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Abstract
Introduction: Drug-resistant infections are becoming increasingly frequent worldwide, causing hundreds of
thousands of deaths annually. This is partly due to the very limited set of protein drug targets known for
human-infecting viral genomes. The eleven influenza virus proteins, for instance, exploit host cell factors for rep-
lication and suppression of the antiviral immune responses. A systems medicine approach to identify relevant
and druggable host factors would dramatically expand therapeutic options. Therapeutic target identification,
however, has hitherto relied on static molecular networks, whereas in reality the interactome, in particular during
an infection, is subject to constant change.
Methods: We developed time-course network enrichment (TiCoNE), an expert-centered approach for discover-
ing temporal response pathways. In the first stage of TiCoNE, time-series expression data is clustered in a human-
augmented manner to identify groups of biological entities with coherent temporal responses. Throughout this
process, the expert can add, remove, merge, or split temporal patterns. The resulting groups can then be map-
ped to an interaction network to identify enriched pathways and to analyze cross-talk enrichments and deple-
tions between groups. Finally, temporal response groups of two experiments can be intersected, to identify
condition-variant response patterns that represent promising drug-target candidates.
Results: We applied TiCoNE to human gene expression data for influenza A virus infection and rhino virus infec-
tion, respectively. We then identified coherent temporal response patterns and employed our cross-talk analysis
to establish two potential timelines of systems-level host responses for either infection. Next, we compared the
two phenotypes and unraveled condition-variant temporal groups interacting on a networks level. The highest-
ranking ones we then validated via literature search and wet-lab experiments. This not only confirmed many of
our candidates as previously known, but we also identified phospholipid scramblase 1 (encoded by PLSCR1) as a
previously not recognized host factor that is essential for influenza A virus infection.
Conclusion: With TiCoNE we developed a novel approach for conjointly analyzing molecular networks with time-
series expression data and demonstrated its power by identifying temporal drug-targets. We provide proof-of-
concept that not only novel targets can be identified using our approach, but also that anti-infective drug target
discovery can be enhanced by investigating temporal molecular networks of the host in response to viral infection.
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Introduction
Drug discovery, in particular for anti-infective thera-
pies, is in a deep crisis due to low and further declining
efficacy in principle1 and drug resistance by constant
adaptation of the pathogen by mutation, in particu-
lar.2,3 Systems medicine (also known as network med-
icine) proposes a more holistic approach, in this case by
including also the host interactome to define essential
host factors for the pathogen and, therefore, represents
a potential solution to this roadblock.4 However, even
this innovative approach relies on static networks,
whereas in reality the underlying interactome, in par-
ticular during an infection,5 is subject to constant
changes, facilitating its controllability by the cell.6

Traditional gene expression and network-based tar-
get identification has so far provided only few vali-
dated therapeutic approaches6–8 and mostly in silico
predictions only.9 We hypothesize that this may be
since all hitherto approaches were based on static net-
works, whereas temporal networks have a fundamen-
tal advantage in controllability and possibly also for
drug discovery.6

Such network temporality is often modeled over time
through dynamic links that can be active or nonactive
(binary). We hypothesize that it is better modeled quan-
titatively and based on the temporal expressions profiles
of the nodes (i.e., node dynamics rather than edge dy-
namics). Big ‘‘omics’’ data sets, including an increasing
number of time-resolved data sets, as well as molecular
networks, have been curated already. However, suitable
approaches to analyze these data types together are
lacking. Thus, an integrated analysis to illuminate sys-
temic response patterns of temporal resolution has
been infeasible so far.

We developed time course network enrichment
(TiCoNE), a novel human-augmented time series clus-
tering method combined with a temporal network en-
richer (Fig. 1) that enables drug target discovery based
on temporal networks. Temporal gene clusters are em-
bedded into molecular networks, and TiCoNE identifies
molecular pathways (subnetworks) with a differential
behavior under two conditions (e.g., diseases). Such tem-
poral disease pathway candidates are evaluated by calcu-
lating empirical p-values (see Computational Methods
section in Supplementary Data).

