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Background: Treatment decisions for multimodal therapy in soft tissue sarcoma (STS) patients greatly depend on
the differentiation between low-grade and high-grade tumors. We developed MRI-based radiomics grading
models for the differentiation between low-grade (G1) and high-grade (G2/G3) STS.
Methods: The study was registered at ClinicalTrials.gov (number NCT03798795). Contrast-enhanced
T1-weighted fat saturated (T1FSGd), fat-saturated T2-weighted (T2FS) MRI sequences, and tumor grading fol-
lowing the French Federation of Cancer Centers Sarcoma Group obtained from pre-therapeutic biopsies were
gathered from two independent retrospective patient cohorts. Volumes of interest were manually segmented.
After preprocessing, 1394 radiomics features were extracted from each sequence. Features unstable in 21 inde-
pendent multiple-segmentations were excluded. Least absolute shrinkage and selection operator models were
developed using nested cross-validation on a training patient cohort (122 patients). The influence of
ComBatHarmonization was assessed for correction of batch effects.
Findings: Three radiomic models based on T2FS, T1FSGd and a combined model achieved predictive perfor-
mances with an area under the receiver operator characteristic curve (AUC) of 0.78, 0.69, and 0.76 on the inde-
pendent validation set (103 patients), respectively. The T2FS-based model showed the best reproducibility. The
radiomicsmodel involving T1FSGd-based features achieved significant patient stratification. Combining the T2FS
radiomic model into a nomogram with clinical staging improved prognostic performance and the clinical net
benefit above clinical staging alone.
Interpretation:MRI-based radiomics tumor grading models effectively classify low-grade and high-grade soft tis-
sue sarcomas.
Fund: The authors received support by themedical faculty of the Technical University ofMunich and the German
Cancer Consortium.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Soft tissue sarcomas (STS) constitute rare malignant diseases [1]. In
contrast to many other malignant tumors, treatment decisions strongly
depend on pre-therapeutic tumor grading [2].

Tumor grading is commonly determined during histological workup
of pre-therapeutic biopsies. Two distinct grading systems were devel-
oped by the National Cancer Institute and the French Federation of Can-
cer Centers Sarcoma Group (FNCLCC) [3,4]. In direct comparison, the
FNCLCC system appeared to predict distant metastasis development
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Research in context
Evidence before this study

Therapy decisions for patients with soft tissue sarcomas (STS)
vastly depend on the differentiation between low-grade and
high-grade STS. In contrast to low-grade STS, patients diagnosed
with high-grade STS have an unfavorable prognosis and often suf-
fer from the occurrence of distant metastases. As consequence,
patients with high-grade STS receive multimodal therapy regi-
ments including radiation therapy and/or chemotherapy. So far,
tumor grading is defined by histological work up after invasive bi-
opsies. Previous studies, could identify semantic magnetic reso-
nance imaging (MRI) derived properties, such as contrast
enhancement, necrosis or tumor heterogeneity, associated with
higher tumor grading. First small single center studies were able
to demonstrate an association of quantitative radiomics features
with tumor grading, too.

Added value of this study

We have developed non-invasive tumor gradingmodels for the dif-
ferentiation between low-grade and high-grade sarcomas using
MRI-based radiomics. All modelswere validated using an indepen-
dent external patient cohort. The radiomic classifier based on con-
trast enhanced T1-weighted MRI sequences achieved significant
patient risk stratification. Combining the T2-weighted sequence
based radiomic model into a nomogram with clinical stages im-
proved the clinical net benefit and prognostic performance above
clinical staging alone.

Implications of all the available evidence

The study provides radiomic MRI-based models to non-invasively
differentiate low-grade from high-grade sarcomas. The presented
modelsmay be used as a non-invasive grading estimate if the path-
ological workup does not yield a clear result, or the tumor exhibits
inhomogeneous areas that are difficult to access via CT-targeted
or open biopsy. Moreover, the proposed nomogram may be used
for improved prognostic assesment prior to therapy.

Table 1
Patient demographics, tumor properties and outcome of patients included for model
building.

