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O(102) GeV are far greater than the quarkonium mass. At these energies, the logarithm

of mass to collision energy becomes increasingly large hence its resummation becomes par-

ticularly important. By making use of the light-cone-distribution factorization formula,

we resum the logarithms up to next-to-leading-logarithmic accuracy (NLL) that corre-

sponds to order-αs accuracy. We combine the resummed result with a known fixed-order

result at next-to-leading order (NLO) such that both resummed-logarithmic terms and non-

logarithmic terms are included at the same order in αs. This allowed us to provide reliable

predictions at accuracies of order αs ranging from relatively low energies near quarkonium

mass to the collider energies of O(102) GeV. We also include the leading relativistic cor-

rections resummed at leading-logarithmic accuracy. Our prediction at the Belle energy is

comparable with fixed-order predictions in literatures while it shows a large deviation from

a recent Belle’s upper limit by about 4 σ. Finally, we make predictions for the energies of

future Z- and Higgs factories.
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1 Introduction

Rigorous quantitative understanding of the heavy-quarkonium production at high-energy

colliders [1] is a key probe not only to the features of quantum chromodynamics (QCD)

but also to fundamental phenomena such as quark-gluon plasma (QGP) in heavy-ion col-

lisions [2] and heavy-quark Yukawa couplings to Higgs [3, 4]. An effective field-theoretic

framework called the nonrelativistic QCD (NRQCD) [5] can be employed to predict quarko-

nium productions at high-energy colliders in a systematic way. NRQCD describes the dy-

namics inside a quarkonium at the energy scale mQv
2, where mQ is the mass of the heavy

quark Q and v is the relative velocity of the Q and Q̄ in the bound state. NRQCD is blind to

the short-distance dynamics at higher energy scales of order & mQ and the corresponding

short-distance coefficients can be determined by matching to the full theory, QCD, which

is known to be correct in all accessible energy scales. As a result, the production cross

sections or decay rates involving heavy quarkonia can be expressed as linear combinations

of NRQCD long-distance matrix elements (LDME) with the short-distance coefficients.

Exclusive processes such as associated photon production or double-quarkonium pro-

duction at the lepton colliders like B factories and BES have been extensively studied in
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the framework of NRQCD. Future lepton colliders such as ILC [6], CEPC [7], and FCC-

ee [8] offer opportunities to test our understanding of their productions at higher energies of

O(102) GeV. In a collision at such a large center-of-momentum (CM) energy
√
s, the cross

section of a quarkonium has an uncomfortably strong dependence on the large logarithm

of the ratio

r ≡
4m2

Q

s
. (1.1)

A straightforward extrapolation of the prediction for a lower-energy process of
√
s . 10 GeV

to higher-energy processes listed above may result in a failure of predictive power. Thus

the accuracy of a prediction can be reasonably controlled only after resumming the large

logarithmic contributions in a proper way because such a logarithm cannot be suppressed

by the strong coupling constant:

αs ln r ∼ O(1).

The resummation of such a logarithm can be made by employing the light-cone (LC) ap-

proach [9, 10] or, equivalently, the soft-collinear effective theory (SCET) [11]. In SCET, the

scattering amplitude or current-current correlator is factorized into the following factors:

the hard-scattering kernel involving scales of
√
s, the light-cone distribution amplitude

(LCDA) that represents the collinear part, and the decay constant that involves the inter-

actions of scales . mQ. By solving the renormalization-group (RG) equation for collinear

part or the hard part, one can resum the logarithms ln r.

In general, the collinear part describing a light meson such as a pion, ρ, or η is nonper-

turbative and one usually introduces an LCDA with a few model parameters. However, in

the case of heavy quarkonium, the collinear parts can further be factorized into perturba-

tive short-distance coefficients at the scale mQ and nonperturbative long-distance matrix

elements at the scale mQv
2 in the framework of NRQCD [12–15]. Therefore, it is worth

to revisit and to update predictions by including the resummation of the large logarithms

at energies of future lepton colliders. We express our formula in such a way that our ex-

pression reproduces the fixed-order results at low energies ∼ mQ, and at higher energies

it resums large logarithms so that the same expression can be used for both the Belle and

future high-energy experiments.

We consider the charge conjugate even (C = +1) processes with S-wave pseudoscalar

quarkonium such as ηc+γ and ηb+γ. In a fixed-order perturbation theory this process was

first computed in [16] at leading order (LO) and its next-to-leading order (NLO) correction

was computed analytically in [17, 18] and numerically in [19]. Up to date the α2
s correction

is available [20, 21]. The relativistic correction of the order v2 was first considered in [22]

and αsv
2 correction was also obtained in [23]. The virtual Z contribution was computed

up to αs correction in [24, 25].

The leading-logarithmic (LL) accuracy resumming αns logn r terms was first achieved

in [12]. The quarkonium LCDAs at NLO were obtained by matching QCD onto NRQCD

in [14, 15]. In Higgs or Z boson decay into J/ψ + γ processes [26–29], the next-to-

leading-logarithmic (NLL) accuracy resumming αn+1
s logn r was achieved and the Abel-

Padé method which enables to handle divergences appearing in computing the relativistic
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correction to the rates, was developed as well. Using the method, we make the prediction

for ηc,b + γ in lepton colliders at NLL+NLO plus the leading v2-correction accuracy.

The rest of the paper is organized as follows. In section 2 we explain the theoretical

formula to achieve NLL+NLO accuracy and provide all the ingredients for that order.

Section 3 presents numerical results for the cross section and for the Z-boson decay rate

into this process and section 4 compares our result at the Belle energy to the previous

results and to Belle’s recent limit [30]. We finally summarize in section 5.

2 Theoretical formula

The LC approach allows us to capture and to resum all logarithmic terms (singular), while

non-logarithmic terms (nonsingular) can be computed by NRQCD fixed-order perturbation

theory. We can express our full cross section as a sum of singular and nonsingular parts as

in [31, 32].

σ(r;µ, µ0, µns) = σsing(r;µ, µ0) + σns(r, µns) , (2.1)

where sing and ns in the superscripts and subscripts denote singular and nonsingular, re-

spectively. In the singular part the scattering amplitude is factorized into a hard scattering

kernel, an LCDA, and an NRQCD LDME. Each of them depends on a relevant energy scale

such as µ ∼
√
s, or µ0 ∼ mQ.1 The renormalization group (RG) evolution between those

scales enables us to resum large logarithms appearing in the fixed-order cross section and

details of the evolution will be presented in coming subsections. On the other hand, if we

turn off the resummation by setting all the scales being the same, it reduces to the singular

part of the fixed-order cross section: σfixed-sing(r;µ) = σsing(r;µ, µ). The singular part of

fixed-order cross section is given by

σfixed-sing(r;µ) = lim
r→0

σfixed(r;µ) = σ0

[
1 +

αsCF
4π

csing + 〈v2〉csing
v2

]
, (2.2)

where the coefficients are2

csing = −2

3

[
(9− 6 log 2) log r + 9(3 + log2 2− 3 log 2) + π2

]
,

csing
v2

= −4

3
. (2.3)

