop displays (figure 2.4, right), virtual mirrors (e.g.
[BKBN12]), and window and portal displays that change the rendered content according to
the tracked user’s viewpoint (e.g. [ZSDS13]). Optical see-through stationary displays may be
implemented similar to the optical see-through HMDs using a large enough semi-transparent
optical combiner (e.g. [BF02]).

Projected displays are another category of world space displays. In contrast to optical
see-through and video see-through displays, in projected displays the augmentation are
directly projected onto the surfaces and objects of the real environment. Spatial projected
displays are not limited to one fixed projector and approaches using head-mounted projectors
(e.g. [KS03]) and handheld mobile projectors (e.g. [RVBB+06]) have been proposed.
Spatial projected displays with spatially fixed projectors have been implemented in different
variations. Raskar et al. [RWLB01] used computer vision techniques and developed methods
for precise 3D illumination and projection of animations on non-trivial complex 3D objects
(figure 2.5, left). This approach is called shader lamps. Dynamic shader lamps [BRF01]
combines this idea with tracking the objects in the environment to allow dynamic projection
of content, colors, and textures onto moving objects (figure 2.5, middle). Augmented surfaces
[RS99] are a broader category of using projected displays to augment mostly planar objects
and surfaces such as desktops. These systems mostly combine 2D augmentations of physical
objects with tangible interaction. ISAR is a an example of such interactive surface-based
augmented reality and we provide a more in-depth review of these systems in the next
section.

2.1 Augmented Reality 17

Fig. 2.5 Examples of projected spatial AR displays: (left) illuminating 3D non-planar objects
with shader lamps [RWLB01], (middle) painting by light using dynamic shader lamps
[BRF01], (right) the Magic Table, an example of an augmented surface [BGW+02].

2.1.2 Components of an AR System

An augmented reality application overlays digital content onto the view of the real world.
The augmentation happens in real time in response to user’s interactions and the AR system
provides precise 3D alignment of digital content. To achieve these goals, an AR system must
have at least three components, tracking, registration, and visualization, that work together in
a real time feedback loop (figure 2.6).

Prices 3D alignment of the augmentation onto the real world objects requires knowing the
3D position and orientation of these objects relative to the view point. The user can interact
with an AR system in several different ways, for example by changing the view point through
moving the camera, head, or eyes, or even moving the body in the environment. Manipulating
and moving the objects in the environment is also a possible way of interaction. The change
of the view point or the real world scene is captured using the tracking component. The
tracking component determines the pose, i.e. location and orientation, of the real world
objects relative to the view point. Depending on the setup of the AR system, such as method
of augmentation and display type, the pose of the camera or the pose of the objects in the
environment might be tracked. The estimated pose from tracking is used by registration
component for 3D alignment of virtual objects onto real objects. Finally, the visualization
component renders and visualizes the augmented scene. The visualization can be situated,
meaning it retrieves and presents the information in a context-aware approach [WF09]. Figure
2.6 also shows a fourth component: the spatial model. The spatial model is persisted source
of information about the virtual augmentations as well as about the model of world. The
content of augmentations, i.e. the virtual information and artifacts, are stored in the virtual
model. The model of the real world serves as the reference for tracking. The registration
component registers the digital content retrieved from virtual model onto the the model of
the real world using the tracking information.

18 Foundations

Fig. 2.6 Main components of an augmented reality system and how they contribute to the
human-computer feedback loop. The integration of virtual content into the view of the world
should happen at real time, meaning the user should preferably not perceive any delays in
rendering of the augmentation onto the view of world. [SH16].

Tracking

Registration of digital content onto the real world objects requires knowing the relative
position and orientation of the objects with respect to the view point. The position and
orientation of the objects is also called pose. Different entities can be tracked in an AR system:
user’s body, eyes, head, pose of the camera, display, and the physical objects in the world.
To make real time registration of digital content possible, tracking continuously updates the
information about the pose of the objects during runtime of an AR application.

The tracking provides pose information relative to a reference coordinate system, and de-
pending on the setup of the AR system different transformations are needed to align virtual
content onto the view of the real world. A concept related to tracking is calibration. Tracking
continuously provides information about dynamic spatial relationships in the runtime. Cali-
bration describes the spatial relationships that does not change dynamically and continuously.
Calibration in general determines the static relationship between measurements of a sensor
and a known scale. In AR, calibration determines static parameters and transformations
between components of the AR system that do not change dynamically, such as internal
camera parameters. Calibration is usually performed at the start of an application or at
discrete intervals.

Depending on the AR application, several different tracking approaches exist. These ap-
proaches can be characterized based on different properties such as physical phenomena,
spatial arrangement of sensors, degree of freedom, and so on. Examples include stationary
mechanical or electromagnetic tracking systems, GPS tracking and tracking based on mobile

2.1 Augmented Reality 19

Fig. 2.7 ArUco markers [RRMSMC18] with their corresponding coordinate systems rendered
on the image2(Left). Keypoints for natural feature tracking extracted using AKAZE algorithm
[AS11] and drawn on the image (Right).

motion sensors such as gyroscope and accelerometer, and optical tracking. In this section
we mention only briefly two optical approaches related to ISAR, namely marker-based and
natural feature tracking. For a detailed overview of different tracking approaches refer to
[SH16].

Optical tracking approaches use computer vision techniques to estimate the pose of the
camera or objects from captured images. In general determining the pose requires solving
correspondence problems, in which a geometric transformation is found that maps pairs
of corresponding points in two different coordinate systems. This transformation yields
to pose of the camera or object. In case of optical tracking the correspondence points are
extracted from the features of the environment such as 3D points in the environment and
their projected point on the camera image. These features can be natural or artificially added
to the environment. The artificial features added to the environment are called markers or
fiducials and tracking based on them is called marker-based tracking. The natural features,
on the other hand, are extracted from the environment itself, and tracking based on them is
called natural feature tracking or marker-less tracking.

Tracking using makers is usually faster, more robust, and more accurate compared to natural
feature tracking. Markers are simple patterns designed in a way that makes their detection
easy and reliable in the image. They usually have distinct features with high contrast for better
detection in different lighting condition. The marker pattern can contain an identification
code too. Figure 2.7 (left) shows six ArUco [RRMSMC18] markers printed on a paper
and their corresponding coordinate systems are augmented on the image based on their

2Image from https://docs.opencv.org/trunk/d5/dae/tutorial_aruco_detection.html

https://docs.opencv.org/trunk/d5/dae/tutorial_aruco_detection.html

20 Foundations

orientation. In this case, the pose (location and orientation) of the camera with regard to the
marker is obtained by detection of the four marker corners and solving the correspondence
problem as a homogrphy [SH16]. Each marker also has a unique pattern coded that allows
detecting its id. Marker-based tracking has the advantage of being robust and fast. However
its main disadvantage is that the markers must be attached to the environment and tracking
targets in advance. It sometimes may not be practical to require the users to instrument the
environment before they can use the AR application. In this case natural feature tracking
should be used.

Natural feature tracking relies on distinctive features that already exist in the image of the
environment. These distinctive features can be corners, edges, color and contrast changes, and
textures. These points of interest in the image of an object are called keypoints (figure 2.7).
There are several methods for extracting the keypoints in an image that rely on mathematical
description of the keypoints based on pixel values in the image. For determining the pose
of the camera and detection of the objects, the keypoints are extracted in the camera image.
These keypoint are then compared with features of the model of the object that has been
created and saved in a database in advance. This process is called feature matching. Natural
feature tracking has the advantage that it does not require instrumeting the environment and
tracking targets in advance with artificial markers. However, it requires better image quality
and more computational resources. Natural feature tracking is also sometimes not reliable
and robust, for example when the objects and the environment do not provide enough texture
to extract unique and distinct feature points.

Regardless of the method (marker-based or natural feature tracking), tracking requires a
model of the tracked objects or the environment as the reference model. When this model
is known in advance, this is called model-based tracking: the features are extracted from
the camera image and compared to the known model to obtain the pose with reference to
that model. If the model is not available in advance, it must be build on the fly, just before
tracking starts. This initial model is then usually updated and enhanced as the tracking
continues. With model-free tracking, virtual objects cannot be pre-registered to the model
(because it is not know a priori) and the tracking is relative to the starting point.

2.2 Tangible User Interfaces and Interactive Tabletops

The promise of augmented reality is to seamlessly combine the real world surrounding the
user with digital information. In fact, augmented reality is one of the many different new

2.2 Tangible User Interfaces and Interactive Tabletops 21

trends in human-computer interaction that can be described in the larger analytical frame-
works of tangible computing [Dou04] and reality-based interaction [JGH+08]. Augmented
reality, ubiquitous computing, tangible user interfaces, and interactive surfaces and spaces are
among these new trends in HCI. Dourish [Dou04] distinguishes three main themes in tangible
computing HCI trends: distribution of computation across many devices in the environment;
augmenting everyday familiar environments with digital information; and enabling the users
to interact with these systems through physical activities and objects.

Common to all these trends is distancing from established desktop computing interaction
model with clearly defined input and output devices. Instead the users can interact with the
system by utilizing a multitude of devices, real objects, and physical activities. Also, the
sequence of interaction in no more exactly defined and the interaction happens ad-hoc. The
physical environment often offers affordances [Nor88] that enables user to interact with the
system based on his knowledge and skill of using everyday objects.

Reality-based interaction [JGH+08] describes how the existing knowledge and skill of
the users is utilized to enable “real-world” interaction with the computer systems. These
interactions rely on different level of skills and awareness about the physical objects, user’s
body, the environment, and the social context. In the following sections we provide a brief
overview of foundations and representational works in the areas of Tangible User Interfaces
(TUIs) and Interactive Tabletops that are of relevance to ISAR.

2.2.1 Tangible User Interfaces

Building upon pioneering previous work, such as DigitalDesk by Wellner [Wel91] and
graspable interfaces by Fitzmourice et al. [FIB95], Ishii and Ullmer proposed a new paradigm
for human computer interaction called tangible user interfaces (TUIs) [IU97]. Tangible user
interfaces make it possible to interact with digital information by using physical objects
called tangibles. Physical objects and the environment act as both representation and a means
to control (manipulation) of digital information. In this way, through coupling of digital
information with physical objects, the bits (digital information) become literally tangible,
hence the name tangible bits by Ishii and Ullmer [IU97].

Ullmer and Ishii [UI00] analyzed different implementations of tangible interfaces and pro-
vided a framework for describing the tangible interaction. Contrasting it to the familiar
model-view-controller paradigm [KP+88] in designing desktop graphical user interfaces,
they argued that MVC highlights the clear separation between the input (control) and output

22 Foundations

(view). In contrast, the physical representation of a tangible interface embodies both the
view and the control. They formalized this new paradigm of interaction in the MCRpd
(model-control-representation), which takes the concepts of model and control from MVC
but devises the view into two representations: the physical representation (Rp) and the digital
representation (Rd). This model also emphasizes the embodiment of the control in the
physical representation, that is the tangible is at the same time both the representation of
the information and the means to manipulate it. This new paradigm is also called MCRti in
other publications, in which tangible (Rt) and intangible (Ri) representations are used instead
of physical and digital representations. Leaning on this model, Ullmer and Ishii count four
main characteristics for TUIs:

• Computational coupling of physical representation (Rp) and the underlying digital
information (the model)

• Embodiment of control in the physical representation: the user can manipulate the
model by naturally interacting with the physical representation

• Perceptual coupling between physical representation and the mediated digital represen-
tation

• Embodiment of the aspects of the digital state of the system in the physical state of the
tangibles

With the increasing number of works based on the idea of TUIs, several classification
frameworks are suggested that aim to analyze and categorize different aspects the TUI
systems. Ulmer et al. distinguish three main directions in TUI systems (figure 2.8):

• Interactive Surfaces: Interactive surfaces are a class of TUIs in which tangibles are
placed and manipulated on an augmented planar surface . Interactive surfaces are
usually realized using camera-projector systems and the digital information are pro-
jected on the surface from top or below. The application is controlled by tracking
different aspects of the tangibles on the surface, such as presence, identity, and spatial
configuration and arrangement. Urp [UI99] is a typical example of interactive surface
TUI, in which small tangible models of the buildings are used to control simulations
projected on the table (figure 2.8 left). Interactive tangible tabletops are subject of this
thesis and we will cover them more in-depth in the next section.

• Constructive Assembly: Constructive assembly TUIs are systems based on modular
building blocks that are connected together to create an application. The building blocks
are usually instrumented with electronic circuitry and by connecting them together in

2.2 Tangible User Interfaces and Interactive Tabletops 23

Fig. 2.8 Schematic representation and examples of different types of tangible user interfaces
according to Ullmer et. al [UIJ05]: (left) Interactive surfaces, Urp [UI99]; (middle) Con-
structive assembly, FlowBlocks [ZAR05]; (right) Token+Constraint, SenseBoard [JIPP02]

the specified way the computational functionality is achieved. FlowBlocks [ZAR05] is
an example of constructive assembly TUI designed for teaching mathematical concepts
like counting and computer-science concepts like loops to children (figure 2.8 middle).

• Token+Constraint: Token+Constraint TUIs use physical constraints to guide mechan-
ical movement of tangible tokens. Tokens are tangible objects that represent digital
information and physical constraints are used to associate the movement and arrange-
ment of these tokens to specific computational functions. According to Ullmer and Ishii,
Token+Constraints are best suited to interact with abstract computational functions and
digital information that do not have an inherent physical representation as in the case of
tangibles on interactive surfaces. SenseBoard is an example of token+constraint TUI
in which a projected grid constraints the possible placement of small plastic tokens. By
placing tokens in specific positions in the grid, a distinct computational functionality
associated with the identity of the token is triggered (figure 2.8 right).

Ullmer and Ishii also considered the approaches for coupling digital information and compu-
tation with the physical objects, what they call binding. In a system with static binding the
coupling of tangibles and underlying digital information is defined in advance by the designer
and cannot change during the runtime of the TUI application. In dynamic binding the user
can couple tangibles and underlying information himeslf by using the tangible user interface
during the runtime of the application. This approach is similar to immersive authoring of

24 Foundations

augmented reality [LKB05] that we will discuss later. In a similar approach for classifying
TUIs based on the connection between physical tangible and digital information, Holmquist
et al. [HRL99] suggest three types of tangible objects: containers, tokens, and tools. Con-
tainers are generic symbolic objects that can represent any kind of digital information. For
example an augmented reality marker can act as a tangible container of information. A token
is a tangible objects whose form and appearance has representational significance for the
digital information it represents. For examples the objects that represent buildings in Urp
[UI99]. Tools are tangible objects used for controlling the application and manipulation of
the information and representing the computational functionalities.

Another classification framework suggested by Fishkin [Fis04] addresses the conceptual
mapping between physical and digital in TUIs. Considering the aspects of human computer
interaction and user experience, this classification categorizes TUI solutions across two
axes: metaphor and embodiment. The metaphor describes the degree of representational
mapping between user actions and their effects in the system and how directly the response
of the system can be interpreted. The metaphor aspect of a TUI can range from none, for
no connection to a real-world entity (e.g. a command-line interface), to noun, for similarity
between shape and resemblance of the objects with a real-world entity, to verb, for when
the object mediates the manipulation of the information, to full, in which the user has
the impression of direct immediate connection between physical and digital objects. The
embodiment axis describes the connection between input and the output in a TUI. The
embodiment aspect of a TUI can range from full, in which the input and the output are not
distinguishable, to nearby, where the output happens in the vicinity of the input object, to
environment, where the output is at the same spatial environment as the user but not directly
closed to the input, and to distant, in which the input and output are spatially disconnected,
e.g. it happens at separate rooms.

Implementations

Several implementation strategies have been utilized to create TUIs depending on the re-
quirements of the application. These requirements for TUIs applications can be countless,
nevertheless there are basic functional requirements that are common in a multitude of
applications. These functional requirements can be categorized into several aspects such as
detection of presence and spatial configuration of the tangibles, robustness, reliability, and re-
altime performance of the application, cost, aesthetics, and effort needed to setup and prepare
the system for use. Major implementation strategies utilized can be grouped into systems
utilizing RFID technology, systems based on microcontrollers, sensors, and actuators, and

2.2 Tangible User Interfaces and Interactive Tabletops 25

systems that utilize computer vision techniques to fulfill the functional requirements of the
TUI [SH+10].

RFID-based TUIs usually are based on detection of the presence and identity of the objects.
Although the cost of their implementation is moderate, RFID-based system need configuration
of RIFID reader and the user needs to equip each tangible with the corresponding RFID
tags. The systems based on micorocontrollers, sensors, and actuators are more versatile
in terms of different features of the physical world that can be detected for realization of
the TUI. Based on the sensors utilized, these systems can detect presence and mechanical
configuration of the objects and many different physical properties of the environment such
as light intensity, humidity, temperature, acceleration, and proximity. However these system
are usually costly and complex to setup by end users. Vision-based systems are based on
detection of the tangibles using computer vision techniques. Theses system are usually
more versatile than RFID-based TUIs in terms of what physical properties of the application
can be detected, for example identity, presence, spatial configuration, shape and color of
the tangibles. Compared to the TUIs based on microcontrollers, theses systems are less
costly and easier to setup by the users. TUIs based on computer vision techniques usually
consist of camera-projector setups, in which the input and user interactions are detected by
the camera and digital representations and response of the system are projected on planar
surfaces. Detection of the objects is often based on fiducial markers and sometimes using
markerless natural feature tracking.

Applications

Tangible user interfaces offer many advantages for applications in which situated physical
interaction with world is of importance [MO12]. Familiarity of the physical objects and
their affordances, reduces the barriers for interaction and supports collaboration [SJZD10].
TUIs also offer the advantage of direct two-handed interaction multiplexed through the
space. Two-handed interaction allows parallel performance of complex spatial interaction in
a natural way without imposed cognitive load of an extra user interface [KHT06]. Several
applications across different domains, such as design, architecture, education, entertainment,
and information visualization have utilized the advantages of TUIs. Here we provide a
brief review of some of these application domains with examples. Survey studies such as
[SH+10], [UI00], and [MWS12] provide a more in-depth and comprehensive overview of
the field.

26 Foundations

Fig. 2.9 Examples of TUIs for educational applications: (left) Tern [HSCJ09] for teaching
programming; (right) An interactive tabletop by Price et al. [PFSR09] for teaching optics.

Educational applications are one of the main application domains of TUIs [SH+10]. Relying
on educational theories such as constructivism [Ack01] and hands-on learning [Hei91], these
TUI applications take advantage of aspects of tangible interaction such as multiple external
representations [Ain99] and relationship between physicality and cognition [Mar07]. Several
implementation approaches have been utilized for TUIs for education. For example Smart
Blocks by Girouard et al. [GSH+07] is a construction kit designed for teaching mathematical
concepts such as calculation of volume and area by building 3D physical models; Using
Tern by Horn et al. [HSCJ09] users can create computer program by connecting physical
wooden blocks that represent the control flow (figure 2.9 left). Many systems also use
tangible interaction on interactive surfaces. For example Price et al. [PFSR09] created a
back-projected interactive tabletop that used tangible objects for teaching concepts of optics
(figure 2.9 right); TinkerLogistics application by Zufferrey et al. [ZJLD09] uses an interactive
tabletop with tangible models of warehouse shelves to teach concepts related to logistics by
simulating the construction of the warehouse.

Design, problem solving, simulations, and information visualization are other application do-
mains for which several TUIs have been implemented. Aspects of TUIs that lend themselves
well to applications in these domains are epistemic actions, physical constraints, as well as
tangible representations of the problem [SH+10]. Manipulation of objects can be considered
as either epistemic (exploratory) or pragmatic (performatory) actions [KIR95]. Epistemic ac-
tions are performed in order to gain insights into the problem and discover information about
the context of the task. Tangibles support epistemic actions by allowing user manipulate
physical representations that are coupled to computations and more information-rich versatile
digital representations. Physical constraint in TUIs reduces the cognitive load imposed by
interaction with the computational interface by limiting the space of possible interactions

2.2 Tangible User Interfaces and Interactive Tabletops 27

and rules. Finally, the tangible physical representation supports solving problems that are
strongly related to spatial and geometric arrangement of objects in the real-world [KM08].
In the following we briefly refer to some illustrative examples.

Urp [UI99], ColorTable [MPW08], and Illuminating Clay [Ish08] are examples of TUIs
used for architecture and urban planning tasks. All these systems feature tangible models
of the environment, e.g. buildings in Urp or landscapes in Illuminating Clay, that are
coupled with the simulations and projection of the information. Collaborative work is also
an important aspect addressed in theses systems. Tangible Query Interfaces by Ullmer et
al. [UIJ05] are token+constraint TUIs for visualizing information stored in a database. The
parameters for queries to the database are controlled by the placement and spatial relationship
of tokens. Similarly in GeoTUI [CRR08] tangibles are used to control presentation geological
information projected on the surface and in Senseboard [JIPP02] or the system by Edge and
Black [EB09] tangibles are used to visualize and plan information organization and office
activities respectively.

2.2.2 Interactive Tabletops

Interactive tabletop are a class of interactive surfaces in which the digital representations are
displayed on a horizontal or tilted surfaces. This horizontal surface often acts as both the
input and output of the system, and supports quite different interactions compared to vertical
interactive surfaces [DE11].

Different approaches and interaction forms have been utilized for realization of interactive
tabletops. Kunz and Fjeld [KF10] provide a classification of interactive tabletops across
dimensions of type of interaction, tracking and identification of user interaction and objects,
and displays. Interaction with an interactive tabletop can be based on natural hand interaction,
devices such as mouse and stylus, or physical objects. The tracking and identification of
interaction and objects can be optical or based on electrical signals or acoustic tracking. The
displays can be projection based or using integrated LCD displays. The projection can be
either from top of the surface or below it. Top projection systems are usually easier to setup,
since they only need hanging the projector on top of any surface. In this section we provide a
brief review of setup and interaction approaches and important works of interactive tabletops.
The focus will be on projection based displays and natural hand and object based interactions,
since these systems are the nearest to ISAR.

28 Foundations

Fig. 2.10 Early works in the area of interactive tabletops: Digital Desk [Wel91] an interactive
tabletop interface with touch interaction (top left); BUILD-IT [FBR97] support design
tasks by tangible interaction on a projected tabletop (top right); Two applications,Urp and
Illuminating Light, from Luminous Room project [UUI99] (bottom)

One of the earliest pioneering works on tabletop interfaces is the Digital Desk by Wellner
[Wel91] (figure 2.10 top left). Wellner’s work was motivated by the contrast between richness
of interaction possibilities with physical paper versus the richness of the computational tasks
possible using digital documents. Digital Desk aimed at filling this gap between physical and
digital world by combining the physical interaction with digital documents. The system was
an office desk equipped with a projector, cameras and sensors. The system tracked finger
interaction and recognized content of paper documents using OCR. Digital documents and
applications were projected on the surface of the desk. Using the example of a calculator
application, in which the user could input numbers by simply pointing at them on the physical
paper, Wellner demonstrated seamless blending of the physical-digital interaction.

Inspired by the possibilities of interaction with physical objects, metaDesk by Ullmer et al.
[UI97] was designed to investigate tangible interaction with digital projected information.
The system displayed information using a back and top projected interactive tabletop with
additional mounted LCD screen called active lens. Tangible objects such as a building models
or a physical magnifying glass, called passive lens, were used to control the presentation of
the digital information. The tracking of the objects and the lenses was done using vision-

2.2 Tangible User Interfaces and Interactive Tabletops 29

Fig. 2.11 TinkerLamps [ZJLD09] and two of its applications: Warehouse logistics simulation
and training [SJZD10] and collaborative creation of concept maps [DLKD09]

based infrared light and electromagnetic sensors. This pioneering work was the precursor to
the idea of tangible bits and TUIs in general [IU97].

Similar to metaDesk, BUILD-IT by Fjeld et al. [FBR97] was designed to allow physical in-
teraction with digital information (figure 2.10 top right). The system consists of top mounted
camera and projector. The interaction with digital information is through manipulation of
physical tokens called bricks. The physical appearance of the bricks do not carry any meaning
and they can dynamically be associated with virtual objects by putting them on the projected
representation of the digital object. They can be detached from virtual objects by hiding the
brick with the hand. An IR camera is used to track the bricks on the table.

Another pioneering work in the area of tangible interaction with interactive surfaces is
Luminous Room by Underkoffler et al [UUI99] (figure 2.10 bottom). The ultimate goal of
Luminous Room project was pervasive projection of information on any surface combined
with tangible interaction. They introduced the concept of I/O Bulbs, as integrated camera
projector units, that could project information and tracked user interaction and physical
objects in any environment. Although not completely built due to technical challenges, they
showed the feasibility of this concept through a series of applications. For example in Urp
[UI99] the setup was used to support urban planning tasks by simulating shadows, traffics and
in Illuminating Light [UI98] they used it for optics simulations. Notable in Luminous Room
applications is the direct correspondence between the physical representation of the tangible
object and its underlying digital abstraction, as opposed to the symbolic correspondence seen
for example in Build IT.

TinkerLamp, by Zufferey et al. [ZJLD09] and Do-Len [Do12] is a camera-projector setup in a
compact form factor developed for research in educational applications of interactive tangible
tabletops (figure 2.11). Several iterations of TinkerLamps have been developed in the research

30 Foundations

group Computer-Human Interaction in Learning and Instruction (CHILI) of EPFL university.
The system is a top projection projector-camera system in portable form factor, with touch
detection, paper interfaces [Do12], and marker-based object detection and tracking, and
gaze tracking. TinkerLamps has been developed as a platform for research in educational
applications of interactive tabletops in real classroom settings. To this purpose several
applications have been developed using this platform including a mind map application
[DLKD09], an application for training and simulation of logistics skills and planning of
warehouse activities [SJZD10], and applications for training 3D spatial skills of carpentry
apprentices [CDZOD15]. In the case of logistics application, the parameters of the simulation
can be controlled using paper interfaces [ZJLD09], and various metrics of the simulation are
projected on the tabletop for students to reflect about the effect of their decisions.

reacTable [JGAK07] is another influential interactive tabletop system, designed as a music
instrument for creating synthesis music. The system consists of a back projected interactive
tabletop and tokens equipped with fiducial markers. Each token type has a specific function
such as sound generators, filters, and control of sound parameters. The tokens are detected
using reacTIVision [KB07] computer vision framework and the state of the tangibles is
transmitted to the music software using TUIO [Kal09] protocol. In fact reacTable was the
first application that utilized reacTIVision and TUIO. Following reacTable, a large number
of tangible tabletop applications have been developed utilizing racTIVision and TUIO, for
example for educational applications (e.g. [DRSG18] for teaching concepts of artificial
intelligence, [BDOB13] for teaching mathematical concepts related to music, [TBB10] for
teaching engineering design, and [SWBP13] for teaching neuroscience concepts).

2.3 Authoring Systems

All projects introduced in previous section are created on top of toolkits and platforms that
facilitate creation of interactive tangible tabletop application. These toolkits and platforms
provide different low-level abstractions, functionalities, and features, such as object detection
and tracking, that are used to create higher-level application for a specific domain. Never-
theless, the development of the applications still require intensive knowledge of technical
aspects of the underlying toolkit and the applications are often developed by the creators of
those toolkits themselves (who are experts in computer science and programming). With
this aspect in mind, we follow our discussion in this section about end user development
and systems that support creation of interactive applications by rather non-technical end
users.

2.3 Authoring Systems 31

End user development is the approach to empower users, who are non-professional software
developers, in modifying and creating digital artifacts themselves according to their own
needs and requirements [LPKW06]. Continuous and fast paced change of the requirements
makes often the initial design obsolete, so that it does not meet the requirements of the
end users anymore. Moreover, no matter how accurate and intensive the requirements of
a software are elicited, developer often cannot know the requirements of a domain and its
foundations as good as domain experts. End user developments empowers users, who are
possibly experts of their own domains but not experts in programming, to express themselves
and create their own digital artifacts independent of computer science professionals [Fis13].
This flexibility and independence has great implications on how users experience usage of
digital artifacts in their daily practice [Fis13].

The usefulness of an EUD can be analyzed from perspective of what Meyer et al. [MHP00]
call threshold and ceiling. The threshold of a development toolkit (be it a software framework
or a high level end user development environment) describes how hard it is for the user to
get started and create useful artifacts with it. The ceiling on the other hand describes the
versatility and flexibility of the toolkit and how much can be done with it. Obviously, an
EUD targeted at domain experts who don’t have any experience in programming and possibly
are not at all interested in it, must offer the right balance between threshold and ceiling. It
must be possible for the end user to create artifacts that he perceives useful, at the same
time getting started with the system and using it should be easy enough so that the end user
does not feel overwhelmed. In addition to that, an EUD must also consider the environment
and hardware possibilities of the end user. An EUD that requires expensive hardware and
sophisticated hardware would not be easily adopted by the end users.

Development of EUD systems involves a multitude of challenges and requirements, such as
flexibility and modifiability, ease of learning and usability, and providing the end users with
environments to test the artifacts they have created [BCFP19]. It is also important to consider
who is the end-user: the person who uses the EUD environment to create artifacts for his own
use, or for example a teacher who uses EUD environment to create artifacts that will be used
not by himself, but by his students [TSM13]. An EUD, targeting non-programmer domain
experts, must provide high-level abstractions and enough modularity to allow the end user
to create the application logic and contents, and define interactions without programming.
High-level authoring tools [HSGB06] for augmented reality and some toolkits for creating
tangible interaction are related EUDs that we review in the next two sections.

32 Foundations

Fig. 2.12 Classification of AR Authoring tools based on the application interface abstractions
and concept abstractions [HSGB06].

2.3.1 Authoring for Augmented Reality

Several research projects have addressed the problem of facilitating the creation of augmented
reality solutions. These system are generally known as authoring systems. AR Authoring is
in essence involved with creation and managing the relationships between real and virtual
entities [Mac02]. Earlier AR authoring systems, such as Studierstube [SFH+02] or DWARF
[BBK+01], were actually software frameworks that would facilitate programming of new
AR applications. For example both projects offers functionality and abstractions for tracking
and multi-user distributed presentations of registered 3D objects on the physical environment.
Several applications are build on top of these frameworks, for example SHEEP [MSW+03]
and ARCHIE [Mac05] using DWARF and several educational and visualization applica-
tions using Studierstube [SSFG98]. However frameworks like Studierstube and DWARF
target programmers and using them involves intensive knowledge of software engineering,
programming, and augmented reality fundamentals.

Based on a review of previous work, Hampshire et al. [HSGB06] proposed a classification of
AR authoring systems based on the concept abstraction and application interface abstraction.
Systems at each higher level of abstraction build upon abstractions from lower levels. As
the abstraction level increases, the authoring system hides the technical and conceptual
details of creating an AR solution from the user. Accordingly, AR authoring systems can
be categorized into two major groups: programming frameworks and content design tools
(figure 2.12), and in each category we deal with low-level and high-level systems.

2.3 Authoring Systems 33

Low-level programming frameworks allow creation an AR solution at the lowest level of
abstraction and require implementation of core functionalities such as computer vision and
computer graphics algorithms. Target user of such frameworks must not only be proficient
in programming, but also have extensive knowledge of the underlying functionality such as
tracking, interaction, visualization, and rendering. OpenCV [BK00], ARToolkit [KB99], and
Open Scene Graph [WQ10] are examples of low-level programming frameworks used to
create AR solutions from scratch. High-level programming frameworks build upon low-level
programming frameworks, and provide higher level abstractions for different functionalities
of AR systems such as hardware abstractions, tracking, interactions, registration, and render-
ing, all offered in a self-contained framework. The target user of the these systems still needs
to be familiar with programming, but the framework hides the majority of low-level technical
details of an AR solution and offers them to user in form of higher level abstractions and
generalized APIs. Examples of such frameworks are Studierstube [SFH+02] and DWARF
[BBK+01].

In content design tools the content and not the programming of AR solution is the focus.
These tools offer higher abstraction level in the interfaces and AR concepts, and usually
offer graphical user interfaces for configuring the AR solution. In low-level content design
frameworks, the description of the application might still be based on scripting and program-
matic, however the focus is on the content and configuration instead of underlying technical
implementation aspects of AR. For example in APRIL [LS05] an XML-based language is
used for defining the scenes, hardware abstractions, tracking, and the content, and UML state
diagrams are used for defining transitions between the scenes. Similarly, AVANTGUARDE
[San05] uses a data flow approach for description of user’s interactions, tracking, and context
information and a UI Management System [Ols92] approach based on Petri nets [Pet77] for
the dialog control.

Although low-level content design frameworks focus on content and offer higher level ab-
straction compared to programming frameworks, but still they are too complex in terms of
concepts and tools to be used by a user not familiar with computer science and programming.
High-level content design frameworks are mostly stand-alone solutions targeted at domain
experts that want to create AR solutions without need for programming and without deep
knowledge about technical details of augmented reality. High-level content design frame-
works offer a graphical user interface and high level, sometimes domain related, conceptual
abstractions for creating an AR solution. ISAR belongs to this category of AR Authoring
solutions and we focus our analysis of related work in this section on these tools.

34 Foundations

Fig. 2.13 Examples of two different approaches for interaction with high-level AR authoring
system: separate authoring and runtime environments [WZLL13] (top) vs. immersive
authoring [LNBK04] (bottom).

Beside the classification of Hampshire et al. [HSGB06], there is another classification worth
mentioning. Billinghurst [BCL+15] classifies AR development tools into four categories
based on the required programming skills: low-level software libraries and frameworks,
e.g. ARToolkit [KB99], which require strong programming skills; AR rapid prototyping
frameworks, e.g. DWARF and AVANTGUARDE [SK05], which require some programming
skills and facilitate creation of AR solutions; plugin approaches, e.g. DART [MGB+03] and
Unity plugins, which require skills in the hosting development or design application; and
finally standalone AR authoring applications, e.g. AMIRE [DGHP03] or ARIES [WC13],
which do not require any programming skills.

