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1 Introduction

The Standard Model (SM), though remarkably successful, gives no understanding of either

the origin of the three generations of quarks and leptons or their curious pattern of masses

and mixings. In particular the observed very light neutrino masses and approximate tribi-

maximal lepton mixing requires new physics beyond the SM. To address some of these

questions, it has been suggested that the three generations of quarks and leptons may be

unified into a triplet of an SU(3)fl gauged flavour symmetry. The three generations are

then analogous to the three colours of quarks in QCD. However, unlike QCD, the SU(3)fl

gauged flavour symmetry must be broken spontaneously in such a way as to result in the

observed quark and lepton masses and mixings [1–5].

In order to spontaneously break the SU(3)fl gauged flavour symmetry, one introduces

additional Higgs-like scalars, usually referred to as flavons. Such flavons must have certain

vacuum alignments in SU(3)fl flavour space in order to account for the observed quark

and lepton masses and mixings. Unfortunately, the sectors introduced in order to achieve

such vacuum alignments are typically rather ad hoc. However, there is a top-down method

for achieving flavon vacuum alignments coming from string theory formulated in extra

dimensions. For example, E8×E8 heterotic string theory in 10d can accommodate a larger

gauge symmetry than the SM which in principle could also include a flavon sector whose

vacuum alignments may be understood from a more robust theoretical point of view.

The approach to flavons suggested above is somewhat analogous to extra-

dimensional grand unified theories (GUTs) compactified on orbifolds, often called “orbifold

GUTs” [6–15]. They are typically based on S1/Z2 or T2/(Z2×Z2) orbifolds, where Higgs

doublet-triplet splitting may be achieved within the framework of extra dimensions [8].

Exactly the same approach can be applied to understanding flavon vacuum alignments.

Indeed, a discrete subgroup of the SU(3)fl gauged flavour symmetry may result from the

compactification of a 6d theory down to 4d [13, 16–21]. The connection of such field the-

ory orbifold GUTs to string orbifolds [22, 23], especially the stringy origin of non-Abelian

discrete flavour symmetries, has been discussed in ref. [24] (see also ref. [25]) and extended

to the full string picture in refs. [26, 27].

A recent example of the above approach to flavons in extra dimensions was discussed

in ref. [28]. There it was suggested that a SU(3)fl gauged flavour symmetry in 6d, when

compactified on a torus with the orbifold T2/(Z2 × Z2) and supplemented by a Z6 × Z3

discrete symmetry, together with orbifold boundary conditions, may generate all the desired

SU(3)fl breaking vacuum expectation values (VEVs). The analysis considered the (0, 1,−1)

and (1, 3,−1) vacuum alignments (CSD3) in SU(3)fl flavour space of the Littlest Seesaw

model [29, 30] suitable for atmospheric and solar neutrino mixing. Although this idea of

using orbifold boundary conditions to dial the desired vacuum alignments of flavons is very

attractive, it is non-trivial to ensure that such boundary conditions are consistent with the

constraints arising from string theory. These constraints were ignored in [28], loosening

the connection of that model with string theory.

In this paper we systematically develop the formalism necessary for ensuring that

boundary conditions of flavon fields in extra dimensions are consistent with heterotic string

– 2 –
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Orbifold Flavon alignment GUT breaking SM matter localization Section

T2/Z2 7 4 4 3

T6/(Z2 × Z2) 7 4 7 4

T6/S4 4 4 7 5

T6/∆(54) 4 4 4 6

Table 1. Orbifolds studied in this paper. We demand three necessary conditions to build a realistic

and predictive model: a non-trivial flavon alignment, the possibility of orbifold GUT breaking and

appropriate localizations for SM matter. Only T6/∆(54) fulfils all of them.

theory. Having developed a set of consistency conditions on the boundary conditions, we

explore a series of examples which satisfy them plus the further phenomenological require-

ments of yielding non-trivial flavon vacuum alignments and of having the SM fermions

located on orbifold fixed points, so that their massless modes may include complete mul-

tiplets under the gauged flavour symmetry. It turns out to be non-trivial to satisfy all

of these conditions (theoretical and phenomenological) together. For instance, the simple

T2/Z2 orbifold, while allowing SM fermion matter localisation on fixed points, does not

permit non-trivial flavon vacuum alignments, consistently with the formal requirements of

the boundary conditions. This motivates us to go to 10d models. However, the simple

orbifold T6/(Z2 × Z2) fares no better than the previous case. We find that the boundary

conditions must exhibit some non-Abelian structure so that we can have non-trivial VEV

alignments. Hence, we are led to consider 10d non-Abelian orbifolds [31–33], where the

torus is modded out, for example, by S4 or ∆(54). The latter case is an example where we

can locate the SM fermions on fixed points in extra dimensions. Since the ∆(54) orbifold

is not so well studied in the literature, we develop this case in some detail, and eventually

show that we can choose the extra dimensions in a way that we can build a complete, con-

sistent, predictive and realistic model which is in principle compatible with string theory.

The resulting model is capable of achieving the flavon vacuum alignments consistent with

tri-bimaximal lepton mixing [34], which may be corrected to yield tribimaximal-reactor

lepton mixing [35], which we show to be consistent with the latest neutrino data.

The layout of the paper is summarised in table 1 which not only summarises the

foregoing situation but also gives the organisation of the main body of this paper in terms

of the section numbers 3, 4, 5, and 6 shown. These sections are bracketed by the extra

dimensional heterotic string friendly formalism in section 2 and a realistic model based on

the ∆(54) orbifold in section 7. Section 8 concludes the paper.

2 Field theory orbifolds

2.1 Constraints on the gauge embedding

Let us consider a field theory with D extra dimensions z compactified on an orbifold

O = RD/S with space group S, see appendix A for details. The geometric orbifold action

z 7→ θ z + λ of a space group element h = (θ, λ) ∈ S (where θ ∈ P and the so-called point

– 3 –
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group P is a finite subgroup of SO(D)) is embedded into an action on a general field Φ(x, z)

of the theory as

Φ(x, z)
h7−→ Rh Φ(x, h−1z) , (2.1)

where for each h ∈ S there is an element Rh of the symmetry group G of the theory. In

general, the symmetry group G contains the internal part of the higher-dimensional Lorentz

symmetry. For example, if Φ(x, z) is a four-dimensional scalar equipped with an internal

vector-index we get Φ(x, z) 7→ θΦ(x, θ−1z) for h = (θ, 0). In addition, G can contain a

higher-dimensional gauged flavour symmetry such that Rh is given by a constant gauge

transformation, see for example ref. [12]. We call Rh the (gauge) embedding of h and denote

the associated discrete group by RS := {Rh |h ∈ S}. One can apply two transformations

g and h on a field Φ(x, z), either combined or one transformation after the other, i.e.

Φ(x, z)
g h7−→ Rg h Φ(x, (g h)−1z) , (2.2a)

Φ(x, z)
h7−→ Rh Φ(x, h−1z)

g7−→ Rg Rh Φ(x, h−1g−1z) . (2.2b)

In both cases one has to obtain the same result. Hence, the consistency condition

Rg h = Rg Rh (2.3)

follows. Mathematically, this condition says that R has to be a group homomorphism

from the space group S into the (gauge) group G. It is easy to obtain some immediate

consequences of eq. (2.3), e.g.

R(1,0) = 1, Rg−1 = (Rg)
−1 , Rg h g−1 = Rg Rh (Rg)

−1 , (2.4)

for g, h ∈ S, and

Rei Rej = Rej Rei , Rθei = R(θ,λ)Rei
(
R(θ,λ)

)−1
,
(
R(θ,λ)

)N
= 1 , (2.5)

for a space group element (θ, λ) ∈ S of order N , i.e. (θ, λ)N = (1, 0), i, j ∈ {1, . . . , D}, and

we have defined the embedding of a pure translation as Rei = R(1,ei), see also section 2 of

ref. [36]. Hence, the choices for the embedding R are strongly constrained as we will also

see in more detail in the examples of the next sections.

2.2 Standard embedding

There exists a simple solution to the group homomorphism condition (2.3): the so-called

standard embedding. In this case, (ignoring for a moment the higher-dimensional Lorentz

symmetry for simplicity) one chooses a gauge group G such that the point group P is a

discrete subgroup of it. Furthermore, for supersymmetric orbifolds in D = 6 dimensions

we have P ⊂ SU(3) such that there exists a globally defined constant spinor on the orbifold

O [22, 23]. Hence, in complex coordinates each point group element θ ∈ P is given by a

3× 3 unitary matrix (with det(θ) = 1) and the choice

Rh = θ for h = (θ, λ) ∈ S , (2.6)

– 4 –
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trivially satisfies the group homomorphism condition (2.3) for G = SU(3)fl. This SU(3)

gauge symmetry can naturally be identified with a flavour symmetry, hence the subscript

“fl”. In other words, the geometrical element h = (θ, λ) that acts on the (complex) extra-

dimensional coordinates z ∈ C3 as z 7→ θ z + λ is accompanied by an identical gauge

transformation Rh = θ in SU(3)fl flavour space, in detail, Φ 7→ θΦ if Φ is a triplet of

SU(3)fl. Note that eq. (2.6) implies for instance that Rei = 1 for i ∈ {1, . . . , 6}, i.e. there

are no Wilson lines along the torus-directions [12] in the case of standard embedding, and

the discrete gauge embedding group is isomorphic to the point group, RS ∼= P .

As a final remark, in addition to the condition (2.3) on the (gauge) embedding, string

theory orbifolds are constrained by world-sheet modular invariance of the one-loop string

partition function [23]. However, modular invariance is automatically satisfied in the case of

standard embedding. Thus, the standard embedding RS ∼= P in our field theory discussion

fulfils all necessary conditions for a full string completion.

2.3 Orbifold boundary conditions

Next, we discuss the various origins of fields Φ(x, z) on an orbifold O and the conditions to

make these fields well-defined within the orbifold construction. This discussion is crucial

in order to understand the orbifold-alignment of flavon VEVs in flavour space.

For each space group element g ∈ S that has a non-trivial fixed point set

Fg = {z ∈ RD | g z = z} 6= ∅ (2.7)

one can define a field Φg(x, z) that is localized on Fg, i.e.

Φg(x, z) = 0 if z 6∈ Fg . (2.8)

This localized field Φg(x, z) transforms in some representation of G. For example, for a

flavour symmetry G = SU(3)fl we will mostly assume that Φg(x, z) is either a singlet or a

triplet of SU(3)fl.

In the language of string theory, a field Φg(x, z) with g 6= 1 corresponds to a so-called

twisted string localized at the fixed point set Fg of the so-called constructing element g ∈ S.

In contrast, a field Φg(x, z) with g = 1 has a trivial fixed point set Fg = RD and, hence,

lives in the full bulk O of the extra dimensions.

Importantly, a field Φg(x, z) from eq. (2.8) is in general not yet invariant under the

orbifold action eq. (2.1), i.e. it transforms as

Φg(x, z)
h7−→ Rh Φg(x, h

−1z) , (2.9)

for h ∈ S. Let us analyze eq. (2.9) in more detail. While the field Φg(x, z) on the left-

hand side is localized at z ∈ Fg, the field Φg(x, h
−1z) on the right-hand side is localized at

h−1z ∈ Fg which is equivalent to z ∈ Fh g h−1 . However, the only field localized on the fixed

point set Fh g h−1 is Φh g h−1(x, z). Consequently, the fields Φg(x, h
−1z) and Φh g h−1(x, z)

have to be related,

Φg(x, h
−1z) ∼ Φh g h−1(x, z) . (2.10)

– 5 –
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By definition, the space group element h g h−1 belongs to the conjugacy class [g]. Thus,

fields from the same conjugacy class have to be identical up to some proportionality factors,

i.e. up to a symmetry transformation from G.

