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A B S T R A C T

Recently, fluorescent carbon nanostructures have attracted enormous attention thanks to their excellent optical
properties, low-cost, chemical inertness and stability. In this study, we demonstrated a quick, facile, environ-
ment-friendly and low-cost synthesis method for the preparation of fluorescent nitrogen-doped carbon nano-
particles (N-CNPs). Prepared N-CNPs have excitation-dependent fluorescent properties and demonstrate high
selectivity towards Fe(III) ions in water. We found that prepared N-CNPs can be used for sensitive detection of Fe
(III) ions in the range of 1–30 ppm. Thus, fluorescent N-CNPs can be a promising material for fast and low-cost
analysis of Fe(III) ions in water.

1. Introduction

The ferric cation Fe(III) plays an indispensable role in many meta-
bolic processes of the human body, such as oxygen transport, electron
transport, and DNA synthesis [1]. Its deficiency or excess can be de-
vastating to biological systems [1,2]. According to the World Health
Organization, a safe limit for the Fe(III) ions in drinking water is 2 mg/
L. In principle, atomic absorption spectroscopy (AAS) and inductively
coupled plasma mass spectrometry (ICP-MS) are suitable for Fe(III)
detection. On the other hand, these methods are expensive, require
time-consuming sample preparation and analysis procedures. From this
point of view, the development of a low-cost, selective and sensitive
nanosensor for monitoring of Fe(III) content in water is of paramount
importance.

Fluorescent carbon dots (C-dots) are one of the most promising
candidates for sensing applications owing to their excellent fluorescent
properties, nontoxicity, and photostability [3]. To date, several types of
C-dots were applied for the selective detection of certain heavy metal
ions, such as Pb (II) [4], Fe(III) [5], and Hg(II) [6]. On the other hand,
size-controlled synthesis of C-dots is still a challenging task. For ex-

ample, the preparation process of C-dots requires long operating time
(4–12 h) and the presence of some harsh reagents (bases/acids) [7,8].
These limitations inspired our group to develop fluorescent nitrogen-
doped carbon nanoparticles (N-CNPs) from nontoxic precursors using a
fast and green hydrothermal method. We showed that prepared N-CNPs
have excitation-dependent fluorescent properties and can be utilized for
selective and sensitive Fe(III) sensing in water.

2. Materials and methods

2.1. Synthesis

Dextrose (≥99.5%), urea (99.0–100.5%), NaCl (≥99.5%), KCl
(≥99.0%), CaCl2 (≥97.0%), MgCl2 (≥98.0%), Al(NO3)3 × 9H2O
(≥98.0%), ZnCl2 (≥98.0%), CuCl2 × 2H2O (≥99.0%), SnCl2 (98.0%),
FeCl2 (98.0%), FeCl3 (97.0%), and Pb(NO3)2 (≥99.0%) were ordered
from Sigma-Aldrich and used as received. For the preparation of N-
CNPs, 1 g of dextrose and 0.1 g of urea were dissolved in 30 mL of
deionized (DI) water. Prepared mixture was heated to 200 °C under
vigorous stirring for 1 h in Erlenmeyer flask with a screw cap. The
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obtained dark-brown solution was filtered through the syringe filter
(0.1 μm) to remove large aggregates. N-CNPs were collected, washed
several times with DI water and dried. For sensing measurements,
200 μL of N-CNPs aqueous solution (0.01 g per 5 mL of H2O) was added
to 2 mL of aqueous solution of metal ions with a known concentration.

2.2. Characterization

The morphology of N-CNPs was studied using the transmission
electron microscope (TEM, JEM2010F). X-ray photoelectron spectro-
scopy (XPS) analysis was carried out on Versa Probe. X-ray diffraction
(XRD) measurements were conducted using a Rigaku SmartLab X-ray
Diffractometer with Cu Kα radiation source. IR transmission measure-
ments were carried out using a Fourier-transform infrared spectrometer
(FTIR, Nicolet iS5). Quantum yield (QY) was measured by C9920–02
Hamamatsu absolute quantum yield measurement system. The optical

properties of nanoprobes were examined using a fluorescence spectro-
photometer (FS, Agilent Cary Eclipse).

