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Geo-spatial text-mining from Twitter – a feature space analysis with a view toward
building classification in urban regions
Matthias Häberle a, Martin Wernerb and Xiao Xiang Zhua,b

aSignal Processing in Earth Observation (SiPEO), Technical University Munich (TUM), Munich, Germany; bRemote Sensing Technology
Institute, German Aerospace Center (DLR), Weßling, Germany

ABSTRACT
By the year 2050, it is expected that about 68% of global population will live in cities. To
understand the emerging changes in urban structures, new data sources like social media
must be taken into account. In this work, we conduct a feature space analysis of geo-tagged
Twitter text messages from the Los Angeles area and a geo-spatial text mining approach to
classify buildings types into commercial and residential. To create the feature space, broadly
accepted word embedding models like word2vec, fastText and GloVe as well as more
traditional models based on TF-IDF have been considered. A visual analysis of the word
embeddings shows that the two examined classes yield several word clusters. However, the
classification results produced by Naïve Bayes support vector machines, and a convolutional
neural network indicates that building classification from pure social media text is quite
challenging. Furthermore, this work illustrates a base toward fusing text features and remote
sensing images to classify urban building types.
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Introduction

A significant phenomenon in the twenty-first century is
the migration from small- or middle-sized urban com-
munities into mega cities. By the year 2050, around 68%
of people will live in metropolises (Taubenböck &
Wurm, 2015; United Nations, 2018). These develop-
ments lead to fundamental changes in urban city struc-
tures. In order to observe and to understand these
dynamic changes of settlement patterns, city structures
or the temporal development of building areas are going
to need the adoption of new and dynamic sources of
information augmenting visual andmorphological infor-
mation available from remote sensing. In this context,
social media data promise to provide useful insights into
the human aspects of urban dynamics that do not neces-
sarily manifest in morphology. In addition, social media
provides a very timely source of information given that
users feed social media platforms with a sheer number of
different kinds of information every second.

Three types of information provided by geo-refer-
enced social media can be distinguished: the occur-
rence of a posting in space, the metadata about the
user including number of friends, likes, number of
message citations, keywords (often given inline in the
form of hashtags) and the message content itself.

We expect that all three types of information con-
tain hints on intra-urban characteristics in general,
but not for each and every message. In this paper, we
want to concentrate on social media text for geo-

located tweets. Though we are restricting attention
to geo-located text messages, it should be noted that
language itself can provide geographic references
through spatial language (next to, near, etc.) as well
as landmarks (e.g. restaurant name, touristic attrac-
tions, etc.).

In this work, we focus on the social network Twitter
(tweets). Twitter is a microblogging service with
336 million daily active users across the world
(Twitter, 2018b). Users generate short (length is actu-
ally constrained) text messages which could be
enriched with images, videos, keywords and the men-
tion of a friend’s twitter account or of a certain land-
mark. The official Twitter API provides free access for
streaming a subset of tweets and simultaneously deli-
vers detailed metadata about the tweet, the user and
the place. Particularly interesting for our work is the
raw tweet string combined with precise geolocation.

Contribution

In this work, we investigate the feasibility to classify
Los Angeles building instance type (commercial/resi-
dential) from Twitter text messages (tweets) without
integrating further metadata. This task is challenging
due to poor text quality, limited text length (up to 280
characters) of the messages and the lack of a suffi-
cient amount of precisely geo-located tweets. To
tackle those hurdles, we investigate the feature space
of the two classes produced by geo-tagged Los
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Angeles Twitter text messages with three different
broadly accepted word vector model implementations
namely word2vec, fastText and GloVe. We visualize
and analyze the internal structure of these feature
spaces. For classification experiments, we utilize pre-
trained word vectors provided by the respective
authors in order to avoid under- as well as over-
fitting in the embedding step. To classify the word
embeddings, we used a convolutional neural network
(CNN). Support vector machines (SVM) as well as
Multinomial Naïve Bayes classifiers have been applied
to sparse representations of text based on TF-IDF.
The received features could be used for fusion with
remote sensing data to improve building type or land
use classification.