There are generally two approaches for interaction with the high-level AR authoring solutions.
Most high-level AR authoring systems follow a general architecture consisting of separate
authoring and runtime environments (figure 2.13 top). In these systems, the author first
designs the application content, interactions between application objects, and user interactions
in the separate authoring environment. Then the created AR application is executed in the
runtime environment and the end user interact with it. From point of view of the interaction
of the author with the authoring environment, this approach can also be called “indirect
interaction” [BW19].

2.3 Authoring Systems 35

The other approach is to use the same AR environment that the end user will be using
for designing and creating the AR application (figure 2.13 bottom). This approach is
called immersive authoring [LKB05] or “in-situ authoring” [SH16]. Immersive authoring
is usually combined with tangible AR interaction [KBP+00] and has the advantage of
direct 3D interaction with AR application as it is being created. This leads to a faster and
simpler authoring process. Lee et al. [LKB05] call this “What You eXperience is What
You Get” (WYXIWYG). Immersive authoring solutions are however usually limited in
the scope of applications and interactions that can be designed, because they are bound
to interaction possibilities in the AR application. On the other hand, indirect GUI-based
authoring applications offer more flexibility and versatility in terms of AR application design.
Most indirect authoring solutions also provide preview functionality that allows authors
to test the AR application as they are designing it, prior to deploying it in the runtime
environment.

With the above introduction about authoring systems for augmented reality, we provide a
review of selected works in high-level AR authoring solutions. We focus on solutions that
require no programming. Some of these solutions however offer a layered authoring approach
[SLB08], in which the simpler high-level tasks can be done from the GUI and scripting can
be used to describe more complex behavior of virtual objects. We also focus only on systems
that use visual tracking (marker-based or natural feature tracking). For each system, we
indicated the authoring platform (AP), the runtime platform (RP), and the tracking type (T).
For the authoring platform we also indicate if tangible interaction is used for authoring, or an
immersive authoring approach is used, where there is no separation between authoring and
runtime environments. When there is no clear indication of these aspects in the publication,
we use “unclear”. For a more comprehensive listing of high-level AR authoring systems the
reader is referred to a systematic survey by Apaza et al. [ATH+18], and works referenced in
[San15], [Muñ17] and [RLMT16].

PowerSpace [HR02] is motivated by utilizing the familiarity of technical document authors
with tools like Microsoft PowerPoint. The system combines PowerPoint presentation with
3D AR content. The exported AR presentation can be further edited in an editor to integrate
registered content on 3D models. The modified presentation is then exported and viewed in a
separate viewer (AP: desktop; RP: desktop, VST HMD; T: marker).

Similar motivation is also considered in Designer Augmented Reality Toolkit (DART)
[MGB+03]. DART is one of the first and famous examples of plugin AR authoring tools. It
was developed as a plugin for the popular designer software Macromedia Director. Target
users were designers who are familiar with Macromedia Director and DART allowed them

36 Foundations

to rapidly create AR solutions. It uses marker-based tracking using ARToolkit and offers
AR specific extensions for 3D content, camera control and interaction based on Director’s
timelines. Designers could use Director’s scripting language to fine control the AR scenes
and interactions (AP: desktop; RP: desktop, VST HMD; T: marker).

AMIRE [DGHP03, ADG04] provides a component-based approach for creating mixed-
reality applications. Generic components can be selected for different functionalities required
by the MR application, including tracking, registration, and 2D and 3D interaction and
content. The tracking is based on ARToolKit [KB99]. The scenes and their transitions
are described using an XML-based language. For each new application the components
are configured using their properties and connected together using a dataflow approach. A
desktop authoring application is used to configure the components and the communication
between them. The authoring environment features a realtime preview of the created scene,
that shows how the end user would experience the application (AP: desktop; RP: unclear;
T: marker). CATOMIR [HSZ05, ZH04] is a light-weight framework based on AMIRE for
authoring MR application with a tablet PC or mobile phone. It offers a light-weight set
of AMIRE components and a drag and drop mechanism for adding them to the scene. It
also offers dialogs for configuring the component and a visual programming interface for
connecting them to define application behavior. Placement of virtual objects and calibration
can also be done using tangible manipulation of markers (AP: handheld; RP: handheld; T:
marker). Mixed Reality Assembly Instructor [ZHBH03] also uses AMIRE framework. On
top of AMIRE’s components for object tracking and 3D content, it offers data structures and
UI elements for creating step-by-step assembly instructions. The author uses an Authoring
Wizard to create the scenes for each steps of the assembly using an “authoring by performance”
approach. A tracked mouse allows tangible interaction for placement of virtual objects in
scenes. The resulting application is persisted in XML format of AMIRE applications, and
executed in Mixed Reality Assembly Instructor application (AP: handheld, tangible; RP:
handheld; T: marker).

ComposAR [SLB08] offers a desktop authoring environment for developing and testing the
AR scenes and an AR view for mobile phones with Windows Mobile operating system. The
author can design the scene by associating virtual objects to markers and configuring them
from authoring UI. The behaviors are defined using an event-action mechanism. User’s inter-
action with the markers trigger events which call configured actions attached to scene graph
nodes. The authoring environment offers a preview window and possibility to interactively
reconfigure interactions at runtime using Python scripts (AP: desktop; RP: desktop, handheld;
T: marker).

2.3 Authoring Systems 37

k-MART [CKL+10] takes a context-oriented approach to AR authoring. The content of an
AR application are described as context-behavior pairs. Context is anything related to the
physical world, such as presence, location, and orientation of a physical object (marker).
Behaviors define augmentations, showing a 3D model or time-based appearance of a text.
The AR content are defined using the desktop authoring, including a preview functionality.
The application is exported in X3D format and executed in a separate AR browser application
(AP: desktop; RP: unclear; T: marker).

Template Based Authoring [KWCS05] is based on the observation that many operations in
service and maintenance domain consist of repeating instances of the similar activities, such
as opening a screw or placing a part. The systems offers templates for these activity instances.
Templates can be configured and added to a 3D scene in a desktop authoring environment.
The author configures parameters of the templates, such as location and rotation of a 3D
model and arranges their playback order in a timeline editor. The application is exported to an
XML format and execute in a separate viewer (AP: desktop; RP: unclear; T: marker).

SUGAR [GTOF12, GMOF13] provides a simple authoring environment where user can
place 3D models and multimedia content on photos as scene model. The desktop authoring
system allows creation of step-by-step instructions as sequence of scenes. The tracking is
done using ARToolkit markers. Scene model can also be taken using a depth camera. In this
case the depth information is used for creating occlusion effects. AR application is exported
to a ZIP file containing scene transitions, 3D graphics, and other multi-media content, and
viewed on handheld AR viewer (AP: desktop; RP: handheld; T: marker).

iaTAR [LNBK04] offers a tangible immersive approach to authoring. The authoring en-
vironment is the same as the AR application, and the user defines scenes and interactions
by manipulating tangible objects (markers). The application offers three component types:
physical objects, virtual objects, and logical boxes. Each component type has set of prop-
erties and input and outputs that read or write those properties. Logical boxes are contain
pre-programmed application logic, such as arithmetic operators, or complex behaviors like
detecting proximity or performing geometrical transformations. Authoring is performed
by tangible and logical manipulation of components, such as creating, removing, changing
properties, and linking properties together (AP: desktop, VST HMD, immersive, tangible;
RP: desktop, VST HMD; T: marker).

ARIES [WC13] takes a model-driven approach based on object-oriented modelling of inter-
active AR environments [Woj12]. An AR application is defined by configuring, AR-objects,
instances of so called AR-classes in a desktop editor. AR-classes are the same as the concept
of a class in OO programing, but extended with AR related features such as geometry,

38 Foundations

behavior, and attached media content and 3D models. Two roles are defined for the authoring,
a designer who is familiar with simple programming and modelling using XML, and the
domain expert. The designer defines the AR-classes required for specific AR scenario. These
AR-classes are then used and configured by domain expert in a simple GUI to create the AR
application. The AR application is executed in a separate AR browser (AP: desktop; RP:
desktop; T: marker).

Augmented Reality Scratch [RM09] is an AR authoring environment targeted at chil-
dren. Similar to extension idea of PowerSpace and DART, this tool extends the Scratch
[RMMH+09] - a familiar programming environment for children. Having simplicity as
design goal, the Scratch environment is extended with AR related functionality in a minimal
conservative way. Sprites can be attached and detached to physical objects equipped with
markers or interact with simple color-based marker less objects. AR related programming
blocks are added to Scratch, that allow child control the behavior of sprites attached to
physical objects based on their location, orientation, and relative distance and orientation of
markers (AP: desktop; RP: desktop; T: marker).

Wang et al. [WTS10] created an authoring system targeted for educational use that features
yes/no questions. The systems also offers rules for transition between scenes based on the
answers to the yes/no questions. A desktop authoring GUI allows teachers to create the
scenes, including 3D objects, and questions. The AR application is saved in a plain text
file, that can be edited by the author, and is viewed in a separate viewer application. The
application also features occlusion based detection of touch interaction with the markers
representing yes/no answers (AP: desktop; RP: unclear; T: marker).

Simeone et al. [SI11] developed an authoring system based on a content management system
(CMS) and marker-less object recognition. The content creators can upload multimedia
content to the CMS and associate them with different parts of target image models. In the
runtime, object recognition based SURF features and machine learning is performed, and
content attached to different parts of the target model are retrieved. Authoring in this system
is referred to uploading and editing content in the CMS and not registration of 3D content or
creating new object recognition models (AP: desktop; RP: unclear; T: natural features).

ARTalet [HWL+10] offers a tangible immersive authoring environment for creation of multi-
modal content for magic books (an augmented physical book). The system comprises a
tracked manipulation prop, equipped with a vibration motor, for placement and manipulation
of 3D models and selection of different functionalities from a 3D menu. Using the authoring
environment the users can perform 3D object manipulation (e.g., positioning and rotating,
coloring, scaling, coping, deleting), 3D trajectory manipulation, 3D object mesh deformation,

2.3 Authoring Systems 39

and design audio and vibration tactile feedback. A desktop viewer is used to view the magic
book after authoring is finished (AP: desktop; RP: desktop; T: marker).

Part et al. [PW09] proposed a multi-layer approach for authoring of magic book. Their
system is based on natural feature recognition and tracking of different areas of physical
book pages. The author uses the desktop authoring environment to select different areas of
the image of the book page using a polygon selection tool. He then assigns to each selected
area a layer. The author can assign different multimedia and 3D content to each layer. This
way it is possible to create interesting occlusion and transparency effects with the virtual
content. The AR application is exported in XML format and viewed in separate AR viewer
application (AP: desktop; RP: desktop; T: natural features).

Shim et al. [SKY+14] developed an authoring system for marker-based and gesture-based
interaction with 3D objects. The system consists of a simple desktop GUI for associating 3D
objects with markers and enabling different hand gestures for them. A live preview shows the
3D objects on the markers. A depth camera is used for hand gesture detection. The user can
interact with AR content by manipulating the physical markers or move, rotate, and change
scale of the objects using hand gestures (AP: desktop; RP: desktop; T: marker).

Tiles [PTB+01] offers an immersive tangible authoring interface for collaborative tasks. The
system consists of markers printed on cards, called Tiles. There are three types of tiles: data
tiles can dynamically receive virtual objects, operator tiles allow manipulation of virtual
objects; and menu tiles are a catalog repository of existing virtual objects. The virtual objects
from menu tiles are added to the data tiles using operator tiles. Operator tiles also allow
removing or copying virtual objects, and presenting context and help information. The tiles
can be physical placed on magnetic whiteboard. Video see-through HMDs are used as display
(AP: VST HMD, tangible, immersive; RP: VST HMD; T: marker).

Langlotz et al. [LMZ+12] created a mobile in situ authoring system for novice users. The
system features creation and uploading of natural feature tracking targets to a tracking
database. The 3D content can be registered in situ on these tracking targets. Beside text,
image, and multimedia annotations, the system also allows creating, modifying, and texturing
of simple 3D models using gestural and spatial interaction with the mobile phone (AP:
handheld, immersive; RP: handheld; T: natural features).

Rahman et al. [RCES09] created an authoring system for educational purposes. The teacher
can select physical objects in a video stream in the authoring environment using a polygon
selection tool. A depth camera is used for detecting the user’s gesture interaction such
as picking or point to an object. The teacher can create and attach different multi-media

40 Foundations

annotations to the selected physical objects, and upload them to a database. A separate viewer
application presents the annotations when the physical objects are detected. It is unclear
though how tracking, registration, and object detection is done in this work (AP: desktop;
RP: desktop; T: unclear).

2.3.2 Authoring for Tangible Tabletops

Similar to authoring environments for AR, authoring solutions for tangible tabletops can
also be grouped based on their target users and the required level of technical expertise in
computer science topics. All tangible frameworks, from the early works by Fitzmaurice,
Ishii, and Buxton [FIB95], have offered constructs with different degree of abstractions to
facilitate realization of tangible interactive applications. We can generally categorize these
systems into solutions targeting programmers, and the solutions for the end users without
programming skills. In this section we review some of the works in both categories.

Toolkits and Programming Frameworks

Programming frameworks or toolkits provide abstractions on top of programming languages
and hardware technologies that facilitate development of tangible tabletop applications
for programmers. They are intended for programmer, involve programming and cannot
be used by domain experts who are not familiar with programming. On the other hand,
they are mostly general purpose, offer a high flexibility in terms of possible design space
of the tangible application, and can be used to develop tangible tabletop applications for
different domains. Relying on toolkit abstractions, the programmers do not need to have
an in-depth knowledge of underlying technologies and algorithms, and can jump-start the
development and focus on creating the high-level application logic. These frameworks often
include components for hardware abstractions, calibration and coordinate transformations,
object detection and tracking, touch detection and gesture recognition, network services, and
rendering the content.

Echtler [Ech09] describes a general layered architecture for tangible and multitouch-based
interactive tabletops. This architecture devises different functionalities of the system into
layers of increasing abstraction. The bottom layer (hardware-abstraction layer) abstracts
out the technical specificities of the hardware and provides data about user’s actions, such
as position, orientation, shapes, and so on. On top of this layer, the transformation layer
converts the raw data about user’s actions into coordinate space of the display, including the

2.3 Authoring Systems 41

calibration of the system parts. The event interpretation layer, provides high-level application
related events by interpreting the transformed spatial data, including detection of touch
gestures, an presence and updating of tangibles. Finally, the widget layer provides reusable
components for the user visible output. Although not necessarily in a layered architecture,
these components can be observed in the toolkits reviewed below at different levels of
abstraction.

The reacTIVision framework [KB07], together with its companion TUIO protocol [Kal09], is
one the widely used frameworks for development of interactive tangible tabletop applications.
The framework is developed as distributed application, with the a tracking library at its
core. The tracking library is optimized for fast and robust tracking of spatially designed
fiducial markers, touch interaction, and bounding box of blob shapes. The state of the table,
extracted from the tracking information is continuously transmitted using TUIO protocol
over UDP packets to TUIO clients. A TUIO client then turns the state messages into for
tangible application more useful higher abstractions and events such as object added, object
updated, or object removed, as well as touch interaction. The application logic of a tangible
application is then implemented in the callback function to these events. The framework
also includes low-level functionality needed for camera-projector calibration and correcting
image distortion. This loosely coupled design, allowed the development of TUIO clients
in different programming languages, that has lead to wide spread of applications based on
reacTIVision. Several toolkits for tangible development are also based on reacTIVision as
will be described below.

ARBlocks [RdFST13] is a framework for creation of projective augmented reality and
tangible applications based on physical blocks. Target domain of the framework is early
childhood educational applications. The system features physical blocks of about 6x6 cm
size. Each block has a specially designed marker pattern around its edges that bounds an
empty area, on which information is projected. The framework consists of tracking library
for tracking these blocks, the calibration module for camera-projector calibration and the
projection module for registering the content on the blocks. On top of these three basic
modules different applications can be developed. The users (children) can interact with
the application by manipulating the blocks. For example in an application for learning
vocabulary, images of the animals are projected on one set and their names on another set of
blocks. When the child puts the block with the corresponding name near the correct image,
the system gives feedback by highlighting both blocks with green.

TULIP [TML15] is a framework for rapid prototyping of tangible tabletop applications. The
authors argue about the lack of extensible frameworks for TUI development that allow reuse

42 Foundations

of abstraction in the way offered by GUI widget frameworks. Based on this argument, they
propose a framework for rapid application development of tangible tabletops applications
that offers modularity and a reusable abstraction of TUI widget as the core concept. Based
on the original model of MCRit (Model-Controller-Representation [tangible/intangible]) by
Ulmer and Ishii, a widget in TULIP framework has a tangible physical part called handle
and an intangible part called corona. There exists a hierarchy of different widgets that all
inherit from the base widget abstraction that takes care of physical context of the widget,
such as position and rotation, and its connection with the application logic. There also exist a
hierarchy of different coronas, such as text box, pointer, image, infobox, and shadow that
inherit from base corona class. The system relies on reacTIVision and TUIO for compute
vision and tracking tasks. It is tested with different applications build for a back-projected
tabletop.

PapARt [LH12] is a camera-projector hardware and software system for immersive drawing
and manipulation for projections on a physical paper. The hardware consists of a short-throw
projector, an RGB camera, and a depth camera packages in column-shaped frame that is
put on a table. The system uses marker-based tracking for tracking the physical paper as
drawing surface and uses a depth camera for detection of touch and 3D over surfaces pointing.
The user can create virtual drawings on the physical paper using finger movements, or can
physically draw based on projected guidance. Another tracked piece of paper with four
markers is used as the menu to call different functionality of the system. The functionality
of the system are demonstrated using different applications scenarios: projections are used
to guide users in physically drawing a 2D image; users can use gestures to pan and zoom
information projected the drawing area; users can move the drawing area to change light
intensity of the projection or use point gestures to place a virtual lighting; rotating the drawing
area can change the 2D projection of a rendered 3D model according to user’s perspective.
The software offers APIs for Processing and plugins for Unity.

TACTIC [NRD15] provides a browser-based API for creating tabletop applications that
feature touch, tangible, and over surfaces interaction. The system relies on reacTIVision
and TUIO for touch detection and marker-based object tracking, and on library for 3D
gesture recognition based on depth data from a Kinect camera. The system is developed
as a node.js application and uses RabittMQ for communicating 3D gestures and binding
other components, that don’t use TUIO protocol. In order to use the API, a developer needs
to add corresponding CSS classes to HTML elements. For example the class “touchable”
adds touch behavior to an HTML element. HTML events are also used for communicating
between the API and tangible tabletop application logic. The developer of the application

2.3 Authoring Systems 43

binds asynchronous JavaScript callback functions to HTML events in the familiar way done
in web development. For example binding a function to the “object.added” event of the
surfaces application, the developer can perform his desired application logic, when an object
is added to the surface. The event callbacks receive an argument that contains event data.
For example in the case of object.added event the id and 2D coordinates of where the object
was placed. A similar approach is also taken by Ubi Displays toolkit [HA12] that expose
multi-touch events to content created as HTML elements and application logic implemented
in JavaScript in a web page.

ToyVision [MCB12] is a software toolkit for rapid prototyping of vision-based tangible
tabletop games. The system is built on top of reacTIVision framework and TUIO protocol
[Kal09] and adds high-level abstractions by offering a widget layer. The widget layer is a
layer on top of the the “event interpretation layer” [Ech09] and is specifically designed to
detect the token commonly used in games. Four types of tokens are distinguished: simple
tokens, named tokens, constraint tokens, and deformable tokens. ToyVision extends marker-
based object detection of reacTIVision for identifying these types of tokens. The widget
layer receives raw-events from TUIO sockets and creates high-level abstractions that can be
directly used to define game logic without the need to interpret raw-event data. The widget
layer and the high-level events and abstractions related to tokens significantly reduce the
amount of code needed to create a tangible game compared to using raw events of TUIO
and reACTivison.A GUI is used to add and configure tokens to be used in the game. For
each token type the designer configures information needed for detecting and using the
token in the game logic, such as the size of the blob and the name of the token. The editor
automatically generates XML description of the tokens that are used to generate high-level
events. Simple, named, and constraint tokens are tracked using fiducials. The deformable
tokens are detected based on the minimum and maximum size of their blob.

Papier Mache [KLLL04] is one of the early frameworks to address the technical challenge of
developing TUI applications by providing high level event-based abstractions independent of
the input technology. Using Papier Mache developers can do rapid prototyping of tangible
applications that utilize RFID, vision, or barcode input. The system created events related
to presence, removal, and modifications to the state of tangible objects in the scene. The
developers can associate these events with corresponding actions such as playback of an
audio clip, fast forwarding or rewinding a video, or opening GUI windows. Papier Mache
simplifies the process of development of TUIs by providing these high-level abstractions that
allow creation of simple applications in some few lines of code. It also feature a debugging
GUI and mock event generator that help in testing and debugging the application. It is

44 Foundations

however not specifically designed to address visual output using projection on a tabletop,
and is more focused on associating tangible inputs to application logic, for example a home
automation system.

End user Development Environments

EUD environments provide GUIs that are used by domain experts to create applications
based on their needs. These environments offer domain-specific concepts and UI metaphors
and often are designed to take advantage of the familiarity of the authors with existing
digital tools and workflows. They are mostly targeted for a specific domain (e.g. game
development, education, rehabilitation) and offer functionality tailored to the requirements of
the domain experts. Accordingly, they are less flexible and versatile in terms of possibilities
of designing the application and provide mostly fixed workflows for designing application
content and limited configuration possibilities for designing the interactions for the final
end users. Please not that the term “end user” can be used in an exchangeable meaning
depending on the context: sometimes as the domain-expert who uses the EUD to create the
tangible application, such as a teacher or a physiotherapist; and sometimes as the final users
of that application, such as students, or physiotherapy patients. Tetteroo et al. [TSM13]
discuss different challenges of creating end user development environments for tangible
interaction. These challenges include integration of physical and virtual worlds, preparation
of tangible artifacts, support for design of interaction by the application authors, support for
end users without technical affinity, and considering the soci-technial context of the tangible
application. In the following we review some of the EUD environments for creation of
tangible tabletop applications by non-technical end users.

TagTrainer [TVG+15] is an authoring environment for physiotherapist to create arm-hand
rehabilitation exercises based on tangible interaction (figure 2.14). The system uses special
interactive boards called TagTile boards. TagTile boards are a grid of backlit LED cells
that can detect the presence of an object and track its position on the grid. The detection
and tracking are based on RFID. Using the authoring environment the therapist can define
rehabilitation exercises as a sequence of tangible interactions with the tracked objects on the
board. For that, the therapist defines a timeline consisting of actions including lift, place, and
move objects. The timeline can include multiple objects simultaneously and also includes
actions for providing instruction and pausing. For each object related action, the properties
of the action can be defined, e.g. the position on the board to place the object.

2.3 Authoring Systems 45

Fig. 2.14 TagTile boards and the Tag Trainer authoring environment [TVG+15]. The physio-
therapist defines an application as a sequence of object placement and moving and audio-
visual feedback. Objects are detected and tracked by RFID.

COPSE [MTA+17] is a system developed for lowering entrance barrier for educational
experts for creating, modifying, and reusing tangible tabletop applications for microworld
[Edw95] scenarios. Microworlds are artificial environments that behave based on mathemati-
cally expressed scientific models. These rules are however hidden from the learner and he
must discover them by manipulating objects and interpreting feedback. The microworld in
COPSE are described using a series of mathematical equations that relate input (independent)
variables to output (dependent) variables. The system is build using TULIP [TML15] frame-
workd and offers three types of building blocks: widgets for providing input and localized
feedback, equations for defining the model of the microworld, and scenes for visualizing
the feedback. The application is described using an XML-based language. The variables
in the equations that describe the microworld are represented using tangible widgets of
TULIP. There are two types of widgets: on/off variables are represented by placement of
the tangible on the tabletop; the continuous variables are represented by rotating the widget.
Coronas are attached to widgets and represent the feedback of the system. Their placement is
relative to the widget’s handle. Text, image, shadows, and gauge, are examples of coronas. A
scenario consists of multiple scenes that are bound to output variables. The value of variables
determine if the scene is rendered (trigger condition) and its representation. Currently the
system does not provide a GUI for creating an application and the XML file describing an
application must be created manually.

DEDOS [RÁMH+18] is a system for creating educational card-based content and activities
by teachers. The system consists of DEDOS-Editor, and editor for creating the content, and
DEDOS-Web, a web-based player for playing back the content on different devices such as
tablets, interactive whiteboards, and interactive tabletops. It also includes a learning analytics
that logs the interaction data as students are working with the content. The design of the editor

46 Foundations

is based on the types of the educational activities. Roldan-Alvarez et al. [RÁMGHH16]
found out the most demanded activities that teachers need an authoring system to support,
are single and multiple choice questions and pair matching activities. Accordingly, the
DEDOS-Editor is designed to allows creation of these activities. Additionally an activity
for connecting points, and an addition activity are supported and the activities can also be
combined together. The type of activity defines the application logic for controlling and
presenting the result at runtime. The teacher defines correct answers by adding so called
goals to the activity. For example for a multiple choice activity, he adds the correct answer
goal to the card corresponding to the correct answer, or for connect the dots activity, he adds
goals to the dots representing the correct paths. All activities are based on a UI metaphor
of cards. The teacher designs the content of the cards, including text and graphics and adds
them to the activity area. For multiple choice questions, the teacher can select which cards
are the correct answer. For pair matching activities, the teacher matches the correct pairs
using arrows. The teacher can also design the layout of the activity when it is presented to
the students by defining main game area, and individual areas for each student. The created
application is saved as a ZIP file containing an XML file and the media resources. The
application is then played back in the DEDOS-Web player application. Before a project
is started, DEDOS-Web allows configuration of the content to support different learning
scenarios. For example the teacher can configure groups for collaborative working on the
activities, define the navigation flow between activities, or enforce timeouts and feedback for
moving to next activity. The player application also features a responsive UI and supports
adoption of the content to different device size and resolutions, so that the activities can be
played back on different devices.

EMIL [LHLD13] is a rapid prototyping tool for creating UI of interactive tabletop applica-
tions. The target users are teams of designers and programmer, that collaboratively create the
UI using the immersive authoring environment and a library of UI components. EMIL con-
sists of three main parts: a UI framework with a component library, an authoring tool, and a
reusable database of components, applications, and design knowledge created from previous
projects of the design team. The system is created using TUIO AS3 framework [LBH+10]
that adds gesture interaction to an application built on top of TUIO and reACTivision for
marker-based object tracking and touch detection. The UI framework consists of visual
components and non-visual components. Visual components include widgets like lists, labels,
buttons, images, etc., views, which contain widgets, and the application templates, which
consist of views with transitions. Non-visual components are controls, which are gestural
inputs such as dragging, rotating, and scaling, and behaviors which are complex functionality
that are created by connecting interactions with actions. For example a component can

2.3 Authoring Systems 47

have “trash bin” behavior, which combines dragging over, dragging out, and releasing with
shrink, restore, and remove actions. That is, when another component is dragged over the
component with trash bin behavior, it’s representation is shrinked, if it is dragged out then
its representation is restored, and if it is released then it is removed. The EMIL’s authoring
application allows immersive authoring of UI of interactive tabletops. It offers two modes:
live mode and authoring mode. In authoring mode the designers can add widgets and view
to surface from menus. Each component also shows extra menus that allows configuring
its properties. A project consists of resource and configuration files that are stored in a
shared cloud storage, to allow parallel working on the design of the UI and creation of
resources.

Thevin et al. [TJR+19] developed an end user programming for teachers of special edu-
cation for creating interactive audio-tactile graphics for visually impaired persons. Using
this system the teachers without technical background can easily augment their existing
educational tactile media with audio information. It uses an immersive authoring approach,
by superimposing digital feedback on tactile media when creating the content. Two main
use-cases are content creation by teachers and content exploration by visually impaired
persons. Content creation is done by associating audio information to selected areas of the
tactile map. The system is based on an spatial augmented reality camera-projector setup and
an existing framework for physical AR drawing (PapARt [LH12]). Using PapARt framework
and setup, the teacher directly augments the tactile map with interactive areas by touching the
corresponding area on the map and recording audio information. To designated the interactive
areas, the teachers draw with finger directly on the tactile map. To give visual feedback to the
teacher, the drawn shape is projected directly in realtime on the map. Different functions of
the application are called by pressing corresponding keys on on the keyboard of the computer
running the application. Functions include drawing line and shape, recoding and stopping
the microphone, deleting audio annotations or a whole interactive area, and changing to
explorations mode. The same setup is also used for playing back the content in content
exploration mode. The visually impaired person can explore the tactile map with both hands.
Touching an area with one finger triggers playback of the associated audio material.

KitVision [BMBC19] is an EUD environment for tangible tabletops targeted at physiother-
apist (figure 2.15). The system supports creation and customization of cognitive therapy
exercise by the therapist and is specifically designed for cognitive therapy exercise and offers
a GUI to create and modify these exercises. The GUI is based on a model of cognitive
therapy exercise expressed in a XML-based language. According to this model, a therapy
activity consists of an ordered sequence of tasks. Each task has a background projected on

48 Foundations

Fig. 2.15 KitVision authoring environment and three example applications (Tangram, shop-
ping list, counting) [BMBC19]. Authoring is done by defining interactive areas and associat-
ing a list of objects and feedback content to them.

the tabletop. Associated with each task are a set of "interactive areas" and "playing pieces".
Placing a playing pieced in an associated interactive area triggers different events. Outside
the area the pieces have no meaning. The areas are rectangular and can be placed at a fixed
position on the table or connected to an object. The triggered events are used to define
feedback. Each task also has an associated feedback, which is graphic and/or audio element.
Each area has a list of wrong and correct physical objects. Physical objects can have sounds
and orientation associated with them. The feedback is based on if all the correct objects
are placed in an area. The system should detect different objects and also instanced of the
same type of objects. The desktop authoring environment is used for creating the application
and the KitVision Player is used for running it for the patients. The applications run on the
NIKVision [MBC13], a back projected interactive tabletop. The system uses reacTIVision
[KB07] framework for marker-based object detection and tracking. The authoring process
consists of defining interactive areas for each task of the activity. Then for each a list of
correct and wrong objects are defined. An area can also have a correct orientation for the
object defined, in which case only one correct object can be assigned to the area. In the third
step, the feedback for each are is defined based on three states of the placement of the objects
in the area: incomplete waiting, wrong, complete. After defining all tasks in the activity it is
exported to the XML format with all the resources to a USB disk. The activity is then opened

2.3 Authoring Systems 49

automatically in the KitVision player by inserting the USB disk in the NIKVision tabletop.
The authoring environment does not feature a preview function and the author must run the
application in the player on the tabletop for testing it. The feasibility of the cognitive therapy
model and the system is shown by developing different exercises: A counting game, a select
correct item game, classical Tangram game, a memory game, and a complete the sequence
game. However, being based on the XML model of cognitive therapy exercises, the system
has a fixed and rather inflexible workflow for defining each scene. For example, at the start
of each activity the author must define a background image is displayed full screen, and must
define an audio instruction and an icon. Configuring the scene and designing it freely is not
possible. Similarly the events and interactions are only limited to correct or wrong placement
of the objects, and a it is not possible to flexibly define interactions by connecting different
events with different actions. Also, lacking a preview or immersive authoring functionality
makes the development process cumbersome: the author must create the application on the
desktop authoring environment, export it to USB disk, and then test it on the tabletop, and
repeat the process for every modification.

Chapter 3

Requirement Specification

This chapter describes the use cases and requirements of ISAR based on the literature review
from previous chapter, our observations and experience from related projects (see 1.2), and
the visionary scenarios. We first describe in an as-is scenario from the domain of vocational
education, the context in which ISAR could be utilized. We then describe in different
visionary scenario how ISAR will be used to address similar problems. In scenario-based
requirement elicitation a visionary scenarios describes the functionality that the envisioned
systems will provide [BD03] and how it will influence the work practice of the target users.
We then formalize the requirements described in the visionary scenarios in use-case model,
functional requirements, and non-functional requirements.

3.1 As-Is Scenario: Teaching Mainboard Assembly

John is a teacher for elementary level courses in a vocational school for electronics. In one
of his classes, he teaches the students how to assemble, troubleshoot, and repair personal
computers (PC). One of John’s lessons is about assembling a mainboard.

At the first step of the lesson, the students must learn the names of the different components
and the theoretical information about them. So far John used a PowerPoint presentation to
teach the different hardware components to the students. His slides show name and positions
of different parts of the mainboard, describe different hardware components, such as memory
chips, CPU, graphic cards, that should be assembled on the mainboard. The slides also
contain hints and important aspects that the students need to pay attention to, for example the
correct orientation of CPU when inserting it in the CPU socket on the mainboard.

52 Requirement Specification

After the theory parts, the students start assembling the model mainboards in the practice part
of the lesson. For each step of the assembling workflow, John has printed a paper instruction
sheet that has a text instruction and multiple pictures. The pictures show the hardware
component and where and how to assemble it onto the mainboard. They also include the
hints and warnings for things that students need to know. During the practical part of the
lesson, in order to assess the students, John moves between groups and ask questions. For
example, he asks the students questions like, "Show me the CPU" or "Show me where is the
GPU socket".

The above approach however has some shortcomings. The theoretical part of the lesson
is disconnected from the practical part. Accordingly the students have difficulty applying
what they have learned in context of the real task. They don’t know the names of the
hardware components, forget important hints, and don’t know how to properly use tools.
They constantly make mistakes or have to ask John for help. Furthermore, in the practical
prat, going back and forth between the task context of assembling the mainboard and the
paper instructions is distracting for the students. Additionally, if John notices a problem with
the paper instructions, he has to edit and reprint all of them. Another problem arises when
there are a lot of students in the classroom. John cannot attend every group for assessment
and asking questions.

