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Abstract
In modern technologies such as autonomous vehicles and service robots, control engineering
plays a crucial role for the overall performance and safety of the system. However, the control
design becomes often very time-consuming or unfeasible due to the increasing complexity
of recent technological advancements. The classical control approaches, which are based
on models of the systems using first-order principles, are not satisfactory in the presence
of complex dynamics, e.g., for highly nonlinear systems or interaction with prior unknown
environment. Recent findings in the area of computational intelligence and machine learning
have shown that data-driven approaches lead to very promising results in a wide application
range as they require only a minimal prior knowledge for the modeling of complex dynamics.
Within the past two decades, Gaussian process (GP) models have been used increasingly as
a data-driven technique due to many beneficial properties such as the bias-variance trade-
off and the strong connection to Bayesian mathematics. However, the major drawback in
data-driven approaches frequently manifests as unpredictable outcomes. Thus, guarantees
about the stability and performance of the control loop are absent which is translated as
compromised safety in control systems. As a consequence, the current application of GP
models in control scenarios is limited to non-critical and low performance systems due to
their unpredictable “blackbox” behavior.
In this thesis, we analyze the behavior of GP models and present their application in con-
trol scenarios with formal guarantees in three steps. First, we analyze the control related
properties of GP dynamical models which heavily depend on the underlying kernel function.
For GP state space models and nonlinear output models, conditions for the stability of the
system are derived. As GP dynamical models generally lead to non-Markovian systems,
we introduce approximations that achieve Markovian dynamics. For these approximations
quantitative results for the stability and equilibrium points are derived to incorporate con-
trol theoretic prior knowledge into the GP model. Next, for the usage of GPs in model
based control laws, we propose a Bayesian optimization based approach to select the kernel
function such that the closed-loop performance is optimized. In case of a misspecified kernel,
an upper bound for the model error is provided.
Last, a GP model based control law is presented which guarantees the safe control of Euler-
Lagrange systems with unknown dynamics. These systems are omnipresent as they include
most of electromechanical systems such as robots and electric circuits. A GP model is used
for the feed-forward compensation of the unknown dynamics of the system. The gains of
the feedback part are adapted based on the uncertainty of the learned model. Thus, the
feedback gains are kept low as long as the learned model describes the true system with
sufficient precision. We demonstrate how to select a suitable gain adaption law that incor-
porates the uncertainty of the model and guarantees a bounded tracking error. Additionally,
a quantification of the maximum tracking error, based on the number of training samples,
is derived.
In summary, the results of this thesis increase the understanding of GP models and allow to
use this data-driven technique not only to improve the performance but also to guarantee
the safety of control systems.
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Zusammenfassung
In vielen modernen Systemen, wie autonomen Fahrzeugen oder Service Robotern, spielt
die Regelungstechnik eine wichtige Rolle. Die Entwicklung eines geeigneten Reglers wird
mit zunehmender Komplexität der Systeme jedoch schwieriger, da ein präzises Modell der
Regelstrecke benötigt wird. Bisher wurde die Dynamik eines Systems häufig mittels Dif-
ferenzialgleichungen basierend auf physikalischen Grundprinzipien hergeleitet. Auf Grund
des benötigten Zeitaufwands ist dieser Ansatz für komplexe Systeme, wie zum Beispiel
hochgradig nichtlineare Systeme, jedoch nicht mehr zufriedenstellend. Das Problem ver-
stärkt sich noch durch die zunehmende Verschmelzung der Systeme mit unbekannten Umge-
bungen, wie zum Beispiel bei der Mensch-Roboter-Interaktion.
Datenbasierte Verfahren haben bei der Modellierung solcher Systeme überzeugende Ergeb-
nisse erzielt und daher in den letzten Jahren signifikant an Bedeutung gewonnen. Vor allem
Gauß-Prozess (GP) Modelle haben sich, auf Grund der starken Verbindung zur Bayesschen
Statistik, als besonders vielversprechender Ansatz erwiesen. Hierbei werden die Trainings-
daten mit Hilfe einer Kernel-Funktion in einen hoch-dimensionalen Raum transformiert,
wodurch eine flexible Regression ermöglich wird. Ein entscheidender Nachteil bei der Ver-
wendung von datengetriebenen Modellen in dynamischen Systemen sind jedoch die fehlenden
formalen Garantien bezüglich der Stabilität und Performanz des Regelkreises. Auch wenn
bereits einige erfolgreiche Regelungen basierend auf datengetriebenen Modellen existieren,
so sind diese daher nicht für sicherheitskritische oder hochperformante Systeme geeignet.
In dieser Arbeit analysieren wie das regelungstechnische Verhalten von GP Modellen und
präsentieren die Anwendung in Regelungsverfahren mit formalen Garantien. Zunächst wird
gezeigt, wie GP Modelle als dynamisches System eingesetzt werden können. Da dies zu
nicht-Markov Systemen führt, stellen wir eine Markovische Näherung zur Verwendung der
Modelle in Simulationen und modellbasierte Regelungsverfahren vor. Für verschiedene Arten
von dynamischen GP Modellen wird die Stabilität und die Anzahl der Ruhelagen untersucht
und nachgewiesen. Des Weiteren ermöglicht die Wahl des Kernels zusätzliches Vorwissen in
das Modell zu integrieren. Für den Einsatz von GP Modellen in der Regelung entwickeln
wir ein Verfahren, welches durch die Wahl des Kernels die Performanz des Regelkreises op-
timiert. Sollte der Kernel für das zu lernende System nicht geeignet sein, so wird eine obere
Schranke für den Modellfehler berechnet.
Schlussendlich zeigen wir, wie GP Modelle zur Regelung von Euler-Lagrange Systeme mit
unbekannter Dynamik eingesetzt werden können. Die unbekannte Dynamik kann durch
externe, schwierig zu modellierende Kräfte wie den Menschen, Reibung oder die Manipula-
tion von Flüssigkeiten entstehen. Für die Modellierung der unbekannten Dynamik mittels
GP Modellen werden zunächst Trainingsdaten des Systems gesammelt. Das so erzeugte,
datenbasierte Modell wird, zusammen mit eventuell vorhandenem Vorwissen über das Sys-
temverhalten, als Vorsteuerung zur Kompensierung der unbekannten Dynamik genutzt. Um
einen möglichst niedrigen Feedback Anteil im Regler zu erhalten, wird die Verstärkung des
Feedbacks basierend auf der Unsicherheit des gelernten Modells angepasst. Dabei wird nicht
nur die Stabilität des Regelkreises garantiert, sondern auch die Berechnung des maximalen
Regelfehlers ermöglicht.
Die Resultate dieser Arbeit erzielen ein besseres Verständnis von GP Modellen und erlauben
die Verwendung dieses datengetriebenen Verfahrens in der Regelung komplexer Systeme, um
sowohl die Performanz zu verbessern, als auch die Sicherheit zu garantieren.
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Notation

Acronyms
GP Gaussian process

GPR Gaussian process regression

GPDM Gaussian process dynamical model

GP-SSM Gaussian process state space model

GP-ASSM Gaussian process approximated state space model

GP-NOE Gaussian process nonlinear output error

GP-ANOE Gaussian process approximated nonlinear output error

SVM support vector machine

BO Bayesian optimization

PD proportional-derivative

MSPE mean square prediction error

RMSE root mean square error

RKHS reproducing kernel Hilbert space

CTC computed torque control

CTC-GPR computed torque control with Gaussian process regression

CTC-SGP computed torque control with stochastic Gaussian process model

EL Euler-Lagrange
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Notation

Mathematical Conventions

Sets and Spaces
A,B sets

N set of natural numbers

R set of real numbers

R>0 set of positive real numbers

R≥0 set of non-negative real numbers

Cx set of x-times continuously differentiable functions

A ∪ B union of sets A and B

A ∩ B intersection of sets A and B

A \ B set A without B

Scalars, Vectors, Matrices and Functions
a, b, c scalars (small letters)

a, b, c column vectors (bold small letters)

A,B,C matrices (capital letters)

In ∈ Rn×n identity matrix

a> ∈ R1×n,A> ∈ Rn×m transpose of a ∈ Rn,A ∈ Rm×n

A−1 ∈ Rn×n inverse of A−1 ∈ Rn×n with A−1A = AA−1 = In

A+ = A>(AA>)−1 ∈ Rn×m Moore-Penrose pseudo inverse of A ∈ Rm×n where
m < n, rank(A) = m,AA+ = Im

ai i-th element of vector a

a−i vector a without the i-th element

Aa:b,c:d submatrix of A formed between the a-th and the b-th
rows, and the c-th and the d-th column

A:,: = A index : indicates all rows and columns, respectively

[a, b] ∈ Rn×2 horizontal concatenation of a, b ∈ Rn

[a; b] = [a>, b>]> ∈ R2n vertical concatenation of a, b ∈ Rn
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Notation

‖x‖a a-norm of x ∈ Rn, without index a = 2

a � b component wise inequality with ai ≤ bi,∀i

‖f‖H Hilbert space norm of function f

ḟ = d
dtc
f time derivative of function f

∂
∂z
f partial derivative of function f with respect to z

∇f gradient of function f

det(A) determinant of A ∈ Rn×n

rank(A) rank of A ∈ Rn×m

ker(A) null space of A ∈ Rn×m

tr(A) trace of A ∈ Rn×n

λ(A) eigenvalue of A ∈ Rn×n

λ(A),σ(A) smallest eigenvalue, singular value of A ∈ Rn×n

λ̄(A),σ(A) largest eigenvalue, singular value of A ∈ Rn×n

Probability
P probability measure

p probability distribution

P(A) probability of A

P(A|B) = P(A∩B)
P(B) conditional probability of A given B

N (m, Σ) Gaussian distribution with mean m ∈ Rn and variance Σ ∈ Rn×n

µ(·) mean

var(·) variance

E(·) expected value
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Notation

Accents and Subscripts
(̂·) estimate

(̃·) corrupted by noise

(̄·) mean

(̌·) modified/extended

(·) upper bound

(·) lower bound

{·} sequence

Main Variables
a covariance vector times Gram matrix

c, c general constant

cact(·, ·) cost for current state and input

cC upper bound of estimated Coriolis matrix

cL Lipschitz constant

ctot(·, ·) total cost functional for whole task

dKL(·, ·) Kullback-Leibler-divergence

e = qd − q error of generalized coordinates

f state mapping

fdet state mapping of a deterministic GP-SSM

fgen general function

fGP Gaussian process distribution

f t time-dependent mean vector of GP-ASSMs

g(q) generalized gravity vector

h lower bound of estimated inertia matrix

h upper bound of estimated inertia matrix

h(·) state mapping of GP-NOE models
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Notation

hex(·, ·) storage function

ht(·, ·) time-dependent mean vector of GP-ANOE models

k(·, ·) kernel function

k(·, ·) covariance vector function

kd, kd lower / upper bound of feedback matrix function Kd(·)

kp, kp lower / upper bound of feedback matrix function Kp(·)

m actual length of memory

m maximum length of memory

m(·) mean function of Gaussian process

nD number of training points

ni number of discretization intervals

nin number of input values for GP-NOE models

nk number of kernels

no dimension of output of a kernel-based model

nout number of output values for GP-NOE models

nq dimension of generalized coordinates

nt number of time-steps

nu dimension of system input

nx dimension of system state

nydat dimension of output data points

nz dimension of index set

nγ dimension of parameterization vector

nζ dimension of concatenated output and input vector ζt

nξ dimension of concatenated state and input vector ξt

nϕ number of hyperparamters

nφ dimension of the feature space

nΦ number of hyperparameter sets

okbm(·, ·, ·, ·) output function of a kernel-based model
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Notation

ot output of a kernel-based model

p general degree

q generalized coordinates

qd desired generalized coordinates

qc concatenation [q̈d; q̇d; q̈]

qd upper bound of desired generalized coordinates

qq concatenation [q̈; q̇; q]

t discrete time step

tc continuous time

ts sampling time

u continuous-time system input

uctrl general control law

uk discrete-time system input

w,w weighting value / vector

x continuous-time system state

xdat input data point

xt discrete-time system state

xmt state of GP-ASSMs with maximum length of memory m

y continuous-time system output

ydat output data point

yt discrete-time system output

ymt output of GP-ANOE models with maximum length of memory m

z helper variable

A system matrix of linear system

C(q̇, q) generalized Coriolis matrix

Ft(·, ·) time-dependent variance matrix of GP-ASSMs

H(q) generalized inertia matrix

Ht(·, ·) time-dependent variance matrix of GP-ANOE models
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Notation

K(·, ·) Gram matrix

Ǩt extended Gram matrix with time-dependent size

Kd,Kd(·) feedback gain / adaptive feedback function for derivative term

Kp,Kp(·) feedback gain / adaptive feedback function for proportional term

P diagonal matrix of lengthscales

V Lyapunov function

X input training matrix

X̌t extended input training matrix with time-dependent size

Y output training matrix

Y̌t extended output training matrix with time-dependent size

I integral operator

In numerical integral operator

L drift operator

P backshift operator

B ball

D set of training data

F Hilbert space

Fσ σ-algebra

H reproducing kernel Hilbert space

I invariant set

In neighborhood set

K set of valid kernel functions

L(q̇, q) Lagrangian function

T (q̇, q) kinetic energy function

V(q) potential function

X state space

X ∗ set of equilibrium points

Z index set
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Notation

α weighting vector for kernel function

α(i) weighting vector for i-th dimension

β,β variance scaling factor / vector

γmax,γmax, maximum information gain / vector

γy parameterization vector for output mapping

δ probability for model error

δm probability for multi-output model error

ε positive number

ζt concatenation of past outputs and inputs vector

ν, νbrw Gaussian distributed noise / Brownian noise

ξt concatenation of state vector and input vector

σn standard deviation of Gaussian distributed noise

τ̌ residual dynamics

ϕ vector of hyperparameters

φ(·) feature map

∆ model error

∆ upper bound of model error

Λm
t matrix of outputs and inputs with maximum length of memory m

Ξm
t matrix of states and inputs with maximum length of memory m

Φ set of hyperparameters

Φset set of sets of hyperparameters

Ω compact set for model error

Ωss sample space
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Introduction 1

In many modern technologies such as autonomous vehicles and service robots, control engi-
neering plays a crucial role for the overall performance and safety of the system. The task
of a controller includes the monitoring of the actual output of a system, e.g., the position
of a robot, and compareing it with a desired value. If needed, a control action is gener-
ated to bring the system to this value. The starting point is usually to derive a reliable
model of the system. This is not only necessary for a subsequent controller synthesis but
also for simulation and verification purposes. The classical approach is to derive a model
of the system using first-order principles, for instance, by hand or exploiting software tools
to obtain the system dynamics. However, these approaches are very time-consuming and
challenging in the presence of complex dynamics [Pil+14], e.g., for highly nonlinear systems
or interaction with prior unknown environment. These complex dynamics can be found in,
but are not limited to, human motion prediciton [WFH08; Bre97], (soft-)robotics [Mog+16;
NSP08; AMS14] and chemical processes [PGK13; Arc96].
In contrast, measured process data of the systems can easily be collected due to the ad-
vancements in information and storage technology [Loh12]. Thus, making full use of the
information of the data to enhance the modeling and control of complex systems will be
valuable for coping with rapid technological advancements [HW13]. The data-driven ap-
proaches were originated from the machine learning community where they have led to very
convincing results, e.g., in pattern recognition [Lea05] and decision making [PF13]. These
data-driven models require only a minimal prior knowledge for the modeling of complex
dynamics, as established in recent findings in the area of computational intelligence and
machine learning [Ras06].
However, the transfer of these models to the control community rises challenges, as well
established analysis and synthesis tools are not suitable. Therefore, the stability and per-
formance of control loops with data-driven models can not be analyzed and, thus, not be
guaranteed. Furthermore, data-driven models can provide additional information about the
uncertainty of the model which might be worth to exploit. Due to this lack of knowledge,
the current application of data-driven approaches in control is often limited to non-critical
and/or low performance systems.

1.1 Challenges in Data-driven based Control
The lack of interpretability and analyzability of data-driven models narrows their applica-
bility in control. This “blackbox” behavior manifests as the absence of guarantees about the
stability and performance of the control loop [Qiu02], which is translated as compromised
safety in control systems. To overcome this issue, the understanding of data-driven models

9



1 Introduction

must be improved, and the relation to classical control concepts as well as new approaches
has to be evaluated.

Challenge 1.1. How can data-driven models be employed in control?

In control theory, there exist many approaches for modeling dynamical systems based
on parametric models. Nonlinear modeling techniques, such as nonlinear auto regressive
models, are well-established and define a strategy how a dynamical system can be modeled.
In contrast, data-driven models basically provide a way to exploit data for predictions. The
step towards data-driven models for dynamical systems raises a question if and how these
models can be used in similar settings as parametric models.

Challenge 1.2. What are the control theoretic properties of data-driven models?

Once the step from data-driven models to a dynamical systems is established, the analysis
of the control relevant properties is necessary. The knowledge about boundedness, stability
and equilibria, for instance, are not only necessary for a successful modeling with data-driven
techniques but also for further application in model based control approaches. Furthermore,
if specific control properties are related to specific classes of data-driven models, this informa-
tion can be used as control relevant prior knowledge to the model. Therefore, investigations
in control theoretic properties are key for guarantees in applications.

Challenge 1.3. How can the remaining degrees-of-freedom be selected and what are the
consequences of an incorrect selection?

Data-driven models normally depend on additional functions and (hyper)parameters that
must be determined. This is referred to model selection in the machine learning community.
This selection classically depends on prior knowledge, as stated in the previous challenge,
and the data itself. However, if the models are used in a control setting, additional in-
formation such as the desired task can become relevant. Furthermore, the stability and
performance of the closed-loop are often from a higher interest than the quality of the model
itself. Therefore, it might be worth performing the model selection based on control relevant
requirements. Finally, the consequences of an incorrect selected models are vague and need
further investigations.

Challenge 1.4. How can a controller, which exploits the additional information of data-
driven models, be designed?

After the identification of the unknown system, the data-driven models should be used
in control settings. There are some approaches available that use these models, typically
by simply replacing a parametric model. However, data-driven models often contain much
more information, e.g., about the uncertainty of the model, which is worth exploiting. The
classical control approaches are not tailored for these kind of models and, thus, are not
sufficient. Therefore, the design of a suitable control approach that exploits the full power
of data-driven models is an open challenge.

Challenge 1.5. Is there a way to provide stability and performance guarantees for control
based on data-driven models?
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1.2 Data-driven Models in Control

Stability and performance guarantees are necessary for the application of controllers to
safety critical and/or high-performance systems. Therefore, a major step for data-driven
control approaches is essentially to provide rigorous guarantees. However, general assurances
are hard to obtain due to the enormous flexibility of these models which makes the analysis
extremely different in contrast to parametric models. Therefore, giving guarantees in data-
driven control is still an open problem, which is one of the key steps for the application to
a broad range of safety critical systems.

1.2 Data-driven Models in Control
Many classical control approaches are based on physical dynamic models, which describe
the underlying system behavior in a sufficiently accurate fashion. For complex dynamical
systems, however, such descriptions are often extremely hard to obtain, or sometimes non-
existent. Even though neural networks show remarkable results in many application areas,
the complexity is still limited due to its finite size of parameters (number of neurons and
layers) [Kec01]. Therefore, data-driven approaches are highly attractive to overcome this
issue. Data-driven models are based on observations and measurements of the true system
and need a minimum amount of prior knowledge of the system. In contrast to paramet-
ric models, which are defined by a finite dimensional parameter vector, the complexity of
data-driven models is not limited as their convolution grows with the amount of training
data [HW13]. For this reason, data-driven models are also called non-parametric models.
A very promising idea in terms of interpretability is to combine the advantages of data-driven
models with a Bayesian perspective. Bayesian probability mathematics enables an efficient
quantification of uncertainty of data-driven models. The Bayesian methodology is a prob-
abilistic construct that allows new information to be combined with existing information:
using Bayes’ theorem, the existing knowledge is combined with information from the new
data to update the knowledge [Rad96]. A promising Bayesian data-driven model for control
is the Gaussian process (GP) model as it provides an analytic solution for the predicted mean
and variance - the uncertainty measure - for a new test point based on collected training
data [Ras06]. A GP model uses an underlying kernel functions to perform the prediction in a
high-dimensional, implicit feature space. The characteristics of the kernel directly influence
control related properties of the GP [SHS06; Aro50]. The application of GP models for the
control of complex systems has already led to many convincing results, especially for cases
with small data sets [Koc16; Koc+03a]. So far, GPs are treated as “blackbox” models in
modeling and control as the prediction behavior of data-driven Bayesian models are only
poorly explored. In particular, a holistic approach to determine the properties of GP models
in control is missing.
In the last ten years, learning of dynamics has propelled many areas of control forward at
a high pace – except for physical systems. This lag is crucial as learning physical models is
critical for the safety of control applications involving reasoning of prior actions or planning
of future actions, e.g., service robotics and industrial automation. Instead, most engineering
approaches focus on classical off-the-shelf modeling as it ensures physical plausibility of the
model and controller – at a high cost of precise measurements and time exposure. The plau-
sible representations are often preferred, as these models guarantee to extrapolate well to
unknown samples, while the outcome of learned models are often hard to predict. Recently,
first approaches to encode control related structures for modeling dynamical systems are
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presented [LRP19]. However, the existing methods focus on the integration of structures
for modeling dynamical systems only and neglect control theoretic properties. Furthermore,
most of the existing approaches are applied to deterministic data-driven models. Hence, the
probabilistic nature of Bayesian models is not considered.
The control design based on data-driven models can improve the controller’s quality [HW13].
Thus, it allows a more performant control of unknown systems by making use of the data-
driven plant model prediction to derive the control input for the actual plant. Once a model
of the plant is learned from the data, control strategies such as model predictive control or
feedback linearization can be applied, as some types of data-driven models can be integrated
in existing control structures [KM05; Uml+17]. First promising results on safety with these
types of control settings have been presented in [Ber+17; Fis+19]. However, GPs provide
much more information than classical models. The exploitation of such information would
lead to considerable improvements for the control loop. In conclusion, preserving the safety
of data-driven based control strategies is challenging due to the missing structure and un-
certainty quantification. As consequence, existing data-driven based control approaches lack
of formal stability and performance guarantees.

1.3 Main Contributions and Outline
The thesis addresses the recent challenges in GP model based control to allow data-driven
methods in safety critical applications. For this purpose, we start with the embedding of
GP models in dynamical systems. For different types of structure, the control relevant
properties are analyzed and we propose how to insert prior knowledge about the system. As
the kernel selection is one of the key parts in GP modeling, a task-based selection algorithm
is proposed which surpasses the classical data-based selection. Furthermore, error bounds
for the case of a misspecified kernel are derived. In the next step, a GP model based control
law is introduced. The full probabilistic capabilities of the GP are exploited as the mean
predication is used for a feed-forward compensation of the unknown dynamics and the model
uncertainty to adapt the feedback gains. This trade-off between feed-forward and feedback
control allows to keep the gains as low as possible without losing a desired performance. For
this approach, we guarantee the passivity and the boundedness of the tracking error for the
closed-loop. In addition, the performance is quantified based on the number and distribution
of the training data.
In the following, we summarize the main contributions of this thesis addressing the presented
challenges. At the beginning of each chapter, a brief review of the relevant related work and
the open problems is provided.

Chapter 2: We start with the introduction of the required background knowledge about
GP models. For this purpose, the general idea of GPs and the application in regression is
presented. The relation between GPs, kernel-based models and reproducing Kernel Hilbert
spaces is introduced. A set of the most common kernel functions is presented and the
individual properties are highlighted. Furthermore, we show the general embedding of GP
models into dynamical systems. Finally, the different ways on how model uncertainty can
be transformed into error bounds are summarized. The formal descriptions are supported
by several examples for an intuitive understanding.
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Chapter 3: In this chapter, we address Challenges 1.1 and 1.2 which deal with the control
related properties of data-driven models. We start with the analysis of certain GP dynamical
systems, in particular state space systems and nonlinear output error models. It is shown
that the GP based dynamical model is generally non-Markovian and we present approxima-
tions to obtain Markovian dynamics. The difference between the actual behavior and the
approximations is analyzed in terms of prediction error. Furthermore, we introduce a com-
prehensive analysis for the approximated model which includes, among others, boundedness
and number/distribution of the equilibria. The analysis is separated in a deterministic and
stochastic point of view on GP dynamical models. The results presented in this chapter have
been published in [BH16a; BH16b; BH20] and contributed to [Yam+20; Uml+20b; Led+20].

Chapter 4: In this chapter, we address Challenge 1.3 that states the model selection
problem of GP models. Here, the model selection process is transferred from a classical
data-based approach to a control focused method. For this purpose, the performance of the
control loop is evaluated by means of a cost functional and the model selection is optimized
based on the outcome. In case of a misspecified GP model, we propose an upper bound for
the modeling error. The results presented in this chapter have been published in [BUH18;
Bec+19].

Chapter 5: In this chapter, we address Challenges 1.4 and 1.5 which seek GP model based
control approaches with formal guarantees. For this purpose, a GP model is integrated in
an extended computed torque control scheme for Euler-Lagrange systems with unknown
dynamics. We use the mean prediction of the GP to cancel the unknown dynamics in a
feed-forward manner and the model fidelity to adapt the feedback gains. This approach is
motivated to focus on feed-forward control as long as a sufficiently accurate model of the
plant is learned. Otherwise, the feedback gains are automatically increased to preserve the
performance. For this control setting, we provide not only boundedness guarantees but also
the performance in terms of the maximum tracking error depending on the number and dis-
tribution of the training data. Finally, simulations and an experimental evaluation show the
superiority of the proposed approach. The results presented in this chapter have been pub-
lished in [BKH19; BH19; BH18; Bec+17; BUH17] and contributed to [Uml+20a; Cap+20;
BCH20].

13





Gaussian Process models 2

A Gaussian process (GP) is a stochastic process that is in general a collection of random
variables indexed by time or space. Its special property is that any finite collection of these
variables follows a multivariate Gaussian distribution. Thus, the GP is a distribution over
infinitely many variables and, therefore, a distribution over functions with a continuous
domain. Consequently, it describes a probability distribution over an infinite dimensional
vector space. For engineering applications, the GP has gained increasing attention as su-
pervised machine learning technique, where it is used as prior probability distribution over
functions in Bayesian inference. The inference of continuous variables leads to Gaussian
process regression (GPR) where the prior GP model is updated with training data to obtain
a posterior GP distribution. Historically, GPR was used for the prediction of time series, at
first presented by Wiener and Kolmogorov in the 1940’s. Afterwards, it became increasingly
popular in geostatistics in the 1970’s, where GPR is known as kriging. Recently, it came back
in the area of machine learning [Rad96; WR96], especially boosted by the rapidly increasing
computational power.
In this chapter, we present the necessary background information about GPs and GPR,
mainly based on [Ras06], focusing on the application in control. We start with an intro-
duction of GPs, explain the role of the underlying kernel function and show its relation to
reproducing kernel Hilbert spaces. Afterwards, the embedding in dynamical systems and
the interpretation of the model uncertainty as error bounds is presented. Several examples
are included for an intuitive understanding in addition to the formal notation.

2.1 Gaussian Processes
Let (Ωss,Fσ,P ) be a probability space with the sample space Ωss, the corresponding σ-
algebra Fσ and the probability measure P. The index set is given by Z ⊆ Rnz with positive
integer nz. Then, a function fGP(z,ωss), which is a measurable function of ωss ∈ Ωss with
index z ∈ Z, is called a stochastic process. The function fGP(z,ωss) is a random variable
on Ωss if z ∈ Z is specified. It is simplified written as fGP(z). A GP is a stochastic process
which is fully described by a mean functionm : Z → R and covariance function k : Z×Z → R
such that

fGP(z) ∼ GP (m(z), k(z, z′)) (2.1)
m(z) = E [fGP(z)]

k(z, z′) = E [(fGP(z)−m(z)) (fGP(z′)−m(z′))]
(2.2)

with z, z′ ∈ Z. The covariance function is a measure for the correlation of two states (z, z′)
and is called kernel in combination with GPs. Even though no analytic description of the
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2 Gaussian Process models

probability density function of the GP exists in general, the interesting property is that any
finite collection of its random variables {fGP(z1), . . . , fGP(znGP)} follows a nGP-dimensional
multivariate Gaussian distribution. As a GP defines a distribution over functions, each
realization is also a function over the index set Z.

Example 2.1. A GP fGP(tc) ∼ GP (m(tc), k(tc, t′c)) with time tc ∈ R≥0, where

m(tc) = 1A, k(tc, t′c) =
(0.1A)2 tc = t′c

(0A)2 tc 6= t′c

describes a time-dependent electric current signal with Gaussian white noise with a
standard deviation of 0.1 A and a mean of 1 A.

2.1.1 Gaussian Process Regression
The GP can be utilized as prior probability distribution in Bayesian inference, which allows
to perform function regression. Following the Bayesian methodology, new information is
combined with existing information: using Bayes’ theorem, the prior is combined with new
data to obtain a posterior distribution. The new information is expressed as training data
set D = {X,Y }. It contains the input values X = [x{1}dat,x

{2}
dat, . . . ,x

{nD}
dat ] ∈ Z1×nD and

output values Y = [ỹ{1}dat , ỹ
{2}
dat , . . . , ỹ

{nD}
dat ]> ∈ RnD , where

ỹ
{i}
dat = fGP(x{i}dat) + ν (2.3)

for all i = 1, . . . ,nD. The output data might be corrupted by Gaussian noise ν ∼ N (0,σ2
n).

Remark 2.1. Note that we always use the standard notation X for the input training data
and Y for the output training data throughout this thesis.

As any finite subset of a GP follows a multivariate Gaussian distribution, we can write
the joint distribution

Y

fGP(z∗)

 ∼ N



m(x{1}dat)

...
m(x{nD}dat )
m(z∗)

 ,


K(X,X) + σ2

nInD k(z∗,X)

k(z∗,X)> k(z∗, z∗)



 (2.4)

for any arbitrary test point z∗ ∈ Z. The function m : Z → R denotes the mean function.
The matrix function K : Z1×nD ×Z1×nD → RnD×nD is called the covariance or Gram matrix
with

Kj,l(X,X) = k(X:,l,X:,j) for all j, l ∈ {1, . . . ,nD} (2.5)

where each element of the matrix represents the covariance between two elements of the
training data X. The expression X:,l denotes the l-th column of X. For notational sim-
plification, we shorten K(X,X) to K when necessary. The vector-valued kernel func-
tion k : Z × Z1×nD → RnD calculates the covariance between the test input z∗ and the
input training data X, i.e.,

k(z∗,X) = [k(z∗,X:,1), . . . , k(z∗,X:,nD)]>. (2.6)
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2.1 Gaussian Processes

To obtain the posterior predictive distribution of fGP(z∗), we condition on the test point z∗
and the training data set D given by

p(fGP(z∗)|z∗,D) = p(fGP(z∗),Y |X, z∗)
p(Y |X) . (2.7)

Thus, the conditional posterior Gaussian distribution is defined by the mean and the variance

µ(fGP(z∗)|z∗,D) = m(z∗) + k(z∗,X)>(K + σ2
nInD)−1

(
Y − [m(X:,1), . . . ,m(X:,nD)]>

)
var(fGP(z∗)|z∗,D) = k(z∗, z∗)− k(z∗,X)>(K + σ2

nInD)−1k(z∗,X). (2.8)

A detailed derivation of the posterior mean and variance based on the joint distribution (2.4)
can be found in appendix A.1. Analyzing (2.8) we can make the following observations:
i) The mean prediction can be written as

µ(fGP(z∗)|z∗,D) = m(z∗) +
nD∑
j=1

αjk(z∗,X:,j) (2.9)

with α = (K+σ2
nInD)−1

(
Y − [m(X:,1), . . . ,m(X:,nD)]>

)
∈ RnD . That formulation highlights

the data-driven characteristic of the GPR as the posterior mean is a sum of kernel functions
and its number grows with the number nD of training data.
ii) The variance does not depend on the observed data, but only on the inputs, which is a
property of the Gaussian distribution. The variance is the difference between two terms: The
first term k(z∗, z∗) is simply the prior covariance from which a (positive) term is subtracted,
representing the information the observations contain about the function. The variance
expresses the uncertainty about the underlying function fGP(z∗) and does not include the
measurement noise given by the variance σ2

n. To prediction the uncertainty of the measured
output, i.e. the output of the function fGP(z∗) plus the measurement noise, an additional
noise term σ2

nInD must be added to the variance in (2.8). Finally, (2.8) clearly shows the
strong dependence of the posterior mean and variance on the kernel k that we will discuss
in depth in Section 2.2.

