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Abstract. The use of lightweight materials is obligatory in the design of economic structures,
but with decreasing mass, the vibro-acoustic properties of the structures become unfavorable.
Acoustic metamaterials based on the concept of acoustic black holes (ABH) can improve the
vibrational behavior by adding local thickness variations to the host structure. To make
computational models of metamaterials also valid for high frequencies, a fine discretization
has to be used. This leads to high computation times. A parametric model order reduction
(PMOR) approach is presented, which is able to create an efficient reduced model of ABHs.
In the first step, one structure preserving reduced model for each parameter is generated using
the iterative rational Krylov algorithm (IRKA). The transfer functions of all reduced models
are used in the second step to create a single parametric model using the Loewner framework.
The resulting model can be used to efficiently evaluate the frequency response of a structure
equipped with ABHs for different parameter sets.

1. Introduction
Lightweight materials are demanded in many fields of engineering, ranging from automotive and
aerospace to civil engineering applications, but decreasing the mass of a system comes at the price
of introducing resonance or noise problems. By applying arrays of locally resonant substructures
of relatively low mass, compared to the host structure, the overall vibration response of the
structure can be modified and resonances can be avoided. A structure equipped with such
arrays is called acoustic metamaterial. Different concepts exist and show interesting effects,
for example negative effective density or stiffness [1], which can generate stop bands at specific
frequencies [2]. A different approach to influence the wave propagation in lightweight materials
is based on local thickness variations. This contribution focuses on structures equipped with
acoustic black holes (ABH), which are areas where the structure’s thickness is gradually reduced,
theoretically until it vanishes. With reducing thickness, the vibration amplitudes increase while
the wave speed decreases. Because of the high amplitudes in the ABH region, damping material
applied here can effectively dissipate much of the structure’s vibration energy [3]. Arrays of
ABHs can be considered as acoustic metamaterials [4] and have shown to have a great effect on
the radiated sound power of plates [5]. In this work, we want to investigate the possibility to
generate efficient models of plates equipped with ABHs which can be used in the design process
of an acoustic metamaterial.

To be able to computationally model the frequency response of structures validly also for high
frequencies, a very fine discretization has to be used. This results in large and computationally
expensive models. An efficient handling of such models is often not possible, so methods to



RASD

IOP Conf. Series: Journal of Physics: Conf. Series 1264 (2019) 012014

IOP Publishing

doi:10.1088/1742-6596/1264/1/012014

2

reduce the order of the model while preserving the desired frequency response are sought. Various
methods for model order reduction (MOR) exist and are used in different fields [6]. The methods
approximate the full system’s transfer function using either approaches based on singular value
decompositions (SVD) or moment-matching methods based on Krylov subspaces; the latter will
be considered in this contribution. There exist generalizations of the classic Krylov methods
for differential equations of second order, so that the second order structure of the dynamic
system is preserved [7]. This is very desirable, as the reduced models can be used, for example,
to compute the energies in the system, which would not be possible if the general structure
is lost in the reduction process. Additionally, the conversion of the second order system to
an equivalent first order system would double the initial system size, counteracting the goal of
reducing the system size. Contrary to classic reduction methods like the modal superposition,
Krylov based MOR techniques can be used with arbitrarily damped systems or systems with
complex material moduli [8, 9]. Having a reduced model depending on one or more parameters
from the full model is a key ingredient for the efficient optimization of systems. Many parametric
model order reduction (PMOR) methods exist and some of them have also been extended to
second order systems [10, 11]. In this contribution, a PMOR approach based on the Loewner
framework, which generates parametrized reduced models from transfer function measurements
[12], is combined with the iterative rational Krylov algorithm (IRKA) [13]. Here, the transfer
function measurements are obtained from the system reduced by IRKA.

The paper is structured as follows: The considered MOR methods, the iterative rational
Krylov algorithm (IRKA) for second order systems and the parametric Loewner framework, are
presented in section 2. Based on this, the proposed combination of IRKA and the parametric
Loewner framework is presented in section 3. Section 4 describes the concept of acoustic black
holes in detail. Numerical examples for all MOR methods and the application to design acoustic
black holes are presented in section 5.