The born cross section σ0 is given by

σ0 =
16π2α2(

√
s)α(0)e2

Qẽ
2
QmP

3s2

〈O1〉P
m2
Q

, (2.4)

1There is the non-perturbative scale of the order mQv
2, which is not explicitly denoted because LDMEs

is not evolved in practice but rather determined at the scale mQ or 2mQ as in conventional NRQCD

approach.
2If one expresses the mP in σ0 in terms of mQ and v2, then one finds that

2mP

[
1 + 〈v2〉csing

v2

]
= 4mQ

√
1 + 〈v2〉

[
1 + 〈v2〉csing

v2

]
≈
[
2
√
mQ

(
1− 5

12
〈v2〉

)]2
,

which agrees with d
(0)
s and d

(v2)
s in eq. (2.26) of ref. [23].
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where α is the fine structure constant, eQ is the fractional charge of a heavy quark Q,

mP is the quarkonium mass, mQ is the heavy quark mass, 〈O1〉P = 〈0|χ†ψ|P 〉〈P |ψ†χ|0〉
is the non-relativistically normalized LO NRQCD LDME of the production of S-wave

pseudoscalar quarkonium P , and the relativistic correction to the LO NRQCD LDME,

〈v2〉, is defined by

〈v2〉 ≡ 1

m2
Q

〈P |ψ†
(
− i

2

←→
D
)2
χ|0〉

〈P |ψ†χ|0〉
, (2.5)

where D = ∇ − igsA is the spartial part of the gauge-covariant derivative and ψ†
←→
Dχ ≡

ψ†(Dχ)− (Dψ)†χ. ẽ2
Q is given in eq. (2.19) which includes the effect of both of the virtual

photon and Z boson propagators. To make our paper self-contained we also copy the

fixed-order cross section in [17] into appendix A.

The nonsingular part is defined by subtracting the fixed-order singular part from the

fixed-order cross section as

σns(r;µ) = σfixed − σfixed-sing = −r σ0

[
1 +

αsCF
4π

cns + 〈v2〉cns
v2

]
, (2.6)

where the coefficients are cns = (cfixed − csing)/(−r) ≈ −14.9− 4.8 log r+ log2 r+O(r) and

cns
v2 = (cfixed

v2 − csing
v2

)/(−r) = −1/3. Note that we pull out a prefactor −r in eq. (2.6) to

imply the relative suppression of nonsingular part in small r region but this correction is

still important at the Belle energy. The nonsingular part from the Z-boson contribution is

about 4m2
Q/m

2
Z and remains small near the resonance and we omit them in this paper.

Now the full cross section reproduces the ordinary fixed-order result when we turn off

the RG evolution: σfixed(r;µ) = σ(r;µ, µ, µ). Therefore, at the energies where log r ∼ O(1)

hence µ ∼ µ0, the full cross section is consistent with the fixed-order results and at higher

energies where | log r| � 1 and µ� µ0, the resummation implemented in full cross section

becomes effective. Therefore the formula in eq. (2.1) gives correct results at wide range

of energies of current and future colliders. For the precise predictions for various energies

including current and future colliders, both of the resummation of large logarithms and

the fixed-order computation should be improved equivalently.

Now let us discuss the amplitude for the singular part. In lepton collisions an initial

lepton pair annihilates into virtual gauge bosons such as γ∗ or, Z∗, then a pair of quark and

anti-quark produced from the bosons turns into a bounded quarkonium state by emitting

a photon. The scattering amplitude for a pseudoscalar quarkonium P plus a final photon

can be written as

iM(e+e− → γ∗/Z∗ → Pγ) = LµI 〈P (p) + γ(ε, k)|JµV |0〉 , (2.7)

where the index I = γ∗, Z∗ represents the virtual bosons. The current has the vector and

axial vector components: JµV = ψ̄γµψ and JµA = ψ̄γµγ5ψ. But the axial current does not

contribute due to the opposite charge conjugation and we only have JV in eq. (2.7). The

part LµI contains a matrix element of initial lepton pair, a virtual boson propagator, and
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electroweak charges of the quarks. Its expression is

LµI =


ieQe

2

s v̄(P̄ )γµu(P ), for I = γ∗,

− igQV e
2/ sin2(2θW )

s−m2
Z

v̄(P̄ )γµ(geV − geAγ5)u(P ), for I = Z∗,

(2.8)

where e is the electromagnetic coupling, eQ is the fractional electric charge of the heavy

quark Q,
√
s is the CM collision energy, θW is the Weinberg angle, geV = −1

2 + 2 sin2 θW
and geA = −1

2 are the vector and axial charges of electron, and gQV = TQ− 2eQ sin2 θW with

TQ = ±1/2 is the vector charge of quark with a flavor Q = c, b, respectively.

The quark matrix element is extensively studied in the context of the meson form

factor and the quark part in eq. (2.7) can be expressed in the form factor style as

〈P (p) + γ(ε, k)|JµV |0〉 = −iε∗ν(k)eeQ

∫
d4xeik·x

〈
P (p)

∣∣∣T [Jν†V (x)JµV (0)
]∣∣∣ 0〉

= iε∗ν(k) eeQ
εµν⊥
2
GP (µ) +O(r) , (2.9)

where T is the time-ordered product and εµν⊥ = εµνρσpρkσ/(p · k) is the asymmetric tensor.

2.1 Light-cone distribution amplitude

The factor GP (µ) is the leading-twist result in LC factorization:

GP (µ) ≡ fP (µ,mQ)

∫ 1

0
dxTPH (x;µ,

√
s)φP (x;µ,mQ), (2.10)

where TPH is the hard-scattering kernel, φP is the LCDA of a pseudoscalar quarkonium P ,

and fP is the decay constant. The scale µ is an arbitrary energy scale that separates the

natural scales mQ and
√
s which are the last arguments of each functions. Each function

depends on the logarithm of their ratio: the natural scale to the scale µ. For simplicity, we

omit the last arguments to the functions from now on.

The hard-scattering kernel TPH (x;µ) describes a production of quark and anti-quark

pair at 1S0 state. The one-loop expression is given in refs. [14, 33] by

TPH (x, µ) = T
(0)
H (x) +

αs(µ)

4π
T

(1)
H (x, µ) +O(α2

s), (2.11)

where

T
(0)
H (x) =

1

x̄
+ (x↔ x̄), (2.12a)

T
(1)
H (x, µ) =

CF
x̄

[
(3 + 2 log x̄)

(
log

s

µ2
− iπ

)
+ log2 x̄+ (8∆− 1)

x̄ log x̄

x
− 9

]
+(x↔ x̄), (2.12b)

here x̄ ≡ 1−x. Note that ∆ = 0 for the naive dimensional regularization (NDR) scheme [34]

and ∆ = 1 for the t’Hooft-Veltman (HV) scheme [35, 36] for γ5 regularization.3 The scheme

3In the NDR scheme, {γ5, γµ} = 0, for the index µ in d dimension, while in the HV scheme, γ5 defined

in 4 dimension anticommutes {γµ, γ5} = 0 for µ = 0, 1, 2, 3 but commutes [γµ, γ5] = 0 for µ = 4, · · · , d.

Note that the δ in ref. [33] and the ∆ in ref. [14] are related as δ = 1−∆.