Institution TUM training UW
validation

p-Valuesa

Total
patients

122 p 103 p

Location Extremity or trunk 115/122 p 99/103 p 1
(94%) (96%)

Abdomen/retroperitoneal 7/122 p 4/103 p
(6%) (4%)

Age m 57
(sd: 16.7)

m 52.7
(sd:15.5)

.2

Gender Female 57/122 p 47/103 p 1
(47%) (46%)

Male 65/122 p 56/103 p
(53%) (54%)

T-stageb 1 18/122 p 17/103 p 1
(15%) (17%)

2 104/122 p 86/103 p
(85%) (83%)

a 11/122 p 1/103 p 1
(9%) (1%)

b 111/122 p 102/103 p
(91%) (99%)

M-stageb 0 117/122 p 102/103 p 1
(96%) (99%)

1 5/122 p 1/103 p
(4%) (1%)

N-stageb 0 120/122 p 103/103 p
(100%)

1
(98.0%)

1 2/122 p 0/103 p
(2%) (0%)

Gradingc 1 48/122 p 20/103 p
(19.5%)

.05
(4.8%)

2 28/122 p
(32.1%)

31/103 p
(32.2%)

3 46/122 p
(46.4%)

52/103 p
(48.3%)

Tumor
volume

197.6 cc 164.5 cc
(sd: 391.4) (sd: 428.8)

AJCC-stage IA 8/122 p 4/103 p p b .001
(7%) (4%)

IB 40/122 p 16/103 p
(33%) (16%)

IIA 8/122 p 13/103 p
(7%) (13%)

IIB 5/122 p 23/103 p
(4%) (22%)

III 57/122 p 47/103 p
(47%) (46%)

IV 4/122 p 0/103 p
(3%) (0%)

Median OS 35.7 mo 44.7 mo .2

Abbreviations: cc: cubic centimeters, m:median,mo:months, p: patients, TUM: Technical
University of Munich, UW: University of Washington, sd: standard deviation.

a Categorial variables: Fisher’ exact test (2 cohorts)) and continuous/Rank variables:
Wilcoxon rank sum test (2 cohorts), log-rank test for survival, with bonferroni correction
for multiple testing.

b Following AJCC staging system version 7 [36].
c According to French Federation of Cancer Centers Sarcoma Group (FFCCS) [5].
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and tumor mortality slightly better than the NCI system [5]. The most
important differentiation is between G1 (referred to as low-grade)
andG2 or G3 (referred to as high-grade) as it has direct therapeutic con-
sequences in the primary setting. For instance, patients with high-grade
STS regularly receive additional radiotherapy and/or chemotherapy in
contrast to patients with low-grade STS [1,6,7].

As an alternative method for characterizing tumors, radiomics al-
lows for large scale high-throughput analysis of imaging data revealing
information beyond qualitative assessment by experts [8–10]. Such ex-
tracted radiomics features have been shown to predict different clinical
endpoints such as patient prognosis or molecular aberrations [11,12].
Recently, first studies have indicated the potential of radiomics to pre-
dict tumor grading in multiple cancers such as neuroendocrine pancre-
atic tumors or gliomas [13,14]. For STS, two previous studies described
the potential of radiomics to predict overall survival, distant disease
progression, and response to neoadjuvant chemotherapy [15–18].

The scope of this work was to generate magnetic resonance imaging
(MRI)-based radiomic grading models to differentiate low-grade from
high-grade STS. We evaluated the influence of different MRI sequences
to find the optimal prediction model. Finally, a radiomics nomogram
was created for prognostic assessment. The propensity of patient risk
stratification and the net benefit in clinical decision analysis was ana-
lyzed for the developed models.
2. Methods

2.1. Patients

The trial was registered at ClinicalTrials.gov (NCT03798795). All
patients with histologically proven STS with known FNCLCC tumor
grading determined by biopsy prior to therapy and availability of
contrast-enhanced T1-weighted fat saturated (T1FSGd) as well as fat-
saturated T2-weighted (T2FS) MRI sequences of pre-therapeutic MRI
were included. Patient records were analyzed for patient demographics
(see Table 1) and histological subtypes (see Supplemental Table 1) from
two independent retrospective patients cohorts from the Technical Uni-
versity of Munich (TUM) (138 patients, one patient with two
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Fig. 1. The radiomics workflow. Abbreviations: DCA: decision curve analysis, ICC: intra
class coefficient, KM: Kaplan Meier survival curve, ROC: receiver operator characteristic
curve, TUM: Technical University of Munich, UW: University of Washington.
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independent STS) and the University ofWashington, Seattle (UW) (139
patients). Exclusion criteria were previous RT, Ewing sarcoma, primary
bone sarcomas, and endoprosthesis-dependent MRI artifacts. Approval
from the ethics committee was received in both institutions. Patients
were treated after informed consent. Overall survival (OS) was calcu-
lated from the initial pathologic diagnosis to the time point of death or
the time point of censoring.