Related work

Social media data offers a broad field of applications, for
instance, sentiment analysis and demographic charac-
teristics (Mitchell, Frank, Decker Harris, Sheridan
Dodds, & Danforth, 2013), emotion detection and sar-
casm prediction (Felbo, Mislove, Søgaard, Rahwan, &
Lehmann, 2017) or competitor analysis in the pizza
industry (He, Zha, & Li, 2013). The usage of social
media data turned out as valuable source for geospatial
research. For example, changes in Flickr images, night
lights and news could be employed to detect conflicts or
refugeemovements (Levin, Ali, & Crandall, 2018). Geo-
located Twitter data are used in Sobolevsky et al. (2018)
to show that Twitter users with a social relationship
share similar mobility patterns.

The combination of additional data sources and
remote sensing has been showed in various studies. For
example, the usage of OpenStreetMap data und Landsat
images indicate improved land use classification results
for 24 classes (Hu, Yang, Li, & Gong, 2016). Therefore,
the fusion of remote sensing and social media data seems
to be an innovative way of augmenting remote sensors.
One of the applications of social media and remote
sensing is weather-caused disasters like floods. For exam-
ple, the combination of remote sensing data and Twitter
messages results in improvement of flood detection and
predicting (Wang, Skau, Krim, & Cervone, 2018), and
flood risk management (de Assis, Herfort, Steiger,
Horita, & Porto de Albuquerque, 2015). The general
applicability of social media text messages to the building
instance classification task has been shown previously
using techniques such as LDA (Blei, Ng, & Jordan,
2003) and LSTM recurrent neural networks on georefer-
enced tweets from Munich (Huang, Taubenböck, Mou,
& Zhu, 2018). Twitter data can also be exploited to
understand whether informal settlements have a differ-
ent social media activity pattern as opposed to formal
settlements in Mumbai (Klotz, Wurm, Zhu, &
Taubenböck, 2017). The urban structural types have
been detected by high-resolution earth observation

methods (HR Quickbird data). The study revealed that
in informal settlements, the Twitter activity (in propor-
tion to the population density) was not as demanding as
in formal settlements. By means of this digital coldspots
of the informal areas, it was possible to discriminate the
two settlement types to a certain extent. Hence, the usage
of Twitter and remote sensing data contributed to the
understanding of socio-spatial characteristics of the
megacity Mumbai.

Methods

In this section, we introduce the methodology used
for the feature space analysis and the building
classification task. We first explain two employed
text representation methods allowing for represent-
ing text as a constant-size vector in order to learn
from these fixed-size representations. Among these,
we explain the classical word count sparse matrix
representation normalized using TF-IDF as well as
text embeddings based on skip-gram and continu-
ous-bag-of-words (CBOW) models.

Text representation for machine learning

Given the fact that many machine learning algo-
rithms expect that instances have a constant size (e.
g. a number of features), methodology is needed to
transform variable-length text into a feature space
representation with constant dimension.

The most traditional approach is to count word
occurrences in the text. Therefore, a vocabulary is
fixed, and for each text, a vector is being generated
containing the frequency of every word of the vocabu-
lary in the document. In this context, however, selecting
a good vocabulary is extremely difficult: some frequent
words are completely meaningless (called “stop
words”), some frequent words are meaningless to the
given task or corpus of text (called “corpus-specific stop
words”), and for rare words, it is difficult for a machine
learning algorithm to collect enough evidence of the
meaning of the word for a given task. Therefore, a
traditional approach is to remove a fraction of frequent
and infrequent words from the vocabulary.

In addition to that, a measure of importance for
each word in a document related to a corpus of text
has been proposed and is widely known as TF-IDF
(term frequency-inverse document frequency). The
term frequency (TF) is the number how frequently
a term t appears in a document d.

tf t; dð Þ ¼ ft;d
max ft0;d : t0 2 d

� �

The inverse document frequency (IDF) denotes the
words importance (Spärck Jones, 1972). The IDF
term is calculated as follows:
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idf t;Dð Þ ¼ log
N

1þ d 2 D : t 2 df gj j
In this equation, N is the number of documents in a
corpus. The addition of 1 in the denominator pre-
vents a division through zero if t is not in d. Finally,
the TF-IDF score is calculated as follows:

tfidf t; d;Dð Þ ¼ tf t; dð Þ�idf t;Dð Þ
IDF has, for example, been applied to find interesting
research articles on the Internet (Bollacker, Lawrence,
& Giles, 1998). The difference between TF and IDF is
that TF treats every word as equally important. In
contrast, IDF assigns less importance to words which
come up very often in the corpus.