– 5 –



J
H
E
P
1
0
(
2
0
1
9
)
1
6
2

dependence in the hard kernel is cancelled by the same term with the opposite sign in the

LCDA.

The pseudoscalar LCDA is defined by a non-local matrix element of γ+γ5 as

〈P (p)|Q̄(z)γ+γ5[z, 0]Q(0)|0〉 = p+ fP

∫ 1

0
dx eip·zxφP (x, µ) , (2.13)

where the plus components are γ+ = γ0+γ3 and p+ = p0+p3. x ∈ [0, 1] is the collinear mo-

mentum fraction of a quark in the quarkonium and [z, 0] is the gauge link that is defined by

[z, 0] = Pexp

[
igs

∫ z

0
dy A+

a T
a

]
, (2.14)

where P stands for path ordering, gs =
√

4παs is the strong coupling constant, Aa is the

gluon field with color index a, and T a is fundamental representation of SU(Nc).

The LCDA φP describes the collinear-gluon exchange between quark and anti-quark

pair and it is normalized to the unity upon the integration over x. This normalization

defines the decay constant fP to be eq. (2.13) at z = 0 and it describes a cc̄ pair transition

into a physical quarkonium.4 In light mesons, the LCDA and the decay constant are non-

perturbative and the former is modeled with a few parameters and the latter is determined

by comparison to measurement. On the other hand in heavy quarkonium the LCDA and

short-distance part of the decay constant are perturbatively calculable by matching QCD

onto NRQCD amplitude. Their one-loop correction was obtained in [14] and the relativistic

correction was obtained in [26, 37]. We treat v2 and αs corrections are of the same size and

expand up to the same power. Then, the LCDA expanded up to the leading corrections in

αs and v2 is

φP (x, µ) = φ(0)(x) +
αs(µ)

4π
φ(1) + 〈v2〉φ(v2) +O(α2

s, αsv
2, v4), (2.15)

where

φ(0) = δ

(
x− 1

2

)
,

φ(1) = CF θ(1− 2x)

×

{[
4x

1
2 + x̄
1
2 − x

(
log

µ2
0

4m2
Q

− 2 log

(
1

2
− x
)
− 1

)]
+

+

[
4xx̄

(1
2 − x)2

]
++

+ ∆ [16x]+

}
+(x↔ x̄),

φ(v2) =
δ(2)(x− 1

2)

24
, (2.16)

and the + and ++ functions are defined in appendix B. The leading αs and v2 corrections

to the decay constant fP are given by

fP (µ) =

√
2Nc
√

2mPΨP (0)

2mQ

[
1− 〈v2〉+

αs(µ)CF
4π

(−6 + 4∆) +O(α2
s, v

4, αsv
2)

]
, (2.17)

4The definition of fP is different from that of ref. [14] by a multiplicative factor i.
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where ΨP (0) is the wavefunction at the origin and is defined by ΨP (0) =

〈P (p)|ψ†χ|0〉/
√

2Nc and |ΨP (0)|2 = 〈O1〉P /(2Nc).
5 The relativistic correction agrees with

the result in ref. [37] with x0 = x̄0 = 1/2. The renormalon ambiguity coming from the pole

mass can be avoided if we replace mQ by MS mass.6 Thus we replace the pole mass mQ in

eq. (2.17) with the one-loop corrected MS mass in ref. [39]: mQ = mQ [1 + αs(mQ)CF /π]

and truncate higher-order contributions than our working precisions. The singular part of

the cross section can be written in terms of GP (µ) in eq. (2.10) as

σsing =
2π2e2

Qẽ
2
Qα

2(
√
s)α(0)

3s2
|GP (µ)|2 , (2.18)

where for the virtual photon ẽ2
Q is e2

Q, and for the virtual photon and Z boson it is

ẽ2
Q = e2

Q− 2
eQg

Q
V g

e
V

sin2(2θW )

1− rZ
(1− rZ)2 + rZ

Γ2
Z
s

+
(gQV )2[(geV )2 + (geA)2]

sin4(2θW )

1

(1− rZ)2 + rZ
Γ2
Z
s

, (2.19)

where rZ = m2
Z/s. Note that eq. (2.18) is rather a fixed-order singular cross section in

eq. (2.2) because the functions eqs. (2.11), (2.15) and (2.17) are in fixed-order form. We

obtained the resummed singular part after the RG evolution and resummation, which is

discussed next subsection.

We also give the expression for the decay rate of Z boson into a pseudoscalar quarko-

nium plus a photon in terms of GP (µ) as

Γfixed-sing(r;µ) =
πα(mZ)α(0)e2

Q(gQV )2

6mZ sin2 2θW
|GP (µ)|2. (2.20)

2.2 RG equation and log resummation

The large logarithms in the cross section can be resummed by evolving each function in the

factorization from its own natural scale, µ0 ∼ mQ for the LCDA or µ ∼
√
s for the hard-

scattering kernel TPH to a common scale µ̃, which can be chosen to be an arbitrary scale

between µ0 and µ because the µ̃ dependence should be exactly cancelled when evolutions

of all the functions are combined together. One of the simple and conventional choices is to

set µ̃ = µ then, the LCDA is just evolved from mQ to µ, while the hard-scattering kernel

is treated as fixed-order function.

The LCDA evolution is governed by the RG equation called the Efremov-Radyushkin-

Brodsky-Lepage (ERBL) equation [9, 40]:

µ2 ∂

∂µ2
[fP (µ)φP (x, µ)] =

∫ 1

0
dy V (x, y;αs(µ)) [fP (µ)φP (y, µ)] , (2.21)

where the ERBL kernel V (x, y;αs(µ)) for a pseudoscalar meson was extensively studied

in the pion form factor. In the case of quarkonium the product fPφP is factorized into

5We take the nonrelativistic normalization for the LDME while ref. [14] takes the relativistic normaliza-

tion (see eq. (4.8)): 〈O(1S0)〉 =
√

2mP 〈P (p)|ψ†χ|0〉.
6See, for example, ref. [38].
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two parts LDME and short-distance coefficients as in eqs. (2.17) and (2.16) and the RG

equation eq. (2.21) can be expressed into two set of RG equations: one for LDMEs and the

other for the coefficients. The formal equation is evolved from LDME’s natural scale mQv
2

to µ and the latter is from µ0 to µ. This way would better fit to the philosophy of scale

separation in effective field theory framework. However, LDME scale is nonperturbative

and evolution from the scale would not work. Conventionally the LDMEs are determined at

the scale µ0 rather mQv
2. Then, we simply run both parts from µ0 to µ by using eq. (2.21).

The LL and NLL accuracies are achieved by solving the ERBL equation with one- and

two-loop kernels respectively. The kernel is known up to two loops in the NDR scheme and

we use the NDR results to achieve NLL accuracy.