2.2. Image acquisition and definition of volume of interests

Complete imaging studies (availability of both sequences of interest)
were found in 122 patient in the TUM cohort and 103 patients in the
UW cohort (see patient workflow in Supplemental Fig. 1). See Supple-
mental Tables 2 and 3 for MRI vendors and acquisition parameters.

Tumor segmentation was conducted manually using MIM software
version 6.6 at UW by MS, MM and TC (MIM Software Inc., Cleveland,
USA), Eclipse 13.0 (Varian Medical Systems, Palo Alto, USA), and iplan
RT 4.1.2 (Brainlab,Munich, Germany) at TUMby JP. The volume of inter-
est (VOI) was defined as the primary tumor excluding surrounding
edematous changes. Multiple delineations were performed for 21 ran-
domly selected patients by three radiation oncology residents (JP, TA,
MS) in the TUM cohort (see Fig. 1) to compensate for operator-
dependent bias. For comparison, dice coefficients (DC) were calculated
using the DiceComputation module of 3D Slicer (3D Slicer, Version 4.8
stable release) [19].

2.3. Image preprocessing and radiomics feature extraction

Feature extraction,model building and statistical analyseswere per-
formed by JP and AO. In order to compensate for non-uniform intensity
caused by field inhomogeneity, N4ITKMRI bias field correction was ap-
plied to each imaging study using Slicer3D implementation (3D Slicer,
Version 4.8 stable release) [20]. The pyradiomics (version 2.1) imple-
mentation in python (version 3.6.4)was utilized for further preprocess-
ing steps and radiomics feature extraction [21]. Intensity normalization
redistributed the image at the mean with the standard deviation and a
scale of 100. A fixed bin width of 10 was used for image discretization
(a detailed description is provided in the supplemental material). Iso-
tropic resampling to a voxel size of 3 × 3 × 3 mm was performed
using Bspline interpolation. All models were also calculated using a
voxel size of 1 × 1 × 1 mm showing inferior predictive performances.

Image reconstruction was performed applying wavelet decomposi-
tions filtering and Laplacian of Gaussian filtering with sigma values of
3.0, 4.0, and 6.0. Further on, local binary pattern-derived images were
calculated using a level of one and two as well as the kurtosis image.
1394 features were extracted from filtered and original images in
three dimensions including shape features,first-order features, and tex-
ture features. All extracted features are listed in Supplemental Table 4.

2.4. Feature reduction and predictive model building

Feature reduction, batch correction, modeling, and statistical analy-
ses were performed in R (version 3.4.0, R core team, Vienna, Austria).
All features susceptible to minor segmentation variances in the 21 pa-
tients that received multiple independent segmentations (intraclass
correlation coefficient (3,1) of b0.8) were excluded.

For model building and unbiased performance evaluation on the
training set, 10 iterations of five-fold nested cross validation were per-
formed using the code published by Deist et al. built upon the “caret”
package [9,22]. The total training set was split into five subgroups
(outer folds). Each Subgroup was then split once more for five times
(inner folds). Hyperparameters were optimized as part of the inner
folds. The selected hyperparameters were then used for testing on the
five outer folds. The totalmean area under the receiver operator charac-
teristic (ROC) curve (AUC) over all outer folds was calculated for model
comparison (see Supplemental Fig. 2 for a graphical depiction). The
hyperparameter combination with the best mean performance was
used to retrain a final model on the whole training set. Model perfor-
mance with the optimal hyperparameter combination was assessed
using cross validation as described above.