2. Efficient modeling of dynamic systems
The physical phenomena of interest are modeled as second order dynamic systems of the form(

−ω2M + iωC +K
)
u = f

y = bTu,
(1)

with M,C,K ∈ Rn×n, u, f, y, b ∈ Rn, n is the dimension of the system, ω the exciting frequency,
and i the imaginary unit. M,C, and K describe the system’s mass, damping, and stiffness
characteristics, f are the external forces, and u the resulting displacements. y is the output
of the system and b the output measurement vector. The transfer function of such systems is

H (ω) = bT
(
−ω2M + iωC +K

)−1
f . The objective is to find a system with dimension r � n(

−ω2Mr + iωCr +Kr

)
ur = fr

yr = bTr ur,
(2)

where Mr, Cr,Kr ∈ Rr×r, ur, fr, yr, br ∈ Rr, which approximates the original system. The

reduced system’s transfer function is defined as Hr (ω) = bTr
(
−ω2Mr + iωCr +Kr

)−1
fr and

the reduced model is suitable, if Hr(ω) = H(ω) in the desired frequency range.
Moment matching methods seek a reduced transfer function Hr(ω) rationally interpolating

the original transfer function H(ω) by matching a number of poles (moments) and their
derivatives. A realization of the reduced system can be constructed using Petrov-Galerkin
projections, where the full order system is projected onto r-dimensional subspaces V,W with
bases Vr,Wr ∈ Rn×r [14]. The reduced system is then given by

Mr = W T
r MVr, Cr = W T

r CVr, Kr = W T
r KVr, fr = W T

r f. (3)
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The subspaces V,W, respectively their bases Vr,Wr can be found using various methods;
[6] provides an overview. In this work, we use rational interpolation based on Krylov
subspace methods. The general procedure for first order systems is discussed in [15]. For the
proposed second order system, the approach has to be adopted to the structure of the problem
[7, 16, 17, 18].

Large models depending on several parameters further increase the computational effort in the
design process. The second order system of (1) depending on a set of parameters pi, i = 1, . . . ,m
can be expressed as (

−ω2M(p) + iωC(p) +K(p)
)
u = f. (4)

It is desirable to reduce parametrized models retaining their dependence on p. Various MOR
methods have been extended for the use of parametrized models, for an overview see [10].
Parametrized reduced order models are used, where models have to be evaluated for many
values of certain parameters. The construction of such a reduced model is more expensive than
using a standard MOR method and likely also more expensive than solving the full system for
one parameter. The benefit of such a method is therefore depending on the number of different
parameter configurations, which have to be evaluated. In the proposed approach, we want to
generate parametric reduced order models of acoustic metamaterials using a two-step approach:
First, a reduced model for each parameter is created using a rational Krylov method. The
frequency response of these models is calculated and in the second step used as input data
for the parametric Loewner framework presented in [12]. The result is a single reduced model
depending on the desired set of parameters.

2.1. The iterative rational Krylov algorithm (IRKA)
The iterative rational Krylov algorithm (IRKA) was originally presented by [13] as a method
to generate H2 optimal reduced order models of first order dynamic systems. The algorithm
starts with an initial selection of expansion points si, i = 1, . . . , r. Based on this selection, a
reduced order model is generated. The eigenvalues λi, i = 1, . . . , r of this reduced system are
mirrored across the imaginary axis and then used as expansion points for the next iteration.
Upon convergence, the resulting reduced system isH2 optimal. The algorithm has been extended
for second order systems for example by [18, 19]. We used a slightly modified approach of the
SO-IRKA algorithm presented in [18]. Our implementation is shown in algorithm 2.1.