V (x, y;αs(µ)) =

∞∑
n=0

(
αs(µ)

4π

)n+1

V (n)(x, y) , (2.22)

where the one-loop coefficient is given by

V (0)(x, y) = 2CF

[
1− x
1− y

(
1 +

1

x− y

)
θ(x− y) +

x

y

(
1 +

1

y − x

)
θ(y − x)

]
+

, (2.23)

and the two-loop expression can be found in refs. [41–44]. The eigenfunction of the one-loop

kernel V (0)(x, y) is Gn whose eigenvalue is −γ(0)
n /2:∫ 1

0
dy V (0)(x, y)Gn(y) = −γ

(0)
n

2
Gn(x), (2.24)

where Gn is the product of the Gegenbauer polynomial C
(3/2)
n and its weight [45]:

Gn(x) = x(1− x)C(3/2)
n (2x− 1). (2.25)

γ
(0)
n is the LO anomalous dimension and here we follow the convention of ref. [46]

γ(0)
n = 8CF

[
Hn+1 −

1

2(n+ 1)(n+ 2)
− 3

4

]
. (2.26)

The NLO anomalous dimension γ
(1)
n is defined in the same way from the 2-loop kernel

V (1)(x, y). The solution of the ERBL equation is expressed as a series sum,

φn(µ) =
n∑
k=0

Unk(µ, µ0)φk(µ0) , (2.27)

where the k-th Gegenbauer coefficient of LCDA at the scale µ0 is

φn(µ0) = Nn

∫ 1

0
dxφP (x, µ0)C(3/2)

n (2x− 1) , (2.28)

with Nn = 4(2n+ 3)/[(n+ 1)(n+ 2)]. The coefficient at LO is simple

φ(0)
n = NnC

(3/2)
n (0) , (2.29)
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where C
(3/2)
n (0) = (−1)n/2 (n+1)!!

n!! for even n and zero for odd n. Explicitly, the LO ERBL

equation for the n-th moment of the LCDA is given by

µ2 d

dµ2
[fP (µ)φn(µ)] =

αs(µ)

4π

(−γ(0)
n )

2
[fP (µ)φn(µ)] . (2.30)

Following the convention of ref. [46], the solutions of the scale evolution factor

Unk(µ, µ0) up to NLL accuracy are given by

Unk(µ, µ0) =

[
αs(µ)

αs(µ0)

] γ(0)n
2β0

(2.31)

×

[
δnk

(
1 +

αs(µ)− αs(µ0)

4π

γ
(1)
n β0 − γ(0)

n β1

2β2
0

)
+ (1− δnk)dnk(µ, µ0)

αs(µ)

4π

]
,

where the value of Unk at LL accuracy is nonzero only for n = k: [αs(µ)/αs(µ0)]γ
(0)
n /(2β0) δnk.

At NLL it is nonzero when (n − k) is zero or, even and positive integer. βn is the beta

function coefficients for (n+ 1)-th order in αs and the explicit expressions of the two-loop

anomalous dimensions γ
(1)
n and dnk are copied in appendix C.

Then, the RG evolved function GP (µ) is given by

GP (µ) = fP

{
M(0,0)(µ) +

αs(µ)

4π
M(1,0)(µ) + 〈v2〉PM(0,v2)(µ) +

αs(µ0)

4π
M(0,1)(µ)

}
,

(2.32)

where M(i,j) are defined in terms of the RG evolved LCDA in eq. (2.27)

M(i,j)(µ) =

∞∑
n=0

T (i)
n (µ)φ(j)

n (µ) , (2.33)

and

T (i)
n (µ) =

∫ 1

0
dxT

(i)
H (x, µ)Gn(x) (2.34)

is the coefficient in the expansion with Gegenbauer polynomials and it is non-vanishing only

for even n because TPH is symmetric with respect to x = 1/2 while Gn(x) is asymmetric for

odd n. The LO coefficient for even n is simple

T (0)
n = 1 . (2.35)

We would like to note that the decay constant fP in eq. (2.32) is not evolved at NLL

because its one- and two-loop anomalous dimensions in eqs. (2.26) and (C.1) are zeros:

γ
(0)
0 = γ

(1)
0 = 0. One can see this explicitly by taking the 0-th Gegenbauer coefficient of

φP in eq. (2.21), or in eq. (2.30) because φ0(µ) = 1 for all µ. We also emphasize that the

relativistic correction M(0,v2)(µ) correctly resums logarithms proportional to 〈v2〉αns logn r

by using the same RG evolution Unk and its expansion in αs is given by

GP ∝ 〈v2〉
[
−5

3
+

27− 10 log 2

3

αs(µ
2
0)CF

4π
log

µ2
0

µ2

]
. (2.36)

This agrees with the logarithmic term in αs〈v2〉 correction eq. (2.26) in [23].
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Eventually we insert eq. (2.32) into eq. (2.18) and obtain the singular part and full

cross section in eq. (2.1). In practice of computation there is an option of truncating

higher-order terms irrelevant at our NLL accuracy and we make following truncations. In

eq. (2.32), the first term M(0,0) is computed using NLL expression of Unk while the other

M(i,j) terms are computed using LL expression. In the absolute square |GP (µ)|2, we also

drop higher-order terms proportional to α2
s or αs〈v2〉, which are obtained in the product

of M(i,j) in eq. (2.32) and fP in eq. (2.17).

We also adopt the Abel-Padé method developed and used in [27–29] to achieve faster

numerical convergence at NLL accuracy and to deal with divergences associated with the

relativistic corrections in LCDA.

2.3 γ5-scheme dependence

As we can see from eqs. (2.12b), (2.16) and (2.17), there are γ5 scheme dependences in the

hard kernel TH(x, µ), LCDA φP (x, µ) and decay constant fP (µ), which are represented by

the terms proportional ∆ = 0, 1 for NDR and HV schemes, respectively. It is easy to check

that the ∆ dependences of the factor GP (µ) vanish at NLO without resummation or, RG

evolution. However, it is not obvious whether the ∆ dependences vanish or not at NLL accu-

racy due to additional scheme dependence that may enter in two-loop anomalous dimension

γ
(1)
n . Note that γ

(0)
n is ∆-independent and so is the LL resummation. ref. [47] computed the

nf -dependent part of two-loop evolution kernel V (1)(x, y) in both NDR and HV schemes

and we can obtain the scheme dependence for full two-loop evolution kernel by combining

eqs. (5.24), (5.35), and (5.41a) and applying the relation in eq. (5.40) in ref. [47], which gives

∆V (1)(x, y) = −8∆CFβ0

[
x

y
θ(y − x) +

1− x
1− y

θ(x− y)

]
. (2.37)

Again, polynomials Gn(x) is the eigenfunction of ∆V (1) with the eigenvalue anomalous

dimension ∫ 1

0
dy ∆V (1)(x, y)Gn(y) = −∆γ

(1)
n

2
Gn(x) , (2.38)

where analytic expression of the anomalous dimension is given by

∆γ(1)
n = ∆

16CFβ0

(n+ 1)(n+ 2)
. (2.39)

At NLL, there are two types of ∆ dependences in the amplitude GP (µ). The one

from NLL evolution factor Unk in eq. (2.31) is proportional to the anomalous dimension in

eq. (2.39):

∆(a)
n = GLL

P,n(µ)
αs(µ)− αs(µ0)

4π

∆γ
(1)
n

2β0
. (2.40)

Here GLL
P,n(µ) =

[
αs(µ)
αs(µ0)

] γ(0)n
2β0 f

(0)
P T

(0)
n φ

(0)
n is the LL amplitude, where f

(0)
P =

√
NcmPΨP (0)/mQ is LO decay constant and T

(0)
n , φ

(0)
n are given in eqs. (2.29) and (2.35).