John would like to address the above problems in his class. He is also interested in new
educational technology. He has recently read about interactive tabletops and augmented
reality, and would like to try it to improve his class. Specifically, he would like to use an
interactive tabletop, because it allows for hands-free operation on the table that is needed
in his lessons. He wants a system that allows him define learning content as digital content
projected on the physical world. He also wants the system to be easy to use and flexible
enough to allows him to experiment with new content and adapt the contents he has created
after observing how his students interact with the setting.

However, after talking to his friend, who is a programmer, he realizes that he cannot create
content for his lecture on his own, and needs a programmer to help him. Furthermore, he
realizes that despite the high effort for creating the content, these content can only be used for
one of his lectures, and creating new content is associated with a lot of effort again. John’s
friend tells him, that although there are authoring systems for end users to create content for
augmented reality, these systems are limited to mobile or desktop augmented reality.

3.2 Visionary Scenarios 53

3.2 Visionary Scenarios

ISAR can be used by the end users and expert in different domains like education, rehabilita-
tion, and manufacturing in order to create interactive augmented reality tabletop applications
for their specific needs. We describe a visionary scenario for each of these exemplary
domains.

3.2.1 Situated Learning of Taxonomies and
Domain-specific Vocabulary

Learning domain-specific vocabulary and taxonomies, i.e. learning names of the objects and
concepts, is the essential elementary step in learning any activity. The theory of situated
cognition [RA09] describes how gaining knowledge, such as learning vocabularies, can
benefit from being embedded in the context of the activity. Referring to the above as-is
scenario (3.1), we describe here how ISAR can be used to support situated learning of
domain-specific vocabulary.

ISAR helps John, the teacher, to create the learning content for the mainboard assembly
task. The first step is to teach the students names of different hardware components such as
CPU, RAM modules, GPU, heatsink, thermal paste, etc. John creates a project in ISAR’s
Authoring System and names it ’Mainboard Components’. For each hardware component, he
adds a scene to the projects that contains information about that component. For example for
the mainboard itself, he creates a scene with the name ’Mainboard’. He adds the mainboard
physical object to the scene. He add multiple arrow annotations that point at different parts
of the mainboard and show their names, for example for CPU socket, for RAM sockets, and
so on. He adds a video annotation to the scene that shows different models of mainboard
and how mainboards are manufactured. He also adds multiple audio annotations to the scene
that pronounce the names of different parts. He also adds buttons for moving back and forth
between scenes.

After defining the content of the mainboard scene, John defines the interactions of the students
with the scene. For example, he can define in interaction rule like ’If student points at CPU
socket, playback the audio annotation for its name’, or defines a rule like ’If the student
selects the video annotation, pause the video’. By combining annotations, physical objects,
and interactions, John can also define scenes for exercises. For example, he can add multiple
text and multiple checkbox annotations to created a multiple choice exercise. Or he can
create a scene containing the text annotations that asks the student to show the CPU socket,

54 Requirement Specification

and when the student points at the CPU socket, an image for positive feedback is shown and
a sound is played.

John continues adding scenes for hardware components and tools involved in the mainboard
assembly task. Each scene can contain multiple annotations and multiple physical objects,
and many different interaction rules that govern the interaction of the students with the
table. He can configure the attributes of annotations and interaction rules for his purpose.
The Authoring System of ISAR allows John to define and test the scene exactly as they
would appear for the students. This is called WYSIWYG or What You See Is What You
Get. John can directly test his scene definition in the Authoring System and change them as
needed.

After John is finished with the definition of the scenes, he loads the project into ISAR’s
Training System for the students. The Training System projects the scenes on the table and
reacts to the students interactions according to the defined interaction rules. For example, in
the mainboard scene, when the student puts the mainboard on the table, the system recognizes
it and projects the arrows that show different parts of the mainboard. The student can use a
tracked stick to select mainboard parts. For example, when he selects the CPU socket, the
audio annotation for CPU socket is played. Every scene is projected on the table exactly as
John had defined and all the interactions with the scene happen based on the rules he has
defined and tested.

Adding new Physical Objects

In order to project digital information on the physical objects and in order to detect the
interactions with the objects, ISAR needs to recognize the objects. The first step of using
ISAR is adding the new physical objects to the dictionary of the objects detected by ISAR.
For this, John has two options: marker-based and markerless approach. In the marker-based
approach, John attaches marker to each part and tool, and uses the ISAR’s UI to add the
objects to ISAR’s detected objects, by simply selecting the object (with attached marker)
and giving it a name. Marker-based approach is a fast method for adding new objects to the
objects detected by ISAR. However it has the disadvantage that exactly the same markers
must be attached ot the parts and tools that students use for their training. The other approach
for detecting the objects is the markerless approach. This approach relies on machine learning
models to detect objects. The models for detecting the objects must be trained with a dataset
consisting of multiple labeled images of the objects. ISAR offers a UI for training these
models. In a video stream John can select the objects give them labels. ISAR then creates a

3.2 Visionary Scenarios 55

dataset of the selected objects and trains the required models. This process has the advantage
of not needing the markers, however the training of the models might take a long time, up to
a day.

3.2.2 Guidance through a Workflow

ISAR can also be used to guide a user through a physical activity that is structured in the
steps of a workflow. We refer again to the as-is scenario described in 3.1.

A workflow is the sequence of steps needed to achieve the task goal. Each workflow step
involves one or more physical objects, e.g. tools and materials. Each workflow step also
has an instruction and possible important information that need to be noted. In ISAR each
workflow step is associated with a scene. A scene is a combination of physical objects and
annotations. The annotations show the instructions and important information that are needed
for the step to be done.

John uses the ISAR’s Authoring System and defines a scene for each step of the mainboard
assembly workflow. He creates a project and names it ’Mainboard Assembly Workflow’.
For each scene he adds the corresponding physical objects, e.g. the mainboard and RAM
module for ’Inserting the RAM’ step, or mainboard and CPU for ’Inserting the CPU’ step, or
mainboard, heatsink, and screwdriver for the step corresponding to fixing the heatsink on CPU.
For each scene he also add the corresponding annotations, such as a textual instruction for
the step, highlighting the component that should be picked, highlighting the place where each
component should be inserted, a video annotation that shows how to place the component,
and so on. He also adds buttons to each scene for navigating through scenes. After defining
the scene content, for each scene John also define the interaction rules. For example ’When
RAM module is picked, highlight the RAM sockets on the mainboard’, or ’When CPU is
placed at CPU socket, show the text instruction for locking the CPU and start the video
that shows how to lock the CPU’. John can also define similar rules for implicit automatic
transition between scenes, or the student can explicitly select the scene navigation buttons
added to the scene.

After John is finished with defining the learning content for the workflow, i.e. defining
the scenes, interaction rules, and navigation flow between scenes, he loads the project into
ISAR’s Training System for the students. The training system projects the scenes on the
student’s workbench. Each scene corresponds to one workflow step. All annotations are

56 Requirement Specification

shown and the interaction of the student with the table, including the transition between
scenes, follows the interaction rules defined by John.

Adapting the Content

After observing how the students learn with the tabletop, John realizes that his learning
content for mainboard assembly requires some adaptions and improvements. Some of the
instruction text are not detailed enough; Some of the annotations highlighting the parts
of mainboard should be in a different color; and some of the interactions, such as scene
transitions, confuse the student.

In order to change the learning content, John loads the project into ISAR’s Authoring System.
For each scene, he can select the annotations that he wants to change and change their
attributes. He can also change the interactions, define new ones and remove the ones that
confuse the students. He can also change the order of the scenes for the workflow steps and
add new scenes for more detailed workflow description.

3.2.3 Rehabilitation for Hand Motor Skills

Hand-eye coordination is an essential part of manual-activities. Patients who survive a
sever stroke usually lose their motor skill and hand-eye coordination abilities [HKD+13].
Rehabilitation of these abilities requires a long-time treatment involving different physical
exercises, such as grasping, reaching, tilting the wrist, and pointing that are performed under
supervision of physiotherapist. The following visionary scenario shows how ISAR can be
used by physiotherapist to create motor exercises that a post-stroke patient can perform on
site or on his own at home.

Marry is a physiotherapist for post-stroke rehabilitation. Susi is her patient that has recently
survived a sever stroke and has lost her motor skills to a large extent. Marry wants to use
ISAR to create two kinds of exercises for Susi. The first exercise improves Susi’s hand-
eye coordination and the second one improves her reaching abilities. For the hand-eye
coordination exercise, Marry creates a scene and adds a curve annotation, a timer annotation,
and a feedback annotation to it. In the execution mode, this curve is projected on the tabletop
and Susi is supposed to follow the path of the curve using a tracked stick, and receive
feedback on how she has improved her motor skills. The feedback is calculated based on
the time it takes for Susi to follow the path, and the deviation of the tracked stick from the
path. For the reaching exercise, Marry adds multiple animation annotations to the scene and

3.3 Functional Requirements 57

Fig. 3.1 High level use cases of ISAR. The application creator (author) defines application
content and interactions. In the execution mode the application user sees the content projected
on the tabletops and interacts with the application and physical objects.

configures their path and speed. An animation annotation shows an image that moves along
a defined path with a defined speed. In the execution mode, the animations are projected on
the tabletop and Susi is supposed to hit the image with her hand. Based on how many images
Susi hits in the given time, she receives a feedback on her progress.

3.3 Functional Requirements

ISAR has three actors: the application creator (also called author), the application user,
and the framework extender. ISAR also has two modes corresponding to the two actors
application creator and application user (figure 3.1). In the Authoring Mode, the application
creator uses ISAR authoring environment to create interactive augmented reality applications
for the tabletop based on his specific requirements. In the Execution Mode the content of the
application is projected on the tabletop and the application user interacts with the application
and objects on the table.

58 Requirement Specification

3.3.1 Creating ISAR Applications

The application creator (author) uses ISAR’s authoring tool to define the application content
(figure 3.1). An ISAR application is a combination of physical objects, digital content that are
projected on the tabletop, and a set of interaction rules defined by the author. The application
user interacts with the physical objects and digital content according to the interactions rules,
that govern response of the system based on the actions of the application user.

In order to create an ISAR application, the application creator must define scenes, define
interactions, and define physical objects:

Define Scene

The application content are projected on the table as scenes. Figure 3.2 shows the use
cases for defining scenes and workflows. A scene is combination of digital content, the
annotations, and physical objects. A rich set of different kinds of annotations should support
the application creator in designing the scene. These include simple geometric shapes like
line, rectangle, circle, curve, and arrow; multimedia content like text, video, audio, and
image; dynamic annotations like timer, counter, and animation; and interaction elements like
touch buttons, checkboxes, object placement areas, and feedback annotation. The application
creator designs the scene by adding physical objects and annotations to it, and configuring
attributes of annotations. The annotations can be fixed on the scene, or attached to physical
objects. In the later case, the projection of the annotation on the tabletop should be adapted
to the position and orientation of the physical object.

Workflows can be defined by adding multiple scenes and defining the ordering and navigation
rules between them. Each workflow step is associated with a scene and the transition between
steps happens explicitly or implicitly according to interactions of the application user with
the scene. In order to add new physical objects to ISAR, the application creator can train
new object detection packages and include them into ISAR, or create new marker-based
object detection and tracking packages. In this way, the tabletop can recognize new physical
objects.

Define Interaction

The table should respond to the events that result from interactions of the application user.
Several interactions are possible on the table, for example picking an manipulating objects,

3.3 Functional Requirements 59

Fig. 3.2 Defining Scenes and Workflows in ISAR authoring mode. The application creator
defines the scene by adding annotations and physical objects. Workflows are defined as a
sequence of scenes and the navigation rules between them.

60 Requirement Specification

Fig. 3.3 Interaction definition use cases in ISAR authoring. The application creator can define
interactions by configuring events and actions and defining interaction rules that connect
events to actions.

selecting annotations and objects, or timeout of a timer. An interaction can be defined as
an event-action rule, that triggers an action when the event is occurred. The application
creator can configure the events and actions and define these interaction rules (figure 3.3). For
example, the application creator can configure rules like "if the correct checkbox is selected,
show positive feedback" or "if the timer is timed out and the correct object is not selected,
highlight the correct object", or "highlight a specific physical object as soon as the workflow
step is entered".

By combining events and actions as interaction rules, the application creator can exactly
define how the table responses when application user interacts with it. The interaction rules
also allow the application creator to define different kind of exercises like multiple choice
questions in which the application user should select one or multiple checkbox options, object
selection exercise in which the application user should select one of the physical objects
present on the table„ or object placement exercises, in which the application user should put
a physical object in a specific area on the tabletop.

Define new Physical Objects

An ISAR application consists of scenes that are combinations of physical objects and virtual
content. Before physical objects can be added to a scene, the tabletop needs to recognize and

3.3 Functional Requirements 61

track them. ISAR supports both markerless and marker-based object recognition and tracking.
For any of this modes, prior to defining the scenes, a corresponding object recognition and
tracking package must have been added to the ISAR authoring application, that offers
recognition and tracking of the required physical objects. A physical object has a name
a template reference image that is used in order to define the scene. The registration of
annotation on the physical objects in the execution mode is based on object’s orientation
with reference to this template image (model-based tracking). For marker-based object
recognition and tracking physical objects must be associated with markers. For markerless
object recognition and tracking a machine learning model must be trained (figure 3.4).

For marker-based object recognition and tracking, the application creator can use ISAR’s
authoring GUI to associate physical objects to the markers. The advantage of the marker-
based approach is that it is simple and fast, and the application creator can add physical object
definitions to ISAR immediately before defining scenes. The disadvantage of this method
is that exactly the same marker must be attached to the physical objects in the execution
mode.

For markerless object recognition and tracking a machine learning model must be trained
based on a training dataset of physical objects. This approach is more complex and less
robust than the marker-based approach, however it has the advantage that no markers must
be attached to the objects in the execution mode. For training object recognition models for
new physical objects the application creator can user ISAR authoring GUI in order to create
a labeled training set for physical objects. The application creator puts the objects on the
tabletops and selects them in a video stream of the tabletop. The application creator only
needs to select a few sample images and assign labels to them. ISAR then creates a larger
training dataset by combining different training images and applying data augmentation
methods. The created data set is then used to train a machine learning model for object
recognition. The training however can take a longer time, and as soon as the model is trained
with desired performance, the application creator receives a notification and can download
the trained model and integrate it into ISAR. After the new object recognition and tracking
package is integrated into ISAR, the physical objects detected by this package are available
for defining scenes. Relying on natural features, a robust markerless object recognition and
tracking puts some constrained on the properties of the objects that can be detected as well as
on the lighting conditions. The objects should not be too small (roughly less that 5 cm) and
the different object classes must not be too similar to each other and have distinctive features.
The lighting condition in the execution mode must be similar to the lighting condition as the
training set was created.

62 Requirement Specification

Fig. 3.4 In order to add new physical objects to ISAR, they must be first defined. To
define a physical object it must be assigned a name, a reference image, and a marker-based
or markerless object recognition and tracking model must be integrated into ISAR that
recognizes this object.

3.3 Functional Requirements 63

3.3.2 Executing ISAR Applications

The application user executes ISAR applications in execution mode. An ISAR application
consists of the description of the scenes, including physical objects and virtual annotations,
the description of interactions, object recognition and tracking packages, and any media file
needed for annotations, such as images, audio and videos. All the content of the application
are packaged in a redistributable zip file.

In order to run the application, the application user opens the ISAR application in ISAR
execution mode. In the runtime, the scenes are projected on the tabletops. The scenes are
rendered and projected on the tabletop. The annotations are either rendered at fixed positions
on the tabletop or, if attached to physical objects, are rendered based on the position and
orientation of the object on the table.

The interactions of application user with the tabletop and projected annotations are governed
by interaction rules defined by application author. The application user interacts with the
table by manipulating objects and selecting different objects and annotations. Putting an
object on the table, placing an object at a specific position, picking an object, moving the
hand over an object are some of the examples of how the application user interacts with
the objects on the table. Selecting annotations, e.g. a video, on the scene is another kind
of interaction that happens with digital content. In additions, the passing of time itself can
be seen as a kind of interaction with table. Based on the interaction rules defined by the
application creator, the table responds to the interaction events with an action. For example,
a workflow guidance application, the application creator might have defined a rule like "If
pincers is picked at current step, give an audio warning hint". When the application user
picks the pincers, the audio warning hint is played. Based on the interaction rules, an event
might also trigger implicit transition to another scene.

3.3.3 Extending ISAR

The abstractions for designing the projected scenes and the interactions offer application cre-
ators the possibility to define the application content by themselves and without dependence
on programmers. Yet, the set of abstractions offered by ISAR must be extensible in order to
support new and unforeseen scenarios. To this end we define a third actor, the framework
extender, whose job is to extent the functionality of ISAR. The framework extender is a
programmer and can extend ISAR in three aspects: by defining new annotation types, by
defining new event types, and by defining new action types that are used to define interaction

64 Requirement Specification

Fig. 3.5 The application user sees the scenes projected on the tabletop and interacts with
the objects and digital content according to the interaction rules defined by the application
author.

rules (figure 3.6). The new annotation, event, and action types can then be used by application
creators to define scenes and interactions.

ISAR Framework offers base classes and functionality for annotations, events, and action
and how to they are used to create scenes and interactions. The framework extender adds
new annotation, event, and action types by inheriting from these classes and implementing
the required functionalities and providing the required specification. Appendix C describes
the details of extending ISAR framework.

3.4 Non-functional Requirements

ISAR is envisioned as an authoring and runtime system for real-time interactive applications
that run on a tabletop. To achieve this goal, ISAR must fulfill the following non-functional
requirements:

• Authoring of Application Content for the Interactive Tabletop: ISAR should allow
the application creators to define the content and the interactions that make up an
application that runs in real time on the interactive tabletop.

3.4 Non-functional Requirements 65

Fig. 3.6 The framework extender extends ISAR by adding new annotation types, new event
types, and new action types to the framework.

– WYSIWYG Authoring: ISAR should provide the application creators with a
WYSIWYG (What You See Is What You Get) authoring system. The definition
of the scenes should exactly correspond to what is projected for the application
user on the table in execution mode. The application creator should be able see
the scene as it is being created and be able to test the interactions, object and
hand tracking, and the situated rendering of the multimedia content during the
authoring.

– Rich set of Annotations: ISAR’s Authoring System should provide application
creators with a rich set of annotations that can be used to define scenes for different
scenarios. This should include simple geometric shapes like line, rectangle,
circle, curve, and arrow; multi- media content like text, video, audio, and image;
dynamic annotations like timer, counter, and animation; and interaction elements
like touch buttons, checkboxes, object placement areas, and feedback annotation.

– Definition of Interactions: The application creator should be able to define how
the application user interacts with the table and define the changes in the scene as
the response to application user’s actions.

• End user Programming: Defining the application content in authoring mode and
using the application in the execution mode should not require any programming skills.
The use of ISAR’s Authoring System should be self-explanatory and simple to learn.

66 Requirement Specification

It should not require any previous knowledge about Augmented Reality and Interactive
Tabletops and their underlying technologies. The step of the camera-projector system
should be simple and an application creator without any technical background should
be able to acquire the required camera and projector from consumer market and setup
the system hardware.

• Reusability and Adaption of ISAR Applications: The application content created
using ISAR should be easy to change an adapt for new scenarios. The application
creators should be able to persist their projected created by ISAR’s Authoring System,
and reload the projects later for adaption and editing.

• Scene Rendering and Projection of the Application Content on the Tabletop: In
the execution mode, ISAR’s runtime system should render the application content for
situated projection on the tabletop. The coordinate transformations between defined
scene and tabletop scene should happen automatically and the annotations should be
rendered according to position and orientation of physical objects on the tabletop.

• Object Recognition and Tracking: For situated rendering of the content on the
tabletop, ISAR should recognize physical objects as defined by the application creator.
ISAR should support both markerbased and markerless object detection and tracking.
ISAR should have an accurate estimation of the position and orientation of tho objects
on the tabletop with an error of maximum 10 pixels. The position of one hand on
the tabletops should be tracked and determined as well with an error on maximum
10 pixels. Additionally a tracked selection stick should allow application users to
interaction with the table, e.g. to select objects and annotations.

• Extensibility: ISAR should be extensible in two aspects. For creating the content
for new scenarios, the application creator should be able to reuse already created
applications and extend them by adding and adapting new scenes and adding new
physical objects to the set of objects recognized by application. Adding new physical
objects to ISAR should not require any technical background and ISAR should provide
a simple GUI for the application creator to label new objects. For the marker-based
object tracking, the application creator should be able to associate markers with
physical objects. For the markerless tracking, the GUI should allow application creator
to create an object detection dataset, and train an object detector that can be added to
ISAR from the GUI.
ISAR should also be extensible by a programmer to add new annotations and interaction
types.

3.4 Non-functional Requirements 67

• Performance: Object detection and tracking and situated rendering of the scene should
allow a frame-rate of at least 20 frames per second. The application users should not
notice any delay in rendering of the scene on the table and response of the system to
their interactions.

Chapter 4

ISAR Framework and Authoring
Environment

In this chapter we describe the conceptual model of ISAR framework for creating interactive
augmented reality tabletop applications by end user. ISAR Framework is designed to fulfill
the requirements described in previous chapter. Following the conceptual model, we describe
the system architecture and implementation details of ISAR and its two main application
components ISAR Authoring Environment and ISAR Execution Environment.

ISAR has two separate usage modes: Authoring and Execution. In Authoring mode, the
application creator designs the applications as a set scenes and interactions. In Execution
mode the scenes are projected on the tabletop and the application user interacts with the
application. ISAR targets application creators and application users with not technical
background in computing, programming, and augmented reality. Simplicity towards the end
user is one of design goals of ISAR. The hardware configuration for an interactive table
based on ISAR is hence simple and consists only of a webcam and a consumer projector
hanged on top of worktable.

4.1 ISAR Framework

The application content for an ISAR application are packaged in a project. A project is folder
on the file system that contains all the files that are required for projection of application
content on the table. This includes the description of the scenes, workflows, and interactions,
as well as all media files included on the scenes like images, audio files, and video files.

70 ISAR Framework and Authoring Environment

Fig. 4.1 Overview of Application Content Model in ISAR. Application content consists of a
sequence of scenes consisting of multimedia annotation and physical objects. The interaction
with the application is governed by interaction rules.

The UML class diagram in figure 4.1 shows an overview of ISAR’s Application Content
Model. The project is the container for the application content. The application is defined as
a sequence of one or more scenes. Each scene consists of a set of annotations and physical
objects. Annotations can be fixed on the scene, or attached to physical objects. In the
latter case, the annotation is rendered on the scene based on position and orientations of
the physical object. If the annotation is a multimedia annotation (image, audio, video) the
corresponding media file is also contained in the project folder.

The application can contain a workflow. A workflow is defined as an ordered sequence of
scenes, one scene for each step of the workflow. The project can also contain exercises. An
exercise is also represented using a scene.

The interaction of the application user with the application and physical objects on the
tabletop is defined by the application creator in interaction rules. Each scene can have a set
of interaction rules. An interaction rule is a pair consisting of an event and action. The event
signals a specific state of the interaction, such as ’physical object put on the table’, and the
action defines the response of the table, for example as a change in the scene.

4.1.1 Scene

Figure 4.2 shows an overview of the scene model in ISAR. A scene is a combination of
physical objects and digital content, called annotations, that are projected on the table.

4.1 ISAR Framework 71

Fig. 4.2 Scene model: Annotations and physical objects are added to the scene. Annotations
can be fixed on the scene or attached to physical objects. For extensibility AnnotationProperty
is the super class for different annotation properties.

Application creator defines scenes by placing annotations and physical objects on the scene.
When a physical object is added to the scene, its template image is shown on the scene
in ISAR authoring environment. In the execution time, the object tracking component of
ISAR determines the orientation of physical objects on the table with respect to this template
image.

ISAR offers different kinds of annotations for defining the scenes (figure 4.3). Simple
geometric annotations, including line, rectangle, ellipsis, arrow, and curve, can be used to
design scenes. These geometric shapes can have different colors and thickness and can
be filled or empty. The curve annotation can further be used for hand-eye coordination
exercises. Multimedia annotations can be used to add text, image, audio, and video to the
scene. Dynamic annotations include annotations that change their properties with time or
as the result of user’s interaction. These include timer, counter, relationship, and animation.
The relationship annotations is a labled line connecting two physical objects and shows their
relationship. The animation annotation can also be used for hand-eye coordination exercises.
Finally, interaction annotation can be added to the scene for capturing user’s interaction
(see 4.1.2) or show feedback. Action button can be selected by the user to trigger an action.
Object placement area triggers an object placement event whenever an object is placed in

72 ISAR Framework and Authoring Environment

Fig. 4.3 Different kinds of annotations can be used to define scenes for various scenarios.

this area. The feedback annotation shows a feedback image, text, or plays a feedback audio
based on interaction rules defined by application creator.

Annotations can be fixed on the scene, or attached to a physical object. If attached to a
physical object, the position and orientation of the annotation are determined in the object’s
coordinate system. Each annotation has a set of properties. Position, name, and visibility are
common to all annotations. Other properties are based on type of annotation, for example
an image annotation has a size and and image path. Appendix A lists all the annotations in
current version of ISAR, their properties, and how they are rendered on the tabletop.

One of the main application domains for ISAR application are educational applications.
The purpose of an educational application is to support improvement of student skills.
Accordingly, ISAR supports the concept of skills. Each annotation can be associated with
a skill level. There are three skill levels: beginner, intermediate, and advanced. In the
execution mode, the application user can select the skill level. In that case, only annotations
corresponding to that skill level are shown.The skill level can also be defined for an entire

4.1 ISAR Framework 73

Fig. 4.4 A workflow is an ordered sequence of steps, each associated with a scene.

scene. In that case it is applied to all annotation of that scene. For example a scene
for a beginner skill level might have more detailed instructions compared to a scene for
intermediate user. By associating skill levels to entire scenes, it is also possible to define
skill-oriented workflows. The sequence of scenes constituting a workflow can be different
based on the selected skills.

Workflows

An ISAR application can contain one or more workflows. A workflow is a sequence of
scenes, one scene for each workflow step. The workflow is defined by ordering the scene in a
navigation flow that determines the start scene, end scene, and the ordering of the scenes.
Each step of the workflow is associated with one scene. The transition between the steps
happens either explicitly, for example by selecting a ’next’ button, or implicitly based on
interaction (see interaction model 4.1.2), for example as the result of placing a physical
object at a designated position.

The standard navigation flow for the scenes of a workflow determines the next and previous
scenes. It is also possible to define scenes that are not part of the navigation workflow, for
example a help scene that shows help for specific step of the workflow. These scenes must be
shown explicitly. At the execution mode, the execution environment of ISAR keeps track of
the scenes as they appear. This allows going back and forward between scenes, in addition to
the standard navigation flow.

Exercises

Having educational applications in mind, it is also possible to create different kind of
exercises (figure 4.5) by combining annotations and interaction rules (4.1.2). For example
the checkbox annotations can be used to create multiple choice exercises that are projected
on the table. The multiple choice exercises can also have physical objects as answer, because
checkbox annotations can be attached to physical objects. It is also possible to create exercise

74 ISAR Framework and Authoring Environment

Fig. 4.5 Different kinds of exercises that can be defined in ISAR by combining different
annotations and interaction rules.

that involve selecting objects by defining interactions rules or exercises for placing objects
at a specific position by using an object placement area annotation and configuring the
corresponding interaction rules.

A specific kind of exercise supported by ISAR are hand-eye coordination exercise. Using
curve annotation and animation annotation it is possible to create exercises that training of
motor skills, for example by following a projected path on the tabletop.

4.1.2 Interaction

In order to create and interactive application, the application creator must be able to specify
the interaction of the application user with the objects on the tabletop and the with the
projected scene. Interaction rules allow specification of interactions without the need for
programming. An interaction rule is a pair consisting of an event and an action (figure
4.6). When the event of a rule is detected, the action is triggered. An event can come from
different sources, such as annotations, scene navigation, time, or manipulation of the the
physical objects. An action in turn can change the state of the scene, annotations, or physical
objects.

Events are triggered as the application user interacts with the physical objects on the tabletop
or with the projected annotations (figure 4.7). Event sources trigger events. An event source
can be a scene, for example when the scene appears or disappears, annotation, for example
when an annotation is selected, or physical objects, for example when physical object is
placed on the table. Passing of the time is also another source of events that is triggered by
timer annotations. Each annotation has a set of events that can be fired when the state of
annotation changes. Figure 4.8 shows the different kinds of event in current version of ISAR.
The application creator configures an event in ISAR’s Authoring Environment by selecting
its type, it source, and configuring values for event properties, if any.

4.1 ISAR Framework 75

Fig. 4.6 Overview of the interaction model in ISAR. The application creator defines an
InteractionRule as a pair of Event-Action. As the application user interacts with the tables,
e.g. by manipulating physical objects, Events are triggered. If the triggered event matches
the event of an interaction rule, the Action of that rule is performed, which affects the state
of the table, for example toggling visibility of an annotation or playing a sound.

Events are triggered either by observer threads, for example the hand tracking service triggers
an event whenever the hand is over an object, or by annotations, for example the timer
annotation triggers an event when a defined timeout is reached.

Actions are used to define the system’s response to user’s interactions, for example by
changing the state of the scene. Figure 4.9 shows different kinds of actions available in
current version of ISAR. There are actions for scene navigation, changing the visibility
of annotations, starting and stopping timers, videos, and audios, and highlighting physical
objects or specific parts of the scene. Composite actions allow combining several actions
into one. Composite actions can either be parallel composite action, or sequential composite
action. For a parallel composite actions, all the sub-actions are performed in parallel, when
the composite action is to be performed. For a sequential composite action, the sub-actions
are performed one after another in the defined order.

An action can have a target. This is the scene, annotation, or physical object whose state is
changed by the action. Similar to events, the application creator configures actions in ISAR’s
Authoring environment by defining action type, action’s target, and actions properties.

76 ISAR Framework and Authoring Environment

Fig. 4.7 Interaction model classes in details. Event sources trigger events. Actions affect
targets. Events and Actions can have properties for their parameters.

In execution mode of ISAR, an observer thread listens for all the different event types that
are triggered. When an event is triggered, it is compared with the event part of all the define
rules. If there is any rule whose event part matches the triggered event, it is fired; that is,
its action is performed. In addition to being performed when a rule is fired, the actions can
also exist as stand-alone actions that are performed explicitly by user. For example an action
button can be used to perform a scene transition action.

4.1.3 Object Detection and Tracking

Rendering of annotations on the tabletop and different interactions require tracking the
position and orientation of the physical objects. Other interactions like selection of the
objects or annotations on the table, and picking and moving of the objects require tracking
the position of a selection stick and the hand. ISAR provides markerless and marker-based
tracking of the objects and marker-based tracking of a selection stick and the hand.

Scene annotations that are attached to a physical object must be rendered according to the
position and orientation of the object on the table. Object detection and tracking is used
to determine the position and orientation of the objects. We use the term object pose to
refer to the combination of position and orientation. Beside rendering of the annotations,

4.1 ISAR Framework 77

Fig. 4.8 Different kinds of events in ISAR. Events are triggered for Annotations, Physical
Objects, or Scene.

Fig. 4.9 Different kinds of actions in ISAR. Action can have Annotation, Physical Object, or
Scene as target.

78 ISAR Framework and Authoring Environment

different interaction events related to manipulation of objects, such as picking and object or
placing an object in a specific area on the table, or removing an object from the table, require
object detection. In order to create their own applications, end users must be able to create
their own object detection and tracking packages and integrate them into ISAR. We took a
plugin approach for extending ISAR with new object detection packages. ISAR supports
both marker-less and marker-based object detection and tracking. For both approaches we
provide a GUI for the user to automatically create the object detection package that is then
integrated into ISAR’s plugins folder or into their application package.

Figure 4.10 shows the object detection model of ISAR. The object detection service provides
a single point of access to all available object detection packages. When the service starts, it
searches the object detection plugin path of ISAR authoring or ISAR runtime application
to find the existing object detection packages. An object detection package must provide at
least two things:

• An object detector descriptor: This is a Pyhthon module with the name objectdetec-
tor.py. The object detector module must provide the description of all different physical
objects that can be detected by this module. This list includes the names of physical
objects and the path to their corresponding template image.

• A folder containing the template image for each of the detected objects.

For each object detector found in the plugins folder an ObjectDetectionWorker process is
created. This process loads the actual object detector module and forwards requests for object
detection to it. Each object detection worker process has also a corresponding observer thread
that waits for the object detection results to become ready and calls an asynchronous callback
with the results. ObjectDetectionPrediction objects contain the result of object detection.
Each object contains the name or label of the detected objects as well as their position and
orientation.

This design fulfills the requirements of extensibility and realtime performance (see 4.3.1).
By adding new object detection packages new physical objects can be used to design scenes
in an ISAR application. Object detection works independent of how internally the object
detection package detects objects and estimates their pose. Furthermore, the asynchronous
call to object detectors allows continuous updating of object detection information regardless
of how long it takes for different object detectors to return the position and orientation of
their corresponding objects. In this way object detection is not blocked by the slowest object
detector.

4.1 ISAR Framework 79

Fig. 4.10 Object detection model of ISAR. New object detection packages can be add as
plugins by dropping them into the respective plugin folder or by integrating them into ISAR
application package.

80 ISAR Framework and Authoring Environment

ISAR provides a GUI tool for creation of both marker-based and markerless object detection
packages. The markerless object detection relies on YOLO v3 [RF17] CNN model and 2D
euclidean pose estimation based on AKAZE [AS11] feature descriptors. Details of the pose
estimation method and the object detection network can be found in appendix B.

