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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Spatter formation is a longstanding issue in laser welding. This research addresses this topic and proposes a machine vision algorithm executed 
on a graphics processing unit to detect spatters in real time. Using this approach, a control system detecting spatter at a rate of 1 kHz and with a 
resolution of 900 x 900 pixels was implemented. Based on an experimental series, it is shown that the variation of the process parameters has a 
significant influence on the formation of spatter. It was also possible to quantify the variance of the spatter formation for a given set of process 
parameters. 
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1. Introduction 

Remote laser welding using scanner optics is becoming 
increasingly popular in industrial applications. The reasons for 
this include the fast and precise spot positioning, which reduces 
non-productive times, and the good accessibility of workpiece 
cavities [1]. The formation of spatter during the welding 
process is still a pressing issue for many industries. Especially 
for manufacturers of products with a high added value, it is 
necessary to provide documented proof of their quality 
standards. This is linked to the need for an automated control of 
all produced components regarding the resulting welding 
spatters. One possibility to implement such a monitoring 
system technically and economically is a so-called vision 
module for scanner optics. This makes it possible to observe the 
process zone coaxially to the laser beam. A process camera with 
a CMOS sensor is usually used for this purpose. For a fully 
functional monitoring system, not only the hardware, but also 
the appropriate software is required to automatically evaluate 
the images recorded by the camera. Within this work, the 
development of such a software is presented. 

Experimental investigations are then described to determine 
the frequency of spattering for a variety of welding parameters. 
To additionally influence the weld seam, the used scanner 

optics are able to superimpose the feeding motion with an 
oscillatory beam movement, a so-called beam oscillation. The 
most common oscillation pattern of many commercial scanners 
is the circular oscillation, which is described by equation (1): 

 
[𝑥𝑥𝑦𝑦] = [𝑣𝑣𝑤𝑤 ∙ 𝑡𝑡 + 𝐴𝐴 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(2 ∙ 𝜋𝜋 ∙ 𝑓𝑓 ∙ 𝑡𝑡 + 𝜋𝜋 2⁄ )

𝐴𝐴 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(2 ∙ 𝜋𝜋 ∙ 𝑓𝑓 ∙ 𝑡𝑡) ] (1) 

 
The beam position at the x-coordinate is determined by the 

combination of the linear movement (𝑣𝑣𝑤𝑤 ∙ 𝑡𝑡) and the circular 
movement (𝐴𝐴 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(2 ∙ 𝜋𝜋 ∙ 𝑓𝑓 ∙ 𝑡𝑡 + 𝜋𝜋 2⁄ )). The linear component 
only depends on the welding speed 𝑣𝑣𝑤𝑤 and the process time 𝑡𝑡. 
The circular movement is defined by the oscillation amplitude 
𝐴𝐴, the oscillation frequency 𝑓𝑓 and the process time 𝑡𝑡. For the 
calculation of the y-coordinate, only the circular component 
has an impact. The maximum oscillation frequency and 
amplitude are limited by the scanner’s dynamics and the 
control system’s performance [2]. In addition to 𝐴𝐴, 𝑓𝑓 and 𝑣𝑣𝑤𝑤, 
the experimental space to be investigated in this work regarding 
the formation of spatters is spanned by the laser power 𝑃𝑃. 
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1.1. State of the Art 

The following description of the state of the art is divided 
into three main parts. First, research activities concentrated on 
the underlying physics to spatter formation are discussed. 
Second, machine learning approaches to reduce spatter are 
presented. Finally, various process monitoring methods are 
outlined. 

1.1.1. Spatter Formation 
 
The formation of spatters was studied by [3] and [4]. They 

stated different qualitative cause-effect chains and a 
categorization for the spatter phenomena reported in over 50 
other research papers. 

[5] used high-speed imaging and X-ray transmission 
imaging to investigate the spatter formation as well as the 
molten pool behavior. As a conclusion, the following three 
relationships between the spatter formation and the molten pool 
behavior were obtained; a higher laser power leads to a 
turbulent molten pool and thus increases spatter formation. The 
focal position has a major influence on the flow in the molten 
pool and thus determines the shape of spatter. When the focal 
position was inside the workpiece, a reduced spatter formation 
was reported. 

The effect of a static magnetic field on the spatter formation 
was examined by [6]. They were able to observe that above a 
certain strength of the magnetic field, a stabilizing effect on the 
molten pool occurs. This reduces the number of spatters 
significantly. 