Algorithm 2.1 The iterative rational Krylov algorithm for second order systems, SO-IRKA

Require: M,C,K, f , initial expansion points si, i = 1, . . . , r ∈ C, and tol
Ensure: Mr, Cr,Kr, fr, si

1: while error > tol do

2: Vr =
[(
s21M + s1C +K

)−1
f, · · · ,

(
s2rM + srC +K

)−1
f
]

3: Orthogonalize Vr
4: Mr = V T

r MVr, Cr = V T
r CVr, Kr = V T

r KVr
5: Solve the eigenvalue problem of second order

(
Mrλ

2 + Crλ+Kr

)
x = 0

6: Choose r eigenvalues from λj , j = 1, . . . , 2r
7: error = ||sort (λr)− sort (si)|| / ||sort (si)||
8: Update expansion points si = −λr
9: end while

10: Mr = V T
r MVr, Cr = V T

r CVr, Kr = V T
r KVr

We want to preserve the symmetric positive definiteness of the input matrices, so we set
Wr = Vr as proposed in [18]. The computationally expensive part of the algorithm is the
solution of r n × n linear equation systems per iteration; the eigenvalue problem is cheap, as
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it is performed on the reduced system. Note, that the quadratic eigenvalue problem produces
2r potential expansion points, so a subset of them has to be chosen. If the eigenvalues closest
to the imaginary axis are selected, the first r poles of the original transfer function can be
approximated. It is, however, also possible to choose eigenvalues in a specific range of interest,
for example to match poles in a certain frequency range. Upon convergence, the transfer function
Hr(ωi) of the reduced system interpolates the transfer function of the full system H(ω) for r
poles.

2.2. Parametric model order reduction using the Loewner framework
In the following section, the Loewner framework introduced in [20] and its extension to
parametric models introduced in [12] is presented. IRKA and the non-parametric Loewner
framework both have a second order realization [18, 21], while the parametric Loewner framework
does not have such a realization. The Loewner framework is a data driven approach based
on rational interpolation, which generates a reduced model based on N transfer function
measurements. Contrary to the aforementioned Krylov methods, where the quality of the
reduced model depends on the choice of a suitable set of expansion points si, sets of data
(i.e. transfer function measurements) exhibiting the important features of the full order model
are required for the Loewner framework to generate proper reduced models. The framework
finds a rational function

r (s) =
n (s)

d (s)
, (5)

that interpolates a number of transfer function measurements H (s), i.e. r (si) = H (si) [22].
With the Loewner framework, it is possible to generate reduced systems without knowledge of
the full system (data driven model order reduction). A rational function (5) of order k can be
constructed, given some expansion points λi, using the rational barycentric formula

r (s) =
k+1∑
i=1

βi
s− λi

/
k+1∑
i=1

αi
s− λi

, αi 6= 0. (6)

The Loewner framework is now used to find the coefficients αi, βi. First, transfer function
measurements are concatenated in the Loewner matrix L. Given N transfer function evaluations
φi at frequencies si, they are partitioned into two sets,

[s1, · · · , sN ] = [λ1, · · · , λn] ∪
[
µ1, · · · , µn

]
,

[φ1, · · · , φN ] = [w1, · · · , wn] ∪
[
v1, · · · , vn

]
,

(7)

with n+ n = N and n = bN/2c, which populate the Loewner matrix [22]

L =


v1−w1
µ1−λ1 · · · v1−wn

µ1−λn
...

. . .
...

vn−w1

µn−λ1 · · · vn−wn

µn−λn

 . (8)

The partitioning in (7) can be arbitrary. However, [23] shows, that an alternating partition
leads to better conditioned interpolation matrices. A vector c satisfying Lc = 0 contains the
coefficients for (6) with αi = ci, βi = ciwi. The rank of matrix L holds information about the
minimal order of the interpolation problem. A reduced model of order k = rank L + 1 fully
interpolates all information contained in the transfer function measurements, while a reduced
order model of smaller order approximates the measurements [12].
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The Loewner framework has been extended for parametric systems in [12]. The barycentric
interpolation formula (6) is extended to the two variables frequency s with expansion points λi
and parameter p with expansion points πj :

r (s, p) =
k+1∑
i=1

q+1∑
j=1

cijwij
(s− λi) (p− πj)