Example 2.2. We assume a GP with zero mean and a kernel function given by

k(z, z′) = 0.36792 exp
(
− (z − z′)2

2 · 2.71832

)

as prior distribution. The training data set D is assumed to be

X =
[
1 3 6 10

]
, Y =

[
0 −0.3 0.3 −0.2

]>
,

where the output is corrupted by Gaussian noise with σn = 0.0498 standard deviation
and the test point is assumed to be z∗ = 5. According to (2.5) to (2.8) the Gram
matrix K(X,X) is calculated as

K(X,X) =


0.1378 0.1032 0.0249 0.0006
0.1032 0.1378 0.0736 0.0049
0.0249 0.0736 0.1378 0.0458
0.0006 0.0049 0.0458 0.1378


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2 Gaussian Process models

and the kernel vector k(z∗,X) and k(z∗, z∗) are obtained to be

k(z∗,X) =
[
0.0458 0.1032 0.1265 0.0249

]
k(z∗, z∗) = 0.1378.

Finally, with (2.8), we compute the predicted mean and variance for fGP(z∗)

µ(fGP(z∗)|z∗,D) = 0.0278, var(fGP(z∗)|z∗,D) = 0.0015,

which is equivalent to a 2σ-standard deviation of 0.0775. Figure 2.1 shows the prior
distribution (left), the posterior distribution with two training points (black crosses) in
the middle, and the posterior distribution given the full training set D (right). The
solid red line is the mean function and the gray shaded area indicates the 2σ-standard
deviation. Five realizations (dashed lines) visualize the character of the distribution
over functions.
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Figure 2.1: The prior distribution of a GP is updated with data that leads to the pos-
terior distribution.

2.1.2 Marginal Variance
The computation of the variance with respect to a subset of elements of z∗ can be done by
marginalization. Assume z∗ = [z∗1; z∗2] with z∗1 ∈ Rn1 , z∗2 ∈ Rn2 and z∗ ∈ Rnz=n1+n2 . The
marginal variance of the prediction based on z∗1 is given by

var(fGP|z∗1,D) = k(z∗1, z∗1)− k(z∗1,X1:n1,:)>(K(X1:n1,:,X1:n1,:) + In1σ
2
n)−1k(z∗1,X1:n1,:).

(2.10)

The expression X1:n1,: denotes the first n1 rows of X such that X = [X1:n1,:;Xn1+1:nz ,:].

2.1.3 Multi-output Regression
So far, the GP regression allows functions with scalar outputs as in (2.8). For the extension
to vector-valued outputs, multiple approaches exist: i) Extending the kernel to multivariate
outputs [ÁRL12], ii) adding the output dimension as training data [Ber+17] or iii) using
separated GPR for each output [Ras06]. While the first two approaches set a prior on the
correlation between the output dimensions, the latter disregards a correlation without loss
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of generality. Following the approach in iii), the previous definition of the training set D is
extended to a vector-valued output with

X = [x{1}dat,x
{2}
dat, . . . ,x

{nD}
dat ] ∈ Z1×nD , Y = [ỹ{1}dat, ỹ

{2}
dat, . . . , ỹ

{nD}
dat ]> ∈ RnD×nydat , (2.11)

where nydat ∈ N is the dimension of the output and the vector-valued GP is defined by

fGP(z) ∼


GP

(
m1(z), k1(z, z′)

)
... ...

GP
(
mnydat(z), knydat(z, z′)

) (2.12)

m(z) :=
[
m1(z), . . . ,mnydat(z)

]>
(2.13)

Following (2.4) to (2.8), we obtain for the predicted mean and variance

µ(fGP,i(z∗)|z∗,D) = mi(z∗) + ki(z∗,X)>(Ki+σ2
n,iInD)−1

(
Y:,i−[mi(X:,1), . . . ,mi(X:,nD)]>

)
var(fGP,i(z∗)|z∗,D) = ki(z∗, z∗)− ki(z∗,X)>(Ki+σ2

n,iInD)−1ki(z∗,X) (2.14)

for each output dimension i ∈ {1, . . . ,nydat} with respect to the kernels k1, . . . , knydat . The
variable σn,i denotes the standard deviation of the Gaussian noise that corrupts the i-th
dimension of the output measurements. The nydat components of fGP|z∗,D are combined
into a multi-variable Gaussian distribution with

µ(fGP|z∗,D) = [µ(fGP,1|z∗,D), . . . ,µ(fGP,nydat |z∗,D)]>

Σ(fGP|z∗,D) = diag
(
var(fGP,1|z∗,D), . . . , var(fGP,nydat |z∗,D)

)
,

(2.15)

where Σ(fGP|z∗,D) denotes the posterior variance matrix. This formulation allows to use a
GP prior on vector-valued functions to perform predictions for test points z∗. This approach
treats each output dimension separately which is mostly sufficient and easy-to-handle. An
alternative approach is to include the dimension as additional input, e.g., as in [Ber+17],
with the benefit of a single GP at the price of loss of interpretability. For highly correlated
output data, a multi-output kernel might be beneficial, see [ARL11].

Remark 2.2. Without specific knowledge about a trend in the data, the prior mean func-
tions m1, . . . ,mnydat are often set to zero, see [Ras06]. Therefore, we set the mean functions
to zero for the remainder of the thesis if not stated otherwise.

2.1.4 Kernel-based View
In Section 2.1.1, we target the GPR from a Bayesian perspective. However, for some appli-
cations of GPR a different point of view is beneficial; namely from the kernel perspective. In
the following, we derive GPR from linear regression that is extended with a kernel transfor-
mation. In general, the prediction of parametric models is based on a parameter vector w
which is typically learned using a set of training data points. In contrast, non-parametric
models typically maintain at least a subset of the training data points in memory in order to
make predictions for new data points. Many linear models can be transformed into a dual
representation where the prediction is based on a linear combination of kernel functions. The
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2 Gaussian Process models

idea is to transform the data points of a model to an often high-dimensional feature space
where a linear regression can be applied to predict the model output, as depicted in Fig. 2.2.
For a nonlinear feature map φ : Z → F , where F is a nφ ∈ N ∪ {∞} dimensional Hilbert
space, the kernel function is given by the inner product k(z, z′) = 〈φ(z),φ(z′)〉,∀z, z′ ∈ Z.
Thus, the kernel implicitly encodes the way the data points are transformed into a higher
dimensional space. The formulation as inner product in a feature space allows to extend
many standard regression methods. Also the GPR can be derived using a standard linear
regression model

flin(z) = z>w, ỹ
{i}
dat = fGP(x{i}dat) + ν (2.16)

where z ∈ Z is the input vector, w ∈ Rnz the vector of weights with nz = dim(Z)
and flin : Z → R the unknown function. The observed value ỹ{i}dat ∈ R for the input x{i}dat ∈ Z
is corrupted by Gaussian noise ν ∼ N (0,σ2

n) for all i = 1, . . . ,nD. The analysis of this
model is analogous to the standard linear regression, i.e., we put a prior on the weights such
that w ∼ N (0, Σp) with Σp ∈ Rnz×nz . Based on nD collected training data points as defined
in Section 2.1.1, that leads to the well known linear Bayesian regression

p(flin(z∗)|z∗,D) = N
( 1
σ2
n

z∗>A−1
linXY︸ ︷︷ ︸

µ(flin(z∗)|z∗,D)

, z∗>A−1
linz

∗

︸ ︷︷ ︸
var(flin(z∗)|z∗,D)

)
(2.17)

where Alin = σ−2
n XX> + Σ−1

p . Now, using the feature map φ(z) instead of z directly,
leads to fGP(z) = φ(z)>w̌ with w̌ ∼ N (0, Σ̌p), Σ̌p ∈ Rnφ×nφ . As long as the projections
are fixed functions, i.e., independent of the parameters w, the model is still linear in the
parameters and, thus, analytically tractable. In particular, the Bayesian regression (2.17)
with the mapping φ(z) can be written as

(fGP(z∗)|z∗,D) ∼ N
(

1
σ2
n

φ(z∗)>A−1
GP [φ(X:,1); . . . ;φ(X:,nD)]Y ,φ(z∗)>A−1

GPφ(z∗)
)

, (2.18)

with the matrix AGP ∈ Rnφ×nφ given by
AGP = σ−2

n [φ(X:,1); . . . ;φ(X:,nD)] [φ(X:,1); . . . ;φ(X:,nD)]> + Σ̌−1
p . (2.19)

This equation can be simplified and rewritten to
(fGP(z∗)|z∗,D) ∼ N

(
k(z∗,X)>K−1Y︸ ︷︷ ︸
µ(fGP(z∗)|z∗,D)

, k(z∗, z∗)− k(z∗,X)>K−1k(z∗,X)︸ ︷︷ ︸
var(fGP(z∗)|z∗,D)

)
, (2.20)

with k(z, z′) = φ(z)>Σ̌pφ(z′) that equals (2.8). The fact that in (2.20) the feature map φ(z)
is not needed is known as the kernel trick. This trick is also used in other kernel-based models,
e.g., support vector machines (SVM), see [SC08] for more details.

φ

Figure 2.2: The mapping φ transforms the data points into a feature space where linear
regressors can be applied to predict the output.
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2.1 Gaussian Processes

2.1.5 Reproducing Kernel Hilbert Space
Even though a kernel neither uniquely defines the feature map nor the feature space, one
can always construct a canonical feature space, namely the reproducing kernel Hilbert space
(RKHS) given a certain kernel. After the introduction of the theory, illustrative examples
for an intuitive understanding are presented. We will now formally present this construction
procedure, starting with the concept of Hilbert spaces, following [BLG16]: A Hilbert space F
represents all possible realizations of some class of functions, for example all functions of
continuity degree i, denoted by Ci. Moreover, a Hilbert space is a vector space such that any
function fF ∈ F must have a non-negative norm, ‖fF‖F > 0 for fF 6= 0. All functions fF
must additionally be equipped with an inner-product in F . Simply speaking, a Hilbert
space is an infinite dimensional vector space, where many operations behave like in the finite
case. The properties of Hilbert spaces have been explored in great detail in literature, e.g.,
in [DM+05]. An extremely useful property of Hilbert spaces is that they are equivalent to
an associated kernel function [Aro50]. This equivalence allows to simply define a kernel,
instead of fully defining the associated vector space. Formally speaking, if a Hilbert space H
is a RKHS, it will have a unique positive definite kernel k : Z × Z → R, which spans the
space H.

Theorem 2.1 (Moore-Aronszajn [Aro50]). Every positive definite kernel k is associated
with a unique RKHS H.

Theorem 2.2 ([Aro50]). Let F be a Hilbert space, Z a non-empty set and φ : Z → F .
Then, the inner product 〈φ(z),φ(z′)〉F := k(z, z′) is positive definite.

Importantly, any function fH in H can be represented as a weighted linear sum of this kernel
evaluated over the space H, as

fH(·) = 〈fH(·), k(x, ·)〉H =
nφ∑
i=1

αik
(
x
{i}
dat, ·

)
, (2.21)

with αi ∈ R for all i = {1, . . . ,nφ}, where nφ ∈ N ∪ {∞} is the dimension of the feature
space F . Thus, the RKHS is equipped with the inner-product

〈fH, f ′H〉H =
nφ∑
i=1

nφ∑
j=1

αiα
′
jk(x{i}dat,x

′{j}
dat ), (2.22)

with f ′H(·) = ∑nφ
j=1 α

′
jk
(
x
′{j}
dat , ·

)
∈ H,α′j ∈ R. Now, the reproducing character manifests as

∀z ∈ Z,∀fH ∈ H, 〈fH, k(z, ·)〉H = fH(z), in particular k(z, z′) = 〈k(·, z), k(·, z′)〉H.
(2.23)

According to [SHS06], the RKHS is then defined as

H = {fH : Z → R|∃c ∈ F , fH(z) = 〈c,φ(z)〉F ,∀z ∈ Z}, (2.24)

where φ(z) is the feature map constructing the kernel through k(z, z′) = 〈φ(z),φ(z′)〉F .
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2 Gaussian Process models

Example 2.3. We want to find the RKHS for the polynomial kernel with degree 2 that
is given by

k(z, z′) = (z>z′)2 = (z1z
′
1)2 + 2(z1z

′
1z2z

′
2) + (z2z

′
2)2.

for any z, z′ ∈ R2. First, we have to find a feature map φ such that the kernel corre-
sponds to the inner product k(z,y) = 〈φ(z),φ(y)〉. A possible candidate for the feature
map is

φ(z) =
[
z2

1 ,
√

2z1z2, z2
2

]>
, because

〈φ(z),φ(z′)〉R3 = φ(z)>φ(y) = (z1z
′
1)2 + 2(z1z

′
1z2z

′
2) + (z2z

′
2)2 = k(z, z′).

We know that the RKHS contains all linear combinations of the form

fH(z) =
3∑
i=1

αik
(
x
{i}
dat, z

)
=

3∑
i=1

αi〈φ(z′),φ(z)〉R3 =
3∑
i=1
〈c,φ(z)〉R3

= c1z
2
1 + c2

√
2z1z2 + c3z

2
2 ,

with α, c,x{i}dat ∈ R3. Therefore, a possible candidate for the RKHS H is given by

H =
{
fH : R2 → R|fH(z) = c1z

2
1 + c2

√
2z1z2 + c3z

2
2 , c ∈ R3

}
(2.25)

Next, it must be checked if the proposed Hilbert space is the related RKHS to the
polynomial kernel with degree 2. This is achieved in two steps: i) Proving that the space
is a Hilbert space and ii) confirming the reproducing property. First, we can easily proof
that this is a Hilbert space rewriting fH(z) = z>Sz with symmetric matrix S ∈ R2×2

and using the fact that H is euclidean and isomorphic to S. Second, the condition for an
RKHS must be fulfilled, i.e., the reproducing property fH(z) = 〈fH(·), k(·, z)〉H. Since
we can write

〈fH(·), k(·, z)〉H = 〈c>φ(·), k(·, z)〉H =
3∑
i=1

cik(·, z) = c>φ(z) = fH(z),

property (2.23) is fulfilled and, thus, H is the RKHS for the polynomial kernel with
degree 2. Note that, even though the mapping φ is not unique for the kernel k, the
relation of k and the RKHS H is unique.

Given a function fH ∈ H defined by nD observations, its RKHS norm is defined as

‖fH‖2
H = 〈fH, fH〉H =

nD∑
i=1

nD∑
j=1

αiαjk(x{i}dat,x
′{j}
dat ) = α>K(X,X)α, (2.26)

with α ∈ RnD and K(X,X) given by (2.5). We can also use the feature map such that

‖fH‖H = inf{‖c‖F : c ∈ F , fH(z) = 〈c,φ(z)〉F ,∀z ∈ Z}. (2.27)

As there is a unique relation between the RKHS H and the kernel k, the norm ‖fH‖H can
equivalently be written as ‖fH‖k. The norm of a function in the RKHS indicates how fast
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2.1 Gaussian Processes

the function varies over Z with respect to the geometry defined by the kernel. Formally, it
can be written as

|fH(z)− fH(z′)|
d(z, z′) ≤ ‖fH‖H, (2.28)

with the distance d(z, z′)2 = k(z, z) − 2k(z, z′) + k(z′, z′). A function with finite RKHS
norm is also element of the RKHS. A more detailed discussion about RKHS and norms is
given in [Wah90].

Example 2.4. We want to find the RKHS norm of a function fH that is an element of
the RKHS of the polynomial kernel with degree 2 that is given by

k(z, z′) = (z>z′)2 = (z1z
′
1)2 + 2(z1z

′
1z2z

′
2) + (z2z

′
2)2.

Let the function be

fH(z) =
3∑
i=1

αik
(
x
{i}
dat, z

)
, with (2.29)

α1 = 1, α2 = −2, α3 = 3 (2.30)
x
{1}
dat = [1, 1]>, x{2}dat = [1, 2]>, x{3}dat = [2, 1]>. (2.31)

Hence, function (2.29) with (2.30) and (2.31) corresponds to

fH(z) = 11z2
1 + 6z1z2 − 4z2

2 .

Now, we have two possibilities how to calculate the RKHS norm. First, the RKHS-norm
of fH is calculated using (2.26) by

‖fH‖2
H = α>K(X,X)α =

[
1 −2 3

] 4 9 9
9 25 16
9 16 25


 1
−2
3

 = 155

with X = [x{1}dat,x
{2}
dat,x

{3}
dat]. Alternatively, we can use (2.27) that results in ‖fH‖H = ‖c‖,

where c is defined by (2.25). Thus, the norm is computed as

fH(z) = 11z2
1 + 6z1z2 − 4z2

2 ⇒ c1 = 11, c2 = 6√
2

, c3 = −4⇒ ‖fH‖2
H = 155.

Example 2.5. In this example, we visualize the meaning of the RKHS norm. Figure 2.3
shows different quadratic functions with the same RKHS norm (top left and top right), a
smaller RKHS norm (bottom left) and a larger RKHS norm (bottom right). An identical
norm indicates a similar variation of the functions, whereas a higher norm leads to a
more varying function.
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Figure 2.3: Functions with different RKHS-norms: ‖f1‖2
H=‖f2‖2

H=4‖f3‖2
H= 1

2‖f4‖2
H.

In summary, we show the unique relation between the kernel and its RKHS. The reproducing
property allows us to write the inner-product as a tractable function which implicitly defines
a higher (or even infinite) feature dimensional space. The RKHS-norm of a function is a
Lipschitz-like indicator based on the metric defined by the kernel. This view of the RKHS
is related to the kernel trick in machine learning. In the next section, the RKHS-norm
is exploited to determine the error between the prediction of GPR and the actual data-
generating function.

2.1.6 Model Error

One of the most interesting properties of GPR is the uncertainty description encoded in the
predicted variance. This uncertainty is beneficial to quantify the error between the actual
underlying data generating process and the GPR. In this section, we assume that there is
an unknown function fuk : Rnz → R that generates the training data. In detail, the data
set D = {X,Y } consists of

X = [x{1}dat,x
{2}
dat, . . . ,x

{nD}
dat ] ∈ Rnz×nD

Y = [ỹ{1}dat , ỹ
{2}
dat , . . . , ỹ

{nD}
dat ]> ∈ RnD ,

(2.32)

24



2.1 Gaussian Processes

where the data is generated by

ỹ
{i}
dat = fuk(x{i}dat) + ν, ν ∼ N (0,σ2

n) (2.33)

for all i = {1, . . . ,nD}. Without any assumptions on fuk it is obviously not possible to
quantify the model error. Loosely speaking, the prior distribution of the GPR with kernel k
must be suitable to learn the unknown function. More technically, fuk must be an element
of the RKHS spanned by the kernel as described in (2.24). This leads to the following
assumption.
Assumption 2.1. The function fuk has a finite RKHS norm with respect to the kernel k,
i.e., ‖fuk‖H <∞, where H is the RKHS spanned by k.
This sounds paradoxical as fuk is assumed to be unknown. However, there exist kernels

that can approximate any continuous function arbitrarily exact. Thus, for any continuous
function, there exists an arbitrarily close function to fuk which is element of the RKHS of
an universal kernel. For more details, we refer to Section 2.1.5.
We classify the error quantification in three different approaches: i) the robust approach,
ii) the scenario approach, and iii) the information-theoretical approach. The different tech-
niques are presented in the following and visualized in Fig. 2.4. For the remainder of this
section, we assume that a GPR is trained with the data set (2.32) and Assumption 2.1 holds.

Robust approach

The robust approach exploits the fact that the prediction of the GPR is Gaussian distributed.
Thus, for any z∗ ∈ Rnz , the model error is bounded by

|fuk(z∗)− µ(fGP|z∗,D)| ≤ c var(fGP|z∗,D) (2.34)

with high probability where c ∈ R>0 adjusts the probability. However, for multiple test
points z∗1, z∗2, . . . ∈ Rnz , this approach neglects any correlation between fGP(z∗1), fGP(z∗2), . . ..
Figure 2.4 shows how for a given z∗1 and z∗2, the variance is exploited as upper bound.
Thus, any prediction is handled independently, which leads to a very conservative bound,
see [UBH18].

Scenario approach

Instead of using the mean and the variance as in the robust approach, the scenario approach
deals with the samples of the GPR directly. In contrast to the other methods, there is no
direct model error quantification but rather a sample based quantification. The idea is to
draw a large number nscen ∈ N of sample functions f 1

GP, f 2
GP, . . . , fnscen

GP over ns ∈ N sampling
points. The sampling is performed by drawing multiple instances from fGP given by the
multivariate Gaussian distribution

Y

fGP(z∗1)
...

fGP(z∗ns)


∼ N





m(x{1}dat)
...

m(x{nD}dat )
m(z∗1)

...
m(z∗ns)


,



K(X,X) + σ2
nInD K(X∗,X)

K(X∗,X)> K(X∗,X∗)




, (2.35)
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2 Gaussian Process models

where X∗ = [z∗1, · · · , z∗ns ] contains the sampling points. Each sample can then be used
in the application instead of the unknown function. For a large number of samples it is
assumed that the unknown function is close to one of these samples. However, the crux
of this approach is to determine, for a given model error c ∈ R>0, the required number of
samples nscen and probability δscen > 0 such that

P
(
|fuk(z∗)− f iGP(z∗)| ≤ c, i ∈ {1, . . . ,nscen}

)
≥ δscen (2.36)

for all z∗ ∈ Z. In Fig. 2.4, five different samples of a GP model are drawn as example.

Information-theoretical approach

Alternatively, the work in [Sri+12] derives an upper bound for samples of the GPR on a
compact set with a specific probability. In contrast to the robust approach, the correlation
between the function values are considered. We restate here the theorem.

Theorem 2.3 ([Sri+12]). Given Assumption 2.1, the model error ∆ ∈ R

∆ = |µ(fGP|z,D)− fuk(z)| (2.37)

is bounded for all z on a compact set Ω ⊂ Rnz with a probability of at least δ ∈ (0, 1) by

P
{
∀z ∈ Ω, ∆ ≤ |β Σ

1
2 (fGP|z,D)|

}
≥ δ, (2.38)

where β ∈ R is defined as

β =
√

2‖fuk‖2
k + 300γmax ln3

(
nD + 1
1− δ

)
. (2.39)

The variable γmax ∈ R is the maximum of the information gain

γmax = max
x
{1}
dat ,...,x{nD+1}

dat ∈Ω

1
2 log |InD+1 + σ−2

n K(z, z′)| (2.40)

with Gram matrix K(z, z′) and the input elements z, z′ ∈ {x{1}dat , . . . ,x
{nD+1}
dat }.

To compute this bound, the RKHS norm of fuk must be known. That is in application
usually not the case. However, often the norm can be upper bounded and thus, the bound
in Theorem 2.3 can be upper bounded. For this purpose, the relation of the RKHS norm to
the Lipschitz constant given by (2.28) is beneficial as the Lipschitz constant is more likely
to be known. In general, the computation of the information gain is a non-convex optimiza-
tion problem. However, the information capacity γmax has a sub-linear dependency on the
number of training points for many commonly used kernel functions [Sri+12]. Therefore,
even though β is increasing with the number of training data, it is possible to learn the true
function fuk arbitrarily exactly [Ber+16]. In contrast to the other approaches, Theorem 2.3
allows to bound the error for any test point in a compact set. In Chapter 5, we will exploit
this approach in GP model based control tasks. The right illustration of Fig. 2.4 visualizes
the information-theoretical bound.
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Figure 2.4: Different approaches to quantify the model error: Robust approach (left), sce-
nario approach (middle), information-theoretical approach (right).

2.2 Model Selection
Equation (2.8) clearly shows the immense impact of the kernel on the posterior mean and
variance. However, this is not surprising as the kernel is an essential part of the prior model.
For practical applications that leads to the question how to choose the kernel. Additionally,
most kernels depend on a set of hyperparameters that must be defined. Thus in order to
turn GPR into a powerful practical tool it is essential to develop methods that address the
model selection problem. We see the model selection as the determination of the kernel and
its hyperparameters. We only focus on kernels that are defined on Z ⊆ Rnz . In the next two
subsections, we present different kernels and explain the role of the hyperparameters and
their selection, mainly based on [Ras06].

Remark 2.3. The selection of the kernel functions seems to be similar to the model selection
for parametric models. However, there are two major differences: i) the selection is fully
covered by the Bayesian methodology and ii) many kernels allow to model a wide range of
different functions whereas parametric models a typically limited to very specific types of
functions.

2.2.1 Kernel Functions
The value of the kernel function k(z, z′) is an indicator of the interaction of two states (z, z′).
Thus, an essential part of GPR is the selection of the kernel function and the estimation of its
free parameters ϕ1,ϕ2, . . . ,ϕnϕ , called hyperparameters. The number nϕ of hyperparameters
depends on the kernel function. The choice of the kernel function and the determination of
the corresponding hyperparameters can be seen as degrees of freedom of the regression. First
of all, we start with the general properties of a function to be qualified as a kernel for GPR.
A necessary and sufficient condition for the function k : Z × Z → R to be a valid kernel is
that the Gram matrix, see (2.5), is positive semidefinite for all possible input values [SC04].

Remark 2.4. As shown in Section 2.1.5, the kernel function must be positive definite to span
a unique RKHS. That seems to be contradictory to the required positive semi-definiteness of
the Gram matrix. The solution is the definition of positive definite kernels as it is equivalent
to a positive semi-definite Gram matrix. In detail, a symmetric function k : Z × Z → R is
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2 Gaussian Process models

a positive definite kernel on Z if
nD∑
j=1

nD∑
i=1

k(x{i}dat,x
{j}
dat)cicj ≥ 0 (2.41)

holds for any nD ∈ N, x{1}dat , . . . ,x
{nD}
dat ∈ Z and c1, . . . , cn ∈ R. Thus, there exists a positive

semi-definite matrix AG ∈ RnD×nD such that

x>datAGxdat =
nD∑
j=1

nD∑
i=1

k(x{i}dat,x
{j}
dat)cicj (2.42)

holds for any nD ∈ N and z ∈ Z.
The set of functions k which fulfill this condition is denoted with K. Kernel functions

can be separated into two classes, the stationary and non-stationary kernels. A stationary
kernel is a function of the distance z − z′. Thus, it is invariant to translations in the input
space. In contrast, non-stationary kernels depend directly on z,z′ and are often functions
of a dot product z>z. In the following, we list some common kernel functions with their
basic properties. Even though the number of presented kernels is limited, new kernels can
be constructed easily as K is closed under specific operations such as addition and scalar
multiplication. At the end, we summarize the equation of each kernel in Table 2.1 and
provide a comparative example.

Constant Kernel

The equation for the constant kernel is given by

k(z, z′) = ϕ2
1. (2.43)

This kernel is mostly used in addition to other kernel functions. It depends one a single
hyperparameter ϕ1 ∈ R≥0.

Linear Kernel

The equation for the linear kernel is given by

k(z, z′) = z>z′. (2.44)

The linear kernel is a dot-product kernel and thus, non-stationary. The kernel can be ob-
tained from Bayesian linear regression as shown in Section 2.1.4. The linear kernel is often
used in combination with the constant kernel to include a bias.

Polynomial Kernel

The equation for the polynomial kernel is given by

k(z, z′) =
(
z>z′ + ϕ2

1

)p
, p ∈ N. (2.45)

The polynomial kernel has an additional parameter p ∈ N, that determines the degree of
the polynomial. Since a dot product is contained, the kernel is also non-stationary. The
prior variance grows rapidly for ‖z‖ > 1 such that the usage for some regression problems
is limited. It depends on a single hyperparameter ϕ1 ∈ R≥0.

28



2.2 Model Selection

Matérn Kernel

The equation for the Matérn kernel is given by

k(z, z′)=ϕ2
1 exp

(
−
√

2p̌‖z − z′‖
ϕ2

)
p!

(2p)!

p∑
i=0

(p+ i)!
i!(p− i)!

(√
8p̌‖z − z′‖

ϕ2

)p−i
(2.46)

with p̌ = p+ 1
2 , p ∈ N. The Matérn kernel is a very powerful kernel and presented here with

the most common parameterization for p̌. Functions drawn from a GP model with Matérn
kernel are p-times differentiable. The more general equation of this stationary kernel can be
found in [Bis06]. This kernel is an universal kernel which is explained in the following.

Lemma 2.1 ([SC08, Lemma 4.55]). Consider the RKHS H(Zc) of an universal ker-
nel on any prescribed compact subset Zc ∈ Z. Given any positive number ε and any
function fC ∈ C1(ZC), there is a function fH ∈ H(Zc) such that ‖fC − fH‖Zc ≤ ε.

Intuitively speaking, a GPR with an universal kernel can approximate any continuous func-
tion arbitrarily exact on a compact set. For p → ∞, it results in the squared exponential
kernel. The two hyperparameters are ϕ1 ∈ R≥0 and ϕ2 ∈ R>0.

Squared Exponential Kernel

The equation for the squared exponential kernel is given by

k(z, z′) = ϕ2
1 exp

(
−‖z − z

′‖2

2ϕ2
2

)
. (2.47)

Probably the most widely used kernel function for GPR is the squared exponential kernel,
see [Ras06]. The hyperparameter ϕ1 describes the signal variance which determines the av-
erage distance of the data-generating function from its mean. The lengthscale ϕ2 defines
how far it is needed to move along a particular axis in input space for the function values to
become uncorrelated. Formally, the lengthscale determines the number of expected upcross-
ings of the level zero in a unit interval by a zero-mean GP. The squared exponential kernel
is infinitely differentiable, which means that the GPR exhibits a smooth behavior. As limit
of the Matérn kernel, it is also an universal kernel, see [MXZ06].

Example 2.6. Figure 2.5 shows the power for regression of universal kernel functions.
In this example, a GPR with squared exponential kernel is used for different training
data sets. The hyperparameter are optimized individually for each training data set by
means of the likelihood, see Section 2.2.2. Note that all presented regressions are based
on the same GP model, i.e. the same kernel function, but with different data sets. That
highlights again the superior flexibility of GPR.
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Figure 2.5: Examples for the flexibility of the regression that all are based on the same
GP model.

Rational Quadratic Kernel

The equation for the rational quadratic kernel is given by

k(z, z′) = ϕ2
1

(
1 + ‖z − z

′‖2

2pϕ2
2

)−p
, p ∈ N. (2.48)

This kernel is equivalent to summing over infinitely many squared exponential kernels with
different lengthscales. Hence, GP priors with this kernel are expected to see functions which
vary smoothly across many lengthscales. The parameter p determines the relative weighting
of large-scale and small-scale variations. For p→∞, the rational quadratic kernel is identical
to the squared exponential kernel.

Squared Exponential ARD Kernel

The equation for the squared exponential ARD kernel is given by

k(z, z′) = ϕ2
1 exp

(
−(z − z′)>P−1(z − z′)

)
, P = diag(ϕ2

2, . . . ,ϕ2
1+nz). (2.49)

The automatic relevance determination (ARD) extension to the squared exponential kernel
allows for independent lenghtscales ϕ2, . . . ,ϕ1+nz ∈ R>0 for each dimension of z, z′ ∈ Rnz .
The individual lenghtscales are typically larger for dimensions which are irrelevant as the
covariance will become almost independent of that input. A more detailed discussion about
the advantages of different kernels can be found, for instance, in [Mac97] and [Bis06].

Example 2.7. In this example, we use three GPRs with the same set of training data

X = [1, 3, 5, 7, 9], Y = [0, 1, 2, 3, 6] (2.50)

but with different kernels, namely the squared exponential (2.47), the linear (2.44), and
the polynomial (2.45) kernel. Figure 2.6 shows the different shapes of the regressions
with the posterior mean (red), the posterior variance (gray shaded) and the training
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points (black). Even for this simple data set, the flexibility of the squared exponential
kernel is already visible.
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Figure 2.6: GPR with different kernels: squared exponential (left), linear (middle) and
polynomial with degree 2 (right).

Kernel name k(z, z′) =
Constant ϕ2

1

Linear z>z′ + ϕ2
1

Polynomial p ∈ N
(
z>z′ + ϕ2

1

)p
Matérn p̌ = p+ 1

2 , p ∈ N ϕ2
1 exp

(
−
√

2p̌‖z−z′‖
ϕ2

)
p!

(2p)!
∑p
i=0

(p+i)!
i!(p−i)!

(√
8p̌‖z−z′‖
ϕ2

)p−i
Squared exponential ϕ2

1 exp
(
−‖z−z′‖22ϕ2

2

)
Rational quadratic ϕ2

1

(
1 + ‖z−z′‖2

2pϕ2
2

)−p
Squared exponential ARD ϕ2

1 exp
(
−(z − z′)>P−1(z − z′)

)
, P = diag(ϕ2

2, . . . ,ϕ2
1+nz)

Table 2.1: Overview of some commonly used kernel functions.

2.2.2 Hyperparameter Optimization
In addition to the selection of a kernel function, values for any hyperparameter must be
determined to perform the regression. The number of hyperparameters depends on the
kernel function used. We concatenate all hyperparameters in a vector ϕ with size nϕ ∈ N,
where ϕ ∈ Φ ⊆ Rnϕ . The hyperparameter set Φ is introduced to cover the different spaces
of the individual hyperparameters as defined in the following.