TiCoNE works with most kinds of biological entities
(genes, proteins, RNAs, etc.) and most types of molec-
ular measures acquirable for them (transcriptomics,
proteomics, etc.). To increase readability, in the re-
mainder of this article we simply refer to genes and

gene expression as we focus on applying TiCoNE to in-
fluenza A virus (IAV) transcriptomics data.

Materials and Methods
In this study, we briefly outline the computational ap-
proach of TiCoNE and the utilized data sets. For an
exhausting and more formal description of the meth-
odology, we refer to Computational Methods section
in Supplementary Data. Details on the wet laboratory
analysis can be found in Wet Laboratory Validation
section in Supplementary Data.

Overview
TiCoNE is a human-augmented clustering method for
time series data combined with a temporal network en-
richer. As any clustering approach it seeks to partition
objects of a data set into groups such that (1) objects of
the same group are similar and (2) objects of different
groups are dissimilar to each other. In this study, we
group objects based on their time course. Since TiCoNE
is human augmented, it allows the user to interfere with
the clustering process and, thus, can incorporate valu-
able domain knowledge. After the clustering process,
TiCoNE offers a sophisticated set of methods for an
enrichment of the clustering with molecular networks
paving the way for unprecedented systems medicine
analyses of time series data.

Clustering
The objective of clustering is to cluster biomolecular enti-
ties (e.g., genes) in such a way that the time courses of
genes assigned to one cluster are more similar to each
other than to time courses of genes assigned to different
clusters. To establish the similarity between two time
courses, the user can choose between the Euclidean
distance and the Pearson correlation coefficient,
depending on whether one wants to emphasize the
time course amplitudes or their shapes, respectively.
Note that TiCoNE can also directly cope with (biolog-
ical or technical) replicates.

With this information and some optional data clean-
ing (e.g., removing genes with baseline time courses
behavior), TiCoNE produces an initial clustering using
one of several common clustering approaches. One
may choose between CLARA,10 k-means,11 PAMK,12

STEM,13 and transitivity clustering.14 Once the initial
clustering is identified, TiCoNE applies a prototype-
based clustering scheme15,16 and behaves similar to
k-means11: Each cluster is represented by a prototype
and the following two steps are performed alternatingly:

Wiwie, et al.; Systems Medicine 2019, 2.1
http://online.liebertpub.com/doi/10.1089/sysm.2018.0013

2

http://


1. Assign all genes (based on their time courses) to
the most similar prototype.

2. Update the prototypes accordingly.

This process can be repeated automatically until
convergence (i.e., no genes reassigned to a different
cluster/prototype). The essential working mode of
TiCoNE, however, is to allow the user to interfere
with the clustering after each iteration in vari-
ous ways. We term this approach human-augmented
clustering.

Human-augmented clustering
The result of each clustering iteration is presented to
the user in a sophisticated graphical user interface
allowing for the efficient inspection and manipulation
of the intermediate clustering results. The user has
the following main options:

� Merge clusters of genes with apparently too simi-
lar prototypes.
� Split clusters in cases wherein a cluster appears

to the user to be the union of multiple different
time courses.
� Delete clusters in case a cluster is perceived as

noise or uninteresting.

We refer to the Computational Methods section in Sup-
plementary Data for formal descriptions and several ad-
ditional options for users to interfere. Note that all user
interference is tracked and can be reverted at any time.
Furthermore, the history can be exported as PDF file
used for documentation and publication purposes.