A special case appears if h g h−1 = g for h 6= g, i.e. in the case when g and h com-

mute. Hence, we define the set of commuting elements (the so-called centralizer Cg) of the

constructing element g as

Cg := {h ∈ S | g h = h g} ⊂ S . (2.11)

Now, we have to distinguish between two cases, depending on whether g and h commute

or not: the case h 6∈ Cg is not of great importance to us and is therefore relegated to

appendix A.1. On the other hand, if h ∈ Cg we get Φh g h−1(x, z) = Φg(x, z). Then,

eqs. (2.9) and (2.10) yield a non-trivial boundary condition

Φg(x, z)
h7−→ Rh Φg(x, h

−1z) = Φg(x, z) for h ∈ Cg and h 6= g . (2.12)

Since z and h−1z are identified on the orbifold O, this boundary condition ensures that the

field Φg evaluated at identified points has a unique value up to a symmetry transformation

with Rh ∈ G. The orbifold boundary condition using the constructing element h = g ∈ Cg
itself is special, since

Φg(x, g
−1z) = Φg(x, z) = 0 if z 6∈ Fg , (2.13a)

Φg(x, g
−1z) = Φg(x, z) if z ∈ Fg . (2.13b)

Hence, Φg(x, g
−1z) = Φg(x, z) for all z ∈ RD and the transformation (2.9) reads

Φg(x, z)
g7−→ Rg Φg(x, g

−1z) = Rg Φg(x, z) , (2.14)

while the relation (2.10) becomes trivial for h = g. In more detail, for h = g we get

Φg(x, h
−1z) = Φg(x, z) on the left-hand side and Φh g h−1(x, z) = Φg(x, z) on the right-hand

side of eq. (2.10). From the string construction, we know that a string with constructing

element g ∈ S survives the orbifold projection at least under the action of g ∈ Cg, see

for example appendix A.5 in ref. [37]. Hence, eq. (2.14) imposes the boundary condition

Rg Φg(x, z) = Φg(x, z) on the localized field Φg(x, z).

In summary, in order to build an orbifold-invariant field Φg(x, z) that is localized on

the fixed point set Fg we have to impose a non-trivial boundary condition (2.12) for each

space group element h ∈ Cg that commutes with the constructing element g ∈ S of the

localized field Φg(x, z).

Let us briefly discuss the trivial example with constructing element g = 1 ∈ S. In this

case, the fixed point set is given by F1 = RD and the field Φ1(x, z) lives in the full bulk O

of the extra dimensions. Furthermore, the centralizer C1 equals the full space group, i.e.

C1 = S, and we have to impose boundary conditions (2.12) for all elements h ∈ S, i.e. for

all generators of S.

– 6 –
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2.4 VEV alignment from orbifold boundary conditions

Our main focus is to interpret G as a gauged flavour group in extra dimensions and the field

Φg(x, z) as a flavon. Therefore, we separate the higher-dimensional Lorentz symmetry from

G and consider G as a pure gauge symmetry. Then, orbifold boundary conditions (2.12)

break the flavour symmetry G and simultaneously align the vacuum expectation values of

the flavons, as we discuss next.

Consider a field Φg(x, z) localized at z ∈ Fg with constructing element g ∈ S. We take

an element h = (θh, λh) ∈ Cg, where the order of θh is denoted by Nh, i.e. (θh)Nh = 1. After

choosing `h ∈ {0, . . . , Nh−1}, the field Φg(x, z) has to satisfy the boundary condition (2.12),

Φg(x, z)
h7−→ exp

(
2πi `h
Nh

)
Rh Φg(x, h

−1z) = Φg(x, z) . (2.15)

The `h-dependent phase originates from diagonalizing the higher-dimensional Lorentz

transformation, which is possible for all h ∈ Cg simultaneously if the centralizer Cg is

Abelian.

We denote the four-dimensional zero mode of the field Φg(x, z) by Φg(x). Then, the

orbifold boundary condition (2.15) evaluated at the vacuum expectation value of the zero

mode 〈Φg〉 reads

〈Φg〉
h7−→ exp

(
2πi `h
Nh

)
Rh 〈Φg〉 = 〈Φg〉 , (2.16)

for all elements h ∈ Cg from the centralizer of the constructing element g. This condition

can align the VEV of a localized field to a specific direction in flavour space. In other

words, the VEV of a flavon located in Fg must be an eigenvector of the matrices Rh with

an `h-dependent phase as eigenvalue. However, the magnitude of the VEV cannot be

constrained by orbifold boundary conditions.

For example, take an SU(3)fl flavour group and a triplet flavon Φg with constructing

element g ∈ S and assume that the centralizer contains an element h ∈ Cg with h3 = 1

such that (Rh)3 = 1. By choosing a special embedding Rh ∈ SU(3)fl and `h = 0, the flavon

VEV 〈Φg〉 is aligned according to

Rh =

0 1 0

0 0 1

1 0 0

 ⇒ 〈Φg〉 ∝

1

1

1

 . (2.17)

However, one can always choose a basis in flavour space such that a given embedding

matrix Rh becomes diagonal and the VEV aligns, for example, into the first component of

〈Φg〉. To avoid this rather trivial situation, one has to ensure that the discrete embedding

group RS ⊂ G is non-Abelian such that one cannot diagonalize all elements simultaneously.

This is the key observation towards successful flavon alignment.
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e2

e1(ϑ, 0) (ϑ, e1)

(ϑ, e1 + e2)(ϑ, e2)

(a) T2/Z2 orbifold.

e1(ϑ, 0) (ϑ, e1)

(ϑ, e2) (ϑ, e1 + e2)e2

(b) T2/Z2 orbifold projected onto e1.

Figure 1. (a) The two-torus T2 is spanned by the vectors e1 and e2 and its fundamental domain is

highlighted in yellow. The Z2 orbifold action ϑ maps z 7→ − z resulting in four fixed points labeled

by their constructing elements. (b) The same orbifold projected onto one dimension given by the

e1 direction (as a preparation for six-dimensional orbifolds projected onto three dimensions, see e.g.

figure 2).

3 Flavour from a T2/Z2 orbifold

Let us begin with an easy example with D = 2 extra dimensions, parametrized in complex

coordinates by z ∈ C. We choose a general two-torus T2 spanned by two vectors e1 and

e2. Then, z is compactified on a T2/Z2 orbifold, i.e. with point group P ∼= Z2, where the

Z2 orbifold action ϑ is generated by z 7→ −z. This orbifold has four inequivalent fixed

points Fg,

Fg ∈
{{

0
}
,
{e1

2

}
,
{e2

2

}
,
{e1 + e2

2

}}
, (3.1)

corresponding to the constructing elements g,

g ∈ {(ϑ, 0) , (ϑ, e1) , (ϑ, e2) , (ϑ, e1 + e2)} , (3.2)

respectively, see figure 1.

To define a field theory on this Z2 orbifold, we have to choose a (gauge) embedding

Rϑ, Re1 , and Re2 , for each generator of the Z2 space group S, i.e. for each (ϑ, 0), (1, e1),

and (1, e2) ∈ S. We have to ensure that this embedding satisfies the following conditions,

obtained from eq. (2.3),

(Rϑ)2 = 1 , Re1 Re2 = Re2 Re1 and RϑRei Rϑ = (Rei)
−1 , (3.3)

where i ∈ {1, 2}, see also eqs. (2.4) and (2.5).
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3.1 Example of a trivial VEV alignment

A trivial solution to eq. (3.3) is given by the choice of a gauged flavour symmetry G = U(2)

and

Rϑ =

(
1 0

0 −1

)
and Rei = 1 . (3.4)

In this case, the embedding group RS ∼= Z2 is Abelian and, consequently, VEVs can only

be aligned trivially in flavour space. In detail, take a doublet flavon Φg(x, z) from the bulk

(i.e. with trivial constructing element g = (1, 0) ∈ S and centralizer Cg = S). Then, its

VEV can only be aligned according to

〈Φg,+〉 ∝

(
1

0

)
or 〈Φg,−〉 ∝

(
0

1

)
, (3.5)

originating from the boundary conditions

Rϑ 〈Φg,±〉 = ±〈Φg,±〉 and Rei 〈Φg,±〉 = 〈Φg,±〉 , (3.6)

where the extra ± sign in the ϑ-boundary condition is motivated from the transformation

properties of Φg(x, z) under higher-dimensional Lorentz symmetry, see section 2.4.

In order to avoid this trivial VEV alignment eq. (3.5) in the case of this Z2 orbifold,

we have to choose non-trivial Wilson lines Rei 6= 1 for some i ∈ {1, 2}. However, choosing

Rei 6= 1 with (Rei)
2 = 1 in eq. (3.3) would also result in an Abelian embedding group1

and, consequently, would yield a trivial VEV alignment.

3.2 Example of a non-trivial VEV alignment

Let us give a non-trivial example of matrices Rϑ, Re1 and Re2 for a gauged flavour symmetry

G = U(3), where (Rei)
2 6= 1 for some translations ei.

Since (ϑ)2 = 1 the gauge embedding R has to satisfy (Rϑ)2 = 1. We might choose

Rϑ = T13 where T13 =

 0 0 −1

0 1 0

−1 0 0

 and (T13)2 = 1 . (3.7)

Furthermore, we have to satisfy condition (3.3), i.e. (RϑRei)
2 = 1 for i ∈ {1, 2}. To do so,

we are left with the freedom to choose Rei for i ∈ {1, 2} subject to the previous condition.

One can check that a solution is given by

Re1 = SU T13 and Re2 = T13 SU = (Re1)−1 , (3.8)

using the matrices

S =
1

3

−1 2 2

2 −1 2

2 2 −1

 and U =

1 0 0

0 0 1

0 1 0

 , (3.9)

1This choice corresponds to the Abelianization RS ∼= S/[S, S] of the space group S, see e.g. [38–40].
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where (SU)2 = 1. These matrices are chosen since they are part of a specific representation

of the discrete group S4, which is known for generating predictive flavour structures [28, 41].

Importantly, for this choice the discrete gauge embedding group RS is non-Abelian

and, furthermore, the matrices Rei have infinite order, i.e. for all Ni ∈ N we have

(Rei)
Ni 6= 1 . (3.10)

Hence, RS is not a finite group, see ref. [42] and, furthermore, ref. [14] for a discussion on

rank reduction in the case when the discrete gauge embedding group RS is non-Abelian.

Now, consider a triplet flavon Φg(x, z) with constructing element g = (1, 0) ∈ S. It is

localized in the bulk O of the extra-dimensional space. Then, the corresponding centralizer

Cg can be generated by

Cg = 〈(ϑ, 0) , (1, e1) , (1, e2)〉 for g = (1, 0) . (3.11)

The flavon is subject to boundary conditions (2.16) which result in the following non-trivial

conditions on the VEV (choosing `h = 0 for h = (ϑ, 0))

Rϑ 〈Φg〉 = 〈Φg〉 , Re1 〈Φg〉 = 〈Φg〉 , Re2 〈Φg〉 = 〈Φg〉 . (3.12)

The solution is given by a fixed VEV alignment

〈Φg〉 ∝

 1

3

−1

 , (3.13)

where the magnitude of the VEV cannot be determined by orbifold boundary conditions.