/
k+1∑
i=1

q+1∑
j=1

cij
(s− λi) (p− πj)

, αij 6= 0. (9)

The parameters cij are obtained as follows: First, transfer function measurements for a set of
parameters pj , j = 1, . . . ,m at frequencies si, i = 1, . . . , n have to be generated and partitioned
into a matrix φij = H (si, pj):

[s1, · · · , sN ] = [λ1, · · · , λn] ∪
[
µ1, · · · , µn

]
,

[p1, · · · , pM ] = [π1, · · · , πm] ∪
[
ν1, · · · , νm

]
, (10)

[φij ] =



w11 · · · w1m φ1,m+1 · · · φ1M
...

. . .
...

...
. . .

...
wn1 · · · wnm φn,m+1 · · · φnM
φn+1,1 · · · φn+1,m v11 · · · v1m

...
. . .

...
...

. . .
...

φN,1 · · · φNm vn1 · · · vnm


.

The transfer function samples φij can have various origins: results from numerical simulations
can be used as well as measurement data or a combination of both. We now determine
k = maxj rankLpj from the Loewner matrices Lpj associated with the columns of φij and
q = maxi rankLsi from the Loewner matrices Lsi associated with the rows of φij . A function of

order k+1, q+1 interpolates all data given in φij . Now, the two-variable Loewner matrix L̂2 can

be computed as in [12, (4.10)] and its null space contains the coefficients for (9), i.e. L̂2c = 0.
If no null space is found, the coefficients can be obtained from a singular value decomposition
of L̂2. In this case, the reduced model approximates the measurements and the approximation
error is proportional to the smallest singular value of L̂2.

Note, that of course only data contained in the measurements can be interpolated and a
too coarse sampling in either frequency or parameter domain results in reduced models of bad
quality compared to the full system response. The number of transfer function measurements
N and M can not be directly related to the order of the full model n, but can be adjusted
using the ranks k and q of the Loewner matrices. If k + 1 = n (respective q + 1 = m), not all
features of the transfer function can be kept in the reduced model and a finer grind in frequency
(respective parameter) space should be considered.

3. Parametric model order reduction using IRKA and the Loewner framework
A main issue in parametric model order reduction using the Loewner framework is the need
for many transfer function evaluations. In cases they cannot be obtained from experimental
measurements, they are computed numerically. This can take a serious amount of time, so it is
advisable to use already reduced models (which are parameter independent) in this step. We
therefore combine IRKA and the parametric Loewner framework as suggested in [24]. The
idea is to generate reduced models for a set of parameters using IRKA, and then use the
reduced models to compute the frequency response for each parameter, which are then used
as input for the parametric Loewner framework. The convergence for the different IRKA runs
can be accelerated, if the expansion points used at convergence for one parameter are reused as
starting point for the following parameters. Often, the overall system response does not change
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drastically, if a parameter is slightly changed. Figure 1 shows transfer function evaluations
of cantilevered beams of length l = 0.8 m with quadratic cross sections of different heights
ai = [0.005, . . . , 0.05] m. The system is exposed to a harmonic loading at the free end. It can
be observed, that the poles of two parameters next to each other lie in a similar region. So
even while the best IRKA expansion points for one parameter are not necessarily the best for a
second parameter, the reused expansion points are a good start for the following iterations and
the algorithm converges faster.

10
1

10
2

10
3

10
4

10
5

10
-10

10
-5

10
0

Figure 1. The frequency response functions of a parametrized model evaluated at different 
parameters.

The used version of IRKA is structure preserving, i.e. results in reduced mass, damping, 
and stiffness matrices Mr, Cr, Kr. These matrices are used to compute the transfer function 
measurements, which are the basis for the Loewner framework. It is also possible, for example, to 
compute the frequency dependent potential and kinetic energy in the model and use this data as 
input to the Loewner framework. The parametric model resulting from the Loewner framework 
does not have second order structure, so post-processing methods requiring the system matrices 
have to be computed prior to applying the Loewner framework. The procedure is shown in 
algorithm 4.1.