First, we compared the performance of sevenmachine learning tech-
niques with inbuilt feature reduction (elastic net logistic regression,
least absolute shrinkage and selection operator (LASSO), random forest,
LogitBoost, decision tree, support vector machine and neural network).
The influence of additional feature reduction by principal component
analysis (PCA), resampling and reweighting were tested (see Supple-
mental Table 6) [22]. None of the techniques improved the performance
further. We decided to apply the LASSO method without prior PCA as it
showed good performance in cross validation,model simplicity and low
tendency to overfitting (see supplemental material for method descrip-
tion and Supplemental Table 7 for selected hyperparameter values).
Previous studies have demonstrated a competitive performance com-
pared to other machine learning methods [22,23]. At the same time, it
allows for a better interpretability due to the direct linear relationship
between input features and outcome.

All models were trained to classify high-grade STS (G1) vs. low-
grade STS (G2/G3). Three radiomic models Radiomics-T1FSGd, Radiomic
T2FS, and Radiomics-combinedwere developed using the respective fea-
tures as input. For comparison, logistic regression models of Tumor-
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Volume alone, a Clinical model based upon “Age” and the TNM-staging
system, and a combined model Clinical-Volume-combined were
evaluated.

Finally, we trained elastic net regressionmodels for the prediction of
overall survival (OS) using five-fold cross validation using the
“glmUtils” package. Model performance of all final models was finally
determined on the external validation patient cohort (UW) to get an
unbiased result.

2.5. Batch correction via ComBatHarmonization

Recently the ComBatHarmonization has been proposed as a method
for the correction of batch effects among radiomics multicenter cohorts
[24]. Its value to potentially improve reproducibility between different
centers has been shown in multiple studies [25,26]. Based on the
given feature distribution it estimates the additive and multiplicative
batch effects using a maximum likelihood approach. We applied the R
ComBat script (https://github.com/Jfortin1/ComBatHarmonization)
correcting forMRI scannermodels [27]. Further on,we evaluated the ef-
fect of using STS histology as a biological covariate.

2.6. Decision curve analysis

In order to analyze the clinical usefulness of the developed
classifiers, decision curve analysis was conducted as described by
Vickers et al. [https://www.mskcc.org/departments/epidemiology-
biostatistics/biostatistics/decision-curve-analysis] [28]. The net benefit
is calculated by subtracting the proportion of false-positive patients
from the proportion of true-positive patients, weighted by the relative
harm of a false-negative and false-positive result. As a reference, the de-
cision curves for treating all patients and treating no patients are
displayed. A decisionmodels shows a clinical benefit if it achieves larger
net benefit values than both reference strategies.

2.7. Statistical analysis

ROC curves and respective AUC values were calculated and com-
pared using the 1000-fold bootstrapping as implemented in the
“fbroc” and “pROC” packages [29]. Patient stratification for survival
was tested via Kaplan-Meier survival analysis using the “ggkm” pack-
age. Dichotomization was performed using the class output provided
by the glmnet function inside of the “caret” package. Statistical signifi-
cance was assessed using the log-rank test. Univariate logistic regres-
sion was used to assess correlation to tumor grading using the
“survival” package. Calibration curves were generated using the “gbm”
package. Bonferroni correction was performed in cases of multiple test-
ing. A p-value below .05 was regarded as significant.

2.8. Data sharing statement

Due to patient privacy concerns the datasets are currently not pub-
licly available. However, data may be obtained from the corresponding
author on reasonable request andmay be published online in the future
after approval by the institutional ethics review boards.

3. Results

Fig. 1 shows the workflow of the study.

3.1. Patient characteristics and volume of interest definition

The overall distributions of tumor grading (p= .005) and histologi-
cal subgroups (p b .001) between both cohorts were significantly differ-
ent (see Table 1 and Supplemental Table 2, respectively). The training
dataset consisted of 48/122 (39%) low-grade and 74/122 (61%) high-
grade STS. With 20/103 (19%) low-grade STS and 83/103 (81%) high-
grade STS the validation dataset was skewed towards high-grade tu-
mors. The similarity between multiple segmentation was overall high
with a mean dice similarity coefficient of 0.91 (standard deviation
0.069).