Network enrichment
After clustering, TiCoNE offers several novel network
enrichment methods to boost the significance of the

FIG. 1. Principle of TiCoNE. TiCoNE is a novel temporal systems medicine tool for drug target discovery,
network enrichment, and subnetwork cross talk detection over time. After an initial clustering of a given set of
temporal expression profiles, the partitioning is continuously refined through human-augmented operations.
We call this novel strategy ‘‘human-augmented clustering.’’ Clusters are represented by prototypes (triangles),
and objects (circles) are assigned to the most similar cluster prototype. Given an interaction network of
biological entities such as genes (circles), TiCoNE may further unravel subnetworks significantly enriched with
disease genes (de novo network enrichment), compare these temporal network modules between different
phenotypes, and identify enrichment or depletion of interactions (cross talk) between such temporal modules
(temporal cross talk). We developed tailored statistical models to assess enrichment significance at different
steps of data analysis ( p*). TiCoNE, time course network enrichment.
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derived clusters and put them in a systems biological
context. The most straightforward but naive analysis
is the extraction of the node-induced subnetworks con-
sisting of the genes presented in a selected cluster of
interest. This approach is naive, as it will fail to find
connected networks if the genes of a cluster are not di-
rectly linked in the network. In a biomedical setting, it
is reasonable to assume that not all functionally related
objects show a very similar time behavior and end up in
the same cluster (e.g., genes in a negative feedback loop).
Thus, one may want to allow for a certain number of ex-
ception nodes that are not in the selected clusters but
connect other objects that are. We use KeyPathway-
Miner17 to perform this task. It extracts a maximal con-
nected subnetwork consisting only of genes from the
selected clusters but a user-given number of exceptions.

Time course network cross talk
TiCoNE allows for temporal cross talk enrichment by
scanning the network for pairs of clusters that are con-
nected more (less) often than expected by chance in a
given network. We utilize randomly permuted net-
works to assess significance levels.

Phenotype comparison
Different conditions may be compared over time. First,
the data for both conditions are treated independently
for clustering. After clustering, TiCoNE identifies sig-
nificantly overlapping clusters of the two conditions
and evaluates the similarity of their prototypes. We
regard those cluster pairs as most interesting that
have a significant overlap and a very similar (or dissim-
ilar) prototype to investigate the commonalities (or the
differences) of the conditions. These clusters may after-
ward be inspected using the aforementioned network
enrichment analysis.

TiCoNE as Cytoscape app and web application
We implemented TiCoNE in a Cytoscape app as well as
a feature reduced interactive web application. The
TiCoNE Cytoscape app is full featured and includes
all approaches described in this article. In this study,
TiCoNE is complemented by Cytoscape’s network vi-
sualization and analysis functionalities. The TiCoNE
web application includes only a limited feature set,
most importantly the formation of clusters of time se-
ries data sets and the visualization and enrichment of
identified clusters on a biological network. Temporal
cross talk identification and phenotype comparison
are not included.

IAV and RV data
We applied the TiCoNE Cytoscape App to human
gene expression data measured with an Affymetrix
Human Genome U219 Array containing expression
levels for 49,386 probes for 10 time points (baseline
and at 2, 4, 8, 12, 24, 36, 48, 60, and 72 h after infec-
tion) under three different experimental conditions:
BEAS-2B lung cells have been infected with (1) IAV,
(2) rhinovirus (RV), or (3) coinfected with both. The
data set contained five biological replicates for all time
points except the first one, for which it contained six.
See Kim et al.18 for more details. It is an ideal scenario
for TiCoNE’s phenotype comparison feature. In this
study, we focus on comparing (1) IAV versus (2) RV in-
fection. We mapped the probe set IDs of the data set to
Entrez gene IDs. For genes with multiple probe sets mea-
sured, we kept only the one with the highest variance over
time. The input values have already been log2 trans-
formed such that we only normalized them against the
control. Furthermore, we removed genes from the data
sets, which were not present in the used interaction net-
work (see the section ‘‘Biological network’’).

Clustering of IAV and RV data
We clustered both the expression data of the IAV and
the RV infection experiments with CLARA and 20
negative/positive discretization steps into 500 initial
clusters. We chose CLARA as it designed to cluster
large data sets efficiently. We used the Pearson correla-
tion as similarity function, cluster aggregation function
fA = l, and removed genes not present in the used inter-
action network (see the section ‘‘Biological network’’).
We then ran automatic clustering iterations until conver-
gence. After this procedure, we performed 1 + 100 = 101
iterations for either data set (1 iteration for the initial
clustering and 100 iterations for the iterative optimiza-
tion until convergence). We did not apply any human-
augmented operations.