Empirical and numerical studies on the effect of the process 
parameters on the spatter formation for aluminum alloys were 
carried out by [7]. They found that high welding speeds lead to 
more but smaller spatter. Also, full penetration welds tend to 
create less spatter than partial penetration welds. 

[8] built a three-dimensional numerical model, which takes 
shear stresses and fluid mechanics into account, in order to 
investigate the reasons for spatter formation. As a result, they 
identified two main reasons why spatter form primarily around 
the keyhole. The surface tension of the molten metal around the 
keyhole is low and the recoil pressure caused by evaporation 
accelerates the upward moving melt around the keyhole. 

Based on the model of [8], [9] used an advanced version to 
further investigate spatter formation. They concluded that 
spatter formation is significantly reduced if shear stresses 
around the keyhole are kept low. 

1.1.2. Machine Learning 
 
To reduce spattering during laser welding, machine learning 

methods are also used. 
[10] developed a neural network system to classify different 

welds according to the quality levels defined by the ISO 13919. 
By using images of cross sections to train the neural network, 
they developed a quality index based on the weights of the 
network and could classify welds into three levels of the EN-
ISO standard. 

To evaluate the welding status as a function of the bead 
width, [11] designed an artificial neural network. They used the 

size and number of spatters as well as the geometric features of 
the vapor plume as input variables. Experimental findings 
showed that a neural network trained by 15000 groups of plume 
and spatter characteristics can observe the welding status. 

To implement a closed control loop for laser welding, [12] 
used a combination of a convolutional autoencoder and a 
support vector machine. The autoencoder extracts 
characteristic features from the images of the welding process. 
Based on these features, the support vector machine categorizes 
the current welding status according to the quality levels 
defined by the ISO 13919. As a result, it was possible to 
maintain a high welding quality by controlling the laser power. 

1.1.3. Process Monitoring 
 
In addition to the investigations of the spatter formation 

mechanisms and the machine learning approaches to improve 
the welding quality, different process monitoring strategies 
have been examined. [13] reviewed over 50 research papers on 
this topic. 

For the laser spot welding process with pulsed radiation, 
[14] developed a camera-based monitoring system. A high-
speed camera took images coaxially through the beam path of 
a fixed-point optics. After evaluating the acquired images, the 
authors were able to measure the welding spot and to check for 
spatter formation during the welding process. 

[15] extended the principal of the coaxial process 
monitoring to scanning optics. Using a field programmable 
gate array unit called Eye-RIS VS, the authors detected spatter 
occurrence by a segmentation algorithm during the welding 
process. 

[16] presented two different methods for online and offline 
spatter detection. For the online image processing, they 
proposed a camera with an integrated processor per pixel 
processing unit. The offline algorithm utilized a Hough-
transformation and separated overlapping spatters. 

[17, 18 and 19] developed a spatter tracking algorithm to 
identify correlations between spattering and the visual weld 
seam quality. After recording high-speed image sequences of a 
high-power laser welding process, they concluded that the 
viscous friction drag of the energized vapor plume is the 
driving force for spatter formation at full penetration welding. 

[20] used a different approach for a spatter tracking program 
by adapting a Kalman-filter. They used this program to monitor 
a laser welding process with beam oscillation. As a result, three 
different spatter formation mechanisms were distinguished. 

In summary, it can be stated that up to now several methods 
for quantitative evaluation of the spatter behavior have been 
proposed, but the measurement systems were not able to detect 
spatter in real-time using standard computer hardware. The 
present work addresses this topic and investigates the variance 
of spatter formation for a laser welding process with beam 
oscillation. 

1.2. Structure 

The subsequent sections address the issue of a validated 
spatter detection algorithm from [21] and describe an advanced 
version as well as a data processing algorithm for real-time 

 M. Haubold and M. Zäh / Procedia CIRP 00 (2018) 000–000   

spatter evaluation. Therefore, the experimental set-up (see 
section 2) including the necessary computer hardware is 
described in detail at first. Section 3 includes the data 
processing algorithm and the modifications to the image 
processing. In section 4 the monitoring system is used to draw 
conclusions on the robustness of parameter combinations based 
on the variance of spatter formation. A conclusion with a 
summary of the described algorithms and an outlook towards 
future work concerning spatter reduction are given in section 5. 