4. Acoustic metamaterials based on local thickness variations
Thickness variations in thin-walled structures have a strong influence on the propagation of
bending waves. Theoretically, a wave traveling through a structure with decaying wall thickness
comes to a halt when the structure thickness smoothly reduces to zero. These local thickness
variations are known as acoustic black holes (ABH) and an optimal thickness profile has been
proposed by [25]. Practically, the thickness of a structure can not vanish completely, but due
to larger amplitudes in the ABH region, more energy can be dissipated here compared to a
uniform plate. The ABH can also be used to focalize the bending waves to certain regions of
the structure, where they can be damped efficiently [26]. Applying damping material inside
the ABH region has been proven to be an efficient way of reducing the vibration of the
structure as well as the structure-borne noise [4, 27]. The damping effect can be increased,
if the damping material is constrained by a more rigid material. Figure 2 shows the total
kinetic and potential energies, normalized with respect to the input power of a titanium plate
(E = 1.04e11 N/m2, ν = 0.31, ρ = 4430 kg/m3) under harmonic loading compared to the same
plate equipped with an ABH with constrained layer damping (CLD). The damping material
properties are E = 1.0e7 N/m2, ν = 0.45, ρ = 1000 kg/m3. A material loss factor η = 0.001 is
assumed for the titanium parts in both models, the damping layer has η = 0.1. The damping
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Algorithm 4.1 Parametric model reduction using IRKA and the Loewner framework

Require: M(p), C(p),K(p), f , initial expansion points si, i = 1, . . . , r, set of evaluation
frequencies ωn, n = 1, . . . , N , set of parameters pm, m = 1, . . . ,M , and tol

Ensure: Coefficients for the two-variable rational barycentric formula cij , wij , λi, πj
1: for m = 1 : M do
2: M = M(pm), C = C(pm),K = K(pm)
3: Call SO-IRKA (Algorithm 2.1) with M,C,K, f, si to obtain reduced system matrices

Mr, Cr,Kr, fr and updated expansion points si
4: Compute the frequency response function in the frequency range of interest of the reduced

model using ωn and (2) and save it in the measurement matrix φnm
5: end for
6: Partition ω and p: [ω1, · · · , ωN ] = [λ1, · · · , λn] ∪

[
µ1, · · · , µn

]
,

[p1, · · · , pM ] = [π1, · · · , πm] ∪
[
ν1, · · · , νm

]
7: Construct the parametric Loewner matrix L̂2 as shown in [12, (4.10)]

8: Compute c so that L̂2c = 0
9: Use the two-variable barycentric formula (9) to interpolate the transfer function

measurements

layer is constrained by titanium of the same dimensions as the damping layer. The layout of the
plate and the position of the damping material are shown in figure 3. The outer dimensions of
the plate are 0.6×0.5×0.003 m, the ABH diameter d = 0.2 m, and the remaining plate thickness
in the middle of the ABH h = 0.001 m.

0 2000 4000 6000 8000 10000

10
0

10
5

Figure 2. Comparison of a uniform titanium plate and the same
plate equipped with ABH. The total energy is normalized with
respect to input power.

Figure 3. Plate with ABH
and applied constrained
layer damping (gray).

It can be observed, that the normalized total energy in the plate is lower in the complete
frequency range. Thus, a considerable reduction of energy in the plate can be achieved using
only a relatively low amount of damping material and without significantly increasing the total
mass of the system. It is still an open question, where ABHs should be placed on a structure
to optimally reduce the energy contained in the system. Also the properties of the damping
material have an influence on the resulting energies. Due to small wavelengths corresponding
to higher frequencies, the numerical models need a fine discretization and the computations are
expensive. Reduced models depending on some parameters, for example location or damping
layer thickness, can help reducing the computation time and therefore a more efficient design
process is possible.
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5. Numerical examples
In the following, we will present numerical experiments using IRKA, the parametric Loewner
framework, and the combination thereof. IRKA and the parametric Loewner framework will
be tested on a model of a clamped beam, the combined framework will also be used to reduce
models of acoustic black holes to show the performance of the method in the design process. All
numerical experiments are computed on a Linux system using an Intel R© Xeon R© W-2135 CPU
at 3.70 GHz and 32 GB RAM. All codes are implemented with MATLAB R© version R2018a, the
FEM matrices for the ABH models were obtained from KRATOS Multiphysics [28].