Biological network
We extracted the human interactome from the Interolo-
gous Interaction Database (I2D) protein–protein inter-
action (PPI) database,19 which integrates various other
databases of known, experimental, and predicted PPIs.
We mapped Uniprot IDs to Entrez gene IDs to be able
to integrate the network with our example time series
data. After removing duplicate interactions between
the same pair of genes, the resulting network contains
199,025 interactions and 15,161 nodes (genes). Note
that our TiCoNE approach works with any kind of
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graph loaded into Cytoscape or to the feature reduced
TiCoNE online platform. The use case determines the
most appropriate network. In this study, we aimed for
finding human response protein complex formation can-
didates; hence our choice of using the I2D interactome.

Results
Figure 1 illustrates the structure and unique capabilities
of TiCoNE: (1) One may find subnetworks significantly
enriched with genes of a similar temporal expression
behavior. (2) The same can be applied to several such
clusters of genes, that is, multitemporal network expres-
sion enrichment. (3) Furthermore, the cross talk between
genes over time can be analyzed on a systems level by
computing the likelihood of observing more (or less) net-
work interactions between pairs of time patterns by
chances, a procedure we call network coenrichment
analysis. (4) The TiCoNE software computes empirical
p-values and cross talk graphs. (5) Finally, one may an-
alyze multiple condition-specific time series experiments
to identify overrepresented temporal patterns respond-
ing differentially to conditions in multiple experiments.

To demonstrate how TiCoNE can facilitate temporal
systems medicine drug target discovery, we analyzed
human whole-genome time series transcriptomics
data of BEAS-2B lung cells after infection with IAV
or RV together with the human protein interactome.18

Viral pathogens such as influenza virus pose a severe
threat to human welfare.

Antivirals normally attack viral functions, such as
antibodies that bind to viral proteins, or drugs that
impair viral functions. As an RNA virus, IAV pos-
sesses high genetic flexibility, allowing for quick adap-
tation to selective pressures imposed by these antiviral
attacks. The result is that neither a lasting immunization
nor an effective therapy has been developed. IAV ex-
ploits the host cell after infection by hijacking a variety
of fundamental intracellular signaling cascades.20,21

Therapeutic target discovery has recently focused on
host cell factors needed for or restricting IAV replica-
tion, as they are not encoded in the viral genome and
the virus cannot easily adapt through mutation to be-
come resistant. Interfering with such factors may
thereby allow treating IAV infections independent of
the specific virus strain and preventing viral resistance.

The transcriptomics data contain expression levels
for 49,386 probes at baseline and over nine time points
between 2 and 72 h after infection with five replicates
for each time point. TiCoNE clustered the expression
data of IAV infection and RV infection experiments

into 88 and 71 significant (p � 0:05) clusters, respec-
tively (Supplementary Fig. S1A and B).

For either clustering, we then performed a time course
network coenrichment analysis. p-Values were derived
using a permutation test with 1000 permutations. When
comparing the distributions of undirected edge counts
between cluster pairs (Supplementary Fig. S2), the clusters
of genes after IAV infection represent gene groups that
are more strongly interacting (more undirected edges)
than the gene clusters after RV infection. We arranged
clusters for both conditions according to their most sig-
nificant cross talk with other clusters (p � 0:02) on a
timeline (Supplementary Figs. S2 and S3).

In general, IAV cluster pairs with significant cross
talk (either depleted or enriched) form a large con-
nected complex along the timeline potentially repre-
senting the gene program response cascades to IAV
infection over time. In contrast, such significant RV
cluster pairs seem to be more fragmented and form
multiple separated cluster complexes possibly indicat-
ing that no such tightly controlled process of gene pro-
gram response cascades is activated. Out of the 61
significant gene cluster pairs for the IAV infection,
we see more often an enriched number of edges (39/
61) than for the 34 significant gene cluster pairs for
the RV infection (19/34). These results highlight that
both conditions exhibit fundamentally different behav-
ior over time on a systems biology level.