The GUI and a server process allow user to create the dataset for training the machine learning
model for markerless object detection. The user puts the objects on the tabletop and sees
them in a camera stream, that he can pause. When the camera stream is paused, bounding
boxes of all them objects are automatically detected and the user can assign labels to each
bounding box. This creates a training sample. The user only needs to create few samples and
system uses data augmentation techniques to create a training dataset. The training dataset
is then sent to the sever and training of the model starts. When the adequate accuracy is
reached, the users gets a notification and can download the complete object detection package
including the trained model and integrate it into ISAR.

For creation of the marker-based object detection packages, ISAR provides a simple GUI
that allows user to associate markers with objects. Marker-based object detectors use ArUco
markers [GJMSMCMJ14] and the corresponding tracking library. The markers must first
be attached to the objects. The users put the objects with the markers attached on the table.
In the video stream of the tabletop, then user can select the bounding box or each object
and assign it a label. The advantage of the marker-based approach is its simplicity and fast
creation of object detection packages. The disadvantage of this approach is that exactly the
same marker must be attached to the objects in the execution mode.

In addition to object detection and tracking, ISAR provides hand tracking and interaction
using a tracked selection stick. For both hand tracking and selection sticks we use ArUco
markers. For hand tracking a marker should be attached to a glove that must be worn by
the application user in execution mode. A marker is also attached to the tip of the selection
stick. The application user or application creator can configure in the setting which marker is
attached to selection stick and glove. In spite of the obtrusiveness of the markers, we decided
to use marker-based tracking for hand and selection stick interaction because of its simplicity,
speed, and reliability.

4.1.4 ISAR Framework as a Meta-model

ISAR Framework provides abstractions and functionality that is used to create and run
interactive tabletop applications by non-technical users. These abstractions and functionalities

4.1 ISAR Framework 81

Fig. 4.11 ISAR Framework can be considered a meta-model at level M2 of the Meta Object
Facility. This meta model is used by application creator to create an ISAR application for a
specific scenario.

are provided to the application creator through the authoring environment. In this way, we
can consider ISAR Framework as a meta-model that describes the models created by the end
user. The Meta Object Facility [Poe06] by Object Management Group (OMG) provides a
formalism for describing such meta-models. MOF consists of four layers:

• Layer M3: At the highest level the constructs of meta-meat-model, such as Class, are
provided by the Meta Object Facility

• Layer M2: The constructs from layer M3 are used in layer M2 to create a meta-model.
A meta-model is a model that describes a model. Frameworks are often defined at this
level.

• Layer M1: At this layer the framework users use the constructs provided by the
meta-model to create their own models for their corresponding scenarios.

• Layer M0: This layer finally corresponds to the real-world, where the instances of the
user’s defined model are created and worked with in the application.

Figure 4.11 shows the relationship of ISAR Framework to Meta Object Facility. ISAR
Framework is a meta-model at layer M2 of MOF. The abstractions provided by the ISAR
Framework are instantiated and used by the application creator in order to created ISAR

82 ISAR Framework and Authoring Environment

applications. ISAR applications can in turn be considered as models of the specific problem
scenario that the application creator needs to address. Finally, at the execution time, an ISAR
application is instantiated and the application user interacts with real instances of physical
objects and virtual information in form of scenes projected on the tabletop.

4.2 Authoring and Execution Environment

ISAR consists of a camera-projector setup, an authoring system for creating applications,
an execution environment for running applications, and the utilities for creating object
recognition and tracking packages. Figure 4.12 shows the hardware configuration of the
system. The hardware configuration consists of a simple webcam and a consumer mini or
pico projector, that must be hanged on top of a table. The end user is free in the choice of the
webcam and the projector as long as they both support at least HD resolution. The projector
and the camera should be placed on top of the table in a way that the projection area of the
projector is visible in field of view of camera. The background of the table should be of
white color for better detection of the objects and visibility of the projected information. Two
markers at top-left and bottom-right define the boundaries of the scene on the tabletop. All
coordinates of the scene are defined with reference with the (0, 0) point of the scene at the
top-left corner of the scene. In the authoring application the camera image is cropped so that
only the scene boundary is visible for defining the scene. In the projection mode, a rectangle
is projected around the scene boundaries for better orientation of the application user.

Figure 4.13 shows the ISAR Authoring environment and its different parts. The authoring
mode provides a WYSIWYG (What You See Is What You Get) environment for the applica-
tion creator. Application creator can see the scenes exactly as they would be projected on
the table in the authoring mode. Defined interactions and object tracking can also be tested
exactly as they would be used in the execution mode. The application creator see the camera
stream from the camera on top of the table in the scene viewer (1). The camera image is
cropped at the scene boundaries defined by the two markers. In the scene list area (2 and
3) application creator can see a list of scenes, add new scenes, delete scenes, or change the
order of the scenes and define a default navigation flow. Annotations can be added to the
scene by using annotation tools (4). The application creator activates an annotation tool and
uses the mouse two draw the annotation on the scene. Annotation can also be selected and
deleted and changes to the scene can be undone or redone (5). Selecting an annotation on
the scene or on the list of annotations (6) shows its properties in the properties view (7).
All annotations types have a set of common properties such as position and attach_to, that

4.2 Authoring and Execution Environment 83

Fig. 4.12 Camera-Projector setup. Using a projector and a webcam, every ordinary tabletop
can be used for ISAR applications.

define the position of the annotations and if it should be rendered with respect to a physical
object. In addition to that, each annotation type has a different set of properties that all can
be dynamically changed in the properties view. The physical objects view (8) shows a list
of all physical objects that can be recognized and tracked based on existing installed object
recognition and tracking packages. The application creator adds a physical object to the
scene by dragging and dropping it on the scene. Dropping a physical object on the scene
renders its template image. If annotation is attached to the physical object, its position is
with reference to the template image. A coordinate viewer at the bottom right of the scene
viewer shows the coordinate of the mouse cursor both with respect to the physical object
and the scene. If object tracking is activated (9) and the scene physical objects are put on
the table, the object is tracked instead of its template image being shown. dgfm. In this
case all annotations attached to the objects are also rendered according to their position and
orientation. In this way, the application creator can directly test the application from the
authoring environment.

Different annotations can be added to the scene. For example the scene in figure 4.13 shows
an arrows annotation attached to the physical object lineman pliers, an image annotation
showing a toolbox, a video annotation showing who to use a lineman pliers, an audio

84 ISAR Framework and Authoring Environment

Fig. 4.13 The WYSIWYG authoring environment of ISAR. In the authoring mode, the
application creator sees the scenes exactly as they would be projected at execution mode.

annotation that pronounces the name lineman pliers, geometric shapes line, circle, rectangle,
and an action button that changes the scene when selected.

The application creator adds each annotation by using the corresponding annotation tool
from toolbar. Annotation tool classes are also responsible for rendering annotations. In
drawing mode, annotation tool responds to mouse interactions of application user to draw
the annotation on the scene. For example for drawing a rectangle, application creator select
the rectangle annotation tool, then clicks on the desired position on the scene and drags
the mouse to desired size of the rectangle. When the user releases the mouse, a rectangle
annotation with the corresponding size is added to scene at the corresponding position. The
application creator can now configure other properties of this annotation such as its color
and line thickness, and including its position and size. For the annotations that need a media
file, such as image, audio, and video annotations, the application creator can select the media
file from file system. The media file is then copied to the project folder and is used for
rendering the annotation on the scene. When the application is packaged all media files are
also contained inside the application package.

4.2 Authoring and Execution Environment 85

Fig. 4.14 Interaction rules are defined as event-action pairs. The application creators uses the
interaction dialog to configure the events and actions that are then used to create interaction
rules.

Figure 4.14 shows the dialog for defining interaction rules. An interaction rule is defined
as an event-action pair. ISAR provides a set of event types that correspond to different
states of the scenes, annotations, and physical objects. The application creator selects an
event type and configures its parameters. For example for a SelectionEvent that application
creator selects which object or annotation is the target of selection event. ISAR also provides
several action types that can change the state of the scenes and annotations. Similarly,
application creator selects an action type and configures its parameters. For example for a
HighlightPhysicalObjectAction the application creator selects which physical object should
be highlighted and with which color or for StartAudioAnnotation he configures which audio
annotation on the scene must be played. Finally, after defining and configuring events and
actions, the application creator creates interaction rules as event-action pairs. For each
interaction rule the application creator selects which event should trigger which action. For
example a rule can be like "Upon SelectionEvent on Lineman Pliers do StartAudioAction for
LinemanPliersName", where a physical object with the name Lineman Pliers and an audio
annotation with the name LinemanPliersName must exist on the scene.

The event detection service observes all the events that happen on the table and when an
event of the defined type and configuration happens, it triggers the event. Consequently the
interactions rules service gets notified of the event and checks among all the interaction rules,
if there is a rule with the given event as premise. If such a rule is found its corresponding
action is executed.

The application creator can directly test the interactions from authoring environment. For
example the application creator may create a scene that contain a physical object and an

86 ISAR Framework and Authoring Environment

Fig. 4.15 In execution mode the application content is projected on the tabletop. Physical
objects are tracked and annotations attached to them are rendered according to their position
and orientation. The interactions of the application user and response of the system is
governed by the defined interaction rules.

audio annotation for saying the name of that object, and an interaction rule like "if object
selected, play the audio annotation". Right after defining the scene and the interaction rule,
the application creator can put the object on the table, enable object tracking in authoring
mode, and point to the object using the selection stick. This interaction will then play
the audio annotation. In this way the application creator can test and adapt the scene and
interaction right at the same time and environment as he is designing the scene.

At any time during designing the application the application creator can save the project.
This saves the application structure, including all the scenes, their contained annotations
and physical object, and all the interaction rules into a JSON file. After all the scenes and
interactions are designed, the ISAR application can be saved and packaged for delivery
to application user that uses the execution environment for running the application. The
application package contains the project file describing all the scenes and interactions, all
the media files needed for multimedia annotations, and the object recognition and tracking
packages that were used during authoring.

ISAR’s Execution environment is used to open and run an ISAR application. The execution
environment consists of two views. A small view in which the application user opens the
ISAR applications, can use mouse to select different scenes directly, can calibrate the camera
and projector, and can configure different settings. The application itself runs in the projector
view which renders the application content to be projected on the tabletop (figure 4.15).

The projector view in execution environment and the scene viewer in the authoring envi-
ronment both use the scene renderer component to render the scene. The rendered scene

4.2 Authoring and Execution Environment 87

Fig. 4.16 To determine the transformation between the camera and the projector coordinates
a known chessboard pattern is projected on the tabletop and the transformation is determined
from set of correspondence points. The image on the right shows the reprojected chessboard
points designated using circles. The markers for scene boundaries can be seen as well.

is an image of the scene boundaries on which all the annotations and graphical elements
of the scene are drawn. In the authoring mode, this rendered scene is then overlapped with
the camera image and shown in scene viewer. In the execution mode, the rendered scene is
projected on the tabletop. This design allows for the WYSIWYG authoring, in which exactly
the same rendered scene is either shown in scene viewer or is projected on the tabletop.

Several coordinated transformations must happen in order to render the scene and show it
in the scene viewer and projector view. The scene boundaries are specified by two markers
at the top left and bottom right corners of the scene on the tabletop. In the authoring mode,
the image obtained from camera is cropped to the scene boundaries. This cropped image
is the scene image on which all the annotations are rendered and which is shown in the
scene viewer. All positions, for physical objects, annotations that are fixed on the scene, the
tracked selection stick and glove, are with reference to (0, 0) of the cropped scene image.
The scene image is resized to the size of scene viewer in the authoring window. For correct
positioning of the annotations when they are added to the scene by mouse interaction, the
mouse coordinates on the scene viewer must be transformed to scene coordinates. This is
achieved by multiplying the mouse coordinates with the ratio between the size of the scene
image and size of the scene viewer.

In execution mode all coordinates must be transformed to projector coordinates. For this
transformation, first the scene boundaries in the coordinates systems of the projector must
be determined. The scene boundaries are determined with the markers that are seen by the
camera and in order to transform them into the coordinate system of the projector we need

88 ISAR Framework and Authoring Environment

the transformation between camera and projector coordinates. This is achieved by camera-
projector calibration. The projector projects a known chessboard pattern on the tabletop.
This image is seen by the camera and the chessboard corners are determined. This gives
us a set of correspondence points between projector and camera coordinates using which
we calculated the transformation (figure 4.16). Since both camera and projector images are
planar, the transformation is a homography.

The camera-projector homography allows us to transform camera coordinates to projector
coordinates. Using the coordinates of the two scene boundary markers at the corners of the
scene, the coordinates of the scene boundaries in the projector image are determined. This is
the scene image in projector coordinates. Using the camera-projector homography all the
scene coordinates of annotations are transformed to the projector coordinates and annotations
are rendered on the scene image. The scene image is then placed inside the projector image
that is projected on the tabletop.

The annotations that are attached to physical objects are rendered with reference to the
coordinate system and orientation of the physical object. The (0, 0) point of the coordinate
system of a physical object is the upper left corner of its bounding box returned from object
recognition and tracking component. The position of the annotation is with respect to this
origin point. All other coordinates of the annotations, for example end points of a line
annotation, are then determined based on the affine transform of the object’s pose calculated
by the object detection and tracking component.

4.3 Architecture

This section presents the design goals and the proposed architecture of ISAR. Design goals
are extracted based on the non-functional requirements from chapter 3 and justify the design
decisions for the proposed architecture. The architecture of ISAR describes its different
components and how these components interact with each other.

4.3.1 Design Goals

Design of ISAR is based on the following design goals:

• End user Programming: ISAR is motivated by enabling end users with no technical
expertise in programming and augmented reality, to create their own augmented reality

4.3 Architecture 89

interactive tabletop application without the need to consult a programmer. ISAR
should provide an authoring systems for creation of interactive tabletop application
with no programming. Furthermore to address the usability for non-technical users, the
authoring system should allow users to see and test the application as they are creating
it (WYSIWYG). ISAR should support creation of interactive tabletop application
for different scenarios, such as educational applications. To this end, a rich set of
annotations should be offered to the end user to design the projected scenes that
combine digital content with physical objects. In addition to designing the scenes, the
interactions should also be defined by the user without programming. Furthermore, to
lower the entrance barrier of non-technical users, ISAR should have a simple low-cost
hardware configuration.

• Domain-independence: ISAR should support interactive tabletop applications for
different application domains, such as educations, manufacturing, entertainment, and
medical rehabilitation. In order to create augmented reality interactive tabletop ap-
plications that combine digital content with physical objects, the end users should be
able to created object detection and tracking packages on their own and integrate them
into ISAR. Furthermore, an application that is already created should be reusable and
adoptable to new scenarios and event new domains. The users must be able to save
and share their applications and adopt them to new scenarios with minimal effort.

• Situated Projection of Application Content: The application content should be
projected on the tabletop exactly as the application creator designed it. The physical
objects on the table should be recognized and their presence, position, and orientation
should be tracked. The digital content attached to physical objects should be rendered
according to position and orientation of the corresponding physical object. Hand
tracking and a tracked selection stick should allow physical interaction and direct
manipulation of the application content on the tabletop. Object recognition and tracking
as well as hand tracking and tracking of the selection stick should be robust and accurate
to allow uninterrupted natural interaction with application content. The performance
for rendering of the scenes and response of the system to user’s interactions should
allow smooth real-time interaction of the user and the application.

• Extensibility: The ISAR framework and the authoring and execution environments
should be extensible. A programmer should be able to add new annotations for design-
ing the scenes, and add new event and action types for defining new interactions. This
is in addition to reusability and adaptability of ISAR applications created by the end
user. This design goal addresses the need for extending the framework and authoring

90 ISAR Framework and Authoring Environment

Fig. 4.17 ISAR subsystems. Authoring and Execution environments both depend on Scene
Renderer to present the scenes and annotations. The state of the scenes and annotations are
updated by Object Detection and Tracking component and the Interaction component.

and execution environments to support new scenarios and application domains not
foreseen in the current version of ISAR.

4.3.2 Subsystem Decomposition

The architecture of ISAR is based on the repository architectural style [BD03] with the
scene as the central repository concept that is updated and queried by other components.
Furthermore, in order to fulfill the design goals of real-time performance and extensibility,
we took a service-oriented approach to support flexible and fast communication between
loosely coupled service components. Different components run in separate processes and
offer interfaces for both synchronous and asynchronous service calls. A service registry
manages the unified startup, shutdown, and access to the services.

Figure 4.17 shows the main components of ISAR and how they depend on each other. In
both authoring and execution mode application runs in the main UI loop that coordinates
the communication between services by passing the data to services and rendering the scene

4.3 Architecture 91

based on the results. Each cycle starts by getting the image of the tabletop from camera
service, passing it to object detection and tracking and getting the pose of the existing objects
on the table, and rendering the annotations. In authoring mode the annotations are rendered
on the camera image which is then shown in the scene viewer. In execution mode, the
annotations are rendered on an empty scene image that is projected on the tabletop.

Leaning on repository pattern [BD03] the Scene and Annotations component is the repository
instance that services update or query. For example the object detection service updated
position and pose of the PhysicalObject instances that are present on the scene, or the
interaction service updated the visibility state of annotation or issues scene transitions based
on user’s interactions. The scene render in turn queries the current scene and renders its
annotations on the scene image which is shown in scene viewer in authoring mode or is
projected on the table in execution mode.

The Authoring component contains all the classes that are needed for the authoring envi-
ronment. These include the scene viewer, the annotation tools and annotations toolbar, the
properties view, the physical objects view. The authoring component also manages user’s
interactions and handles mouse events for drawing annotations on the scene and adding
physical objects to the scene. The authoring component also contains the classes needed for
saving and loading ISAR applications. The Execution component contains the UI for loading
the projects and the classes needed for running and ISAR application.

Both authoring and execution component use the Scene Renderer component for rendering
the scene. In Authoring mode the rendered scene is shown in the scene viewer. In execution
mode the rendered scene is on the tabletop using Projector component. Scene renderer queries
the Scene and Annotations component for the current scene and renders all the annotations
of the scene either on the tabletop image obtained from camera service in authoring mode
or on the scene image projected on the tabletop in execution mode. For every annotations
on the scene, the scene renderer calls the draw method of the corresponding annotations
tool, which draws the annotation based on its properties values. The scene renderer is also
responsible for coordinate transformations between camera, projector, scene, and physical
objects. For annotations that are attached to a physical object, the scene renderer transforms
their coordinates with reference to the position and orientations of the physical object.

The Scene and Annotations component contains abstractions for scene, annotation, physical
object, and the project. In authoring mode the application creator creates instances of these
abstractions using Authoring environment and saves them into an ISAR application. In
execution mode instances are created from the loaded ISAR application. For all the physical
objects that are added to a scene, the object detection and tracking component continuously

92 ISAR Framework and Authoring Environment

updates the current position and orientations of the objects if they are physically present on
the tabletop. When the objects are physically removed from tabletop, the tracking component
also updated the list of scene objects that are present or removed from the table. The
interaction component also updated the scene object mode based on user’s interactions. For
example it toggle the visibility of annotations, or starts video and timer annotations, or
triggers the selection event of action buttons, and so on.

The Object Detection and Tracking component contains the classes for detection and tracking
of the physical objects as well as hand tracking and tracking of the selection stick. For object
detection and tracking this component acts as the abstraction layer between authoring and
execution environment and the actual object tracking packages. The actual tracking of the
different physical objects are performed by the object detection and tracking plugins. The
object detection and tracking service delegates the object detection requests to all existing
plugins and waits for their results to become available without blocking the main application
thread. When the object detection results are available form any of the object detection
plugins, a callback is called that updated the list of present physical objects of the current
scene with the updated pose information. This design has three advantages: the computations
intensive operations, such as markerless pose estimation does not block the main thread;
different object detection plugins can work in parallel and as soon as any result is available
the scene is updated; and the unified plugin structure and access API for object detection
allows for adding new object detection packages to ISAR making it extensible for new
application domains.

Finally, the Camera and Projector components hide the hardware specifics of the camera
and projector hardware and do the image processing operations such as resizing and color
conversion.

4.3.3 Control Flow

In order to achieve higher performance and maintain the desired frame rate, the object track-
ing, hand tracking, and selection stick tracking services run in their own separate processes.
Each process also has a corresponding observer thread that waits for the results and calls the
callback function when the result is ready. The interaction service, scene renderer, scene
viewer and projection service also run in separate threads. Threads communicate through
thread-safe queues with the main application thread. The processes communicate over multi-
processing queues with underlying OS constructs for inter-process communication.

4.3 Architecture 93

Fig. 4.18 The flow of control at each cycle of the tracking and rendering loop. The scene is
updated by object tracking and interaction component and rendered by scene render.

Authoring and execution environments both run in continuous tracking and rendering loop
that renders the scene for the scene viewer or for projection on the tabletop. The rendering
and tracking loop must run at least 25 times per second to maintain the 25 frames per
second requirement. Figure 4.18 shows the flow of control in each cycle of the tracking and
rendering loop. The diagram shows the flow of control for Authoring mode. The Execution
mode has the same flow of control at each cycle of tracking and rendering loop, with the
exception that the scene is not rendered on the camera image of the tabletop but on an
empty image that is projected on the tabletop. At each cycle, SceneViewer obtains the
current camera frame from CameraService and passes it to object detection and tracking
component. Object detection and tracking component runs in its own process parallel to
the authoring or execution application and waits for object detection requests. An object
detection request contains the image in which the pose of the objects must be estimated and
address of a callback method that is called as soon as the results are available. The result of
object detection updates the SceneModel. The scene model is the central repository which
is updated by object detection and tracking and by interaction components. The updates
include the new pose of object, and new state of the annotations such as their visibility, that
is changed base on the defined interaction rules. The call to object detection and tracking
is asynchronous. The scene viewer then sends a rendering call to the SceneRenderer. The
scene renderer queries the SceneModel for the current annotations and physical objects and

94 ISAR Framework and Authoring Environment

Fig. 4.19 The flow of control at each cycle of the tracking and rendering loop. The scene is
updated by object tracking and interaction component and rendered by scene render.

renders the scene based on pose of the objects and state of the annotations. The result of the
SceneRenderer is the rendered scene that is sent back to the SceneViewer to be shown in the
Authoring environment or projected on the tabletop.

Figure 4.19 shows the details of the control flow for object detection and tracking. The object
detection component is the facade [Gam95] that delegates the object detection request to
object detection and tracking plugins. The actual object detection and tracking is performed
by the plugins. For each object detection plugins the object detection service starts a worker
process that loads the plugin. Each worker process maintains a request and a response
queue. The request and response queues are multi-processing queues and use the underlying
inter-process communication construct of the operating system. Each worker also has an
observer thread that runs in the same process space as authoring or execution environment.
The SceneViewer sends a non-blocking call for detecting the physical objects present on
the tabletop to the ObjectDetectionService and passes the current image of the tabletop, and
a callback to be called when the results are ready. The ObjectDetectionService delegates
this call to all installed object detection plugins. For each observer-worker pair, the observer
thread creates an object detection request containing the image of the tabletop and puts it

4.3 Architecture 95

into the request queue of the object detection worker and waits on the blocking response
queue for the response to be available. The worker process that was blocked on the request
queue picks the request from the queue and passes it object detection plugin for estimating
the pose of the objects. The ObjectDetectorPlugin returns when the pose of the objects are
estimated. The worker process packages the predictions in an ObjectDetectionResponse
object and puts it into its response queue. As soon as the response is available in the queue,
the observer thread continues the execution and calls the provided callback with the result
of object detection. The callback then updated the SceneModel with the new pose of the
physical objects.

4.3.4 Packaging and Distribution of an ISAR Application

An interactive tabletop application created with ISAR must be packaged and distributed to
the application users to be executed in the execution environment. An application package is
a folder on the file systems containing the following elements:

• Project description file:.The project description file (project.json) contains a dump of
the application structure in JSON [Sev12] format. This file includes meta data about
the project, such as its name, creation dated, and the authors name. It also includes a
collection containing all the scenes, with their corresponding annotations and physical
objects, event, actions, and interaction rules. Additionally, information about the
projector and the camera, such as minimum required resolutions and the scene size are
persisted into this file. The project description file contains all the information that the
execution environment needs to load the project and project the scene on the tabletop.

• Media files: Video, audio, and image annotations are associated with a corresponding
media file. These media files are automatically copied into the application package as
the annotation is added to the scene.

• Object detection and tracking plugins: The physical objects added to the scene are
provided by object detection and tracking plugins. For theses objects to be detected and
tracked in the execution mode, that application package must contain the corresponding
object detection and tracking plugins used to create the application. Including the object
detection and tracking plugins into the application package, makes an ISAR application
a self-contained package that can be distributed regardless of the configuration of the
execution environment in which it should be executed.

96 ISAR Framework and Authoring Environment

At the start of an authoring project, the application creator is asked to select a folder on
the file system where the application is saved. As the application creator continues with
the authoring, the changes to the project description are automatically persisted. When
application creator adds multi-media annotations to the scene, the corresponding media file
(video, audio, image) is automatically copied to the application folder. When the authoring
project is finished, the application creator selects the packaging command from the menu.
The authoring environment then copies any object detection and tracking plugins, that were
used by the application, into the application folder and compresses the folder into one single
ZIP file, which application creator can distribute to the application users.

Chapter 5

Evaluation

ISAR provides end users with an authoring and execution environment to create interactive
augmented reality applications for the tabletop. In this regard ISAR can also be considered
as a toolkit confirming to the definition of a HCI toolkit by Ledo et al. [LHV+18]: “A HCI
toolkit is a generative platforms designed to create new interactive artifacts, provide easy
access to complex algorithms, enable fast prototyping of software and hardware interfaces,
and/or enable creative exploration of design spaces”. Based on a review of existing HCI
toolkits, Ledo et al. also identify four main evaluation strategies that are utilized for evalua-
tion: demonstrations, usage studies, technical performance, and heuristics. Demonstration
evaluations show what a toolkit can do and how it can be used to created a range of different
applications that exhibit the purpose and design goals of the toolkit. Usage evaluations are
used to show the usability of a toolkit often through user studies with a target group that
performs a set of defined tasks. Technical performance evaluations validate how a toolkit
addresses its non-functional requirements like accuracy and performance. Heuristics evalu-
ations validate the toolkit against a given set of design heuristics such as Schneiderman’s
golden rules of interface design [SPC+16] or Nielsen’s heuristics [NM90].

In this chapter we report on the evaluation of ISAR based on a qualitative usage study with
focus on usability and user experience of ISAR and two demonstrations cases. The purpose
of the usage study is to show how users without technical background in development
of interactive augmented reality applications can use ISAR to create interactive tabletop
applications according to ISAR’s use case model. The demonstration cases show how
ISAR can be used to create interactive tabletop applications for different domains, such as
manufacturing and medical rehabilitation.

98 Evaluation

5.1 Usage Study: An Interactive Tabletop Application for
Vocabulary Learning

The purpose of this study is to show how ISAR can be used by non-technical end users to
create interactive applications for the tabletop with significantly less effort and in significantly
shorter time compared to development of such applications from scratch. Furthermore we
want to show that such interactive augmented reality applications can be created by ISAR
without any technical knowledge about low-level details of development of augmented reality
applications. The result of this study also gives insights into how users would use ISAR
and suggestions for improvements of the tabletop configuration and authoring and execution
environment in the future versions.

The context of study is creation of an interactive tabletop application for vocabulary learning.
We chose vocabulary learning as the target application for several reasons. The theory of
multimedia learning [May02] suggests the combination of different modalities can improve
learning. Multi-media annotations of ISAR can be used to provide the same information
in different modalities. Furthermore, related work in the area of computer-supported lan-
guage learning suggest that inclusion of context improves acquisition of vocabularies by
supporting the associations between words and situations [STY+14]. ISAR’s support for
combining physical objects and virtual multi-media annotations can be used to provide a rich
context for vocabulary learning. Finally, educational applications are one of the main target
application domains for ISAR and an interactive tabletop application for vocabulary learning
demonstrates ISAR’s support for educational applications.

5.1.1 Study Setup

In the context of creation of an interactive applications for vocabulary learning, we wanted to
investigate the following questions:

1. Can a user without technical knowledge about augmented reality applications create
an interactive tabletop application for vocabulary learning in a short (less that 1 hours)
time? and without technical difficulty?

2. What challenges do the user’s face in creating the interactive tabletop application using
current version of ISAR? What are the improvement potentials of ISAR?

5.1 Usage Study: An Interactive Tabletop Application for Vocabulary Learning 99

3. What is user’s subjective impression about ISAR and how it facilitates the development
of interactive tabletop applications?

We recruited 8 participants for creation of an interactive tabletop application for learning
vocabulary using ISAR. The application should support learning of the nouns and verbs
related to 10 tools from a simple household toolbox (examples can be seen in figure 5.1).
We structured each session into four parts. First we interviewed the participants about their
experience in software development and in particular experience with the development of the
augmented reality applications. Then we did a short demonstration of ISAR features. Then
we gave the participants a minimum specification for the interactive vocabulary learning
application and gave them at most 1 hour time to create and test their application. Finally,
we interviewed the participants about their insights and impressions of ISAR. The structure
and questions of the study can be found in appendix D.

In order to gain insight into how end users use ISAR to create an interactive application we let
the them design the applications freely. Not giving the participant a strictly defined task also
has the advantage that it is more probable that different participants use different features of
ISAR, and hence our usage study covers a larger subset of ISAR features. However, in order
to make sure the participants apply a minimum of ISAR features for creating their application,
an application description with minimum requirements for the interactive vocabulary learning
tabletop application was given to them. This application description makes sure that the
participants have an interactive application that has at least two scene with annotations and
physical objects and contains interaction rules to define physical interaction of the application
user with the tabletop. The application description is provided in appendix D. We provided
a markerless object recognition and tracking package for detection of the tools, so that the
participants did not have to create their own object recognition and tracking package.

Before each participant started with building the application, we did a 15 minute long
demonstration of ISAR and what it can do by building a simple “Hello World” application.
This demo application showed all the relevant ISAR features that the participants had to or
could use for their applications, such as how to create scenes; how to create project; how to
add annotations to the scene and configure them; how to add physical objects to the scene;
how to define the scene navigation; and how to define events and actions and interaction
rules. Example events and actions and interaction rules were demonstrated, but not all of
them. It was mentioned that the participants can ask questions if they don’t know what each
event or actions is, although the names of the events and actions should be self-explanatory.
It was also mentioned that the participants can ask for help if they faced any problems in
creating their application.

100 Evaluation

Fig. 5.1 Tools used for the vocabulary learning study.

One of the goals of this study is show that the relative time required for creating an interac-
tive tabletop application using ISAR is significantly shorter compared to developing such
application from scratch. We asked each participant about an estimate of time it would take if
they wanted to develop their application from scratch without using ISAR. All participants of
the study, except one, had more than two years experience in developing software, however
none had experience in developing augmented reality applications. We then compared this
estimate with the time it actually took for the participants to create the application using
ISAR. This comparison is of course a subjective measure, nevertheless is gives us expert
opinion about effectiveness of ISAR with regard to reducing the time and effort needed to
develop interactive augmented reality applications for the tabletop.

To gain more insights about the usability of ISAR we also asked the participant to think aloud
[Nie94] and explain their actions as they create the applications. The sessions were also
recorded for further evaluation. The participants were also allowed to ask for help whenever
they faced a problem, or needed further information about a feature of ISAR. After the
participants were finished withe creation of the applications in ISAR Authoring environment,
they tested their applications in the execution mode. They also had the chance to revise and
adjust their application if they wanted to.

Each participant had altogether 1 hour to create and test his interactive tabletop application
for vocabulary learning according to the given minimum specification (appendix D). After
the participants were finished with creating and testing their application, we conducted

5.1 Usage Study: An Interactive Tabletop Application for Vocabulary Learning 101

the second part of the interview. The participants were asked questions regarding how
they would estimate development of the application without using ISAR and about their
experience regarding usability and usefulness of ISAR (appendix D). Finally they answered
the Systems Usability Scale [Nie94] questionnaire to assess the usability of the system. The
Systems Usability Scale questionnaire is an industry-standard questionnaire for quantitative
assessment of usability of a software or technical system. The result of the questionnaire is a
score between 0 to 100 calculated based on the weighted scoring of the answers. The details
of the scoring is explained in appendix appendix D.

5.1.2 Results

Table 5.1 shows the demographics of the participants. Before demonstrating the functionality
of ISAR, we asked the participants questions to indicate their level of technical affinity and
familiarity with software development in general and with development of augmented reality
systems in particular (Appendix D).

Participant Age Technical
Affinity

Software Develop-
ment Experience

Experience with AR
Systems

P1 20-30 very high expert beginner developer
P2 20-30 very high expert only used
P3 30-40 very high expert beginner developer
P4 30-40 very high expert only used
P5 30-40 high no experience not familiar
P6 30-40 very high expert expert developer
P7 30-40 very high expert only used
P8 20-30 very high expert only used

Table 5.1 Demographics of the experiment participants.

All participants had age between 20-40 years with a high to very high level of technical
affinity. The participants self-stated their level of technical affinity based on a question
inspired by Affinity for Technology Interaction (ATI) Scale [WAF19]. All participants except
P5 came from software development and research background, with more than two years of
experience in developing software systems.

Two questions were asked to estimate the level of familiarity of the participants with aug-
mented reality systems (Q1.4 and Q1.5). In the first question the participants stated their level
of familiarity with AR systems with regard to using and development of such systems. Based

102 Evaluation

on this questions one participant (P5) was not familiar with AR, four participants (P2, P4,
P7, and P8) only used AR systems without knowing how they are created, two participants
(P1 and P3) had created AR applications using frameworks like ARKit or Vuforia, and
one participant (P6) was expert in developing AR systems including AR frameworks. The
second question is an open-ended question about main components and main challenges for
development of AR systems. With this question we intended to validate the answer to the
question 1.4. The expected answer was an explanation of the augmented reality real-time loop
including the tracking and registration (situated rendering) components. Our first expectation
was that the participants who were not familiar with AR, or only had used an AR systems
would not be able to answer this question. We also expected the participants with beginner
and expert experience in developing AR systems (P1, P3, P6) would answer this question
correctly. The first expectation was valid. Participants who were unfamiliar with AR, and
those who only had used AR systems could not explain the main components and challenges
of an AR system. To our surprise though, only P6 gave a confident correct answer to this
question. Despite beginner development experience and using AR frameworks for creating
AR applications, P1 and P3 could not confidently explain what are the components of an
AR system. This may indicate that although AR frameworks facilitate the development of
AR applications, merely using them in small projects is not a indicator of the competence in
developing AR applications for end user requirements.