5.1. Beam model
To demonstrate the capabilities of the MOR methods, a cantilevered beam is discretized using
finite element modeling. We are using proportional damping C = αM + βK; the symmetric
positive definite matrices have a dimension of 300×300. The beam has a length of l = 0.8 m and
a quadratic cross section with height a = 0.01 m; material parameters used for discretization
are E = 2.1e11 N/m2, ν = 0.3, ρ = 7850 kg/m3. The free end is loaded with 1 N, the frequency
response functions H(ω) and Hr(ω) show the displacement at the tip.
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Figure 4. Beam model reduced with IRKA. Frequency response at the cantilever tip of the full
and the reduced model and approximation error with respect to the direct solution.

Using IRKA, the model is reduced to a dimension of 14×14 with error norm ||H(ω)−Hr(ω)||
||H(ω)|| =

1.153e−6 in the frequency range ω =
[
101, . . . , 105

]
rad/s. Figure 4 shows the frequency response

function and the error. The algorithm converges within 3 iterations for initial expansion points
distributed logarithmically in the frequency range of interest. The computation times are
tf = 0.243 s for the full model and tr = 0.056 s for the IRKA reduced model (reduction and
evaluation time). Given the small errors, IRKA provides a reliable method to reduce the beam
model.

The beam model described above is now parametrized with respect to the cross section
height a, all other parameters remain constant. Frequency responses for a set of 12
linearly distributed cross-section sizes ai = [0.005, . . . , 0.05] m evaluated at 400 frequencies
logarithmically distributed between 10 and 105 rad/s are given as input to the parametric
Loewner framework. The framework returns the coefficients for (9), which can be evaluated
for any frequency and parameter value in range of the snapshot data. The reduced model has
dimensions of k = 66 in the frequency space and q = 5 in the parameter space. The frequency
response of the reduced model is now evaluated for a cross section height of a = 0.0425 m, which
is exactly in the middle between two parameters in the set the reduced model is built upon. A
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good approximation of the full order model can be achieved in the frequency range of interest for
any given parameter a in the defined parameter space. The frequency response and model error
evaluated for a = 0.0425 m are given in figure 5. Due to the fact, that the transfer function for
each parameter ai has to be computed to populate the Loewner matrix, the computation time
for the reduction phase tr = 3.966 s is significantly higher than the evaluation of one specific
transfer function tf = 0.244 s. After computing the reduced order model, the evaluation time of
the transfer function for any parameter in the parameter space ai reduces to tr = 0.065 s. The
method presented in section 3.1 aims at reducing the initial computation time of the reduced
Loewner model by obtaining the transfer functions from already reduced models.
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Figure 5. Beam model reduced with the parametric Loewner framework evaluated at
a = 0.0425 m. Frequency response at the cantilever tip of the full and the reduced model

and approximation error with respect to the direct solution. The error norm ||H(ω)−Hr(ω)||
||H(ω)|| =

1.538e−6 in the frequency range ω =
[
101, . . . , 105

]
rad/s.

5.2. Acoustic black hole
The previous section showed, that IRKA and the parametric Loewner framework can produce 
good quality reduced models of dynamic structures. Algorithm 4.1 will now be used to generate 
reduced models of a plate with acoustic black holes equipped with different damping materials. 
Contrary to the examples above, the ABH model is of larger scale, so the applicability of the 
reduction method in a design context is also evaluated.