We can try to locate another flavon Φ̃g in the bulk with a different Z2 phase, explicitly

Rϑ 〈Φ̃g〉 = −〈Φ̃g〉, to obtain a different flavon alignment. However, it turns out that 〈Φ̃g〉 =

0. In other words, Φ̃g is projected out by the orbifold action in this case.

We have achieved the flavon alignment (3.13), which is necessary for the CSD3

setup [29]. This is highly predictive for the lepton sector and usually complicated to obtain

through a vacuum alignment superpotential [21, 29, 43–46]. However, it is not enough by

itself. We have shown that there are no other alignments we can obtain through boundary

conditions in this setting. Consequently, after a brief discussion on GUT breaking and the

localization of SM matter in the following, we will go to higher-dimensional orbifolds with

larger point groups to align various flavons simultaneously.

3.3 GUT breaking

We assume that the extra-dimensional theory before orbifolding contains a GUT gauge

symmetry in addition to the gauged flavour symmetry G, where we will choose G = SU(3)fl

or U(3)fl as our prime examples. Then, the full gauge symmetry in extra dimensions is

given by

SU(5)GUT × G or SO(10)GUT × G . (3.14)

Both, the GUT group and the flavour group, have to be broken by orbifold boundary

conditions, determined by the gauge embedding R. In this specific T2/Z2 orbifold the
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GUT-breaking boundary conditions can be chosen to correspond to any of the translations

Rei , while the flavor symmetry can be broken by the gauge embedding Rϑ of the orbifold

twist ϑ.

If the symmetry is SU(5)GUT the GUT-breaking boundary condition can be chosen as

PSU(5) = diag(1, 1, 1,−1,−1)⊗ 1flavour , (3.15)

which breaks SU(5)GUT → SU(3)C × SU(2)L × U(1)Y . Since PSU(5) does not act on the

flavour symmetry G, it commutes with all flavour breaking conditions and, hence, is con-

sistent with eqs. (3.3) (using for example Re1 = PSU(5) and (PSU(5))
2 = 1).

In the case of an SO(10)GUT symmetry, SO(10) can be broken by two independent Z2

boundary conditions [13]

PGG = diag(1, 1, 1, 1, 1)⊗σ2⊗1flavour , PPS = diag(1, 1, 1,−1,−1)⊗σ0⊗1flavour , (3.16)

where σi are the Pauli matrices. Each condition separately breaks SO(10)GUT according to

PGG : SO(10)GUT → SU(5)×U(1), PPS : SO(10)GUT → SU(4)×SU(2)×SU(2), (3.17)

while together they break SO(10)GUT → SU(3)C × SU(2)L × U(1)Y × U(1), see e.g. [18].

The two boundary conditions PGG and PPS commute with each other, as well as with any

flavour-breaking condition. Thus, we can choose each one to be one of the Rei consistently.

3.4 SM fermion localization

The SM matter fields, as any other field in this T2/Z2 orbifold, must be located somewhere

in extra dimensions: i) either on a fixed point set Fg for g 6= 1, being points in compactified

dimensions, see eq. (3.1), or ii) in the two-dimensional bulk O. In principle, localized fields

feel boundary conditions (2.16) with respect to their centralizers Cg. Consequently, some

zero modes of SM matter fields can be projected out by the orbifold — depending on the

respective centralizers Cg.

First, consider a localized field Φg with constructing element g from eq. (3.2). In this

case, the centralizer Cg = {1, g} is trivial as discussed in section 2.3. Consequently, a

localized field Φg in the T2/Z2 orbifold is not subject to orbifold boundary conditions and

the four-dimensional zero mode Φg(x) is not projected out. Therefore, SM matter fermions

from localized fields appear in complete GUT multiplets. This is the field-theoretical

analogue to string-theoretical local GUTs with complete SM generations [47–49].

In contrast, a bulk field is subject to non-trivial orbifold boundary conditions, especially

to those that induce GUT breaking. Let us discuss the consequences of SM matter in the

bulk for SU(5)GUT and SO(10)GUT in the following:

In the SU(5)GUT, a complete SM generation is given by the representations 5̄ + 10 + 1

of SU(5)GUT. What happens if we assume that these matter fields live in the bulk of

the orbifold? In this case, the singlet (of the right-handed neutrino) is not affected by

the GUT-breaking boundary condition PSU(5). For the other SU(5)GUT representations

each matter field can be a positive or negative eigenstate of PSU(5), which determines the
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respective zero modes. For example, let us denote the 5̄ of SU(5) as F = (dc, `). Then,

eq. (2.16) yields

F
PSU(5)7−→ PSU(5) F = +F ⇒ F ≡ 5̄+ → dc or (3.18a)

F
PSU(5)7−→ PSU(5) F = −F ⇒ F ≡ 5̄− → ` , (3.18b)

while the 10 of SU(5)GUT (being an anti-symmetric 5 × 5 matrix T ) is subject to the

boundary conditions T 7→ PSU(5) T PSU(5) = ±T . In total, we get

5̄+ → dc, 5̄− → `, 10+ → uc + ec, 10− → q, 1+ → n . (3.19)

To have the full SM matter content after compactification, we have to have each eigen-

state. Consequently, the number of SM matter bulk fields before compactification must be

duplicated.

In the SO(10)GUT, a complete SM generation fits into the 16 of SO(10)GUT. Depending

on the eigenstate of each boundary condition PGG and PPS we obtain the zero modes

16++ → dc + n, 16+− → `, 16−+ → q, 16−− → uc + ec . (3.20)

Hence, if the SM matter is supposed to originate from the extra-dimensional bulk we need

four copies of 16-plets in the orbifold bulk for a single generation of SM quarks and leptons.

Note that split GUT multiplets can be beneficial to explain the different masses for charged

leptons and down quarks.

Beside GUT-breaking boundary conditions, SM matter fields will in general be subject

to the boundary conditions of the flavour group SU(3)fl. Obviously, SU(3)fl singlets are

not affected by the flavour-breaking boundary conditions. However, in order to get non-

trivial predictions from the SU(3)fl flavour group, we assume that some SM matter fields

transform as SU(3)fl triplets corresponding to the number of three generations. Then, in

order to keep the structure in the fermion mass matrices dictated by the flavour symmetry,

these flavour-triplets must be kept as triplets after compactification. Therefore, the SU(3)fl

matter triplets must be localized at zero-dimensional fixed points in the extra dimensions

of the orbifold with trivial centralizers such that they are not subject to flavour-breaking

boundary conditions.

4 Flavour from a T6/Z2 × Z2 orbifold

Next, we consider a ten-dimensional theory with N = 1 supersymmetry compactified

on a T6/Z2 × Z2 orbifold [47, 50] to four-dimensional space-time. In this case, the six-

dimensional torus T6 can be chosen to be factorized T6 = T2×T2×T2, where each two-torus

T2 is specified by two vectors

e2a−1 and e2a for a ∈ {1, 2, 3} . (4.1)

Then, the point group P ∼= Z2 ×Z2 is generated by

z 7→ ϑ z and z 7→ ω z , (4.2)
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where z = (z1, z2, z3) ∈ C3 denotes the complex coordinates on the three two-tori and ϑ

and ω are given by

ϑ =

1 0 0

0 −1 0

0 0 −1

 and ω =

−1 0 0

0 1 0

0 0 −1

 . (4.3)

Since ϑ, ω ∈ SU(3), four-dimensional N = 1 supersymmetry can be preserved in this

orbifold.

This orbifold has 16 + 16 + 16 = 48 inequivalent fixed point sets Fg corresponding to

the constructing elements g being(
ϑ,
∑
a=2,3

(n2a−1e2a−1 + n2ae2a)

)
where n3, n4, n5, n6 ∈ {0, 1} , (4.4a)(

ω,
∑
a=1,3

(n2a−1e2a−1 + n2ae2a)

)
where n1, n2, n5, n6 ∈ {0, 1} , (4.4b)(

ϑω,
∑
a=1,2

(n2a−1e2a−1 + n2ae2a)

)
where n1, n2, n3, n4 ∈ {0, 1} . (4.4c)

Note that each fixed point set Fg is two-dimensional, e.g.

Fg = {(z1, 0, 0) | z1 ∈ C} for g = (ϑ, 0) , (4.5a)

Fg = {(0, z2, 0) | z2 ∈ C} for g = (ω, 0) , (4.5b)

Fg = {(0, 0, z3) | z3 ∈ C} for g = (ϑω, 0) , (4.5c)

see figure 2 for a three-dimensional illustration.

To define a field theory on this T6/Z2 × Z2 orbifold, we have to choose a (gauge)

embedding Rϑ, Rω, and Rei for each generator of the space group S, i.e. for each (ϑ, 0),

(ω, 0), and (1, ei) for i ∈ {1, . . . , 6}. We have to ensure that this embedding satisfies the

following conditions, obtained from eq. (2.3),

(Rϑ)2 = 1 , (Rω)2 = 1 , RϑRω = Rω Rϑ , (4.6)

and

Rei Rej = Rej Rei for i, j ∈ {1, . . . , 6} , (4.7a)

RϑRei Rϑ = (Rei)
−1 for i ∈ {3, 4, 5, 6} , (4.7b)

RϑRei Rϑ = Rei , for i ∈ {1, 2} , (4.7c)

Rω Rei Rω = (Rei)
−1 for i ∈ {1, 2, 5, 6} , (4.7d)

Rω Rei Rω = Rei , for i ∈ {3, 4} , (4.7e)

see also eqs. (2.4) and (2.5). Then, using the homomorphism property (2.3) a general

element of the space group g ∈ S has a (gauge) embedding Rg given by

g =

(
ϑkω`,

6∑
i=1

niei

)
⇔ Rg =

3∏
i=6

(Rei)
ni (Rϑ)k (Rω)` , (4.8)

for k, ` ∈ {0, 1}.
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Figure 2. Illustration of the six-dimensional T6/Z2 × Z2 orbifold with an orthonormal six-torus,

projected onto (Re(z1),Re(z2),Re(z3)). The orbifold has 16 + 16 + 16 two-dimensional fixed tori

corresponding to the ϑ, ω and ϑω twisted sectors, respectively. They become 4 + 4 + 4 fixed lines

in this projection, cf. ref. [51].

Compared to the T2/Z2 orbifold in section 3 we have more R-matrices that could

potentially allow us to fix more flavon alignments. However, the conditions (4.6) and (4.7)

are quite restrictive. It turns out that if we were to build a flavon-setup as in section 3.2

the stringent conditions would not allow new useful alignments. We end up with the same

alignment capabilities as the smaller orbifold T2/Z2. Furthermore, the T6/Z2×Z2 orbifold

only has two-dimensional fixed tori and no zero-dimensional fixed points. Consequently,

the centralizers Cg are non-trivial and induce in general projection conditions on localized

SM matter fields, compare to section 3.4.

5 Flavour from a T6/S4 orbifold

In the previous section, we studied boundary conditions in the T6/Z2 ×Z2 orbifold which

do not allow for predictive flavour alignments. Hence, we enlarge the orbifolding symmetry.

We know that the alignment CSD3 can be obtained with the flavour group S4 [43], and

noticing that Z2 × Z2 ⊂ S4, the orbifold T6/S4 seems a fair choice.

Consider an orthonormal basis ei in the six extra dimensions i ∈ {1, . . . , 6}, i.e.

ei · ej = δij , (5.1)

and define a corresponding orthonormal six-torus T6 (ignoring the possibility to change the

overall radius of T6). In complex coordinates z = (z1, z2, z3) ∈ C3 the basis vectors e2a−1

and e2a lie in the complex plane za for a ∈ {1, 2, 3}.
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Next, we choose two rotational space group generators (ϑ, 0) and (ω, 0) with the fol-

lowing actions on z = (z1, z2, z3)

ϑ =

0 1 0

0 0 1

1 0 0

 and ω =

1 0 0

0 0 1

0 −1 0

 , (5.2)

see appendix C.2 in ref. [31]. One can check that ϑ and ω generate the permutation group

S4, i.e.