– 10 –



J
H
E
P
1
0
(
2
0
1
9
)
1
6
2

The other type of ∆ dependence is those from one-loop corrections f
(1)
P , T

(1)
n , φ

(1)
n . The

terms proportional to ∆ are given by non-logarithmic constant parts

∆f
(1)
P = 4CF f

(0)
P ∆, (2.41)

∆T (1)
n = 8CF∆

∫ 1

0
dx

1

xx̄
(x lnx+ x̄ ln x̄)Gn(x), (2.42)

∆φ(1)
n = 16CF∆Nn

∫ 1

0
dx
[
θ(1− 2x)[x]+ + θ(1− 2x̄)[x̄]+

]
C(3/2)
n (2x− 1). (2.43)

Collecting three contributions above, we have

∆(b)
n = GLL

P,n(µ)

(
αs(µ0)

4π
∆f

(1)
P /f

(0)
P +

αs(µ0)

4π
∆φ(1)

n /φ(0)
n +

αs(µ)

4π
∆T (1)

n /T (0)
n

)
= GLL

P,n(µ)

(
αs(µ)

4π

[
∆f

(1)
P /f

(0)
P + ∆φ(1)

n /φ(0)
n + ∆T (1)

n /T (0)
n

]
+
αs(µ0)− αs(µ)

4π

[
∆f

(1)
P /f

(0)
P + ∆φ(1)

n /φ(0)
n

])
. (2.44)

In the second equality we rearranged terms into two parts, the one proportional to NLO

correction evaluated at the αs scale µ and the other proportional to the difference αs(µ0)−
αs(µ) which is a part of NLL resummation. The scheme independence at fixed-order NLO

implies the cancellation of first part

∆f
(1)
P /f

(0)
P + ∆φ(1)

n /φ(0)
n + ∆T (1)

n /T (0)
n = 0 . (2.45)

This is also confirmed by explicit computing ∆T
(1)
n and ∆φ

(1)
n which are zero for odd n

and

∆T (1)
n = − 8CF∆

(n+ 1)(n+ 2)
, (2.46)

∆φ(1)
n = −4CF∆NnC

(3/2)
n (0)

(
1− 2

(n+ 1)(n+ 2)

)
, (2.47)

for even n. We would like to note an interesting relation between ∆T
(1)
n and ∆γ

(1)
n :

∆T (1)
n = −∆γ(1)

n /(2β0) (2.48)

or, ∆φ
(1)
n /φ

(0)
n + ∆f

(1)
P /f

(0)
P = ∆γ

(1)
n /(2β0) equivalently. This implies that the constant

term in the one-loop functions completely determines ∆ dependence of two-loop evolution

kernel and this ensures the cancellation of ∆
(a)
n and ∆

(b)
n :

∆(a)
n + ∆(b)

n = GLL
P,n(µ)

αs(µ)− αs(µ0)

4π

[
∆γ

(1)
n

2β0
+ ∆T (1)

n /T (0)
n

]
= 0 , (2.49)

where in ∆
(b)
n we eliminated ∆f

(1)
n and ∆φ

(1)
n in favor of ∆T

(1)
n by using eq. (2.45). There-

fore, γ5 scheme independence is valid at NLL accuracy.

At higher-order, we expect a similar pattern of cancellation between ∆ dependent

terms: cancellation between fixed-order terms at the same αs scale as in eq. (2.45) and

cancellations between n-loop anomalous dimension from evolution factor and the constant

terms of (n− 1)-loop function as in eq. (2.49).
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2.4 Logarithmic structure

Here we discuss logarithmic structure and accuracy of the resummed amplitude. Even

though this section explains quite well-known properties of resummation and does not

contain anything new, it may be useful for those who are not familiar with resummation.

Let us first look at the fixed-order expansion of amplitude in eq. (2.10). Its logarithmic

structure can be schematically expressed as

Gfixed
P = c00 +

αs
4π

(c11L+ c10) (2.50)

+
(αs

4π

)2
(c22L

2 + c21L+ c20) + · · · ,

where L ≡ log(4m2
Q/s). The largest logarithmic term at each αs order is αnsL

n and then the

next largest is αnsL
n−1. The functions TH and φ are first expanded with the Gegenbauer

polynomials, then each coefficient is resummed as GnkP = fP TnUnkφk, and summation over

all n and k gives the resummed GP . The individual GnkP takes the following form

GnkP = C(αs) exp

[
αs
4π

(C11L+ C10) (2.51)

+
(αs

4π

)2
(C22L

2 + C21L+ C20) + · · ·
]

LL + NLL + · · · ,

where C(αs) is the fixed-order expansion in αs and it does not depend on the logarithms,

C(αs) = C0 +
αs
4π
C1 + · · · . (2.52)

The fixed-order coefficient Ci is given by fixed-order function Tn, φk, fP and the coefficients

Cij associated with anomalous dimensions are given by Unk in eq. (2.31). Therefore, in

general the coefficients Ci and Cij differ for the different values of n, k. For example, C0

is non-zero for the diagonal element where n = k but zero otherwise. We are implicit

with those n, k dependence to make our discussion focused on the logarithmic structure.

Similarly, we do not separately discuss about v2 corrections in the coefficients Ci and it

follows the same conclusion.

In the fixed-order perturbation theory, the series in eq. (2.50) are summed row-by-row,

i.e., order-by-order in αs. On the other hand, in resummed perturbation theory, the series

in the exponent of eq. (2.51) are summed column-by-column, based on large-logarithmic

power counting L ∼ 1/αs. In eq. (2.51), the first column is of the order αnsL
n ∼ 1 called

the LL, the second column is αnsL
n−1 ∼ αs called the NLL, and so on. It is clear that

which fixed-order terms in eq. (2.52) should be included: C0 at LL and C1 at NLL.

However, one may realize that the structure of evolution factor Unk in eq. (2.31) is

different from that of eq. (2.51). For example, the non-exponent term contains logarithms:

αs(µ) − αs(µ0) = −αs(µ0)2

2π β0 log(µ/µ0) + · · · . This is because, in eq. (2.51) the second

column is of O(αs) hence those terms beyond LL can be expanded and moved down from
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the exponent:

GnkP = C(αs)

(
1 +

αs
4π
C10 +

(αs
4π

)2
C21L+ · · ·

)
exp

[
αs
4π
C11 +

(αs
4π

)2
C22L

2 + · · ·
]

= C̃(αs) exp

[
αs
4π
C11 +

(αs
4π

)2
C22L

2 + · · ·
]
, (2.53)

where C̃(αs) includes two prefactors

C̃(αs) = C0 +
αs
4π

[
C1 + C0

∑
n=0

C1n

(
αsL

4π

)n]
+ · · · . (2.54)

We have LL accuracy with first term in eq. (2.54) and NLL with O(αs) terms in the large-

logarithmic power counting αn+1
s Ln ∼ αs. This alternative way of arranging logarithms is

equivalent to eq. (2.51) up to higher-order corrections than working accuracy and is the

formula we use in this paper.