A count-based vocabulary construction, e.g. taking
the vocabulary to be all words except the pf percent
most frequent and the pr percent least frequent, is
usually combined with TF-IDF for each occurrence of
a word transforming a set of text messages into a sparse
numeric featurematrixX ¼ xij in which xij contains the
TF-IDF score of word j in document i. In this way, the
machine learning problem can be formulated to learn a
model f trained on the rows of the matrix X.

Sparse text mining methods

When a text corpus is represented by means of the
methods of the previous section, we obtain a sparse
feature matrix X in which the columns are related to
words and the rows are documents in the corpus.
One way to treat this representation is through
Naïve Bayes classification. In this setting, it is falsely
assumed that all features are statistically independent.
Under this assumption, classification can be per-
formed using Bayes rule on each and every feature
individually and combining the results through mul-
tiplication (Hand & Yu, 2001). For the case of text
mining, using a multinomial distribution for the indi-
vidual features makes sense, because they do not
model normally distributed measurements but occur-
rences. Though only integer values are theoretically
sound in this setting, experimentation has shown that
it is practicable to use fractions such as TF-IDF, too.

Another widely accepted family of classifiers for
such sparse, high-dimensional data is given by SVMs.
In SVMs, the model tries to maximize linear separa-
tion between classes by applying non-linear transfor-
mations (Cortes & Vapnik, 1995). SVMs can be
formulated as optimization problems and we used a
representation of SVMs for stochastic gradient decent
which allows adding penalties for regularization. In
combination with TF-IDF, Dadgar, Araghi, &
Farahani (2016) used an SVM to classify news.
Furthermore, Benkhelifa & Laallam (2016) applied
SVMs and Naïve Bayes to Facebook post topic
classification.

More sophisticated and naturally inspired (LeCun
& Bengio, 1995) classifiers are CNNs (LeCun, 1989).
The structure of a CNN consists of one or m convolu-
tional layers which applying n-dimensional kernel fil-
ters to produce a feature map of the input data. For
text and sequence analysis, one-dimensional filters
combining neighboring feature values are widely
used. For computer vision, two-dimensional filters
combine small rectangles across the image into new
values. Typically, each convolution layer is succeeded
by a pooling layer which reduces the created feature
map by taking a summary of neighboring pixels. Max
pooling, for example, takes a n� n window and
extracts the maximum value within that window
from sliding over the feature map. As this step is
often applied without overlap, it can be used to reduce
the dimensionality of the feature map and therefore
decrease the number of output neurons. Then, fully
connected or dense layers are often used to classify the
resulting features extracted by the convolution and
pooling layers using a final softmax layer. CNNs are
well-known approaches in computer vision tasks (He,
Zhang, Ren, & Sun, 2016; Simonyan & Zisserman,
2015; Zhang et al., 2018). However, they also proved
themselves useful in the field of natural language pro-
cessing. For text classification, a CNNwas applied with
a little bit of hyperparameter tuning and pre-trained
word vectors (Yoon, 2014). In election prediction tasks
with Twitter text data, CNNs in combination with
word vector models can outperform traditional mod-
els like SVMs with TD-IDF (Yang, Macdonald, &
Ounis, 2018). However, they also need more data to
train. Badjatiya, Gupta, & Varma (2017) used CNNs
among others to classify the sentiment of a tweet to
detect hate speech in Twitter text messages.

Word embeddings

It has been recently discussed that sparse text repre-
sentations using TF-IDF are limited by the size of the
vocabulary needed to encode the significant part of a
language. When the texts are from a narrow domain
and there is a small vocabulary (say about 1000
words) that can cover the given application, then
TF-IDF is very successful. When such a vocabulary
does not exist or is very difficult to find, then it will
practically be growing putting more difficulties from
language encoding into the machine learning part
(Bengio, Ducharme, Vincent, & Jauvin, 2003). In
this setting, word embeddings have been proposed
in which each word is represented as a unique multi-
dimensional feature vector in a vector space of cho-
sen dimension. The general idea is to place feature
vectors for words that co-occur frequently in a joint
context near in space. This co-occurrence is often
defined by a window of neighboring words, though
other definitions of context can be applied.
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word2vec
Mikolov, Chen, & Corrado (2013) proposed two pre-
diction-based log-linear approaches for creating mul-
tidimensional word embeddings. The CBOW model
is trying to predict a word in the middle of n context
words to its left and right. On the other hand, The
Continuous Skip-gram Model attempts to predict n
context words based on a word in the middle of the
context words. The structure of the models is almost
similar to the feedforward neural language model
proposed by Bengio et al. (2003). But Mikolov et al.
(2013) omit the computational intensive non-linear
hidden layer to reduce training time for large text
corpora. Word vectors computed by the skip-gram
model show better performance on validation tasks,
e.g. word analogy task,1 yet demonstrate longer train-
ing times.