After the demographic questions in the first part of the study, we demonstrated ISAR’s
features to the participants using a small application. This demonstration took on average
about 15 minutes and explained the main concepts of the ISAR such as authoring and
execution modes, scenes, annotations, physical objects, and interaction rules. For this
application we added a lineman pliers on the scene, attached an arrow annotation to it that
showed its name. We also added an audio annotation for pronouncing the name of the line
pliers and an interaction rule for playing the audio annotation when ever the pliers is pointed
at using the selection stick.

After this demonstration we asked participants to create their own application for teaching
vocabulary according to a minimum list of requirements (see 5.1.1 and appendix D). Each
participant had maximum one hour to create his application. The participants were asked
to think aloud as they created the application and the sessions were recorded for post-
analysis.

All participants created applications with two or three scenes adhering to the minimum
requirements. The scenes contained between one to three physical objects. All participants
used text and arrow annotations attached to the objects for displaying their names. They also

5.1 Usage Study: An Interactive Tabletop Application for Vocabulary Learning 103

all used audio annotations for saying the name of the objects. Three participants (P3, P4,
P6) used video annotations related to the physical objects available on the scene. Regarding
the interaction rules, participants created from one up to six rules for scenes depending
on the complexity of their idea and number of objects and annotations on the scene. The
most frequent event used for interaction rules was SelectionEvent, which was mostly used
to define rules such as "When the object is selected, play the audio annotation related to it"
and "If correct object is selected, show positive feedback image". The latter rule was used
for the cases where the participants had designed a scene which asked the user to select an
object from two or three objects. For example P6 created a scene containing two physical
objects (pincers and screw driver) and a text annotation asking the user "Please show which
tool is pincers?". He then created two rules: "if pincers is selected, play audio annotation
for positive feedback", and "if screw driver is selected, play audio annotation for negative
feedback". P1 and P8 also created similar scenes using an ObjectPlacementAreaAnnotation.
They asked the user to put a specific target object int the ObjectPlacementArea. If the correct
object was put into the area, a positive feedback was shown or a corresponding audio was
played. The second most frequently used event was PhysicalObjectAppearedEvent, which
was similarly used for playing audio annotations or showing and hiding text annotations
related to the target object. Two participants also used timer annotation on a scene and used
TimerFinishedEvent to show correct answer to a question (P2) or hide an arrow annotation
showing the name of an object (P6).

A general limitation we observed was that most of the participants created applications that
were similar to demo application. This is possibly because they created their applications
right after the demo and hence they were biased to use the features they were familiar with.
Although none of the participants used the whole one hour for creating the applications, they
still did not try many of other possible annotations types, and events and actions. The short
time for the demo application and the large number of concepts and features explained in only
15 minutes can relate to that. Although we mentioned different kinds of annotation, events,
and actions, we only used arrow, text, and audio annotations in our demo application and did
not demo how other annotations, events, and action could be used. The complexity of the
UI in terms of different features and usability issues, such as lack of tooltips for annotation
tools could also have a limiting effect on the participants, so that they preferred to mostly
try those features they had seen in the demo. P2, P3 and P6 however took an interesting
approach. They first created a very simple application with one scene with exactly the same
functionality as the demo application. After becoming confident with the UI they then created
a more complex application with more than two scenes and multiple interaction rule in each
scene.

104 Evaluation

Fig. 5.2 A scene designed by one of the participants in the authoring environment (left) and
testing it in the execution environment (right). If the user selects pincers, a positive feedback
sound is played back.

All participants first created their scenes and tested the functionality in the Authoring environ-
ment. They then used the execution environment to test their application as it is projected on
the tabletop. On average they spent 30 to 45 minutes designing and testing their applications
in the Authoring environment and 10 to 15 minutes running and testing them in the Execution
environment. Figure 5.2 shows a scene designed by one of the participants in authoring and
execution environment.

After the participants finished creating and testing their applications, we did a semi-structured
interview based on seven questions to capture their general impression about usability and
effectiveness of ISAR. We wanted to know which features of the ISAR participants liked most,
and which difficulties and limitation they faced when building their applications. In terms of
effectiveness, we also wanted to know the impressions of the participants on if ISAR can be
used by end users to create interactive tabletop applications and if they would recommend
ISAR. Table 5.2 shows the features of the ISAR the participants found most useful along
with the limitations and difficulties they faces when creating their applications.

All 8 participants praised the WYSIWYG Authoring environment. They all liked the ability
to define the scenes visually in exactly the same way as they would be projected on the
tabletop. The participants also liked the ability to test the functionality of the scenes at the
same time as they were designing. P2 said for example: "it is really grate that you can add
annotations and objects and test right away how it would work for the user." The ability to
add different kinds of annotations, specially multimedia annotations such as audio, was also
praised by the participants. Four participants (P4, P5, P7, P8) already mentioned how it could
be useful to create engaging stories and entertaining content for children. The participants
also liked the ability to configure the properties of annotations from UI. P2 said for example:
"It is like PowerPoint. You can use different shapes, audio, and video to create interactive

5.1 Usage Study: An Interactive Tabletop Application for Vocabulary Learning 105

Useful Features Limitations
WYSIWYG Authoring

• defining scenes
• configuring annotations
• designing and testing at the same time
• multiple scenes

Usability
• too many features in authoring environment
• missing tooltips and inline help
• positioning image for physical objects

Interaction Rules
• no need for programming
• combining events with actions

Definition of Rules
• complex UI for defining interaction rules
• loosing overview with too many rules

Object Recognition and Tracking
• adding annotations to the objects
• events for object interactions

Robustness of Object Tracking
• robustness of markerless tracking
• light trade-off for tracking and projection

Table 5.2 The most useful features of ISAR as well as its limitations according to the
participants.

slides that are projected on the table.", or P7: "I like it that I can configure everything in the
visual environment without programming."

All participants liked the possibility to define interactions without programming and praised
it with excitements. P4 said for example: "I think this is the best feature of ISAR with great
potential.", or P3: "I really like this fast definition of rules without need for coding. For me
this is the main part of the story [ISAR]." In general participants liked two aspects of defining
interactions rules: the fact that they can define user’s interactions without need for program-
ming, and the fact that they can test their defined rules right in the Authoring environment.
They also liked the ability to define more complex rules, for example the possibility to freely
combine events and action and the ability to define composite actions.

All participants also found the markerless object recognition and tracking feature useful. They
liked the fact that their application involves physical objects and physical interaction with the
real world. They liked the ability to attach annotations to objects and used it for arrows, text,
or even video annotations. They also praised the ability to define interactions based on object
recognition and tracking events, such as ObjectAppearedEvent or ObjectGroupAppearedE-
vent. They found it specially useful that they could turn on object tracking in the authoring
environment and test their defined scenes and interactions immediately.

Although all participants liked and praised main ISAR features (WYSIWYG authoring,
interaction rules, and object recognition and tracking), however they also faced limitations

106 Evaluation

and difficulties using these features. The main difficulties were rooted in usability issues. In
the authoring environment the participants found that the UI is too complex and includes too
many features in one single application windows (P1, P3, P4, P5, P7). They had sometimes
difficulties to find the annotation tools, and mentioned that tooltips could help finding them.
Also the all participants were missing the ability to move the template image of a physical
object to change the layout of a scene. In the current version, if they user wants to move
the template image on the scene, he has to turn on object tracking, and move the physical
object on the tabletop, and then turn off the object tracking. By turning off object tracking
the template image is shown at the lasted known tracked position of the physical object. We
think however most of the usability issues in the authoring UI can be fixed with relatively
minor effort, such as restructuring the layout of authoring UI or adding tooltips for different
annotation tools.

The participants also faced difficulties for defining interaction rules. They found the UI
for configuring events, actions, and rules complex and not user-friendly. For example they
found the need for always selecting the scene for which an event, action, or rule is being
defined, cumbersome. They also found it difficult to think ahead about all possible scenarios
for defining the rules. For example P2 had defined a rule for a timer annotation, so that
when the timer finishes a start button should be shown. However he forgot to add another
rule for restarting the time whenever the scene is shown. Also, they found it difficult to
keep an overview of all the rules when the number of rules in a scene was more that five.
This can be possibly traced back to the long default names for the event, action, and rules.
Most participants used the default names and did not change it to have a shorter, yet more
descriptive name.

Participants also found robustness of markerless object recognition and tracking a slight
source of limitations. Although the markerless tracking feature of ISAR is robust to occlusion
and lighting condition under controlled light, still the tracking is sometimes not very accurate,
specially for objects with few feature points. This was confusing for participants who
expected tracking to work all the times. For example they wanted to have darker light
conditions for a better projection of the scenes, which sometimes lead to weaker performance
of markerless tracking. Nevertheless this issue can also be traced back to the unfamiliarity of
the most of the participants with the challenges of markerless tracking. For example P6, who
is an expert in tracking, praised the robustness of ISAR’s tracking algorithm.

To have a more objective measure of the usability of current version of ISAR, we asked each
participant to fill the Systems Usability Scale questionnaire [BKM08]. After evaluating the
SUS value for each participant, we calculated the average SUS score. On average current

5.1 Usage Study: An Interactive Tabletop Application for Vocabulary Learning 107

Fig. 5.3 Results of perceived impression of the participants about usefulness of ISAR.

version of ISAR achieved a score of 67 from 100, and receives a grade of C according to
grading system by Lewis and Suro [LS17]. According to the categorization by Bangor et al.
[BKM08] SUS score of 67 corresponds to "marginal acceptable" usability. This SUS score
is an indicator of usability issues of ISAR Authoring environment and in alignment with
our observations. One limitations of this evaluation must be noted though. We evaluated
the SUS scores with the participants who are not the main intended target users of ISAR.
The target users of ISAR are experts of domains other than computer science (for example
a teacher) without technical background but with expertise on how ISAR could help them
achieve their specific requirements. However, most of our participants came from computer
science background and they work on creating technical systems on a daily basis. So we
expect that SUS score of the current version of ISAR, if validated with end users without
technical background would be less. Also it should be noted that SUS is most of the times
used to evaluate the usability of production-ready systems [BKM09] as opposed to prototype
implementation of ISAR. This is an issue with usability evaluation for prototype systems
[GB08] and we believe fixing some of the issues with a small effort before evaluating ISAR
with target users, would have a strong positive effect on its usability score.

We also asked participants an open-end question regarding in which domains they would
consider most suitable for using ISAR. All participants referred to education and pedagogical
domain as the most suitable. They suggested possible scenarios such as teaching concepts and
words to pre-schoolers and in elementary school children, or using the engaging interaction
for education of children with special needs. They also mentioned educational scenarios
in the industry such as training for the tools and workflows. Entertainments, games, and
marketing were among other domains mentioned by the participants.

Figure 5.3 shows the results of three questions we asked the participants to asses their
perceived impression about usefulness of ISAR. The questions are in five-point Lickert scale
and ask opinion of the participants about if they find ISAR easy to use for an end user without
technical background, if they would use ISAR as an expert of domains other than computer
science (e.g. a teacher), and if they would introduce and recommend ISAR to the experts

108 Evaluation

of other domains. The general impression of the participants about usefulness of ISAR was
positive (majority in strongly agree and agree category) and they would recommend ISAR.
They however mentioned that their answers depend on the domain and scenario for which
they would use ISAR.

Finally, considering the fact that most (7 out of 8) of the participants were experts in software
development, we also wanted to know their estimation on how long it would take for them
to create exactly the same application as they created, if they did not used ISAR and had to
implement everything from scratch. This was an open-ended question which also involved
discussion about if an off-the-shelf library for markerless tracking would be used or not.

Table 5.3 summarizes the response to this question along with the degree of experience of
the corresponding participant with augmented reality and the short description about the
complexity of the application he or she created.

Participant Experience with
AR Systems

Application Complexity
Estimated Develop-
ment Time

P1 beginner
developer

3 scenes; 6 objects; 16 an-
notations; 11 rules

6 to 12 months

P2 only used
2 scenes; 2 objects; 9 anno-
tations; 7 rules

2 weeks to 1 month

P3 beginner
developer

3 scenes; 4 objects; 7 anno-
tation; 9 rules

1 to 2 months

P4 only used
2 scenes; 4 objects; 7 anno-
tations; 6 rules

2 weeks to 1 month

P6 expert developer
3 scenes; 5 objects; 9 anno-
tations; 7 rules

2 to 6 months

P7 only used
2 scenes; 3 objects; 12 an-
notations; 7 rules

1 to 2 months

P8 only used
3 scenes; 5 objects; 14 an-
notations; 9 rules

6 to 12 months

Table 5.3 Development time that each participant estimated for creating his application
without using ISAR.

Al the developed ISAR applications were almost similar in terms of complexity (all adhering
to the given minimum requirements. having 2-3 scenes), and all the participants finished
their application in a time less than one hour. Nevertheless their estimate for the time they
would need to develop the same application without using ISAR varies a lot, and they were
relatively unconfident regarding their estimate . This can be traced back to the unfamiliarity
of the most participant with development of augmented reality applications and its associated

5.1 Usage Study: An Interactive Tabletop Application for Vocabulary Learning 109

challenges. Only P6, who is an expert developer of tracking and augmented reality systems,
was confident about his estimate. Also the participants gave different estimations depending
on if they would use a tracking library or implement the tracking themselves. Regardless
of the high variance in the estimates, the interesting fact for our analysis is: the minimum
estimate for the development time is 2 weeks to 1 months. Of course we do not agree with
this estimate tracing it back to the inexperience of the participant (considering the estimate
of P6 to be more realistic). But this minimum estimate, even though unrealistic, gives a
strong evidence that ISAR significantly reduces the time needed to develop such interactive
augmented reality applications for the tabletop. Using ISAR all participant could create such
interactive application in less than one hour.

Discussion

The results of the user study provides evidence that ISAR has achieved its main requirement
in providing users without technical knowledge about augmented with a system to create
interactive tabletop application fast and easy. The comparison of the time the participants
required for creating their applications (average 30 minutes) with their estimate on how long
it would take to create the same application without ISAR (average 5 months) is a strong
indicator that ISAR reduces the time needed to create interactive tabletop applications by
the end users. Furthermore, considering the fact that seven participants could not explain or
were not confident in explaining the technical challenges in developing such applications,
and comparing it with the applications they created, is an indicator that ISAR can facilitate
development of interactive tabletop applications by hiding the complexities related to tracking,
registration, and real-time performance.

The general impression of the participants about usefulness of ISAR was positive. They were
excited about their applications and how easy they could create interactive applications involv-
ing the physical object and tangible user interactions. This is also reflected in their positive
response about recommending ISAR to experts of other application domains and imagining
how it could be used in the target domains, such as education and entertainment.

The study showed however, that the current version of ISAR has usability issues as reflected
in the scores of system usability scale questionnaire (average score 67 form 100). Some
of these issues, such as moving the template image of physical object on the scene using
mouse, are minor and can be resolved by small changes in the code. Some others are however
inherent in the design of ISAR, for example difficulty to keep overview of the interaction
rules when there are many complex interactions intended. Although all the participants

110 Evaluation

mentioned the ability to define interaction rules as a positive feature of ISAR, they all also
mentioned the complexity of thinking about many fine-grained interaction rules and keeping
an overview when the number of rules increases. To resolve this issue, a visual programming
environment can be implemented that allows defining rules in a more user-friendly graphical
representation.

We also observed that providing authors with best-practice guidelines can improve their
experience and efficiency in creating ISAR applications. For example, although it was
mentioned that the participants can define the name of scenes and annotations, we observed
that they mostly used the default names for scenes and annotations. This however, lead to
difficulties in keeping an overview when defining the rules, because the default names are
not descriptive enough, for example, for distinguishing two annotations of the same kind. So
a best practice recommendation would be to always name scenes and annotations. Also, we
observed the participants had difficulty in keeping overview of a complex scene when many
annotations and objects are added to the scene. A best practice here could be to define two
or more simpler scenes, with fewer annotations and interaction rules instead and defining
interaction rules for moving from one scene to another.

Finally, it should be noted that a limitation and a thread to validity of this study is its target
participants. ISAR is intended to be used by end users without technical background and from
domains other than computer science. Seven of the participants of the study were however
from computer science domain. Of course, the purpose of the study was to gain insights
into how ISAR is used, its perceived usefulness, and an estimate on how ISAR reduces the
time and effort associated with development of tabletop interactive applications. In this
regard, the participants could give us good insights into application usage and specifically
their experience in software development gave us a more reliable comparison on how
ISAR improves the development of interactive applications for the tabletop. Nevertheless a
more formal study with a sample group of intended target users of ISAR (e.g. teachers of
technical schools) is needed to reliably show ISAR has achieved its intended goals. Another
limitation of this study is the coverage of different ISAR features. Although the participants
used core ISAR features (scenes, annotations, physical objects, interaction rules) in their
applications, however their applications involved a limited set of ISAR annotation types and
interaction rules. Accordingly our claims about usefulness and difficulties of ISAR are only
based on the limited set of observed applications and does cover the space of all possible
applications that could have been created using ISAR. It should be noted though, that both
kinds of the mentioned limitations are inherent in the evaluation of user interface toolkits
[GB08, LHV+18, OJ07].

5.2 Demonstration Case Studies 111

5.2 Demonstration Case Studies

Demonstrations are the most widely utilized way of evaluating HCI Toolkits [LHV+18].
Compared to the research on artifacts that perform one single well-defined task, such as
new algorithms or new interaction techniques, evaluating research on development of new
toolkits is challenging. Toolkits provide their users with a large open-ended space of possible
new applications that can be created by utilizing the toolkit [VH01]. This flexibility in
creating new solutions, however, poses the generally inherent challenge for evaluating the
effectiveness of the toolkit and showing its contributions and success [OJ07]. Demonstrations
are a widely used evaluation strategy for HCI toolkits with the aim of exploring the open-
ended space of possible toolkit applications and showing which applications can be crated by
the toolkit and how the toolkit is used to create applications.

Demonstrations use selected scenarios form the space of possible applications supported
by the toolkit and show how the toolkit can be utilized to fulfill that scenario. In this
regard, demonstrations are a kind of proof-of-concept evaluation in support of the claim
that toolkit’s building blocks and design concepts enable users in creating the intended
applications using the toolkit. Demonstrations can be used in order to show the breadth of
possible applications that can be created using the toolkit (ceiling), or how easy it is for the
users to start utilizing the toolkit to create their own applications (threshold), or simply show
a step-by-step walk-through on how to use the toolkit [LHV+18].

In order to demonstrate how ISAR can be used to create interactive tabletop applications for
domains other than education, we describe in this section two interactive applications created
using ISAR. The first application demonstrates how ISAR can be used to create step-by-step
workflow guidance applications [WON16]. A workflow guidance application guides the user
through the steps of workflow to achieve a goal. We use the example scenario of assembling
a computer mainboard for this demonstration.

The second demonstration shows how ISAR can be used to create applications that support
medical rehabilitation, for example after a brain stroke. More specifically, we demonstrate
how ISAR is used to create two applications that support hand-eye coordination exercises
[HKD+13].

112 Evaluation

5.2.1 Workflow Guidance: Mainboard Assembly

We define a workflow as an ordered sequence of steps that need to be performed one after
another in order to achieve a task goal. Each step of the workflow involves manipulating
physical objects, such as materials and parts, and using tools. Using tools and manipulating
objects requires learning manual skills that can be obtained by observation and training
[PD95]. The workflows supported by ISAR are simple workflows with limited number
of steps with clear step boundaries, and simple manual skills such as picking and placing
objects and using tools. Examples of these simple workflows are manual industrial assembly.
Complex workflows with unclear step boundaries and complex dexterities, like creating a
wooden sculpture, are out of scope of ISAR.

Paper-based workflow instructions is the most widely used from of guiding through a work-
flow [FBÅM+14]. The instructions usually contain important information for preparation of
the task, such as required tools and materials. Each step usually has at least a text description,
that is most of the time accompanied with static images or images that show direction of
movements using arrows. The textual description and images also contain important informa-
tion that need be taken care of, for example orientations of parts when assembling a device.
Video instructions are also often used for guiding through and teaching a workflow [Chi16].
Compared to paper-based instructions, video instructions are richer in terms of descriptions
of the steps and showing how they are performed in action. The steps of the workflow are
also described in the video, however usually quickly jumping to a step and gaining a quick
overview of steps is more difficult in video instructions, because of the continuous linear
timeline of the video [CLL+13].

Guidance through a workflow, specially industrial workflows such as prats assembly or
maintenance and repair procedures, is one of the most typical use cases demonstrated
in AR research [DBLS18]. Compared to paper-based and video instructions, augmented
reality instructions have the advantage of presenting the information spatially registered
right at the place where it is needed. This situated presentation of information leads to less
cognitive load [PTTVG03] when doing the task [FKS16], because the user does not have to
continuously change the context between seeking the information and doing the task, as is
the case in paper and video-based instructions. Additionally, augmented reality workflow
guidance applications can be designed and implemented to be interactive and context-aware
[KFA+14]. Instead of presenting static predefined information, an interactive augmented
reality applications presents information dynamically based on user’s interactions and context
information collected from other sources like environment sensors [ZON13].

5.2 Demonstration Case Studies 113

Fig. 5.4 Workflow guidance using camera-projector augmented reality setups. Funk et al.
[FLM+18] (left) and Uva et al. [UFG+16] (right).

Different AR display technologies (stationary display, mobile AR, head-mounted displays,
and spatial projection) have been used to guide workers through industrial workflows (2.1).
Considering the requirement for bi-manual operation for most industrial operations, head-
mounted displays (optical see-through and video see-through) and spatial projections are
more often utilized because they allow bi-manual operation compared to mobile hand-held
augmented reality systems [BMF+17]. We refer here briefly to some examples of spatial
projections for workflow guidance.

Funk et al. [FLM+18] developed a stationary assembly guidance system consisting of
a projector, a RGB camera, and a depth camera ((figure 5.4 a). At each workflow step
the system highlights the corresponding material bins and tools and use the information
from the depth camera to track workers actions, in order to automatically progress through
the workflow. The system also features an authoring system based on Programming-by-
Demonstration paradigm that automatically creates the steps of the workflow from an expert’s
demonstration. In a similar setup Ruther et al. [RHM+13] developed a system for guiding
workers in the sterilization department of a hospital through workflows for sterilization
of medical instruments. Their systems also features a camera-projector setup to project
information related to workflow step on the workbench and a depth camera to track user’s
interactions with the projected user interface. Workflows are modeled as Business Process
Models using BPMN 2.0 [All16] notation, and can be created using provided BPMN user
interface. Uva et al. [UFG+16] developed an stationary camera-projector guidance system for
assembly workflows (figure 5.4 b). The system uses RGB camera and marker-based tracking
for highlighting different positions of the work piece at each step. Textual step descriptions

114 Evaluation

are projected on the workbench and tangible cards with markers are used to navigate through
the steps of the workflow. The workflows are represented in a tree structure with increasing
detailed description and visual hints. However the system does not offer any authoring system
for the end user. Camera-projector workflow guidance systems have also been implemented
for tasks other than industrial assembly, such as cooking [UNT+12, JHJL01]. These system
also offer a similar set of feature such as projection of the workflow information on the
working area, highlighting corresponding parts of the working area at each step, and tracking
the user’s interactions for interactive presentation of the information and progress through
workflow steps.

The design of the workflow guidance support in ISAR is informed by the advantages,
features, and shortcoming of these mentioned camera-projector workflow guidance systems.
ISAR offers a rich WYSIWIG interface for end user to define the projection content for
each workflow step as a scene, and define the interactive response of the system to user’s
interactions based on events, actions, and interaction rules. Adhering the simplicity design
goal, ISAR does not require any specific hardware such as depth cameras and can be setup
using off-the-shelf camera and projectors that are accessible in consumer market. Finally,
ISAR integrates markerless object recognition and tracking.

In general for guidance through a workflow ISAR supports the following use cases:

• Preparation: It is typical for workflow instructions to have a first preparation step
before the actual workflow steps [Chi16]. The preparation step usually describes
what tools and material are needed to perform the workflow, and provide any other
information that must be taken into account before starting the workflow. In ISAR
the workflow author (the ISAR application creator) can provide these preparation
information by creating a scene that contains the physical objects tools and materials.
This scene can also have text, image, video, and audio annotations that instruct the
application user how to prepare before the workflow begins. For each physical objects
required for the workflow, ISAR projects the image of it on the tabletop. If the physical
object is missing, the image shows an overlaid red cross, indicating the missing
physical objects. The workflow author can also define an event for detecting when all
the required physical objects are placed on the tabletop.

• Description and information related to each step: Each step of the workflow is
associated with a scene. This scene can contain different annotations that provide
the required information for performing the step. A text annotation can provide
step description. An arrow annotation can indicate where to place objects or present
important information spatially registered on physical objects. Video and image

5.2 Demonstration Case Studies 115

annotations can be added to show how to use tools or perform an action. Audio
annotations can be used to provide step description or to provide audio feedback upon
certain actions. At each step, the corresponding scene can contain interaction rules that
define how the annotations behave upon user interactions.

• Highlighting objects required in a step: Research form camera-projector assembly
guidance systems indicate that highlighting the materials, tools, and specific positions
on the work piece reduce the cognitive load and increase speed of interaction during
each assembly step [FSM+15, BFSR16]. In ISAR, at each workflow step the appli-
cation author can define rules for highlighting physical objects (tools and materials)
that are required for the step as soon as the scene is shown. The workflow author
can also add rectangle, circle, arrow, and other annotations registered to a specific
position of the work piece to indicated where to place a part or perform an action.
These annotations can be shown as soon as the step scene is shown, or become visible
upon user actions such as picking a part or tool. By adding ObjectPlacementArea
annotations, the workflow author can trigger events whenever an object is placed in a
specific area on the tabletop or on the work piece.

• Detection of errors: Similar to guiding next action by highlighting parts and tools,
providing feedback upon errors, such as picking wrong part, improves the speed of
performing the workflow [FSM+15]. Providing feedback on errors also improves the
retention when learning the workflow in a training session [BFSR16]. ISAR supports
detection and providing feedback when the application user is about pick the wrong
objects. The workflow author can define an event that detects the user’s hand is on top
of or the user picked the wrong object. When this event is triggered the wrong object
is highlighted red. Additionally, this event can be used to define a rule for playing back
an audio feedback when the user is about to pick the wrong part or physical object.

• Navigation through the steps: ISAR offers different ways for navigating through the
steps of the workflow. The workflow author can define the navigation flow by defining
the sequence of corresponding scenes for every step. The navigation flow is used to
define the next and previous scene for current step. By allowing specific definition of
the navigation flow, the workflow author can define additional scenes that are not part
of the default sequence of steps for the workflow. Examples of such scenes can be help
or hint scenes. At each scene, the workflow author can add action buttons that navigate
to next, previous, or back scene. When the user manually selects the action button,
the target scene is shown. It is also possible to define actions for jumping to a specific
scene, for example showing a help scene and then going back to the normal sequence

116 Evaluation

of the workflow scene. Beside manual navigation through the steps of the workflow,
it is also possible to define rules that trigger automatic navigation to next, previous,
or any other scene. For example the workflow author can define a rule that indicates
whenever the part is placed at a specific position (detected by an ObjectPlacementArea
annotation), then show the next scene in the navigation flow.

The UML activity diagram in figure 5.5 shows the general interaction of the application user
and responses of ISAR when performing the steps of a workflow. The application user first
needs to load the ISAR project for the workflow. The first scene of the workflow project
is the table preparation scene, containing all the physical objects required for the workflow.
ISAR indicates the missing physical objects by showing a red cross on their image projected
on the tabletop. The user then puts the required physical objects on the tabletop. When all
the physical objects are put on the table, an action button indicating the start of the workflow
becomes visible and the user can start the workflow. At each step of the workflow the
corresponding scene is show. This scene includes all the information required for performing
the step and the physical objects involved in the step are highlighted. The user performs
the step by picking and placing the objects and using tools. The video annotations on the
scene can show how to perform the step and use tools. Where to place an object on the work
piece can also be highlighted. If the user picks the wrong object or tool, ISAR gives a visual
feedback by highlighting the object red. The user follows the steps of the workflow by either
manually navigating through the steps or the transition between steps happens automatically
based on the interaction rules defined by the workflow author.

In this section we demonstrate how ISAR can be used to create interactive workflow guidance
applications for the tabletop by using the example of a mainboard assembly workflow. The
mainboard assembly workflow involves 6 parts and 1 tool: the mainboard, the RAM, the
CPU, the heatsink, the CPU fan, the graphics card, and the screwdriver (figure 5.6). Before
the workflow begins, the user must put all the parts and the screw driver on the table. The
workflow consists of the following steps:

1. Place the CPU at the CPU socket on the mainboard. Pay attention to the correct
orientation of the CPU; the CPU fits correctly into the socket only with the correct
orientation. Lock the CPU by fixing the lock lever.

2. Place the heatsink on the CPU and fix it using screw driver.

3. Place the CPU fan on the heatsink and connect its power cable to the CPU fan power
socket on the mainboard.

5.2 Demonstration Case Studies 117

Fig. 5.5 The mainboard assembly workflow. At each step ISAR projects the scene anno-
tations and highlights the required objects. Transition to the next scene can either happen
automatically base on user’s interactions or by user selecting the next scene button on the
tabletop.

118 Evaluation

Fig. 5.6 The mainboard assembly workflow involves of 6 parts.

4. Place the ram module into the RAM bank on the mainboard. Pay attention to the
correct orientation of the module, indicated by the notch; the RAM fits correctly only
withe correct orientation. Lock the RAM by pressing it down and fixing the lever at
each side.

5. Place the graphics card on the graphics car socket on the mainboard. Pay attention that
the lock lever is fixed tightly.

The workflow author uses ISAR Authoring environment to create the ISAR project. For the
workflow preparation a scene is defined that shows all the required parts and the screw driver.
For each of step of the workflow a corresponding scene is defined that contains the textual
description, arrows showing where to place the part or hinting on important information like
the CPU lock lever, and a video showing how to perform the step. Figure 5.7 shows two
scenes of the workflow. At the top, the scene corresponding to inserting the CPU is shown.
The CPU is highlighted. The text annotation provides the step instruction. An arrow indicates
the position of the CPU lock and the video annotation shows how to lock the CPU by fixing
the CPU lock lever. At the bottom, the scene corresponding to the placement of the RAM
is shown. Again the RAM and the RAM bank on the mainboard are highlighted. An arrow
indicates the notch on the RAM module and gives hint for the correct orientation. An arrows
indicates RAM lock lever and gives a hint for pressing firmly till the lever is locked.

The workflow author defines for each step scene a set of interaction rules that define how
the scene changes upon user’s interactions. Table 5.4 shows excerpts of the interaction rules

5.2 Demonstration Case Studies 119

Fig. 5.7 Defining the scenes for the steps of the mainboard assembly workflow. Top: Placing
the CPU; Bottom: Placing the RAM.

120 Evaluation

Scene Interaction Rules

Ta
bl

e
Pr

ep
ar

at
io

n

E: ObjectGroupAppeared(Mainboard, CPU, Headsink, CpuFan, RAM, GraphicsCard,
ScrewDriver)
A: ShowAnnotation(StartWorkflowButton)

E: ObjectGroupDisppeared(Mainboard, CPU, Headsink, CpuFan, RAM, Graphic-
sCard)
A: HideAnnotation(StartWorkflowButton)
A: ShowAnnotation(SetupInstructionText)

E: SelectionEvent(StartWorkflowButton)
A: ShowScene(CPUStepScene)

C
PU

St
ep

E: SceneEntered
A: HighlightObject(CPU, Green)

E: HandOverObject(Headsink, CpuFan, RAM, GraphicsCard, ScrewDriver)
A: HighlightObject(Headsink, CpuFan, RAM, GraphicsCard, ScrewDriver, Red)

E: ObjectPicked(CPU)
A: ParallelCompositeAction(StartVideo(PlacingCPUVideo), ShowAnnotation (CPULock-
LeverArrow), ShowAnnotation (RAMOreintationHint))

E: ObjectPlacement(ObjPlcmntCPUSocket, CPU)
A: ShowAnnotation(NextSceneButton)

R
A

M
St

ep

E: SceneEntered
A: HighlightObject(RAM, Green)

E: HandOverObject(Headsink, CpuFan, GraphicsCard, ScrewDriver)
A: HighlightObject(ActiveObject, Red)

E: ObjectPicked(RAM)
A: ParallelCompositeAction(StartVideo(PlacingRAMVideo), ShowAnnotation (RAMLock-
LeverArrow))

E: ObjectPlacement(ObjPlcmntRAMBank, RAM)
A: ShowAnnotation(RAMOreintationHint)

Table 5.4 Excerpts of the interaction rules defined in different scenes of the mainboard
assembly workflow (not all the scene and the interaction rules are listed). E=Event A=Action

defined for three of the workflow scene. The interaction rules are used to show or hide
annotations, start video, transit to the next scene, and so on. At the table preparation step,
a rule is defined that checks when all the required parts and the screw driver are on the
table. This is defined using an ObjectGruopAppearedEvent. When all the object are put
on the table, the ShowAnnotation action is performed and makes the StartWorkflowButton
visible. Accordingly, a rule is defined that checks if the an object is missing. This is checked

5.2 Demonstration Case Studies 121

using ObjectGroupDisappearedEvent, which is triggered as soon as any of the objects of
the defined object group cannot be recognized on the table. If an object is missing the
StartWorkflowButton is hidden, and the instruction text for the table preparation becomes
visible instead. Another rule is also defined for when the user selects the StartWorkflowButton.
Selecting the button shows the CPUStepScene, which is the scene corresponding to the first
step of the workflow.