3 Numerical results

In this section, we list input parameters for numerical calculations then, present our results

for the final state ηc,b + γ in e+e− collisions at various collision energies and in Z-boson

decay. Those results include the resummation at NLL accuracy, the fixed-order correction

at NLO, and the relativistic corrections of the order v2 as we discussed in previous sec-

tions. The numerical results at LL and NLL+NLO are compared and their perturbative

convergence is discussed.

3.1 Input parameters and NRQCD matrix elements

We use PDG values for MS mass mc = 1.275+0.025
−0.035 GeV and mb = 4.18+0.04

−0.03 GeV, which

gives the one-loop pole mass mc = 1.483+0.029
−0.041 GeV and mb = 4.58+0.04

−0.03 GeV and for Z-

boson mass and width mZ = 91.1876 ± 0.0021 GeV and ΓZ = 2.4952 ± 0.0023 GeV. We

run the coupling constants for the electroweak using the code Global Analysis of Particle

Properties (GAPP) [48, 49] and the coupling constants for the strong interaction using the

4-loop expression of the QCD beta function [50]. The CM energies of B-, Z- and Higgs

factories are
√
s = 10.58, 91.19, 240 GeV and the values of coupling at respective energies

are α−1(
√
s) = 130.855, 127.916, 127.473, sin θW (

√
s) = 0.233543, 0.231201, 0.236168, and

αs(
√
s) = 0.1768, 0.1184, 0.1033.

The NRQCD matrix elements such as the wave function at the origin and relative

velocity were determined in [51] by using two constraints: electromagnetic decay rate

Γ[ηc → γγ] of order αs and the potential model. These values need updates due to changes

in input parameters: charm-quark pole mass, scale of αs from mηc/2 to 2mc, experimental

value of the decay rate. In the determinations of 〈O1〉ηc and 〈v2〉ηc , we used the same

string tension σ = 0.1682 ± 0.0053 GeV2 [51] and updated values for the 1-loop pole

mass mc = 1.483+0.029
−0.041 GeV, the mass difference between J/ψ and ψ(2S) m2S − m1S =

589.188±0.028 MeV, and the decay rate Γ[ηc → γγ] = 5.0±0.4 keV.7 Differently from [51],

7This is 30% smaller than the value 7.2± 0.7± 2.0 keV used in [51].
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we do not take average with 〈O1〉J/ψ in the determination of 〈O1〉ηc . In the decay rate

formula, we have set the scale µ = 2mc. The updated values are as follow:

〈O1〉ηc = 0.302+0.052
−0.049 GeV3, (3.1)

〈v2〉ηc = 0.222+0.070
−0.070. (3.2)

The uncertainty includes variations of σ, mc, m2S −m1S , Γ[ηc → γγ]. And we assumed

the size of the neglected higher-order corrections in αs and v2 to be 30% times the central

values of αs and v2, respectively. Major sources of uncertainty are the variation of σ and

the assumed higher-order corrections.

We like to pay a bit more attention to using those values in eq. (3.1). In conventional

predictions, we may use the same value for the predictions at LO, NLO, and higher-order

accuracy. This way can correctly reproduce the input decay rate using its 1-loop expression,

while with LO expression of the decay rate the result is systematically biased by the amount

of 1-loop correction included in the matrix element. Of course it is not a problem when

the size of 1-loop correction is small as in bottomonium. However in the case of ηc we find

the effect is as large as 40% due to large coupling constant αs(2mc) ∼ 0.27. A similar bias

exists in the cross sections and leads to overshooting in its predictions at LO. Eventually

it would spoil the perturbative convergence due to a large change from LO to NLO and

similarly from LL to NLL.

We can avoid this systematic bias once we use the matrix element determined at

the same order with working order, at which we make predictions. By doing this the

(experimental) input decay rate is always reproduced at each order in αs. This can be

done by replacing the NRQCD matrix element with the experimental value of decay rate

multiplied by short distance coefficient:

〈O1〉ηQ = Γexp

m2
Q

2πα2(0)e4
Q

[
1 +

4

3
〈v2〉+

αs(µ)CF
π

20− π2

4

]
, (3.3)

where the experimental value for ηc is Γexp = 5.0 ± 0.4 keV [52]. We insert eq. (3.3) into

eq. (2.17) and truncate higher-order terms than the working order. One of advantages us-

ing eq. (3.3) is that the error propagations associated with the pole mass and the NRQCD

matrix element 〈O1〉ηc become simpler. The pole mass m2
Q are cancelled by that of eq. (2.4)

in the cross section. The perturbative uncertainty obtained from scale variation of eq. (3.3)

largely contributes to uncertainty of 〈O1〉ηc and this contribution is now naturally combined

in a correlated way with scale variations of the other part in the cross section. Another

advantage from an empirical observation is that the 1-loop correction in the decay con-

stant reduces significantly due to the large cancellation between O(αs) terms of the decay

constant eq. (2.17) and the decay rate in eq. (3.3) as

|fηQ(µ)|2 =
2mP 〈O1〉ηQ

4m2
Q

[
1− 2〈v2〉+

αs(µ)CF
π

(−3)

]
= Γexp[ηQ → γγ]

mP

4πα2(0)e4
Q

[
1 +

αs(µ)CF
π

8− π2

4
− 2

3
〈v2〉

]
. (3.4)
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Figure 1. Left panel: LL, NLL+NLO and NLO cross sections normalized by the LO cross section.

The scale choices are µ0 = 2mc and µ =
√
s. Bands are perturbative uncertainties only. right

panel: perturbative uncertainties in percentage.
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Figure 2. The same results with figure 1 except for µ0 = mc.

Note that the coefficient of αsCF /π reduces from −3 to (8−π2)/4 ≈ −0.5 and the coefficient

of 〈v2〉 changes from −2 to −2/3. In this way, we have better perturbative convergence

between LL and NLL (LO and NLO).

3.2 Final results

Our numerical results for ηc + γ cross sections and perturbative uncertainties at different

accuracies are given in figure 1. Three accuracies LL, NLL combined with NLO non-

singular part and leading v2 correction (NLL+NLO), fixed-order NLO are compared. The

bands on left and right panels are absolute and relative perturbative uncertainties. The

cross section in figures is scaled by the LO cross section

σLO =
8πα2(

√
s)ẽ2

QmP

3α(0)e2
Qs

2
Γexp . (3.5)

The values of scales we choose for LL and NLL+NLO are µ0 = 2mc and µ = µns =
√
s and

for NLO we set all scales to be the same µ0 = µ = µns =
√
s. The perturbative uncertainties

are estimated by varying µ, µns from its central value by a factor 2 up and down and by

varying µ0 by a factor of
√

2. The uncertainties are summed in quadratures as in [31]:
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Figure 3. Left panel: LL, NLL+NLO and NLO cross sections normalized by LO cross section with

µ0 = 2mb. right panel: corresponding perturbative uncertainties in percentage.

√
δσ2

µ0 + δσ2
µ + δσ2

µns , where δσµi is the change of cross section by a scale variation of µi.