S4
∼= 〈ϑ, ω | ω4 = ϑ3 = (ϑω)2 = 1〉 . (5.3)

Then, the T6/S4 orbifold is defined as the quotient space

z ∼ ϑ z and z ∼ ω z (5.4)

of the six-torus (5.1). Since ϑ, ω ∈ SU(3), four-dimensional N = 1 supersymmetry can be

preserved in this orbifold.

According to eq. (A.13) in appendix A the conjugacy classes (of the space group) give

rise to the distinct sectors of the theory. Therefore, as a first step one needs to determine

the conjugacy classes of the point group. As a result, the 24 elements of the S4 point group

decompose into five conjugacy classes, being[
1
]

= {1} , (5.5a)[
ϑ
]

= {ϑ, ϑ2, ϑ ω2, ω ϑ2ω, ϑω2ϑ, ϑ2ω2, ω2ϑ2, ω2ϑ} , (5.5b)[
ω
]

= {ω, ω ϑ2, ϑ2ω, ϑ2ω ϑ, ϑω ϑ, ϑω ϑ2} , (5.5c)[
ω2
]

= {ω2, ϑ ω2ϑ2, ϑ2ω2ϑ} , (5.5d)[
ϑω
]

= {ϑω, ω ϑ, ϑω2ϑ2ω, ϑ2ω ϑ2, ω2ϑ2ω, ω ϑ2ω2} . (5.5e)

Subsequently, a full analysis of the conjugacy classes of the space group [33] reveals the

distinct sectors as given in appendix B and indicated in table 2 by the so-called Hodge

numbers (h(1,1), h(2,1)). In addition, figure 3 illustrates the setup. We can interpret the

Hodge numbers as follows: h(1,1) counts the number of distinct fixed point sets in the

various twisted sectors, e.g. there are ten distinct fixed point sets in the ω2 twisted sector.

As a remark, h(2,1) counts how many of the h(1,1) fixed point sets are two-dimensional fixed

tori where each two-torus is parametrised by a non-frozen complex structure modulus (in

this case, one can modify the angle between the two basis vectors of the two-torus freely).

In contrast, a twisted sector with h(1,1) > h(2,1) contains h(1,1) − h(2,1) fixed point sets

that are either zero-dimensional points or two-dimensional tori but with a frozen complex

structure.

After fixing the geometry, we have to choose the gauge embeddings Rϑ, Rω, and Rei
corresponding to the twists (ϑ, 0) and (ω, 0) and the translations (1, ei), respectively. The

twists (ϑ, 0) and (ω, 0) generate the permutation group S4. Since R must be a group

homomorphism, see eq. (2.3), Rϑ and Rω can be chosen to generate also S4 or a subgroup

thereof (for example, ignoring world-sheet modular invariance from string theory one could

also choose Rϑ = Rω = 1).
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twisted sector of (h(1,1), h(2,1)) eigenvalues extra centralizer generators of

constr. element g of twist dim. Cg centralizer[
1
]

(1, 1) (1, 1, 1) 6 S4 ϑ, ω[
ϑ
]

(1, 1) (1, α2, α4) 2 Z3 ϑ[
ω
]

(4, 4) (1, i,−i) 2 Z4 ω[
ω2
]

(10, 0) (1,−1,−1) 2 D8 ω, ϑ2ω ϑ2[
ϑω
]

(4, 0) (1,−1,−1) 2 Z2 ×Z2 ϑω, ϑ2 ω2 ϑ

Table 2. Details of the S4 orbifold: α = exp
(

2πi
6

)
. D8 is the dihedral group of order 8. The

generators of the centralizer correspond to one specific g, for example, in the ω2 twisted sector the

centralizer is generated by ω and ϑ2ω ϑ2.

Figure 3. Illustration of the six-dimensional T6/S4 orbifold projected onto

(Re(z1),Re(z2),Re(z3)). The orbifold has 1 + 4 + 10 + 4 two-dimensional fixed tori corre-

sponding to the ϑ, ω, ω2 and ϑω twisted sectors, respectively. They become 1 + 2 + 3 + 2 fixed

lines in this projection.

In order to render the gauge embeddings of twists and translations fully compatible,

we have to find matrices Rϑ, Rω, Re1 and Re2 such that

(Rω)4 = (Rϑ)3 = (Rϑω)2 = 1 , i.e. Rϑ, Rω generate S4, (5.6a)

Re1 Re2 = Re2 Re1 , (5.6b)

Rω Re1 = Re1 Rω , (5.6c)

Rω Re2 = Re2 Rω , (5.6d)

(Rϑ2 ω ϑ2) Re1 = R−1
e1 (Rϑ2 ω ϑ2) ⇔ ((Rϑ2 ω ϑ2) Re1)2 = 1 , (5.6e)

(Rϑ2 ω ϑ2) Re2 = R−1
e2 (Rϑ2 ω ϑ2) ⇔ ((Rϑ2 ω ϑ2) Re2)2 = 1 , (5.6f)

where the matrix Rϑ2 ω ϑ2 = (Rϑ)2Rω (Rϑ)2 is of order 2. If these conditions are satisfied
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we can define Rei for i = 3, 4, 5, 6 using eqs. (B.4) in appendix B. This choice will satisfy

all conditions, i.e. those from the presentation of S4 in eq. (5.3) and, additionally, those

from eqs. (B.2) and (B.3).

5.1 Alignment of flavon VEVs

We assume to have an SU(3)fl gauged flavour symmetry and choose the gauge embedding

of the S4 transformations using the known generators [41]

S =
1

3

−1 2 2

2 −1 2

2 2 −1

 , T =

1 0 0

0 α4 0

0 0 α2

 , U =

1 0 0

0 0 1

0 1 0

 , (5.7)

as

Rϑ = T , Rω = UTS =
1

3

−1 2 2

2α2 2α2 −α2

2α4 −α4 2α4

 and Rei = 1 , (5.8)

where α = exp(2πi
6 ). This choice satisfies all gauge embedding conditions for an S4 orbifold.

Next, we choose to have three flavons φ1, φ2, and φ3 (each being a triplet of the SU(3)fl

flavour group) and localize them in different sectors of the T6/S4 orbifold as listed in table 3.

Let us begin with specifying the flavon φ1 in great detail so that our discussion for φ2 and

φ3 can be shorter later on. We want the flavon φ1 to be subject to the boundary condition

RϑRω. Hence, we localize it in the ϑω twisted sector (e.g. on the fixed torus zf ∈ C3 given

by the solutions of ϑω zf = zf). In order to identify all boundary conditions that act on φ1

we have to compute the centralizer of ϑω, i.e. we have to identify all elements of S4 that

commute with ϑω. It turns out that the centralizer of ϑω is generated by

ϑω and ϑ2 ω2 ϑ , (5.9)

and corresponds to Z2×Z2. Consequently, the flavon φ1 will feel the boundary conditions

Rg of all elements g of the centralizer (up to some phases as introduced in section 2.4 that

can be chosen freely). Hence, φ1 is subject to

RϑRω 〈φ1〉 = ±〈φ1〉 and (Rϑ)2 (Rω)2 Rϑ 〈φ1〉 = ±〈φ1〉 , (5.10)

where the ± signs in both conditions can be chosen independently.

If this does not work out, there are ways to make the centralizer smaller. But then

S4 orbifold becomes more complicated. For example, one can use various different six-tori

that can not be written as T2 × T2 × T2, cf. ref. [31].

After we have chosen the localization of each flavon, the flavon VEVs must comply with

the respective boundary conditions. We assume that the flavons obtain a non-vanishing

VEV through some other mechanism. However, the alignment of the flavon VEV in flavour

space is fixed to a specific direction through the boundary conditions.

In more detail, the flavon φ3 is chosen to be localized in the ϑ sector. Its VEV must

comply with the boundary condition Rϑ = T . It has the freedom of having any of the three
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flavon localization centralizer generators of centralizer

φ1 ϑω ∈ [ϑω] Z2 ×Z2 ϑω and ϑ2 ω2 ϑ

φ2 ω ϑ2 ω2 ∈ [ϑω] Z2 ×Z2 ω ϑ2 ω2 and ϑ2 ω2 ϑ

φ3 ϑ ∈ [ϑ] Z3 ϑ

Table 3. Localizations of the three flavons φ1, φ2 and φ3 in the various sectors of the T6/S4

orbifold and their centralizers, which indicates which boundary condition the respective flavon is

feeling.

phases α2n for n = 0, 1, 2, and we choose it to be α4 so that

〈φ3〉 = α4Rϑ〈φ3〉 = α4T 〈φ3〉 =

α4 0 0

0 α2 0

0 0 1

 〈φ3〉 → 〈φ3〉 ∝

 0

0

1

 , (5.11)

which aligns the VEV completely. This VEV must be invariant (up to a phase) under the

full centralizer of ϑ, which is generated by ϑ itself, so it is consistent.

The flavon φ2 is chosen to be localized in the ωϑ2ω2 sector, so that its VEV must be

invariant under RωR
2
ϑR

2
ω = U , up to a sign, which we choose to be negative. This enforces

the VEV to be

〈φ2〉 = −RωR2
ϑR

2
ω〈φ2〉 = −U〈φ2〉 =

−1 0 0

0 0 −1

0 −1 0

 〈φ2〉 → 〈φ2〉 ∝

 0

1

−1

 , (5.12)

which aligns the VEV completely. The VEV must also be invariant (up to a sign) with the

corresponding centralizer, which in this case is generated by ω ϑ2 ω2 and ϑ2 ω2 ϑ. Hence, the

VEV eq. (5.12) must also be invariant under the boundary condition using R2
ϑR

2
ωRϑ = S,

up to a sign. We choose the sign to be negative (the positive sign would force the VEV to

vanish) so that

〈φ2〉 = −R2
ϑR

2
ωRϑ〈φ2〉 = −S〈φ2〉 =

−1

3

−1 2 2

2 −1 2

2 2 −1

 〈φ2〉 → 〈φ2〉 ∝

 a

b

−a− b

 ,

(5.13)

with arbitrary a, b. This alignment is compatible with the previous condition when a = 0.

This fixes the VEV φ2 completely and consistently through boundary conditions.

The flavon φ1 obtains a VEV that, due to the choice of the localization in the sector

ϑω, must be invariant under the boundary conditions RϑRω = SU up to a sign. We choose

the positive sign so that

〈φ1〉 = RϑRω〈φ1〉 = SU〈φ1〉 =
1

3

−1 2 2

2 2 −1

2 −1 2

 〈φ1〉 → 〈φ1〉 ∝

 a

b

2a− b

 . (5.14)

This VEV is aligned in the general CSDn direction which is defined with a = 1, b = n.

It must also comply with the boundary conditions of the centralizer, up to a sign, which

– 18 –



J
H
E
P
1
2
(
2
0
1
9
)
0
5
5

is generated by ϑω and ϑ2 ω2 ϑ. This VEV must also be invariant under the boundary

condition R2
ϑR

2
ωRϑ = S, up to a sign. We choose the sign to be positive (the negative sign

would force the VEV to vanish) so that

〈φ1〉 = R2
ϑR

2
ωRϑ〈φ1〉 = S〈φ1〉 =

1

3

−1 2 2

2 −1 2

2 2 −1

 〈φ1〉 → 〈φ1〉 ∝

 1

1

1

 , (5.15)

which is consistent with the previous condition fixing a = b = 1. This is the CSD1

alignment which is widely used in the tribimaximal (TBM) alignment [52].