3.2. Training of the radiomic classifiers for tumor grading prediction

After radiomics feature reduction due to segmentation variability
1309, 1340, and 2609 features were used for the development of the
Radiomics-T1FSGd, Radiomics-T2FS and Radiomics-combinedmodels, re-
spectively. During training of Radiomics-T2FS, Radiomics-T1FSGd, and
Radiomics-combined, 24, 22 and 13 features with non-zero coefficients
were selected, respectively (see Supplemental Table 8 for selected fea-
tures and feature importance ranking). Features were selected from var-
ious feature types andfilteringmethods. Themost important T2FS-based
features were first order intensity features based on wavelet filtering
(wavelet.LHL_firstorder_Kurtosis and wavelet.HLH_firstorder_Mean),
and the local binary pattern texture feature busyness (lbp.3D.
k_ngtdm_Busyness). The T1FSGd based model was similarly dominated
by wavelet.HLH_firstorder_Mean as for T2FS. In addition, wavelet de-
composition based texture features such as “MaximumCorrelation Coef-
ficient” (MCC) computed on the “Gray level co-occurrence matrix”
(GLCM) and “DependenceEntropy” derived from the “Gray Level Depen-
dence Matrix” (GLDM) (wavelet.HLH_glcm_MCC and wavelet.
HLH_gldm_DependenceEntropy) were among the threemost important
features.

With AUC-values of 0.77 and 0.78 the models Radiomics-T2FS and
Radiomics-T1FSGd showed a similar predictive performance (p =
.427) on the training set (see Table 2 for AUC values and 95% confidence
intervals (95%CI)). The Radiomics-combined model achieved a signifi-
cantly better predictive capacity (AUC 0.84) than Radiomics-T2FS and
Radiomics-T1FSGd (p b .001, respectively). The Clinical model (AUC:
0.55) and the Tumor-Volumemodel (AUC: 0.44) did not show a predic-
tive capacity better than random. Combining clinical parameters and
tumor volume as “Clinical-Volume-combined” model did not increase
predictive performance further (AUC: 0.52). All threemodels performed
significantly worse than all radiomic model s(p b .001, for each
comparison).

3.3. Independent validation of the developed classifiers

The predictive models were evaluated on the validation set after
batch correction. The T2FS-based model showed good reproducibility
with an AUC of 0.78 (absolute difference of +0.01) which was signifi-
cantly better than Clinical but not Tumor-Volume (p = .01 and p =
.056, respectively) (see Table 2 for AUC values and 95%CI, Fig. 2 for
ROC curves, and Supplemental Fig. 3 for calibration curves). Validation
of the Radiomics-T1FSGdmodel showed a larger drop in predictive per-
formance with an absolute difference of−0.09 and an AUC of 0.69. The
Radiomics-combined model showed a similar performance than the
T2FS model (AUC 0.76, absolute difference −0.09) which was,
however, not significantly better than Clinical or Tumor-Volume (p =
.056 and p = .165, respectively). The observed difference in between
the radiomic model did not reach statistical significance (Radiomics-
T1FSGd vs. Radiomics-T2FS, p = .192, Radiomics-T1FSGd vs. Radiomics-
combined, p = .348). The Clinical model and the Tumor-Volume model
showed no predictive performance better than random. Clinical-Vol-
ume-combined, however, showed predictive performance significantly
better than random with an AUC of 0.67.

In contrast to Clinical, Tumor-Volume, Clinical-Volume-combined, and
Radiomics-T1FSGd, Radiomics-T2FS and Radiomics-combinedwere signif-
icantly associated with tumor grading in univariate logistic regression
analysis in the independent validation cohort (odds ratio (OR) for a
10% increase in predictived probability: Clinical OR = 1.4 (95%CI 0.62-
3.3) p = 1.0, Tumor-Volume OR = 1.5 (95%CI 0.9-6.1) p = .35,
Radiomics-T1FSGd OR = 1.4 (95%CI 1.09-1.86) p = .064, Radiomics-
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Table 2
Predictive performance metrics of the radiomic classifiers.

Area under the receiver operator characteristic curve (AUC) values for the differentiation of high-grade from low-grade soft tissue sarcomas. 95% confidence intervals are shown in
parentheses.
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T2FS OR 1.6 (95%CI 1.26-2.19) p = .0021, and Radiomics-combined OR
= 2.1 (95%CI 1.39-3.30) p = .0045).