We then compared the systems medicine response
between the two infection types (IAV vs. RV) to identify
de novo pathways in the network that behave differently
over time under the two conditions. p-Values were de-
rived using a permutation test with 1000 permuta-
tions. We identified 30 such pathways (subnetworks)
of highly significant size (p � 0:01). When enriching
for the three most significant pathways (p � 0:001) in
the interactome, we find a connected component con-
sisting of 50 genes and 101 interactions (Supplementary
Fig. S4). This complex contains 30 genes (60%) that
have been annotated as relevant in immune responses
to influenza virus infection. Of these 30 genes, 27 have
been discussed in the literature, with some also being an-
notated with a differential behavior between RV and in-
fluenza virus infection (Supplementary Table S1). In
addition, 15 out of the 50 genes are contained in the
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway for IAV infection (hsa05164).22,23 In Figure 2
we have highlighted those gene products, which can cur-
rently be attributed to signaling pathways known to be
activated upon IAV infection. Their functions within
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the relevant pathways are summarized in Supplemen-
tary Table S2.

Querying the established drug target databases Drug-
Bank and Therapeutic Target Database for the identified
genes confirms that TiCoNE recovered several known
drug targets (Supplementary Fig. S5), although not (yet)
dedicated for IAV infection treatment.

TiCoNE analysis identified several genes, such as phos-
pholipid scramblase 1 (PLSCR1), FK506 binding protein
like (FKPBL), and helicase with zinc finger (HELZ2),
which were not previously known to be specifically ac-
tivated upon IAV infection. PLSCR1 encodes an inter-
feron (IFN)-inducible protein that mediates antiviral
activity against DNA and RNA viruses in vitro includ-
ing hepatitis B viruses,24–26 vesicular stomatitis virus
(VSV),27 herpes simplex virus,28 and encephalomyocar-
ditis virus.27 On the contrary, PLSCR1 mediates hepatitis
C virus entry into host cells.29

To investigate whether PLSCR1 activity indeed af-
fects also IAV propagation in an either anti- or proviral
manner, we analyzed propagation of the human influ-
enza virus strain A/Puerto Rico/8/1934 (PR8, H1N1) in
human lung cells (A549) and in human bronchial epi-
thelial cells (BEAS-2B) in the presence or absence of dif-
ferent concentrations of the PLSCR1 inhibitor R5421
(Fig. 3). We tested concentrations of R5421 within a
range from 0.1 nM to 100 lM for cytotoxicity, and
we found them not to be toxic for both cell lines
(Fig. 3A, B). Application of R5421 directly after IAV
infection concentration dependently increased virus
titers for both cell lines (Fig. 3C, D). These data vali-
dated that PLSCR1 is indeed involved in IAV propaga-
tion as a negative regulator. PLSCR1 is implicated
in transmitting IFN-induced signals, leading to the ex-
pression of IFN-stimulated genes (ISGs),30 and it was
suggested that the antiviral effect of PLSCR1 against

FIG. 3. Influence of scramblase inhibitor R5421 on cell viability and IAV replication. A549 (A) and BEAS-2B (B)
cells were treated with R5421 at indicated concentration for 24 h and cell viability was checked using
PrestoBlue reagent (MolecularProbes). Data represent means – SEM (n = 8). A 24-h-old monolayer of A549 (C) or
BEAS-2B (D) cells was infected with PR8 virus at an MOI = 1. At 45 min p.i., viral inoculum was removed and
cells were overlaid with corresponding medium containing R5421 at indicated concentration or DMSO as a
control. Twenty-four hours p.i. supernatants were collected, and virus titers were determined by focus forming
assay. Data represent means – SEM (n = 3). Denoted significance levels are: p £ 0.05 (*) and p £ 0.01 (**).
p.i., postinfection; SEM, standard error of the mean.
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VSV is correlated with increased expression of specific
ISGs. Therefore, phospholipid scramblase 1, which is itself
an ISG-encoded protein, is involved in amplifying and en-
hancing the IFN response through increased expression
of a subset of potent antiviral genes.27 Also, it was found
that primary plasmacytoid dendritic cells (pDCs) from
PLSCR1-deficient mice produced a lower amount of
type-1 IFN than pDCs from the wild-type mice in re-
sponse to IAV stimulation,28 indicating that PLSCR1
might also be involved in IFN expression and eventually
expression of ISGs in IAV-infected cells.