We conclude that the flavon VEV alignments can be fixed completely and consistently

to the TBM alignment and we can arrange for a situation with three flavons φi such that

〈φ1〉 ∝

 1

1

1

 , 〈φ2〉 ∝

 0

1

−1

 , 〈φ3〉 ∝

 0

0

1

 . (5.16)

These flavons are enough to fit all masses predictibly, specially in the lepton sector.

5.2 Roto-translations

Another realization of the S4 orbifold is based on a space group with roto-translations(
ϑ,

1

4
(e1 + e3)

)
and

(
ω,

1

4
(e1 + 3e2)

)
. (5.17)

In this case, there are only three sectors corresponding to [1], [ϑ] and [ϑω], where the later

two, twisted sectors have trivial centralizers. Thus, one can localize the flavons φ1 and φ2

in the sector [ϑω], while φ3 is localized in [ϑ].

This way we can obtain the general CSDn complete alignment. However, we did not

find a mechanism to fix n = 2, 3 so that we have a highly predictive fermion mass setup as

in refs. [21, 44, 46].

5.3 GUT breaking

Up to now, we have only chosen specific embedding matrices Rϑ and Rω in eq. (5.8) to

align flavons in the CSDn or TBM alignment. We have not fixed any Rei in the process.

From eqs. (5.6), we see that there are only two free matrices (Re1 and Re2) to choose and

they must comply with their specific conditions. Hence, one option is to choose Re1 and

Re2 to break the GUT but not flavour.

In this case, the matrices Re1 and Re2 would commute with Rϑ and Rω. The only

remaining constraints from eqs. (5.6) state that Re1 and Re2 must commute with each

other and be of order two. Hence, they generate Z2 × Z2. Consequently, we are allowed

to apply the GUT breaking mechanism as discussed in section 3.3.
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5.4 SM fermion localization

We have shown that this S4 orbifold is enough to align three different flavons in the TBM

or the CSDn setups and break GUTs.

However, we want some of the SM fermions (e.g. the charged leptons `) to form a triplet

of SU(3)fl flavour. Thus, these fermions must be located where they are not affected by

the flavour breaking conditions associated to Rϑ or Rω. In this S4 orbifold the only places

to locate fields are the bulk and invariant tori, see table 2, which all are affected by the

conditions Rϑ or Rω. Hence, some components of SU(3)fl flavour triplets for SM matter

are necessarily projected out in this S4 orbifold. This would destroy any predictability

coming from the flavon alignments (5.16). Consequently, we move on to another orbifold

that allows for suitable fermion localizations.

6 Flavour from a T6/∆(54) orbifold

We want to enlarge the orbifolding symmetry once again, to allow a place to locate the

fermions consistently but keep the alignments we have achieved. We can note that S4 '
∆(24) so that we can continue in the ∆(6n2) discrete group series by choosing the next

one, ∆(54).

Consider a factorized six-torus T6 = T2 × T2 × T2 where the a-th torus is spanned by

basis vectors e2a−1 and e2a of length r, where

|e2a−1| = |e2a| = r and e2a−1 · e2a = −r
2

2
for a = 1, 2, 3 . (6.1)

In complex coordinates z = (z1, z2, z3) ∈ C3 the basis vectors e2a−1 and e2a lie in the

complex plane za for a = 1, 2, 3. As a remark, this orbifold has only a single Kähler

modulus T which parameterizes the overall size r and the overall B-field [33].

Next, we choose three space group generators (ϑ, 0), (ω, 0) and (ρ, 0) with the following

actions on z = (z1, z2, z3)

ϑ =

−1 0 0

0 0 −1

0 −1 0

 , ω =

0 1 0

0 0 1

1 0 0

 and ρ =

0 α2 0

0 0 α4

1 0 0

 , (6.2)

where α = exp(2πi
6 ). Since

ϑ2 = ω3 = (ωϑ)2 = 1 , (6.3)

we see that ϑ and ω generate an S3 subgroup. Furthermore,

ω2 ρ =

1 0 0

0 α2 0

0 0 α4

 and ρω2 =

α2 0 0

0 α4 0

0 0 1

 , (6.4)

generate a Z3 ×Z3 subgroup such that, finally, we can write ∆(54) = (Z3 ×Z3) o S3, see

e.g. [53]. Finally, since ϑ, ω, ρ ∈ SU(3), four-dimensional N = 1 supersymmetry can be

preserved in this orbifold.
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The 54 elements of ∆(54) decompose into ten conjugacy classes being[
1
]

= {1} , (6.5a)[
ϑ
]

= {ϑ, ϑω, ρϑρ2, ωϑ, ωρϑω, ϑρω, ρωϑ, ϑρ2ω, ωϑρ} , (6.5b)[
ω
]

= {ω, ω2, ρωρ2, ρϑωρϑ, ϑωρϑρ, ρ2ωρ} , (6.5c)[
ρ
]

= {ρ, ϑρϑ, ωρω2, ϑωρϑω, ρ2, ϑρ2ϑ} , (6.5d)[
ϑ ρ
]

= {ϑρ, ρϑ, ρ2ϑω, ϑρ2ω2, ϑωρ2, ωρϑωρ, ϑωρω, ρϑωρ, ρωρ2ϑ} , (6.5e)[
ω ρ
]

= {ωρ, ϑωρϑ, ϑρ2ϑω, ρω, ρ2ω2, ϑρωϑ} , (6.5f)[
ϑω ρ

]
= {ϑωρ, ωρϑ, ϑρω2, ρϑω, ϑρ2, ωρϑρ, ρ2ϑ, ρϑρω, ρϑρ} , (6.5g)[

ω2 ρ
]

= {ω2ρ, ρ2ω, ρω2, ρωρ, ωρ2, ωρω} , (6.5h)[
(ϑ ρ)2 ] = {(ϑ ρ)2} , (6.5i)[

(ϑω ρ)2 ] = {(ϑω ρ)2} . (6.5j)

To define a field theory on this ∆(54) orbifold, we have to choose a (gauge) embedding

Rϑ , Rω , Rρ , and Rei , for i ∈ {1, . . . , 6} , (6.6)

for each generator of the ∆(54) space group S, i.e. for each

(ϑ, 0) , (ω, 0) , (ρ, 0) , (1, ei) for i ∈ {1, . . . , 6} . (6.7)

We have to ensure that this embedding satisfies the following conditions, obtained from

eq. (2.3),

(Rϑ)2 = (Rω)3 = (Rρ)
3 = 1 (6.8a)

RϑRω (Rϑ)−1 (Rω)−1 = Rω , (6.8b)

RϑRρ (Rϑ)−1 (Rρ)
−1 = Rω Rρ (Rω)2 , (6.8c)

Rω Rρ (Rω)−1 (Rρ)
−1 = (RϑRρ)

2 , (6.8d)

such that Rϑ, Rω and Rρ generate ∆(54) or a subgroup thereof. Furthermore,

Rei Rej = Rej Rei , (6.9a)

RϑRei Rϑ = Rϑ ei , (6.9b)

Rω Rei (Rω)−1 = Rω ei , (6.9c)

RρRei (Rρ)
−1 = Rρ ei , (6.9d)

where i, j ∈ {1, . . . , 6}, see also eqs. (2.4) and (2.5). Explicitly, eqs. (6.9b), (6.9c) and (6.9d)

read

RϑRei Rϑ = (Rei)
−1 for i ∈ {1, 2} , (6.10a)

RϑRei Rϑ =
(
Rei+2

)−1
for i ∈ {3, 4} , (6.10b)

RϑRei Rϑ =
(
Rei−2

)−1
for i ∈ {5, 6} , (6.10c)
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and

Rω Rei (Rω)−1 = Rei+4 for i ∈ {1, 2} , (6.11a)

Rω Rei (Rω)−1 = Rei−2 for i ∈ {3, 4} , (6.11b)

Rω Rei (Rω)−1 = Rei−2 for i ∈ {5, 6} , (6.11c)

and

Rω2 ρRei
(
Rω2 ρ

)−1
= Rei for i ∈ {1, 2} , (6.12a)

Rω2 ρRe3
(
Rω2 ρ

)−1
= Re4 (6.12b)

Rω2 ρRe4
(
Rω2 ρ

)−1
= (Re3)−1 (Re4)−1 (6.12c)

Rω2 ρRe5
(
Rω2 ρ

)−1
= (Re5)−1 (Re6)−1 (6.12d)

Rω2 ρRe6
(
Rω2 ρ

)−1
= Re5 , (6.12e)

where we use Rω2 ρ instead of Rρ in order to keep the conditions (6.12) simple.

One possibility to solve eqs. (6.10), (6.11) and (6.12) is given by assuming that

Rθ Rei = Rei Rθ for i ∈ {1, . . . , 6} . (6.13)

for all point group elements θ ∈ ∆(54). Importantly, one can show that in this case the

(gauge) embeddings of the translations have to be trivial, i.e.

Rei = 1 for i ∈ {1, . . . , 6} . (6.14)

Then, we are left with Rϑ, Rω and Rρ that have to satisfy eq. (6.8). In the following,

we will choose standard embedding Rϑ = ϑ, Rω = ω and Rρ = ρ with gauged flavour

symmetry G = SU(3)fl, cf. section 2.2.

6.1 VEV alignment

Consider a (flavon) field Φg(x, z) localized at z ∈ Fg with constructing element g ∈ S. We

denote the order of g by Ng, i.e. g(Ng) = 1. Then, the field Φg(x, z) has to satisfy the

boundary conditions

Φg(x, g z) = exp

(
2πi k

Ng

)
Rg Φg(x, z) , (6.15a)

Φg(x, h z) = exp

(
2πi `h
Nh

)
Rh Φg(x, z) , (6.15b)

where h ∈ Cg has to be taken from the centralizer of g. We choose standard embedding

eq. (2.6), where the gauge embedding Rg is identical to the geometrical action, i.e. Rg = θ

for g = (θ, λ) ∈ S, and the flavon Φg(x, z) is a triplet of SU(3)fl. Note that the addi-

tional phases in eq. (6.15) (which dependent on k and `h, respectively) can originate from

additional U(1) charges or from higher-dimensional Lorentz symmetry. These boundary
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twisted sector of (h(1,1), h(2,1)) eigenvalues extra centralizer generators of

constr. element g of twist dim. Cg centralizer[
1
]

(1, 0) (1, 1, 1) 6 ∆(54) ϑ, ω, ρ[
ϑ
]

(2, 1) (−1,−1, 1) 2 Z6 ρϑρ[
ω
]

(9, 0) (α2, α4, 1) 2 Z3 ×Z3 ω, (ϑρ)2[
ρ
]

(1, 0) (α2, α4, 1) 2 Z3 ×Z3 ρ, ϑρϑ[
ωρ
]

(1, 0) (α2, α4, 1) 2 Z3 ×Z3 ωρ, (ϑρ)2[
ω2ρ

]
(1, 0) (α2, α4, 1) 2 Z3 ×Z3 ω2ρ, (ϑρ)2[

(ϑωρ)2 ] (7, 0) (α4, α4, α4) 0 ∆(54) ϑ, ω, ρ[
(ϑρ)2 ] - (α2, α2, α2) 0 ∆(54) ϑ, ω, ρ[
ϑρ
]

(3, 0) (α4, α, α) 0 Z6 ϑρ[
ϑωρ

]
- (α2, α5, α5) 0 Z6 ϑωρ

Table 4. The various (twisted) sectors of the ∆(54) orbifold are labelled by their constructing

elements g. The Hodge numbers (h(1,1), h(2,1)) count the number of fixed point sets Fg (and their

deformations). Each eigenvalue of +1 indicates two extra dimensions of Fg such that, for example,

Fϑρ yields zero-dimensional fixed points while Fϑ gives two-dimensional fixed tori (where α =

exp
(

2πi
6

)
).

conditions (6.15) result in the following conditions on the VEV of the zero mode Φg(x),

〈Φg〉 = exp

(
2πi k

Ng

)
Rg 〈Φg〉 , (6.16a)

〈Φg〉 = exp

(
2πi `h
Nh

)
Rh 〈Φg〉 . (6.16b)

For each sector g from table 4 we find some k and `h such that the VEV 〈Φg〉 is non-

trivial. For example, consider the sector g = (ϑ, 0) with Ng = 2. Then, eq. (6.16a) has two

non-trivial solutions

〈Φg〉 = v

 0

1

−1

 for k = 0 , (6.17a)

〈Φg〉 =

 v

w

w

 for k = 1 , (6.17b)

for v, w ∈ C. Next, we have to ensure that these VEV alignments are invariant under

transformations h ∈ Cg from the centralizer. In this case, the centralizer Cg is generated

by h = (ρϑρ, 0) which is of order Nh = 6. One can verify that eq. (6.16b) has the same
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non-trivial solutions as before provided that `h takes some special values, i.e.