fastText
Unlike word2vec and GloVe, fastText (Bojanowski,
Grave, & Mikolov, 2017) takes subword information
into account. They propose an extension of the con-
tinuous skip-gram model to learn word representa-
tions by character n-grams. For example, the word
house is transferred to a character n-gram of length
n = 3 as <ho, hou, ous, use, se>. The “<” at the
beginning and the “>” at the end of a word are used
as boundary symbols to flag the beginning and the
end of a word. To learn the representation of each
word, the word itself is added to the set of n-grams.
Words are represented as the sum of their character
n-grams vectors. Because of the additional morpho-
logical information due to character n-grams,
fastText achieves better results as word2vec in syn-
tactical word analogy task and in informal language,
whereas in the semantic category, word2vec performs
better (Bojanowski et al., 2017).

GloVe
Instead of using a shallow context window like skip-gram
or CBOW, the count-based model GloVe (Pennington,
Socher, & Manning, 2014) utilizes the whole statistics of
word co-occurrences in a given corpus and trains in an
unsupervisedmanner. To identify if twowords i and j are
related, their co-occurrences probabilities with “probe”
words k are examined (Pennington et al., 2014). If, for
example, two words are sharing the same context with k,
e.g. appear in the same topic, the ratio of the co-occur-
rence probabilities should be small. By contrast, if the
words are not related with each other, the ratio of the
probabilities is high. Using the same validation tasks like
Mikolov et al. (2013), GloVe outperforms CBOW and
skip-grammodels, for example in the word analogy task,
partially with smaller training corpora and vector sizes

(Pennington et al., 2014). With their findings,
Pennington et al. controvert discussions (e.g. Baroni,
Dinu, & Kruszewski, 2014) about the superiority of pre-
diction-based models like word2vec or fastText over
count-bases models. They argue that both prediction-
and count-based methods are not fundamentally differ-
ent, “… but the efficiency with which the count-based
methods capture global statistics can be advantageous”.
(Pennington et al., 2014, p. 1541).

Dataset

In this section, we describe how we obtained the Los
Angeles Twitter data, show relevant corpus statistics
and explain how we conducted text pre-processing.

Tweets
The tweets were obtained via the official Twitter API
(Twitter, 2018a) from Los Angeles in a period of
6 months. For our research, we only used georefer-
enced tweets. We executed simple pre-processing
steps to remove all numbers, punctuations, special
characters (e.g. @) and web URLs. In addition to
that, all characters were set to lower case to avoid
distinctions of identical words like “House and
“house”. Furthermore, we excluded stop words (e.g.
the, are, is, etc.) and words which are smaller than
three characters because of the highly irregular lin-
guistic properties such as single characters.

Corpus statistics
Table 1 shows the corpus statistics which give a brief
overview of the collected dataset and its shape after
several pre-processing methods. Altogether, we streamed
599,385 geo-located tweets with about 10.5millionwords
from Los Angeles in a time period of 6 months. Before
executing text pre-processing, tweets show a mean of
17.2 words per tweet. After removing all numbers, special
characters and words with less than three characters, the
mean length of a tweet dropped to 10.6 words. Stop-
word removal additionally leads to a decrease of the
mean length to 7.6 words per tweet.

Since one goal is to classify residential/commercial
building types, we assign labels provided by the crowd-
sourcing GIS OpenStreetMap (OSM).2 In specific, we
conducted a spatial nearest neighbor join of Los Angeles
OSM building polygons and georeferenced tweets. We
removed all tweets that cannot be safely assigned to the
direct vicinity of a building given by a Euclidean “dis-
tance” of 0.001 in the WGS84 coordinate space. This
distance translates to a few meters in the area of Los
Angeles. The OSM building polygons had to possess
either the building label “commercial or “residential”.
After the join, the residential class shows 161,996 and

1King is to queen as man is to ___?
2https://www.openstreetmap.org
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the commercial class 437,389 tweets. Due to the fact of a
clear disparity of the two classes, we decided to under-
sample the both classes to 150,000 tweets per class (He
& Garcia, 2009). After this step, the mean length of a
Tweet slightly changed from 7.6 to 7.7.