Discussion and Conclusion
We developed TiCoNE, the first approach to seamlessly
identify regions in biomolecular networks that are
enriched in genes (or proteins, metabolites) with signif-
icantly overrepresented time series behavior or time
series coexpression behavior. TiCoNE offers a human-
augmented cluster optimization strategy and allows the
user to iteratively refine the clustering automatically or
visually by applying operations such as adding, deleting,
merging, or splitting clusters. Our approach can com-
pare different phenotypes and identify differentially be-
having network complexes. TiCoNE computes empirical
p-values for clusters, phenotype comparisons and net-
work co-enrichment based on different kinds of permu-
tation tests (see Materials and Methods section).

We demonstrate the power of TiCoNE by processing
time series gene expression data of human host lung
cells, infected with either RV or IAV. In this study,
we use our coenrichment analysis approach to con-
struct complexes of clusters along a timeline that are
biologically meaningful and may explain the systemic
unraveling of host immune response to influenza
virus infection. We find specific properties of coenrich-
ments of IAV and RV data clusters, which may help ex-
plain the large difference in severity of the two viruses
on a systems biology level.

We discovered de novo groups of genes that behave
consistently but show temporally different behavior
under the two conditions. By integrating these candi-
dates with the human PPI network, we discovered a
complex of 50 genes, out of which 30 have been previ-
ously associated with IAV infection.

Among the identified host genes not previously
known to be specifically activated upon IAV infection
were PLSCR1, FKPBL, and helicase with zinc finger
(HELZ2). Through experimental validation we could
confirm that we have identified PLSCR1 as a novel
host factor, which is acting as a negative regulator for

IAV infection. These data provide proof-of-principle
that a systems medicine approach to analyze the
virus and host interactome provides novel and possibly
more effective therapeutic approaches in line with net-
work pharmacology31 than focusing on the virus only.

With TiCoNE, we provide the first integrated tem-
poral systems medicine drug target identification ap-
proach. It extends time series expression data directly
to temporal disease-specific subnetworks. It also identi-
fies cross talk between them, and we show that it can
identify novel drug targets for IAV infection. TiCoNE
is publicly available in the Cytoscape app store32 and
as feature reduced interactive web application (including
screen casts, test data, and online tutorial) at (https://
ticone.compbio.sdu.dk).

Acknowledgments
This work was funded, in part, by the VILLUM Young
Investigator Grant no. 13154 (to J.B.), a Horizon 2020
program (REPO-TRIAL, to H.H.H.W.S. and J.B.), an
ERC Advanced Grant (RadMed, to H.H.H.W.S.), the
German Centre for Infection Research (DZIF), partner
site Giessen, funded by the German Federal Ministry of
Education and Research (BMBF, to S.P), the DFG-
funded Transregional Collaborative Research Centre
‘‘Innate Immunity of the Lung: Mechanisms of Patho-
gen Attack and Host Defence in Pneumonia’’ (SFB/TR
84, to S.P.), the DFG-funded Collaborative Research
Centre 1021 ‘‘RNA viruses: RNA metabolism, host re-
sponse, and pathogenesis’’ (SFB1021; to S.P.) and by a
postdoc fellowship of the Justus Liebig University,
Giessen, Germany ( Just’us to A.M.). The funders had
no role in study design, data collection and analysis, de-
cision to publish, or preparation of the article.

Disclaimer
This article has been submitted solely to this journal
and is not published, in press, or submitted elsewhere.