〈Φg〉 = v

 0

1

−1

 for k = 0 and `h = 2 , (6.18a)

〈Φg〉 =

 v

w

w

 for k = 1 and `h = 5 . (6.18b)

We repeat this analysis for the other sectors of the ∆(54) orbifold, listed in table 4, and

find the following invariant VEV directions. The ϑ-sector allows for two different boundary

conditions that yield two flavon VEV alignments

ϑ 〈φ〉 =

−1 0 0

0 0 −1

0 −1 0

 〈φ〉 = ±〈φ〉 →+ 〈φ〉 ∝

 0

1

−1

 , (6.19a)

→− 〈φ〉 ∝

 a

b

b

 . (6.19b)

For the ω-sector we obtain three different VEV alignments

ω 〈φ〉 =

0 1 0

0 0 1

1 0 0

 〈φ〉 = α2n 〈φ〉 →n=0 〈φ〉 ∝

 1

1

1

 , (6.20a)

→n=1 〈φ〉 ∝

 1

α2

α4

 , (6.20b)

→n=2 〈φ〉 ∝

 1

α4

α2

 , (6.20c)

while the ρ-sector yields

ρ 〈φ〉 =

0 α2 0

0 0 α4

1 0 0

 〈φ〉 = α2n 〈φ〉 →n=0 〈φ〉 ∝

 1

α4

1

 , (6.21a)

→n=1 〈φ〉 ∝

 1

1

α4

 , (6.21b)

→n=2 〈φ〉 ∝

α4

1

1

 . (6.21c)
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The matrices ω and ρ are very similar only involving different phases, and we can only

obtain one different matrix built from them

ω2ρ 〈φ〉 =

1 0 0

0 α2 0

0 0 α4

 〈φ〉 = α2n 〈φ〉 →n=0 〈φ〉 ∝

 1

0

0

 , (6.22a)

→n=1 〈φ〉 ∝

 0

0

1

 , (6.22b)

→n=2 〈φ〉 ∝

 0

1

0

 . (6.22c)

Multiplying ω to ρ or ϑ would only cyclicly rotate the entries of the VEVS. The only other

possibility would be to study the matrix

ω2ρϑ 〈φ〉 =

−1 0 0

0 0 −α2

0 α2 0

 〈φ〉 = ±〈φ〉 →+ 〈φ〉 ∝

 0

1

−α4

 , (6.23a)

→− 〈φ〉 ∝

 a

b

bα4

 . (6.23b)

We conclude that we can completely fix three flavons to have the TBM alignment

choosing them to be eigenvectors of

〈φ1〉 = ω 〈φ1〉 , 〈φ2〉 = ϑ 〈φ2〉 , 〈φ3〉 = α2 ω2ρ 〈φ3〉 , (6.24)

while adding other matrices can introduce powers of α2 in any entry while keeping the

same alignment.

6.2 GUT breaking

As we stated before, in principle we could choose the gauge embedding Rei of the transla-

tions to break the GUT, for example, to break SU(5). However, in this ∆(54) orbifold with

standard embedding the consistency conditions force them to be unity, see (6.14). The

simplest choice to avoid this situation in this orbifold would be to enlarge the Z2 generator

Rϑ =

−1 0 0

0 0 −1

0 −1 0

⊗ PSU(5) , (6.25)

which is consistent with all conditions and breaks SU(5). Our model outlined in section 7

is based on this GUT breaking.
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6.3 SM fermion localization

Quarks and leptons that transform as triplets under the SU(3)fl flavour symmetry should

not feel any flavour breaking boundary conditions. Otherwise, some of them would be

projected out by the orbifold and, hence, we would lose the predictivity from the flavon

VEV alignments.

We can see from table 4 that this specific ∆(54) orbifold has specific locations with

zero-dimensional fixed points. Any field localized at such a point in extra dimensions is

already a 4d field and, hence, is not be subject to any boundary condition. Consequently,

we localize our SU(3)fl lepton triplet at such a fixed point.

7 SU(5) × SU(3)fl model in R4 × T6/∆(54)

We start with N = 1 SUSY in 10 dimensions and with a SU(5)GUT × SU(3)fl gauge

symmetry. In addition, we impose a U(1) shaping symmetry that allows the required

Yukawa sector. Then, we define the ∆(54) orbifold boundary conditions as

Rϑ =

−1 0 0

0 0 −1

0 −1 0

⊗ PSU(5), Rω =

0 1 0

0 0 1

1 0 0

⊗ 15×5,

Rρ =

0 α2 0

0 0 α4

1 0 0

⊗ 15×5 , Rei = 13×3 ⊗ 15×5,

(7.1)

where α = exp(2πi
6 ) and PSU(5) = diag(1, 1,−1,−1,−1). Since the embedding R acts

as standard embedding on SU(3)fl, one can check easily that these matrices fulfil all the

necessary conditions of the T6/∆(54) orbifold.

As also discussed in section 6.2 these boundary conditions break SU(5)GUT×SU(3)fl →
SU(3)C×SU(2)L×U(1)Y with only the MSSM superfields and some pure flavons left after

compactification.

The list of chiral superfield is given in table 5. There, the ± superscript indicates

that there are two copies of each ten-plet Ti, i = 1, 2, 3, i.e. one for each parity under the

boundary condition PSU(5).

We assume a standard Kähler potential with canonical normalized fields (and without

large corrections [54]). Then, the Yukawa sector after compactification reads

WY = Y u
ij hu qi u

c
j

+
y+

33

Λ
hd
(
` · φ0

τ

)
ec3 +

y+
22

Λ
hd
(
` · φ0

µ

)
ec2 +

y+
11

Λ
hd
(
` · φ0

e

)
ec1

+
y+

23ξ̃

Λ
hd
(
` · φ0

τ

)
ec2 +

y+
13ξ̃

2 + y′+13 ξ̃
′2

Λ
hd
(
` · φ0

τ

)
ec1 +

y+
12ξ̃

Λ
hd
(
` · φ0

µ

)
ec1

+
y−33

Λ
hd
(
dc · φ0

τ

)
q3 +

y−22

Λ
hd
(
dc · φ0

µ

)
q2 +

y−11

Λ
hd
(
dc · φ0

e

)
q1 (7.2)

+
y−23ξ̃

Λ
hd
(
dc · φ0

τ

)
q2 +

y−13ξ̃
2 + y′−13 ξ̃

′2

Λ
hd
(
dc · φ0

τ

)
q1 +

y−12ξ̃

Λ
hd
(
dc · φ0

µ

)
q1
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Field
Representation

Localization extra dim. Zero mode
SU(3)fl SU(5)GUT U(1)

F 3 5̄ 11
[
ϑρ
]

0 dc, `

T+
1 1 10 6

[
ϑ
]

2 uc1, e
c
1

T−1 1 10 6 −
[
ϑ
]

2 q1

T+
2 1 10 4

[
ϑ
]

2 uc2, e
c
2

T−2 1 10 4 −
[
ϑ
]

2 q2

T+
3 1 10 2

[
ϑ
]

2 uc3, e
c
3

T−3 1 10 2 −
[
ϑ
]

2 q3

Na 1 1 1
[
ω
]

2 na

Ns 1 1 2
[
ϑ
]

2 ns

H5 1 5 -4
[
1
]

6 hu

H5̄ 1 5̄ 11
[
1
]

6 hd

ξ 1 1 -2
[
1
]

6 ξ0

ξ′ 1 1 -2
[
ϑρ
]

0 ξ′0

φs 3̄ 1 -7
[
ω
]

2 φ0
s ∝ (1, 1, 1)T

φa 3̄ 1 -8
[
ϑ
]

2 φ0
a ∝ (0, 1,−1)T

φτ 3̄ 1 -2 α2
[
ω2ρ

]
2 φ0

τ ∝ (0, 0, 1)T

φµ 3̄ 1 -4 α4
[
ω2ρ

]
2 φ0

µ ∝ (0, 1, 0)T

φe 3̄ 1 -6
[
ω2ρ

]
2 φ0

e ∝ (1, 0, 0)T

Table 5. Complete list of chiral superfields in the model. The U(1) is a shaping symmetry.

+ yNa ξnana +
yNs ξ

2 + y′Ns ξ′2

Λ
nsns +

yνa
Λ
hu
(
` · φ0

a

)
na +

yνs ξ̃

Λ
hu
(
` · φ0

s

)
ns

+
yνe ξ̃
′

Λ
hu
(
` · φ0

e

)
na +

yνµξ̃ξ̃
′

Λ
hu
(
` · φ0

µ

)
na +

yντ ξ̃
′ξ̃2 + y′ντ ξ̃

′3

Λ
hu
(
` · φ0

τ

)
na ,

where

Y u =

 yu11 ξ̃
4 yu12 ξ̃

3 yu13 ξ̃
2

yu21 ξ̃
3 yu22 ξ̃

2 yu23 ξ̃

yu31 ξ̃
2 yu32 ξ̃ yu33

+ ξ̃′2

 y′u11 ξ̃
2 y′u12 ξ̃ y

′u
13

y′u21 ξ̃ y′u22 0

y′u31 0 0

+ ξ̃′4

 y′′u11 0 0

0 0 0

0 0 0

 . (7.3)

We have defined

ξ̃ = 〈ξ〉 /Λ and ṽi = 〈vi〉 /Λ . (7.4)

The U(1) shaping symmetry allows only these terms and there are no higher order contri-

butions.

Note that the terms coming from H5T
−
i T

+
j and H5̄FφkT

±
i ξ

` satisfy the basic string

selection rule for allowed interactions: the point group selection rule demands that the point

group elements of the respective constructing elements multiply to the identity element.

For example, H5̄ and ξ originate from the bulk with constructing element
[
1
]
, F is localized
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in the
[
ϑρ
]

sector, the fields φk for k = τ, µ, e live in the
[
ω2ρ

]
sector and, finally, the fields

T±i for i = 1, 2, 3 are localized in the
[
ϑ
]

sector. Then,[
1
] [
ϑρ
] [
ω2ρ

] [
ϑ
] [

1
]` ⊃ 1 ϑωρ2 ρω2 ϑ 1` = 1 , (7.5)

using the conjugacy classes of ∆(54) given in eq. (6.5).