2. Experimental set-up 

For the experimental study, the welding optics elephant50 
by ARGES was used. It featured a spot diameter of 
𝑑𝑑𝑓𝑓 = 50.5 µ𝑚𝑚, which was measured with a Primes Micro Spot 
Monitor. It was also equipped with a vision module for 
observing the process zone coaxially to the laser beam. The 
resulting 3 cm x 3 cm field of view was monitored by a process 
camera (EoSens 3CXP) with a monochrome CMOS sensor. 

To ensure the detection of small and fast spatters by the 
process camera, a temporal resolution of 1000 𝐻𝐻𝐻𝐻 and a spatial 
resolution of 900 pixels x 900 pixels was chosen. These settings 
allow the robust identification of spatter at speeds up to 10 𝑚𝑚/𝑠𝑠 
and a minimum diameter of 50 µ𝑚𝑚 . The image processing 
operations were carried out on a NVIDIA P5000 with 16 GB 
GDDR5X memory. The CPU used for the data processing and 
program management was an AMD Ryzen 7 1700x. During the 
experiments, the specimens of the oxygen-free copper 
CW008A were only partially penetrated by the laser beam. The 
laser source was an ytterbium-doped YAG single mode (SM) 
fiber laser by IPG Photonics. It emits a continuous wave (cw) 
radiation with a maximum output power of 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 = 3 𝑘𝑘𝑘𝑘 at a 
wavelength of 𝜆𝜆 = 1070 𝑛𝑛𝑚𝑚. 

3. Method for real-time spatter detection 

The proposed method for detecting spatters at a frame rate 
of 1000 𝐻𝐻𝐻𝐻 and a resolution of 900 pixels x 900 pixels consists 
of two independent algorithms. The data processing algorithm 
ensures a real-time execution of the program, while the image 
processing algorithm segments the spatters in the high-speed 
images. The following section describes the structure and 
sequence of the data processing algorithm. Subsequently, the 
development of the image processing algorithm will be 
discussed in more detail. 

3.1. Data processing 

The data processing algorithm is based on the consumer-
producer design pattern; however, it contains several 
modifications. Every implementation of the consumer-
producer design pattern consists of the producer which 
provides the data, the queue which handles the data and the 
consumer which evaluates the data. Fig. 1 shows the procedure 
of the version implemented in this work. 

The frame grabber, which transfers the images from the 
camera directly to the GPU memory, represents the producer in 
this scenario. The queue is implemented as a class and 
organizes the access rights to its elements. Each element of the 

queue is an instance of the queue element class, which consists 
of the image data itself and a time stamp as fields of the class. 
The consumer contains the image processing source code, 
which is executed on the GPU and yields the spatter number 
and size for the evaluated image. 

A multithreaded approach is used to execute the operations 
needed by the producer, the queue, and the consumer. The only 
instance of the producer runs in a single thread and is therefore 
independent of the other components. There is also only a 
single instance of the queue, which runs in a separate thread. 
Because the execution time of one consumer is generally longer 
than 1 𝑚𝑚𝑠𝑠, multiple instances calculating in parallel are needed 
to ensure real-time computation. The exact computation time 
of a single consumer thread varies depending on the number of 
occurring spatters in an image. Therefore, in this work 100 
consumer threads are launched when the program starts. All 
consumers are in an idle state until an image is copied into the 
queue. Every time an unprocessed image arrives, the queue 
activates a consumer instance, which executes the image 
processing algorithm. After completion, the consumer deletes 
the image data from the GPU memory and saves the spatter 
number and the spatter size to the main memory. Another 
implementation of the queue class is used for storing the image 
processing results. This guarantees that all consumer instances 
can store the results without violating access rights in the main 
memory. Hence, the evaluation is strongly parallelized and is 
only limited by the memory space on the GPU. The maximum 
number of images that can be processed in parallel is thus 
determined by the ratio of the memory requirements of an 
image and the available memory space of the GPU. 

The following section describes the procedure of the image 
processing algorithm, which runs in every consumer thread, in 
more detail. 

3.2. Image Processing 

To ensure a fast computation of the image processing, the 
algorithm is divided into two parts. The first part is completed 
offline and before the process monitoring. The second part is 
real-time capable and executed within the consumer threads. 
The calculations for a background model, a process mask, and 
a global threshold value using computationally intensive and 
non-parallel image processing operations is done in the first 
part of the algorithm. This requires a reference welding 
experiment, which only needs to be repeated if the optical 
system is changed, e. g. if the protective glass is replaced. 