Here we do not include other sources of uncertainty to show the perturbative convergence

and they will be included later in the final results in table 1. The perturbative uncertainty

(width of the band) decreases by a factor of αs from LL to NLL+NLO and a reasonable

overlapping between two bands in left panel implies a good perturbative convergence. With

increasing CM energy, the deviation of NLO from NLL+NLO becomes more significant due

to the large logarithms not taken into account at NLO and this clearly shows that the small

perturbative uncertainty of NLO is not reliable at this high energies.

In figure 2 we also show the results with a smaller value of µ0: µ0 = mc instead of

2mc. The NLL perturbative uncertainty at µ0 = mc tends to be asymmetric and smaller

than that for µ0 = 2mc because the lower scale variation from mc by a factor of
√

2 moves

µ0 close to the Landau pole and the scale dependence near this region is not monotonic. In

comparison to figure 1 at µ0 = 2mc we observe relatively better perturbative convergence

between LL and NLL although the other is still reasonable. For these reasons we take

µ0 = 2mc for our final results listed in table 1.

In figure 3 we also show the bottomonium production cross sections and their percent

perturbative uncertainties, which are smaller compared those for charmonium. The decay

rate for ηb is not available we use following value Γ[ηb → γγ] = 0.512+0.096
−0.094 keV and for rel-

ative velocity 〈v2〉ηb = −0.009+0.003
−0.003 taken from [53].8 The central values of scales are µ0 =

2mb and µ = µns =
√
s and their variations are done in same way as for the charmonium.

Table 1 lists our final results for the cross sections at B-, Z- and Higgs-factory energies:√
s =10.58, 91.2, and 240 GeV and Z-boson decay branching fractions. The uncertainties

in the table for charmonium (ηc) channel includes uncertainties of input decay rate Γexp

(±8%), relative velocity 〈v2〉 (±30%) as well as perturbative uncertainties (±3% or less)

8Note that there is no restriction to the positive definiteness of the matrix element 〈v2〉. The matrix

element 〈v2〉 intrinsically contains a linear ultraviolet (UV) divergence that must be regulated. For example,

if we employ dimensional regularization that is consistent with existing calulations of quarkonum decay and

production rates at relative order αs and α2
s, then the scaless power divergent integrals are discarded. Such

subtractions of divergent contributions can lead to both positive and negative values. See ref. [54] for more

details.
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Cross section Branching fraction√
s ηc ηb ηc ηb

10.58 GeV 32.7±2.8 fb —

(7.42±0.61)×10−9 (2.80±0.53)×10−8mZ 0.449±0.037 fb 1.66±0.31 fb

240 GeV 0.189±0.016 ab 0.0934±0.0176 ab

Table 1. Cross sections σ(e+e− → ηQ+γ) and branching fractions Br(Z → ηQ+γ) for charmonium

and for bottomonium with uncertainties including all input parameters as well as perturbative

uncertainties.

shown figure 1 and they are added in quadratures. For the bottomonium (ηb) the uncer-

tainties are input decay rate (±20%), relative velocity (±30%), perturbation (±3% or less).

The final uncertainties quoted in table 1 are dominated by uncertainty of input decay rate.9

There is an independent prediction for 〈v2〉ηb = 0.042 in ref. [55]. The authors of

that reference have determined that value by making use of the Gremm-Kapustin relation.

If we use this numerical value to compute the branching fraction for e+e− → ηb + γ at√
s = mZ given in table 1, we obtain 2.78 × 10−8, which is well within the prediction

(2.80 ± 0.53) × 10−8 given in table 1. However, we have not included the corresponding

analysis into our final results listed in table 1 because the determination of 〈v2〉 by making

use of either the lattice or Gremm-Kapustin approaches suffers too large uncertainties to

determine even the signs of the matrix elements as is stated in ref. [54].

4 Comparison to various predictions and Belle’s upper limit

In figure 4, we summarize the status of NRQCD predictions (points) in comparison with

Belle’s upper limit (90% credibility level) [30] (gray line) for σ(e+e− → ηc + γ) at
√
s =

10.58 GeV. Since the resummation effect is not substantial at this energy our results LL

and NLL+NLO+v2 on the right side of the plot should be comparable to LO and to NLO

with v2 corrections.

For a fair comparison with previous predictions we need to point out several major

differences of input parameters and their variations between different predictions. First, a

small error bar of NLO [19] and invisibly small error of NNLO [21] only include a charm-

quark mass variation by 0.1 GeV and they should not be compared to full uncertainties of

other predictions. Instead their central values can be compared with the others. Second,

LO, NLO+v2 [17], and NLO+v2 resummation [22] use the LDME of [51], which should be

updated with improved measurement of Γ[ηc → γγ] as discussed around eq. (3.1) and with

the updated LDME, we expect decrease of the cross section by about 10 ∼ 20% and also re-

duction of their uncertainties, quantitative estimation of which requires more careful study

and is beyond scope of this paper. On the other hand our results of LL, NLL+NLO+v2

in figure 4 is lower in its value and smaller in uncertainty partially due to this update.

9We do not include relatively small uncertainties from MS mass (±2%) and from higher-order electroweak

corrections.
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Figure 4. Status of NRQCD predictions (points) and Belle’s upper limit [30] (horizontal gray

line) for e+e− → ηc + γ. This work on right side for LL and for NLL+NLO with v2 corrections is

compared to previous predictions (from the left) at NLO [19], NLO with v2 correction [17] and with

v2 resummation [22], and NNLO [21]. We note that uncertainties of NLO [19] and of NNLO [21]

include only quark mass variations while the others include other sources of uncertainties. See the

text for more details.

There are differences in scale choice and its variation. We use two scales µ =
√
s for the

hard-scattering kernel and µ0 = 2mc for the LCDA and decay constant and they are varied

by a factor of 2 for µ and
√

2 for µ0 as discussed in previous section. While we use MS mass

mc = 1.275+0.25
−0.35, many of previous results use the pole mass mc = 1.4∼1.6 GeV. NLO [19]

sets µ = 2mc and NLO+v2 resummation [22] sets µ = mc, 2mc (result with 2mc is shown

in figure 4 and the value for mc is similar), while NLO+v2 [17] makes most conservative

choice µ =
√
s, 2mc, and mc, which leads to relatively larger uncertainty compared that

of NLO+v2 resummation. NNLO [21] chooses different values for renormalization scale

µr =
√
s/2 and the factorization scale µΛ = 1.0 GeV. We do not include the result of [18]

because the 1-loop coefficient is not consistent with other results [14, 17].