We assume all dimensionless couplings to be O(1) complex numbers, so that all the

hierarchies are due to the flavon VEVs

1000 ṽs ∼ 1000 ṽa ∼ 100 ṽe ∼ 10 ṽµ ∼ 10 ξ̃′ ∼ ṽτ ∼ ξ̃ ∼ 0.1, (7.6)

which is an assumption.

With these assumptions we may approximate ξ̃ + ξ̃′ ≈ ξ̃. We write the up quark mass

matrix, coming from the first line of eq. (7.2)2

Mu = vu

 yu11ξ̃
4 yu12ξ̃

3 yu13ξ̃
2

yu21ξ̃
3 yu22ξ̃

2 yu23ξ̃

yu31ξ̃
2 yu32ξ̃ yu33

 . (7.7)

The next lines of eq. (7.2) give masses to down quarks and charged leptons. The down

quark matrix is

Md = vd

 y−11ṽe y
−
12ṽµξ̃ y

−
13ṽτ ξ̃

2

0 y−22ṽµ y−23ṽτ ξ̃

0 0 y−33ṽτ

 , (7.8)

while the charged lepton mass matrix is

(M e)∗ = vd

 y+
11ṽe 0 0

y+
12ṽµξ̃ y+

22ṽµ 0

y+
13ṽτ ξ̃

2 y+
23ṽτ ξ̃ y

+
33ṽτ

 . (7.9)

Since ec comes from T+ and q comes from T− the Yukawa terms have different and inde-

pendent couplings y±ij for each one. This way the charged lepton mass matrix is completely

independent of the down quark mass matrix.

The final two lines in eq. (7.2) give the Dirac neutrino mass matrix and the right

handed neutrino Majorana mass matrix

Mν
D = vu

 yνe ṽeξ̃
′ yνs ṽsξ̃

yνa ṽa + yνµṽµξ̃ξ̃
′ yνs ṽsξ̃

−yνa ṽa + ṽτ (yντ ξ̃
2ξ̃′ + y′ντ ξ̃ξ̃

′2) yνs ṽsξ̃

 , MN =

(
yNa ξ̃ 0

0 yNs ξ̃
2

)
〈ξ〉 . (7.10)

From the assumed VEV hierarchies from eq. (7.6), the ξ̃ terms in the first column are

expected to be one order of magnitude smaller than the ones without ξ̃, so we may safely

ignore them, leading to

Mν
D ' vu

 y′νe ṽeξ̃
′ yνs ṽsξ̃

yνa ṽa yνs ṽsξ̃

−yνa ṽa yνs ṽsξ̃

 ∼
 ε b

a b

−a b

 . (7.11)

2All the mass matrices are given in the LR convention.
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In the limit that the small entry denoted by ε is ignored, the Dirac mass matrix is of

the CSD form and leads to tribimaximal neutrino mixing [52]. The presence of ε has

the effect of switching on the reactor angle θ13, without modifying very much the solar

and atmospheric angles from their tribimaximal values [34]. This corresponds to so called

tribimaximal-reactor lepton mixing [35].

The RHN are very heavy so that the left handed neutrinos become very light after the

Seesaw mechanism has been implemented,

Mν = Mν
D(MN )−1(Mν)T,

Mν 〈ξ〉
v2
u

' (yνa)2ṽ2
a

yNa

 (yν12ξ̃
′)2 yν12ξ̃

′ −yν12ξ̃
′

yν12ξ̃
′ 1 −1

−yν12ξ̃
′ −1 1

+ ξ̃
(yνs )2ṽ2

s

yNs

 1 1 1

1 1 1

1 1 1

 ,
(7.12)

where yν12 = yνe ṽe/y
ν
a ṽa.

Looking at all the mass matrices, as noted above, we may see that the VEV ξ̃′ only

appears in the neutrino mass matrix. Knowing that the charged lepton correction to the

PMNS are negligible, if we sent this ξ̃′ → 0, we would have the tribimaximal (TBM) setup

for the PMNS. Therefore the sole role of the ξ̃′ is to deviate from the TBM [35, 55, 56].

7.1 Numerical fit in the neutrino sector

In this section we perform a fit to the PMNS observables and the neutrino masses assuming

a diagonal charged-lepton mass matrix (the off-diagonal elements in eq. (7.9) are negligible

due to the appearance of ξ̃). The complex parameters in the up-type and down-type quark

mass matrices in eqs. (7.7) and (7.8) have enough freedom to fit all the quark masses and

the observed CKM mixing angles. Therefore, in this section we focus only on the neutrino

sector.

The effective neutrino mass matrix in eq. (7.12) can be rewritten in terms of input

parameters as

Mν ' µa

 (ξ̃12e
iηξ̃)2 ξ̃12e

iηξ̃ −ξ̃12e
iηξ̃

ξ̃12e
iηξ̃ 1 −1

−ξ̃12e
iηξ̃ −1 1

+ µse
iη

 1 1 1

1 1 1

1 1 1

 , (7.13)

where we have defined the input parameters

µa =

∣∣∣∣ v2
u

〈ξ〉
(yνa)2ṽ2

a

yNa
,

∣∣∣∣ ξ̃12 = |yν12ξ̃
′|, ηξ̃ = arg (yν12ξ̃),

µs =

∣∣∣∣ v2
u

〈ξ〉
ξ̃

(yνs )2ṽ2
s

yNs

∣∣∣∣ and η = arg

(
(yνs )2ṽ2

s ξ̃

yNs

yNa
(yνa)2ṽ2

a

) (7.14)

We implement a numerical fit using a χ2 test function

χ2 =
∑
n

(
Pn(x)− P obs

n

σn

)2

, (7.15)
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Observable
Data Model

Central value 3σ range Best fit

θl12 /
◦ 33.82 31.61 → 36.27 35.00

θl13 /
◦ 8.610 8.220 → 8.990 8.615

θl23 /
◦ 48.30 40.80 → 51.30 45.66

δl /◦ 222.0 141.0 → 370.0 225.3

∆m2
21 /10−5 eV2 7.390 6.790 → 8.010 7.393

∆m2
31 /10−3 eV2 2.523 2.432 → 2.618 2.525

m1 /meV 0

m2 /meV 8.599

m3 /meV 50.25∑
mi /meV . 230 58.85

α23 /
◦ 221.3

mββ /meV . 60–200 2.754

Table 6. Latest values of PMNS observables and neutrino masses given by NuFit4.1 [57] together

with the model predictions with χ2 ≈ 4.8. The neutrino masses mi as well as the Majorana phase

α23 are pure predictions of our model. The bound on
∑
mi is taken from [60]. The bound on mββ

is taken from [59]. There is only one physical Majorana phase since m1 = 0.

where we sum over the 6 observables given by P obs
n = {θ`12, θ

`
13, θ

`
23, δ

l,∆m2
21,∆m

2
31} with

statistical errors σn. The predictions of the model for these observables are given by Pn(x),

where x = {µa, ξ̃12, ηξ̃, µs, η} refers to the different input parameters. We are doing the

numerical fit in terms of the effective neutrino mass matrix in eq. (7.13) and we ignore any

renormalisation group running corrections.

We use the recent global fit values of neutrino data from NuFit4.1 [57]. Most of the

observables follow an almost Gaussian distribution and we take a conservative approach

using the smaller of the given uncertainties in our computations except for θl23 and δl. The

best fit from NuFit4.1 is for normal mass ordering with inverted ordering being disfavoured

with a ∆χ2 = 6.2(10.4) without (with) the Super-Kamiokande atmospheric neutrino data

analysis.

The model predictions are shown in table 6. The neutrino mass matrix in eq. (7.13)

predicts near maximal atmospheric mixing angle θl23 = 45.66◦ and solar mixing angle

θ12 = 35◦ as expected since we only have a small correction from tribimaximal mixing

which allows a correct non-zero reactor angle θl13 = 8.615◦. The CP violation prediction

is δl ≈ 225◦. All the model predictions for the PMNS observables and the neutrino mass-

squared differences are within the 3σ region from the latest neutrino oscillation data and

reproduce a χ2 = 4.8 value. Furthermore, since we only have 2RH neutrinos, m1 = 0 and

there is only one physical Majorana phase α23 [58]. The bound on the effective Majorana

mass mββ is taken from [59] while the prediction is also given in table 6.

Table 7 shows the input parameter values. There are 3 real parameters {µa, ξ̃12, µs}
plus two additional phases {ηξ̃′ , η}, a total of 4 input parameters to fit 6 data points.

Naively, we can measure the goodness of the fit computing the reduced χ2, i.e. the χ2 per
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Parameter Value

µa/10−2 meV 2.454

ξ̃12 0.221

ηξ̃′ −2.392

µs/10−3 meV 2.887

η −2.422

Table 7. Input parameter values reproducing the best fit point with χ2 ∼ 4.8.

degree of freedom χ2
ν = χ2/ν. The number of degrees of freedom is given by ν = n − ni,

where n = 6 is the number of measured observables, while ni = 4 is the number of input

parameters. A good fit is expected to have χ2
ν ∼ 1. We have 2 degrees of freedom and

the best fit has a reduced χ2
ν ' 2.4. We view this as a good fit and it also remarks the

predictivity of the model, not only fitting to all available quark and lepton data but also

fixing the neutrino masses and Majorana phases.

Using the definition of the input parameters in eq. (7.14) and their values in table 7

for the best fit point, we can give a naive estimation of the value of ξ̃. If we assume the

dimensionless parameters to be O(1) and the VEVs ṽa ∼ ṽs, then we find µs/µa ≈ ξ̃ ≈
0.1, which justifies the assumption of an approximate diagonal charged-lepton matrix in

eq. (7.9) and the values of the VEVs in eq. (7.6). Also note that |ξ̃12| ≈ 0.22 which is

exactly the value of Cabbibo angle [35, 55, 56].

8 Conclusions

The flavour puzzle, in particular the large mixing observed in the lepton sector, provides

a strong motivation for going beyond the Standard Model. The literature is replete with

flavour models involving some family symmetry spontaneously broken by flavon fields with

certain vacuum alignments motivated by phenomenological considerations, but highly non-

trivial to achieve without resort to extra symmetries and driving fields. In order to overcome

this obstacle, one promising approach is to attempt to formulate such theories in extra

dimensions, where the desired vacuum alignments may emerge from orbifold boundary

conditions.

We have systematically developed the formalism necessary for ensuring that boundary

conditions of flavon fields in extra dimensions are consistent with heterotic string theory.

Having developed a set of consistency conditions on the boundary conditions, we have then

explored a series of examples of orbifolds in various dimensions to see which ones can satisfy

them. In addition we have imposed the further phenomenological requirement of having

non-trivial flavon vacuum alignments. We have also demanded that quarks and leptons

be located appropriately in extra dimensions so that their massless modes may include

complete multiplets under the gauged flavour symmetry.

It turns out that it is highly non-trivial to satisfy all of these conditions (theoretical

and phenomenological) together. For instance, the simple T2/Z2 orbifold, while allowing

SM fermion matter localisation on fixed points, does not permit non-trivial flavon vacuum
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alignments, consistently with the formal requirements of the boundary conditions. This

motivates us to go to 10d models. However, the simple orbifold T6/(Z2 × Z2) fares no

better than the previous case, since it too can only provide one non-trivial alignment. We

find that the boundary conditions must exhibit some non-Abelian structure so that we can

have non-trivial VEV alignments.