Definition 2.1. The set Φ is called a hyperparameter set for a kernel function k if and only
if the set Φ is a domain for the hyperparameters ϕ of k.
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2 Gaussian Process models

Often, the signal noise σ2
n, see (2.4), is also treated as hyperparameter. For a better

understanding, we keep the signal noise separated from the hyperparameters. There exist
several techniques that allow computing the hyperparameters and the signal noise with
respect to one optimality criterion. From a Bayesian perspective, we want to find the vector
of hyperparameters ϕ which are most likely for the output data Y given the inputs X and a
GP model. For this purpose, one approach is to optimize the log marginal likelihood function
of the GP. Another idea is to split the training set into two disjoint sets, one which is actually
used for training, and the other, the validation set, which is used to monitor performance.
This approach is known as cross-validation. In the following, these two techniques for the
selection of hyperparameters are presented.

Log Marginal Likelihood Approach

A very common method for the optimization of the hyperparameters is by means of the
negative log marginal likelihood function, often simply named as (neg. log) likelihood func-
tion. It is marginal since it is obtained through marginalization over the function fGP. The
marginal likelihood is the likelihood that the output data Y ∈ RnD fits to the input data X
with the hyperparameters ϕ. It is given by

log p(Y |X,ϕ) = −1
2Y
>(K + σ2

nInD)−1Y − 1
2 log |K + σ2

nInD | −
nD
2 log 2π. (2.51)

A detailed derivation can be found in [Ras06]. The three terms of the marginal likelihood
in (2.51) have the following roles:

• 1
2Y
>(K+σ2

nInD)−1Y is the only term that depends on the output data Y and represents
the data-fit.

• 1
2 log |K + σ2

nInD | penalizes the complexity depending on the kernel function and the
input data X.

• nD
2 log 2π is a normalization constant.

Remark 2.5. For the sake of notational simplicity, we suppress the dependency on the
hyperparameters of the kernel function k whenever possible.

The optimal hyperparameters ϕ∗ ∈ Φ and signal noise σ∗n in the sense of the likelihood are
obtained as the minimum of the negative log marginal likelihood function[

ϕ∗

σ∗n

]
= arg min

ϕ∈Φ,σn∈R≥0
log p(Y |X,ϕ). (2.52)

Since an analytic solution of the derivation of (2.51) is impossible, a gradient based opti-
mization algorithm is typically used to minimize the function. However, the negative log
likelihood is non-convex in general such that there is no guarantee to find the optimum ϕ∗,σ∗n.
In fact, every local minimum corresponds to a particular interpretation of the data. In the
following example, we visualize how the hyperparameters affect the regression.
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2.2 Model Selection

Example 2.8. A GPR with the squared exponential kernel is trained on eight data
points. The signal variance is fixed to ϕ1 = 2.13. First, we visualize the influence of
the lengthscale. For this purpose, the signal noise is fixed to σn = 0.21. Figure 2.7
shows the posterior mean of the regression and the neg. log likelihood function. On
the left side are three posterior means for different lengthscales. A short lengthscale
results in overfitting whereas a large lengthscale smooths out the training data (black
crosses). The dotted red function represents the mean with optimized lengthscale by
a descent gradient algorithm with respect to (2.52). The right plot shows the neg.
log likelihood over the signal variance ϕ1 and lengthscale ϕ2. The minimum is here
at ϕ∗ = [2.13, 1.58]>.
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Figure 2.7: Left: Regression with different lengthscales: ϕ2 = 0.67 (cyan, solid), ϕ2 =
7.39 (brown, dashed), and ϕ2 = 1.58 (red, dotted). Right: Neg. log likeli-
hood function over signal variance ϕ1 and lengthscale ϕ2.

Next, the meaning of different interpretations of the data is visualized by varying the
signal noise σn and the lengthscale ϕ2. The right plot of Fig. 2.8 shows two minima
of the negative log likelihood function. The lower left minimum at log(σn) = 0.73
and log(ϕ2) = −1.51 interprets the data as slightly noisy which leads to the dotted red
posterior mean in the left plot. In contrast, the upper right minimum at log(σn) = 5
and log(ϕ2) = −0.24 interprets the data as very noisy without a trend, which manifests
as the cyan posterior mean in the left plot. Depending on the initial value, a gradient
based optimizer would terminate in one of these minima.
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Figure 2.8: Left: Different interpretation of the data: Noisy data without a trend (cyan,
solid) and slightly noisy data (red, dotted). Right: Negative log likelihood
function over signal noise σn and lengthscale ϕ2.
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Cross-validation approach

This approach works with a separation of the data set D in two classes: one for training
and one for validation. Cross-validation is almost always used in the kcv-fold cross-validation
setting: the kcv-fold cross-validation data is split into kcv disjoint, equally sized subsets; vali-
dation is done on a single subset and training is done using the union of the remaining kcv−1
subsets, the entire procedure is repeated kcv times, each time with a different subset for vali-
dation. Here, without loss of generality, we present the leave-one-out cross-validation, which
means kcv = nD. The predictive log probability when leaving out a training point {x{i}dat, ỹ{i}dat}
is given by

log p(y{i}dat|X,Y−i,ϕ) = −1
2 log (var−i)−

(
ỹ
{i}
dat − µ−i

)2

2 var−i
− nD

2 log 2π, (2.53)

where µ−i = µ(fGP(x{i}dat)|x{i}dat,X:,−i,Y−i) and var−i = var(fGP(x{i}dat)|x{i}dat,X:,−i,Y−i). The −i
index indicates X and Y without the element x{i}dat and ỹ

{i}
dat, respectively. Thus, (2.53)

is the probability for the output y{i}dat at x{i}dat but without the training point {x{i}dat, ỹ{i}}.
Accordingly, the leave-one-out log predictive probability LLOO ∈ R is

LLOO =
nD∑
i=1

log p(y{i}dat|X,Y−i,ϕ). (2.54)

In comparison to the log likelihood approach (2.52), the cross-validation is in general more
computationally expensive but might find a better representation of the data set, see [GE79]
for discussion and related approaches.

2.3 Gaussian Process Dynamical Models
So far, we consider GPR in non-dynamical settings where only an input-to-output mapping is
considered. However, Gaussian process dynamical models (GPDMs) have recently become
a versatile tool in system identification because of their beneficial properties such as the
bias variance trade-off and the strong connection to Bayesian mathematics, see [FCR14].
In many works, where GPs are applied to dynamical model, only the mean function of the
process is employed, e.g., in [WHB05] and [Cho+13]. This is mainly because GP models are
often used to replace deterministic parametric models. However, GPDMs contain a much
richer description of the underlying dynamics, but also the uncertainty about the model
itself when the full probabilistic representation is considered. Therefore, one main aspect
of GPDMs is to distinguish between recurrent structures and non-recurrent structures. A
model is called recurrent if parts of the regression vector depend on the outputs of the model.
Even though recurrent models become more complex in terms of their behavior, they allow
to model sequences of data, see [Sjö+95]. If all states are fed back from the model itself, we
get a simulation model, which is a special case of the recurrent structure. The advantage of
such a model is its property to run independently from the real system. Thus, it is suitable
for simulations, as it allows multi-step ahead predictions. In this thesis, we focus on two
often-used recurrent structures: the Gaussian process state space model (GP-SSM) and the
Gaussian process nonlinear error output (GP-NOE) model.
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2.3 Gaussian Process Dynamical Models

2.3.1 Gaussian Process State Space Models
Gaussian process state space models are structured as a discrete-time system. In this case,
the states are the regressors, which is visualized in Fig. 2.9. This approach allows to be
more efficient, since the regressors are less restricted in their internal structure as in input-
output models. Thus, a very efficient model in terms of number of regressors might be
possible. The mapping from the states to the output is often be assumed to be known. The
situation, where the output mapping describes a known sensor model, is such an example.
It is mentioned in [Fri+13] that using too flexible models for both, the state mapping f and
the output mapping, can result in problems of non-identifiability. Therefore, we focus on a
known output mapping. The mathematical model of the GP-SSM is thus given by

xt+1 = f(ξt) =


f1(ξt) ∼ GP (m1(ξt), k1(ξt, ξ′t))
... ... ...
fnx(ξt) ∼ GP (mnx(ξt), knx(ξt, ξ′t)) .

yt ∼ p(yt|xt,γy),

(2.55)

where ξt ∈ Rnξ ,nξ = nx + nu is the concatenation of the state vector xt ∈ X ⊆ Rnx

and the input ut ∈ U ⊆ Rnu such that ξt = [xt;ut]. The mean function is given by
continuous functions m1, . . . ,mnx : Rnξ → R. The output mapping is parametrized by a
known vector γy ∈ Rnγ with nγ ∈ N. The system identification task for the GP-SSM mainly
focuses on f in particular. It can be described as finding the state-transition probability
conditioned on the observed training data.

Remark 2.6. The potentially unknown number of regressors can be determined using es-
tablished nonlinear identification techniques as presented in [KL99], or exploiting embedded
techniques such as automatic relevance determination [Koc16]. A mismatch leads to similar
issues as in parametric system identification.

P−1
GP
GP

...
GP

p(yt+1|xt+1, γy)

xt

ut

xt+1 yt+1

Figure 2.9: Structure of a GP-SSM with P as backshift operator, such that P−1xt+1 =xt

2.3.2 Gaussian Process Nonlinear Output Error Models
The GP-NOE model uses the past nin ∈ N>0 input values ut ∈ U and the past nout ∈ N>0
output values yt ∈ Rny of the model as the regressors. Figure 2.10 shows the structure of
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2 Gaussian Process models

GP-NOE, where the outputs are fed back. Analogously to the GP-SSM, the mathematical
model of the GP-NOE is given by

yt+1 = h(ζt) =


h1(ζt) ∼ GP (m1(ζt), k1(ζt, ζ ′t))
... ... ...
hny(ζt) ∼ GP (mny(ζt), kny(ζt, ζ ′t)) ,

(2.56)

where ζt ∈ Rnζ ,nζ = noutny+ninnu is the concatenation of the past outputs yt and inputs ut
such that ζt = [yt−nout+1; . . . ;yt;ut−nin+1; . . . ;ut]. The mean function is given by continuous
functions m1, . . . ,mny : Rnζ → R. In contrast to nonlinear autoregressive exogenous models,
that focus on one-step ahead prediction, a NOE model is more suitable for simulations as it
considers the multi-step ahead prediction [Nel13]. However, the drawback is a more complex
training procedure that requires a nonlinear optimization scheme due to their recurrent
structure [Koc16].

...

P−1 ...
P−nout

GP
GP

...
GP

yt

yt−nout+1

ut

ut−nin+1

yt+1

Figure 2.10: Structure of a GP-NOE model with P as backshift operator (P−1yt+1 = yt)

Remark 2.7. It is always possible to convert an identified input-output model into a state-
space model, see[PL70]. However, focusing on state-space models only would preclude the
development of a large number of useful identification results for input-output models.

2.4 Summary
In this chapter, we introduce the GP and its usage in GPR. Based on the property, that every
finite subset of a GP follows a multi-variate Gaussian distribution, a closed-form equation can
be derived to predict the mean and variance for a new test point. The GPR can intrinsically
handle noisy output data if it is Gaussian distributed. As GPR is a data-driven method,
only little prior knowledge is necessary for the regression. Further, the complexity of GP
models scales with the number of training points. A degree of freedom in the modeling is the
selection of the kernel function and its hyperparameters. We present an overview of common
kernels and the necessary properties to be a valid kernel function. For the hyperparameter
determination, two approaches based on numerical optimization are shown. The kernel of
the GP is uniquely related to a RKHS, which determines the shape of the samples of the
GP. Based on this, we compare different approaches for the quantification of the model error
that quantifies the error between the GPR and the actual data-generating function. Finally,
we introduce how GP models can be used as dynamical systems in GP-SSMs and GP-NOE
models.
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Control Properties of GPDMs 3

Models of dynamical systems are key for many common control approaches, such as model
predictive control, feedback linearization, and computed torque control, see [HW13]. In
addition, models allow to test control approaches in simulations without time-consuming
and potentially dangerous experimental evaluations. The control theoretical properties of
these dynamical models are crucial for investigation in stability and performance guarantees
of the closed-loop. In particular, the model must be capable to reproduce the real system
behavior. For instance, a linear model might be not sufficiently precise for a highly nonlinear
system. For parametric models exist many analysis tools for control theoretical properties
such as stability, equilibria, and convergence rate [DFT13]. Especially for linear systems,
there exists a strong and comprehensive theory, which established a relationship between
the model parameters and the control properties, mainly based on the the eigenvalues and
structure of the system matrix. In contrast, the analysis of these properties for GPDMs is
challenging, as the non-parametric structure inhibits the application of the well-known tools
for parametric models. Therefore, the control properties of the GPDMs are only sparsely
researched even though the application of GPDMs become increasingly popular in control,
e.g., for adaptive control [Rog+11].

Related Work and Open Problems
In order to provide rigorous guarantees on the system behavior, control properties of GPDMs
need to be well-understood, see, e.g., [Koc+03b] and [AK08]. In fact, it has been widely
acknowledged, e.g., in [KM05], that stability issues of GPDMs require careful attention in
the future. In the following, we list the most important related approaches on the analysis
of GPDMs. For linear system identification, there exists a stable kernel approach, which
includes information on impulse response stability [COL12]. Chowdhary et al. presents a
stability proof of an adaptive control approach with a GP model [CHK12] for nonlinear
systems which is based on a bounded error model. Related to GP models are Gaussian Mix-
ture Models (GMMs), which assume that every data point is generated from a mixture of a
finite number of Gaussian distributions. Khansari-Zadeh et al. show for GMMs a synthesis
approach for learning stable trajectories of a nonlinear dynamical systems [KB11a]. How-
ever, the approach is not suitable for the non-parametric GP model. A numerical stability
evaluation of GPDMs is presented in [Vin+16] but it suffers from scalability issues. Hence,
the fundamental stability analysis of GPDMs is still open.
In this chapter, we introduce analysis tools for a class of discrete-time GPDMs. We start
with the general challenge of using GPDMs as predictive models in Section 3.1. Afterwards,
boundedness properties for GP-SSMs and GP-NOE models are derived in Section 3.2. Fi-
nally, quantitative results for specific classes of GPDMs are presented in Sections 3.3 and 3.4.
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3 Control Properties of Gaussian Process Dynamical Models

3.1 The Crux of GPDM Prediction
The prediction with discrete-time GPDMs, needed for simulations and model-based control
approaches, is more challenging than GPR prediction: The reason is the feedback of the
model’s output to the input that manifests as correlation between the current and past
states defined by the GP model. Therefore, a prediction with the presented GP models
in Section 2.3 would require the sampling of the probabilistic mappings f and h given
by (2.55) and (2.56), respectively. Once sampled, the model could be treated as standard
discrete-time system. Unfortunately, these functions are defined on the sets X ⊆Rnx ,U⊆Rnu

which contain infinitely many points. Thus, it would be necessary to draw an infinite-
dimensional object which represents a sample of the probabilistic mappings. This is not
possible without further simplifications, e.g., discrete sampling with interpolation, see (2.35).
To overcome this issue, we will marginalize out the probabilistic mapping to respect the
nonparametric nature of the model. Thus, the result is a joint probability distribution of the
states without dependencies on the probabilistic mappings f ,h. Without lack of generality,
the following proposition focuses on an one-dimensional GP-SSM with X = U = R. The
approach can easily extended to multi-dimensional GP-SSMs due to the fact that the GPs
for each state dimension are assumed to be independent (2.55). The presented approach is
analogously applicable for the GP-NOE model.

Remark 3.1. As this section focuses on the properties of GPDMs, regardless of the training
procedure, we assume for the remainder of the section that a training set D is existent and
available. For further information on the training procedure, we refer to [Koc+05; KP11]
for GP-NOE models and to [WFH08; Fri+13; Ele+17] for GP-SSMs.

Remark 3.2. For the sake of notational simplicity, we consider GPDMs with identical
kernels and noise of the training data for each output dimension. The results can easily be
extended to GPDMs with different kernels and noise for each output dimension.

Proposition 3.1. Consider a one-dimensional GP-SSM as in (2.55) with training data
set D = {X,Y }, where Y is corrupted by Gaussian noise N (0,σ2

n). For given in-
puts u0:t = [u0, . . . ,ut] ∈ R1×t+1, the distribution over the states x0:t = [x0, . . . ,xt] ∈
R1×t+1, with t ∈ N, is given by

p(x0:t|u0:t,D) = p(x0) det
(
(2π)tǨ

)− 1
2 exp

(
−1

2 (x1:t − m̌0:t−1) Ǩ−1 (x1:t − m̌0:t−1)>
)

,
(3.1)

with the Gram matrix

Ǩ =K(ξ0:t−1, ξ0:t−1)−K(ξ0:t−1,X)>
(
K + σ2

nInD
)−1

K(ξ0:t−1,X), (3.2)

where ξ = [x;u] ∈ R2. The elements of the mean vector m̌0:t−1 ∈ R1×t are given by

m̌i = m(ξi) +K(ξi,X)>(K + σ2
nInD)−1(Y −m(X)) (3.3)

for all i = {0, . . . , t− 1} with m(X) = [m(X1); . . . ;m(XnD)].
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3.1 The Crux of GPDM Prediction

Before we start with the proof, note that even if the probability distribution (3.1) looks
similar to a Gaussian distribution, it is not Gaussian, since the matrix Ǩ depends on the
past states x0:t−1 by ξ0:t−1. In Fig. 3.1, an example of a joint distribution of a GP-SSM with
squared exponential kernel is shown. The initial state x0 is Gaussian distributed, whereas the
joint distribution of p(x0:1) is clearly non-Gaussian, since x0 is passed through the nonlinear
transition function.
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−3−2−10123
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p(
x

0:
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Figure 3.1: The joint probability of a GP-SSM is in general non-Gaussian.

Proof. We start with the joint probability distribution of x0:t and the stochastic process f(·)
given by

p(x0:t, f(·)|u0:t,D) = p(f(·))p(x0)
t∏

j=1
p(xj|xj−1,ut−1,D, f(·)). (3.4)

The intuitive goal is to integrate out the stochastic process f(·), such that only the joint
probability of the state x0:t remains. Unfortunately, we cannot integrate with respect to a
function. For a better understanding, a function can be seen as infinite dimensional vector.
Hence, a measure would be needed which is translation invariant and locally finite. The only
measure that obeys these two properties is the zero measure, assigning zero to every input
set, and thus, it is not suitable. Instead, we consider the limit

p(x0:t|u0:t,D) = lim
nf→∞

∫
Rnf

p(x0:t,u0:t,D, f(·))df1 . . . dfnf , (3.5)

where df1, . . . , dfnf is the function differentiation at different points, following [GZ16, Section
2.3.5]. In probabilistic terms, the relation between xt and f(xt−1) is a Dirac distribution

p(xt|xt−1,ut−1,D, f(·)) = δdirac(xt − f(xt−1)) (3.6)

as for a given state xt−1 and a realization f(xt−1), there exist only one possible next state xt.
Based on the Dirac distribution, we integrate the stochastic process at every point except x0:t,
denoted by \x0:t, to obtain the joint distribution

p(x0:t|u0:t,D) = p(x0) lim
nf→∞

∫
Rnf

p(f(·)|u0:t,D)
t∏

j=1
δdirac(xj − f(xj−1))df1 . . . dfnf\x0:t . (3.7)
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Given the GP property that f is Gaussian distributed for all xt, see (2.4), we obtain

p(x0:t|u0:t,D) = p(x0) det
(
(2π)tǨ

)− 1
2 exp

(
−1

2 (x1:t−m̌0:t−1) Ǩ−1 (x1:t−m̌0:t−1)>
)

(3.8)

with Ǩ and m̌0:t−1 as in (3.2) and (3.3), respectively.

Remark 3.3. In [Fri16; Mat+16], a similar result is presented but the authors disregard
an external input ut and the conditioning on a training set D. It is our contribution to
marginalize out the probabilistic mapping of GP-SSMs with external inputs, such that it is
suitable for model-based control approaches.

The result of Proposition 3.1, given in (3.1), suggests how to compute the joint distribution
of a GP-SSM without the need of drawing an infinite dimensional sample. For simulation
and model-based control scenarios, the conditional probability distribution for the next state
ahead xt+1 is often required. The next theorem shows that the distribution of xt+1 depends
on all past states starting with an initial state x0 ∈ Rnx . However, the nature of GPR allows
to include the past states as noise-free training data in a way that there exists an analytic
closed-form for the prediction.

Theorem 3.1. Consider a GP-SSM (2.55) with training set D = {X,Y }, where Y is
corrupted by Gaussian noise N (0,σ2

nI). Then, the conditional distribution of the next
state ahead xt+1 ∈ Rnx and output yt+1 ∈ Rny is given by

xt+1|ξ0:t,D ∼ N
(
µ(xt+1|ξ0:t,D), Σ(xt+1|ξ0:t,D)

)
µi(·) = m(ξt) + k(ξt, X̌t)>Ǩ−1

t

(
[Y̌t]:,i −m(X̌t)

)
Σi,i(·) = k(ξt, ξt)− k(ξt, X̌t)>Ǩ−1

t k(ξt, X̌t)
p(yt+1|ξ0:t,γy,D) = p(yt+1|xt+1,γy)p(xt+1|ξ0:t,D)

(3.9)

with x0 ∈ Rnx for all t ≥ 0 and extended data matrices X̌t ∈ Rnξ×(nD+t), Y̌t ∈ R(nD+t)×nx

X̌t = X, Y̌t = Y if t = 0
X̌t = [X, ξ0:t−1], Y̌t = [Y >,x1:t]> otherwise. (3.10)

The Gram matrix Ǩt ∈ R(nD+t)×(nD+t) is defined as

Ǩt =


 K + σ2

nInD K(ξ0:t−1,X)
K(ξ0:t−1,X)> K(ξ0:t−1, ξ0:t−1)

 , if t > 0

K + σ2
nInD , otherwise.

(3.11)

Proof. For the first step, i.e t = 0, the conditional distribution is identical to the standard
GP regression with predicted mean and variance given by (2.8). For t > 0, the current state
is fed back to the input, as shown in Fig. 2.9. Following the idea of the previous proof, we
condition only on the transitions ξ0:t seen up to that point, instead of conditioning on an
infinite-dimensional object. Using (3.1) with the joint Gaussian distribution property (2.4)
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of the GP, we obtain the joint distribution[
(Y̌t):,i
(xt+1)i

]
∼ N

([
m(X)
m(ξ0:t)

]
,
[
Ǩt K ′t
K ′>t k(ξt, ξt)

])
, (3.12)

where K ′>t =
[
k(ξt,X)>,k(ξt, ξ0:t−1)>

]
. Based on (3.12), the conditional probability distri-

bution of the next state ahead xt+1 is computed following the approach in appendix A.1.

Remark 3.4. The challenge for the subsequent analysis of this approach is that marginal-
ization of f will introduce dependencies across time for the state variable xt that lead to the
loss of the Markovian structure of the state space model.

Analogously, we derive the prediction for the GP-NOE model.

Theorem 3.2. Consider a GP-NOE model (2.56) with training set D = {X,Y }, where
the output data Y is corrupted by Gaussian noise N (0,σ2

nInD). Then, the conditional
distribution of the next output yt+1 ∈ Rny is given by

yt+1|ζ0:t,D ∼ N
(
µ(yt+1|ζ0:t,D), Σ(yt+1|ζ0:t,D)

)
µi(·) = m(ζt) + k(ζt, X̌t)>Ǩ−1

t

(
[Y̌t]:,i −m(X̌t)

)
Σi,i(·) = k(ζt, ζt)− k(ζt, X̌t)>Ǩ−1

t k(ζt, X̌t)

(3.13)

with ζ0 ∈ Rnζ for all t ≥ 0 and extended data matrices X̌t ∈ Rnζ×(nD+t), Y̌t ∈ R(nD+t)×ny

X̌t = X, Y̌t = Y if t = 0
X̌t = [X, ζ0:t−1], Y̌t = [Y >,y1:t]> otherwise.

The Gram matrix Ǩt ∈ R(nD+t)×(nD+t) is defined as

Ǩt =


 K + σ2

nInD K(ζ0:t−1,X)
K(ζ0:t−1,X)> K(ζ0:t−1, ζ0:t−1)

 , if t > 0

K + σ2
nInD , otherwise.

(3.14)

Proof. The proof is analogous to the proof of Theorem 3.1.

3.1.1 The non-Markovian Structure
The previous section shows that the next step ahead state xt+1 of a GP-SSM is a sample
drawn from a Gaussian distribution with the posterior mean and variance based on the
previous states and inputs. This leads to dependencies between the states such that the
dynamical model loses the Markov property, i.e., xt+1 depends not only on xt but on all
previous states x0:t. Since past states are treated as new training points without noise, the
size of the extended training set increases with each time step. This results not only in an
increasing computing time for the prediction but also in an intractable memory problem for
long time simulations. To avoid the non-Markovian structure, GPDMs are often approx-
imated for the simulation of dynamical systems [UBH18]. A standard way is to consider
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3 Control Properties of Gaussian Process Dynamical Models

only a constant number of past states instead of the full history x0:t, see [BH16a]. In the
next step, we introduce the formal description of this approximation for GP-SSMs. First,
we define the matrix Ξm

t ∈ Rnξ×m of past states and inputs as

Ξm
t :=

∅ if m = 0 ∨ t = 0
[ξt−1, . . . , ξt−m] otherwise,

(3.15)

which are used for the prediction. The maximum length of memory m ∈ N defines how many
past states and inputs are considered for the prediction of the next state. The resulting actual
length of memory m = min(t,m) is the number of states and inputs which are actually
available. The actual length and the maximum length only differ if the number of past
states beginning with x0 is less than m. The prediction of the next state ahead and the
output yt+1 ∈ Rny is given by

xmt+1 ∼ N
(
µ(xmt+1|ξt, Ξm

t ,D)︸ ︷︷ ︸
f t(ξt,Ξmt )

, Σ(xmt+1|ξt, Ξm
t ,D)︸ ︷︷ ︸

Ft(ξt,Ξmt )

)

yt+1|xmt+1 ∼ p(yt+1|xmt+1,γy).
(3.16)

For simplicity in the notation, we introduce the helper functions f t : Rnξ × Rnξ×m → Rnx

and Ft : Rnξ ×Rnξ×m → Rnx×nx . The mean and variance of the i-th element of xmt+1 is given
by

[ft(ξt, Ξm
t )]i =m(ξt) + k(ξt, X̌m

t )>(Ǩm
t )−1([Y̌t]:,i −m(X̌m

t )
)

[Ft(ξt, Ξm
t )]i,i =k(ξt, ξt)− k(ξt, X̌m

t )>(Ǩm
t )−1

k(ξt, X̌m
t ),

(3.17)

respectively. The extended data matrices X̌m
t ∈ Rnξ×(nD+m), Y̌ m

t ∈ R(nD+m)×ny are

X̌m
t = X, Y̌ m

t = Y if m = 0 ∨ t = 0
X̌m
t = [X, ξt:t−1], Y̌ m

t = [Y >,xt+1:t]> otherwise, (3.18)

with t = max (0, t−m). The Gram matrix Ǩm
t ∈ R(nD+m)×(nD+m) is given by

Ǩm
t =


K(X,X) + σ2

nI K(ξt:t−1,X)
K(ξt:t−1,X)> K(ξt:t−1, ξt:t−1)

 if t > 0 ∧m > 0

K(X,X) + σ2
nInD otherwise.

(3.19)

Note that the prediction in (3.16) is based on the past states and inputs back to the time
step t, see (3.18). In contrast, the prediction of a GP-SSM is based on the full history,
see (3.18).

Definition 3.1. We call (3.16) a Gaussian process approximated state space model (GP-
ASSM) with maximum memory length m.

Remark 3.5. For m =∞, the prediction depends on all past states, i.e.,

x∞t+1 ∼ N
(
µ(x∞t+1|ξt, . . . , ξ0,D), Σ(x∞t+1|ξt, . . . , ξ0,D)

)
(3.20)
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3.1 The Crux of GPDM Prediction

and thus, equals the true distribution in (3.9) without Markovian property. The most simple
approximation is for m = 0

x0
t+1 ∼ N

(
µ(x0

t+1|ξt,D), Σ(x0
t+1|ξt,D)

)
, (3.21)

where the next state ahead is independent of all past states except the current state and
input ξt. GP-ASSMs with finite maximum length of memory m are Markov chains of finite
order as they depend on a finite set of past states and input.

Figure 3.2 visualizes the relation between actual length m, the maximum length m and
the time step t of the last state in the memory.

x0 · · · xt−1 xt · · · xt−1 xt xt+1

m states in memory

Figure 3.2: Time dependencies for the next step ahead state xt+1 with the actual length of
the memory m = min(t,m) and the last state xt in the memory.

Example 3.1. The idea of the presented approximation is visualized in the top plot
of Fig. 3.3 by a one-dimensional GP-ASSM with maximum length of memory m = 0.
For the sake of simplicity, the external input is set to zero ut = 0 for all t ∈ N. The
distribution of the next state ahead depends only on the current state x0

t as it is always
sampled from a Gaussian distribution disregarding the history of the past states. Thus,
for a given x0

0, the next state x0
1 (blue circle) is sampled from a Gaussian distribution

(green line), where the mean and variance are based on x0
0, see (3.21). In the next time

step, x0
2 (blue circle) is sampled from a Gaussian distribution (green line), where the

mean and variance are solely based on x0
1. This procedure is continued for the following

time steps. As the distribution (green line) of the next state x0
t+1 is independent of

the past states x0
t−1, . . . ,x0

0, it is always equal to the distribution of the GP (mean and
2-sigma uncertainty) at x0

t .

x0
0 x0

1 x0
2 x0

3

x0
1

x0
2

x0
3

x0
4

Mean
2-sigma
Training points
States

Figure 3.3: Sampling of a one-dimensional GP-ASSM with squared exponential kernel.

In contrast, the true sampling (m = ∞) with a one-dimensional GP-SSM considers all
past states x∞t , . . . ,x∞0 , see (3.20). In Fig. 3.4, we start again with a given x∞0 . The
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3 Control Properties of Gaussian Process Dynamical Models

next state x∞1 (blue circle) is sampled from a Gaussian distribution based on the initial
state. Then, x∞2 is sampled based on x∞1 and x∞0 . For this purpose, the pair (x∞0 ,x∞1 ) is
added as noise free training data, see (3.10). Thus, for any following state where x∞t =
x∞0 , t ≥ 2, the next state is given by x∞t+1 = x∞1 . Due to the dependency on all past
states, the distribution of states, which are not yet added as training data, differ from
the mean and variance of the GP. This is visualized at the distribution of x∞4 (green
line) in contrast to the mean (red line) and the 2-sigma uncertainty (gray shaded area)
of the GP.
This sampling procedure is necessary since the state mapping f , given by (2.55), can
not be drawn directly due to the definition over an infinite set X ⊆ Rnx . In Fig. 3.4, the
mapping f is illustratively drawn (yellow line) over a finite but large number of states.

x∞
0 x∞

1 x∞
2 x∞

3

x∞
1

x∞
2

x∞
3

x∞
4

Sample of state mapping f

Figure 3.4: Sampling of a one-dimensional GP-SSM with squared exponential kernel.

Remark 3.6. More advanced strategies for defining the subset of states, that are stored in
the memory, are also conceivable. Namely, the same methods as for sparsification of the
training data can be exploited. For instance, approaches based on the effective prior [QR05]
or pseudo-inputs [SG06] have already been successfully applied for sparsification. In this case,
the memory Ξm

t of the GP-ASSM would not contain the last m states but a selected subset
of states based on the sparsification algorithm used. The presented results can be simply
adapted.
In the following, we analogously introduce the formal representation of GP-NOE models.
In comparison to GP-SSMs, the GP-NOE models do not have explicitly defined states.
Therefore, we define the matrix of past outputs and inputs as

Λm
t =

∅ if m = 0 ∨ k = 0
[ζt−1, . . . , ζt−m] otherwise,

(3.22)

with m ∈ N defining the maximum length of memory and m = min(t,m), the actual length
of memory. The prediction of the next step ahead output yt+1 ∈ Rny is given by

ymt+1 ∼ N
(
µ(ymt+1|ζt, Λm

t ,D)︸ ︷︷ ︸
ht(ζt,Λmt )

, Σ(ymt+1|ζt, Λm
t ,D)︸ ︷︷ ︸

Ht(ζt,Λmt )

)
. (3.23)

For simplicity in the notation, we introduce the helper functions ht : Rnζ × Rnζ×m → Rny

and Ht : Rnζ × Rnζ×m → Rny×ny . The mean [ht]i and variance [Ht]i,i of the i-th output
dimension is given by

[ht]i =m(ζt) + k(ζt, X̌m
t )>(Ǩm

t )−1([Y̌t]:,i −m(X̌m
t ))

[Ht]i,i =k(ζt, ζt)− k(ζt, X̌m
t )>(Ǩm

t )−1
k(ζt, X̌m

t ).
(3.24)
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3.1 The Crux of GPDM Prediction

For GP-NOE models, we define the extended input training set X̌m
t ∈ Rnζ×(nD+m) and output

training set Y̌ m
t ∈ R(nD+m)×ny as

X̌m
t = X, Y̌ m

t = Y if m = 0 ∨ t = 0
X̌m
t = [X, ζt:t−1], Y̌ m

t = [Y >,yt+1:t]> otherwise, (3.25)

with t = max (0, t−m) and the Gram matrix Ǩm
t ∈ R(nD+m)×(nD+m) as

Ǩm
t =


K(X,X) + σ2

nI K(ζt:t−1,X)
K(ζt:t−1,X)> K(ζt:t−1, ζt:t−1)

 if t > 0 ∧m > 0

K(X,X) + σ2
nInD otherwise.