Fig. 3 illustrates the offline part of the image processing 
algorithm. After the reference experiment has been carried out, 
all recorded images are averaged by their grayscale value. For 
calculating the process mask, the images are weighted equally. 
The resulting averaged image is binarized using Otsu’s method. 
Because Otsu’s method is based on a separation of the image 
foreground from the background by evaluating the histogram, 
only the bright process zone will be left as foreground. The next 
step implements a morphological dilation to slightly increase 
the size of the process mask. The resulting image can be used 
to block out the process zone, which would cause many false 
spatter detections. 

For calculating a precise background model, which 
reproduces the noise caused by the optical components without 
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the vapor plume as input variables. Experimental findings 
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mechanisms and the machine learning approaches to improve 
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[14] developed a camera-based monitoring system. A high-
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a fixed-point optics. After evaluating the acquired images, the 
authors were able to measure the welding spot and to check for 
spatter formation during the welding process. 

[15] extended the principal of the coaxial process 
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spatter detection. For the online image processing, they 
proposed a camera with an integrated processor per pixel 
processing unit. The offline algorithm utilized a Hough-
transformation and separated overlapping spatters. 

[17, 18 and 19] developed a spatter tracking algorithm to 
identify correlations between spattering and the visual weld 
seam quality. After recording high-speed image sequences of a 
high-power laser welding process, they concluded that the 
viscous friction drag of the energized vapor plume is the 
driving force for spatter formation at full penetration welding. 

[20] used a different approach for a spatter tracking program 
by adapting a Kalman-filter. They used this program to monitor 
a laser welding process with beam oscillation. As a result, three 
different spatter formation mechanisms were distinguished. 

In summary, it can be stated that up to now several methods 
for quantitative evaluation of the spatter behavior have been 
proposed, but the measurement systems were not able to detect 
spatter in real-time using standard computer hardware. The 
present work addresses this topic and investigates the variance 
of spatter formation for a laser welding process with beam 
oscillation. 

1.2. Structure 

The subsequent sections address the issue of a validated 
spatter detection algorithm from [21] and describe an advanced 
version as well as a data processing algorithm for real-time 
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spatter evaluation. Therefore, the experimental set-up (see 
section 2) including the necessary computer hardware is 
described in detail at first. Section 3 includes the data 
processing algorithm and the modifications to the image 
processing. In section 4 the monitoring system is used to draw 
conclusions on the robustness of parameter combinations based 
on the variance of spatter formation. A conclusion with a 
summary of the described algorithms and an outlook towards 
future work concerning spatter reduction are given in section 5. 

2. Experimental set-up 

For the experimental study, the welding optics elephant50 
by ARGES was used. It featured a spot diameter of 
𝑑𝑑𝑓𝑓 = 50.5 µ𝑚𝑚, which was measured with a Primes Micro Spot 
Monitor. It was also equipped with a vision module for 
observing the process zone coaxially to the laser beam. The 
resulting 3 cm x 3 cm field of view was monitored by a process 
camera (EoSens 3CXP) with a monochrome CMOS sensor. 

To ensure the detection of small and fast spatters by the 
process camera, a temporal resolution of 1000 𝐻𝐻𝐻𝐻 and a spatial 
resolution of 900 pixels x 900 pixels was chosen. These settings 
allow the robust identification of spatter at speeds up to 10 𝑚𝑚/𝑠𝑠 
and a minimum diameter of 50 µ𝑚𝑚 . The image processing 
operations were carried out on a NVIDIA P5000 with 16 GB 
GDDR5X memory. The CPU used for the data processing and 
program management was an AMD Ryzen 7 1700x. During the 
experiments, the specimens of the oxygen-free copper 
CW008A were only partially penetrated by the laser beam. The 
laser source was an ytterbium-doped YAG single mode (SM) 
fiber laser by IPG Photonics. It emits a continuous wave (cw) 
radiation with a maximum output power of 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 = 3 𝑘𝑘𝑘𝑘 at a 
wavelength of 𝜆𝜆 = 1070 𝑛𝑛𝑚𝑚. 

3. Method for real-time spatter detection 

The proposed method for detecting spatters at a frame rate 
of 1000 𝐻𝐻𝐻𝐻 and a resolution of 900 pixels x 900 pixels consists 
of two independent algorithms. The data processing algorithm 
ensures a real-time execution of the program, while the image 
processing algorithm segments the spatters in the high-speed 
images. The following section describes the structure and 
sequence of the data processing algorithm. Subsequently, the 
development of the image processing algorithm will be 
discussed in more detail. 