Interaction rules are defined similarly for other steps of the workflow. The first step of the
workflow is the CPU steps. When the scene for this steps is shown, the CPU is highlighted
with a green rectangle. If the user tries to pick any of the other parts, a visual feedback
is projected by highlighting the wrong object red. This is detected using a HandOverOb-
jectEvent that is checked for all the objects except the CPU. If the event is triggered, the
HighlightObject action is performed for all the wrong objects. When the user picks the CPU,
the video showing how to place the CPU in the CPU socket and how to lock it using the lock
lever on the mainboard is shown. At the same time, the hint regarding the correct orientation
of the CPU is shown and an arrow annotation becomes visible that show the position of the
CPU lock lever on the mainboard with the short text indicating how to lock it. User’s picking
of the CPU is detected using an ObjectPickedEvent. Simultaneous starting of the video and
making the hint and arrow annotations visible is done using a ParalleCompositeAction that
gets the corresponding three actions for starting the video and showing the annotations as the
arguments. When the CPU is placed in the CPU socket on the mainboard, the next scene
buttons becomes visible. This is detected using an ObjectPlacementEvent that is triggered
from an ObjectPlacementArea that the workflow author has added to the position of the CPU
socket on the mainboard. The ObjectPlacementEvent has this annotation and the CPU as
its arguments and is triggered when the CPU is placed in the object placement area. Table
5.4 shows only three scenes and for each scene also only some of the rules. For example
the rules for transitioning back and forth between scenes are not completely shown in the
table. Altogether for the mainboard assembly workflow we defined six main scenes and 28
interaction rules.

In execution mode the created workflow project is opened by the user and the user is guided
through the workflow based on the scenes projected on the tabletop. Figure 5.8 shows
the preparation scene (table preparation) and scenes corresponding to two steps of the
workflow: placing the cpu step, and placing the RAM step. The annotations are projected
on the table, including step description, videos, and arrows. The defined interaction rules at
each step define how the annotations become visible and how the scene responds to user’s
interactions.

122 Evaluation

Fig. 5.8 The scenes associated with different steps of the workflow are projected on the
tabletop during execution mode. Top: table preparation scene; middle: CPU step; bottom:
RAM step.

5.2 Demonstration Case Studies 123

5.2.2 Rehabilitation: Hand-Eye Coordination Exercise

By supporting physical interaction, combining digital content with physical objects, and the
interactivity through interaction rules, ISAR can be used to create interactive applications
for sensorimotor training and rehabilitation. Different augmented reality systems have been
created to support motor tasks for physical or neuronal rehabilitation [AIRH12]. We refer
here to some of the systems using spatial augmented reality and interactive tabletops.

Dunne et al. [DDLÓ+10] developed three interactive games for rehabilitation of children
with cerebral palsy on a multitouch table. The system features tangible interaction using a
marker-based wand and a foam ball. The games support motor and cognitive training through
moving and selecting objects on the screen. In a word games, the user should select letters
moving around on the screen to spell the name of the animal shown. In another game the
user must move a jar using the foam ball to move a jar under a butterfly and catch it by
selecting the butterfly with the want as the jar is at the right place. The system does not
however support authoring and creation of new content as well as adjustment of the difficulty
and feedback by the therapists. Annett et al. [AAG+09] also used a multi-touch tabletop
for motor rehabilitation of upper extremity. Their system features different games, such as
playing drums, popping up balloons, drawing, and selecting objects that appear randomly on
the screen. The games are all based on touch interaction and no tangible objects are used. The
therapists can adjust different features of the games, such as speed and difficulty, but there is
no authoring system for creating new games by the therapists themselves. Mousavi Hondori
et al. [HKD+13] developed an interactive tabletop system for post-stroke rehabilitation. The
system is based on a camera-projected setup and uses marker-based hand tracking. Their
system supports performing of different tasks for the rehabilitation of upper extremity such
as reaching, grasping, pointing, and tilting the wrist. They developed different games such
as playing drums and changing shape of virtual objects projected on the table (figure 5.9).
This systems also does not offer an authoring component for defining new exercises and
creating new content. Augstein et al [ANRS+13] used a multi-touch tabletop to develop a
Tangram like game with tangible parts for post-stroke rehabilitation (figure 5.9). The system
shows different patterns that must be created by the user by putting Tangram parts together.
The system supports object recognition for the Tangram parts, and gives visual feedback for
each piece that is placed correctly. Predefined templates for different difficulty levels, can be
chosen by the therapist using the multi-touch UI. Similar to the system by Annett et al., this
approach also allows different configurations of the game difficulty by the therapist, however,
does not offer an authoring system to create new content.

124 Evaluation

Fig. 5.9 Interactive tabletops for physical and cognitive rehabilitation of upper extremity.
Exercises for reaching, pointing, and grasping by Mousavi Hondori et al. [HKD+13] (top);
building a Tangram pattern on a multi-touch screen by Augstein et al. [ANRS+13]. (middle);
following a projected pattern, sorting objects, and building a projected pattern by Leitner et
al. [LTK+07] (bottom).

Tetteroo et al. [TVG+15] developed a tabletop system for cognitive and physical rehabili-
tation of upper extremity. Their system uses specific hardware called TagTile board. The
TagTile board is a 2D grid of cells back-lit with LEDs. It uses object detection using RFID
and can give audio and visual feedback. This system offers an end user development (author-
ing) system for designing the exercises. Therapist can define a timeline of actions for placing,
lifting, and moving objects and the positions on the board where the objects should be placed.
The audio and visual feedback of the board when the objects are placed can also be defined in
the authoring system. Finally, Leitner et al. [LTK+07] describe three concepts for prototypes
of a camera-projector interactive tabletop for post-stroke rehabilitation. The concepts were
developed through focus group studies with therapist and support physical and cognitive
rehabilitation by upper extremity exercises. The three concepts include copying a drawing
projected on the table, sorting objects according to the projection on the table, and build a
pattern by putting objects beside each other according to the projected instruction (figure

5.2 Demonstration Case Studies 125

Fig. 5.10 Two kinds of rehabilitation exercises that can be created using ISAR.

5.9). Although the concepts for the three prototypes were developed through participation of
the therapists, their approach does not offer an authoring system for the therapists to create
new rehabilitation applications themselves.

ISAR can be used to create applications for physical and cognitive rehabilitation of the upper
extremity similar to the above approaches. However, the main advantage of ISAR over
the above approaches is that the physio-therapists are not dependent on the programmers
for creating the applications and can use ISAR’s authoring system to create interactive
rehabilitation applications themselves. To the best of our knowledge, the approach by Tetteroo
et al. [TVG+15] is the only system that provides an end user development (authoring) system,
that therapists can use to create their own interactive applications for rehabilitation. However
this approaches requires a specific hardware (the TagTile board), and is limited in the way
it allows the therapist to design the applications (the therapist can only define a timeline of
simple actions such as grasping, moving, and putting of the objects).

Creation of rehabilitation applications for the upper extremity that involve reaching, picking,
and moving and sorting objects is simple using ISAR’s authoring system. For example to
create a drums application, similar to Mousavi Hondori et al. [HKD+13], the therapist can
add different image annotations for drums to the scene and define rules that trigger different
drum sounds when the user touches each image annotation with the hand. By integrating
counter, timer, and feedback annotations in the scenes and defining corresponding interaction
rules (e.g. counting how many time an action was performed, or defining scene transitions
based on timer values, etc.) it is possible to create even more complex rehabilitation
exercises.

126 Evaluation

Fig. 5.11 A therapist uses ISAR’s Authoring environment to create rehabilitation exercise.
The patient uses ISAR Execution environment to do the exercises and receive feedback.

In the following, we describe how ISAR can be used to create two applications that feature
hand-eye coordination exercises for the rehabilitation of the upper extremity (figure 5.10).
Beside the possibility to define interaction rules, the therapist can define more fine grained
feedback rules for these two exercises. In Follow-the-Path exercise, similar to the approach
by Leitner et al. [LTK+07], the patient must follow a curve pattern projected on the screen
and receives feedback based on how accurate he could follow the path in the given time. In
the Catch-the-Object exercise, similar to the approach by Annett et al. [AAG+09], the user
must hit images that are moving on the scene in an animation and receives feedback based
on how many flies were hit in the given time.

In general, ISAR supports following use cases for creating and performing rehabilitation
exercises (figure 5.11):

• Defining Scene: A rehabilitation exercise is an ISAR application consisting of one or
more scenes. As with any ISAR application these scenes consist of annotations and
physical objects and interaction rules and are defined in ISAR Authoring environment.

• Define Exercise: An exercise has an evaluation aspect that is used to calculate and give
feedback to the patient. For example for the follow-the-path exercise the evaluation
aspect is how accurate the patient follows the projected curve. Furthermore, ISAR
supports different skill levels (beginner, intermediate, and competent). For each
evaluation aspect, the therapist can define a target value that each skill level must
achieve. The feedback is defined based on the skill-level and target value. There are
three stages of feedback: good, average, bad. For each skill level, the therapist can

5.2 Demonstration Case Studies 127

Fig. 5.12 The therapist must define target values for each aspect of the exercise, as well as
threshold values for different feedback levels.

define how many percent of the target values must be achieved for each feedback level.
For each skill level, the therapist can also define the maximum time it is needed to
achieve the target value of the exercise. The feedback is calculated when the exercise
time is over. Figure 5.12 shows the dialog for defining target values and times for
different skill levels and the feedback thresholds for the follow-the-path exercise.

• Define Interactions: The exercise scene can consists of different annotations and
physical objects. Like other ISAR applications, interaction rules can be defined for
how the users interacts with the content projected on the tabletop. For example for
catch-the-object exercise, a rule can be defined that playback a sound whenever the user
hits one of the objects. Beside defining target values and feedback rules, it is possible
to define feedback using interaction rules. For example a rule can be defined that
triggers a scene transition when the users has received good feedback for an exercise
for a certain number of times. Such rules can be defined using events such as Counter-
ReachedTargetValue or FeedbackShown and actions such as IncrementCounterAction
and ShowFeedbackAction.

• Perfom Exercise: The therapist packages the defined rehabilitation exercise as an
ISAR project. To perform the exercise the patient opens this project in the ISAR
execution environment and selects the skill level he wants to be used for calculating
the feedback. The scenes are projected on the tabletop and the patient can perform the

128 Evaluation

exercise by interaction with the projected content. For example for follow-the-path
exercise the patient uses the tracked stick to follow the curved pattern projected on the
tabletop.

• Receive Feedback: When the defined time for performing the exercise is over, the
feedback is calculated according to the patients skill level and the value he achieve for
the defined evaluation aspect of the exercise. The feedback is then shown in a feedback
annotation to the patient. Using interaction rule, it is also possible to give different real
time feedback as the patient performs the exercise. For example, in follow-the-path
exercise a rule can be defined that changes the color of curve points as they are being
accurately traced by the patient. Or for the catch-the-object a rule can be defined that
plays back a sound, as soon as each moving object is hit.

Figure 5.13 shows how a scene of the follow the path exercise is defined in authoring mode
(top) and is projected on the tabletop in execution mode (bottom). In this exercise the patient
should follow a curved path projected on the tabletop. For the follow-the-path exercise the
application author (the therapist) must add at least a curve annotation, a counter, a timer, and
a feedback annotation to the scene. For the curve annotation the author can define the total
number of points that the patient should trace as he tries to follow the path. These point are
then evenly distributed along the curve path. The maximum for the counter annotation is
set to the total number of the points in the path. After the scene for the exercise is defined,
the therapist defines the target values and time limit for each skill level (figure 5.12). For
each feedback level (bad, average, good) he also defines a threshold for the percentage of the
target value to be achieved. After defining the scene and the exercise the therapist saves the
ISAR project.

When the patient loads the project, the exercise scene is projected on the tabletop (figure 5.13
bottom). The target value for the feedback and the value of the timer is set according to the
skill level the patient selects when he loads the project. The patient follows the projected path
using the tracked selection stick. The timer starts as soon as the patient traces the starting
point of the curve. At each frame, ISAR checks if the stick passes over a point on the path.
If a point is traced, its color turns to green to give real-time feedback to the patient, and
the counter is incremented. When the timer is finished, the feedback is calculated based on
the number of points the patient traced, the target value for his skill level, and the feedback
threshold. The calculated feedback is shown in the feedback annotation.

Figure 5.14 shows how a scene for catch-the-object exercise is defined ISAR’s Authoring
environment (top) and is projected on the tabletop in the execution mode (bottom). In
this exercise the patient should hit moving images that are projected on the tabletop. The

5.2 Demonstration Case Studies 129

Fig. 5.13 Defining the scene for a follow-the-path exercise (top) and performing the exercise
(bottom). To give the patient real-time feedback, the points of the curve turn green when they
are correctly traced.

130 Evaluation

Fig. 5.14 Defining the scene for a catch-the-object exercise (top) and performing the exercise
(bottom). The patient must hit the flies as they move around.

5.2 Demonstration Case Studies 131

feedback is calculated based on the number of objects the patient hits in the given time. To
create a catch-the-object exercise the application author (e.g. the therapist) must add one or
more animation annotations to the scene. An animation annotation moves an image along a
predefined path. In figure 5.14 top, there are 6 animation objects, with a cartoon of a fly as
the image. The author defines the path along which the image should move, using mouse
in the authoring environment. This path can be shown or hidden. For each animation the
author can define how fast the image should move, and if it loops from the beginning when
reached the end of the path. Beside the animation annotations, the author should also add a
counter, a timer, a feedback annotation, and possibly a button to start the exercise. Start of
the exercise can also be triggered by any other interaction defined by the author in interaction
rules. After the therapist designed the scene for the catch-the-object exercise, he can set the
target value for number objects that each skill level should hit. For each skill level he also
defines the exercise time and feedback thresholds (as in figure 5.12). He then defines any
other interaction rules needed for the scene, for example when the start button is selected
start the animations. After defining the scene and the exercise, the therapist saves the ISAR
project.

To perform the exercise, the patient must load the exercise project into the ISAR execution
environment and select his skill level. The exercise scene is projected on the tabletop (figure
5.14 bottom). When the patient starts the exercise, the animations start moving along the
defined path the defined speed. The patient must now hit the animations as they move. The
target value for the number of images to hit and how much time patient has, are set based on
the patients skill level. When the time is over, the feedback is calculated based on the target
value, how many images patient hit, and patients skill level. The calculated feedback is then
shown in the feedback annotation.

Chapter 6

Conclusions and Future Work

6.1 Summary

In this dissertation we addressed the problem of authoring for interactive tangible tabletop
applications by proposing ISAR: an authoring system for interactive tangible tabletops.
ISAR allows end users, such as teachers and physiotherapists, to create their own interactive
tabletop applications without the need to consult programmers. They can start exploring the
proven potentials of augmented reality and interactive tabletop applications in their respective
domains. We chose interactive tabletop platform for several reasons, including simplicity and
familiarity of interaction on a physical table, advantages in terms of usability, ergonomics,
and unobtrusiveness, and simplicity and low-cost and effort for the setup. ISAR is a tangible
interactive tabletop setup and a corresponding authoring system for creating applications for
it. The hardware configuration consists of a consumer projector and a webcam hanging on
top of the table. The requirements and features of ISAR were extracted based on a review of
related work, and insights gained from different related projects, that were implemented in the
course of this dissertation. ISAR consists of two modes: authoring mode and execution mode.
In the authoring mode, the application creators use a WYSIWYG authoring environment to
design and create their interactive tabletop application as a sequence of scenes. The author
can design each scene by adding physical objects and different multimedia annotations,
such as text, image and video, as well as geometric shapes such as lines, squares, and
arrows. Furthermore, the author can define the interactions of the user with the table and
the physical objects and define the response of the scene in form of interaction rules. A
rich set of events and actions allow defining complex interaction rules. ISAR supports both
markerless and marker-based object recognition and tracking and offers a simple tool for

134 Conclusions and Future Work

creating tracking models for markerless tracking and associating markers with object for
marker-based tracking.

ISAR was evaluated by a user study and two demonstration cases. In the user study we
asked the participants - mostly experienced software developers - to create an interactive
application for learning a vocabulary of technical terms. We did a usability evaluation
and reported on positive features, as well as challenges the users faced in creating their
application. The results showed usability issues of ISAR authoring environment, as well as
its most positive features: WYSIWYG definition of scenes and definition of interaction rules.
The participants reported it takes significantly longer to create a similar application without
using ISAR authoring. In the demonstration cases we showed how ISAR can be used to
create applications for workflow guidance and medical rehabilitation.

6.1.1 Limitations

Some limitations of the proposed framework and authoring tool are inherent results of the
design decisions made. The protective augmented reality setup is a 2D interface and cannot
present 3D content, which could possibly be more useful for use-cases such as assembly
guidance. Also, the available area for augmentations is limited to the surfaces of a tabletop
and hence limited to only the activities that can be performed on a tabletop. Furthermore, as
simplicity and domain independence were among our design goals, the trade-off between
threshold and ceiling of the framework can be a limitations: the users can setup the table
very easily and learn to use the authoring application fast, but the interactive applications
created with ISAR can be limited in their complexity and may not support specific features
required for a domain (e.g. education).

ISAR has to be used in controlled lighting conditions. Although the tracking algorithms
(markerless and marker-based) are relatively robust to different light intensities, nevertheless
a trade-off must be made between the lighting requirements for projection versus object
recognition and tracking. In a too bright environment the visibility of projections degrades,
whereas in a too dark environment the tracking algorithms are no more robust. We tested
ISAR in all scenarios in a typical office illumination environment with florescent ceiling
lights, which offered good conditions for both projection and tracking.

Another limitations that was also observed in the user evaluation, was about creation of
interaction rules. The user may be challenged in anticipating all possible interaction events
that need be addressed. Of course the WYSIWYG authoring and testing environment can be

6.2 Future Work 135

helpful in addressing this limitation, since the user can directly test what he is creating. Also,
the number of interaction rules may become too much and hard to handle with the current user
interface. Additionally, although we have offered a rich set of events and actions that cover
many possible scenarios, there might be the need for more complex events and actions. In
this regard the extensibility of the framework can help in addressing new requirements.

Finally, the evaluation approach can be a limitation and thread to validity of our claims.
ISAR is targeted at end users without technical background, but we did not evaluate it with
this target group, but rather with experienced software developers. Although this limitation
is inherently present in many other toolkit researches [LOG17, GB08], still ISAR must be
evaluated in a longer study with the non-technical target groups.

6.2 Future Work

The adoption of interactive augmented reality and tabletop applications in everyday practice
of the experts of different domains requires technologies that are accessible and simple enough
to be used by non-technical users. Authoring systems for augmented reality, including the
current work, are a step towards this direction. Nevertheless, no single work can have a large
impact on its own and a collective effort of a community of researchers and technologists
is required. Here we discuss a few future directions on how ISAR can be extended and
enhanced towards this vision.

An interesting direction for further research could be implementation of a platform for
distribution and sharing of ISAR applications. Such a platform allows for crowd-sourced
creation of content and interactive augmented reality applications for the tabletop. The
execution environment of ISAR in combination with the distribution platform could build up
a system similar to the concept of AR Browsers [GLG11], however for the interactive tabletop.
Leaning on the idea of AR 2.0 [SLB11], such a platform could create a community in which
users create interactive application and can rate and comment on applications of others.
Facilitating long-term research on the adoption and usage of interactive augmented reality
by the end users in the wild would be another advantage of such sharing and distribution
platform for ISAR applications.

Extending and enhancing ISAR with specific focus on educational scenarios can be another
direction for future work. Educational settings are one of the main application domains that
can benefit from augmented reality and interactive tabletops [DD14]. Interactive tabletops
offer unique possibilities and have been used to support collaborative learning. ISAR can be

136 Conclusions and Future Work

extended to support collaborative learning scenarios in many different aspects. Currently,
the interaction with the table is designed for a single user. To support collaborative learning,
multi-user interaction and support for user identification can be added to ISAR. Furthermore,
the execution environment can be equipped with interaction hardware and software sensors
that can capture application user’s interaction and provide this data to teachers for online or
offline learning analytics. Another area for extending ISAR for educational settings is to add
support for better definition of exercises and evaluation of learning progress. Currently, a
teacher can define different kind of exercises, such as multiple choice or object placement
exercises, by using annotations and interaction rules. An extension to support exercises
can be providing a UI for definition of more complex exercise and evaluation types and
provisioning of feedback that is based on pedagogical considerations, such as scaffolding.
Additionally, ISAR applications can be integrated into a Learning Management System that
allows students and teachers to monitor the progress of learning and provide new learning
content accordingly.

ISAR could also be extended for new modalities for user interaction. Integration of a
speech recognition component into the framework could allow for speech interaction of
the application user with the table. This can be used for example to issue different actions,
such as navigating scenes, or in the educational scenarios to define new kinds of exercises.
Integration of multiple camera or a depth camera could also allow for 3D interaction on the
tabletop and better hand and object tracking.

Another possible direction for future work could be adding the possibility for real-time
remote collaboration to ISAR. Similar to remote collaboration systems such as TeleAdvisor
[GLC15] and the remote collaboration tool by Guaglitz et al. [GNTH14], the authoring and
execution environment of ISAR could be extended to allow a remote user, such as an expert
or a teacher, to add annotations to the scene in real-time. The remote worker or student
would then see the annotations in real-time as the scene is being projected on the tabletop.
By registering the hand of remote expert on the scene projected for the worker, it can also
be possible to guide the worker using hand interactions. Similar approaches have been
implemented for example in [RT07], [KSF06] and [SMF16].

Appendix A

Annotations

Annotations in ISAR can be grouped into geometric shapes, multimedia annotations, dynamic
annotations, and interaction annotations. In the following, we list the different annotations in
each group and their corresponding properties, events, and actions.

All annotations are subclasses of the abstract superclass Annotation. The abstract class
Annotation provides the following properties for all annotations: Position, determines
the 2D position of the annotation in scene coordinates or object coordinates in case the
annotation is attached to an object; AttachTo, the physical object that the annotation is
attached to or none; Show, determines if the annotation is shown on the scene or is hidden;
UpdateOrientation, in case the annotation is attached to a physical object, determines if
the orientation of the annotation should be changed based on the pose of the object.

All annotations also support the following actions: ToggleAnnotationVisibility,
ShowAnnotation, HideAnnotation. Many annotations also support the SelectionEvent,
that is fired when the selection stick or the hand is over the annotation for the define
time interval for triggering the SelectionEvent. The time interval for triggering the
SelectionEvent is defined in ISAR’s settings.

A.1 Geometric Shapes

A.1.1 Line

Draws a line on the scene with the given thickness and color. Figure A.1 (1).

138 Annotations

Fig. A.1 Geometric shape annotations.

Properties: Start, the 2D coordinates of the start point of the line (has the same value as
Position) • End, the 2D coordinates of the end point of the line • Thickness, an integer
value indicating the thickness of the line • Color, the RGB color of the line.

A.1.2 Rectangle

Draws a rectangle on the scene with the given width, height, color and thickness. Figure A.1
(2).

Properties: Width • Height • TopLeft, the 2D value of the top left corner of the rectangle
(same value as Position) • Color • Thickness • Fill, determines if the rectangle must
drawn filled.

Events: SelectionEvent.

A.1.3 Ellipse

Draws an ellipse on the scene with the given two radii. Figure A.1 (3).

A.1 Geometric Shapes 139

Properties: Center, the 2D coordinates of the center of the ellipse (same value as Position)
• Radius1 • Radius2 • Color • Thickness • Fill.

Events: SelectionEvent

A.1.4 Arrow

Draws an arrow with the given head and tail positions. The arrow has a text rendered at its
tail. Figure A.1 (4).

Properties: Head, the 2D coordinate of the arrow head (same value as Position) • Tail,
the 2D coordinates of the arrow tail • TipLength, the size of the arrow’s tip • Color •
Thickness • Text, the text that is rendered at the tail of the arrow • TextFont, the font
for the rendered arrow text • TextFontScale, the size of the rendered text for arrow •
TextThickness.

Events: SelectionEvent

A.1.5 Curve

Draws a curve as a list of 2D points on the scene. The application author defines the curve
using the mouse by drawing it on the SceneViewer in the ISAR’s authoring environment, or
by using the tracked selection stick. A curve has a start and an end point, and its number of
points can be defined. In the execution mode, when the application user moves the selection
stick of the curve points CurvePointHit events are triggered. Figure A.1 (5).

Properties: Start, the 2D coordinate of the start point of the curve (same value as the
Position) • End, the 2D coordinates of the end point of the curve • NumOfPoints, the
number of points that are evenly distributed between the start and the end pints of the curve,
along the path the application author drew • PointColor, the color to render the curve points
• PointHitColor, curve points change their color to this value when they are hit, e.g. the
selection stick passes over them • PointRadius each point of the curve is rendered as a
circle with the give radius in pixels • StartEndPointColor, the color value to distinguish
start and end point of the curve • StartEndPointSize, the radius value to distinguish start
and end point of the curve.

140 Annotations

Fig. A.2 Multimedia annotations.

Events: CurvePointHit, fired when selection stick is over a curve point
CurveStartPointHit, fired when selection stick is over the start point of the curve
CurveEndPointHit, fired when the selection stick is over the end point of the curve.

A.2 Multimedia Annotations

A.2.1 Text

Renders a multi-line text with the give font and color. If the text length exceeds the
MaxLineWidth, the text is wrapped to a new line. Figure A.2 (1).

Properties: Position, the bottom left corner of a rectangle fitting the text • Text, the
text to render • Color • Font • FontScale, the font size • Thickness • MaxLineWidth,
maximum line width to determine the position of line breaks.

A.2 Multimedia Annotations 141

A.2.2 Image

Renders an image on the scene with the give height and width. The image file must be in the
project folder. Figure A.2 (2).

Properties: Filename, the name of the image file in the project folder • Width • Height •
KeepAspectRatio, if true, then changing the height or width changes the other property to
keep the image aspect ratio.

Events: SelectionEvent

A.2.3 Audio

Draws and icon for an audio file on the scene. The audio file must be in the project folder.
If the icon is selected the audio is played back. The icon might be hidden. In that case the
playback of the audio must be triggered using StartAudio action. Figure A.2 (3).

Properties: Filename, the name of the audio file in the project folder • IconSize, the size
to render the audio icon • Color, the color to render the audio icon • Text, a text to render
under the audio icon • TextFont • TextFontScale • TextThickness • LoopPlayback, if
true, the playback of the audio is repeated until stopped.

Events: SelectionEvent • AudioStarted, is triggered as soon as audio playback is
started • AudioStopped, is triggered as soon as audio playback is stopped.

Actions: StartAudio, starts the playback of the audio file • StopAudio stops the playback
of the audio file.

A.2.4 Video

Renders a video file frame-by-frame on the scene with the given height and width. The video
file must be in the project folder. If the video file contains audio, the audio is played back.
In execution mode, if the user selects a video annotation with the selection stick, it start
playback. If it is playing, the selection event pauses or un-pauses the playback. Figure A.2
(4).

Properties: Filename, the name of the video file in the project folder • Width • Height
• KeepAspectRatio, if true, then changing the height or width change the other prop-
erty to keep the video aspect ratio • LoopPlayback, if true, the video is repeated until

142 Annotations

Fig. A.3 Dynamic annotations.

stopped • Text, a text to render under the video frame • TextFont • TextFontScale •
TextThickness.

Events: SelectionEvent • VideoStarted, is triggered as soon as video playback is
started • VideoFinished, is triggered as soon as video playback is finished.

Actions: StartVideo, starts the playback of the video file • PauseVideo, pauses the
playback of the video file • UnpauseVideo, continues the playback of a paused video •
StopVideo stops the playback of the video file.

A.3 Dynamic Annotations

A.3.1 Timer

Renders a timer on the scene. The timer has duration in and counts down till zero. The tick
interval in seconds can be determined. Timer annotations be rendered differently: as chart
that shows the elapsed and remaining time as a pie chart, as a normal countdown timer with
minutes and seconds, and as a fraction. The timer has different timeout targets, upon which
it triggers timeout events. Figure A.3 (1).

A.3 Dynamic Annotations 143

Properties: Duration the target value for the duration of the timer • TickInterval, the
tick interval in seconds to decrement one from the duration • Timeout1, target value for the
timeout one to trigger a timeout event • Timeout2, similar to timeout1 property • Timeout3
similar to timeout1 property • Text, a text to be rendered under the timer • TextFont, the
font for rendering timer value and text • TextFontScale • TextThickness.

Events: TimerFinished, triggered when timer has reached the target duration value •
Timeout1Reached, triggered when the timer has reached timeout1 target value • Timeout2Reached,
same as timeout1 reached event • Timeout3Reached, same as timeout1 reached event •
TimerTick, triggered at each timer tick.

Actions: StartTimer, starts the timer • StopTimer, stops the timer • ResetTimer, resets
the timer.

A.3.2 Counter

Renders a counter on the scene. The counter has a total number and can be incremented or
decremented. The counter is rendered as a fraction showing the current value and the total
number. The counter has also different target value, that when reached, it triggers respective
events. Figure A.3 (2).

Properties: Total Number, the total target number of the counter • Target1, when
target1 value is reached, the timer triggers a Target1Reached event • Target2, same as
target1 property • Target3, same as target1 property • Text, a text to be rendered under
the counter • TextFont, the font for rendering counter value and text • TextFontScale •
TextThickness.

Events: CounterIncremented, triggered when the counter is incremented • CounterDecremented,
triggered when the counter is decremented • Target1Reached, triggered when the counter
has reached the value of target1 property • Target2Reached, similar to target1 reached event
• Target3Reached, similar to target3 reached event •

Actions: IncrementCounter, increments the counter value • DecrementCounter, decre-
ments the counter value • ResetCounter, sets the counter value to zero.

144 Annotations

A.3.3 Relationship

A relationship annotation draws a labeled line between two physical objects. By default, the
relationship annotation is only shown when both objects are on the tabletop. The application
author can define if the relationship annotation is shown as soon as one of the objects is on
the tabletop. Figure A.3 (3)

Properties: Object1, the first physical object for the relationship • Position1, the 2D
position in the coordinate system of the first object • Object2, the other physical object of
the relationship • Position2, the 2D position in the coordinate system of the second object
• LineThickness, the thickness of the the connecting line • LineColor, the color of the
connecting line • Text, the text of the label • TextColor • TextFont • TextFontScale •
TextThickness • TextPosition, the distance from position1 along the line to place the
text • AlwaysShow, if true the relationship line and label are shown as soon as one of the
objects is placed on the table.

Events: Object1Appeared, triggered when the first object of the relationship is placed on
the table • Object1Removed, triggered when the first object of the relationship is removed
from the table • Object2Appeared, similar to object1 appeared event • Object2Removed,
similar to object1 removed event.

A.3.4 Animation

An animation annotation renders an image moving along a given path with the given speed.
The image file must be in the project folder. The path can be shown or hidden. The speed
value determines how fast the position of the animation image is updated along the points of
the path. The application author draws the path using mouse on the scene viewer in authoring
environment. Figure A.3 (4).

Properties: Image, the name of the image filename in project folder • ImageSize, the scale
factor to resize the image keeping the aspect ratio • Speed, the speed for moving the image
along the animation path • ShowPath, if true the animation path is also rendered; otherwise
the image moves along the invisible path • PathColor, the color of the path points if the path
is shown • PathThickness, the thickness of the path if rendered • Loop, if true the image
keeps moving between the start and and the end points until animation is stopped.

Events: AnimationStarted, triggered when the animation start • AnimationFinished,
triggered when the animation stops.

A.4 Interaction Annotations 145

Fig. A.4 Interaction annotations.

Actions: StartAnimation, starts the animation • StopAnimation, stops the animation,
setting the image position to the first point of the path • PauseAnimation, the animation
is paused and the image stops moving • ContinueAnimation, continues a paused anima-
tion.

A.4 Interaction Annotations

A.4.1 ActionButton

Draws a rectangle button with text on the scene. An action can directly be defined using
OnSelect property to be triggered as soon as the button is selected using selection stick or
hand. Otherwise the SelectionEvent of the button can also be used to define actions to be
triggered by the button as interaction rules. Figure A.4 (1).

Properties: Width, the width of the button’s rectangle • Height, the height of the rectangle
• Color, the color of the rectangle • Thickness, border thickness for the rectangle • Fill, if
true the rectangle is rendered filled • Text, the text of the button • TextColor • TextFont •
TextFontScale • TextThickness • OnSelect, the action to be performed when button is
selected.

146 Annotations

Events: SelectionEvent

A.4.2 Checkbox

Draws a checkbox, rendered as a checkable square with the given size, on the scene. A
checkbox can also have a text that is rendered to its right side. The application user can toggle
the check state by selecting the checkbox with the selection stick. The application author
can also define checkbox groups by assigning each checkbox to a named group. Figure A.4
(2).

Properties: Size, the size of the checkbox square • Color, the color of the checkbox square
and text • Thickness • Text • TextFont • TextFontScale • TextThickness • Checked,
the initial check state of the checkbox • Group, the name of the checkbox group to which
this checkbox belongs, or none.

Events: CheckboxChecked, triggered when the checkbox is checked • CheckboxUnchecked,
triggered when the checkbox is unchecked • CheckboxGroupChecked, triggered when all
the checkboxs of a checkbox group are selected • CheckboxGroupUnchecked, triggered
when any of the checkboxs of a checkbox group is unchecked.

Actions: Check, sets the check stat of a checkbox to true • Uncheck, sets the check stat of a
checkbox to false • ToggleCheckbox, toggles the check state of the checkbox.

A.4.3 ObjectPlacementArea

Using object placement area annotation the application author can define an area on the table-
top that triggers events when designated objects are placed inside it. An ObjectPlacementAreaAnnotation
is simply rendered as rectangle. Figure A.4 (3).