The Radiomics-combined model showed the highest accuracy (0.83)
and sensitivity (0.90), but low specificity (0.50), for the prediction of
high-grade STS compared to Radiomics-T2FS (accuracy: 0.78, sensitivity:
0.87, specificity: 0.40) and Radiomics-T1FSGd (accuracy: 0.78, sensitiv-
ity: 0.87, specificity: 0.40) (see Supplemental Table 9 for additional per-
formance metrics) on the validation set.
Fig. 2. Predictive performance of radiomics tumor grading models. Receiver operator charact
performance of the prediction models Clinical, Clinical-Volume-combined, Tumor-Volume, Radi
shaded blue areas depict the 95% confidence interval which is shown in parentheses. (For int
web version of this article.)
3.4. Influence of batch correction

The influence of ComBatHarmonization on validation performance
was different depending on the predictive model. The T1FSGd-based
models Radiomics-T1FSGd improved with an absolute AUC difference
of +0.08. Radiomics-T2FS and Radiomics_combined showed less marked
increases in AUC of +0.03 and + 0.04, respectively. Application of his-
tology as biological covariate did not increase predictive performance
eristic curves (ROC) and the respective area under the curve (AUC) values depicting the
omics-T1FSGd, Radiomics-T2FS, and the Radiomics-combined on the validation cohort. The
erpretation of the references to colour in this figure legend, the reader is referred to the

https://doi.org/10.1016/j.ebiom.2019.08.059
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profoundly rising the performance of Radiomics-T1FSGd to 0.70 while
decreasing performances of Radiomis-T2FS and Radiomics-combined
(AUC of 0.75 and 0.76, respectively) (see Supplemental Table 10).

3.5. Patient risk stratification

Tumor grading (high-grade vs. low-grade) significantly stratified
patients for OS in the training and validation patient cohorts (p=
0.0006 and p= .045, respectively) (see Fig. 3 for Kaplan Meier survival
curves and p-values). We used the classification of the developed
radiomics grading models for dichotomization of the patient cohort
into low-risk and high-risk patients. On the training set, all models
achieved a separation of survival curves. The difference in survival was
significantly different for the models Radiomics-T1FSGd (p = .0318),
Radiomics-T2FS (p = .00328), and Radiomics-combined (p = .0204)
but not for Clinical-Volume (p = .334). On the validation set,
Radiomics-T1FSGd achieved a separation of survival curves with signifi-
cant patient stratification (p=.0268). Interestingly, therewasno signif-
icant separation of survival curves for the three other models.

3.6. Development of a clinical radiomics nomogram

Next,we analyzed if theproposedmodelsmay provide an incremen-
tal benefit above the existing clinical staging system. We generated
multivariate nomograms by combining the AJCC staging system (7th
edition) with the respective grading models. The model based on
Radiomics-T2FS showed the best predictive performance for OS in the
validation set with a concordance index (C-index) of 0.74 (95%CI
0.64–0.84) in comparison to Radiomics-T1FSGd (C-index: 0.71, 95%CI
0.61–0.81), Radiomics-combined (C-index: 0.72, 95%CI 0.62–0.83), and
to the AJCC staging system alone (C-index 0.69, 95%CI 0.60–0.0.78).
For comparison, tumor volumealone and inside of a similarmultivariate
model achieved a C-indics of 0.54 (95%CI 0.43–0.65) and 0.71 (95%CI
0.61-0.81), respectively. See Supplemental Table 11 for all training and
testing performances.

For the best model based on Radiomics-T2FS, a nomogram was cre-
ated (see Fig. 4a). With an AUC of 0.82 for 2-year survival, the model
showed good discrimination and good calibration (Fig. 4b and c).
Further on, it achieved significant patient risk stratification (p b .0001)
Fig. 3. Patient risk stratification. Kaplan Meier survival curves for patients' overall survival dis
(low-grade vs. high-grade) (b,g), the Radiomics-T1FSGd model (c,h), the Radiomics-T2FS mod
patient cohort.
(Fig. 4d). In decision curve analysis, the Radiomics-T2FS nomogram
outperformed the “treat all” and “treat none” strategies, as well as the
AJCC staging system and tumor grading alone in the threshold probabil-
ity range between 0.2 and 0.55.

3.7. Prognostic radiomic prediction models show moderate performance

Finally, we trained radiomic prediction models directly for OS. The
models based on the T1FSGd features, T2FS features, the combined fea-
ture set, and Tumor-Volume achieved predictive performances with C-
indices of 0.55 (95%CI 0.45–0.65), 0.60 (95%CI 0.49–0.70), 0.60 (95%CI
0.50–0.69), and 0.54 (95% 0.43–0.65), respectively. Combining the
AJCC staging system and the above mentioned models did not confer
an incremental benefit (C-indices for T1FSGd: 0.67 (95%CI 0.57–0.77),
T2FS: 0.70 (95%CI 0.59–0.80), combined features: 0.64 (95%CI
0.55–0.74), and Tumor-Volume: 0.71 (95%CI 0.61–0.81)).