To show the method’s capabilities to generate models of ABHs, we equip an aluminum 
plate (E = 6.9e10 N/m2, ν = 0.22, ρ = 2650 kg/m3), dimensions 0.6 × 0.5 × 0.003 m, with 
an ABH with diameter d = 0.2 m and remaining plate thickness in the middle of the ABH 
h = 0.001 m. In the ABH region, a damping material is applied on the opposite side of the plate 
and clamped by a layer of aluminum, as shown in figure 3. The model uses separate damping 
coefficients for plate and damping material, which is problematic for classical approaches like 
the modal superposition, where proportional damping is required [29]. The discretized model has a 
dimension of 61671 × 61671. To test the capabilities of algorithm 4.1, we parametrize the model 
regarding different damping materials.

An IRKA reduced model with dimensions 30 × 30 can approximate the full system up

to 5000 rad/s with good accuracy with an error norm ||H(ω)−Hr(ω)||
||H(ω)|| = 4.289e−6. The

computation time to generate the reduced model is tr = 43.6 s and the evaluation time 
te = 0.119 s, which is a great improvement compared to the direct solution time of the full 
system tf = 838.5 s. A parametrized reduced model is now generated using algorithm 4.1.
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50 different damping materials are used in the model with damping-to-stiffness ratios between
pi = [0.009, . . . , 4.098] · 10−6. Due to the constant update of the expansion points, IRKA
converges fast, usually already in the second iteration. The frequency response of the reduced
model evaluated at p = 2.1e−8 is shown in figure 6. This parameter lies in the middle between
two parameters of the original evaluation set pi.
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Figure 6. Frequency response function of the parametric reduced ABH model evaluated at
p = 2.1e−8. Total energy normalized with input power compared to direct solution on the left,
error plot on the right.

The resulting parametric model has the dimensions k = 47 in the frequency space and q = 26
in the parameter space, which indicates, that snapshots for more parameters are required to
interpolate the measurement data, rather than approximate it. Nevertheless, the reduced model
is able to approximate the full model up to a frequency of 5000 rad/s. The resulting error

norm ||H(ω)−Hr(ω)||
||H(ω)|| = 6.377e−4 shows, that the reduced model is valid in the frequency range

ω =
[
101, . . . , 105

]
rad/s. The reduced parametric model is generated within tr = 14.7 s, the

evaluation of the reduced model for a parameter takes te = 0.23 s. It is clear, that the generation
of the transfer function snapshots for 50 parameters results in a longer computation time than
solving the system for one distinct parameter. But if the reduced model is to be evaluated for
many parameters, for example in an optimization study, the initial overhead of generating the
reduced model is easily compensated.

6. Concluding remarks
We presented an algorithm for the reduction of parametric second order dynamic systems. The 
individual MOR methods in the algorithm have been evaluated and show a good robustness and 
accuracy. The combined algorithm was tested on a large-scale model and also yielded acceptable 
results. A main advantage of the algorithm is the ability to reduce non-proportionally damped 
systems. Faster post-processing is also possible, as the reduced matrices can be used here.

Algorithm 4.1 already exploits the fact, that poles of parametric models evaluated at some 
parameters lie in a similar region and reuses the expansion points at convergence of one IRKA 
run as starting point for the next. A-priori optimal pole selection has the potential to speed up 
convergence also in the first IRKA run. The estimated modal density presented, for example, in 
[30] can be an indicator for the proper choice of the initial expansion points. Using appropriately 
preconditioned iterative solvers in the IRKA part of the algorithm for finding Krylov subspaces as 
suggested in [31] or the efficient generation of orthogonal subspaces using an Arnoldi procedure as 
shown in [32] would also help reducing computation times and reaching even faster convergence 
for the reduced models.
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Regarding the Loewner framework part in algorithm 4.1, it will be crucial to find a rule on the 
spacing between parameters. The rank for the parameter space encoded in the Loewner matrix 
only has a valid meaning, if all features of the original models have been captured in the frequency 
response function snapshots. Without prior knowledge of the system response, valid parametric 
models can only be created using a rather dense parameter space. An adaptive greedy procedure 
to detect optimal sampling points in the parameter space could, for example, be used.
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