Properties: Width • Height • Color • Thickness • Fill.

Events: ObjectPlacedInArea, triggered when the defined object is placed inside the
object placement area • ObjectRemovedFromArea, triggered when the object is removed
from the area.

A.4 Interaction Annotations 147

A.4.4 Feedback

Feedback annotation shows a defined image and text and plays a defined audio file for three
different feedback levels: good, bad, and average. For each level the application author
can define the image, the text, and the audio file. The text can also be shown on a circle
background. If image and audio is defined, the image and audio files must be inside the
project folder. Figure A.4 (4).

Properties: GoodImage, the image for good feedback • AverageImage, the image for
average feedback • BadImage, the image for the bad feedback • ImageWidth • ImageHeight
• GoodAudio, the name of the audio file for good feedback • AverageAudio, the audio for
average feedback • BadAudio, the audio file for bad feedback • GoodText, the text message
for good feedback • AverageText, the text message for average feedback • BadText, the text
message for bad feedback • TextFont • TextFontScale • TextThickness • TextColor •
ShowBackground, if true the text is shown on a round background • BackgroundColor, the
color for the background.

Actions: ShowGoodFeedback, shows the text and defined image for the good feedback and
plays the audio if defined • ShowAverageFeedback • ShowBadFeedback •

Appendix B

Object Detection and Tracking

ISAR relies on object detection and feature matching for natural feature tracking. The
tracking is model-based. Associated with each physical object is a template image that acts
as the model for tracking. When the user (application author) adds a physical object to the
scene, this template image is shown in scene viewer. For annotations that are attached to a
physical object, the application author pre-registers them according to this template model.
The attached annotations are rendered with reference to the coordinate system of the physical
object, which corresponds to the (0, 0) in template image. For markerless tracking, the
objects are first detected using a trained YOLOv3 model, that returns the bounding box of
the objects in the camera image. The object bounding boxes are cropped from the camera
image and the 2D pose of the objects is determined in correspondence to the template image
using feature matching. For marker-based tracking object detection and tracking is based on
ArUco [RRMSMC18] markers.

Markerless or marker-based object detection and tracking plugins are copied into the plu-
gins folder of ISAR. Each object detection and tracking plugin must have the following
structure:

• Plugin descriptor and interface module: Each object detection and tracking plugin must
include an objectdetector.py module. The object detection and tracking service of
ISAR looks for this file in the plugin folder and loads it. This file has the standard inter-
face for object detection and tracking. It consists of the get_predictions() method
that receives a camera frame and returns the result of object detection and tracking for
it (see below), the name and description of the plugin, the get_physical_objects()
method that returns a list of all physical objects that can be detected and tracked using
this plugin, and the terminate() method that signals the plugin to terminate.

150 Object Detection and Tracking

• A physical_objects.json file that contains a list of physical objects that this object
detection and tracking plugin can detect and track. This file contains the name and the
path to the template image for each of the physical objects.

• A folder containing the template images. One for each physical object.

• Any other files needed for object detection and tracking, for example the CNN model
in case of YOLO object detection or the marker associations in case of marker-based
object recognition and tracking.

ISAR object detection and tracking service does not depend on how an object detection
and tracking plugin tracks objects. The plugin only provides a standard interface, the
get_predictions() method, that receives an ObjectDetectionRequest instance. The
ObjectDetectionRequest instance contains the camera frame, for which the object de-
tection and tracking must be performed. It also contains a list of physical objects avail-
able in the scene. To achieve a better performance, specially in case of markerless track-
ing, the pose is only estimated for the objects that are available in the scene and not ev-
ery object that is in the camera image. The get_predictions() method return a list
of ObjectDetectionPrediction instances. An ObjectDetectionPrediction instance
contains the lablel of the detected object, the detection confidence, the bounding_box,
the cropped_image of the detected object (the camera image cropped at the bounding box
of the detected object), and the pose which is the 3x2 2D affine transformation matrix.

The object detection model returns the bounding box of the physical objects in the camera
image. For each object the camera image is cropped at this bounding box to get the current
image of the physical object as it is on the tabletop. We call this image target image. The
tracking algorithm calculates the affine 2D transformation that aligns the template image of
the physical object to this cropped target image. For each camera frame, the object detection
and tracking algorithm works as follows:

1. Get the bounding box of physical objects in the camera image from YOLO model.
For each physical object crop the camera image at the bounding box to get the current
target image of the physical object.

2. Extract key points for template image and target image using AKAZE [AS11].

3. Find the matching key points using Hamming distance.

4. Estimate an initial affine 2D transformation from key points using RANSAC [FB81]
algorithm. Then calculate a refined transformation using only the inliers with LMedS
[MKRL86] algorithm.

151

5. Calculate the final refined pose, using the estimated transformation from previous step,
with the ECC algorithm [EP08].

In order to make the pose estimation results more robust and stable, the pose estimation
algorithm maintains and updates a dictionary that contains the best estimated pose for each
physical object in the scene. Every time the algorithm is performed, the result of estimated
pose is compared to the best estimated transformation so far. For the comparison, the template
image is warped using both transformation matrices and the respective error in relation to the
target image is calculated. The errors is calculated using the root mean squared error of the
difference of between warped image and target image. If the new transformation is better
than the existing best transformation, it is returned and also replaces the best transformation.
Otherwise the best transformation is returned.

Appendix C

Extending ISAR Framework

ISAR framework and authoring environment can be extended to meet new requirements.
A framework extender can added new functionality to ISAR in three ways: adding new
annotation types, adding new action types, and adding new event types.

C.1 Adding New Annotation Types

All annotations in ISAR are subclass of the abstract base class Annotation. The base class
Annotation provides basic properties and functionalities common to all annotations. This
includes properties such as name, id, and position and functionalities such as attaching to
physical objects or deleting the annotations from the scene.

Each new annotation type must also define its corresponding annotations tool class that is
responsible for rendering the annotation. All annotation tool classes are subclasses of the
abstract base class AnnotationTool. An annotation tool has drawing mode that is active
when the user is defining the annotation. In this mode the annotation tool responses to mouse
events (mouse pressed, mouse moved, and mouse released) to preview the annotation and
added to the scene. When the drawing mode is inactive, the annotation tool renders the
annotation according to its defined properties.

In order to add a new annotation type to ISAR the framework extender must do the following
steps. We illustrate the steps on the example of the CheckboxAnnotation:

154 Extending ISAR Framework

Fig. C.1 Example of how to define the class for a new annotation type.

Adding the annotation class:

The framework extender must add a class for the new annotation that inherits from the
Annotation base class. He should also define any additional properties for the annotation
using the different annotation property classes. In the case of CheckboxAnnotation these
are the Size, an int value for defining the size of the checkbox rectangle in pixels, the Color
for the border color of the checkbox rectangle, the Thickness an int value for the border
thickness of the checkbox rectangle, and the Checked, a boolean property for the initial
check state of the checkbox (figure C.1 [1]).

The framework extender should also implement any necessary basic functionality of the
annotation by overriding the methods of the Annotation base class. For example in the case
of CheckboxAnnotation, the intersects_with_point() method should be implemented,
that checks if a given point is withing the boundaries of the checkbox rectangle (figure C.1
[2]). This method is used for example by selection service in order to detect selection events
on the annotation.

The framework extender should also implement necessary functionality to fire any events
related to the annotation. In the case of CheckboxAnnotation these are checkbox checked
and checkbox unchecked events (figure C.1 [3]).

C.2 Adding New Event Types 155

Adding annotation tool class:

For each new annotation type a corresponding annotation tool class must also be added that
inherits for the abstract base class AnnotationTool. The annotation tool class is responsible
for rendering the annotation instance, both as it is being drawn and after it is finished
and added to the scene. In the latter case, the scene renderer delegate the drawing of all
annotations in the scene to the corresponding annotation tool class. In the former case the
annotation tool class receives mouse events from scene viewer in authoring UI.

The annotation instance acts as the single source of truth. During the drawing, the mouse
interactions change the properties of a temporarily created annotation instance. At mouse
release event, the validity of the annotation is checked and it is added to the scene. The
annotation tool uses the annotation instance to render it as both as being drawn as it is finished
and added the scene.

For each annotation instance, the scene renderer delegates its drawing to the corresponding
annotation tool class. So, the annotation class must be related to the annotation tool class.
This is done by adding an entry for the annotation_tools dictionary that maps the name
of the annotation class to the corresponding instance of annotation tool.

Adding annotation tool to the user interface of authoring environment:

Finally, a button must be added for the new annotation type to the annotation tools toolbar
in the graphical user interfaces of the authoring environment. The framework extender
must connect that button to the corresponding annotation tool class by adding it to the
annotation_tool_btns dictionary. This dictionary maps the button name in the user
interface to the annotation tool class, so that whenever the button is clicked, the active
annotation tool is set to the corresponding annotation tool.

C.2 Adding New Event Types

All event classes are subclasses of the abstract base class Event, that defines common
properties and functionalities of all events, such as name, scene, and event sources. Each
event type has an array of possible source types, for example SelectionEvent has physical
objects and annotations as possible sources. All subclasses of a source type can also be
selected as source type for the event. The Event superclass also define the equals() method

156 Extending ISAR Framework

that checks if two event instances are equal. This is needed for firing rules, because the
RuleSevice fires a rule, whenever its corresponding event has occurred.

In order to add a new event type the framework extender must do the following:

1. Add a class for the event type that inherits for the abstract base class Event, and define
all the necessary properties for the event type. For example, the SelectionEvent has
a property for trigger_interval, that defines the delay before the section event is
fired.

2. Define the array of source types for the event. All subclasses of a source type can
also be selected as source type for the event. For example SelectionEvent has
physical object and annotation as its source type. Accordingly, all physical objects and
annotation instances on the scene can be selected as its possible sources.

3. If the event type has any properties, implement the corresponding user interface code in
the abstract method update_event_properties_frame() that allows setting those
properties. For example, the PhysicalObjectPlacedInAreaEvent has an instance
of a ObjectPlacementAreaAnnotation as its source and the physical object as its
property. It provides the corresponding UI for selecting the physical object in the event
definition dialog.

4. Add the event class to the list of events, so that the user can select it in the event
definition dialog.

C.3 Adding New Action Types

All action classes are subclasses of the abstract base class Action. The base class Action
defines basic properties and functionality of all action types, such as name and scene, and
checking the validity of action targets. Each action type has an array of possible target
types.

In order to add a new action type the framework extender must do the following:

1. Add a class for the action type that inherits for the abstract base class Action.

2. Define the array of target types for the action. For each target type, all its sub-
classes can also be used as target types of the action instance. For example the
ToggleAnnotationVisibilityAction has target type Annotation, which makes
all annotation instances possible targets of this action type.

C.3 Adding New Action Types 157

3. Define if the action is bound to a scene or global. Global actions, such as ShowSceneAction
do not need a scene. All other actions belong to a specific scene and act only on the
targets that exist on that scene.

4. If the action has any properties, implement the corresponding user interface code in
the abstract method update_action_properties_frame() that allows setting those
properties. For example, the HighlightPhysicalObjectAction has an instance of
a physical object as its target and the color of highlighting as a property. It provides
the corresponding UI for setting the color property in the action definition dialog.

5. Implement the abstract run() method. The run method is called whenever the action
must be run, for example when a rule is fired that has this action instance. The run()
method implements how the action affects its targets.

6. Add the action class to the list of actions, so that the user can select it in the action
definition dialog.

Appendix D

User Study

 1

Dear Participant,

thank you for taking part in this study. The study is structured in four parts:

1. I first ask you some questions about your experience in software development
2. I then do a short demonstration of ISAR and its features by creating a simple

application
3. You then have 1-hour time to create your own ISAR application for vocabulary

learning.
4. I finally ask you some questions about usability of ISAR and its effectiveness.

Part 1: Development Experience

1.1. What is your age?
under 20 20-30 30-40 40-50 over 50

1.2. How technically affine are you?

• I am not technically affine. [low]
• I can connect and setup my home printer and home cinema system. [moderate]
• I am technically affine. I like testing the functions of new technical systems. When I

have a new technical system in front of me, I try it out intensively. [high]
• I predominantly deal with technical systems as part of my job. [very high]

1.3. What is your experience with programming?

• I don’t have any experience with programming. [no experience]
• I can write simple toy programs for fun or homework assignments. [beginner]
• I have under 2 years of programming experience as part of my job. I have

programmed system with less than 5000 lines of code. [advanced]
• I have more than 2 years programming experience as part of my job. I have

programmed large systems with more that 5000 lines of code [expert]

1.4. How familiar are you with augmented reality (AR)?

• I don’t know what is augmented reality. I have never used an augmented reality
system. [not familiar]

• I have tested or used AR systems, but I don’t know how they are created. [only used]
• I have created my own AR systems using frameworks like ARKit, ARToolkit, Vuforia, ...

[beginner developer]
• I have developed my own AR systems from scratch. [expert]

1.5. What are the main components of an AR system? What are the main challenges in
developing an AR system?

 2

Part 2: ISAR Demonstration [~ 15 Minutes]

I now demonstrate different features of ISAR that you need (or can use) in order to create
your vocabulary learning application. You see a demonstration of the following features of
ISAR:

• Creating a project
• Creating scenes
• Adding annotations to the scene
• Configuring annotation properties
• Adding physical objects to the scene

• Defining scene navigation
• Defining events, actions, and interaction

rules
• Selecting annotations and physical

objects

Part 3: Authoring an ISAR application for vocabulary learning [at most
60 minutes]

Now you will use ISAR to develop an application for learning vocabulary related to tools from
a normal household toolbox. You are free to design your ISAR application the way you like.
But your application must have at least the following features:

• At least two scenes with scene navigation
• Each scene must contain one or more physical objects and one or more annotations
• The scenes should help the application user learn the vocabulary related to the tools,

for example name of the tools, related verbs, name of the related objects, etc.
• Each scene must have defined interaction rule, for example “Selecting a tool plays

back the audio annotation for its name”

The object recognition and tracking package is provided to you, so you don’t have to create
your own object recognition and tracking package for this application. Sample media files
(images, audio, video) related to each tool are also provided to you. You don’t have to use
them though, and you can create your own media files or download them from internet.

Please think aloud and explain what you are doing as you create and test your application.

 3

Part 4: Usability Questions

4.1. How long do you think it would take to implement the application you created
from scratch?

4.2. Which features of ISAR do you find most useful regarding development of an
interactive augmented reality application for tabletop?

4.3. What were the main limitations and difficulties you faced in creating your
application?

4.4. Which application domains do you think would be the most suitable for using
ISAR?

4.5. I think users without technical background can use ISAR to create their own
interactive applications for the tabletop (after a short, e.g. one-hour,
introduction session).

strongly agree agree neutral disagree strongly disagree

4.6. As an expert of other domains (e.g. a teacher) I would use ISAR to create my
own interactive applications.

strongly agree agree neutral disagree strongly disagree

4.7. I would introduce and recommend ISAR to experts of other domains.

strongly agree agree neutral disagree strongly disagree

 4

System Usability Scale Questionnaire:

1. I think that I would like to use this system frequently
strongly agree agree neutral disagree strongly disagree

2. I found the system unnecessarily complex.
strongly agree agree neutral disagree strongly disagree

3. I thought the system was easy to use.
strongly agree agree neutral disagree strongly disagree

4. I think that I would need the support of a technical person to be able to use this

system.
strongly agree agree neutral disagree strongly disagree

5. I found the various functions in this system were well integrated.
strongly agree agree neutral disagree strongly disagree

6. I thought there was too much inconsistency in this system.
strongly agree agree neutral disagree strongly disagree

7. I would imagine that most people would learn to use this system very quickly.
strongly agree agree neutral disagree strongly disagree

8. I found the system very cumbersome to use.
strongly agree agree neutral disagree strongly disagree

9. I felt very confident using the system.
strongly agree agree neutral disagree strongly disagree

10. I needed to learn a lot of things before I could get going with this system.
strongly agree agree neutral disagree strongly disagree

References

[AAG+09] Michelle Annett, Fraser Anderson, Darrell Goertzen, Jonathan Halton,
Quentin Ranson, Walter F Bischof, and Pierre Boulanger. Using a multi-
touch tabletop for upper extremity motor rehabilitation. In Proceedings
of the 21st Annual Conference of the Australian Computer-Human Inter-
action Special Interest Group: Design: Open 24/7, pages 261–264. ACM,
2009.

[Ack01] Edith Ackermann. Piaget’s constructivism, papert’s constructionism:
What’s the difference. Future of learning group publication, 5(3):438,
2001.

[ADG04] Daniel F Abawi, Ralf Dörner, and Paul Grimm. A component-based
authoring environment for creating multimedia-rich mixed reality. In
Proceedings of the Seventh Eurographics conference on Multimedia, pages
31–40, 2004.

[Ain99] Shaaron Ainsworth. The functions of multiple representations. Computers
& education, 33(2-3):131–152, 1999.

[AIRH12] Hussain Al-Issa, Holger Regenbrecht, and Leigh Hale. Augmented reality
applications in rehabilitation to improve physical outcomes. Physical
Therapy Reviews, 17(1):16–28, 2012.

[All16] Thomas Allweyer. BPMN 2.0: introduction to the standard for business
process modeling. BoD–Books on Demand, 2016.

[ANRS+13] Mirjam Augstein, Thomas Neumayr, Renate Ruckser-Scherb, Isabel Karl-
huber, and Josef Altmann. The fun. tast. tisch. project: a novel approach
to neuro-rehabilitation using an interactive multiuser multitouch tabletop.
In Proceedings of the 2013 ACM international conference on Interactive
tabletops and surfaces, pages 81–90. ACM, 2013.

[AS11] Pablo F Alcantarilla and T Solutions. Fast explicit diffusion for accelerated
features in nonlinear scale spaces. IEEE Trans. Patt. Anal. Mach. Intell,
34(7):1281–1298, 2011.

[ATH+18] Yuliana Apaza, Richard Tumailla, Wilder Hancco, Alfredo Paz-
Valderrama, Carlo Corrales-Delgado, and Manuel Loaiza. Systematic
mapping study on high-level content design frameworks for augmented

166 References

reality. In 2018 20th Symposium on Virtual and Augmented Reality (SVR),
pages 192–201. IEEE, 2018.

[Azu97] Ronald T Azuma. A survey of augmented reality. Presence: Teleoperators
& Virtual Environments, 6(4):355–385, 1997.

[BBK+01] Martin Bauer, Bernd Bruegge, Gudrun Klinker, Asa MacWilliams,
Thomas Reicher, Stefan Riss, Christian Sandor, and Martin Wagner. De-
sign of a component-based augmented reality framework. In Proceedings
IEEE and ACM International Symposium on Augmented Reality, pages
45–54. IEEE, 2001.

[BCFP19] Barbara Rita Barricelli, Fabio Cassano, Daniela Fogli, and Antonio Pic-
cinno. End-user development, end-user programming and end-user soft-
ware engineering: A systematic mapping study. Journal of Systems and
Software, 149:101–137, 2019.

[BCL+15] Mark Billinghurst, Adrian Clark, Gun Lee, et al. A survey of augmented
reality. Foundations and Trends® in Human–Computer Interaction, 8(2-
3):73–272, 2015.

[BD03] Bernd Bruegge and Allen H. Dutoit. Object-Oriented Software Engineer-
ing: Using UML, Patterns and Java, Second Edition. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 2003.

[BDOB13] Engin Bumbacher, Amit Deutsch, Nancy Otero, and Paulo Blikstein.
Beattable: a tangible approach to rhythms and ratios. In Proceedings of
the 12th International Conference on Interaction Design and Children,
pages 589–592, 2013.

[BF02] Oliver Bimber and Bemd Frohlich. Occlusion shadows: Using projected
light to generate realistic occlusion effects for view-dependent optical
see-through displays. In Proceedings. International Symposium on Mixed
and Augmented Reality, pages 186–319. IEEE, 2002.

[BFSR16] Sebastian Büttner, Markus Funk, Oliver Sand, and Carsten Röcker. Using
head-mounted displays and in-situ projection for assistive systems: A
comparison. In Proceedings of the 9th ACM international conference on
pervasive technologies related to assistive environments, pages 1–8, 2016.

[BGW+02] Oliver Bimber, Stephen M Gatesy, Lawrence M Witmer, Ramesh Raskar,
and L Miguel Encarnação. Merging fossil specimens with computer-
generated information. Computer, (9):25–30, 2002.

[BK00] Gary Bradski and Adrian Kaehler. Opencv. Dr. Dobb’s journal of software
tools, 3, 2000.

[BKBN12] Tobias Blum, Valerie Kleeberger, Christoph Bichlmeier, and Nassir Navab.
mirracle: An augmented reality magic mirror system for anatomy edu-
cation. In 2012 IEEE Virtual Reality Workshops (VRW), pages 115–116.
IEEE, 2012.

References 167

[BKM08] Aaron Bangor, Philip T Kortum, and James T Miller. An empirical
evaluation of the system usability scale. Intl. Journal of Human–Computer
Interaction, 24(6):574–594, 2008.

[BKM09] Aaron Bangor, Philip Kortum, and James Miller. Determining what
individual sus scores mean: Adding an adjective rating scale. Journal of
usability studies, 4(3):114–123, 2009.

[BMBC19] Clara Bonillo, Javier Marco, Sandra Baldassarri, and Eva Cerezo. Kitvi-
sion toolkit: supporting the creation of cognitive activities for tangible
tabletop devices. Universal Access in the Information Society, pages 1–29,
2019.

[BMF+17] Sebastian Büttner, Henrik Mucha, Markus Funk, Thomas Kosch, Mario
Aehnelt, Sebastian Robert, and Carsten Röcker. The design space of
augmented and virtual reality applications for assistive environments
in manufacturing: a visual approach. In Proceedings of the 10th In-
ternational Conference on PErvasive Technologies Related to Assistive
Environments, pages 433–440, 2017.

[BR05] Oliver Bimber and Ramesh Raskar. Spatial augmented reality: merging
real and virtual worlds. AK Peters/CRC Press, 2005.

[BRF01] Deepak Bandyopadhyay, Ramesh Raskar, and Henry Fuchs. Dynamic
shader lamps: Painting on movable objects. In Proceedings IEEE and
ACM International Symposium on Augmented Reality, pages 207–216.
IEEE, 2001.

[BW19] Bhaskar Bhattacharya and Eliot H Winer. Augmented reality via expert
demonstration authoring (areda). Computers in Industry, 105:61–79,
2019.

[CDZOD15] Sébastien Cuendet, Jessica Dehler-Zufferey, Giulia Ortoleva, and Pierre
Dillenbourg. An integrated way of using a tangible user interface in a
classroom. International Journal of Computer-Supported Collaborative
Learning, 10(2):183–208, 2015.

[Chi16] Pei-Yu Chi. Designing Video-Based Interactive Instructions. PhD thesis,
UC Berkeley, 2016.

[CKL+10] Jinhyuk Choi, Youngsun Kim, Myonghee Lee, Gerard J Kim, Yanghee
Nam, and Yongmoo Kwon. k-mart: Authoring tool for mixed reality con-
tents. In 2010 IEEE International Symposium on Mixed and Augmented
Reality, pages 219–220. IEEE, 2010.

[CLL+13] Pei-Yu Chi, Joyce Liu, Jason Linder, Mira Dontcheva, Wilmot Li, and
Bjoern Hartmann. Democut: generating concise instructional videos
for physical demonstrations. In Proceedings of the 26th annual ACM
symposium on User interface software and technology, pages 141–150,
2013.

168 References

[CMK88] John M Carroll, Robert L Mack, and Wendy A Kellogg. Interface
metaphors and user interface design. In Handbook of human-computer
interaction, pages 67–85. Elsevier, 1988.

[CRR08] Nadine Couture, Guillaume Rivière, and Patrick Reuter. Geotui: a tangible
user interface for geoscience. In Proceedings of the 2nd international
conference on Tangible and embedded interaction, pages 89–96, 2008.

[DBLS18] Arindam Dey, Mark Billinghurst, Robert W Lindeman, and J Swan. A
systematic review of 10 years of augmented reality usability studies: 2005
to 2014. Frontiers in Robotics and AI, 5:37, 2018.

[DD14] Matt Dunleavy and Chris Dede. Augmented reality teaching and learning.
In Handbook of research on educational communications and technology,
pages 735–745. Springer, 2014.

[DDLÓ+10] Alan Dunne, Son Do-Lenh, Gearóid Ó’Laighin, Chia Shen, and Paolo
Bonato. Upper extremity rehabilitation of children with cerebral palsy
using accelerometer feedback on a multitouch display. In 2010 Annual In-
ternational Conference of the IEEE Engineering in Medicine and Biology,
pages 1751–1754. IEEE, 2010.

[DE11] Pierre Dillenbourg and Michael Evans. Interactive tabletops in education.
International Journal of Computer-Supported Collaborative Learning,
6(4):491–514, 2011.

[DGHP03] Ralf Dörner, Christian Geiger, Michael Haller, and Volker Paelke. Au-
thoring mixed reality—a component and framework-based approach. In
Entertainment Computing, pages 405–413. Springer, 2003.

[DLKD09] Son Do-Lenh, Frédéric Kaplan, and Pierre Dillenbourg. based concept
map: The effects of tabletop on an expressive collaborative learning task.
In The 23rd BCS conference on Human Computer Interaction (HCI 2009),
number CONF, pages 149–158. ACM, 2009.

[Do12] Lenh Hung Son Do. Supporting reflection and classroom orchestration
with tangible tabletops. PhD thesis, EPFL, 2012.

[Dou04] Paul Dourish. Where the action is: the foundations of embodied interac-
tion. MIT press, 2004.

[DRSG18] Clifford De Raffaele, Serengul Smith, and Orhan Gemikonakli. An active
tangible user interface framework for teaching and learning artificial intel-
ligence. In 23rd International Conference on Intelligent User Interfaces,
pages 535–546, 2018.

[EB09] Darren Edge and Alan F Blackwell. Peripheral tangible interaction by
analytic design. In Proceedings of the 3rd International Conference on
Tangible and Embedded Interaction, pages 69–76, 2009.

[Ech09] Florian Echtler. Tangible information displays. PhD thesis, Technische
Universität München, 2009.

References 169

[Edw95] Laurie D Edwards. The design and analysis of a mathematical microworld.
Journal of Educational Computing Research, 12(1):77–94, 1995.

[EP08] Georgios D Evangelidis and Emmanouil Z Psarakis. Parametric image
alignment using enhanced correlation coefficient maximization. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 30(10):1858–
1865, 2008.

[ER14] Michael A Evans and Jochen Rick. Supporting learning with interactive
surfaces and spaces. In Handbook of research on educational communi-
cations and technology, pages 689–701. Springer, 2014.

[FB81] Martin A Fischler and Robert C Bolles. Random sample consensus:
a paradigm for model fitting with applications to image analysis and
automated cartography. Communications of the ACM, 24(6):381–395,
1981.

[FBÅM+14] Åsa Fast-Berglund, Magnus Åkerman, Sandra Mattsson, Pierre EC Jo-
hansson, Anna Malm, and Anna Perenstål Brenden. Creating strategies for
global assembly instructions–current state analysis. In The sixth Swedish
Production Symposium, 2014.

[FBR97] Morten Fjeld, Martin Bichsel, and Matthias Rauterberg. Build-it: an
intuitive design tool based on direct object manipulation. In International
Gesture Workshop, pages 297–308. Springer, 1997.

[FIB95] George W Fitzmaurice, Hiroshi Ishii, and William AS Buxton. Bricks:
laying the foundations for graspable user interfaces. In Proceedings of
the SIGCHI conference on Human factors in computing systems, pages
442–449, 1995.

[Fis04] Kenneth P Fishkin. A taxonomy for and analysis of tangible interfaces.
Personal and Ubiquitous computing, 8(5):347–358, 2004.

[Fis13] Gerhard Fischer. End-user development: from creating technologies to
transforming cultures. In International Symposium on End User Develop-
ment, pages 217–222. Springer, 2013.

[FKS16] Markus Funk, Thomas Kosch, and Albrecht Schmidt. Interactive worker
assistance: comparing the effects of in-situ projection, head-mounted
displays, tablet, and paper instructions. In Proceedings of the 2016 ACM
International Joint Conference on Pervasive and Ubiquitous Computing,
pages 934–939, 2016.

[FLM+18] Markus Funk, Lars Lischke, Sven Mayer, Alireza Sahami Shirazi, and
Albrecht Schmidt. Teach me how! interactive assembly instructions using
demonstration and in-situ projection. In Assistive Augmentation, pages
49–73. Springer, 2018.

170 References

[FSM+15] Markus Funk, Alireza Sahami Shirazi, Sven Mayer, Lars Lischke, and
Albrecht Schmidt. Pick from here! an interactive mobile cart using
in-situ projection for order picking. In Proceedings of the 2015 ACM
International Joint Conference on Pervasive and Ubiquitous Computing,
pages 601–609, 2015.

[Gam95] Erich Gamma. Design patterns: elements of reusable object-oriented
software. Pearson Education India, 1995.

[GB08] Saul Greenberg and Bill Buxton. Usability evaluation considered harmful
(some of the time). In Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 111–120. ACM, 2008.

[GJMSMCMJ14] Sergio Garrido-Jurado, Rafael Muñoz-Salinas, Francisco José Madrid-
Cuevas, and Manuel Jesús Marín-Jiménez. Automatic generation and
detection of highly reliable fiducial markers under occlusion. Pattern
Recognition, 47(6):2280–2292, 2014.

[GLC15] Pavel Gurevich, Joel Lanir, and Benjamin Cohen. Design and implemen-
tation of teleadvisor: a projection-based augmented reality system for
remote collaboration. Computer Supported Cooperative Work (CSCW),
24(6):527–562, 2015.

[GLG11] Jens Grubert, Tobias Langlotz, and Raphaël Grasset. Augmented reality
browser survey. Tehnical report, Institute for Computer Graphics and
Vision, Graz University of Technology, Austria, 2011.

[GMOF13] Jesús Gimeno, Pedro Morillo, Juan Manuel Orduña, and Marcos Fernán-
dez. A new ar authoring tool using depth maps for industrial procedures.
Computers in Industry, 64(9):1263–1271, 2013.

[GNTH14] Steffen Gauglitz, Benjamin Nuernberger, Matthew Turk, and Tobias
Höllerer. In touch with the remote world: Remote collaboration with
augmented reality drawings and virtual navigation. In Proceedings of the
20th ACM Symposium on Virtual Reality Software and Technology, pages
197–205. ACM, 2014.

[GSH+07] Audrey Girouard, Erin Treacy Solovey, Leanne M Hirshfield, Stacey Ecott,
Orit Shaer, and Robert JK Jacob. Smart blocks: a tangible mathematical
manipulative. In Proceedings of the 1st international conference on
Tangible and embedded interaction, pages 183–186, 2007.

[GTOF12] Jesús Gimeno, PM Tena, Juan M Orduna, and Marcos Fernández. An
advanced authoring tool for augmented reality applications in industry.
Actas de las XXIII Jornadas de Paralelismo (JP 2012). Elche: Servicio de
Publicaciones de la Universidad Miguel Hernández, 2012.

[HA12] John Hardy and Jason Alexander. Toolkit support for interactive projected
displays. In Proceedings of the 11th international conference on mobile
and ubiquitous multimedia, pages 1–10, 2012.

References 171

[Har14] John Hardy. Toolkit support for interactive projected displays. PhD thesis,
Lancaster University, 2014.

[Hei91] George Hein. Constructivist learning theory. Insti-
tute for Inquiry. Available at:/http://www. exploratorium.
edu/ifi/resources/constructivistlearning. htmlS, 1991.

[HKD+13] Hossein Mousavi Hondori, Maryam Khademi, Lucy Dodakian, Steven C
Cramer, and Cristina Videira Lopes. A spatial augmented reality rehab
system for post-stroke hand rehabilitation. In MMVR, volume 184, pages
279–285, 2013.

[HR02] Matthias Haringer and Holger T Regenbrecht. A pragmatic approach to
augmented reality authoring. In Proceedings. International Symposium
on Mixed and Augmented Reality, pages 237–245. IEEE, 2002.

[HRL99] Lars Erik Holmquist, Johan Redström, and Peter Ljungstrand. Token-
based access to digital information. In International Symposium on
Handheld and Ubiquitous Computing, pages 234–245. Springer, 1999.

[HSCJ09] Michael S Horn, Erin Treacy Solovey, R Jordan Crouser, and Robert JK
Jacob. Comparing the use of tangible and graphical programming lan-
guages for informal science education. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 975–984,
2009.

[HSGB06] Alastair Hampshire, Hartmut Seichter, Raphaël Grasset, and Mark
Billinghurst. Augmented reality authoring: generic context from pro-
grammer to designer. In Proceedings of the 18th Australia conference on
Computer-Human Interaction: Design: Activities, Artefacts and Environ-
ments, pages 409–412, 2006.

[HSZ05] Michael Haller, Erwin Stauder, and Juergen Zauner. Amire-es: Authoring
mixed reality once, run it anywhere. In Proceedings of the 11th Interna-
tional Conference on Human-Computer Interaction (HCII), volume 2005,
2005.

[HWL+10] Taejin Ha, Woontack Woo, Youngho Lee, Junhun Lee, Jeha Ryu, Hankyun
Choi, and Kwanheng Lee. Artalet: tangible user interface based immersive
augmented reality authoring tool for digilog book. In 2010 International
Symposium on Ubiquitous Virtual Reality, pages 40–43. IEEE, 2010.

[Ish08] Hiroshi Ishii. The tangible user interface and its evolution. Communica-
tions of the ACM, 51(6):32–36, 2008.

[IU97] Hiroshi Ishii and Brygg Ullmer. Tangible bits: towards seamless interfaces
between people, bits and atoms. In Proceedings of the ACM SIGCHI
Conference on Human factors in computing systems, pages 234–241,
1997.