(3.26)

Definition 3.2. We call (3.23) a Gaussian process approximated nonlinear output error
(GP-ANOE) model with maximum memory length m.

Having introduced the formal description for the approximations of the non-Markovian
dynamics, we analyze the approximation error in the following.

3.1.2 Approximation Error
In this section, we present the computation of the error between the true state distribu-
tion xt+1 given by (3.9) and the approximated distribution xmt+1 based on the maximum
length of memory m. As the Kullback-Leibler (KL) divergence is an important measure of
how one probability distribution differs from a second, we start with the KL divergence of
the GP-SSM prediction from the GP-ASSM prediction.

Proposition 3.2. Consider a GP-ASSM with maximum length of memory m ∈ N and
data set D such that

xmt+1 ∼ N
(
µ(xt+1|ξt, Ξm

t ,D), Σ(xt+1|ξt, Ξm
t ,D)

)
with x0 ∈ Rnx. For given past states and inputs ξ0:t, where ξt 6= ξ0, . . . , ξt−1, the
KL-divergence of the true distribution xt+1 from the approximation xmt+1 is given by

dKL(xt+1‖xmt+1) = 1
2∆>t Ft(ξt, Ξm

t )−1∆t − nx + tr
(
Ft(ξt, Ξ∞t )Ft(ξt, Ξm

t )−1
)

+ ln
(

tr
(
Ft(ξt, Ξ∞t )−1Ft(ξt, Ξm

t )
))

(3.27)

with ∆t = f t(ξt, Ξm
t )− f t(ξt, Ξ∞t ).

Proof. For given past states and inputs ξ0:t, the next state xt+1 of the GP-SSM and the next
state xmt+1 of the GP-ASSM are Gaussian distributed such that the KL-divergence is

dKL(xt+1‖xmt+1) =1
2

[
tr
(
Ft(ξt, Ξm

t )−1Ft(ξt, Ξ∞t )
)

+
(
f t(ξt, Ξm

t )− f t(ξt, Ξ∞t )
)>
Ft(ξt, Ξm

t )−1

(
f t(ξt, Ξm

t )− f t(ξt, Ξ∞t )
)
− nx + ln

(
detFt(ξt, Ξm

t )
detFt(ξt, Ξ∞t )

)]
(3.28)
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3 Control Properties of Gaussian Process Dynamical Models

using the definition of Ft,f t in (3.16). As the variance of each element in xt+1 and xmt+1 is
independent, see (3.17), the KL-divergence can be rewritten to

dKL(xt+1‖xmt+1) = 1
2

nx∑
i=1

(
[Ft(ξt, Ξ∞t )]i,i + ([ft(ξt, Ξm

t )]i − [ft(ξt, Ξ∞t )]i)2

[Ft(ξt, Ξm
t )]i,i

+ ln
(

[Ft(ξt, Ξm
t )]i,i

[Ft(ξt, Ξ∞t )]i,i

)
− 1

)
. (3.29)

Finally, simplifying (3.29) leads to (3.27).

Proposition 3.2 shows that the error is quantified by the drift of mean µ(xt+1|ξt, Ξm
t ,D) and

variance Σ(xt+1|ξt, Ξm
t ,D) with respect to the true distribution. Therefore, depending on

the maximum length of memory m, the approximation error is zero at the beginning as the
following corollary points out.

Corollary 3.1. For all t ≤ m, the approximated distribution p(xt+1|ξt, Ξm
t ,D), given

by (3.16), equals the true distribution (2.55) with KL-divergence dKL(xt+1‖xmt+1) = 0.

Proof. The corollary is a direct consequence of Proposition 3.2. If the time step t is equal
to or less than the maximum length of memory m, the matrices of past states and inputs
of the GP-SSM and the GP-ASSM is identical, i.e., Ξm

t = Ξ∞t , and thus, the mean and
variance of the approximated distribution equals the true distribution. In consequence, the
KL-divergence is zero given by (3.29).

The restriction of Proposition 3.2 that the current state must not be part of the past states is
necessary as otherwise, the variance Ft(ξt, Ξ∞t ) or Ft(ξt, Ξm

t ) would be zero. In Example 3.1,
this case is explained as the past states are added to the extended data set such that the
predicted variance becomes zero. Additionally, the asymmetry of the KL divergence might
be obstructive in some applications. Therefore, we introduce a different measure, namely
the mean square prediction error (MSPE).

Proposition 3.3. Consider a GP-ASSM with maximum memory length m ∈ N and
data set D such that

xmt+1 ∼ N
(
µ(xt+1|ξt, Ξm

t ,D), Σ(xt+1|ξt, Ξm
t ,D)

)
with x0 ∈ Rnx. For given past states and inputs ξ0:t, the MSPE between xmt+1 and xt+1
of the GP-SSM is given by

E
[∥∥∥xt+1 − xmt+1

∥∥∥2
]

= ‖f t(ξt, Ξ∞t )− f t(ξt, Ξm
t )‖+ tr (Ft(ξt, Ξ∞t ) + Ft(ξt, Ξm

t )) . (3.30)

Proof. Since each element of xt+1 and xmt+1 with a given history of past states and inputs ξ0:t
is Gaussian distributed, the MSPE is defined by

E
[∥∥∥xt+1 − xmt+1

∥∥∥2
]

=
nx∑
i=1

E
[
(xt+1,i − xmt+1,i)2

]
(3.31)

=
nx∑
i=1

(
[ft(ξt, Ξ∞t )]i − [ft(ξt, Ξm

t )]i
)2

+ [Ft(ξt, Ξ∞t )]i,i + [Ft(ξt, Ξm
t )]i,i.
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3.1 The Crux of GPDM Prediction

Equation (3.31) is then rewritten to (3.30).

With Propositions 3.2 and 3.3 the error of the approximation can be computed. Even if the
error measures do not decrease in general for increasing maximum length of memory m, the
behavior of the variance can be quantified. The next proposition allows to overestimate the
predicted variance based on the maximum length of memory.

Proposition 3.4. Consider two GP-ASSMs with states and inputs ξ0:t ∈ Rnξ with ξ0 6=
ξ1 6= . . . 6= ξt such that

xmt+1 ∼ N
(
f t(ξt, Ξm

t ),Ft(ξt, Ξm
t )
)

xm
′

t+1 ∼ N
(
f t(ξt, Ξm′

t ),Ft(ξt, Ξm′
t )
)
,

where m and m′ are the maximum length of memory, respectively. Then, for m′ > m

tr
(
Σ(xm′t+1|ξt, Ξm′

t ,D)
)
< tr

(
Σ(xmt+1|ξt, Ξm

t ,D)
)

(3.32)

holds for all t ∈ N with t > m.

Proof. Following (3.9), the variance for each component of the predicted state of a GP-ASSM
is given by

var(xmt+1,i|ξt, Ξm
t ,D) =k(ξt, ξt)− k(ξt, X̌m

t )>(Ǩm
t )−1

k(ξt, X̌m
t ). (3.33)

The Gram matrix Ǩm
t is positive definite and from (3.19) we know, that its dimension

is (nD + m) × (nD + m). Based on Ǩm
t , the Gram matrix Ǩm′

t ∈ R(nD+m′)×(nD+m′) is
determined as

Ǩm′
t =

[
K(ξt′:t−1, ξt′:t−1) K(ξt′:t−1,X)
K(ξt′:t−1,X)> Ǩm

t ,

]
(3.34)

where t = max (0, t−m) and t′ = max (0, t−m′). Since the Ǩm′
t is also positive definite

and m′ > m, the inequality

k(ξt, ξt)− k(ξt, X̌m′
t )>(Ǩm′

t )−1
k(ξt, X̌m′

t ) < k(ξt, ξt)− k(ξt, X̌m
t )>(Ǩm

t )−1
k(ξt, X̌m

t )
⇒ var(xm′t+1,i|ξt, Ξm′

t ,D) < var(xmt+1,i|ξt, Ξm
t ,D) (3.35)

holds for all t ∈ N with t > m. Summing up (3.35) over all elements of xt+1 leads to (3.32).

Proposition 3.4 verifies that the variance of the distribution for the next state ahead xm′t+1 is
less than the variance of xmt+1 with a shorter actual length of memory. This induces that the
variance is the lowest for the true sampling as it is given form =∞. The restriction t > m in
Proposition 3.4 is necessary as otherwise the variances would be equal for t ≤ m as explained
in Corollary 3.1. The inequality of past states is necessary to ensure that the GP-ASSM with
maximum length of memory m′ contains not only a multiple of the same states which would
not decrease the variance. For the sake of completeness, a weaker description for all t ∈ N
is provided by the following corollary.
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Corollary 3.2. Consider two GP-ASSMs with states and inputs ξ0:t ∈ Rnξ such that

xmt+1 ∼ N
(
f t(ξt, Ξm

t ),Ft(ξt, Ξm
t )
)

xm
′

t+1 ∼ N
(
f t(ξt, Ξm′

t ),Ft(ξt, Ξm′
t )
)

where m and m′ are the maximum length of memory, respectively. Then, for m′ > m

tr
(
Σ(xm′t+1|ξt, Ξm′

t ,D)
)
≤ tr

(
Σ(xmt+1|ξt, Ξm

t ,D)
)

holds for all t ∈ N.

Proof. The corollary is a direct consequence of Proposition 3.4 since as long as the current
time step t is less than the maximum length of memory m, the variance of xmt+1 and xm′t+1 is
identical as shown in Corollary 3.1.

In the next example, a comparison of the presented error measures and the behavior of the
variance is presented.

Example 3.2. In Fig. 3.5, the distributions (red shaded) for the next state ahead xmt+1
depending on the maximum length of memory m for a given trajectory x0, . . . ,x3 (red
circles) is shown. We use here a one-dimensional GP-ASSM with squared exponential
function. For sake of simplicity, the input is set to zero, i.e., ut = 0 for all t ∈ N. With
increasing maximum length of memory m, the variance of the distributions (red shaded)
decreases as stated in Proposition 3.4. For m = 3, the distribution is equal to the true
distribution (black dashed) as stated in Corollary 3.1. Table 3.1 shows the computed
KL-divergence, the MSPE and the variance of xm4 per maximum length of memory m.
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Figure 3.5: The distribution for the next state ahead xmt depending on the maximum
length of memory m.
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m = 0 m = 1 m = 2 m = 3
dKL(x4‖xm4 ) 2.1131 3.0811 0.5559 0
MSPE(x4,xm4 ) 0.5720 0.5190 0.1171 0.0575
Σ(xm4 |ξ3, Ξm

3 ,D) 0.3620 0.1519 0.0706 0.0288

Table 3.1: Comparison of the KL-divergence, MSPE and variance Σ for different maxi-
mum lengths of memory m.

So far, we obtained a method for sampling from the non-Markovian GP-SSM and introduced
the approximated GP-ASSM which is a Markov chain of finite order. This approximation
allows to use GP-ASSMs like parametric dynamical models since the state dependencies
across time are removed. The approximation error is analyzed based on different measures
and illustrated in Example 3.2.

Remark 3.7. This section focuses on the formal development of GP-ASSMs, but the results
are also directly applicable to GP-ANOE models. In this case, the proofs are analogously but
with the output yt as regressor.

3.2 Boundedness of GPDMs
After the introduction of GP-SSMs and GP-ASSMs, the models are analyzed in terms of
boundedness. Furthermore, the relation of the boundedness properties between the true and
the approximated distribution are investigated.

3.2.1 GP State Space Models
We start with the general introduction of the boundedness of GP-ASSMs for bounded mean
functions and kernels.

Theorem 3.3. Consider a GP-ASSM (3.16) with maximum memory length m and
bounded mean function and kernel, i.e., ‖m(ξ)‖ < ∞, k(ξ, ξ′) < ∞, respectively, for
all ξ, ξ′ ∈ Rnξ . Then, the expected value of the sequence {xmt }, t ∈ N given by

xmt+1 ∼ N
(
µ(xmt+1|ξt, Ξm

t ,D), Σ(xmt+1|ξt, Ξm
t ,D)

)
(3.36)

is ultimately p-bounded by

sup
t∈N

E
[
‖xmt ‖p

]
<∞

for all x0 ∈ Rnx , ∀p ∈ N.

Proof. We start with the computation of the expected value for a one-dimensional GP-SSM,
which equals a GP-ASSM with m = ∞, as for any other m the number of considered past
states is reduced. For this purpose, we integrate over the joint probability distribution given
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by (3.1). That leads to

sup
t∈N

E[|xpt |] = sup
t∈N

∫
Rt

|xpt |p(x0:t|u0:t,D)dx0:t

= c1 sup
t∈N

∫
Rt

|xpt | exp
(
−1

2 µ
>
t Ǩ

−1µt

)
dx0:t (3.37)

with µt = x1:t − m̌0:t−1, constant c1 ∈ R and m̌0:t−1, Ǩ given by (3.2) and (3.3). The
matrix Ǩ is positive definite, symmetric and the eigenvalues are positive and bounded,
i.e., λ(Ǩ) > 0, λ̄(Ǩ) < ∞ for all ξ0:t−1 ∈ Rnξ×t. The expression λ(·) and λ̄(·) describe the
minimum and maximum eigenvalue of a matrix, respectively. Thus, there exists a positive
definite and symmetric matrix K ∈ Rt×t, such that we can upper bound the expected value
to

sup
t∈N

E[|xpt |] ≤ c1 sup
t∈N

∫
Rt

|xpt | exp
(
−1

2 µ
>
t K µt

)
dx0:t. (3.38)

As m̌0:t−1 is given by

m̌0:t−1 = m(ξ0:t−1) +K(ξ0:t−1,X)>(K(X,X) + σ2
nI)−1(Y −m(X)),

following (3.3), and the mean function m and kernel k are bounded, it follows that each
element of m0:t−1 is bounded, i.e., mi ≤ c2 ∈ R>0, ∀i = 0, . . . , t − 1. Note that this bound
only depends on the previous time steps and is independent of time step t. Consequently,
there exists a vector ct ∈ Rt such that (3.38) can be rewritten as

∫
Rt

|xpt | exp
(
−1

2 µ
>
t K µt

)
dx0:t ≤

∫
Rt

|xpt | exp
(
−1

2(x1:t − ct)>K(x1:t − ct)
)
dx0:t

≤ c3 ∈ R>0, (3.39)

and, thus, supt∈N E[|xpt |] <∞. As a multi-dimensional GP-SSM depends on separated GPs
and the Gram matrix Ǩ remains bounded, (3.39) can be extended to xt ∈ Rnx . Conse-
quently, supt∈N E ‖xt‖p < ∞ holds. Finally, this remains obviously true for GP-ASSMs
with m <∞, since only a subset of past states is considered. This concludes the proof.

Remark 3.8. Note that no boundedness of the input ut is required for Theorem 3.3.

Remark 3.9. Many commonly used kernels for GPDMs are bounded, for instance, the
squared exponential or Matérn kernel.

Theorem 3.3 shows the boundedness of GP-ASSMs for bounded mean function and kernel,
which holds for the true as well as for the approximated distribution. However, it is also
possible that a GP-ASSM with unbounded kernel leads to bounded dynamics. This mainly
depends on the training data. In this case, the boundedness property might be lost for a
different maximum length of memory, as the following proposition states.
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3.2 Boundedness of GPDMs

Theorem 3.4. Consider two GP-ASSMs with states xmt and xm′t , respectively, such that

xmt+1 ∼ N
(
f t(ξt, Ξm

t ),Ft(ξt, Ξm
t )
)

xm
′

t+1 ∼ N
(
f t(ξ′t, Ξm′

t ),Ft(ξ′t, Ξm′
t )
)
,

where m and m′ are the maximum length of memory. Then, for m < m′

sup
t∈N

E
[
‖xmt ‖p

]
<∞; sup

t∈N
E
[
‖xm′t ‖p

]
<∞ (3.40)

holds for any p ∈ N and xm0 = xm
′

0 ∈ Rnx.

Proof. We use a counter example to prove this theorem. Consider a one-dimensional GP-
ASSM with m = 0 and linear kernel as introduced in (2.44). We assume two training points
at X1 = [−1; 0],X2 = [1; 0] and Y = [Y1,Y2] ∈ R2 with noise σ2

n = 1 and input ut = 0. Using
the definition of (3.16), the mean ft and variance Ft of next state x0

t+1 is given by

ft(ξt, ∅) = 1
3x

0
t (Y2 − Y1), Ft(ξt, ∅) = 1

3(x0
t )

2. (3.41)

For |Y2 − Y1| ≤ 3, the sequence {x0
t}, t ∈ N is p-bounded, since x0 = 0 is stochastically

asymptotically stable in the large. Next, in an alternative GP-ASSM, we use the same
training points with m′ ≥ 1. Starting at xm′0 ∈ R\0, the distribution of xm′1 can be computed
using (3.41). With a Gaussian distributed sampled xm′1 , the next step state xm′t+1 for t ≥ 1
are given by

ft

([
xm
′

t

0

]
, Ξm′

t

)
= xm

′
1
xm
′

0
xm
′

t , Ft
([
xm
′

t

0

]
, Ξm′

t

)
= 0

xm
′

t+1 = xm
′

1
xm
′

0
xm
′

t . (3.42)

The predicted variance for all states in the future is zero, since the state xm′1 exactly defines
a sample of the GP with a linear kernel. The reason is that a linear function is fully defined
by one point unequal zero. Based on the Gaussian distribution of xm′1 , the probability, that
a trajectory of (3.42) is unbounded, is computed by

P
(∣∣∣∣∣xm

′
1
xm
′

0

∣∣∣∣∣ > 1
)

= 1 + cdf
−3

∣∣∣xm′0

∣∣∣+ ∆Y
[xm′0 ]2

− cdf
3
∣∣∣xm′0

∣∣∣+ ∆Y
[xm′0 ]2

 , (3.43)

where ∆Y = Y1−Y2 and cdf(·) denotes the standard normal cumulative distribution function.
Since the probability (3.43) is greater than zero, the sequence {xm′t }, t ∈ N is not p-bounded.
Hence, a different maximum length of memory m of a GP-ASSM might lead to a loss
boundedness property as stated in Theorem 3.4.
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3 Control Properties of Gaussian Process Dynamical Models

Example 3.3. Figure 3.6 visualizes the counter example from the proof of Theorem 3.4
based on a GP-ASSM with linear kernel as introduced in (2.44). Although the samples
of the GP-ASSM with m = 0 are bounded (top), a GP-ASSM with m′ = 10 (bottom)
shows unbounded trajectories, which leads to an unbounded mean and variance.
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x
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Figure 3.6: The GP-ASSM with m = 0 (top) results in bounded system trajectories
whereas a GP-ASSM with m′ ≥ 1 (bottom) generates unbounded trajec-
tories. Therefore the boundedness property is lost for different maximum
lengths of memory m

The following theorem shows the relationship between the boundedeness of GP-ASSMs with
different length of memory. It states that the approximated dynamics given by a GP-
ASSM is bounded if the dynamics of the GP-SSM is bounded. Thus, it allows to use the
approximation in control settings without losing the boundedness, which is important for
the robustness and stability analysis. Note that, in contrast to Theorem 3.3, the kernel is
not required to be bounded.

Theorem 3.5. Consider two GP-ASSMs with states xmt and xm′t ,respectively, such that

xmt+1 ∼ N
(
f t(ξt, Ξm

t ),Ft(ξt, Ξm
t )
)

xm
′

t+1 ∼ N
(
f t(ξ′t, Ξm′

t ),Ft(ξ′t, Ξm′
t )
)

where m and m′ are the maximum length of memory. Then, if m < m′,

sup
t∈N,xm′0 ∈Rnx

E
[
‖xm′t ‖p

]
<∞⇒ sup

t∈N,xm0 ∈Rnx
E
[
‖xmt ‖p

]
<∞ (3.44)

holds for all p ∈ N.

Remark 3.10. Note the swap of xm′t and xmt in (3.44) in contrast to (3.40).
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3.2 Boundedness of GPDMs

Proof. In the following, we split the proof in two parts depending on time step t.
For t ≤ m, the memories Ξm

t and Ξm′
t of both GP-ASSMs are identical and, thus, the

expected value is bounded by

sup
t∈N,t≤m

E[(xm′t )p] = sup
t∈N,t≤m

E[(xmt )p] <∞. (3.45)

For t > m, we use the last point in memory xm′max (0,t−m′−1) as initial point for xmt+1. Thus,
we can follow the above argumentation again, which leads to

sup
t∈N,t>m

E[(xmt )p] <∞, (3.46)

such that the boundedness is preserved.

3.2.2 GP Nonlinear Output Error Models
In this section, we transfer our results about boundedness of GP-ASSMs to GP-ANOE
models. In GP-ANOE models, the feedback loop is closed by the output yt instead of
the state xt as in GP-ASSMs. Therefore, we present the following results without further
explanation and refer here to Section 3.2.1.

Proposition 3.5. Consider a GP-ANOE (3.23) with maximum memory length m and
bounded mean function and kernel, i.e., ‖m(ζ)‖ < ∞, kζ, ζ ′) < ∞, respectively, for
all ζ, ζ ′ ∈ Rnζ . Then, the expected value of the sequence {ymt }, t ∈ N given by (3.23) is
ultimately p-bounded by

sup
t∈N

E
[
‖ymt ‖p

]
<∞

for all ζ0 ∈ Rnζ ,∀p ∈ N.

Proof. Analogously to the proof of Theorem 3.3 with the GP-ANOE model defined by (3.23).

Proposition 3.6. Consider two GP-ANOEs with outputs ymt and ym′t , respectively, such
that

ymt+1 ∼ N
(
ht(ζmt , Λt),Ht(ζmt , Λt)

)
ym

′
t+1 ∼ N

(
ht(ζm

′
t , Λ′t),Ht(ζm

′
t , Λ′t)

)
where m and m′ are the maximum length of memory, respectively. Then, for m < m′,

sup
t∈N

E
[
‖ymt+1‖p

]
<∞; sup

t∈N
E
[
‖ym′t+1‖p

]
<∞

holds for p ∈ N and ζm0 = ζm
′

0 ∈ Rnζ .

Proof. Analogously to the proof of Theorem 3.4 with the GP-ANOE model defined by (3.23).
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Proposition 3.7. Consider two GP-ANOE models with outputs ymt and ym′t , respec-
tively, such that

ymt+1 ∼ N
(
ht(ζmt , Λt),Ht(ζmt , Λt)

)
ym

′
t+1 ∼ N

(
ht(ζm

′
t , Λ′t),Ht(ζm

′
t , Λ′t)

)
where m and m′ are the maximum length of memory, respectively. Then, if m < m′,

sup
t∈N,ζm′0 ∈R

nζ

E
∥∥∥ym′t ∥∥∥p <∞⇒ sup

t∈N,ζm0 ∈R
nζ

E ‖ymt ‖p <∞

holds for all p ∈ N.

Proof. Analogously to the proof of Theorem 3.5 with the GP-ANOE model defined by (3.23).

3.2.3 Case Study
In this case study, we demonstrate the modeling of a dynamical system with a GP-SSM
and GP-ASSMs with different maximum lengths on memory. As dynamical system to be
modeled, we consider the non-autonomous discrete-time predator–prey system introduced
in [Liu10]. It is given by

xpt+1,1 = xpt,1 exp
(

1− 0.4xpt,1 −
(2 + 1.2ut,1)xpt,2

1 + (xpt,1)2

)

xpt+1,2 = xpt,2 exp
(

1 + 0.5ut,1 −
(1.5− ut,2)xpt,2

xpt,1

) (3.47)

ypt = xp
t + ν, ut =

[
cos(0.02πt)
sin(0.02πt)

]
, (3.48)

with two-dimensional state xp
t ∈ R2, output ypt ∈ R2, input ut ∈ R2, and Gaussian dis-

tributed noise ν ∈ R2,ν ∼ N (0, 0.052I2). The states xpt,1 and xpt,2 represent the population
size of prays and predators, respectively, but are taken to be continuous. The system dy-
namics (3.47) are assumed to be unknown whereas the input and output, given by (3.48), are
assumed to be known. For the modeling with a GP-SSM, 33 training points of a trajectory
from the predator–prey system with initial state xp

0 = [0.3; 0.8] are collected. More detailed,
every third state xp

t , input ut and output ypt between t = 1, . . . , 100 is recorded. Thus, the
training set D = {X,Y } consists of

X = [ξ1, ξ4, . . . , ξ97] with ξt = [xp
t ;ut]

Y = [y1,y4, . . . ,y97]>.
(3.49)

Following the structure of GP-SSMs in (2.55), two GPs are employed to model each element
of the state xp

t separately. The GPs are based on a squared exponential kernel with automatic
relevance detection given by

k(ξt, ξ′t) = ϕ2
1 exp

(
−(ξt − ξ′t)>P−1(ξt − ξ′t)

)

54



3.2 Boundedness of GPDMs

with matrix P = diag(ϕ2
2, . . . ,ϕ2

5). This kernel is bounded with respect to ξt, ξ′t ∈ R4. The
hyperparameters ϕ1, . . . ,ϕ5 of each GP are optimized by means of the likelihood function,
see [Ras06]. In this study, we model the dynamics (3.47) with a GP-SSM, a GP-ASSM with
maximum length of memory 10 and a GP-ASSM with maximum length of memory 0. For
the testing of these models, we select the initial state xp

0 = [0.268; 0.400]. The top plot
of Fig. 3.7 visualizes the trajectory of the predator–prey system (3.47), considered as the
ground-truth. After a transition phase, the numbers of prays (red dashed) and predators
(blue solid) converge to a periodic solution. The second plot shows three samples of the
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Figure 3.7: From top to bottom: Trajectory of predator–prey system, samples of GP-SSM,
samples of GP-ASSM with m = 10, and samples of GP-SSM with m = 0. For
decreasing maximum length of memory of the approximations, the variance is
increasing which leads to rougher trajectories.
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3 Control Properties of Gaussian Process Dynamical Models

GP-SSM drawn by means of Theorem 3.1. Even though the training set consists only of
data up to the time step t = 97, see (3.49), the GP-SSM precisely predicts the trajectory
after the transition phase. As the GP-SSM implies m = ∞, all past state transitions are
added to the memory Ξ∞t , defined in (3.15), and used for the next state ahead prediction.
Consequently, the shape of each sample is identical in periodic repetitions, as highlighted
inside the boxes in the second plot of Fig. 3.7. However, the drawback of this sampling is
the increasing size of the memory Ξ∞t and, thus, the increasing size of the Gram matrix Ǩ∞t ,
given by (3.19).
In Fig. 3.8, the size of the square matrix Ǩ∞t is depicted (solid black) with respect to the
time step t. For t = 0, the matrix solely contains the covariance between each element of
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Figure 3.8: The number of rows and columns nD+m of the Gram matrix for the GP-SSM and
two GP-ASSMs. The GP-ASSM allows to bound the size of the Gram matrix,
which must be inverted in each time step.

the input training data X. The linear slope is problematic for the computation time as the
Gram matrix must be inverted for each prediction step, see (3.9).
Three samples of the GP-ASSM with maximum length of memory 10, given by the means
of (3.16), are visualized in the third plot of Fig. 3.7. The samples are similar to the samples
of the GP-SSM, since the memory Ξ10

t consists of sufficiently many past states to generate a
similar predictive distribution for next step state. However, the shape of the samples differs
between the periodic repetitions, as indicated with the two boxes. This variation is due to
the reduced memory, which induces that the evolution of the state inside the left box is not
considered for the prediction of the corresponding state in the right box. In contrast to the
GP-SSM, the maximum length of memory 10 bounds the size (dashed line) of the Gram
matrix Ǩ10

t as shown in Fig. 3.8.
In the bottom plot of Fig. 3.7, three samples of the GP-ASSM with maximum length of
memory 0 are drawn. The variance for each prediction step is significantly higher, as de-
scribed in Proposition 3.4, such that the trajectories are rougher. However, the size of the
Gram matrix Ǩ0

t remains constantly low (dotted line) as presented in Fig. 3.8.
Finally, the GP-SSM and the GP-ASSM with m = 0 are tested with 50 different initial val-
ues, which are drawn from a uniform distribution between [−5, 5] for both states, visualized
in Fig. 3.9. All trajectories are bounded, which supports Theorems 3.3 and 3.5.
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Figure 3.9: Trajectories of 50 samples starting from multiple initial points illustrate the
boundedness of the GP-SSM and GP-ASSM.

3.3 Deterministic Markov Models
In many applications, where a GPDM is considered in a control setting, only the mean
function of the process is employed, see, e.g., [WHB05] and [Cho+13]. This is mainly because
a GPDM is often used for replacing a deterministic model in already well-known model-
based control approaches. Hence, the current state is solely exploited for the prediction,
such that a well-known Markov structure is achieved. Therefore, we focus in this section on
more detailed properties of GP-ASSM with m = 0 where only the mean prediction is fed
back. We call this simplification a deterministic GP-SSM. The contribution of this section
is the study of equilibria and their stability properties in terms of Lyapunov stability and
ultimate boundedness. We analyze deterministic GP-SSMs with a linear, polynomial and
squared exponential kernel, see Section 2.2 for details on the various kernels. Afterwards,
we determine the number of equilibrium points and present stability conditions for these
models. Additionally, the derived results are illustrated in numerical simulations.
The remainder of this section is organized as follows: In Section 3.3.2 the equilibrium points
of deterministic GP-SSMs are analyzed. Stability conditions for deterministic GP-SSMs are
presented in Section 3.3.3. Finally, Section 3.3.4 presents some illustrations of the derived
results.
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3 Control Properties of Gaussian Process Dynamical Models

3.3.1 Deterministic GP-SSM
The GP-ASSM, introduced in Definition 3.1, is taken as basis for the deterministic GP-SSM.
For the sake of simplicity, we assume that the prior mean functions m1, . . . ,mnx are set to
zero. However, the results can be easily extended using a definition as in (2.55). We focus
on autonomous deterministic GP-SSMs, as we want to analyze its equilibrium points.

Definition 3.3. An autonomous deterministic GP-SSM is given by the state space equation

x̄t+1 = µ(xt+1|xt,D) =


k(xt,X)>(K + InDσ

2
n,1)−1Y:,1

...
k(xt,X)>(K + InDσ

2
n,nx)−1Y:,nx

 =: fdet(xt), (3.50)

where x̄t+1 denotes the next step ahead state and fdet ∈ Rnx → Rnx the state mapping.

Hence, an autonomous deterministic GP-SSM is a GP-ASSM with maximum length of
memory m = 0, where the variance and the external input ut is suppressed. Thus, the
predicted next step ahead state x̄t+1 is not probabilistic but deterministic.

3.3.2 Equilibrium Points
In this section, we analyze the autonomous deterministic GP-SSM in terms of the existence
of equilibrium points. We denote the set of equilibrium points X ∗ by

X ∗ = {x∗ ∈ X | x∗ = fdet(x∗)} .

The cardinality |X ∗| denotes the number of equilibrium points. Each component of the
predicted state vector of a deterministic GP-SSM, as defined in (3.50), can be written as
weighted sum of kernels. The number of kernels is equal to the number of training points nD,
such that (3.50) is rewritten to

x̄t+1,i =
nD∑
j=1

k(xt,X:,j) [(K + InDσ
2
n,i)−1Y:,i]j︸ ︷︷ ︸

αj(i)

. (3.51)

The vector of weighting factors α(i) = [α1(i), . . . ,αnD(i)]> depends on the inverse of the
covariance matrix with signal noise (K(X,X) + InDσ

2
n,i)−1, the output training matrix Y

and the required element i. In the following, we provide an overview about the behavior of
deterministic GP-SSMs with common kernels of the listed kernels in Table 2.1.

Squared exponential kernel

The widely used squared exponential kernel, as defined in (2.47), is very powerful for non-
linear function regression. The following proposition gives a lower bound of the quantity of
equilibrium points.