Authors’ Contributions
C.W. implemented TiCoNE, performed the computa-
tional analysis, wrote all sections of the article exclud-
ing biological paragraphs, wrote the Computational
Methods section in Supplementary Data, and created
Figure 1 as well as Supplementary Figures S1–S5. I.K.
and A.M. performed the wet laboratory analysis, wrote
the biological paragraphs of the Results section, the Wet
Laboratory Validation section in Supplementary Data,
and created Figures 2, 3, and Supplementary Tables S1–
S2. A.R., A.H., I.B.-H., B.B., and S.M. contributed with
valuable ideas and feedback to the development of the

Wiwie, et al.; Systems Medicine 2019, 2.1
http://online.liebertpub.com/doi/10.1089/sysm.2018.0013

8

https://ticone.compbio.sdu.dk
https://ticone.compbio.sdu.dk
http://


TiCoNE software. H.H.H.W.S., S.P., R.R., and J.B. jointly
supervised this work. All authors contributed by review-
ing the article.

Author Disclosure Statement
No competing financial interests exist.

Supplementary Material
Supplementary Data
Supplementary Figure S1
Supplementary Figure S2
Supplementary Figure S3
Supplementary Figure S4
Supplementary Figure S5
Supplementary Table S1
Supplementary Table S2

References
1. Scannell JW, Blanckley A, Boldon H, et al. Diagnosing the decline in

pharmaceutical R&D efficiency. Nat Rev Drug Discov. 2012;11:191–200.
2. De Clercq E. Antiviral agents active against influenza A viruses. Nat Rev

Drug Discov. 2006;5:1015–1025.
3. Spellberg B, Guidos R, Gilbert D, et al. The epidemic of antibiotic-resistant

infections: a call to action for the medical community from the Infectious
Diseases Society of America. Clin Infect Dis. 2008;46:155–164.

4. Langhauser F, Casas AI, Dao VT, et al. A diseasome cluster-based drug
repurposing of soluble guanylate cyclase activators from smooth muscle
relaxation to direct neuroprotection. NPJ Syst Biol Appl. 2018;4:8.

5. Rodrigo G, Daros JA, Elena SF. Virus-host interactome: putting the accent
on how it changes. J Proteomics. 2017;156:1–4.

6. Li A, Cornelius SP, Liu YY, et al. The fundamental advantages of temporal
networks. Science. 2017;358:1042–1046.

7. Batra R, Alcaraz N, Gitzhofer K, et al. On the performance of de novo
pathway enrichment. NPJ Syst Biol Appl. 2017;3:6.

8. Alcaraz N, List M, Batra R, et al. De novo pathway-based biomarker
identification. Nucleic Acids Res. 2017;45:e151.

9. Guney E, Menche J, Vidal M, et al. Network-based in silico drug efficacy
screening. Nat Commun. 2016;7:10331.

10. Kaufman L, Rousseeuw PJ. Clustering Large Applications (Program
CLARA). In: Finding Groups in Data. (Kaufman L, Rousseeuw PJ; eds). John
Wiley & Sons, Inc., New York, NY, 2008; pp. 126–163.

11. MacQueen J. Some methods for classification and analysis of multivariate
observations. In: Proceedings of the Fifth Berkeley Symposium on Mathe-
matical Statistics and Probability, Volume 1: Statistics. University of
California Press, Berkeley, CA. 1967; pp. 281–297.

12. Kaufman L, Rousseeuw PJ. Partitioning Around Medoids (Program PAM).
In: Finding Groups in Data. (Kaufman L, Rousseeuw PJ; eds).
John Wiley & Sons, Inc., New York, NY, 2008; pp. 68–125.

13. Ernst J, Bar-Joseph Z. STEM: a tool for the analysis of short time series
gene expression data. BMC Bioinformatics. 2006;7:191.

14. Wittkop T, Emig D, Lange S, et al. Partitioning biological data with
transitivity clustering. Nat Methods. 2010;7:419–420.

15. Tan P-N. Introduction to Data Mining. Pearson Education India. 2006.
16. Borgelt C. Prototype-Based Classification and Clustering. Otto-von-

Guericke-Universität Magdeburg, Universitätsbibliothek. 2006.
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