172 References

[JGAK07] Sergi Jordà, Günter Geiger, Marcos Alonso, and Martin Kaltenbrunner.
The reactable: exploring the synergy between live music performance
and tabletop tangible interfaces. In Proceedings of the 1st international
conference on Tangible and embedded interaction, pages 139–146, 2007.

[JGH+08] Robert JK Jacob, Audrey Girouard, Leanne M Hirshfield, Michael S Horn,
Orit Shaer, Erin Treacy Solovey, and Jamie Zigelbaum. Reality-based
interaction: a framework for post-wimp interfaces. In Proceedings of
the SIGCHI conference on Human factors in computing systems, pages
201–210, 2008.

[JHJL01] Wendy Ju, Rebecca Hurwitz, Tilke Judd, and Bonny Lee. Counteractive:
an interactive cookbook for the kitchen counter. In CHI’01 extended
abstracts on Human factors in computing systems, pages 269–270, 2001.

[JIPP02] Robert JK Jacob, Hiroshi Ishii, Gian Pangaro, and James Patten. A
tangible interface for organizing information using a grid. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
pages 339–346, 2002.

[Kal09] Martin Kaltenbrunner. reactivision and tuio: a tangible tabletop toolkit. In
Proceedings of the ACM international Conference on interactive Tabletops
and Surfaces, pages 9–16, 2009.

[KB99] Hirokazu Kato and Mark Billinghurst. Marker tracking and hmd cal-
ibration for a video-based augmented reality conferencing system. In
Proceedings 2nd IEEE and ACM International Workshop on Augmented
Reality (IWAR’99), pages 85–94. IEEE, 1999.

[KB07] Martin Kaltenbrunner and Ross Bencina. reactivision: a computer-vision
framework for table-based tangible interaction. In Proceedings of the 1st
international conference on Tangible and embedded interaction, pages
69–74, 2007.

[KBP+00] Hirokazu Kato, Mark Billinghurst, Ivan Poupyrev, Kenji Imamoto, and
Keihachiro Tachibana. Virtual object manipulation on a table-top ar
environment. In Proceedings IEEE and ACM International Symposium
on Augmented Reality (ISAR 2000), pages 111–119. Ieee, 2000.

[KF10] Andreas Kunz and Morten Fjeld. From table–system to tabletop: In-
tegrating technology into interactive surfaces. In Tabletops-Horizontal
Interactive Displays, pages 51–69. Springer, 2010.

[KFA+14] Oliver Korn, Markus Funk, Stephan Abele, Thomas Hörz, and Albrecht
Schmidt. Context-aware assistive systems at the workplace: analyzing
the effects of projection and gamification. In Proceedings of the 7th
international conference on pervasive technologies related to assistive
environments, pages 1–8, 2014.

[KHT06] Scott R Klemmer, Björn Hartmann, and Leila Takayama. How bodies
matter: five themes for interaction design. In Proceedings of the 6th
conference on Designing Interactive systems, pages 140–149, 2006.

References 173

[KIR95] D KIRSH. The intelligent use of space. Artificial Intelligence, 73:31–68,
1995.

[KLLL04] Scott R Klemmer, Jack Li, James Lin, and James A Landay. Papier-
mache: toolkit support for tangible input. In Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 399–406, 2004.

[KM08] Mi Jeong Kim and Mary Lou Maher. The impact of tangible user in-
terfaces on designers’ spatial cognition. Human–Computer Interaction,
23(2):101–137, 2008.

[KNG16] Sunwook Kim, Maury A Nussbaum, and Joseph L Gabbard. Augmented
reality “smart glasses” in the workplace: industry perspectives and chal-
lenges for worker safety and health. IIE transactions on occupational
ergonomics and human factors, 4(4):253–258, 2016.

[KP+88] Glenn E Krasner, Stephen T Pope, et al. A description of the model-view-
controller user interface paradigm in the smalltalk-80 system. Journal of
object oriented programming, 1(3):26–49, 1988.

[KS03] Toshikazu Karitsuka and Kosuke Sato. A wearable mixed reality with
an on-board projector. In The Second IEEE and ACM International
Symposium on Mixed and Augmented Reality, 2003. Proceedings., pages
321–322. IEEE, 2003.

[KSF06] David Kirk and Danae Stanton Fraser. Comparing remote gesture tech-
nologies for supporting collaborative physical tasks. In Proceedings of
the SIGCHI conference on Human Factors in computing systems, pages
1191–1200. ACM, 2006.

[KWCS05] Christian Knopfle, Jens Weidenhausen, Laurent Chauvigne, and Ingo
Stock. Template based authoring for ar based service scenarios. In IEEE
Proceedings. VR 2005. Virtual Reality, 2005., pages 237–240. IEEE, 2005.

[LBH+10] Johannes Luderschmidt, Immanuel Bauer, Nadia Haubner, Simon
Lehmann, Ralf Dörner, and Ulrich Schwanecke. Tuio as3: A multi-
touch and tangible user interface rapid prototyping toolkit for tabletop
interaction. In Self Integrating Systems for Better Living Environments:
First Workshop, Sensyble, pages 21–28, 2010.

[LH12] Jérémy Laviole and Martin Hachet. Papart: interactive 3d graphics and
multi-touch augmented paper for artistic creation. In 2012 IEEE sympo-
sium on 3D user interfaces (3DUI), pages 3–6. IEEE, 2012.

[LHLD13] Johannes Luderschmidt, Nadia Haubner, Simon Lehmann, and Ralf
Dörner. Emil: a rapid prototyping authoring environment for the de-
sign of interactive surface applications. In International Conference on
Human-Computer Interaction, pages 381–390. Springer, 2013.

174 References

[LHV+18] David Ledo, Steven Houben, Jo Vermeulen, Nicolai Marquardt, Lora
Oehlberg, and Saul Greenberg. Evaluation strategies for hci toolkit re-
search. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems, page 36. ACM, 2018.

[LKB05] Gun A Lee, Gerard J Kim, and Mark Billinghurst. Immersive authoring:
What you experience is what you get (wyxiwyg). Communications of the
ACM, 48(7):76–81, 2005.

[LMZ+12] Tobias Langlotz, Stefan Mooslechner, Stefanie Zollmann, Claus Degen-
dorfer, Gerhard Reitmayr, and Dieter Schmalstieg. Sketching up the
world: in situ authoring for mobile augmented reality. Personal and
ubiquitous computing, 16(6):623–630, 2012.

[LNBK04] Gun A Lee, Claudia Nelles, Mark Billinghurst, and Gerard Jounghyun
Kim. Immersive authoring of tangible augmented reality applications. In
Third IEEE and ACM International Symposium on Mixed and Augmented
Reality, pages 172–181. IEEE, 2004.

[LOG17] David Ledo, Lora Oehlberg, and Saul Greenberg. The toolkit-audience
challenge. In Workshop on HCI. Tools at CHI 2017, 2017.

[LPKW06] Henry Lieberman, Fabio Paternò, Markus Klann, and Volker Wulf. End-
user development: An emerging paradigm. In End user development,
pages 1–8. Springer, 2006.

[LS05] Florian Ledermann and Dieter Schmalstieg. APRIL: a high-level frame-
work for creating augmented reality presentations. IEEE, 2005.

[LS17] James R Lewis and Jeff Sauro. Can i leave this one out?: the effect of
dropping an item from the sus. Journal of Usability Studies, 13(1):38–46,
2017.

[LTK+07] Michael Leitner, Martin Tomitsch, Thomas Költringer, Karin Kappel, and
Thomas Grechenig. Designing tangible table-top interfaces for patients in
rehabilitation. In CVHI, 2007.

[Mac02] Blair MacIntyre. Authoring 3d mixed reality experiences: Managing the
relationship between the physical and virtual worlds. At ACM SIGGRAPH
and Eurographics Campfire: Production Process of 3D Computer Graph-
ics Applications-Structures, Roles and Tools, Snowbird, UT, pages 1–5,
2002.

[Mac05] Asa MacWilliams. A decentralized adaptive architecture for ubiquitous
augmented reality systems. PhD thesis, Technische Universität München,
2005.

[Mar07] Paul Marshall. Do tangible interfaces enhance learning? In Proceedings
of the 1st international conference on Tangible and embedded interaction,
pages 163–170, 2007.

References 175

[May02] Richard E Mayer. Multimedia learning. In Psychology of learning and
motivation, volume 41, pages 85–139. Elsevier, 2002.

[MBC13] Javier Marco, Sandra Baldassarri, and Eva Cerezo. Nikvision: Developing
a tangible application for and with children. J. UCS, 19(15):2266–2291,
2013.

[MCB12] Javier Marco, Eva Cerezo, and Sandra Baldassarri. Toyvision: a toolkit
for prototyping tabletop tangible games. In Proceedings of the 4th ACM
SIGCHI symposium on Engineering interactive computing systems, pages
71–80, 2012.

[ME19] Tariq Masood and Johannes Egger. Adopting augmented reality in the
age of industrial digitalisation. 2019.

[MGB+03] Blair MacIntyre, Maribeth Gandy, Jay Bolter, Steven Dow, and Brendan
Hannigan. Dart: The designer’s augmented reality toolkit. In The Sec-
ond IEEE and ACM International Symposium on Mixed and Augmented
Reality, 2003. Proceedings., pages 329–330. IEEE, 2003.

[MHP00] Brad Myers, Scott E Hudson, and Randy Pausch. Past, present, and future
of user interface software tools. ACM Transactions on Computer-Human
Interaction (TOCHI), 7(1):3–28, 2000.

[MK94] Paul Milgram and Fumio Kishino. A taxonomy of mixed reality vi-
sual displays. IEICE TRANSACTIONS on Information and Systems,
77(12):1321–1329, 1994.

[MKRL86] Desire L Massart, Leonard Kaufman, Peter J Rousseeuw, and Annick
Leroy. Least median of squares: a robust method for outlier and model
error detection in regression and calibration. Analytica Chimica Acta,
187:171–179, 1986.

[MM09] Pranav Mistry and Pattie Maes. Sixthsense: a wearable gestural interface.
In ACM SIGGRAPH ASIA 2009 Art Gallery & Emerging Technologies:
Adaptation, pages 85–85. ACM, 2009.

[MO12] Andrew Manches and Claire O’malley. Tangibles for learning: a repre-
sentational analysis of physical manipulation. Personal and Ubiquitous
Computing, 16(4):405–419, 2012.

[MPW08] Valérie Maquil, Thomas Psik, and Ina Wagner. The colortable: a design
story. In Proceedings of the 2nd international conference on Tangible and
embedded interaction, pages 97–104, 2008.

[MSW+03] Asa MacWilliams, Christian Sandor, Martin Wagner, Martin Bauer, Gu-
drun Klinker, and Bernd Bruegge. Herding sheep: live system for dis-
tributed augmented reality. In The Second IEEE and ACM International
Symposium on Mixed and Augmented Reality, 2003. Proceedings., pages
123–132. IEEE, 2003.

176 References

[MTA+17] Valerie Maquil, Eric Tobias, Dimitra Anastasiou, Hélène Mayer, and
Thibaud Latour. Copse: Rapidly instantiating problem solving activities
based on tangible tabletop interfaces. Proceedings of the ACM on Human-
Computer Interaction, 1(EICS):1–16, 2017.

[Muñ17] Hendrys Fabián Tobar Muñoz. Supporting technology for augmented
reality game-based learning. PhD thesis, Universitat de Girona, 2017.

[MWS12] Milena S Markova, Stephanie Wilson, and Simone Stumpf. Tangible user
interfaces for learning. International Journal of Technology Enhanced
Learning, 4(3-4):139–155, 2012.

[Nie94] Jakob Nielsen. Usability engineering. Morgan Kaufmann, 1994.

[NM90] Jakob Nielsen and Rolf Molich. Heuristic evaluation of user interfaces.
In Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 249–256, 1990.

[Nor88] Donald A Norman. The psychology of everyday things. Basic books,
1988.

[NPD13] Lene Nielsen, M Soegaard Personas, and RF Dam. The encyclope-
dia of human-computer interaction. The Interaction Design Founda-
tion. Aarhus, Denmark. Available at: http://www. interaction-design.
org/encyclopedia/personas. html, 2013.

[NRD15] Rafael Nunes, Fabio Rito, and Carlos Duarte. Tactic: an api for touch and
tangible interaction. In Proceedings of the Ninth International Conference
on Tangible, Embedded, and Embodied Interaction, pages 125–132, 2015.

[OF04] Claire O’Malley and Danae Stanton Fraser. Literature review in learning
with tangible technologies. Bristol: NESTA Futurelab, 2004.

[OJ07] Dan R Olsen Jr. Evaluating user interface systems research. In Proceed-
ings of the 20th annual ACM symposium on User interface software and
technology, pages 251–258. ACM, 2007.

[Ols92] Dan Olsen. User interface management systems: models and algorithms.
Morgan Kaufmann Publishers Inc., 1992.

[PD95] Robert W Proctor and Addie Dutta. Skill acquisition and human perfor-
mance. Sage Publications, Inc, 1995.

[Pet77] James L Peterson. Petri nets. ACM Computing Surveys (CSUR), 9(3):223–
252, 1977.

[PFSR09] Sara Price, Taciana Pontual Falcão, Jennifer G Sheridan, and George
Roussos. The effect of representation location on interaction in a tangible
learning environment. In Proceedings of the 3rd International Conference
on Tangible and Embedded Interaction, pages 85–92, 2009.

References 177

[Poe06] Iman Poernomo. The meta-object facility typed. In Proceedings of the
2006 ACM symposium on Applied computing, pages 1845–1849, 2006.

[PROM18] Maria Madalena Paulo, Paulo Rita, Tiago Oliveira, and Sérgio Moro.
Understanding mobile augmented reality adoption in a consumer context.
Journal of hospitality and tourism technology, 2018.

[PTB+01] Ivan Poupyrev, Desney S Tan, Mark Billinghurst, Hirokazu Kato, Holger
Regenbrecht, and Nobuji Tetsutani. Tiles: A mixed reality authoring
interface. In Interact, volume 1, pages 334–341, 2001.

[PTTVG03] Fred Paas, Juhani E Tuovinen, Huib Tabbers, and Pascal WM Van Gerven.
Cognitive load measurement as a means to advance cognitive load theory.
Educational psychologist, 38(1):63–71, 2003.

[PW09] Jonghee Park and Woontack Woo. Multi-layer based authoring tool for
digilog book. In International Conference on Entertainment Computing,
pages 234–239. Springer, 2009.

[RA09] Philip Robbins and Murat Aydede. A short primer on situated cognition.
The Cambridge handbook of situated cognition, pages 3–10, 2009.

[RÁMGHH16] David Roldán-Álvarez, Estefanía Martín, Manuel García-Herranz, and
Pablo A Haya. Mind the gap: Impact on learnability of user interface
design of authoring tools for teachers. International Journal of Human-
Computer Studies, 94:18–34, 2016.

[RÁMH+18] David Roldán-Álvarez, Estefanía Martín, Pablo A Haya, Manuel García-
Herranz, and María Rodríguez-González. Dedos: An authoring toolkit
to create educational multimedia activities for multiple devices. IEEE
Transactions on Learning Technologies, 11(4):493–505, 2018.

[RCES09] Abu Saleh Md Mahfujur Rahman, Jongeun Cha, and Abdulmotaleb
El Saddik. Authoring edutainment content through video annotations
and 3d model augmentation. In 2009 IEEE International Conference on
Virtual Environments, Human-Computer Interfaces and Measurements
Systems, pages 370–374. IEEE, 2009.

[RdFST13] Rafael Alves Roberto, Daniel Queiroz de Freitas, Francisco Paulo Magal-
haes Simões, and Veronica Teichrieb. A dynamic blocks platform based
on projective augmented reality and tangible interfaces for educational
activities. In 2013 XV Symposium on Virtual and Augmented Reality,
pages 1–9. IEEE, 2013.

[RF17] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 7263–7271, 2017.

[RHM+13] Stefan Rüther, Thomas Hermann, Maik Mracek, Stefan Kopp, and Jochen
Steil. An assistance system for guiding workers in central sterilization
supply departments. In Proceedings of the 6th International Conference

178 References

on PErvasive Technologies Related to Assistive Environments, pages 1–8,
2013.

[RLMT16] Rafael Alves Roberto, João Paulo Lima, Roberta Cabral Mota, and Veron-
ica Teichrieb. Authoring tools for augmented reality: An analysis and
classification of content design tools. In International Conference of
Design, User Experience, and Usability, pages 237–248. Springer, 2016.

[RM09] Iulian Radu and Blair MacIntyre. Augmented-reality scratch: a tangible
programming environment for children. In Proceedings of conference on
interaction design for children, Como, Italy, 2009.

[RMMH+09] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie
Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosen-
baum, Jay Silver, Brian Silverman, et al. Scratch: programming for all.
Communications of the ACM, 52(11):60–67, 2009.

[Rog03] Everett M. Rogers. Diffusion of innovations. Free Press, 2003.

[RRMSMC18] Francisco J Romero-Ramirez, Rafael Muñoz-Salinas, and Rafael Medina-
Carnicer. Speeded up detection of squared fiducial markers. Image and
vision Computing, 76:38–47, 2018.

[RS99] Jun Rekimoto and Masanori Saitoh. Augmented surfaces: a spatially
continuous work space for hybrid computing environments. In Proceed-
ings of the SIGCHI conference on Human Factors in Computing Systems,
pages 378–385, 1999.

[RT07] Peter Robinson and Philip Tuddenham. Distributed tabletops: Supporting
remote and mixed-presence tabletop collaboration. In Second Annual
IEEE International Workshop on Horizontal Interactive Human-Computer
Systems (TABLETOP’07), pages 19–26. IEEE, 2007.

[RVBB+06] Ramesh Raskar, Jeroen Van Baar, Paul Beardsley, Thomas Willwacher,
Srinivas Rao, and Clifton Forlines. ilamps: geometrically aware and
self-configuring projectors. In ACM SIGGRAPH 2006 Courses, pages
7–es. ACM, 2006.

[RWLB01] Ramesh Raskar, Greg Welch, Kok-Lim Low, and Deepak Bandyopadhyay.
Shader lamps: Animating real objects with image-based illumination. In
Rendering Techniques 2001, pages 89–102. Springer, 2001.

[San05] Christian Sandor. A software toolkit and authoring tools for user interfaces
in ubiquitous augmented reality. PhD thesis, Technische Universität
München, 2005.

[San15] Marc Ericson C. Santos. Usability Evaluation Framework for Hand-
held Augmented Reality Applied to Learning Support. PhD thesis, Nara
Institute of Science and Technology, 2015.

[Sev12] Charles Severance. Discovering javascript object notation. Computer,
45(4):6–8, 2012.

References 179

[SFH+02] Dieter Schmalstieg, Anton Fuhrmann, Gerd Hesina, Zsolt Szalavári,
L Miguel Encarnaçao, Michael Gervautz, and Werner Purgathofer. The
studierstube augmented reality project. Presence: Teleoperators & Virtual
Environments, 11(1):33–54, 2002.

[SH+10] Orit Shaer, Eva Hornecker, et al. Tangible user interfaces: past, present,
and future directions. Foundations and Trends® in Human–Computer
Interaction, 3(1–2):4–137, 2010.

[SH16] Dieter Schmalstieg and Tobias Hollerer. Augmented reality: principles
and practice. Addison-Wesley Professional, 2016.

[SI11] Luca Simeone and Salvatore Iaconesi. Anthropological conversations:
Augmented reality enhanced artifacts to foster education in cultural an-
thropology. In 2011 IEEE 11th International Conference on Advanced
Learning Technologies, pages 126–128. IEEE, 2011.

[SJZD10] Bertrand Schneider, Patrick Jermann, Guillaume Zufferey, and Pierre
Dillenbourg. Benefits of a tangible interface for collaborative learning and
interaction. IEEE Transactions on Learning Technologies, 4(3):222–232,
2010.

[SK05] Christian Sandor and Gudrun Klinker. A rapid prototyping software
infrastructure for user interfaces in ubiquitous augmented reality. Personal
and Ubiquitous Computing, 9(3):169–185, 2005.

[SKY+14] Jinwook Shim, Minje Kong, Yoonsik Yang, Jonghoon Seo, and Tack-Don
Han. Interactive features based augmented reality authoring tool. In 2014
IEEE International Conference on Consumer Electronics (ICCE), pages
47–50. IEEE, 2014.

[SLB08] Hartmut Seichter, Julian Looser, and Mark Billinghurst. Composar: An
intuitive tool for authoring ar applications. In 2008 7th IEEE/ACM Inter-
national Symposium on Mixed and Augmented Reality, pages 177–178.
IEEE, 2008.

[SLB11] Dieter Schmalstieg, Tobias Langlotz, and Mark Billinghurst. Augmented
reality 2.0. In Virtual realities, pages 13–37. Springer, 2011.

[SLR+14] Marc Ericson C SANTOS, Arno In Wolde LUEBKE, Ma Mercedes T
RODRIGO, Takafumi TAKETOMI, Goshiro YAMAMOTO, Christian
Sandor, KATO Hirokazu, et al. Authoring augmented reality as situated
multimedia. In 22nd International Conference on Computers in Education
(ICCE 2014), pages 554–556. Asia-Pacific Society for Computers in
Education, 2014.

[SMF16] Genta Suzuki, Taichi Murase, and Yusaku Fujii. Projecting recorded
expert hands at real size, at real speed, and onto real objects for manual
work. In Companion Publication of the 21st International Conference on
Intelligent User Interfaces, pages 13–17. ACM, 2016.

180 References

[SMMM17] Lou Schwartz, Valérie Maquil, Christian Moll, and Hélène Mayer. Teach-
ers’ feedback on the end-user development of tangible systems. Mensch
und Computer 2017-Workshopband, 2017.

[SPC+16] Ben Shneiderman, Catherine Plaisant, Maxine Cohen, Steven Jacobs,
Niklas Elmqvist, and Nicholas Diakopoulos. Designing the user interface:
strategies for effective human-computer interaction. Pearson, 2016.

[SSDM17] Ivo Sluganovic, Matej Serbec, Ante Derek, and Ivan Martinovic. Holopair:
Securing shared augmented reality using microsoft hololens. In Proceed-
ings of the 33rd Annual Computer Security Applications Conference,
pages 250–261. ACM, 2017.

[SSFG98] Zsolt Szalavári, Dieter Schmalstieg, Anton Fuhrmann, and Michael Ger-
vautz. “studierstube”: An environment for collaboration in augmented
reality. Virtual Reality, 3(1):37–48, 1998.

[STY+14] Marc Ericson C SANTOS, Takafumi TAKETOMI, Goshiro YA-
MAMOTO, Ma Mercedes T RODRIGO, Christian SANDOR, KATO
Hirokazu, et al. Evaluating augmented reality for situated vocabulary
learning. In 22nd International Conference on Computers in Education
(ICCE 2014), pages 701–710. Asia-Pacific Society for Computers in
Education, 2014.

[SWBP13] Bertrand Schneider, Jenelle Wallace, Paulo Blikstein, and Roy Pea. Prepar-
ing for future learning with a tangible user interface: the case of neuro-
science. IEEE Transactions on Learning Technologies, 6(2):117–129,
2013.

[SWMJ10] Steven C Seow, Dennis Wixon, Ann Morrison, and Giulio Jacucci. Natural
user interfaces: the prospect and challenge of touch and gestural com-
puting. In CHI’10 Extended Abstracts on Human Factors in Computing
Systems, pages 4453–4456. ACM, 2010.

[TBB10] Tiffany Tseng, Coram Bryant, and Paulo Blikstein. Mechanix: an in-
teractive display for exploring engineering design through a tangible
interface. In Proceedings of the fifth international conference on Tangible,
embedded, and embodied interaction, pages 265–266, 2010.

[TJR+19] Lauren Thevin, Christophe Jouffrais, Nicolas Rodier, Nicolas Palard,
Martin Hachet, and Anke M Brock. Creating accessible interactive audio-
tactile drawings using spatial augmented reality. In Proceedings of the
2019 ACM International Conference on Interactive Surfaces and Spaces,
pages 17–28, 2019.

[TML15] Eric Tobias, Valérie Maquil, and Thibaud Latour. Tulip: a widget-based
software framework for tangible tabletop interfaces. In Proceedings of
the 7th ACM SIGCHI Symposium on Engineering Interactive Computing
Systems, pages 216–221, 2015.

References 181

[TSM13] Daniel Tetteroo, Iris Soute, and Panos Markopoulos. Five key challenges
in end-user development for tangible and embodied interaction. In Pro-
ceedings of the 15th ACM on International conference on multimodal
interaction, pages 247–254, 2013.

[TVG+15] Daniel Tetteroo, Paul Vreugdenhil, Ivor Grisel, Marc Michielsen, Els
Kuppens, Diana Vanmulken, and Panos Markopoulos. Lessons learnt from
deploying an end-user development platform for physical rehabilitation.
In Proceedings of the 33rd Annual ACM Conference on Human Factors
in Computing Systems, pages 4133–4142. ACM, 2015.

[UFG+16] Antonio Emmanuele Uva, Michele Fiorentino, Michele Gattullo, Marco
Colaprico, Maria F de Ruvo, Francescomaria Marino, Gianpaolo F Trotta,
Vito M Manghisi, Antonio Boccaccio, Vitoantonio Bevilacqua, et al.
Design of a projective ar workbench for manual working stations. In Inter-
national Conference on Augmented Reality, Virtual Reality and Computer
Graphics, pages 358–367. Springer, 2016.

[UI97] Brygg Ullmer and Hiroshi Ishii. The metadesk: models and prototypes
for tangible user interfaces. In Proceedings of the 10th annual ACM
symposium on User interface software and technology, pages 223–232,
1997.

[UI98] John Underkoffler and Hiroshi Ishii. Illuminating light: an optical design
tool with a luminous-tangible interface. In Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 542–549, 1998.

[UI99] John Underkoffler and Hiroshi Ishii. Urp: a luminous-tangible workbench
for urban planning and design. In Proceedings of the SIGCHI conference
on Human Factors in Computing Systems, pages 386–393, 1999.

[UI00] Brygg Ullmer and Hiroshi Ishii. Emerging frameworks for tangible user
interfaces. IBM systems journal, 39(3.4):915–931, 2000.

[UIJ05] Brygg Ullmer, Hiroshi Ishii, and Robert JK Jacob. Token+ constraint sys-
tems for tangible interaction with digital information. ACM Transactions
on Computer-Human Interaction (TOCHI), 12(1):81–118, 2005.

[UNT+12] Daisuke Uriu, Mizuki Namai, Satoru Tokuhisa, Ryo Kashiwagi, Masahiko
Inami, and Naohito Okude. Panavi: recipe medium with a sensors-
embedded pan for domestic users to master professional culinary arts. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 129–138, 2012.

[UUI99] John Underkoffler, Brygg Ullmer, and Hiroshi Ishii. Emancipated pixels:
real-world graphics in the luminous room. In Proceedings of the 26th
annual conference on Computer graphics and interactive techniques,
pages 385–392, 1999.

[VD97] Andries Van Dam. Post-wimp user interfaces. Communications of the
ACM, 40(2):63–67, 1997.

182 References

[VH01] Eric Von Hippel. User toolkits for innovation. Journal of Product In-
novation Management: An International Publication Of The Product
Development & Management Association, 18(4):247–257, 2001.

[WAF19] Daniel Wessel, Christiane Attig, and Thomas Franke. Ati-s-an ultra-short
scale for assessing affinity for technology interaction in user studies. In
Proceedings of Mensch und Computer 2019, pages 147–154. ACM, 2019.

[WC13] Rafał Wojciechowski and Wojciech Cellary. Evaluation of learners’ atti-
tude toward learning in aries augmented reality environments. Computers
& Education, 68:570–585, 2013.

[Wel91] Pierre Wellner. The digitaldesk calculator: tangible manipulation on a
desk top display. In Proceedings of the 4th annual ACM symposium on
User interface software and technology, pages 27–33, 1991.

[WF09] Sean White and Steven Feiner. Sitelens: situated visualization techniques
for urban site visits. In Proceedings of the SIGCHI conference on human
factors in computing systems, pages 1117–1120, 2009.

[Woj12] Rafał Wojciechowski. Modeling interactive augmented reality environ-
ments. In Interactive 3D Multimedia Content, pages 137–170. Springer,
2012.

[WON16] Xiangyu Wang, Soh K Ong, and Andrew YC Nee. A comprehensive sur-
vey of augmented reality assembly research. Advances in Manufacturing,
4(1):1–22, 2016.

[WQ10] Rui Wang and Xuelei Qian. OpenSceneGraph 3.0: Beginner’s guide.
Packt Publishing Ltd, 2010.

[WTS10] Ming-Jen Wang, Chien-Hao Tseng, and Cherng-Yeu Shen. An easy to
use augmented reality authoring tool for use in examination purpose. In
IFIP Human-Computer Interaction Symposium, pages 285–288. Springer,
2010.

[WW11] Daniel Wigdor and Dennis Wixon. Brave NUI world: designing natural
user interfaces for touch and gesture. Elsevier, 2011.

[WZLL13] JF Wang, C Zeng, Y Liu, and SQ Li. Integrated content authoring for aug-
mented reality based product manual assembly process instruction. In The
43rd International Conference on Computers and Industrial Engineering,
pages 242–251, 2013.

[ZAR05] Oren Zuckerman, Saeed Arida, and Mitchel Resnick. Extending tangible
interfaces for education: digital montessori-inspired manipulatives. In
Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 859–868, 2005.

[ZGN+11] Ryder Ziola, Shweta Grampurohit, L Nate, James Fogarty, and Beverly
Harrison. Oasis: Creating smart objects with dynamic digital behavior.
In Workshop at IUI, volume 2011, 2011.

References 183

[ZH04] Jürgen Zauner and Michael Haller. Authoring of mixed reality applications
including multi-marker calibration for mobile devices. In Proceedings of
the Tenth Eurographics conference on Virtual Environments, pages 87–90,
2004.

[ZHBH03] Jürgen Zauner, Michael Haller, Alexander Brandl, and Werner Hartman.
Authoring of a mixed reality assembly instructor for hierarchical struc-
tures. In The Second IEEE and ACM International Symposium on Mixed
and Augmented Reality, 2003. Proceedings., pages 237–246. IEEE, 2003.

[ZJLD09] Guillaume Zufferey, Patrick Jermann, Aurélien Lucchi, and Pierre Dillen-
bourg. Tinkersheets: using paper forms to control and visualize tangible
simulations. In Proceedings of the 3rd international Conference on Tan-
gible and Embedded interaction, pages 377–384, 2009.

[ZON13] J Zhu, SK Ong, and AYC Nee. An authorable context-aware augmented
reality system to assist the maintenance technicians. The International
Journal of Advanced Manufacturing Technology, 66(9-12):1699–1714,
2013.

[ZSDS13] Emile Zhang, Hideo Saito, and Francois De Sorbier. From smartphone to
virtual window. In 2013 IEEE International Conference on Multimedia
and Expo Workshops (ICMEW), pages 1–6. IEEE, 2013.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Objectives and Scope
	1.2 Research Process
	1.3 Contributions
	1.4 Organization of the Thesis

	2 Foundations
	2.1 Augmented Reality
	2.1.1 Method of Augmentation and AR Displays
	2.1.2 Components of an AR System

	2.2 Tangible User Interfaces and Interactive Tabletops
	2.2.1 Tangible User Interfaces
	2.2.2 Interactive Tabletops

	2.3 Authoring Systems
	2.3.1 Authoring for Augmented Reality
	2.3.2 Authoring for Tangible Tabletops

	3 Requirement Specification
	3.1 As-Is Scenario: Teaching Mainboard Assembly
	3.2 Visionary Scenarios
	3.2.1 Situated Learning of Taxonomies and Domain-specific Vocabulary
	3.2.2 Guidance through a Workflow
	3.2.3 Rehabilitation for Hand Motor Skills

	3.3 Functional Requirements
	3.3.1 Creating ISAR Applications
	3.3.2 Executing ISAR Applications
	3.3.3 Extending ISAR

	3.4 Non-functional Requirements

	4 ISAR Framework and Authoring Environment
	4.1 ISAR Framework
	4.1.1 Scene
	4.1.2 Interaction
	4.1.3 Object Detection and Tracking
	4.1.4 ISAR Framework as a Meta-model

	4.2 Authoring and Execution Environment
	4.3 Architecture
	4.3.1 Design Goals
	4.3.2 Subsystem Decomposition
	4.3.3 Control Flow
	4.3.4 Packaging and Distribution of an ISAR Application

	5 Evaluation
	5.1 Usage Study: An Interactive Tabletop Application for Vocabulary Learning
	5.1.1 Study Setup
	5.1.2 Results

	5.2 Demonstration Case Studies
	5.2.1 Workflow Guidance: Mainboard Assembly
	5.2.2 Rehabilitation: Hand-Eye Coordination Exercise

	6 Conclusions and Future Work
	6.1 Summary
	6.1.1 Limitations

	6.2 Future Work

	Appendix A Annotations
	A.1 Geometric Shapes
	A.1.1 Line
	A.1.2 Rectangle
	A.1.3 Ellipse
	A.1.4 Arrow
	A.1.5 Curve

	A.2 Multimedia Annotations
	A.2.1 Text
	A.2.2 Image
	A.2.3 Audio
	A.2.4 Video

	A.3 Dynamic Annotations
	A.3.1 Timer
	A.3.2 Counter
	A.3.3 Relationship
	A.3.4 Animation

	A.4 Interaction Annotations
	A.4.1 ActionButton
	A.4.2 Checkbox
	A.4.3 ObjectPlacementArea
	A.4.4 Feedback

	Appendix B Object Detection and Tracking
	Appendix C Extending ISAR Framework
	C.1 Adding New Annotation Types
	C.2 Adding New Event Types
	C.3 Adding New Action Types

	Appendix D User Study
	References