Proposition 3.8. Consider an autonomous deterministic GP-SSM with squared expo-
nential kernel (2.47), as introduced in (3.50). There exists at least one equilibrium point

min |X ∗| = 1.
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3.3 Deterministic Markov Models

Proof. The idea of the proof is that each component-wise equation x∗t,i = [fdet(xt)]i has a
solution for any fixed component xt,j ∈ R with j ∈ {1, . . . ,nx} and j 6= i. Therefore, it must
exist at least one solution for the overall system of equations.
For the proof of the minimum quantity of equilibrium points, we consider the state prediction
of the autonomous deterministic GP-SSM (3.51) and insert the equation of the squared
exponential kernel

x̄t+1,i =
nD∑
j=1

ϕ2
1,i exp

(
−‖xt −X:,j‖2

2ϕ2
2,i

)
αj(i). (3.52)

The parameters ϕ1,i and ϕ2,i are the hyperparameters of the function [fdet]i. As far as we
know, it is not possible to find an analytic solution for this kind of multivariate equation
system. Therefore, the system functions will be treated component-wise. Even though this
view neglects the effects of the multivariate structure, it provides a valid solution for the
minimum number of equilibrium points as shown at the end of the proof. An important
property of the squared exponential function is the behavior at the limit given by

lim
‖z‖→∞

ϕ2
1 exp

(
−‖z − z

′‖2

2ϕ2
2

)
= 0, with z, z′ ∈ Rnx . (3.53)

Since the limit of the squared exponential function is zero, the limit of the weighted sum of
squared exponential functions must be also zero

lim
‖xt‖→∞

nD∑
j=1

ϕ2
1,i exp

(
−‖xt −X:,j‖2

2ϕ2
2,i

)
αj(i) = 0. (3.54)

To finish the proof, we require Bolzano’s theorem, which is a special case of the intermediate
value theorem.

Theorem 3.6 (Bolzano, [LE13]). Suppose fgen(z) : [c1, c2] → R is continuous on the
closed interval [c1, c2] and suppose that fgen(c1) and fgen(c2) have opposite signs. Then
there exists a number c in the interval [c1, c2] for which fgen(c) = 0.

Since Bolzano’s theorem just holds for scalar functions, the state space equation (3.52)
must be rewritten as function of a scalar variable. For this purpose, the components x∗j
with j ∈ {1, . . . ,nx}, j 6= i are fixed and we obtain a function f sdet(xi) : R→ Rnx given by

[f sdet(xt,i)]i := [fdet([xt,1, . . . ,xt,i−1,xt,i,xt,i+1, . . . ,xt,nx ])]i
with fixed xt,1, . . . ,xt,i−1,xt,i+1, . . . ,xt,nx ∈ R. (3.55)

Due to the fact that [f sdet(·)]i is continuous and its limits

lim
xt,i→∞

[f sdet(xt,i)]i − xt,i = −∞

lim
xt,i→−∞

[f sdet(xt,i)]i − xt,i =∞ (3.56)

have a different sign, Bolzano’s theorem guarantees at least one solution x∗i = [f sdet(x∗i )]i.
Since this holds for any xt,1, . . . ,xt,i−1,xt,i+1, . . . ,xt,nx ∈ R, each function [f sdet(x∗i )]i has such
a solution. Therefore, there must exist an equilibrium point x∗ which fulfills the equilibrium
equation x∗ = fdet(x∗).
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3 Control Properties of Gaussian Process Dynamical Models

Example 3.4. Figure 3.10 visualizes the idea of the proof. For an example sys-
tem with two states, the top row shows color-coded on the left side the difference
between [fdet(xt)]1 and xt,1 and on the right side the difference between [fdet(xt)]2
and xt,2. If the distance is zero, which is illustrated by dark color, the correspond-
ing component of the state vector xt,i equals [fdet(xt)]i. The second row shows the slice
plane [f sdet(xt,i)]i− xt,i, which should be zero for an equilibrium. On the left side, x2,k is
fixed by three example values −5 (red), 5 (blue) and 0.93 (green). On the right side, xt,1
is fixed by three example values −5 (red), 5 (blue) and −1.88 (green). As Bolzano’s theo-
rem predicts, each function has at least one zero crossing. Therefore, it is possible to find
two values x∗1 and x∗2 which fulfill [f sdet(x∗i )]i−x∗i = 0 for each i ∈ {1, 2}. For this example
system, a numerical solver determinates one equilibrium point at x∗ = [−1.88, 0.93]>.
The green function illustrates this value. On the left side, the function crosses zero
at 0.93 and on the right side zero is crossed at −1.88.
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Figure 3.10: Top: Shows color-coded |[fdet(xt)]1− xt,1| on the left and |[fdet(xt)]2− xt,2|
on the right against xt,1 and xt,2. Dark blue marks the area with possible
equilibrium points. Bottom: On the left side, xt,2 is fixed by three example
values −5 (red), 5 (blue) and 0.93 (green). On the right side, xt,1 is fixed by
three example values −5 (red), 5 (blue) and −1.88 (green). As predicited
by Bolzano’s theorem, each function has at least one zero crossing.
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Linear kernel

In the following, we investigate the equilibrium points of the linear kernel, as defined in
(2.44). The following proposition classifies the number of equilibrium points into three
outcomes.

Proposition 3.9. Consider an autonomous deterministic GP-SSM with linear ker-
nel (2.44), as introduced in (3.50). It has the following properties:

|X ∗| = 0 ∨ |X ∗| = 1 ∨ |X ∗| =∞

Proof. We start with the prediction for the next state ahead, given by (3.51), and insert the
equation of the linear kernel. That leads to the next state ahead given by

x̄t+1,i =
nD∑
j=1

kj(xt,X)αj(i) =
m∑
j=1

(x>t X:,j + ϕ2
1,i)αj(i)

=
nD∑
j=1
x>t X:,jαj(i) + ϕ2

1,i1>α(i), (3.57)

where 1> denotes the vector [1, . . . , 1] of appropriate dimension and α(i) is given by (3.51).
Since the sum of linear functions is also a linear function, the whole one step ahead state
vector x̄t+1 can be written as

x̄t+1 =


X1,:α(1), . . . ,Xnx,:α(1)
X1,:α(2), . . . ,Xnx,:α(2)

...
X1,:α(nx), . . . ,Xnx,:α(nx)


︸ ︷︷ ︸

A

xt +


ϕ2

1,11>α(1)
ϕ2

1,21>α(2)
...

ϕ2
1,nx1

>α(nx)


︸ ︷︷ ︸

b

, (3.58)

and, thus, has a form of a non-homogeneous linear system with state matrix A ∈ Rnx×nx

and offset b ∈ Rnx . The equilibrium points are calculated by solving the equation x∗ =
Ax∗ + b. Therefore, we use in the following the Moore-Penrose pseudoinverse matrix (AI)+

with AI = Inx − A. The system (3.58) behaves in any one of three possible ways:
(i) The system has a single unique solution

if rank(AI) = rank(AI |b) = nx ⇒ X ∗ = {(AI)−1b}
(ii) The system has infinitely many solutions

if rank(AI) = rank(AI |b) < nx ⇒ X ∗ = {(AI)+b+ ker(A)}
(iii) The system has no solution

if rank(AI) 6= rank(AI |b) ⇒ X ∗ = {∅}
Thus, the number of equilibrium points is given by one of these solutions which concludes
the proof.
Remark 3.11. Due to the fact that a system with infinitely many solutions or no solution
is in practice almost impossible, the presented conditions (ii) and (iii) are only pathological
cases. For example, if we assume a one dimensional system, A must be exactly 1 to obtain
infinitely many solutions (noise free data where the input data equals the output data) or no
solution (noise free data where the input data plus a constant equals the output data).

61



3 Control Properties of Gaussian Process Dynamical Models

Polynomial kernel

Next, we study the polynomial kernel, as defined in (2.45), which is more flexible than the
linear kernel as it allows nonlinear function estimation. Its degree p is important for the
quantity of equilibrium points as the next theorem shows.

Proposition 3.10. Consider an autonomous deterministic GP-SSM with polynomial
kernel (2.45), as introduced in (3.50). Its set of equilibrium points of has the property

|X ∗| ≤
nx∏
i=1

pi,

where pi is the degree of the polynomial kernel corresponding to the i-th component
of x̄t+1.

Proof. Once again, we employ the next state ahead prediction (3.51) and insert the polyno-
mial kernel. Thus, we obtain

x̄t+1,i =
nD∑
j=1

k(xt,X:,j)αj(i) =
nD∑
j=1

(x>t X:,j + ϕ2
1,i)piαj(i), (3.59)

where the vector of exponents p = [p1, . . . , pnx ]> ∈ Nnx contains the degree of each polyno-
mial kernel. Employing the multinomial theorem [GZ16] and the condition for equilibrium
points x∗ = fdet(x∗), equation (3.59) can be rewritten as

x∗i =
∑

l1+...+lnx+1=pi
ci,l1,...,lnx+1x

∗l1
1 x∗

l2
2 · · ·x∗

lnx

nx ϕ
2lnx+1
1,i (3.60)

with 0 ≤ l1, . . . , lnx+1 ≤ nx and cl1,...,lnx+1 ∈ R. The term at the left-hand side can be
integrated into the right-hand side by adapting the coefficients cl1,...,lnx+1 to c′i,l1,...,lnx+1 ∈ R
and we obtain

0 =
∑

l1+...+lnx+1=pi
c′i,l1,...,lnx+1x

∗l1
1 x∗

l2
2 · · ·x∗

lnx

nx ϕ
2lnx+1
1,i . (3.61)

The theorem of Bézout gives an upper bound for the number of roots for this polynomial
system.

Theorem 3.7 (Bézout, [Stu98]). Consider a square polynomial system denoted by f gen(z)
with degree ci of each polynomial function fgen,i(z)

fgen,1(z1, z2, . . . , zn) = 0
...

fgen,n(z1, z2, . . . , zn) = 0.

Unless it has an infinite number of zeros, the number of its isolated zeros in Cn, counting
multiplicities, does not exceed the number c = c1c2 · · · cn.
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Due to the fact that the real numbers are a subset of the complex numbers, the number
of zeros of (3.61) in Rnx is less than or equal to the number of zeros given by Bézout’s
theorem.

Given that the polynomial (3.61) is incomplete, Bernstein’s theorem allows to calculate a
tighter bound for the number of zeros. However, the generated polynomial functions by (3.61)
are complete and, thus, Bernstein’s theorem does not provide a closer boundary.

3.3.3 Stability
In this section, we analyze the stability of autonomous deterministic GP-SSMs as stability
is a crucial property for the application to control scenarios. For each of the previously
presented kernels the related stability condition is provided in the following theorems. We
start with a theorem for the squared exponential kernel.

Theorem 3.8. An autonomous deterministic GP-SSM (3.50) with squared exponential
kernel, as defined in (2.47), and nD training points has the following properties:

(i) There exists an invariant set

I =
{
z ∈ Rnx | |zi| ≤ ϕ2

1,i
√
nD‖α(i)‖,∀i = 1, . . . ,nx

}
,

with α(i) defined in (3.51), which is globally attractive.

(ii) The solution of (3.50) is globally uniformly ultimately bounded by

sup
t∈N>0

‖xt‖ ≤ buub = √nD
∥∥∥[ϕ2

1,1‖α(1)‖, . . . ,ϕ2
1,nx‖α(nx)‖

]∥∥∥ .

Proof. We first prove required properties of the smooth squared exponential kernel k(z, z′):
For all ϕ1 ∈ R>0 and ϕ2 ∈ R>0 the kernel is bounded with

sup
z,z′∈Rnx

k(z, z′) = ϕ2
1 exp

(
−‖z − z

′‖2

2ϕ2
2

)∣∣∣∣∣
z=z′

= ϕ2
1,i (3.62)

inf
z,z′∈Rnx

k(z, z′) = lim
‖z−z′‖→∞

ϕ2
1 exp

(
−‖z − z

′‖2

2ϕ2
2

)
= 0. (3.63)

According to the Cauchy-Schwarz inequality and the results above, the next step ahead can
be bounded by

|x̄t+1,i| = |k(xt,X)>α(i)| ≤ ϕ2
1,i
√
nD‖α(i)‖. (3.64)

As (3.64) holds for any time step t ∈ N, the invariant set I is determined by

I =
{
z ∈ Rnx | |zi| ≤ ϕ2

1,i
√
nD‖α(i)‖, ∀i = 1, . . . ,nx

}
. (3.65)

Next, we show that the set I is attractive, see (i) in Theorem 3.8. Since the bound in (3.64)
shows that for any x0 ∈ X the absolute value of the next step state vector x1 is equal to
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or less than ϕ2
1,i
√
nD‖α(i)‖, the state xt approaches I for t ≥ 1. This guarantees globally

uniformly ultimately boundedness, see (ii) in Theorem 3.8, with ultimate bound

buub = √nD
∥∥∥[ϕ2

1,1‖α(1)‖, . . . ,ϕ2
1,nx‖α(nx)‖

]∥∥∥ . (3.66)

Thus, we proof the existence of an invariant set I, that is globally attractive, and we deter-
mine the ultimate bound buub.

An important consequence of Theorem 3.8 is that it is not possible to learn unbounded sys-
tem trajectories with an autonomous deterministic GP-SSM, which is based on the squared
exponential kernel. We continue with the stability of a GP-SSM with linear kernel.

Theorem 3.9. An autonomous deterministic GP-SSM (3.50) with linear kernel (2.44),
as defined in (2.44), is stable if and only if the spectrum of the matrix

A =


X1,:α(1), . . . ,Xn,:α(1)
X1,:α(2), . . . ,Xn,:α(2)

...
X1,:α(nx), . . . ,Xn,:α(nx)


is equal to or less than one. If the absolute value of the spectrum is strictly less than
one, i.e. σ(A) < 1, then the equilibrium point is asymptotically stable. Otherwise, the
system is unstable.

Proof. Since the state mapping of a GP-SSM with linear kernel is a linear function, see (3.58),
the well-known conditions for linear stability can be directly applied.

In the following, the stability for a GP-SSM with polynomial kernel is analyzed.

Theorem 3.10. An autonomous deterministic GP-SSM (3.50) with polynomial kernel,
as defined in (2.45), is locally stable in x∗ if and only if the spectrum of the matrix

Apoly = ∂

∂xt

∑
l1+...+lnx+1=pi

ci,l1,...,lnx+1x
l1
t,1x

l2
t,1 · · ·xlnt,nxϕ

2lnx+1
1,i

∣∣∣∣∣∣
xt=x∗

is equal to or less than one. If σ(Apoly) < 1 the equilibrium point is locally asymptotically
stable.

Proof. This theorem is a direct application of Lyapunov’s direct method. The derivative
exists, since the polynomial kernel is a smooth function.

3.3.4 Numerical Examples
Equilibrium points

After the formal analysis of deterministic GP-SSMs, we present illustrations for an intuitive
understanding of the equilibrium sets for different kernels. For this purpose, 100 randomly
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linear systems are generated with

xt+1 =
[
a11 a12
a21 a22

]
xt + ν, (3.67)

where a11, a12, a21, a22 ∈ (0, 1) are random numbers drawn from the uniform distribution on
the open interval and ν is Gaussian distributed noise N (0, 0.052I2). Each system is learned
by a autonomous deterministic GP-SSM with 100 homogeneously distributed training points
on [−1, 1] × [−1, 1] and 5 different kernels (linear, polynomial with p = 2, 3, 5, squared ex-
ponential, see Table 2.1).
The hyperparameters are optimized according to the likelihood function (2.51) with a con-
jugate gradient method. The equilibrium points are numerically estimated by local solvers
starting from multiple points in [−20, 20] × [−20, 20]. For comparison, the same procedure
is applied to randomly generated nonlinear systems, which have a multitude of equilibrium
points

xt+1 =
[
sin(c1x2,t) + x1,t
sin(c2x1,t) + x2,t

]
+ ν. (3.68)

The values c1, c2 ∈ (0, 3
2π) are random numbers drawn from the uniform distribution on

the open interval and ν represents Gaussian distributed noise N (0, 0.052I2). Now, the area
of initial points for each of the multiple local solvers is set to [−5, 5] × [−5, 5]. Table 3.2
and Table 3.3 show the number of detected equilibrium points of the deterministic GP-SSMs,
which are trained by the linear and the nonlinear systems. Since it is extremely unlikely
that a deterministic GP-SSM with linear kernel has zero or infinitely many equilibrium

Kernel / Number of equilibria 0 1 2 3 4
Linear 0 100 0 0 0

Polynomial p = 2 0 53 44 3 0
Polynomial p = 3 0 54 42 3 1
Polynomial p = 5 0 53 42 4 1

Squared exponential 0 50 1 49 0

Table 3.2: Number of equilibrium points of 100 deterministic GP-SSMs, each trained by a
randomly generated 2-dimensional linear systems.

Kernel / Number of equilibria 0 1 2 [3, 4] [5, 9] [10, 19]
Linear 0 100 0 0 0 0

Polynomial p = 2 0 97 3 0 0 0
Polynomial p = 3 0 70 0 5 25 0
Polynomial p = 5 0 27 2 10 27 34

Squared exponential 0 3 2 30 32 33

Table 3.3: Number of equilibrium points of 100 deterministic GP-SSMs trained by randomly
generated 2-dimensional, sinusoidal systems.
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points, as mentioned in Remark 3.11, only one equilibrium point for each of the 100 test
systems has been found. The system with polynomial kernel has always a maximum of p2

equilibrium points and the deterministic GP-SSMs with squared exponential kernel more
than zero equilibrium points.

Stability

Due to the wide spread of the squared exponential kernel, we present here an example for
the boundedness of deterministic GP-SSMs with squared exponential kernel. Our example
employs with the well-known, nonlinear Van der Pol oscillator. The discretization of the
oscillator is described in [VH10] with

xt+1 =
[
fVDP1(ts,xt,1,xt,2, c3) + (fVDP2(ts,xt,1,xt,2, c3) + 1)xt,1 + ν1
fVDP1(ts,xt,1,xt,2, c3) + (fVDP2(ts,xt,1,xt,2, c3) + 1)xt,2 + ν2

]
, (3.69)

where ts ∈ R>0 is the sample time and the parameter c3 ∈ R is a scalar, which influences the
nonlinearity of the system. Gaussian distributed noise is added by ν1, ν2 ∼ N (0, 0.012). For
a detailed expanation of the functions fVDP1, fVDP2, we refer to [VH10]. For this example c3
is set to −0.8 and the sample time ts = 0.1.
A deterministic GP-SSM with squared exponential kernel is trained over 441 homogeneously
distributed points in [−4, 4]× [−4, 4]. The hyperparameters are optimized by the minimiza-
tion of the likelihood function (2.51) with a conjugate gradient method. We now illustrate
the behavior of the trajectory generated by the deterministic GP-SSM. Figure 3.11 shows
the trajectory xt (blue and red) of the system (3.69) and the prediction of the trained deter-
ministic GP-SSM x̄t (green and black) for x0 = [−1.8; 0]. Since the trajectory stays inside
the training area, the predicted trajectory is similar to the real trajectory xt. Furthermore,
the boundedness of the trained deterministic GP-SSM is demonstrated.
In contrast, we select a different initial value and present the result in Fig. 3.12. The graph
shows the trajectory (blue and red) of the system (3.69) and the prediction of the trained
deterministic GP-SSM x̄t (green and black) for the initial value x0 = [2.2; 0]. This initial

0 2 4 6 8 10 12 14
−2

0

2

Time [s]

St
at

e

Van der Pol oscillator
Deterministic GP-SSM

Figure 3.11: For x0 = [−1.8, 0]>, the prediction (green and black) of a deterministic GP-
SSM with squared exponential kernel and the trajectory (blue and red) of the
actual system (3.69) are close to each other.
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Figure 3.12: The prediction (green and black) of a deterministic GP-SSM with squared ex-
ponential kernel is bounded even if the trajectory (blue and red) of the actual
system is unbounded.

point is not inside the region of attraction of the oscillator, such that the trajectory xt of
the system is not bounded. Although the original trajectory is unbounded, the prediction of
the deterministic GP-SSM is bounded. Thus, only bounded trajectories can sufficiently pre-
dicted by a deterministic GP-SSM with squared exponential kernel. However, this property
can also be used as prior knowledge: If we know that all trajectories of a real system are
bounded, a deterministic GP-SSM with squared exponential kernel can be used for modeling
as this GP-SSM is always bounded. For the modeling of unbounded system, a combination of
the squared exponential kernel with a linear kernel might be a reasonable selection, see Sec-
tion 2.2 and Theorem 3.9.
In this section, we have analyzed the number of equilibrium points and the stability of de-
terministic GP-SSMs. The results present an important limitation for the modeling with
deterministic GP-SSMs but also allow to use these properties as prior knowledge for the
modeling.

3.4 Stochastic Markov Models
So far, we focused on theoretical properties for deterministic GP-SSMs, which are a special
class of GP-ASSMs. However, a GP-ASSM contains a much richer description of the un-
derlying dynamics due to its probabilistic nature. The predicted uncertainty can be used,
for instance, to determine a suitable control law. In [MLH15] control laws are derived,
which explicitly take the uncertainty into account. In order to ensure the applicability of
these control settings, classical control theoretical properties are required, see, e.g., [Koc16]
and [AK08]. Such basic properties of a dynamical system are among others the existence
of equilibria and stability conditions. Hence, in this section, we analyze a special class of
GP-ASSMs, where the probabilistic nature is considered but the dynamics is still Markovian.
We call these models stochastic GP-SSMs. In stochastic systems, the concept of equilibrium
distribution, often also called stationary distribution, is used. Namely, the output distri-
bution of a stochastic GP-SSM for a given input distribution must be calculated. If there
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exists an input distribution which is equal to the related output distribution, it is called
equilibrium distribution. Different definitions exist for the stability of stochastic systems.
The most common ones are stability in probability, almost sure stability and mean square
stability. Since mean square stability implies stability in probability (Markov’s inequality),
it is a frequently used approach. For the formal analysis of control approaches based on GP-
SSMs, knowledge about the stability is essential. However, the calculation of equilibrium
distributions of stochastic GP-SSMs and the derivation of stability conditions are still open
problems.
In this section, we study equilibrium distributions and stability of stochastic GP-SSMs. We
introduce a method to compute the equilibrium distribution, based on the solution of a
Fredholm integral equation. The method is usable for arbitrary kernels. For the widespread
squared exponential kernel, we present an upper bound in mean square sense and a set,
which is positive recurrent. We demonstrate that it is only possible to learn bounded sys-
tems with a stochastic GP-SSM using a squared exponential kernel. The derived results are
illustrated in numerical simulations. We start with the definition of stochastic GP-SSMs.
In Sections 3.4.2 and 3.4.3, a method for calculating equilibrium distributions of stochastic
GP-SSMs is presented. Section 3.4.4 investigates with the mean square boundedness and
mean square attractive sets of stochastic GP-SSMs. Finally, Section 3.4.5 shows relevant
illustrations of the previously presented methods.

3.4.1 Stochastic GP-SSM
The GP-ASSM, introduced in Definition 3.1, is taken as basis for the stochastic GP-SSM.
For the sake of simplicity, we assume that the prior mean functions m1, . . . ,mnx are set to
zero. However, the results can be easily extended using a definition as in (2.55). We focus
on autonomous stochastic GP-SSMs, as we want to analyze its equilibrium distributions.

Definition 3.4. An autonomous stochastic GP-SSM is given by the state space equation

xt+1 = µ(xt+1|xt,D) + Σ(xt+1|xt,D)ν, (3.70)

where µ and Σ are defined by (2.15) and ν ∼ N (0, Inx) is a normally distributed random
variable.

Hence, an autonomous stochastic GP-SSM is a GP-ASSM with maximum length of mem-
ory m = 0, where the external input ut is suppressed.

3.4.2 Equilibrium Distribution
The analysis of equilibrium points of stochastic systems requires first of all a definition of
the stochastic equilibrium. In case the variance is disregarded, a deterministic approach can
be used. To consider the probabilistic nature of the state variable, however, an equilibrium
is defined by an invariant distribution of the current state xt and the next state xt+1.
Assume that the current state is a random variable xt with probability distribution p(xt).
The predictive distribution p(xt+1) is calculated by marginalizing over the state vector,
following [Gir+03],

p(xt+1) =
∫
p(xt+1|xt,D)p(xt)dxt. (3.71)
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The probability distribution p(xt+1|xt,D) is Gaussian

p(xt+1|xt,D) = N (µ(xt+1|xt,D), Σ(xt+1|xt,D)) , (3.72)

as defined in (3.70). An analytic solution of the integral in (3.71) is not possible in general but
still traceable for some special cases, e.g., if the distribution p(xt) is also normal. A solution
for arbitrary distributions of xt can in general solely be found by numerical computation.
To qualify as an equilibrium, the distribution of xt and xt+1 must be equal. This condition
transforms the predictive distribution equation into a linear, homogeneous Fredholm integral
equation of the second kind, see [Hac12]. The definition of this integral equation is given by

ufrd(xt+1)︸ ︷︷ ︸
p(xt+1)

= λfrd

∫
ffrd(xt+1,xt)︸ ︷︷ ︸
p(xt+1|xt,D)

ufrd(xt)︸ ︷︷ ︸
p(xt)

dxt, (3.73)

where λfrd ∈ R, xt,xt+1 ∈ X and ffrd : X×X → R are known piece-wise continuous functions
while ufrd : X → R is an unknown function. The function ffrd(·, ·) is known as kernel and λfrd
is the eigenvalue of the integral equation.

Remark 3.12. The kernel ffrd of a Fredholm integral equation is not to be confused with the
kernel k of a GP.

For the sake of clarity, we assume a one-dimensional system with X = R in the following.
The extension to the multidimensional case is presented at the end of this section. A numeri-
cal solution of the integral equation (3.73) can be found by using the Nyström method, which
approximates the integral by a finite sum, e.g., employing the trapezoid rule, see [Jer99].
For this approach, the integral has to be defined on a finite interval [a, b] with a, b ∈ R
and the function ffrd must be continuous. The length of the interval should be chosen suf-
ficiently large. The interval is divided into ni equal parts of width ∆z = b−a

ni
. Additionally,

let zi = a+ i∆z and zni = b.

Remark 3.13. Instead of the Nyström method, a Monte-Carlo approach can be used to find
a solution for the integral equation (3.73). However, the Monte-Carlo approach is computa-
tional demanding especially for high-dimensional state spaces.

The solution ufrd(·) of the integral equation (3.73) can be approximated by the matrix
equation Mfuf = 0 with Mf ∈ Rni×ni and vector uf ∈ Rni . We obtain

Mf =


1
λfrd
− ∆x

2 ffrd(z0, z0) −∆zffrd(z0, z1) . . . −∆z
2 ffrd(z0, zni)

−∆z
2 ffrd(z1, z0) 1

λfrd
−∆zffrd(z1, z1) . . . −∆z

2 ffrd(z1, zni)
... ... . . . ...

−∆z
2 ffrd(zni , z0) −∆zffrd(zni , z1) . . . 1

λfrd
− ∆z

2 ffrd(zni , zni)

 (3.74)

for i, j = 0, 1, . . . ,ni. The vector uf contains the approximation of the function values
of ufrd(·) at zi. If and only if detMf = 0, there exists an infinite number of non-zero
solutions. This condition must be satisfied for λfrd = 1 to fulfill (3.71). Additionally, ufrd(·)
must satisfy the constraints for a probability distribution, namely∫

ufrd(z)dz = 1 and ufrd(z) ≥ 0, ∀z ∈ R. (3.75)
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To find an appropriate solution, the linear equation Mfuf = 0 with the constraints (3.75)
must be solved. We use again the trapezoid rule to discretize the constraints

∆x
ni∑
i=0

uf ,i −
∆z
2 (uf ,0 + uf ,ni) = 1, uf ,i ≥ 0, ∀i = 0, 1, . . . ,ni (3.76)

and add the constraint given by (3.76) to the matrix Mf . The result is a non-homogeneous
system of linear equations which can be formulated as least square optimization problem
given by

min
uf
‖M̌fuf − bf‖2 with uf ,i ≥ 0, ∀i = 0, 1, . . . ,ni

M̌f =
[

Mf
∆z
2 ∆z . . . ∆z ∆z

2

]
, bf = [0, . . . , 0, 1]>.

(3.77)

If the residual of the optimization is sufficiently small, the vector uf is a discrete approxi-
mation of p(xt) at xt = a+ i∆z for i = 0, 1, . . . ,ni which solves equation (3.71).
If the system has more than one dimension, the numerical integration scheme for the Fred-
holm integral equation must be adapted. In general, a numerical approximation for an
integral of a continuous function fgen : X → R over a closed and bounded set X in Rnx is
given by ∫

X
fgen(z)dz ≈

ni∑
i=0

wifgen(zi), with wi ∈ R, zi ∈ X . (3.78)

The numerical approximation, that we present earlier in (3.74), must converge to the true
integral for ni →∞ to be valid for the introduced algorithm. The multidimensional trapezoid
rule satisfies the required convergence. With this approach, the integral approximation (3.74)
is straightforward adapted for the application in higher dimensional systems.
Algorithm 1 describes the computation of the approximation of p(xt) in higher dimensional
systems.

3.4.3 Remarks on Convergence
For a numerical approach it is essential to analyze the convergence of the algorithm. The
following proposition ensures the convergence of the proposed approach.

Proposition 3.11. Assume a finite interval [a, b] with boundaries a, b ∈ R and a con-
tinuous solution p(xt+1) = p(xt) of the integral equation

p(xt+1) =
∫ b

a
p(xt+1|xt,D)p(xt)dxt.

The numerical solution pnum(xt) given by the Nyström method with the trapezoid rule
converges to the exact solution p(xt), if the step size ∆z = b−a

ni
→ 0 with ni →∞ and

∆z
q∑
i=0

pnum(a+ i∆z)− ∆z
2 (pnum(a) + pnum(b)) =

∫ b

a
p(xt)dxt

with pnum(a+ i∆z) ≥ 0, ∀i = 0, 1, . . . ,ni.
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Algorithm 1 Equilibrium distribution
bf ← [0, . . . , 0, 1]T , z ← [a, . . . , b]T
for zi, i = 1, . . . ,ni do

for zj, j = 1, . . . ,ni do
xt ← zj
µ(xt+1)← k>(K + InDσ

2
n)−1Y

var(xt+1)← k − k>(K + InDσ
2
n)−1k

(Mf )i,j ← p(zi|xt,D)
end for

end for
Mf = I − weighted(Mf )
if detMf 6= 0 then

return No solution
else

M̌f =
[

Mf

normalized weights

]
minuf ‖M̌fuf − bf‖2

2 with ui ≥ 0, ∀i = 0, 1, . . . ,ni
return uf

end if

Proof. We start with the definition of the integral operator I and the numerical integral
operator In

Ip(xt+1) =
∫ b

a
p(xt+1|xt)p(xt)dxt (3.79)

Inp(xt+1) =
ni∑
i=0

wip(xt+1|a+ i∆z)p(a+ i∆z) (3.80)

with xt+1 ∈ [a, b],wi ∈ R. If the numerical integrator operator is based on the trapezoid rule
with step size ∆z = b−a

ni
, the numerical integral converges to the true integral∫ b

a
fgen(z)dz ≈ ∆z

ni∑
i=0

fgen(a+ i∆z)− ∆z
2 (fgen(a) + fgen(b)) (3.81)

for any continuous function fgen, see [SB13]. The speed of convergence of pnum(xt) to the
exact solution p(xt) of (3.71) depends on the numerical integration error of the trapezoid
rule, given by

(I− In)p(xt) = −∆z2

12

[
∂p(xt+1|xt)p(xt)

∂xt

]xt=b
xt=a

+O(∆z4), (3.82)

where O denotes the Big O notation. As the difference (I − In)p(xt) converges to zero
for ni → ∞ and ‖p(xt) − pnum(xt)‖∞ ≤ cs‖(I − In)p(xt)‖ with a constant cs < ∞, the
numerical solution pnum(xt) converges to the exact solution p(xt), see [Atk97].

3.4.4 Stability
The previous section investigates with the numerical approximation of equilibrium distribu-
tions. Another important property of dynamical systems is the stability. Several different
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stability measures exist for stochastic systems. In this section, we focus on the widespread
mean square measure and positive recurrent sets. Further, we focus on stochastic GP-SSMs
with the squared exponential kernel, since this kernel is a very common choice for GP-
SSMs. The following theorem presents the mean square boundedness for such a stochastic
GP-SSM.

Theorem 3.11. Consider an autonomous stochastic GP-SSM, as defined in (3.70), with
squared exponential kernel

k(z, z′) = ϕ2
1,i exp

(
−‖z − z

′‖2

2ϕ2
2,i

)
, z, z′ ∈ Rnx ,

where ϕ1,i ∈ R≥0 and ϕ2,i ∈ R>0 for all i ∈ {1, . . . ,nx} with nD training points. Then,
the state xt is mean square bounded by

sup
t∈N>0

E
[
‖xt‖2

]
≤

nx∑
i=1

ϕ4
1,inD‖α(i)‖2 + ϕ2

1,i

with α(i) defined in (3.51).

Before starting the proof, note that the squared exponential kernel is bounded, as presented
in (3.62) and (3.63). We use this property for the following proof.