4. Discussion

We have developed MRI-based radiomic models for tumor grading
of STS focusing on the differentiation of high-grade STS from low-
grade STS. A T2FS-sequence-based model showed a good reproducibil-
ity with the best performance on the independent validation patient
set. A radiomic model involving T1FSGd-based features demonstrated
a larger drop in predictive performance which was partly improved by
ComBat harmonization. The Radiomics-T1FSGd model achieved signifi-
cant patient risk stratification for OS. A nomogram combining
Radiomics-T2FS and the AJCC clinical staging system achieved the best
prognostic performance with significant patient stratification and a
larger clinical net benefit than AJCC staging system alone. Radiomic
models directly trained for the prediction of OS showed only moderate
perfortmances.

Previous analyses demonstrated a correlation of qualitative MRI fea-
tures such as peritumoral contrast enhancement with tumor grading
[30]. In a recent small retrospective study encompassing 19 patients,
diffusionweightMRI-based radiomics featureswere used to distinguish
G2 andG3 STS [31]. A further studyused T2FS sequence based radiomics
to discriminate low-grade from high-grade STS in a small pilot study of
35 patients [32]. Although patient numbers were substantially low and
playing patient stratification by the Clinical-Volume-combined model (a,f), tumor grading
el (d,i) and the Radiomics-combined model (e,j) on the training (a,e) and validation (f,j)
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Fig. 4. A clinical radiomics nomogram. A multivariate nomogram combining the Radiomics-T2FS prediction model with the AJCC clinical staging system is illustrated (a). The receiver
operator characteristic (ROC) curve and the representative area under the curve (AUC), as well as the calibration curve, each at two years, are shown (b,c). The Kaplan Meier survival
curve for patients' overall survival displaying patient stratification by the proposed nomogram is depicted (d). Finally, decision durve analysis was performed comparing the net
benefit by the Radiomics-T2FS nomogram with the AJCC clinical stage and tumor grading alone. The net benefit is calculated by subtracting the proportion of false-positive patients
from the proportion of true-positive patients, weighted by the relative harm of a false-negative and false-positive result [28]. The threshold probability was calculated for death after
five years. For reference, the two strategies “treat all” and “treat none” are displayed. A decision model shows a clinical benefit if the respective curve shows larger net benefit values
than both reference strategies.
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no external validation cohorts were used, the studies demonstrated the
principal potential to correlate quantitative radiomic features to tumor
grading. A further study could demonstrate the differentiation of G2
and G3 STS using computer tomography-based radiomics albeit with a
low predictive performance with an AUC of 0.65 [18]. Although
radiomics features seem to provide information regarding the differen-
tiation of G2 or G3 STS, there is currently no clinical benefit for such a
differentiation. Therefore, we focused on the clinically relevant differen-
tiation of high-grade from low-grade STS.

An imaging-based prognostic classifier as developed in this study
could be applied clinically in multiple scenarios. First, in the rare case
that a biopsy is clinically difficult to perform due to the anatomical loca-
tion, the radiomic classifier could be used instead to identify high-grade
tumors as a basis for therapy decisions. Further practical applications
may involve tumors that exhibit inhomogeneous areas that are difficult
to access or have different access routes in CT-targeted or open biopsies.
Secondly, if the pathological work-up does not yield a clear result the
proposedmodelsmay be used as an additional biomarker. Thirdly, in ra-
diotherapy planning the spatial distribution of relevant radiomics fea-
tures could be used as a basis for dose painting following the
radiomics target volume concept [9,33]. For instance, radiation dose
could be escalated in high-grade subvolumes. Finally, as proposed in
this study theMRI radiomic gradingmodel may be combined with clin-
ical staging providing complementary information and improving prog-
nostic stratification.