3. Results and discussion

TEM, XPS, XRD, and FTIR were employed for analysis of synthe-
sized N-CNPs. Fig. 1a shows that prepared N-CNPs have a spherical
morphology and mean diameter of 31 ± 5 nm. The wide-range XPS
spectrum (Fig. 1b) obtained from the surface of N-CNPs exhibited the
characteristic peaks corresponding to the presence of carbon
(287.8 eV), oxygen (535 eV) and nitrogen (402.4 eV). The atomic % was
estimated to be 87, 8.1, and 4.9 for carbon, nitrogen, and oxygen ele-
ments, respectively. These results suggest that nitrogen element was
introduced into the structure of carbon nanoparticles during the
synthesis process. A typical XRD analysis (Fig. 2c) reveals that prepared
N-CNPs are amorphous. FTIR analysis (Fig. 2d) was further used to

Fig. 1. (a) TEM, (b) XPS, (c) XRD, and (d) FTIR analysis of prepared N-CNPs.
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investigate the functional groups at the surface of N-CNPs. Analysis of
FTIR spectrum indicates the presence of eNH group at around
3221 cm−1, which may also indicate the presence of moisture or eOH
groups. The presence of C]O and C]C bonds was identified from the
peaks around 1683 and 1606 cm−1, respectively. The stretching vi-
brations of the primary and tertiary amine CeN bonds at about 1036
and 1214 cm−1 also confirm the presence of nitrogen element in a
sample [9].

FS spectroscopy was used to study the optical properties of prepared
N-CNPs in water solution. Fig. 2a shows a typical excitation curve and
excitation-dependent emission spectra of the N-CNPs. One can easily
see that emission peaks of N-CNPs shifted to longer wavelengths upon
increasing the excitation wavelengths. The maximum emission signal
was detected at 443 nm under 342 nm excitation which is in a good
agreement with the excitation curve. The absolute quantum yield of N-
CNPs was found to be 6.17%. The effects of pH on the PL stability of the
N-CNPs was investigated and dependence curve is depicted in Fig. 2b.
One can see that no significant changes in fluorescence intensity
(monitored at 443 nm) were observed over a wide range of pH 3–10,
indicating that these N-CNPs are optically stable in the harsh environ-
ment.

The selectivity of the N-CNPs was investigated through observation
of emission intensity change with addition of certain metal ions
(namely, Na+, K+, Mg2+, Ca2+, Al3+, Zn2+, Pb2+, Fe3+, Fe2+, Cu2+,
Sn2+ at a concentration of 150 ppm). The changes in the fluorescence
intensity of emission spectra were monitored at 443 nm. Fig. 3 shows
that Fe3+ ion caused a strong fluorescence quenching of the N-CNPs
compared to other metal ions. Thus, the prepared N-CNPs exhibit high
selectivity to Fe3+ ions. Several reports suggested that the observed
fluorescence quenching might be due to the nonradiative recombina-
tion of excited electrons of N-CNPs with unpaired d electrons of Fe(III)
[5,10].

The feasibility of the N-CNPs for sensitive Fe(III) ions detection in
water was investigated further. Fig. 4a shows the fluorescence response
of N-CNPs to various concentrations of Fe(III) ions in water. One can
observe that fluorescence intensity decreases with the increase of the Fe
(III) concentration from 0 to 110 ppm. However, no shift of peak po-
sitions at the maximum (443 nm) observed. Fig. 4b shows the re-
lationship between F/F0vs. Fe(III) concentration, where F is the in-
tensity at 443 nm in the presence of Fe(III), and F0 is the intensity at
443 nm of the blank solution.

One can observe that F/F0 plot vs. Fe(III) (Fig. 4b) demonstrates
some linear regression region. Typically, the fluorescence intensity in
the region of 1–30 ppm decreased linearly with increasing Fe(III) con-
centration (Fig. 5). The correlation coefficient R2 = 0.9945 indicates
that the N-CNPs have a very high sensitivity towards Fe(III) ions. Fe(III)
sensing with N-CNPs was tested several times and only negligible de-
viations (≤ 4%) were observed. Thus, prepared N-CNPs can be used as
a selective and sensitive nanoprobe for Fe(III) ions detection in the
range of 1–30 ppm. It should be noted, that this method is easier,
cheaper and more energy-efficient compared to the traditional
methods.

4. Conclusion

In summary, fluorescent N-CNPs were utilized for selective and
sensitive Fe(III) sensing in water in the range of 1–30 ppm. Prepared N-
CNPs are highly fluorescent and have sizes in the range of 31 ± 5 nm.

Fig. 2. (a) Excitation and excitation-dependent emission curves, (b) pH stability
of prepared N-CNPs.

Fig. 3. Selectivity of N-CNPs towards different metal ions.
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We showed that prepared N-CNPs are selective to the Fe(III) ions in
aqueous solution. The analysis reveals that fluorescence quenching at
low concentrations (1–30 ppm) has a linear trend and can be utilized
for low-cost detection of Fe(III) ions in water.
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