Proof. We prove the mean square boundedness by evaluating the expected value E [‖f(xt)‖2]
for each xt. The expected value of a squared Gaussian distributed variable is calculated by

E
[
x>t+1xt+1

]
=

nx∑
i=1

µ2
i (xt+1|xt,D) + vari(xt+1|xt,D), (3.83)

where µi(xt+1|xt,D) := µ(xt+1,i|xt,D) and vari(xt+1|xt,D) := var(xt+1,i|xt,D). If the
squared mean µ2

i (·) and the variance vari(·) are bounded, then (3.83) is bounded. The
mean µi(xt+1|xt,D) is bounded with

‖µi(xt+1|xt,D)‖ ≤ ϕ2
1,i
√
nD‖α(i)‖ ⇒ µ2

i (xt+1|xt,D) ≤ ϕ4
1,inD‖α(i)‖2

with αi = (K + InDσ
2
n,i)−1Y:,i, (3.84)

applying the Cauchy-Schwarz inequality and the bounds of the squared exponential kernel,
given by (3.62) and (3.63). The variance

vari(xt+1|xt,D) = k(xt,xt)− k(xt,X)>(K + InDσ
2
n,i)−1k(xt,X) (3.85)

is also bounded by 0 ≤ vari(xt+1|xt,D) ≤ ϕ2
1,i because of (3.62) and (3.63) and the positive

definiteness of the matrix (K(X,X)+InDσ2
n,i)−1. Note, that the bound for the mean and the

variance hold for any time step t ∈ N. Therefore, the solution xt with t > 0 of system (3.70)
is mean square bounded with

sup
t∈N>0

E
[
‖xt‖2

]
≤

nx∑
i=1

ϕ4
1,inD‖α(i)‖2 + ϕ2

1,i. (3.86)
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Theorem 3.11 can be interpreted as follows: Since the mean and the variance of xt+1|xt are
bounded, a stochastic GP-SSM with squared exponential kernel is solely capable of learning
bounded trajectories. The upper bound (3.86) depends on the signal variance ϕ1 and noise
variance σn, the number of training points nD, and their position. The value of the upper
bound increases if the number of training points nD or the values of the output training
data Y increase.
Next, we focus on the behavior of the trajectories of the stochastic GP-SSM. For this purpose,
we use the theory of Markov chains because the future state of the system (3.70) only depends
on the current state and, thus, it is Markovian.

Theorem 3.12. Consider an autonomous stochastic GP-SSM, as defined in (3.70), with
squared exponential kernel

k(z, z′) = ϕ2
1,i exp

(
−‖z − z

′‖2

2ϕ2
2,i

)
, z, z′ ∈ Rnx ,

where ϕ1,i ∈ R≥0 and ϕ2,i ∈ R>0 for all i ∈ {1, . . . ,nx} with nD training points. Then,
there exists a set

I = {z ∈ Rnx| ‖z‖2 ≤
nx∑
i=1

ϕ4
1,inD‖α(i)‖2 + ϕ2

1,i},

which is positive recurrent.

Proof. First, we recall the criterion for positive recurrent sets: Positive recurrency guarantees
that the system trajectory returns to a set in a finite time horizon. A condition for the
existence of a positive recurrent set is given in the following lemma.

Lemma 3.1 ([Kus71]). Suppose that there exists a positive definite Lyapunov func-
tion V (xt) for xt ∈ Rnx and positive constants c1, c2, c3 ∈ R>0 such that

E [V (xt+1|xt)]− V (xt) ≤ −c2, if V (xt) > c1

E [V (xt+1|xt)]− V (xt) ≤ c3 <∞, if V (xt) ≤ c1.

Then, the set I = {z ∈ Rnx : V (z) ≤ c1} is positive recurrent.

We assume the positive definite Lyapunov function V (xt) = x>t xt with xt ∈ Rnx . The drift
of V (xt) is given by

∆V = E [V (xt+1|xt)]− V (xt) = E
[
x>t+1xt+1

]
− x>t xt. (3.87)

An upper bound for
[
x>t+1xt+1

]
is given by (3.86), which induces

∆V ≤
n∑
i=1

ϕ4
1,inD‖α(i)‖2 + ϕ2

1,i − x>t xt. (3.88)

Due to the fact that lim‖xt‖→∞ x>t xt =∞ is unbounded and the upper bound (3.88) holds,
there must exist a set I with a neighbourhood In = Rnx\ {I} which fulfills ∆V < 0, xt ∈ In.
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The drift ∆V is negative if x>t xt > E
[
x>t+1xt+1

]
. Therefore, the set I is defined by

I = {z ∈ Rnx −
∣∣∣ ‖z‖2 ≤

nx∑
i=1

ϕ4
1,inD‖α(i)‖2 + ϕ2

1,i}. (3.89)

Since the drift of the Lyapunov function is negative outside the set I, Lemma 3.1 is fulfilled
and, thus, the set is positive recurrent.

3.4.5 Numerical Examples
Equilibrium Distribution

In this section, we present examples of equilibrium distributions of a one-dimensional stochas-
tic GP-SSM with squared exponential kernel. The solution is validated by a Monte Carlo
experiment and a two-sample Kolmogorov-Smirnov test. We assume a system described by

xt+1 = 0.01x3
t − 0.2x2

t + 0.2xt + ν, (3.90)

where ν is standard normal distributed. A stochastic GP-SSM with squared exponential ker-
nel is trained with 20 input points, which are uniformly distributed on the interval [−5, 5],
and the corresponding output data. The output data is corrupted by a Gaussian noise with
a variance of σn = 1. The hyperparameters are optimized by maximizing the marginal like-
lihood. The obtained value for the lengthscale ϕ2 is 3.59 and the signal noise ϕ1 is 4.21.
The predicted mean function (red) and the variance (gray shaded area) of the GP-SSM are
visualized in Fig. 3.13. The equilibrium distribution (black line) has a non-Gaussian shape
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Figure 3.13: A stochastic GP-SSM with squared exponential function trained by 20 noisy
data points (black crosses). The stochastic GP-SSM determines the mean func-
tion (red) and variance (gray). The black lines, at the bottom and on the left
side, describe the computed equilibrium distribution. A Monte Carlo experi-
ment with the input samples (orange) based on the equilibrium distribution and
the output samples (purple) supports that the distribution is an equilibrium.
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which is due to the strong nonlinear behavior of the mean function. To cover the relevant
area of the distribution, we set the interval of the integral to [−12, 8] and divide it in ni = 150
sections. The determinant of integral approximation matrix Mf , given in (3.74), is zero and
an active-set algorithm finds a minimum for ‖M̌fuf − bf‖2 satisfying the constraint (3.75).
The optimization results in a residual value of 2.3e-6. To validate the computed distribu-
tion, we use the inverse transform sampling method, introduced in [Dev86], to generate 30000
samples out of this distribution. Since the inverse of the cumulative distribution function is
necessary for the inverse transform sampling method, the discrete points pi of the probability
density function are numerically integrated. These samples are visualized by the orange bars
at the bottom of Fig. 3.13. The purple bars on the left side show the output distribution of
the samples. It can be seen that the shape of the proposed equilibrium distribution (black
line) coincide with the samples before (bottom) and after (left) the transition through the
stochastic GP-SSM.
Furthermore, a two-sample Kolmogorov-Smirnov test returns that it is not possible to reject
the null hypothesis, stating that the proposed distribution and the true equilibrium distri-
bution are identical at the 5% significance level. This means, the Monte Carlo experiment
and the Kolmogorov-Smirnov test support the assumption that the calculated distribution
function pnum(xt) is an equilibrium distribution of the stochastic GP-SSM.

Stability

In the following example, we illustrate the boundedness of the stochastic GP-SSM with
squared exponential kernel. We use again the highly nonlinear Van der Pol oscillator as
training system, see (3.69), where the sample time ts is set to 0.1 s and the additional pa-
rameter ε to −0.8.
Gaussian distributed noise ν1, ν2 ∼ N (0, 0.012) is added to the output data set. The stochas-
tic GP-SSM is trained with 441 uniformly distributed points on the square [−3, 3]× [−3, 3].
The hyperparameters are optimized by the minimization of the log-likelihood function with
a conjugate gradient method. For the multi-step ahead prediction not only the mean but
also the uncertainty is considered, see [Gir+03]. Since the trajectory stays inside the training
area, the predicted trajectory is very close to the true trajectory. The mean square bound-
edness of the stochastic GP-SSM is fulfilled.
The model is tested with two different set of initial points x0. For x0 = [−1.8, 0]>, Fig. 3.14
shows the trajectory of the system (3.69) and the mean of xt with the 2-sigma standard de-
viation of the stochastic GP-SSM. The stochastic GP-SSM can predict sufficiently accurate
the trajectory of (3.69) that manifests in a very low variance.
In the second case, the initial state of the system is changed to x0 = [2.2, 0]> which gen-
erates an unstable trajectory, see Fig. 3.15. Due to the fact that this initial point is not
inside the attraction area of the Van der Pol oscillator, the trajectory xt, yt of the system
is not bounded. Nevertheless, the GP-SSM generates a bounded mean and variance func-
tion. This test case demonstrates the boundedness of the stochastic GP-SSM. The increased
variance shows the uncertainty of the prediction since the model generates always bounded
trajectories.
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Figure 3.14: The mean (green and black) and the 2-sigma standard deviation (green and
black shaded area) of the stochastic GP-SSM with squared exponential kernel.
The prediction is close to the true system states.
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Figure 3.15: The prediction of the mean (green and black) and the 2-sigma standard de-
viation (green and black shaded area) of a stochastic GP-SSM with squared
exponential kernel is bounded even if the trajectory of the original system is
unbounded. For testing purpose, the stochastic GP-SSM should generate an
unbounded trajecory. Since the stochastic GP-SSM is bounded, the trajectory
of the true system is not reproduced that manifests in a high variance of the
predicted states.
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3.5 Discussion
In this chapter, we show that the sampling of GPDMs, avoiding the impossible sampling of
infinite dimensional objects, leads to non-Markovian dynamics. This characteristic is sur-
prising as the representation of the GP-SSM and GP-NOE model, given by (2.55) and (2.56)
respectively, is based on a Markovian state space structure. However, the covariance term of
the GP introduces dependencies across the states that leads to dependencies across time for
GPDMs. Thus, the sampling of GP-SSMs and GP-NOE models generates non-Markovian
dynamics, which we analyze from a control theoretical point of view. More precisely, a gen-
eral description for approximations based on the number of included past states/outputs is
presented and compared against the true sampling. The approximation error of these mod-
els is analyzed with respect to the Kullback-Leibler divergence, the mean square prediction
error and the variance of the prediction. Furthermore, we prove that the true variance of
the next state ahead is always less than the variance of the approximated model. This is
relevant for the usage of the approximation in variance based control approaches such as
risk-sensitive control approaches, e.g., [MSH13; LK07]. Additionally, the boundedness of
GPDMs with bounded mean and variance functions, such as the commonly used squared
exponential function, is proven. The boundedness is an important property for the identi-
fication of unknown systems with GPDMs and is likewise exploited for robustness analysis
in GPDM based control approaches, see [FKK98]. The introduced characteristics about the
relation between the boundedness of the true sampling and the approximations allows a safe
usage of the approximation.
For the approximation with the maximum length of memorym = 0, we derived more detailed
results. The analysis is split into deterministic and stochastic GP-SSMs. For the first men-
tioned, we investigate the number of equilibrium points and stability properties for various
kernels. In particular, we study deterministic GP-SSMs with squared exponential, linear,
and polynomial kernel. A deterministic GP-SSM with squared exponential kernel generates
always at least one equilibrium and is globally uniformly ultimately bounded. Therefore, it is
not possible to learn unbounded trajectories with this approach. The linear kernel generates
one equilibrium point except for pathological cases. The number of equilibrium points of a
deterministic GP-SSM with polynomial function is always equal to or less than the degree
of the polynomial. Two examples visualize the presented properties.
For the stochastic GP-SSM, we present an algorithm for the computation of equilibrium
distributions. The method bases on the solution of a Fredholm integral equation which
is obtained by numerical approximation. The result is a system of linear equations and
constraints to ensure the solution to be a valid probability distribution. The second part
deals with the proof of the mean square boundedness of a stochastic GP-SSM with squared
exponential kernel. We also show that there exists a set which is positive recurrent. There-
fore, the stochastic GP-SSM is solely capable of reproducing bounded trajectories with the
squared exponential kernel. The computation of equilibrium distributions is validated in a
simulation which uses input sample points that are generated by the equilibrium distribu-
tion. A simulation of a discrete Van der Pol oscillator shows the mean square boundedness.
The results for the deterministic and stochastic GP-SSM show the implications of system
properties based on the selected kernel function. This allows not only the safe application of
these GPDMs in control approaches but also the incorporation of control theoretical prior
knowledge.
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In the previous chapters, we point out the essential role of the kernel function in GP models.
In addition, the hyperparameters must be determined before the models can be used. If
prior knowledge about the system is existent, the kernel can be selected based on the known
system properties as presented in Chapter 3. Without any prior knowledge, the selection
of the kernel and its hyperparameter is often performed by minimizing a cost function.
Commonly, these selections are data-based, for instance through minimizing a loss function
that is often a trade-off between the prediction error and the complexity of the model, as
presented in Section 2.2.
However, if the model is used in model-based control scenarios, the goal is typically to
minimize the control error or maximizing the performance of the control-loop. In this case,
the data-based selection neglects the fact that the learned model is used for the control
of the actual system, which can result in reduced controller performance [AQN06; Gev05;
HGD96]. Thus, the objective of this section is a kernel and hyperparameter selection, which
are control related and not data-based only. Furthermore, if the selected kernel does not
match to the data generating system, we aim to find an upper bound for the model error.

Related Work and Open Problems
In general, the problem is that only a finite data set is available to derive the kernel func-
tion. In addition, the kernel function typically depends on a number of hyperparameters.
There exist many different methods to estimate these parameters based on the training data
set, e.g., marginal likelihood optimization. However, the involved optimization problems
are in general non-convex, such that the marginal likelihood may have multiple local op-
tima [Ras06]. Alternatively, there exists the cross validation approach which deals with a
validation and a test set to carry out the hyperparameter selection. From the control per-
spective, system identification approaches aim to obtain an open-loop dynamics model of
the system by minimizing the state prediction error. This problem has been well studied
in literature for both linear systems, e.g., [Lju98], as well as for nonlinear systems using
the function approximators such as GP [CHK12; Uml+17; BUH17] and neural networks
(NN) [NP90; Ban+16]. However, a model obtained using this open-loop procedure can re-
sult in a reduced controller performance on the actual system [HGD96]. To overcome these
challenges, adaptive control mechanisms and iterative learning control have been studied
where the system dynamics or control parameters are optimized based on the performance
on the actual system, e.g., [ÅW13; CKM85; BTA06]. However, these approaches are mostly
limited to linear systems and controllers or assume at least a parametric system model. Re-
cently, learning-based controller tuning mechanisms have also been proposed [LL13; Cal+15],
but such methods might be highly data-inefficient for general nonlinear systems as they typ-
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ically completely disregard the underlying dynamics [Rec18]. A Bayesian optimization (BO)
based approach is presented in [Ban+18], wherein the authors also propose a goal-driven
dynamics learning approach via BO, but for linear systems. To overcome the challenges of
open-loop system identification, closed-loop system identification methods have been studied
that lead to more robust control performance on the actual system [AQN06; Gev05; HGD96].
However, the model selection for GP models to optimize the control performance is still an
unaddressed problem.
Furthermore, the variance of GP models is exploited in many different kinds of control ap-
proaches [MLH15; Bec+17; Koc+04]. In such cases, it is essential that the GP model fits
the data generating system. Otherwise, the variance as prediction error measure is not valid
anymore. Although GPs with universal kernel functions often produce satisfactory results,
the selection of a suitable kernel function is a nontrivial problem [See99; PD11] without any
guarantee that the kernel function and its hyperparameters fit the data generating process.
As a consequence, the variance of the GP model may not correctly estimate the real model
confidence. A lower bound for the prediction error for GP models with a misspecified kernel
is given by [Wåg+17] whereas an upper bound is still missing. Using GP models in control,
the upper bound is highly interesting for stability consideration based on robust control
methods.
In Section 4.1, we present a closed-loop based model selection approach to find the kernel
and hyperparameters that maximize a control-performance based cost function. In the case
that a kernel is selected that does not fit to the regression problem, we derive an upper error
bound for the model error in Section 4.2.

4.1 Closed-loop Model Selection using Bayesian
Optimization

In this section, we propose a Bayesian optimization based active learning framework to
optimize the kernel and its hyperparameters directly with respect to the performance of the
closed-loop. This optimization is performed in a sequential fashion where at each step of the
optimization, BO takes into account all the past data points and proposes the most promising
kernel and hyperparameters for the next evaluation. The outcome is used to define a kernel-
based model that is utilized by a given controller. The obtained model-based controller is
then applied to the actual system in a closed-loop fashion to evaluate its performance. This
information is then used by BO to optimize the next evaluation. Consequently, multiple
evaluations on the actual system must be performed, which is often feasible such as for
systems with repetitive trajectories. BO thus does not aim to obtain the most accurate
dynamics model of the system, but rather to optimize the performance of the closed-loop
system. Furthermore, our approach explicitly allows to preserve the convergence properties
of the initial closed-loop system. We start with the formal problem description.

4.1.1 Problem Setting
Consider a discrete-time, potentially nonlinear system

xt+1 = fukn(xt,ut), t = {0, . . . ,nt − 1},nt ∈ N
yt = gukn(xt,ut)

(4.1)
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in which fukn, gukn are unknown functions of the state xt ∈ Rnx and input ut ∈ Rnu . For the
following, we assume that the state mapping fukn : Rnx × Rnu→Rnx and the output map-
ping gukn : Rnx × Rnu → Rny are such that there exist a unique state and output trajectory
for all ut ∈ Rnu and x0, t ≥ 0. We assume that a control law uctrl : Rny × Rno → Rnu

ut = uctrl(yt − rt,ot) (4.2)

is given for the system (4.1). The reference rt ∈ Rny is assumed to be zero but the framework
is also applicable for a varying signal. In addition to the reference, the control law also
depends on the output ot ∈ Rno of a kernel-based model, a regression technique that uses
a kernel to perform the regression in a higher-dimensional feature space. The output of a
kernel-based model, ot, depends on the kernel function k, its hyperparameters ϕ ∈ Rnϕ and
system input and output, i.e., ot = okbm(u0:t−1,y0:t, k,ϕ), where the function okbm depends
on the class of the kernel-based model, such as GP or support vector machines (SVM), used
for the prediction.

Remark 4.1. For example, the output ot can be the prediction of the next state or output
of the system based on the current state and input, using the mean and the variance of a
GP model. This information can then be used by the controller to compute an appropriate
system input ut.

The control law uctrl might be an output tracking controller designed based on the pre-
dicted model output. For possible control laws for different classes of systems, we refer
to [CHK12; Uml+17; BUH17; SVD01; Ber+16]. The goal is to optimize the kernel and its
hyperparameters such that the corresponding model output ot minimizes the cost functional

ctot(y0:t,u0:t) =
n−1∑
k=0

cact(yt,ut), (4.3)

where cact(yt,ut) : Rny ×Rnu → R represents the cost incurred for the control input ut and
the system output yt. The cost function here might represent the requirements concerning
the closed-loop, e.g., an accurate tracking behavior or a minimized power consumption.
Note that the cost functional in (4.3) implicitly depends on the kernel-based model okbm
through ut, see (4.2). The optimization of (4.3) is challenging since the system dynamics
in (4.1) are unknown and the kernel-based model output ot indirectly influences the cost. To
overcome this challenge, we use BO to optimize the kernel and the hyperparameters based
on the direct evaluation of the control law in (4.2) on the system (4.1) to find those that
minimize the cost functional in (4.3).

4.1.2 Bayesian Optimization
Bayesian Optimization is an approach to minimize an unknown objective function based on
(only a few) evaluated samples. We use BO to optimize the cost function (4.3) based on the
kernel-based model as this is in general a non-convex optimization problem with unknown
objective function (because the system dynamics are unknown), and probably multiple local
extrema. BO is well-suited for this optimization as the task evaluations can be expensive and
noisy [Sha+16]. Furthermore, BO is a gradient-free optimization method which only requires
that the objective function can be evaluated for any given input. Since the objective function
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is unknown, the Bayesian strategy is to treat it as a random function with a prior, often as
GP. Note that this GP here is used for the closed-loop cost functional approximation in BO
and is not related to the kernel-based model for the controller (4.2) as stated in Remark 4.1.
The prior captures the beliefs about the behaviour of the function, e.g., continuity or bound-
edness. After gathering the cost (4.3) of the task evaluation, the prior is updated to form the
posterior distribution over the objective function. The posterior distribution is used to con-
struct an acquisition function that determines the most promising kernel/hyperparameters
for the next evaluation to minimize the cost. Different acquisition functions are used in lit-
erature to trade off between exploration of unseen kernel/hyperparameters and exploitation
of promising combinations during the optimization process. Common acquisition functions
are expected improvement, entropy search, and upper confidence bound [Moc12]. To escape
a local objective function minimum, the authors of [Bul11] propose a method to modify the
acquisition function when they seem to over-exploit an area, namely expected-improvement-
plus. That results in a more comprehensive and also partially random exploration of the area
and, thus it is probably faster in finding the global minimum. We also use this acquisition
function for BO in our simulation and the experiment.

4.1.3 Closed-loop Model Selection Procedure
Our goal is to optimize the model’s kernel and its hyperparameters with respect to the cost
functional ctot(y0:t,u0:t). Thus, in contrast to the classical kernel selection problem, where
the kernel is selected to minimize the state prediction error, our goal here is not to get
the most accurate model but the one that achieves the best closed-loop behavior. We now
describe the proposed overall procedure for the kernel selection to optimize the closed-loop
behavior; we then describe each step in detail.
We start with an initial kernel k with hyperparametersϕ, and obtain the control law for the

system (4.1) using (4.2) with the model output ot = okbm(u0:t−1,y0:t, k,ϕ). This control law
is then applied to the actual system, and the cost function (4.3) is evaluated after performing
the control task, see Fig. 4.1. Depending on the obtained cost value, BO suggests a new kernel
and corresponding hyperparameters for the kernel-based model okbm in order to minimize the
cost function on the actual system. With this model, the control task is repeated and, based
on the cost evaluation, BO suggests the next kernel and hyperparameters. This procedure

Controller- System

Kernel-based
model

Bayesian
optimization

Cost
function

Reference

Figure 4.1: Closed-loop model selection for kernel-based models. Bayesian optimization is
used to optimize the kernel and its hyperparameters directly based on the eval-
uation of a cost function.
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is continued until a maximum number of task evaluations is reached or the user rates the
closed-loop performance as sufficient enough. We now describe the above three steps, i.e.,
initialization, evaluation, and optimization, in detail.

Initialization

We define a set Ksub = {k1, . . . , knk} of nk ∈ N kernel candidates kj that we want to choose
the kernel from for our kernel-based model. BO will be used to select the kernel with the
best closed-loop performance in this set.

Remark 4.2. The selection of possible kernels can be based on prior knowledge about the
system, e.g., smoothness with the Matérn kernel or number of equlibria using a polynomial
kernel, see [BH16b] and [Bis06] for general properties, respectively.

In addition, each kernel depends on a set of hyperparameters. Since the number of hyper-
parameters could be different for each kernel, we define a set of sets Φset = {Φ1, . . . , Φnk}
such that Φj ⊂ RnΦj is a closed set. Here, nΦj represents the number of hyperparameters for
the kernel kj. Moreover, we assume that Φj is a valid hyperparameter set, see Definition 2.1.
For the first evaluation of the closed-loop, the kernel-based model function okbm is created
with an initial kernel kj of the set Ksub and hyperparameters ϕj ∈ Φj with j ∈ {1, . . . ,nk}.

Remark 4.3. One potential way to select the initial kernel and hyperparameters is to set
them equal to the kernel and hyperparameters of a prediction model that is optimized with
respect to a loss function, e.g., using cross-validation or maximization of the likelihood func-
tion [Bis06].

Task Evaluation

For the i-th task evaluation, BO determines an index value j ∈ {1, . . . ,nk} and a ϕj ∈ Φj.
The control law (4.2) for the kernel-based model okbm, with the determined kernel kj and
hyperparameters ϕj, is applied to the system (4.1)

xk+1 = fukn(xt,uctrl(yt,okbm(u0:t−1,y0:t, kj,ϕj))
yt = gukn(xt,ut) for t = {0, . . . ,nt − 1} (4.4)

with fixed x0 ∈ Rnx .

Remark 4.4. We focus here on a single, fixed initial state x0. However, multiple (close by)
initial states can be considered by using the expected cost across all initial states.

The corresponding input and output sequences u0:t and y0:t, respectively, are recorded.
Afterwards, the cost function given by ctot(y0:t,u0:t) is evaluated.

Model Optimization

In the next step, we use BO to minimize the cost function with respect to the kernel and its
hyperparameters, i.e.,

[kj,ϕj] = argmin
j∈{1,...,nk},ϕj∈Φj

ctot(y0:t,u0:t). (4.5)
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Thus, this problem involves continuous and discrete variables in the optimization task
whereas classical BO assumes continuous variables only. To overcome this restriction, a
modified kernel function for the BO is used. This kernel function is transformed in a way
such that nz continuous inputs and one integer-valued input are properly included. In detail,
the modified kernel k′GP : (Rnz × N)× (Rnz × N)→ R is given by

k′GP (z, z′) = kGP (T (z),T (z′)), (4.6)
where kGP : Rnz+1×Rnz+1 → R is a kernel over a continuous space and T : (Rnz×N)→ Rnz+1

a transformation in which the integer-valued variable in z is rounded to the closest integer,
see [GH20] for details.
Based on previous evaluations of the cost function, BO updates the prior and minimizes the
acquisition function. The result is a kernel kj and hyperparameters ϕj which are used in
the model function okbm(u0:t−1,y0:t, kj,ϕj). Then, the corresponding control law is evalu-
ated again on the system and the procedure is repeated until a maximum number of task
evaluations has been reached or a sufficient performance level has been achieved.

Example 4.1. In Fig. 4.2, we visualize a possible cost function ctot over a mixed input
space, which involves continuous and discrete variables. Let the set of kernel candidates
Ksub consists of nk = 4 kernels, namely k1, . . . , k4. Then, the BO is used to minimize
the discrete input variable j over the set {1, . . . , 4} as stated in (4.5). Additionally, the
input space contains continuous hyperparameters for each kernel function, as exemplary
depicted in Fig. 4.2. Thus, the BO minimizes over a mixed input space which consists
of one discrete variable j to select the kernel function and nΦj continuous variables for
the hyperparameters.

k1
k2

k3
k4

Kernel kj
Hyperparameter ϕ

C
os

t
c t

ot

Figure 4.2: Bayesian optimization over mixed input space.

Theoretical Analysis

In this section, we show that, under some additional assumptions, the stability of the closed-
loop is preserved during the task evaluation process and that BO converges to the minimum
of the closed-loop cost function. Here, we focus on a class of stationary kernels which can
be expressed by

k(z, z′) = ϕ1k
(
(z − z′)>P−1(z − z′)

)
, z, z′ ∈ Rnz (4.7)
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with hyperparameters ϕ ∈ Rnϕ=nz+1
>0 and P = diag(ϕ2, . . . ,ϕnϕ). This class of stationary

kernels includes common kernels for kernel-based models [Bis06], for instance, the squared
exponential kernel.

Assumption 4.1. Let ‖fukn‖k∗
ϕ∗

be finite. There exist a radius ry ∈ R>0 and a time step
t1 ∈ N such that the output ‖yt‖ ≤ ry of the system (4.1) for all t > t1 with a control
law (4.2), based on the model okbm with stationary kernel k∗ and hyperparameters ϕ∗ ∈ Rnϕ

>0.

The first part of the assumption, i.e., the bounded reproducing kernel Hilbert space norm,
is a measure of smoothness of the function with respect to the kernel k with hyperparam-
eters ϕ∗ ∈ Rnϕ

>0. It is a common assumption for stabilizing controllers using kernel-based
methods and is discussed in more detail in [Ber+16]. Controllers that satisfy this property
for nonlinear, unknown systems are given, e.g., by [CHK12; Ber+16; BKH19]. The focus
on stationary kernels is barely restrictive as many successfully applied kernels for nonlinear
control are stationary.

Lemma 4.1. With Assumption 4.1, there exists a non-empty set Ksub and a hyperpa-
rameter set Φ1 ⊃ {ϕ∗} such that ∀kj ∈ Ksub, for all ϕj ∈ Φj the boundedness ‖yt‖ ≤ ry
of the system (4.1) for t > t1 is preserved.

This lemma guarantees that there exists a kernel set Ksub and a set Φset of hyperparameters
that contains the stabilizing kernel k∗ and the hyperparameter ϕ∗ of Assumption 4.1. Thus,
the proposed method can be applied to existing kernel-based control methods without loss
of achieved guarantees. Before we start with the proof, the following lemma from [Bul11] is
recalled.

Lemma 4.2 ([Bul11, Lemma 4]). Let k be a stationary kernel as given by (4.7). If fukn ∈
Hkϕ then fukn ∈ Hkϕ′ holds for all 0 < ϕ′i ≤ ϕi,∀i ∈ {1, . . . ,nϕ}, and

‖fukn‖2
kϕ′
≤
( nϕ∏
i=1

ϕi
ϕ′i

)
‖fukn‖2

kϕ
.

Proof of Lemma 4.1. Assumption 4.1 inherently guarantees that at least one kernel k1 = k∗

exists that preserves the boundedness of the system such that we define Ksub = {k1}.
Since Assumption 4.1 ensures that ‖fukn‖k∗

ϕ∗
is bounded and with Lemma 4.2, the map-

ping fukn ∈ Hk1
ϕ∗

and, thus, also ‖fukn‖k1
ϕ
is bounded for ϕ

i
∈ R>0,∀i, where ϕ

i
< ϕ∗i , ∀i.

For an upper bound, there exist ϕi ∈ R>0, ∀i such that ϕ∗i < ϕi and fukn ∈ Hk1
ϕ
, follow-

ing Lemma 4.2. Thus, we define the set

Φ1 = {ϕ : ϕ
i
≤ ϕi ≤ ϕi,∀i} (4.8)

as proper superset of ϕ∗. Based on this set, the RKHS norm ‖fukn‖k1
ϕ
is finite for all ϕ ∈ Φ1.

As a result, the output ‖yt‖ is still bounded.
Consequently, with Assumption 4.1, the stability of the control loop is preserved during the
task evaluation. Furthermore, the minimum cost is not larger than the initial cost after BO
as stated in the following.
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Corollary 4.1. Let ctot,cl be the minimum cost (4.3) after BO (4.5) with set of ker-
nels Ksub = {k1 = k∗} and hyperparameter set Φ1 of (4.8). Let ctot,ol be the initial cost
based on the control with kernel k∗ and hyperparameter ϕ∗. Then, ctot,cl ≤ ctot,ol holds.

Proof. Since ctot,cl is the minimum cost after BO that starts with the initial, data-based
selected kernel k∗ and hyperparameter ϕ∗, it clearly follows that ctot,cl ≤ ctot,ol because
of k∗ ∈ Ksub and ϕ∗ ∈ Φ1.

We now show, that BO can converge to the global minimum of the cost function ctot under
specific conditions, starting with the following assumption.

Assumption 4.2. Let kGP be the kernel of the GP, that is used as prior ctot ∼ GP(0, k)
for the Bayesian optimization (4.5). The RKHS norm of the cost function is bounded,
i.e., ‖ctot‖k ≤ r ∈ R>0.

Intuitively, Assumption 4.2 states that the kernel of the GP for BO is selected such that
the GP can properly approximate the cost function. This sounds paradoxical since the cost
function is unknown because of the unknown system behavior. However, there exist some
kernels, so called universal kernels, which can approximate at least any continuous function
arbitrarily precisely [SC08, Lemma 4.55].

Lemma 4.3 ( [Sri+12]). With Assumption 4.2, BO in (4.5) with upper confidence bound
acquisition function [Sri+12, Eq.(6)] converges with high probability to the global mini-
mum of ctot.