3.1. Data processing 

The data processing algorithm is based on the consumer-
producer design pattern; however, it contains several 
modifications. Every implementation of the consumer-
producer design pattern consists of the producer which 
provides the data, the queue which handles the data and the 
consumer which evaluates the data. Fig. 1 shows the procedure 
of the version implemented in this work. 

The frame grabber, which transfers the images from the 
camera directly to the GPU memory, represents the producer in 
this scenario. The queue is implemented as a class and 
organizes the access rights to its elements. Each element of the 

queue is an instance of the queue element class, which consists 
of the image data itself and a time stamp as fields of the class. 
The consumer contains the image processing source code, 
which is executed on the GPU and yields the spatter number 
and size for the evaluated image. 

A multithreaded approach is used to execute the operations 
needed by the producer, the queue, and the consumer. The only 
instance of the producer runs in a single thread and is therefore 
independent of the other components. There is also only a 
single instance of the queue, which runs in a separate thread. 
Because the execution time of one consumer is generally longer 
than 1 𝑚𝑚𝑠𝑠, multiple instances calculating in parallel are needed 
to ensure real-time computation. The exact computation time 
of a single consumer thread varies depending on the number of 
occurring spatters in an image. Therefore, in this work 100 
consumer threads are launched when the program starts. All 
consumers are in an idle state until an image is copied into the 
queue. Every time an unprocessed image arrives, the queue 
activates a consumer instance, which executes the image 
processing algorithm. After completion, the consumer deletes 
the image data from the GPU memory and saves the spatter 
number and the spatter size to the main memory. Another 
implementation of the queue class is used for storing the image 
processing results. This guarantees that all consumer instances 
can store the results without violating access rights in the main 
memory. Hence, the evaluation is strongly parallelized and is 
only limited by the memory space on the GPU. The maximum 
number of images that can be processed in parallel is thus 
determined by the ratio of the memory requirements of an 
image and the available memory space of the GPU. 

The following section describes the procedure of the image 
processing algorithm, which runs in every consumer thread, in 
more detail. 

3.2. Image Processing 

To ensure a fast computation of the image processing, the 
algorithm is divided into two parts. The first part is completed 
offline and before the process monitoring. The second part is 
real-time capable and executed within the consumer threads. 
The calculations for a background model, a process mask, and 
a global threshold value using computationally intensive and 
non-parallel image processing operations is done in the first 
part of the algorithm. This requires a reference welding 
experiment, which only needs to be repeated if the optical 
system is changed, e. g. if the protective glass is replaced. 

Fig. 3 illustrates the offline part of the image processing 
algorithm. After the reference experiment has been carried out, 
all recorded images are averaged by their grayscale value. For 
calculating the process mask, the images are weighted equally. 
The resulting averaged image is binarized using Otsu’s method. 
Because Otsu’s method is based on a separation of the image 
foreground from the background by evaluating the histogram, 
only the bright process zone will be left as foreground. The next 
step implements a morphological dilation to slightly increase 
the size of the process mask. The resulting image can be used 
to block out the process zone, which would cause many false 
spatter detections. 

For calculating a precise background model, which 
reproduces the noise caused by the optical components without 
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occurring spatter, the recorded images are weighted and 
averaged. The weighting factors are calculated by the structural 
similarity (SSIM) index, which uses an image without any 
spatter as a reference. This way, images with spatters are 
weighted weaker than images without spatter. Lastly, to 
calculate the background model, a contrast limited adaptive 
histogram equalization (CLAHE) is performed to enhance the 
contrast of the image. 

To compute a global threshold value, the process mask is 
subtracted from the background model. Subsequently, the 
threshold value is calculated by Otus’s method. Since the bright 
process zone is no longer a factor for the calculation of the 
threshold, a suitable value for the segmentation of the spatters 
is determined. 

Based on the background model, the process mask, and the 
global threshold value, the spatter segmentation algorithm runs 
in each consumer thread. The calculation of the spatter number 
and the spatter size is carried out by subtracting the process 
mask and the background model from the input image. The 
resulting image shows the spatters as regions in the foreground 
of the image. After applying the global threshold value, the 

spatter number is determined by counting the connected 
components in the black and white image. The size of each 
spatter is defined as the number of white pixels in the connected 
component. 

For the following experimental investigations, both the 
number of spatters occurring per image and the mean size of 
the spatters are evaluated. Both variables have already been 
used by [22] to provide information about the welding quality 
with the help of a dimensionless number. The quality vector �⃗�𝑄  
shown in equation (2) stores the spatter size and number for 
each image and is evaluated in the following section. 