Following the above logic, we were led to consider 10d non-Abelian orbifolds, where the

torus is modded out by a non-Abelian group. We have studied the orbifold T6/S4 which

can fix flavons into the highly predictive CSDn structure. This orbifold however, does not

have 4d branes where the SM matter could be localized. This motivated us to consider the

orbifold T6/∆(54), as an example where we can locate the SM fermions on fixed points

in extra dimensions. Since the ∆(54) orbifold is not so well studied in the literature, we

have developed this case in some detail, and eventually shown that we can choose the extra

dimensions in such a way that we can build a realistic model.

The minimal successful flavour theory seems to be a 10d theory with a SU(3)fl gauged

flavour symmetry, where the six extra dimensions are compactified on a T6/∆(54) orbifold.

The SU(3)fl flavour symmetry is broken by flavon VEVs which are completely aligned

by the boundary conditions of the orbifold. The vacuum alignment of the flavons is of

the tribimaximal form, but the theory can allow for some small corrections leading to

tribimaximal-reactor lepton mixing, which we have shown to be consistent with current

neutrino data. We have constructed a fully realistic SU(5) × SU(3)fl grand unified theory

along these lines, which is complete, predictive and in principle consistent with heterotic

string theory.
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A Definition of an orbifold by its space group

In order to define a D-dimensional toroidal orbifold O geometrically as a quotient space of

D-dimensional space, i.e.

O = RD/S , (A.1)

one has to specify a space group S first. A general element g of a space group S consists

of a rotation θ ∈ SO(D) (also called twist) and a translation λ ∈ RD, i.e.

g = (θ, λ) ∈ S . (A.2)

By definition, g acts on the internal coordinates z ∈ RD as

z
g7−→ g z = (θ, λ) z = θ z + λ . (A.3)
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Consequently, two space group elements g1 = (θ1, λ1) ∈ S and g2 = (θ2, λ2) ∈ S multiply as

g1 g2 = (θ1, λ1) (θ2, λ2) = (θ1 θ2, θ1 λ2 + λ1) . (A.4)

Furthermore, the inverse element g−1 ∈ S of g = (θ, λ) ∈ S is given by

g−1 = (θ−1,−θ−1 λ) , (A.5)

and the neutral element is

g1 = (1, 0) ∈ S . (A.6)

Hence, one can see that S is a discrete group, actually a discrete subgroup of the extra-

dimensional Euclidean group.

Practically, one defines a space group by a (finite) list of generators, which are pure

translations and rotations. In this work, we focus on the case of up to three rotational

generators,3 i.e.

(1, ei), (ϑ, 0), (ω, 0), (ρ, 0) , (A.7)

for i ∈ {1, . . . , D}. The vectors ei ∈ RD span a D-dimensional lattice Γ that specifies a

D-dimensional torus TD = RD/Γ and the rotations ϑ, ω and ρ have to be symmetries of

the lattice Γ, i.e.

ϑΓ = Γ , ω Γ = Γ and ρΓ = Γ . (A.8)

The rotations ϑ, ω (and ρ) generate the so-called point group P , where we are dealing with

the cases P = Z2 ×Z2 in section 4, P = S4 in section 5 and P = ∆(54) in section 6.

Having defined a space group, the orbifold O given in eq. (A.1) is defined by identifying

those points z(1) and z(2) in RD that are mapped to each other by some element of the

space group, i.e.

z(1) ∼ z(2) ⇔ there is g ∈ S such that z(1) = g z(2) . (A.9)

This equivalence relation can be used to define a fundamental domain of the orbifold.

A given element g ∈ S of the space group can have a set of fixed points Fg, defined by

Fg := {z ∈ RD | g z = z} . (A.10)

For a given space group element g = (θ, λ) ∈ S (with appropriate translation λ) the di-

mension of Fg depends on the eigenvalues of the rotation matrix θ ∈ P : each eigenvalue

+1 corresponds to an invariant direction in Fg. Our main concern is the case of supersym-

metric orbifolds in D = 6, where we find fixed point sets of dimensions six (i.e. the bulk O

for g = 1), two (i.e. fixed tori) and zero (i.e. fixed points). By acting with h ∈ S onto the

fixed point equation g z = z (i.e. z ∈ Fg), one obtains(
h g h−1

)
(h z) = (h z) . (A.11)

3Ignoring the possibility of roto-translations, i.e. rotations that are combined with fractional translations,

for example (θ, λ) with λ 6∈ Γ.
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Hence, h z ∈ Fh g h−1 . However, due to eq. (A.9) points z and h z are identified on the

orbifold O. Thus, the corresponding fixed point sets are identified on the orbifold O as well,

Fg ∼ Fh g h−1 , (A.12)

for all h ∈ S. Consequently, the inequivalent fixed point sets correspond to the conjugacy

classes [g] of S, where

[g] = {h g h−1 | h ∈ S} . (A.13)

If the point group P is Abelian, each element g̃ of a conjugacy class [g] has the same point

group element θ ∈ P , i.e.

g = (θ, λ) ⇔ h g h−1 = (θ, λ′) for all h ∈ S and some λ′ ∈ Γ . (A.14)

A.1 Orbifold-invariant fields

In this appendix we complete the discussion from section 2.3 in the case g h 6= h g. In this

case, we can choose the proportionality in eq. (2.10) to be trivial, i.e.

Φg(x, h
−1z) = Φh g h−1(x, z) , (A.15)

where a possible phase has been absorbed in a redefinition of Φh g h−1 . Consequently, all

fields Φh g h−1 from the same conjugacy class [g] = {h g h−1|h ∈ S} are identified and

eqs. (2.9) and (A.15) yield

Φg(x, z)
h7−→ Rh Φg(x, h

−1z) = Rh Φh g h−1(x, z) . (A.16)

Then, we can construct an orbifold-invariant field, denoted by Φ[g](x, z), on the covering

space RD of O. To do so, we have to build the following linear combination

Φ[g](x, z) := Φg(x, z) +
∑
h 6∈Cg

Rh Φh g h−1(x, z) , (A.17)

ignoring the normalization of Φ[g](x, z). However, Fg and Fh g h−1 are identified on the

orbifold O. Hence, if we restrict z ∈ O (instead of z ∈ RD) we can ignore the contributions

Φh g h−1(x, z) in eq. (A.17) and use Φg(x, z) as a well-defined field on the orbifold O. In this

case, transformations (2.9) with h 6∈ Cg are not considered as they would map a point z

from the fundamental domain of the orbifold to a point outside of the fundamental domain.

B Details on the S4 orbifold

Beside the untwisted sector with constructing element 1 ∈ S, the T6/S4 orbifold contains

the following inequivalent constructing elements g ∈ S from the various twisted sectors

g = (ϑ, 0) , (B.1a)

g = (ω, (n5e5 + n6e6)) for n5, n6 ∈ {0, 1} , (B.1b)

g =
(
ω2, (n5e5 + n6e6)

)
for n5, n6 ∈ {0, 1} , (B.1c)

g =
(
ω2, (e4 + n5e5 + n6e6)

)
for (n5, n6) ∈ {(0, 1), (1, 0), (1, 1)} , (B.1d)

g =
(
ω2, (e3 + n4e4 + e5 + n6e6)

)
for (n4, n6) ∈ {(0, 0), (0, 1), (1, 1)} , (B.1e)

g = (ϑω, (n3e3 + n4e4)) for n3, n4 ∈ {0, 1} . (B.1f)
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These 1+4+(4+3+3)+4 constructing elements are the S4 analogue of the four constructing

elements of the T2/Z2 orbifold listed in eq. (3.2).

In order to identify the relations on the gauge embeddings between Rϑ, Rω and Rei
we consider the action of the twists (ϑ, 0) and (ω, 0) on the basis vectors (1, ei) explicitly

and embed these relations into Rg. Thus, we obtain the conditions

(ϑ, 0) (1, e1) (ϑ−1, 0) = (1, e5) ⇒ RϑRe1 = Re5 Rϑ , (B.2a)

(ϑ, 0) (1, e2) (ϑ−1, 0) = (1, e6) ⇒ RϑRe2 = Re6 Rϑ , (B.2b)

(ϑ, 0) (1, e3) (ϑ−1, 0) = (1, e1) ⇒ RϑRe3 = Re1 Rϑ , (B.2c)

(ϑ, 0) (1, e4) (ϑ−1, 0) = (1, e2) ⇒ RϑRe4 = Re2 Rϑ , (B.2d)

(ϑ, 0) (1, e5) (ϑ−1, 0) = (1, e3) ⇒ RϑRe5 = Re3 Rϑ , (B.2e)

(ϑ, 0) (1, e6) (ϑ−1, 0) = (1, e4) ⇒ RϑRe6 = Re4 Rϑ , (B.2f)

and

(ω, 0) (1, e1) (ω−1, 0) = (1, e1) ⇒ Rω Re1 = Re1 Rω , (B.3a)

(ω, 0) (1, e2) (ω−1, 0) = (1, e2) ⇒ Rω Re2 = Re2 Rω , (B.3b)

(ω, 0) (1, e3) (ω−1, 0) = (1,−e5) ⇒ Rω Re3 = R−1
e5 Rω , (B.3c)

(ω, 0) (1, e4) (ω−1, 0) = (1,−e6) ⇒ Rω Re4 = R−1
e6 Rω , (B.3d)

(ω, 0) (1, e5) (ω−1, 0) = (1, e3) ⇒ Rω Re5 = Re3 Rω , (B.3e)

(ω, 0) (1, e6) (ω−1, 0) = (1, e4) ⇒ Rω Re6 = Re4 Rω . (B.3f)

Let us assume that we have found two matrices Re1 andRe2 that commute with Rω and,

hence, eqs. (B.3a) and (B.3b) are satisfied. Then, we can solve eqs. (B.2a), (B.2b), (B.2c)

and (B.2d) by defining

Re3 = R−1
ϑ Re1 Rϑ , (B.4a)

Re4 = R−1
ϑ Re2 Rϑ , (B.4b)

Re5 = RϑRe1 R
−1
ϑ , (B.4c)

Re6 = RϑRe2 R
−1
ϑ . (B.4d)

This choice automatically satisfies eqs. (B.2e) and (B.2f) using (Rϑ)3 = 1. Conse-

quently, we are left with the conditions (B.3c), (B.3d), (B.3e) and (B.3f). Let us start with

eqs. (B.3c) and (B.3e), i.e. we have to demand

Rω Re3 = R−1
e5 Rω , (B.5a)

Rω Re5 = Re3 Rω . (B.5b)

Using the definitions of Re3 and Re5 from eq. (B.4) we see that this is equivalent to(
R2
ϑRω R

2
ϑ

)
Re1 = R−1

e1

(
R2
ϑRω R

2
ϑ

)
, (B.6a)

(RϑRω Rϑ) Re1 = Re1 (RϑRω Rϑ) , (B.6b)
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Since RϑRω Rϑ = Rϑω ϑ = Rω−1 = (Rω)−1 condition (B.6b) is trivially satisfied using

our assumption Re1Rω = RωRe1 . As a remark, we see that R2
ϑRω R

2
ϑ = Rϑ2 ω ϑ2 and

(ϑ2 ω ϑ2)2 = 1, thus

(Rϑ2 ω ϑ2)2 = 1 . (B.7)

Now, we repeat these steps for eqs. (B.3d) and (B.3f) and obtain(
R2
ϑRω R

2
ϑ

)
Re2 = R−1

e2

(
R2
ϑRω R

2
ϑ

)
, (B.8a)

(RϑRω Rϑ) Re2 = Re2 (RϑRω Rϑ) . (B.8b)

Again, using RϑRω Rϑ = (Rω)−1 and Re2Rω = RωRe2 we see that condition (B.8b) is

trivial.
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