4.1.4 Numerical Evaluation
Next, we present a simple illustrative example that highlights our closed-loop model selection
approach for kernel-based models. Consider the following one-dimensional system

xt+1 = exp(− 1
100x

2
t ) sin(xt) + 1

3xt + ut

yt = xt

(4.9)

with state xt and control ut at time t. For this example, we assume that the system dynamics
in (4.9) are unknown. We wish to avoid a high-gain control approach due to its unfavorable
properties [Isi13], and use the proposed closed-loop model selection framework to optimize
the control performance. As control law, a feedback linearization

ut = −okbm(u0:t−1,y0:t, k,ϕ) + 1
2xt (4.10)

is applied with the prediction of a support vector machine model okbm. The desired dynamics
is assumed to be xt+1,des = 0.5xt,des, which would be achieved using the control law (4.10)
with a perfect model of (4.9). The data set D consists of 11 homogeneously distributed
training pairs {xjt ,xjt+1}11

j=1 of the system (4.9) in the interval xt ∈ [−10, 10] with ut = 0.
The linear, polynomial (cubic, p=3) and the squared exponential kernels are selected as pos-
sible kernel candidates, see Table 2.1 for details. The squared exponential kernel possesses
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two hyperparameters ϕ1,ϕ2, as defined in (2.47). In addition, the regression of the SVM
depends on a hyperparameter ϕ3 that defines the smoothness of the prediction and affects
the number of support vectors, see [Kec01].
First, we evaluate a classical, data-based procedure which optimizes the kernel and the
hyperparameters with respect to the cross-validation loss function [SC08] based on the
training data only. Using BO, a minimum loss of 0.277 is found using the linear kernel
with ϕ3 = 0.042, Table 4.1. Using this linear model in the control loop with the nonlin-
ear system (4.9) and control law (4.10) for x0 = 3, the control error remains above zero,
see Fig. 4.3. With the cost function ctot = ∑9

t=0 t
2(xt−xdes)2, the trajectory generates a cost

of ctot = 1310.818.
In comparison, the hyperparameters and the kernel are optimized with our proposed method.
For this purpose, we evaluate the performance of the closed-loop system and use BO to com-
pute the next promising kernel and hyperparameter combination. Figure 4.4 shows the mean
and standard deviation of 20 repetitions over 50 trials each. The repetitions are run since BO
exploration of the cost is also affected by randomness. The cost is reduced to a mean value
of ctot = 44.209 and the loss is 1.922. Figure 4.3 shows that the closed-loop optimization
results in a reduced control error. Table 4.1 also presents the results for adding the collected
data of all the 50 trials to the existing training data set to redefine the model (Data-based
AT). Even with more training data, the data-based optimization favors the linear kernel.

Method Selected kernel ϕ1,ϕ2,ϕ3 Loss Cost
Data-based Linear −,−, 0.042 0.277 1310.818
Data-based AT Linear −,−, 0.033 0.274 1299.451
Closed-loop Squared exponential 1, 2.377, 0.027 1.922 44.209

Table 4.1: Comparison between data-based, data-based with additional training data and
closed-loop optimization
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Figure 4.3: Control error using closed-loop model optimization for 20 repetitions with mean
and 5-sigma deviation (blue) and data-based model selection (red).
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Figure 4.4: Minimum of the cost function over the number of trials for 20 repetitions for the
closed-loop model selection algorithm.

Discussion

The example demonstrates that the optimization based on the training data only can lead to
a reduced performance of the closed-loop system. Table 4.1 clearly shows that the data-based
optimization results in a smaller loss with the linear kernel but generates a higher cost of the
closed-loop system. In comparison, the closed-loop optimization finds a set of hyperparam-
eters with the squared exponential kernel that significantly reduces the control error even if
the loss of the model is higher. Thus, especially in the case of sparse data, the data-based
optimization can misinterpret the data which can be avoided with the closed-loop model
selection. For a fair comparison, we also collect the data, obtained during the 50 trials, to
refine the kernel-based model. However, the additional training data only slightly improves
the performance, but heavily increases the computational time of the kernel-based model
due to the larger training data set.
An insight in one run of the BO is visualized in Fig. 4.5. The red line indicates the cost
of the current task evaluation and the blue line represents the minimum cost over all past
task evaluations. At the beginning of the closed-loop optimization, the Bayesian optimizer
switches between different kernel functions. Then, the squared exponential kernel seems to
be the most promising choice and, thus, the BO focuses on the exploration of its hyper-
parameters (task evaluation 3 to 14). Afterwards, the BO starts again to explore different
kernel functions and hyperparameters. However, the selection in the 12th task evaluation
already leads to the minimum cost.
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Figure 4.5: One run of the Bayesian optimization with a visualization of the selected kernel
function. The configuration for the final minimum cost is obtained after 12 trials.
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4.1.5 Robotic Experiment
In the following, an example with a 3-DOF robot demonstrates the applicability of the pro-
posed approach to hardware testbeds. BO is used with the expected-improvement-plus
as acquisition function because of its satisfactory performance in practical applications,
see [Bul11], using a GP as the prior.

Setup

For the experimental evaluation, we use the 3-dof SCARA robot CARBO, as pictured
in Fig. 4.6, with a spoon attached at the end effector. The links between the joints have
a length of 0.3 m. The task goal is to follow a given trajectory as precisely as possible
without using high feedback gains, at this might result in several practical disadvantages,
see [NSP08]. Therefore, a precise model of the system dynamics is necessary. Since the
modeling of the nonlinear fluid dynamics with a parametric model would be very time con-
suming, we use a computed torque control method based on a GP model. It allows high
performance tracking control while also being able to guarantee the stability of the control
loop, see [BKH19]. Underlying, a low level PD-controller enforces the generated torque by
regulating the voltage based on a measurement of the current. The controller is implemented
in MATLAB/Simulink on a Linux real-time system with a sample rate of 1 ms. For the im-
plementation of the GP model, we use the GPML toolbox [RN10]. The desired trajectory
follows a circular stirring movement through the fluid with a frequency of 0.5 hz.

Modeling

Here, we use a GP model okbm as kernel-based model technique based on 223 collected train-
ing points. The data is collected around the desired trajectory using a high gain controller.
The location of the training points heavily influences the control performance. However, the
proposed approach focuses on improving the performance based on the existing data. Each
data pair consists of the position and velocity of all joints [q, q̇]> and the corresponding
torque for the i-th joint. Since the GP produces one-dimensional outputs only, 3 GPs are
used in total for the modeling of the robot’s dynamics. Each GP i = 1, . . . , 3 uses a squared
exponential kernel

k([q, q̇]>, [q′, q̇′]>) = ϕ2
i exp

−
∥∥∥[q, q̇]> − [q′, q̇′]>

∥∥∥2

ϕ2
i+3

 , ϕi ∈ R>0 (4.11)

that can approximate any continuous function arbitrarily exact. With ϕ = [ϕ1, . . . ,ϕ6] and
the signal noise σn ∈ R3, a total number of 9 parameters must be optimized. In contrast
to the simulation, the kernel is fixed to reduce the optimization space and, therewith, the
number of necessary task evaluations.

Control law

The control input uctrl, i.e., the torque for all joints, is generated based on an estimated
parametric model and the mean prediction µ of the GP model as feed-forward component
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q1

q2

q3

Figure 4.6: Three time steps of stirring with the 3-dof SCARA robot CARBO.

and a low gain PD-feedback part

uctrl = Ĥq̈d + Ĉq̇d + ĝ + µ(q̇, q|okbm)−Kdė−Kpe. (4.12)

Here, the desired trajectory is given by qd, q̇d and q̈d with the error ė = q̇d − q̇, e = qd − q.
The estimated inertia matrix Ĥ ∈ R3×3, the estimated Coriolis matrix Ĉ ∈ R3×3, and the
estimated gravity vector ĝ ∈ R3 are calculated from the measured physical parameters of the
robot. The feedback matrices are given by Kp = diag([60, 40, 10]) and Kd = diag([1, 1, 0.4]).
The estimated parametric model is derived from a mathematical model where the parameters
are physically measured. For the discretization of the control input, a zero-order method is
used. For more details see [BKH19].

Evaluation

The evaluation of the performance of the closed-loop is based on the cost function

ctot = 1
2000

2000∑
t=0
e(tst)>e(tst) (4.13)

with time step ts = 1 ms. Hence, the cost function is a measure for the tracking accuracy
of the stirring movement. We consider as kernel candidate the squared exponential kernel,
such that only the hyperparameters σn,ϕ require optimization. Table 4.2 shows the com-
parison between the data-based and the closed-loop optimization. In the data-based case,
the hyperparameters are optimized based on a gradient descent method to minimize the
negative log likelihood function. In contrast, BO is used to minimize the tracking error in
the closed-loop optimization. The initial values of the hyperparameters are set to the values
obtained from the data-based optimization. The bounds are defined as 0.5 and 2 times of
the initial values, respectively. The evolution of the minimum cost over the trials, where
each trial is a single stirring movement, is shown in Fig. 4.7. The comparison of the joint
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Value Data-based Closed-loop
σn [0.10, 3× 10−3, 6× 10−4] [0.20, 4× 10−3, 3× 10−4]
ϕ1,2,3 [3.49, 1.42, 2.87] [2.61, 1.68, 5.70]
ϕ4,5,6 [1.21, 0.25, 0.27] [0.80, 0.27, 0.29]
Neg. log likelihood [89,−121,−176] [115,−113,−136]
Cost (Tracking error) 1.49 1.05

Table 4.2: Comparison between data-based and closed-loop optimization. The closed-loop
optimization leads to a lower cost even though the neg. log likelihood is increased.

position error for the data-based and closed-loop optimization is shown in Fig. 4.8. After
100 trials, the tracking error is decreased by 30% through the optimization of the GP model
only. Even though the resulting hyperparameters are sub-optimal with respect to the like-
lihood function, see Table 4.2, the performance of the closed-loop is significantly improved.
In contrast to collecting more training data to improve the model, our proposed method
does not increase the computational burden of the GP prediction, which is often critical in
real-time applications. Since only the model is adapted, the properties of the closed-loop
control architecture are also preserved.
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Figure 4.7: Minimum of the cost function over the number of trials. After 100 trials, the
cost is significantly reduced.
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Figure 4.8: Comparison of the root square position error of all joints. Our proposed approach
significantly reduces the position error.
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4.2 Error of Misspecified Models
In Section 4.1, we show the selection of the kernel based on the performance of the control
loop. As the variance of GP models is exploited as uncertainty measure, it is essential that
the GP model fits the data generating process. Otherwise, using the variance as prediction
error measure is not valid anymore, see Fig. 4.9. In this section, we derive an upper bound for
the mean square prediction error (MSPE) between an estimated GP model and a GP model
with unknown kernel functions and hyperparameters. For this purpose, a set of possible
kernel functions with corresponding hyperparameter sets must be given. We exploit the
property that many commonly used kernel functions are pseudo-concave with respect to
their hyperparameters. As a consequence, the upper bound can be obtained as the solution
of pseudo-concave optimization problems. Including additional assumptions, a closed-form
solution is provided.

4.2.1 Problem Setting
We consider two GP models GP1, GP2 following (2.15), each trained with the same set D =
{X,Y } of nD data points. The output dimension of the data is denoted by nydat ∈ N.
The model GP1 is based on unknown kernel functions k1, . . . , knydat and hyperparame-
ters ϕ1, . . . ,ϕnydat whereas GP2 uses the kernel functions k̂1, . . . , k̂nydat and ϕ̂1, . . . , ϕ̂nydat ,
such that

GP1 : fGP1,i|z,D ∼ N
(
ki(z,X)>(Ki)−1Y:,i, k(z, z)− ki(z,X)>(Ki)−1ki(z,X)

)
(4.14)

GP2 : fGP2,i|z,D ∼ N
(
k̂
i(z,X)>(K̂i)−1Y:,i, k̂(z, z)− k̂i(z,X)>(K̂i)−1k̂

i(z,X)
)

(4.15)

for all i = {1, . . . ,nydat} and z ∈ Z ⊆ Rnz .

Remark 4.5. For notational simplicity, we assume noise-free output data such that the
Gram matrix (Ki+σn,iInD) = Ki without loss of generality. All results hold for noisy output
data as well by including the noise into the Gram matrix Ki. The prior mean functions are
here assumed to be zero.

Input space

Ou
tp

ut
sp

ac
e

Estimated mean
Estimated 3-sigma
True samples
Training points

Figure 4.9: Using a misspecified GP model, the variance might be misleading in terms of the
model confidence.
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Our goal is to compute the MSPE between the prediction (fGP1 |z,D) ∈ Rnydat of GP1 and
the mean prediction of (fGP2|z,D) ∈ Rnydat given by GP2, i.e.,

E
[
‖(fGP1|z,D)− µ(fGP2 |z,D)‖2

]
. (4.16)

Since the kernel functions of GP1 are unknown, we derive an upper bound for the MSPE.
The reason for using the predicted mean of GP2 only is that we compare the MSPE with
the predicted variance of GP2 to show that the variance can be misleading. In accordance
with the no-free-lunch theorem, it is not possible to give error bounds for the MSPE without
any assumptions on k1, . . . , knydat . Thus, we assume to have knowledge about a set of kernel
functions Ǩ, which contains the kernels k1, . . . , knydat of GP1. In detail, let Ǩ be a set
of nk ∈ N kernel functions

Ǩ = {ǩ1, . . . , ǩnk ∈ K}, (4.17)

which are positive and pseudo-concave with respect to their hyperparameters.

Remark 4.6. A pseudo-concave function behaves like a concave function regarding the find-
ing of local maxima, but need not actually be concave. In Section 4.2.4, we show that many
common kernel functions are pseudo-concave and positive, such as the squared exponential,
the rational quadratic and the polynomial for specific inputs.

Remark 4.7. To keep the set Ǩ as small as possible, statistical hypothesis testing can be
used for discarding functions, which are unlikely.

In addition, let Φ̌ be a set of convex sets

Φ̌ =
{

Φ̌1, . . . , Φ̌nk |Φ̌j ⊆ RnΦj ,nΦj ∈ N, j ∈ {1, . . . ,nk}
}

, (4.18)

such that Φj is a valid hyperparameter set, see Definition 2.1, for the kernel ǩj. Then, the
following assumption must be held.

Assumption 4.3. There exists an injective function $ : {1, . . . ,nydat} → {1, . . . ,nk}, such
that ki = ǩ$(i),ϕi ∈ Φ̌$(i) for all i ∈ {1, . . . ,nydat}.

Interpreting this assumption, it is neither necessary to know the exact kernels k1, . . . , knydat

of GP1, nor the exact corresponding hyperparameters ϕ1, . . . ,ϕnydat . Instead, the kernel
functions of GP1 only need to be elements of a set of possible kernel functions given by Ǩ.
Analogously, each of the hyperparameters of GP1 has to be in the set Φ̌1, . . . , Φ̌nk of possible
hyperparameters. Thus, the function $ must exist but is unknown. The following example
demonstrates a possible configuration for the sets Ǩ and Φ̌.

Example 4.2. Consider GP1 with a two-dimensional output. In the first dimension,
the function follows a GP with polynomial kernel k1 and hyperparameter ϕ1 = 2. In
the second dimension, the function follows a GP with squared exponential kernel k2 and
hyperparameters ϕ2 = [1.5, 0.5]>. Then, valid sets Ǩ and Φ̌ to satisfy Assumption 4.3
are provided by the following illustration.
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k1 = POLY
k2 = SE-ARD
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ǩ1 = SE-ARD
ǩ2 = POLY
ǩ3 = RQ
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[1, 2] × [0, 1] =Φ̌1

[0, 2] =Φ̌2
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Figure 4.10: Possible configuration for set Ǩ of kernels and set Φ̌ of hyperparameter sets.

Consequently, the function $, which maps the unknown kernels of GP1 to the kernels
of the set Ǩ, is defined by $(1) = 2,$(2) = 1. Normally, this function is unknown.

Application examples

Identification with GP-SSMs: The predicted variance correctly represents the model
uncertainty if the reproducing kernel Hilbert space norm ‖fi‖ki is bounded ∀i ∈ {1, . . . ,nx},
as presented in Section 2.1.6. Without knowing the exact kernel functions and hyperparam-
eters, the predicted model uncertainty may not be correct. Our result allows to derive an
upper bound for the MSPE between the correct but unknown GP-SSM and an estimated
GP-SSM. Consequently, the upper bound also captures the error between the estimated GP-
SSM and the original discrete-time system.
Reinforcement learning: Following [EMM05], a GP model is used for the value pro-
cess V : Rnx → R which connects values and rewards in a reinforcement learning scenario. It
includes the assumption that the choice of the kernel function reflects the prior concerning
the correlation between the values of states and rewards. Our Theorem 4.1 can be used to
avoid an eventually underestimated MSPE based on the predicted variance with subopti-
mal hyperparameters. In this scenario, the set Ǩ contains the selected kernel function ǩ1

only. Thus, an upper bound for the MSPE can be computed without knowing the exact
hyperparameters.

4.2.2 Mean Square Prediction Error
In this section, we introduce the computation procedure of the upper bound for the MSPE
between GP1 and the mean prediction of GP2. The MSPE is defined by

E ‖∆‖2 =
nydat∑
i=1

ki(ϕi)− 2k̂i(ϕ̂i)>K̂i−1(ϕ̂i)ki(ϕi) + k̂i(ϕ̂i)>K̂i−1(ϕ̂i)Ki(ϕi)K̂i−1(ϕ̂i)k̂i(ϕ̂i)

(4.19)

with error ∆ = (fGP1|z,D)−µ(fGP2|z,D). For notational convenience, we do not write the
arguments z and X but highlight the dependence on the hyperparameters ϕ. Note, that the
covariance vector k and the Gram matrix K are related to GP1 and, thus, are unknown. In
contrast, the covariance vector k̂ and the Gram matrix K̂ are known as they belong to GP2.
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4.2 Error of Misspecified Models

Remark 4.8. If the estimated kernel functions and their hyperparameters are correct, i.e.,
let ki = k̂i,ϕi = ϕ̂i for all i, the mean square error simplifies to

E
[
‖∆‖2

]
= tr (Σ(fGP2|z,D)) , (4.20)

which is the trace of the posterior variance matrix.

It is obvious from (4.19), that the true kernel functions ki of GP1 are needed to compute
the MSPE. Since the true kernel functions are unknown, we derive an upper bound based for
the MSPE (4.19) on a set of kernel functions and hyperparameters. To determine this bound,
the maximum of (4.19) has to be computed without knowing the kernel function ki and the
corresponding hyperparameters ϕi. With Assumption 4.3, this problem is a non-convex,
mixed-integer optimization problem. For simplicity in notation in the following derivations,
parts of (4.19) are substituted to

κi1(z) = ki(ϕi) (4.21)

κi2(z) = k̂
i(ϕ̂i)>K̂i−1(ϕ̂i)ki(ϕi) (4.22)

κi3(z) = k̂
i(ϕ̂i)>K̂i−1(ϕ̂i)Ki(ϕi)K̂i−1(ϕ̂i)k̂i(ϕ̂i) (4.23)

with κi1,κi2,κi3 : Z → R. To achieve an upper bound for the MSPE (4.19), we compute
individual bounds for the part terms given by (4.21) to (4.23) in the following. Note, that
the second term κi2 is negative in (4.19) and, thus, we derive an lower bound for this term.
We start with an upper bound for κi1.

Lemma 4.4. With Assumption 4.3, any ki with i ∈ {1, . . . ,nydat} is bounded by

ki(ϕi, z, z′) ≤ max
j∈{1,...,nk}

max
ϕ̌j∈Φ̌j

ǩj(ϕ̌j, z, z′) (4.24)

for all ϕi ∈ Φ̌$(i) and ∀z, z′ ∈ Z.

Proof. Since ki is an element of Ǩ, the maximization over all kernel functions ǩj with their
hyperparameter sets Φ̌j is an upper bound for ki. Hence, the optimization problem is
split into an outer maximization over the finite number of kernel functions ǩj and an inner
maximization over the convex hyperparameter sets.

Then next lemma derives a lower bound for κi2, since this term is negative in the MSPE (4.19).

Lemma 4.5. With Assumption 4.3, there exists a lower bound κi2(z) : Z → R for κi2
in (4.22) given by

κi2(z) =
nD∑
l=1

min
{
ail, 0

}
max

j∈{1,...,nk}
max
ϕ̌j∈Φ̌j

ǩj(ϕ̌j, z,X:,l) (4.25)

with ai = k̂
i(ϕ̂i)>K̂i−1 , ai ∈ RnD

for all z ∈ Z and ∀i ∈ {1, . . . ,nydat}.
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4 Kernel Selection of GP Models

Proof. We obtain a lower bound for (4.22) by

κi2(z) ≥
nD∑
l=1

min
{
ail, 0

}
max ǩj(ϕ̌j, z,X:,l) + max

{
ail, 0

}
min ǩj(ϕ̌j, z,X:,l) (4.26)

subject to j ∈ {1, . . . ,nk}, ϕ̌j ∈ Φ̌j,

because the negative elements of a are multiplied with the maximum value of all kernel
functions in Ǩ and vice versa. The minimum of ǩj(ϕ̌j, z,X:,l) is always positive follow-
ing Assumption 4.3, so that

κi2(z) ≥
nD∑
l=1

min
{
ail, 0

}
max ǩj(ϕ̌j, z,X:,l), (4.27)

for j ∈ {1, . . . ,nk}, ϕ̌j ∈ Φ̌j holds. With Lemma 4.4, we obtain the lower bound (4.25).

Next, the following lemma presents an upper bound for the third and last term κi3.

Lemma 4.6. With Assumption 4.3, there exists an upper bound κ̄i3(z) : z → R for κi3
in (4.23) given by

κ̄i3(z) =
∑

l,l′=1,...,m
max

{
aila

i
l′ , 0

}
max
j

max
ϕ̌j

ǩj(ϕ̌j,X:,l′ ,X:,l) (4.28)

ai = k̂
i(ϕ̂i)>K̂i−1 , ai ∈ RnD (4.29)

with j ∈ {1, . . . ,nk} and ϕ̌j ∈ Φ̌j,∀z ∈ Z,∀i ∈ {1, . . . ,nydat}.

Proof. It is analogous to the proof of Lemma 4.5.

Given Lemmas 4.4 to 4.6, the next theorem introduce the upper bound for the MSPE (4.19)
without the need of the true kernel functions ki and hyperparameters ϕi of GP1.

Theorem 4.1. Consider the MSPE (4.19) between the prediction fGP1|z,D of GP1 and
the posterior mean of fGP2 |z,D of GP2. With Assumption 4.3, there exists an upper
bound for the MSPE given by

E
[
‖(fGP1|z,D)− µ(fGP2|z,D)‖2

]
≤ nydatκ̄1(z) +

nydat∑
i=1

κ̄i3(z)− 2κi2(z) (4.30)

κ̄1(z) = max
j∈{1,...,nk}

max
ϕ̌j∈Φ̌j

ǩj(ϕ̌j, z, z) (4.31)

with κi2, κ̄i3 given by (4.25) and (4.28), respectively.

Proof. The mean square error is upper bounded by a sum of upper bounds for each term
of (4.19). An upper bound of (4.21) with Assumption 4.3 can be computed by (4.31) follow-
ing Lemma 4.4. The bound κ̄1 is independent of the training data D and thus, independent
of i, so that it sums up to nydatκ̄1. With Lemmas 4.5 and 4.6, the second and third terms
are bounded. Finally, all three bounds together lead to the upper bound (4.31) for the
MSPE.
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4.2 Error of Misspecified Models

Remark 4.9. The minimum in (4.26) for the lower bound of κi2 is set to zero because the
numerical computation of (4.26) would be hard to obtain since ǩ is pseudo-concave. With this
modification, the solution of (4.30) can be computed by standard gradient algorithms [HP90].

4.2.3 Closed-form Solution
So far, we introduce an upper bound for the MSPE, given by (4.30), which can be computed
numerically with an optimization algorithm. Admitting additional assumptions, a closed-
form solution for (4.30) can be obtained. We start with the introduction of the assumptions.

Assumption 4.4. Each convex set of hyperparameters Φ̌j ∈ Φ̌ in (4.18) can be described by
two vectors ϕj, ϕ̄j ∈ RnΦj

Φ̌j =
{
ϕ̌j ∈ RnΦj |ϕj � ϕ̌j � ϕ̄j

}
,∀j ∈ {1, . . . ,nk}. (4.32)

Assumption 4.5. Each kernel function ǩj, j ∈ {1, . . . ,nk} in (4.17) is componentwise
strictly increasing with respect to its hyperparameters ϕ̌j. In detail, for all ϕ̌ji , υ̌

j
i ∈ Φ̌j

with ϕ̌ji < υ̌ji , one has ǩj(ϕ̌j, z, z′) < ǩj(υ̌j, z, z′) ∀z, z′ ∈ Z and for all i ∈ {1, . . . ,nΦj}.

Assumption 4.4 requires that each of the convex hyperparameter sets Φj ⊆ RnΦj is a nΦj -
dimensional hyperrectangle which is a weak restriction in practice. In Section 4.2.4, we show
that Assumption 4.5 holds for commonly used kernel functions and, thus, it is not restrictive.
Based on these assumptions, there exists a closed-form solution of Theorem 4.1 because the
maximum of the kernel function ǩj is now always at ϕ̄j. Before we present the closed-form
solution, the implications of Assumptions 4.4 and 4.5 are visualized in the following.

Example 4.3. We consider a squared exponential kernel with its two hyperparameters
and a hyperrectangle {ϕ ∈ R2|1 ≤ ϕ1 ≤ 3, 1 ≤ ϕ2 ≤ 4}. Figure 4.11 shows the value of
the kernel with respect to its hyperparameters for fixed z, z. As the squared exponen-
tial kernel is componentwise strictly increasing, its value is increasing with increasing
hyperparameters. Thus, the maximum, subject to the hyperrectangle, is at the upper
right corner ϕ̄ = [3; 4].

[ϕ1; ϕ2]

[ϕ̄1; ϕ̄2]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

2

4

ϕ1

ϕ
2

0.2

0.4

0.6

0.8

Figure 4.11: The value (color-coded, red high and blue low) of the squared exponential
kernel k(ϕ, z, z) over its hyperparameters ϕ. Inside the hyperrectangle
(black box), the maximum of the kernel is at its upper right corner.

97



4 Kernel Selection of GP Models

Theorem 4.2. Consider the MSPE between the prediction fGP1|z,D of GP1 and the
posterior mean of fGP2|z,D of GP2. With Assumptions 4.3 to 4.5, there exists an upper
bound for the MSPE given by

E ‖∆‖2 ≤
nydat∑
i=1

max
j

{
ǩj(ϕ̄j, z, z) (4.33)

−2
nD∑
l=1

min
{
ail, 0

}
ǩj(ϕ̄j, z,X:,l) + max

{
ail, 0

}
ǩj(ϕj, z,X:,l)

+
∑

l,l′=1,...,nD
max

{
aila

i
l′ , 0

}
ǩj(ϕ̄j,X:,l′ ,X:,l) + min

{
aila

i
l′ , 0

}
ǩj(ϕj,X:,l′ ,X:,l)

}
(4.34)

with ∆ = (fGP1|z,D)− µ(fGP2|z,D) and ai = k̂
i(ϕ̂i)>K̂i−1.

Remark 4.10. The solution of (4.34) is a closed-form expression in the sense that it can
be evaluated in a finite number of operations because the maximization is over a finite set.
Proof. Without loss of generality, we choose j ∈ {1, . . . ,nk} of each maximization such
that ǩj in (4.34) is equal to the kernel function ki. With Assumption 4.5, the kernel func-
tion ki with the hyperparameters ϕi is always equal to or less than the same kernel function
with ϕ̄i and vice versa, i.e., ki(ϕi, z, z′) ≥ ki(ϕi, z, z′). Thus, it remains to be proven that

E ‖∆‖2 ≤
nydat∑
i=1

{
ki(ϕ̄i, z, z) +

∑
p,q=1,...,nD

max
{
aila

i
l′ , 0

}
ki(ϕ̄i,X:,l′ ,X:,l)

+ min
{
aila

i
l′ , 0

}
ki(ϕi,X:,l′ ,X:,l)− 2

nD∑
l=1

min
{
ail, 0

}
ki(ϕ̄i, z,X:,l)

+ max
{
ail, 0

}
ki(ϕi, z,X:,l)

}
. (4.35)

Each term of (4.35) upper bounds the corresponding term of E ‖∆‖2 in (4.19) analogously
to the idea in the proof of Lemma 4.5. Since (4.34) maximizes over all ǩj and, consider-
ing Assumption 4.3, the kernel function ki is element of Ǩ, there exists a j such that the
assumption at the beginning of the proof is fulfilled. As a consequence, the MSPE is upper
bounded by (4.34).

If the set of possible kernels Ǩ and hyperparameter sets Φ̌ contain only the necessary elements
to satisfy Assumption 4.3, the following special case occurs.

Corollary 4.2. Let k1 = · · · = knydat and ϕ1 = . . . = ϕnydat be the set of possible kernels
and hyperparameters. Then, the closed-form solution (4.34) of Theorem 4.2 is equivalent
to the posterior variance (4.20) for Ǩ = {k1} and Φ̌ = {ϕ1}

Proof. This is a direct result of the error bound (4.35) if the set Ǩ only contains the kernel
functions k1 = · · · = knydat and the set Φ̌ only contains the corresponding hyperparame-
ters ϕ1 = . . . = ϕnydat .
Remark 4.11. Corollary 4.2 shows the convergence of the upper bound, given by (4.34), to
the true MSPE (4.16) between GP1 and GP2 for the minimum-size sets Ǩ, Φ̌.
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4.2 Error of Misspecified Models

4.2.4 Pseudo-concave Kernel Functions
To upper bound the MSPE, the kernels in the set Ǩ are assumed to be pseudo-concave. In
addition, the closed-form solution requires that the kernels are componentwise monotonically
increasing, see Assumption 4.5. Therefore, we show in the following that many common
kernel functions fulfill these properties. Before we start, the definition of pseudo-concave
functions is recalled.

Definition 4.1 ([Man75]). A function f gen ∈ C1, where f gen : S → R, defined on a convex
set S ⊆ RnS ,nS ∈ N is pseudo-concave if for all z, z′ ∈ S

∇f gen(z)(z′ − z) ≤ 0⇒ f gen(z′) ≤ f gen(z). (4.36)

Pseudo-concavity is of interest because a point is a local maximum of a pseudo-concave
function if and only if the gradient is zero at this point. Thus, many optimization concepts
which are known from concave functions can be transferred to pseudo-concave function.
The next proposition states that many commonly kernel functions are pseudo-concave and
componentwise monotonically increasing.

Proposition 4.1. The following kernel functions are pseudo-concave and component-
wise monotonically increasing with respect to their hyperparameters on the designated
domain.

Kernel function Parameters Domain
Polynomial (2.45) p ∈ N,ϕ1 ∈ R≥0 ∀z, z′ ∈ Rnz

≥0
Rational quadratic (2.48) p ∈ N>0,ϕ ∈ R2

>0 ∀z, z′ ∈ Rnz

Squared exponential ARD (2.49) ϕ ∈ Rnz+1
>0 ∀z, z′ ∈ Rnz

Matérn (2.46) p ∈ {0, 1, 2},ϕ ∈ R2
>0 ∀z, z′ ∈ Rnz

Proof. The following proof considers each kernel function separately.

Polynomial kernel

The polynomial kernel function (2.45) is strictly increasing on ϕ ∈ R≥0 for any z, z′ ∈ Rnz
≥0

and hence, pseudo-concave, see [BSS13], and componentwise monotonically increasing.

Rational quadratic kernel

Following [BSS13], a continuous differentiable kernel function k is pseudo-concave if the
kernel is quasi-concave and ∂k/∂ϕ 6= 0. The kernel function is quasi-concave if detQ3(ϕ) > 0
and detQ2(ϕ) < 0, where the matrix Qr is the r-th order leading principal submatrix of the
bordered Hessian Q of k with respect to ϕ given by

Q =


0 ∂k

∂ϕ1
∂k
∂ϕ2

∂k
∂ϕ1

∂2k
∂ϕ2

1

∂2k
∂ϕ1ϕ2

∂k
∂ϕ2

∂2k
∂ϕ2ϕ1

∂2k
∂ϕ2

2

 . (4.37)
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For the rational quadratic kernel, the principal submatrices are

Q2 = −4‖z − z′‖4p2ϕ4
1

ϕ2
2

(
2pϕ2

2 + ‖z − z′‖2
)2
(

2pϕ2
2+‖z−z′‖2

2pϕ2
2

)2p < 0 (4.38)

Q3 = 8‖z − z′‖2ϕ4
1p(p‖z − z′‖2 + ‖z − z′‖2 + 6pϕ2

2)

ϕ2
2

(
2pϕ2

2 + ‖z − z′‖2
)2
(

2pϕ2
2+‖z−z′‖2

2pϕ2
2

)3p > 0, (4.39)

for all p ∈ N>0,ϕ ∈ R2
>0. Thus, the rational quadratic kernel is quasi-concave. Since the

tational quadratic kernel is continuous differentiable and ∂k/∂ϕ 6= 0 on its domain, the ker-
nel is also pseudo-concave. It is obvious that the kernel is also componentwise monotonically
increasing.

Squared exponential kernel

The kernel function can be rewritten as

k(ϕ, z, z′) = exp
(

log(ϕ2
1) +

nz∑
i=1
−|zi − z

′
i|2

2ϕ2
i+1

)
. (4.40)

In the form (4.40), the argument of the exponential function is quasi-concave, since this
sum of concave functions is concave on all ϕ ∈ Rnx+1

>0 for any z, z′ ∈ Rnx . The compo-
sition with the strictly increasing exponential function results in an overall quasi-concave
function [Sun96, Theorem 8.5]. Since the kernel is continuous differentiable and ∂k/∂ϕ 6= 0
holds for ϕ ∈ Rnz+1

>0 , the kernel (4.40) is also pseudo-concave. Further, the kernel function is
componentwise monotonically increasing as the exponential and the logarithm function are
monotonically increasing.