�⃗�𝑄 = [
𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛(𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
] (2) 

4. Experimental Findings 

Using the monitoring system, the tendency for spatters 
within the design space from Table 1 was investigated 
experimentally. Four parameter combinations were selected, 
all of which led to the welding of two copper sheets with a 
thickness of 1 mm each. There was no penetration welding 
present. Each parameter combination was welded ten times and 
the corresponding quality vector was recorded. 

Fig. 4 shows the spatial progression of the averaged value 
of the spatter number and the mean spatter size for the four 
parameter combinations. 

Table 1: Design space used for the experimental investigations 

Welding parameter minimum value maximum value 

welding velocity 𝑣𝑣𝑤𝑤 in 𝑚𝑚𝑚𝑚 𝑠𝑠⁄  20 100 

oscillation amplitude 𝐴𝐴 in 𝑚𝑚𝑚𝑚 0.05 1.0 

oscillation frequency 𝑓𝑓 in 𝐻𝐻𝐻𝐻 10 300 

laser power 𝑃𝑃 in 𝑊𝑊 300 3000 

 
Each trend line of the spatter number was calculated by 

averaging over the ten repetitions. Before determining the trend 
lines for the spatter size in the same way, the mean value of the 
spatter size was computed for each image. 

The graph concerning the spatter number shows the two 
parameter combinations #1 and #2 with a consistently low 
number of occurring spatters, which correlated with a high 
seam quality. Parameter combination #3 leads to a higher 
spatter formation compared to #1 and #2. In addition, an 
oscillatory character of the trend line is apparent. 

The overall highest amount of spatter occurs with parameter 
combination #4. An increased spatter formation at the 
beginning of the weld seam is visible. This can be explained by 
an unsteady piercing process. 

The trend lines of the spatter numbers show variations, 
which can be correlated with the resulting quality of the weld 
seams. 

For the parameter combination #4, a correlation between the 
size and the number of spatters is observed. Each peak in the 
trend line of the spatter number also has a corresponding peak 
in the spatter size graph. However, this characteristic does not 
apply to the other parameter combinations. Especially with 
parameter combination #3, the spatters are generally small. 

Fig. 1: Data processing algorithm following the producer-
consumer design pattern 
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The low trend lines of the spatter size for parameter 
combinations #1 and #2 c explained by the fact that only 
sporadic spatters occur. Depending on the application, either 
the spatter number or the spatter size can be used as a quality 
criterion. 

Table 2: Mean value and standard deviation of the spatter number after ten 
repetitions 

 
To investigate the reproducibility of spatter formation, the 

mean values and the standard deviation were calculated for ten 
repetitions. The results for the spatter number and for the 
spatter size are shown in Table 2 and in Table 3 respectively. 

For the parameter combination #1, with an average value of 
0.04, spatters over the length of the weld seam occur only 
sporadically. Since the standard deviation takes a 
comparatively small value as well, a stable and repeatable 
process result was observed. The same is true for the parameter 
combination #2; only slightly fewer spatters occur. 

The parameter combination #3 shows a clearly increased 
spatter number. The mean value and the standard deviation for 
the spatter number are in the same order of magnitude as for 
the parameter combinations #1 and #2. This trend also 
continues for the parameter combination #4. Since the 
parameter combination #4 has an even higher spatter number 
than #3, it can be concluded that the variance for spatter 
formation increases with a rising number of spatters. In 
addition, it can be stated that by using beam oscillation the 
amount of spatter can be influenced significantly. Although 
parameter combination #4 has the lowest laser power and the 
same welding speed as  #2, the spatter formation is significantly 
increased. The interactions of all four process parameters must 
be considered to ensure a welding process with few spatters. 