Top words
Also we were interested in the different top 10 words per
class of the undersampled dataset to understand if they
demonstrate commonalities or if they show completely
different top words. Table 2 shows the top 10 words for
each class. It is noticeable that the top three words of both
classes are the same. Note that the word count of these
words with a rather commercial meaning is actually
slightly higher for the commercial class. In addition to
that, it is apparent, that the mean TF-IDF weights of the
words are quite low due to the fact, that these words are
appearing in high frequency in the dataset. In other
words, they cannot contribute much information to the
given classification task.

Train and validation split

Instead of randomly splitting the dataset into a train and
validation set, we conducted a spatial split in train and
validation sets. Therefore, we split the tweets in four
spatial parts by means of their coordinates. First, the
data are split on the horizontal axis using the median of

the longitude coordinates. Then, each split is further
divided using the median of the latitude within this
split. Figure 1 depicts the results of the spatial split. We
train the classifiers on three parts and estimate perfor-
mance using the fourth part of the data for validation.
This approach guarantees that the validation data are
from another area of Los Angeles and, therefore, spatial
overfitting is avoided. This results in a dataset containing
224,594 tweets for training as well as 75,406 tweets for
validation.

Feature space analysis

For the feature space examination, we created word
embeddings for each class by means of the three intro-
ducedword embeddingmodels. The parameters are cho-
sen as proposed by the authors of the models except for
the embedding dimensionality which we set to d = 300
and word window size set to 5 words. To visualize the
created embeddings, we used t-SNE (van der Maaten &
Hinton, 2008) to reduce the dimensionality of the most
frequent 3000 word vectors down to 2 dimensions.

Figure 2 shows the t-SNE plot of the most frequent
words for word2vec, fastText and GloVe. The word2vec
embedding shows a kind of uniform distribution of
strong clusters of both classes without a clear central
area for themajority class. For fastText, the center of the
image shows a commercial cluster and the right outer

Table 1. Corpus word statistics. PP = pre-processing; sw = stop words; w < 3 = words smaller than three characters; “+” = includes,
“−” = excludes; smaller than three characters.
Dataset Statistics Residential Commercial Total

Full dataset
Raw tweets 161,996 437,389 599,385
Raw words 2,725,827 7,709,649 10,435,476
Unique words before PP 200,578 495,676 636,450
Unique words after PP (+ sw, – w < 3) 199,832 494,816 635,568
Unique words after PP (− sw, – w < 3) 83,471 178,666 220,187
Mean words/tweet before pp 16.8 17.6 17.2
Mean words/tweet after PP (+ sw, – w < 3) 10.4 10.9 10.6
Mean words/tweet after PP (− sw, – w < 3) 7.6 7.7 7.6

Undersampled dataset
Raw tweets 150,000 150,000 300,000
Raw words 2,519,323 2,640,587 5,159,910
Unique words before PP 200,400 248,948 449,348
Unique words after PP (+ sw, – w < 3) 83,533 101,892 185,425
Unique words after PP (− sw, – w < 3) 83,415 101,777 185,192
Mean words/tweet before PP 16.8 17.6 17.2
Mean words/tweet after PP (+ sw, – w < 3) 9.2 9.7 9.5
Mean words/tweet after PP (− sw, – w < 3) 7.6 7.8 7.7

Table 2. Top 10 class words of the undersampled dataset with word counts and mean TF-IDF scores with standard deviation.
Residential Count Mean TF-IDF weight Commercial Count Mean TF-IDF weight

Job 22,718 0.19 (SD = 0.04) Job 26,109 0.18 (SD = 0.04)
Hiring 21,157 0.20 (SD = 0.04) Hiring 24,000 0.19 (SD = 0.04)
Careerarc 13,112 0.23 (SD = 0.04) Careerarc 13,411 0.23 (SD = 0.04)
mph 12,215 0.51 (SD = 0.21) Latest 10,108 0.22 (SD = 0.03)
los 9307 0.39 (SD = 0.07) Work 9044 0.25 (SD = 0.05)
Humidity 8716 0.34 (SD = 0.12) los 8055 0.23 (SD = 0.08)
losangeles 8713 0.25 (SD = 0.06) Opening 7830 0.24 (SD = 0.04)
Latest 8690 0.23 (SD = 0.04) amp 7640 0.18 (SD = 0.06)
Angeles 8415 0.23 (SD = 0.07) Click 7612 0.22 (SD = 0.04)
Work 8361 0.26 (SD = 0.05) losangeles 7480 0.24 (SD = 0.07)