In the current study we restricted the volumes of interest to the
gross tumor volume excluding surrounding edematous changes in
both sequences. By this, we hoped to ensure a better comparability
of T2FS and T1FSGd based models. Secondly, inclusion of edematous
changes may produce less reproducible segmentations and
radiomic feature values could be influenced by the kind of the sur-
rounding tissue. On the contrary, by using this approach we may
have missed additional information such as measures for tissue
infiltration.
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Further on, we analyzed the helpfulness of radiomic models for
prognostic assessment. Radiomic models directly trained to predict OS
only showed moderate predictive performances. The Radiomics-
T1FSGd grading model showed the propensity of significant patient
risk stratification in the validation set in contrast to the models with
the highest performance in predicting tumor grade (Radiomics-T2FS
and Radiomics-combined). On the contrary, Radiomics-T1FSGd showed
less improvement in prognostic performance in combination with the
AJCC staging system than Radiomics-T2FS and Radiomics-combined. Con-
sidering that the T1FSGd-based model trained directly for OS showed
worse predictive capacity than T2FS-basedmodels contradicts the supe-
rior patient stratification of the Radiomics-T1FSGd grading model ob-
served in this study.

Our models achieved accuracies for the detection of high-grade STS
of 0.78 (Radiomics-T1FSGd and Radiomics-T2FS) to 0.83 (Radiomics-com-
bined) with good positive predictive values (PPV) (0.86–0.88) on the
expanse of negative predictive values (NPV). Thus, classifications of
high-grade STS (“positive prediction”) provided a more reliable results
than the prediction of a low-grade STS. The number of false negative re-
sults (i.e. high-grade STS that were classified as low-grade STS) im-
paired the prognostic validation. The large observed difference
between PPV and NPV, as well as the suboptimal patient stratification
may be in part explained by the large prevalence of high-grade sarco-
mas in the validation set (81% of patients). Tumor grading itself
achieved significant patient stratification in this skewed validation set
only by a closemargin (p= .045)making a significant patient stratifica-
tion for surrogate markers, such as the proposed radiomic models, even
more difficult. A future external TRIPOD type 4 validation with a more
balanced patient data optimally reflecting the true tumor grading distri-
butionmayhelp to assess the impact of the proposedmodels in terms of
classification and prognostic stratification [34].

There are several limitations to this work. In the current study, one
could observe a drop in performance for the T1FSGd-based grading
models. We applied nested cross validation for an optimally unbiased
performance evaluation on the training set while trying to reduce
overfitting. Still, reproducibility remains suboptimal with absolute dif-
ferences in AUC of 0.09 and 0.08 for Radiomics-T1FSGd and Radiomics-
combined between training and validation sets, respectively. There are
potential explanations for this phenomenon. First, there was a large
technical heterogeneity inside and between the two cohorts. In total,
20MRI scanner types produced by fourmanufacturerswere used across
the two cohorts. Thirteen scanner types in the validation set were not
present in the training set. The improved testing performance after
performing batch correction with an absolute increase in AUC of up to
0.08 may be a sign of the important role of such batch-dependent ef-
fects. In contrast, Radiomics-T2FS showed good reproducibility even
without batch correction. Secondly, STSs constitute one of themost het-
erogeneousmalignant entities with over 100 histological subtypes [35].
In our study, a direct comparison of histological subtypes revealed a sig-
nificant difference between training and testing cohort. Given the pro-
pensity of radiomics to predict tumor grading and molecular
aberrations, the histological subtype may have a substantial influence
on the radiomics phenotype. In particular, the amount of contrast en-
hancement of specific histologies may be an interfering factor, which
may also explain that the T2FS-based model without contrast agent
showed better reproducibility. In particular, the large proportion of
liposarcomas in the training set (39%) may be an explanatory cause. In-
cluding histology as biological covariate into ComBat harmonization
was not able to improve reproducibility. One solution to these problems
may be a future prospective trial which would need to be sufficiently
large to achieve a representative distribution of all histological subtypes.
If future cohort sizes would achieve a critical number, even better per-
formancesmay be possible by restrictingmodel building to single histo-
logical subtypes.

To conclude, we developedMRI-based radiomic gradingmodels dif-
ferentiating high-grade from low-grade STS. External validation
confirmed classification performance. A radiomic classifier using T2FS
sequences appeared to be superior to a T1FSGd-basedmodel predicting
tumor grading. Integrating the Radiomics-T2FS model with the AJCC
clincal staging system improved prognostic assessment and the clinical
net benefit.
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