Table 3 shows that the spatter size varies significantly more 
than the spatter number over the ten repetitions. The standard 
deviation for each parameter combination is higher than the 
corresponding mean value. This indicates that it is considerably 
more difficult to influence the spatter size than the spatter 
number. The parameter combinations #1 and #2 are 

# 𝑣𝑣𝑤𝑤 in 
𝑚𝑚𝑚𝑚 𝑠𝑠⁄  

𝐴𝐴 in 
𝑚𝑚𝑚𝑚 

𝑓𝑓 in 
𝐻𝐻𝐻𝐻 

𝑃𝑃 in 
𝑊𝑊 

Mean value 
of the spatter 

number 

Standard devi-
ation of the 

spatter number 

1 30.00 0.47 242.0 1929 0.04 0.07 

2 51.25 0.81 173.3 2287 0.02 0.03 

3 71.50 0.44 74.0 1980 0.57 0.77 

4 50.00 0.15 150.0 1800 1.61 1.37 

Fig 4: Trend lines of the spatter number and the mean spatter size averaged 
over ten repetitions along the weld seam length 

Fig 3: Image processing algorithm for calculating a background 
model, a process mask and a global threshold value 
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occurring spatter, the recorded images are weighted and 
averaged. The weighting factors are calculated by the structural 
similarity (SSIM) index, which uses an image without any 
spatter as a reference. This way, images with spatters are 
weighted weaker than images without spatter. Lastly, to 
calculate the background model, a contrast limited adaptive 
histogram equalization (CLAHE) is performed to enhance the 
contrast of the image. 

To compute a global threshold value, the process mask is 
subtracted from the background model. Subsequently, the 
threshold value is calculated by Otus’s method. Since the bright 
process zone is no longer a factor for the calculation of the 
threshold, a suitable value for the segmentation of the spatters 
is determined. 

Based on the background model, the process mask, and the 
global threshold value, the spatter segmentation algorithm runs 
in each consumer thread. The calculation of the spatter number 
and the spatter size is carried out by subtracting the process 
mask and the background model from the input image. The 
resulting image shows the spatters as regions in the foreground 
of the image. After applying the global threshold value, the 

spatter number is determined by counting the connected 
components in the black and white image. The size of each 
spatter is defined as the number of white pixels in the connected 
component. 

For the following experimental investigations, both the 
number of spatters occurring per image and the mean size of 
the spatters are evaluated. Both variables have already been 
used by [22] to provide information about the welding quality 
with the help of a dimensionless number. The quality vector �⃗�𝑄  
shown in equation (2) stores the spatter size and number for 
each image and is evaluated in the following section. 

�⃗�𝑄 = [
𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛(𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
] (2) 

4. Experimental Findings 

Using the monitoring system, the tendency for spatters 
within the design space from Table 1 was investigated 
experimentally. Four parameter combinations were selected, 
all of which led to the welding of two copper sheets with a 
thickness of 1 mm each. There was no penetration welding 
present. Each parameter combination was welded ten times and 
the corresponding quality vector was recorded. 

Fig. 4 shows the spatial progression of the averaged value 
of the spatter number and the mean spatter size for the four 
parameter combinations. 

Table 1: Design space used for the experimental investigations 

Welding parameter minimum value maximum value 

welding velocity 𝑣𝑣𝑤𝑤 in 𝑚𝑚𝑚𝑚 𝑠𝑠⁄  20 100 

oscillation amplitude 𝐴𝐴 in 𝑚𝑚𝑚𝑚 0.05 1.0 

oscillation frequency 𝑓𝑓 in 𝐻𝐻𝐻𝐻 10 300 

laser power 𝑃𝑃 in 𝑊𝑊 300 3000 

 
Each trend line of the spatter number was calculated by 

averaging over the ten repetitions. Before determining the trend 
lines for the spatter size in the same way, the mean value of the 
spatter size was computed for each image. 

The graph concerning the spatter number shows the two 
parameter combinations #1 and #2 with a consistently low 
number of occurring spatters, which correlated with a high 
seam quality. Parameter combination #3 leads to a higher 
spatter formation compared to #1 and #2. In addition, an 
oscillatory character of the trend line is apparent. 

The overall highest amount of spatter occurs with parameter 
combination #4. An increased spatter formation at the 
beginning of the weld seam is visible. This can be explained by 
an unsteady piercing process. 

The trend lines of the spatter numbers show variations, 
which can be correlated with the resulting quality of the weld 
seams. 

For the parameter combination #4, a correlation between the 
size and the number of spatters is observed. Each peak in the 
trend line of the spatter number also has a corresponding peak 
in the spatter size graph. However, this characteristic does not 
apply to the other parameter combinations. Especially with 
parameter combination #3, the spatters are generally small. 

Fig. 1: Data processing algorithm following the producer-
consumer design pattern 
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The low trend lines of the spatter size for parameter 
combinations #1 and #2 c explained by the fact that only 
sporadic spatters occur. Depending on the application, either 
the spatter number or the spatter size can be used as a quality 
criterion. 