6 M. HÄBERLE ET AL.



areas a residential word cluster. Finally, for the GloVe
embedding, a concentrated commercial cluster is visible
in the image center and a few smaller residential and
commercial word clusters can be seen to the left outside
area. In summary, however, there seems to be no clear
separation of the two classes in any of the embeddings
highlighting the hardness of the task and the fuzziness
of the association of text content to building functions.
Still, clustered areas like the blue area on the top-left
corner of the word2vec embedding support the expec-
tation that some tweets contain significant and suffi-
cient information for this classification task.

Experiment

In this section, we present our experimental setup.
First, we briefly introduce the pre-trained word vec-
tors obtained from word2vec, fastText and GloVe.
Furthermore, we describe the utilized classifiers and
the used architectures as well as their hyperparameter
settings. Finally, we discuss the validation method for
the building classification task.

Pre-trained word vectors

The pre-trained word vectors are obtained from the
project websites of word2vec,3 fastText4 and GloVe5

Consider Table 3 for word vector details. Each pre-
trained word vector was trained with different text
corpora, e.g. Google News Dataset, and they therefore
provide a wide range of vocabulary.

Support-vector machine and Naïve Bayes

For baseline classification, we used a SVM and a
multinomial Naïve Bayes classifier each with TF-
IDF for feature extraction. The SVM was constructed
using stochastic gradient decent with hinge loss, l2
penalty and 5 epochs.

Convolutional neural network

In addition, we trained for CNNs with an input layer
followed by a word embedding layer (see Figure 3). The
word embedding layer is initialized with the pre-trained
word vectors obtained from word2vec, fastText and
GloVe. The embedding layer is followed by three 1D
convolutional layers with a filter size of 128 and a kernel
size of 5. As activation function, we applied rectified
linear units (ReLU). Each 1D convolutional layer is fol-
lowed by a 1Dmax pooling layer with a pooling size of 5.
The last convolutional layer is succeeded by a global max
pooling layer. The convolutional and max pooling layers
are followed by two fully connected layers to conduct

Figure 1. Spatial validation split of the undersampled dataset. The gray area represents the training set and the black area the
validation set.

3https://code.google.com/archive/p/word2vec/
4https://fasttext.cc/docs/en/english-vectors.html
5https://nlp.stanford.edu/projects/glove/
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classification. The last fully connected layer has two out-
put units and its activation is handled by the softmax
activation function. The network was trained for five
training epochs. As optimizer, we used RMSprop and
no dropout was applied.

Results

Table 4 illustrates the validation results of the three
different models. The multinomial Naïve Bayes
model shows in the residential class low recall values

which indicates that the classificator could not grasp
the concept of the residential buildings. In contrast,
the recall at the commercial class yields a higher
value, which could be a sign of learning commercial
class text attributes. If one considers the results of the
SVM model, it is apparent that the recall number of
the residential class is low compared to the Naïve
Bayes result. On the other hand, the commercial-
class recall value outperforms the results of the
other models. The CNNs with the pre-trained word
embedding layer perform slightly better on the

Figure 2. t-SNE plots of the embedded top 3000 residential and commercial class words.

Table 3. Pre-trained word vector details.
Implementation Name Dimensions Words Text source

word2vec GoogleNews-vectors-negative300 300 3 M Google News dataset, 100B words
GloVe (CC) glove.42B.300d 300 1.9 M Common Crawl
GloVe (TW) glove.twitter.27B 200 1.2 M Twitter, 2B tweets
fastText wiki-news-300d-1M 300 1 M Wikipedia 2017, UMBC webbase corpus, statm.org news dataset
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residential class as the SVM and Naïve Bayes. One
exception is the CNN with the pre-trained GloVe
(CC) embeddings which is topped by the Naïve
Bayes. In the commercial class, the CNNs (except
the CNN with word2vec) beat the Naïve Bayes, yet
they are all outperformed by the SVM.