Recently the Belle experiment analyzed S-wave (ηc + γ) and P-wave (χcJ + γ with

J = 0, 1, 2) channels [30]. While P-wave cross section (J = 1) and upper limits (J = 0, 2)

are consistent with the theoretical predictions [16–19], S-wave upper limit σexp
ηc+γ ≤ 21.1 fb

at 90 % credibility level is in tension with our NLL+NLO prediction 32.7 ± 2.8 fb by

4.1σ. This reminds us the puzzle in exclusive J/ψ + ηc production [56–59], where a large

discrepancy between theory and experiment was resolved by the combined effect of large

K-factor, resummed relativistic corrections and careful determination of NRQCD matrix

element [51, 60–62].10 However, in our case effect of the K-factor, a ratio of NLL+NLO

including relativistic correction relative to LO, is less than 5% as shown in figure 1. It

would be surprising if higher-order resummation or relativistic corrections is the resolution

to this tension. Of course, more careful study on those corrections and other contributions

from different topology can shed lights on the tension. Without correct understanding

of this channel one may also cast a doubt on theoretical prediction for other exclusive

10Recently, [63] reports the K-factor (NNLO/LO) between +20% and -40% depending on scale choice.
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processes such as radiative Higgs decay into quarkonium, a novel channel to probe the

Yukawa coupling of charm quark [3, 4, 64, 65]. In this aspect, resolving the tension would

be one of important checkpoints. The Belle II experiment with upgraded luminosity is

starting its physics program and in a few years it will release improved measurements and

can clarify if this seemingly tension is to be or not.

5 Summary

We resum large logarithms of 4m2
Q/s at NLL accuracy for exclusive production for ηb,c+γ in

high-energy lepton colliders by using light-cone factorization theorem and by using 2-loop

evolution kernel known from the pion form factor. The leading relativistic correction is also

included and logarithms in the correction is resummed at LL accuracy. The nonsingular

part of order αs is obtained by subtracting the singular part from fixed-order results at

NLO then, is added to resummed cross section. This makes our prediction of order αs
accuracy valid in both resummation region (r � 1) and fixed-order region (r ∼ O(1))

where r = 4m2
Q/s such that the results with the same formalism in eq. (2.1) can be

compared to measurement at the Belle energy near 10 GeV and in future colliders such as

ILC, CEPC, FCC-ee.

Our final state ηc,b is the pseudoscalar, which involves an ambiguity in handling γ5 in

d dimension and the scheme dependency enters in individual parts such as hard kernel,

LCDA, and the decay constant in factorized formula. We explicitly showed that how the

γ5-scheme dependence vanishes in the resummed expression at NLL accuracy. In resummed

expression, there is a part proportional to fixed-order singular result and its scheme inde-

pendence is followed by that of the fixed-order cross section. In the other part of resummed

expression, we observe that the scheme dependence of 2-loop anomalous dimension is

matched to and cancelled against constant term of 1-loop hard-scattering kernel eq. (2.49).

In numerical calculation in section 3 we first rewrite the decay constant in terms of

the experimental decay rate by eliminating NRQCD matrix element to avoid a system-

atic bias by unnecessary higher-order αs contribution that can be contained in NRQCD

matrix element. By doing this all the input formula are computed at the same αs order

to working accuracy and it is observed to show better perturbative convergence from LO

to NLO and from LL to NLL. Our predictions for the cross sections and branching frac-

tion are summarized in table 1. The input decay rates Γ[ηb,c → γγ] dominates over the

others including perturbative uncertainty and uncertainty of our prediction reduces if the

measurement of decay rate improves. In section 4 we compare our prediction to previous

predictions for the Belle experiment and discussed the differences in input parameters and

uncertainty estimates. We also find Belle’s recent upper limit 21 fb is about 4 σ away from

our prediction 33± 3 fb. We hope future Belle II analysis with better statistics coming-out

in a few years and careful theoretical investigation on higher-order corrections may shed

lights on this tension.
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A Fixed-order cross section

The fixed-order cross section up to O(αs, v
2) was computed in [17]

σfixed(r;µ) = σ0

[
(1− r) +

αsCF
4π

cfixed + 〈v2〉cfixed
v2

]
, (A.1)

where the coefficients cfixed and cfixed
v2 are

cfixed = −
2
[
30r2 − (84 + π2)r + 2π2 + 54

]
3(2− r)

+
8(2r − 3)(1− r)

(2− r)2
log

(
2

r
− 2

)
−12(1− r)√

1− r
log

(
1−
√

1− r
1 +
√

1− r

)
− 2

[(
1 +

r

2

)
log2

(
1−
√

1− r
1 +
√

1− r

)
− log2

(
2

r
− 1

)]
+4Li2

(
r

2− r

)
,

cfixed
v2 = −4

3

(
1− r

4

)
. (A.2)

Note that our coefficient cfixed is related to that of C(r) in [17] as: cfixed = 3(1− r)C(r).

B Plus distributions

Here, we give the definition of plus distributions used in the paper. The + and ++ functions

are defined by∫ 1

0
dx [f(x)]+g(x) =

∫ 1

0
dx f(x)[g(x)− g(1/2)],∫ 1

0
dx [f(x)]++g(x) =

∫ 1

0
dx f(x)[g(x)− g(1/2)− g′(1/2)(x− 1/2)], (B.1)

The plus distribution depending on two arguments x and y is defined by

[f(x, y)]+ ≡ f(x, y)− δ(x− y)

∫ 1

0
dzf(z, y). (B.2)
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C Anomalous dimension

The NLO anomalous dimension γ
‖(1)
n−1 is given in ref. [66] as

γ
(1)
n−1 =

(
C2
F −

1

2
CFCA

){
16Hn

2n+ 1

n2(n+ 1)2
+ 16

[
2Hn −

1

n(n+ 1)

](
H(2)
n − S

′(2)
n/2

)
+64S̃n + 24H(2)

n − 3− 8S
′(3)
n/2 − 8

3n3 + n2 − 1

n3(n+ 1)3
− 16(−1)n

2n2 + 2n+ 1

n3(n+ 1)3

}

+CFCA

{
Hn

[
536

9
+ 8

2n+ 1

n2(n+ 1)2

]
− 16HnH

(2)
n +H(2)

n

[
−52

3
+

8

n(n+ 1)

]

−43

6
− 4

151n4 + 263n3 + 97n2 + 3n+ 9

9n3(n+ 1)3

}

+CF
nf
2

{
− 160

9
Hn +

32

3
H(2)
n +

4

3
+ 16

11n2 + 5n− 3

9n2(n+ 1)2

}
, (C.1)

where

H(k)
n ≡

n∑
j=1

1

jk
, with H(1)

n ≡ Hn, (C.2)

S
′(k)
n/2 ≡

H
(k)
n/2, if n is even,

H
(k)
(n−1)/2, if n is odd,

(C.3)

S̃n ≡
n∑
j=1

(−1)j

j2
Hj . (C.4)

The off-diagonal evolution factor dnk(µ, µ0) is given by

dnk(µ, µ0) =
Mnk

γ
(0)
n − γ(0)

k − 2β0

1−
[
αs(µ)

αs(µ0)

] γ(0)n −γ
(0)
k
−2β0

2β0

 , (C.5)

where

Mnk =
(k + 1)(k + 2)(k + 3)

(n+ 1)(n+ 2)
(γ(0)
n − γ

(0)
k )

×

[
8CFAnk − γ

(0)
k − 2β0

(n− k)(n+ k + 3)
+ 4CF

Ank − ψ(n+ 2) + ψ(1)

(k + 1)(k + 2)

]
,

Ank = ψ

(
n+ k + 4

2

)
− ψ

(
n− k

2

)
+ 2ψ(n− k)− ψ(n+ 2)− ψ(1), (C.6)

and ψ(n) is the digamma function.
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