Table 2: Mean value and standard deviation of the spatter number after ten 
repetitions 

 
To investigate the reproducibility of spatter formation, the 

mean values and the standard deviation were calculated for ten 
repetitions. The results for the spatter number and for the 
spatter size are shown in Table 2 and in Table 3 respectively. 

For the parameter combination #1, with an average value of 
0.04, spatters over the length of the weld seam occur only 
sporadically. Since the standard deviation takes a 
comparatively small value as well, a stable and repeatable 
process result was observed. The same is true for the parameter 
combination #2; only slightly fewer spatters occur. 

The parameter combination #3 shows a clearly increased 
spatter number. The mean value and the standard deviation for 
the spatter number are in the same order of magnitude as for 
the parameter combinations #1 and #2. This trend also 
continues for the parameter combination #4. Since the 
parameter combination #4 has an even higher spatter number 
than #3, it can be concluded that the variance for spatter 
formation increases with a rising number of spatters. In 
addition, it can be stated that by using beam oscillation the 
amount of spatter can be influenced significantly. Although 
parameter combination #4 has the lowest laser power and the 
same welding speed as  #2, the spatter formation is significantly 
increased. The interactions of all four process parameters must 
be considered to ensure a welding process with few spatters. 

Table 3 shows that the spatter size varies significantly more 
than the spatter number over the ten repetitions. The standard 
deviation for each parameter combination is higher than the 
corresponding mean value. This indicates that it is considerably 
more difficult to influence the spatter size than the spatter 
number. The parameter combinations #1 and #2 are 

# 𝑣𝑣𝑤𝑤 in 
𝑚𝑚𝑚𝑚 𝑠𝑠⁄  

𝐴𝐴 in 
𝑚𝑚𝑚𝑚 

𝑓𝑓 in 
𝐻𝐻𝐻𝐻 

𝑃𝑃 in 
𝑊𝑊 

Mean value 
of the spatter 

number 

Standard devi-
ation of the 

spatter number 

1 30.00 0.47 242.0 1929 0.04 0.07 

2 51.25 0.81 173.3 2287 0.02 0.03 

3 71.50 0.44 74.0 1980 0.57 0.77 

4 50.00 0.15 150.0 1800 1.61 1.37 

Fig 4: Trend lines of the spatter number and the mean spatter size averaged 
over ten repetitions along the weld seam length 

Fig 3: Image processing algorithm for calculating a background 
model, a process mask and a global threshold value 
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characterized by a small spatter number as well as a small 
spatter size. This correlates in both cases with a high weld seam 
quality.  

Table 3: Mean value and standard deviation of the spatter size after ten 
repetitions 

# 𝑣𝑣𝑤𝑤 in 
𝑚𝑚𝑚𝑚 𝑠𝑠⁄  

𝐴𝐴 in 
𝑚𝑚𝑚𝑚 

𝑓𝑓 in 
𝐻𝐻𝐻𝐻 

𝑃𝑃 in 
𝑊𝑊 

Mean value 
of the spatter 

size 

Standard 
deviation of 

the spatter size 

1 30.00 0.47 242.0 1929 0.70 1.98 

2 51.25 0.81 173.3 2287 0.40 0.41 

3 71.50 0.44 74.0 1980 8.56 20.17 

4 50.00 0.15 150.0 1800 114.00 162.06 

 
The experiments show that the parameter combinations #1 

and #2 repeatedly produce weld seams with a high quality. 

5. Conclusion and Outlook 

This paper presented an algorithm for real time spatter 
detection at 1000 𝐻𝐻𝐻𝐻  using commercial hardware. This was 
achieved by splitting the algorithm into a data processing part 
and an image processing part. Both components of the 
algorithm run in parallel and thus allow a high evaluation 
speed. 

The resulting monitoring system was used to investigate the 
reproducibility of spatter formation during remote laser beam 
welding with beam oscillation. The results show significant 
differences in the spatter number and spatter size for varying 
process parameters. This indicates that beam oscillation is 
suitable for reducing spatter formation. The investigations also 
showed a clear correlation between the spatter number and the 
corresponding standard deviation. This means that a parameter 
combination that results in fewer spatter is more robust and 
repeatable at the same time. The standard deviation of the 
spatter size was larger than the corresponding mean value for 
all examined parameter combinations. The repeatability of the 
spatter size is therefore not given. 

In future work, the monitoring system will be used to 
develop an algorithm for systematic spatter reduction, thus, 
finding welding parameters that lead to a high seam quality. 
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