Discussion

It is quite evident that the commercial class yields
higher recall values obtained by all used models,
whereas the residential class shows better perfor-
mance on the precision metric. Table 2 delivers a
possible explanation. One possible assumption for
the SVM and the Naïve Bayes performance could be
that the TF-IDF weights of the listed top-class words
are low. This means that the word frequency of each
word and the expectation to see this word within all
documents (tweets) are high and TF-IDF weighs
them as low information entities. The flashy commer-
cial-class recall value of the SVM could be the indica-
tion of overfitting due to low information words.

If the top three words of each class are the same (“job”,
“hiring” and “careerarc”) and further sharing other
words like “work” (just in a different order), it is assum-
able that the classifier guesses the class. In this case, it
might guess the commercial class not only because of the
same words but also of the higher word counts of the top
three commercial class words. Other top words of both
classes are “losangeles”, “los” and “angeles”. Where
“losangeles” is spelled together, “los” and “angeles” is
the outcome of tokenization of the text pre-processing
steps. Since both classes show these phrases, the classi-
fiers might have problems distinguishing both classes by

top words. However, if the word count at the commercial
class is higher, the classifiers could assume that every
given sample belongs to the commercial building class.
As can be seen from Table 1, both the complete and the
undersampled datasets contain more unique words in
the commercial class. This circumstance suggests that the
language of commercial class tweets uses a richer voca-
bulary and a wider range of phrases. In fact, this means
that normalizing the classes with respect to the occur-
rence of tweets might be misleading. Instead, advanced
vocabulary constructions should be discussed taking care
that both classes materialize with similar numbers of
words.

Conclusion

In this work, we conducted a feature analysis for a
building classification task based on Twitter text
messages from the Los Angeles area. By the help of
word embedding models, we generated word vectors
of the top 3000 words of each class. The plots of the
feature space show several word clusters per class
and at the same time a huge overlap. Consequently,
preliminary classification results indicated that the
building classification task providing pure text fea-
tures for the applied classification techniques is
rather challenging. To the contrary, however, one
can also conclude that some tweets contain signifi-
cant information about the two classes depending on
their actual location in the feature space: if they are
part of a cluster, we expect that they can be directly
classified – if they are not part of any cluster, we
don’t expect a classifier to be able to assign them to
one of the classes using this feature space alone. In

Figure 3. Convolutional neural network with embedding layer initialized with pre-trained word vectors obtained from
word2vec, fastText and GloVe.

Table 4. Classification results.
Residential Commercial

Precision Recall F1 Precision Recall F1 Accuracy

Naïve Bayes
0.56 0.44 0.49 0.51 0.63 0.49 0.53

SVM
0.60 0.23 0.33 0.50 0.83 0.62 0.52

CNN
fastText 0.59 0.45 0.51 0.53 0.66 0.59 0.54
GloVe (CC) 0.59 0.40 0.48 0.52 0.69 0.59 0.54
GloVe (TW) 0.58 0.47 0.52 0.52 0.64 0.57 0.54
word2vec 0.60 0.51 0.55 0.57 0.63 0.57 0.56
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order to improve classification results, one could (i)
collect more training examples to counteract the
difficulties of unbalanced datasets, (ii) try to provide
a broader variety of texts of the different classes and
(iii) improve text pre-processing and embedding
methods to account for class imbalances and word
count imbalances. To tackle class overlap and imbal-
ance, one could apply advanced classification meth-
ods like abstaining (Balsubramani, 2016; Chow,
1957). To improve text pre-processing and embed-
ding methods, one could exclude top-class overlap-
ping words from classification as corpus-specific
stop words to generate a more explicit feature spaces
for each class.

Future work could comprise training on more
than one city and the validation with other cities. In
combination with the latter, multilingual word vec-
tors could be used to cover multilanguage text mes-
sages in one city or area. Topic analysis could be used
to explore if different building types or areas indicate
different topics and in order to reduce the dimen-
sionality of the TF-IDF-based feature spaces.

Finally, this work provides a first step toward
fusion of social media text features and remote sen-
sing imagery. The combination of space born data
and constantly updated social media texts could pro-
vide extended and up-to-date information about
intra-urban characteristics and even socioeconomic
structures in a rapidly changing urban environment
in the twenty-first century.
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