Matérn kernel

Analogously to the proof for rational quadratic kernel, the principal submatrices of the
bordered Hessian of k are detQ2 < 0 and detQ3 > 0. With continuous differentiable k,
and ∂k/∂ϕ 6= 0 on its domain, the Matérn kernel is pseudo-concave. The kernel function is
also componentwise monotonically increasing as the exponential function grows faster than
any polynomial.

4.2.5 Numerical Evaluation
In this section, we present a numerical example for the MSPE upper bound, given by Theo-
rem 4.2, by means of a stochastic GP-SSMs, see (3.70). For this purpose, we assume that a
discrete-time, one-dimensional system is described by GP1 with a Matérn kernel where p = 1
and the hyperparameters ϕ = [5.2, 1.6]>. The training setD = {X,Y } contains 10 uniformly
distributed measurements, see Table 4.3.
Since the correct kernel function is usually unknown in real-world applications, the squared
exponential kernel is a common choice. For demonstration purposes, we follow this standard
approach and use GP2 with a squared exponential kernel trained on the measurements of
the system. The hyperparameters are optimized according to the log likelihood function
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X -9.6 -6.8 -4.8 -2.7 -1.0 1.3 3.4 6.4 8.4 10.7
Y -1.9 1.2 0.2 -0.5 0.1 0.1 -0.7 1.3 -0.9 -0.6

Table 4.3: Training data set D of an unknown dynamics.

with a conjugate gradient method, which results in the hyperparameters ϕ̂ = [0.36, 0.32]>.
In Fig. 4.12, the estimated mean µ(xt+1|xt,D) of GP2 together with the mean and vari-
ance of the true generating process GP1 are visualized. Obviously, the estimated mean (red
dashed) of GP2 does not appropriately describe the true process (blue and gray), although
it represents the training data (black) accurately. As a consequence, the mean square error
between the estimated mean and the correct model is significantly underestimated in the
state space, as well as in the time domain, as presented in Fig. 4.13. To overcome this issue,
we employ Theorem 4.2 to determine an upper bound of the MSPE without exact knowl-
edge of the correct kernel function. More in detail, we consider a set of kernel functions
with their corresponding hyperparameter sets, as presented in Table 4.4. For the compar-
ison of different sets of hyperparameters, we use three different interval sizes around the
true hyperparameters. Figure 4.13 shows the estimated (red dashed) and true mean square
prediction error (blue point-dashed). Note that the true MSPE is normally unknown.The
error obtained from GP2 obviously underestimates the true MSPE. In contrast, we compute
upper bounds (green solid) using Theorem 4.2 based on the set of kernels and three different
hyperparameter set, given by Table 4.4. With a smaller range for the hyperparameters ϕ̌1,
i.e., a better estimation of the unknown hyperparameters, the bound becomes tighter. In
summary, our upper bound successfully confines the true MSPE without knowing the exact
kernel and hyperparameters of GP1.
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Figure 4.12: Based on the training data, the estimated mean generates a misleading impres-
sion of the underlying process.
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Kernel functions Hyperparameter sets

ǩ1: Matérn p = 1 {0.9ϕ1 � ϕ̌1 � 1.1ϕ1} 10% error interval
{[0; 0] ≺ ϕ̌1 � 2ϕ1} 100% error interval
{[0; 0] ≺ ϕ̌1 � 3ϕ1} 200% error interval

ǩ2: Matérn p = 0, 2 {[1; 1.5] � ϕ̌2 � [10; 2]}
ǩ3: Rational quadratic p = 1 {[1; 0.1] � ϕ̌3 � [20; 1]}
ǩ4: Squared exponential {[0.1; 0.01] � ϕ̌4 � [10; 1]}

Table 4.4: Kernel functions in Ǩ with hyperparameter sets in Φ̌.
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Figure 4.13: Top: The estimated, the true and the upper bound of the MSPE for a 10%,
100%, and 200% error interval (from bottom to top) around the correct hy-
perparameter values. Bottom: The comparison in time domain with the 10%
bound.
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4.3 Discussion
In this section, we focus on the kernel selection for GP models from a control point of view.
First, we present a framework for the model selection for kernel-based models to directly
optimize the overall closed-loop control performance. For this purpose, the kernel and its
hyperparameters are optimized using Bayesian optimization with respect to a cost function
that evaluates the performance of the closed-loop. Here, a modified Bayesian optimization
approach is used, which integrates integer-value inputs (the kernel selection) properly. It is
shown that this approach allows to preserve the control architecture properties as only the
model is adapted. Two simulations and a robotic experiment demonstrate the advantages
of the proposed approach in comparison to the standard approach using data-based model
selection techniques. Even with a larger data set, the performance of the optimized model is
still better. For large systems, however, the large amount of parameters to optimize might
lead to many task repetitions before a performance increase is noticeable. Furthermore, the
optimization requires a repetitive task. It is expected that, the optimized model shows sim-
ilar performance for similar tasks. However, the extension and analysis for different tasks is
open for future work.
In case of a misspecified kernel in the GP model, we derive an upper bound for the mean
square prediction error between an estimated GP model and a GP model with unknown
kernel function. For our upper bound calculus, no exact knowledge about the underlying
kernel function is required. Instead, only a set of possible kernel functions with their hy-
perparameter sets is necessary. With additional weak assumptions, a closed-form solution is
provided. A numerical example demonstrates that this bound confines the usually unknown
mean square prediction error. The size of the bound depends on the number of possible ker-
nels and set size of possible hyperparameters. Thus, for very large sets, the proposed bound
might be too loose. In addition, the numerical evaluation shows that the bound becomes
looser next to the training points. Finding better approximations for the individual terms
of the MSPE would improve the bounds.
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Control of Euler-Lagrange Systems 5

The previous chapters deal with the properties and selection of GP models. In this chap-
ter, we present GP model based control approaches that provide stability and performance
guarantees. Euler-Lagrange (EL) systems represent a crucial and large class of dynamical
systems so that the control of these systems is of high interest. Various control schemes for
EL systems have been proposed as discussed in [Ort+13]. Most of them can be considered
as a subset of computed torque control law (CTC), which enable very effective controllers
in robust, adaptive and learning control [Sic+10]. The control law is separated into a feed-
forward and a feedback part. A precise model of the true system is necessary to compensate
the system dynamics with the feed-forward term to keep the feedback term low. The com-
bination of a feed-forward and a feedback part is beneficial in many ways: it avoids large
errors in the presence of noise [Isi13], avoids the saturation of actuators [KG02], and en-
hances safety in applications such as human-robot interaction [San+08]. Since the accuracy
of the compensation depends on the precision of the model, all generalized external forces,
such as, for instance in robotics, friction, payload or contact forces with the environment,
must be incorporated as precisely as possible. However, an accurate model of these un-
certainties is hard to obtain by classical first-order principles based techniques. Especially
in modern applications of Euler-Lagrange systems, such as service robotics, the interaction
with unstructured and a priori unknown environments further increases the uncertainty.

Related Work and Open Problems
The uncertainties of a model can be separated into structural and parametric variations.
The structural uncertainties come from the lack of knowledge of the underlying true physics.
Parametric uncertainties exist since the exact values of lengths, masses, etc., are often un-
known. A common approach is to derive a dynamic model from first-order physics and to
increase the feedback gains to compensate the uncertainties until a desired tracking perfor-
mance is achieved [SHV06]. However, high gain control is undesirable (as explained above)
and deriving a more accurate model of the system is often difficult if not impossible, e.g., in
soft robotics [Mog+16]. Additionally, the stability of the closed-loop system might not be
guaranteed due to the uncertainties.
Computed torque control requires a parametric model of the EL system, which can be iden-
tified, e.g., for robot manipulators using [SS12]. Errors in the identified dynamics deteriorate
the tracking performance and can affect the stability of the closed-loop. Several methods
are presented to overcome this problem, for instance in [SL87; RWH04], and also in terms
of passivation in [Fra03; BIW91] but all approaches need a parametric model of the actual
system. The idea to use GP models as a data-driven approach in control of robotic systems
has been presented in [NSP08; AMS14]. The inherent learning of variable loads for robotic
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manipulators is provided by [Wil+09]. However, no stability guarantees for the closed-loop
are given. In [Cho+15; Ber+16], the stability of a class of systems with GP models is an-
alyzed. However, the authors do not exploit the particular structure of EL systems. Thus,
high performance tracking control of EL systems with unknown dynamics and stability guar-
antees is still an open challenge.
In Section 5.2, we focus on the tracking control of Euler-Lagrange systems with unknown
dynamics. A computed torque based control law using GP models is proposed, which guar-
antees the stability of the system for a class of unknown dynamics. Afterwards, we introduce
how to use the uncertainty description of the GP models in computed torque based control
and, additionally, provide performance guarantees in Section 5.3. Finally, we show how GP
models are used for the passivation of systems with unknown dynamics in Section 5.4.

5.1 Dynamics of Euler-Lagrange Systems
In this chapter, we consider the class of non-conservative and fully-actuated systems where
the equations of motion are given by

d

dtc

(
∂L
∂q̇

)
− ∂L
∂q

= u+ ud (5.1)

with the generalized coordinates q ∈ Rnq , velocities q̇ ∈ Rnq and the general Lagrangian
function L(q̇, q) := T (q̇, q) − V(q). This function depends on the kinetic energy (or co-
energy) T : Rnq×Rnq → R and the potential function V : Rnq → R. Two types of generalized
external forces are considered: The action of control u ∈ Rnq and the effect of the unknown
dynamics ud ∈ Rnq .

Assumption 5.1. The effect of the unknown dynamics ud in(5.1) can be parametrized
by ud = fu

(
qq
)
with qq = [q̈; q̇; q], where fu : R3nq → Rnq is a continuous function.

The assumption restricts fu to be not directly time dependent, which holds in many
application scenarios. For example, the common unknown dynamics in robotic systems, i.e.,
Columb and viscous friction, are included. The kinetic energy in the EL equation (5.1) is of
the form T (q̇, q) = 1

2 q̇
>H(q)q̇, where H(q) : Rnq → Rnq×nq is the symmetric and positive

definite generalized inertia matrix. Based on these assumptions, the EL equation (5.1) can
be written in the equivalent form

H(q)q̈ + C(q, q̇)q̇ + g(q)− fu(qq) = u(tc), (5.2)

where C(q, q̇) : Rnq × Rnq → Rnq×nq is the generalized Coriolis matrix and the generalized
vector g(q) : Rnq → Rnq is given by g(q) := ∂V(q)

∂q
. The time-dependency of the states is

omitted for simplicity of notation and the time-dependency of the input u : R≥0 → Rnq

might be also indirect, i.e., u(qq(tc)).

Property 5.1. Without loss of generality, we consider the non-unique matrix C(q, q̇) to be
defined such that Ḣ(q)−2C(q, q̇) ∈ Rnq×nq is skew-symmetric ∀q̇, q ∈ Rnq following [MLS94,
Lemma 4.2].

The goal is to design a control action u such that the system (5.2) follows a desired
trajectory q̈d(tc), q̇d(tc), qd(tc) ∈ Rnq , which satisfies the following assumption.
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Assumption 5.2. The desired trajectory satisfies ‖qd‖ < qd, ‖q̇d‖ < q̇d, and ‖q̈d‖ < q̈d
with qd, q̇d, q̈d ∈ R>0.

The condition of bounded reference motion trajectories is a very natural assumption and
does not pose any restriction in practice.

5.1.1 Hybrid Learning with GP Models
Consider the EL system in (5.2) with unknown parameterization of H(q),C(q, q̇), g(q) and
unknown dynamics fu. If a priori knowledge of the plant is available, a hybrid learning
approach can be used which is a combination of a parametric and a data-driven model. We
consider the estimated model to be given by

û(tc) = Ĥ(q)q̈ + Ĉ(q, q̇)q̇ + ĝ(q), (5.3)

where Ĥ(q) ∈ Rnq×nq , Ĉ(q, q̇) ∈ Rnq×nq and ĝ(q) ∈ Rnq are estimates of the true values
which also satisfy Property 5.1. Furthermore, the estimates must fulfill the following prop-
erty.

Property 5.2 (Structure of the estimates). There exist constants h,h, cC ∈ R>0, such
that h‖z‖2 ≤ z>Ĥ(q)z ≤ h‖z‖2, and ‖Ĉ(q, q̇)‖ ≤ cC‖q̇‖, where Ĉ(q, q̇)q′ = Ĉ(q, q′)q̇ for
all q, q̇, q′, z ∈ Rnq .

The identification of the estimates Ĥ, Ĉ, ĝ while satisfying Properties 5.1 and 5.2 can
be achieved following the identification procedures from [SHV06; Koz12]. Note that Prop-
erty 5.2 is required for the estimates only and not for the true system (5.2).

Remark 5.1. Without prior knowledge of the system, the estimates are set to Ĥ= Inq , Ĉ= 0,
and ĝ = 0.

After having selected the parametric model, a multi-output GP model fGP following (2.13)
is trained with nD data pairs D = {q{i}q , τ̌ {i}}nDi=1 of the system such that

fGP (τ̌ |qq,D) =


fGP ,1 ∼ N (µ1(τ̌ |qq,D), var1(τ̌ |qq,D))

...
fGP ,nq ∼ N (µnq(τ̌ |qq,D), varnq(τ̌ |qq,D))

 (5.4)

with kernels k1, . . . , knq ∈ K and zero mean functions m1, . . . ,mnq = 0. The training data
set consists of qq = [q̈; q̇; q] ∈ R3nq as input data, and the difference between the real system
dynamics (5.2) and the estimated model (5.3) as output data τ̌ . This residual dynamic is
given by

τ̌ (qq) = Ȟ(q)q̈ + Č(q, q̇)q̇ + ǧ(q)− fu(qq), (5.5)
with Ȟ = H − Ĥ, Č = C − Ĉ, ǧ = g − ĝ. (5.6)

For the generation of training data set D, the system (5.2) can be operated by an arbitrary
controller as shown in Fig. 5.1. The only imposed requirement to the controller is that a
finite sequence of training data of the system can be collected. Stability, however, is not
necessarily required. It is advisable to choose the area of training points close to the desired
operation area but this is not mandatory.
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Controller Hq̈ + Cq̇ + g Ĥq̈ + Ĉq̇ + ĝ
q̈d, q̇d, qd

τ

q̈, q̇, q

τ̂

{[q̈; q̇; q]{i}}nD
i=1

{τ̌ {i}}nD
i=1-

Figure 5.1: The structure for generating the training data set D = {[q̈; q̇; q]{i}, τ̌ {i}}nDi=1 for
the GP model.

Remark 5.2. An appropriate choice of training points is obtained using the Bayesian opti-
mization method where the next training point is set to the position of maximum variance,
as proposed in [Sui+15]. An alternative way is presented in [Cap+20], where an information
theoretical criteria is used to select the training data.

After collecting the training pairs, the hyperparameters are optimized following Sec-
tion 2.2.2.

5.2 GP based Augmented Computed Torque Control
In this section, we present an augmented computed torque control law based on GP models,
which guarantees stability of the closed-loop. The control law uses a multi-output GP
model (5.4) to compensate the unknown dynamics. The proposed method also abstains
from feeding back the generalized accelerations (in contrast to, e.g., [AMS14]) as these are
difficult to measure directly and often inject noise. Our method guarantees that the tracking
error is stochastically bounded around zero, independent of the number of training data. If
the number of training points tends to infinity, this bound becomes arbitrary small and the
tracking error is asymptotically stable. For deriving the mathematical calculus, we consider
systems with the following additional properties only

Property 5.3 (Boundedness and Linearity).

• The inertia matrix H is bounded and Lipschitz continuous, such that ‖H(q)‖ < ∞
and ‖H(q)−H(q′)‖ ≤ cL‖q − q′‖ with cL ≥ 0, for all q, q′ ∈ Rnq .

• The matrix C(q, q̇) is bounded in q and linear in q̇, i.e., bounded by ‖C(q, q̇)‖ ≤ c‖q̇‖
and C(q, q̇)q̇′ = C(q, q̇′)q̇ for all q̇, q̇′, q ∈ Rnq and c ∈ R>0.

Both properties hold for many real world system, e.g, for robots with rotational joints
only. Furthermore, we make the following assumptions.

Assumption 5.3. The kernel functions k1(qq, q′q), . . . , knq(qq, q′q) of the GP model (5.4) are
bounded for all qq, q′q ∈ R3nq .

Assumption 5.4. There is no additional unknown dynamics, i.e., fu(qq) = 0.
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Assumption 5.5. The norm of the model error is affinely bounded by the norm of the
angular velocity, i.e., ‖H(q)q̈d+C(q, q̇)q̇d+g(q)−Ĥ(q)q̈d−Ĉ(q, q̇)q̇d−ĝ(q)‖ ≤ cα+cβ‖q̇‖
for all q̈d, q̇d, q̇, q ∈ Rnq with cα, cβ ∈ R>0, and continuous with respect to q̈d, q̇d, q̇, q.

Assumption 5.3 is satisfied by many commonly chosen kernels such as the squared expo-
nential kernel, see (2.47). Assumption 5.4 restricts the unknown dynamics in (5.2) to be part
of the functions H,C and g. For instance, the effect of unknown payload of a robot to its
dynamics (5.2) can be expressed in H,C and g. From a practical point of view, Assump-
tion 5.5 states that the dynamics which are not modeled by (5.2) can at most depend linearly
on the joint velocity. If there is a known range of uncertainty only in the inertia parameter,
the values cα and cβ can be computed using the approach of [TA81]. Since the payload
in mechanical systems is the major reason for the uncertainty, this approach is suitable for
many application scenarios.

5.2.1 Control Law
The following theorem introduces a control law, visualized in Fig. 5.2, to ensure a bounded
tracking error under the presented conditions.

Theorem 5.1. Consider an nq-dimensional Euler-Lagrange system (5.2) for which Prop-
erty 5.3 and Assumptions 5.3 to 5.5 hold. Let τ̂ = Ĥ(q)q̈ + Ĉ(q, q̇)q̇ + ĝ(q) be an
estimated model of (5.2) and Kp,Kd ∈ Rnq×nq two positive definite matrices. Consider
the control law

u = Ĥ(q)q̈d + Ĉ(q, q̇)q̇d + ĝ(q) + fGP (τ̌ |qc,D)−Kdė−Kpe, (5.7)

with qc = [q̈d; q̇d; q] and σ(Kd) > cβ. Then, the tracking error e = q−qd is stochastically
sample path bounded.

Details about stochastic sample path boundedness are provided in Definition A.11.

Remark 5.3. The GP is trained over q̈, q̇, q but receives q̈d, q̇d, q as inputs in the control
law. This is beneficial for practical implementation as this requires no feedback of the mani-
pulator’s acceleration and velocity. Additionally, the dependency of the Coriolis term Č on q̇

Ĥ(q)q̈d + Ĉ(q̇, q)q̇d + Ĝ(q)

fGP (q̈d, q̇d, q) −Kp

−Kd

EL System
q̈d

qd

q̇d

u

-

-

q

q̇

Figure 5.2: Structure of the closed-loop with proposed control law (5.7).
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is problematic because it cannot be identified isolated from the angular velocity q̇, which is
multiplied with Č. Therefore, we use the desired velocity q̇ for the input of the GP which
does not lead to any problems due to Assumption 5.5. So the GP model is an augmented
model like the parametric model in augmented computed torque control.
Proof of Theorem 5.1. Employing the control law (5.7), the closed-loop system is given by

ë = H(q)−1
(
Ĥ(q)q̈d + Ĉ(q, q̇)q̇d − C(q, q̇)q̇ + ĝ(q)− g(q)

+ fGP (τ̌ |qc,D)−Kdė−Kpe
)
− q̈d, (5.8)

since the matrix H(q) is always non-singular. The posterior of the GP fGP (τ̌ |qc,D) can be
split in a drift µ(τ̌ |qc,D) and a diffusion term Σ(τ̌ |qc,D)νbrw, where µ and Σ are defined as
in (2.15). The vector νbrw = [νbrw,1 . . . νbrw,nq ]> denotes nq-dimensional standard Brownian
noise. We reformulate the closed-loop system with a drift and a diffusion term

d

dt

[
ė
e

]
=
[
H−1(Ĥq̈d + Ĉq̇d − Cq̇ + ĝ − g + µ(τ̌ |qc,D)−Kdė−Kpe)− q̈d

ė

]
︸ ︷︷ ︸

drift

+
[
H−1Σ 1

2 (τ̌ |qc,D)
0

]
νbrw︸ ︷︷ ︸

diffusion

. (5.9)

For the stability analysis of this stochastic differential equation, we use the differential gen-
erator L, described in Theorem A.1, which maps C2 functions V : R2nq → R to C0 func-
tions LV : R2nq → R. Consider the following Lyapunov function

V (ė, e) = 1
2

[
ė
e

]> [
H εH
εH> Kp

] [
ė
e

]
(5.10)

with an ε > 0. We start with the computation of LV (ė, e) using the property that the
matrix H−1 is symmetric which leads to

LV =
[

ė>H + εe>H
e>Kp + 1

2 ė
>Ḣ + ε(e>Ḣ + ė>H)

]>
[
H−1(Ĥq̈d + Ĉq̇d − Cq̇ + ĝ − g + µ(τ̌ |qc,D)−Kdė−Kpe)− q̈d

ė

]
︸ ︷︷ ︸

drift

+ 1
2 tr Σ 1

2 (τ̌ |qc,D)H−1Σ 1
2 (τ̌ |qc,D). (5.11)

It can be further simplified to

LV =
[
ė> e>

]


−Kd + εH︸ ︷︷ ︸
M11

ε

2(−K>d + Ḣ − C)︸ ︷︷ ︸
M12

ε

2(−Kd + (Ḣ − C)>)︸ ︷︷ ︸
M21=M12

− εKp︸ ︷︷ ︸
M22


︸ ︷︷ ︸

M∈R2nq×2nq

[
ė
e

]
(5.12)

+ (ė+ εe)>(Ȟq̈d + Čq̇d + ǧ + µ(τ̌ |qc,D)) + 1
2 tr Σ 1

2 (τ̌ |qc,D)H−1Σ 1
2 (τ̌ |qc,D),
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where Ḣ − 2C is canceled out as Property 5.1 implies the skew-symmetry of Ḣ − 2C. The
matrices Ȟ, Č, ǧ denote the difference between the EL system (5.2) and the estimated model
matrices as defined in (5.6). The matrices M11 and M22 are negative definite for sufficient
small ε. The non-diagonal components ė>M12e, e>M21ė are bounded by

ė>M12e = e>M21ė ≤
ε

2

(
‖Kd‖+ 5

2

∥∥∥∥∥∂H∂q
∥∥∥∥∥ ‖q̇‖

)
‖e‖‖ė‖ ≤ ε

2cV 3‖e‖‖ė‖, (5.13)

with cV 3 ∈ R>0 derived by using the chain rule and the dependency between Ḣ and C. The
partial derivation

∥∥∥∂H
∂q

∥∥∥ is a bounded operator since H(q) is Lipschitz continuous. For the
second line of (5.12), Assumption 5.5 guarantees that the term ‖H̃q̈d+ Čq̇d+ ǧ‖ is bounded
by an affine function cα + cβ‖q̇‖. The mean prediction ‖µ(τ̌ |qc,D)‖ and the corresponding
variance ‖Σ(τ̌ |qc,D)‖ is also bounded, see Assumption 5.3. Therefore, we obtain an upper
bound for the second summand of (5.12) by

‖(ė+ εe)>(Ȟq̈d + Čq̇d + ǧ + µ(τ̌ |qc,D))‖ ≤ ‖ė+ εe‖(cα + cβ‖q̇‖+ cµ) (5.14)
≤ ‖ė+ εe‖cβ‖ė‖+ ‖ė+ εe‖ (cα + cβ q̇d + cµ)︸ ︷︷ ︸

cV 4

with cV 4 ∈ R>0. Since ‖H(q̇)‖ is bounded and the matrix is always non-singular, the
inverse ‖H−1(q̇)‖ is also bounded such that

1
2 tr Σ 1

2 (τ̌ |qc,D)H−1Σ 1
2 (τ̌ |qc,D) ≤ cg ∈ R>0 (5.15)

holds for the last summand of (5.12). After combining the parts, the upper bound for the
drift of the Lyapunov function V is given by

LV ≤− ė>(Kd − εH)ė− εe>Kpe+ cβ‖ė‖2 + cV 4‖ė+ εe‖+ ε(cV 3 + cβ)‖e‖‖ė‖+ cg.
(5.16)

As we know from Theorem 5.1 that σ(Kd) > cβ, there exists an ε > 0 such that the
first two summands dominate the third summand of the equation and the sum is negative.
Since it is negative, the quadratic part of LV dominates the linear and the constant part
for ‖ė>, e>‖ → ∞. Thus, the following holds

lim
‖ė>,e>‖→∞

LV (ė, e) = −∞, (5.17)

for an ε > 0. Owing to the continuity of V (ė, e), there exists a ball Bėe = {‖[ė; e]‖ ≤ rėe}
with the property that LV < 0 if [ė; e] ∈ R2nq \ Bėe. In other words, LV is negative
outside Bėe and, therefore, the tracking error is stochastically sample path bounded.

Remark 5.4. A similar result is given by [WRK93] but for parametric models only.

In the proof, we apply Theorem A.1 to show that the tracking error is stochastically
sample path bounded with the ball Bėe. For a radially unbounded, positive-definite Lyapunov
function, we obtain that the drift operator is negative outside of this ball and, therefore, the
tracking error enters the ball in a finite time.
Equation (5.12) shows the need of Assumption 5.5 to ensure the global negative definiteness
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of LV outside the ball. However, with less restrictions on the model error, it is still possible
to find local areas of boundedness, which require appropriate initial states. Important to note
is the stochastic nature of the control law (5.7) as it is based on the stochastic process fGP .
Nevertheless, its deterministic counterpart (the mean function) also results in a bounded
tracking error.

Corollary 5.1. The Euler-Lagrange system (5.2) with control law (5.7) results in a
bounded tracking error if the stochastic process fGP (τ̌ |qc,D) is replaced by its determin-
istic posterior mean function µ(τ̌ |qc,D) as defined in (2.8).

Proof. This corollary directly follows from Theorem 5.1 since stochastic sample path bound-
edness holds for all realizations of the stochastic control law.

To achieve a asymptotically stable tracking error, the mean function µ(τ̌ |qc,D) of the GP
must completely cancel out the model error τ̌ (5.3).

Corollary 5.2. Consider the Euler-Lagrange system (5.2) with Property 5.3 and As-
sumptions 5.3 to 5.5, where the kernels k1, . . . , knq are universal. Using control law (5.7),
the tracking error is stochastically asymptotically stable on a compact set Ωq ⊂ R3nq , if
the number of equally distributed training points on Ωq for the GP model in (5.7) ap-
proaches infinity.

Proof. If the number of training points tends to infinity, the regression with universal kernels
leads to

µ(qc) = −Ȟ(q)q̈d − Č(q, q̇d)q̇d − ǧ(q), (5.18)

as the continuity condition is fulfilled through Assumption 5.5. The upper bound for the
drift operator of the Lyapunov function (5.10) can now be rewritten as

LV ≤−ė>(Kd − εH)ė− εe>Kpe+ εe>(Ḣ−C−Kd)ė+ ‖ė‖β‖ė‖+ εe>Č(q, q̇d)ė. (5.19)

With Property 5.3, the tracking error is stochastically asymptotically stable on Ωq.

5.2.2 Numerical Evaluation
As the safety of unmanned aerial vehicles increasingly gain importance [Gei+10], we base
our numerical example on the control of an aerodynamic model of a NACA-0015 airfoil,
as illustrated in Fig. 5.3. The inertia Jwing of the wing is assumed to be 1 kgm2, the total
mass mwing = 1 kg, the friction cwing = 0.1 kgm2

s , and the distance between the joint and the
center of mass lwing = 1 m. The goal is to control the angle q of the wing with an input
torque τ . The wing is affected by an aerodynamic force fwing which can be decomposed in
lift and drag. The dynamics of the wing are given by

τ = Jwing︸ ︷︷ ︸
H(q)

q̈ + cwing︸ ︷︷ ︸
C(q̇,q)

q̇ +mwinggconstlwing sin(q) + fwing(q)︸ ︷︷ ︸
g(q)

(5.20)
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lift
drag

q

τ

g

Figure 5.3: Model of torque controlled wing. Lift / drag forces are highly nonlinear functions
of the angle of attack q.

These forces depend on the angle of attack, which indicates the angle between the direction
of the air flow and the reference line of the wing. For a large angle of attack the lift and drag
force are highly nonlinear and difficult to model analytically since air flow becomes turbulent.
Our simulations are based on the measurements of the wing in a wind tunnel [SK81]. For
the model shown in Fig. 5.3, the lift and drag forces are converted in the resulting torque
and gravity is added. We consider the motion dynamics of a damping free pendulum for the
estimated dynamics

Ĵwingq̈ + m̂winggconstl̂wing sin(q) = τ̂ , (5.21)

of the wing with the parameters Ĵwing = 0.9Jwing, m̂wingl̂wing = 0.9mwinglwing affected by
measuring errors. Figure 5.4 shows the simulation results for the classical augmented PD
control law using the estimated model. The feedback terms are set to Kp = Kd = 5 and the
desired trajectory (dashed) is sinusoidal. Since the model contains parameter imprecision
and influence of the airflow is not covered, the angle q (blue solid) differs drastically from
the desired angle qd (blue dashed). As a comparison, our proposed control law (5.7) is used.
First, the GP model learns the difference between the estimated model and the real wing.
For this purpose, we generate 990 homogeneous distributed pairs of torques τ and initial
positions q0 on the set [−8, 8] × [−π, π] to generate training points as shown in Fig. 5.1.
The initial joint velocity and acceleration is set to zero. In this example, we do not use an
extra controller but apply the torque directly for a short time interval to the manipulator.
After 0.5 s the joint position, velocity and acceleration {q̈, q̇, q} are recorded. These values
are inserted into the model to compute the estimated torque τ̂ . The difference between the
applied torque and the estimated torque τ̌ = τ − τ̂ is collected. The values {q̈, q̇, q} and {τ̌}
constitute a training pair.
The GP model is trained on this collection of training pairs and the hyperparameters of the
squared exponential kernel are optimized with a gradient method. Afterwards, the proposed
control law (5.7) with the same desired trajectory and feedback gains is used. To show the
effect of the stochastic control law, we simulate 1000 realizations of the stochastic differen-
tial equation with a sample time of 1 ms. Figure 5.5 shows the mean (solid) and standard
deviation (gray area) of the joint angle/velocity and the desired angles/velocity (dashed).
The stochastic behavior is based on the stochastic prediction of the GP model, since the
finite number of training data generates only an uncertain model. Since the GP model can-
cels the uncertainties of the parametric model, the mean of the joint angles converges to
a tight bound around the desired angles. The size of the standard deviation depends on
the certainty of the prediction of the GP model, which is influenced by the number and the
distribution of the training points.
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Figure 5.4: Classical augmented PD control with an estimated model does not lead to sat-
isfactory results. The dashed lines are the desired joint position and velocity,
whereas the solid lines show the true values.

0 1 2 3 4 5 6 7 8 9

0

2

Time [s]

St
at

e

qd

q̇d
q
q̇

Figure 5.5: The proposed GP based control law strongly reduces the tracking error in com-
parison to the classical augmented PD control. The mean (solid line) of the joint
angle/velocity converges to a tight bound around the desired trajectory (dashed
line). The shaded area marks the 2σ interval of the 1000 simulations.

5.2.3 Experimental Evaluation
Setup

For the experimental evaluation, we use the 3-dof SCARA robot CARBO as pictured
in Fig. 5.6. The links between the joints have a length of 0.3 m. Since the third joint
just rotates a camera which is mounted as end effector, this joint is fixed for the experiment.
A low level PD-controller enforces the generated torque by regulating the voltage based on a
measurement of the current (which is approximately proportional to the torque). The robot
manipulates a flexible rubber band. This is attached to the right side of the workspace. The
task is, for example, comparable with the handling of rubber seals in the automotive manu-
facturing. The large time effort needed for modeling the flexible, nonlinear behavior of the
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Figure 5.6: A picture of the 3-dof robot CARBO with a rubber band between the robot’s
end effector and the ground.

rubber band motivates the learning approach. The desired trajectory follows a sinusoidal
shape with a frequency of 1 s−1 for the first, 2 s−1 for the second joint and an amplitude
of π/5. The controller is implemented in MATLAB/Simulink on a Linux real-time system
with a sample rate of 1 ms.

Task evaluation

As evaluation, we compare five different control approaches on the same desired trajectory.

• HG-PD: A high gain PD controller with K(HG)
P = diag(800, 600) and K(HG)

D = diag(5, 5)
without any feed forward model.

• LG-PD: A low gain PD controller with K
(LG)
P = diag(20, 15) and K

(LG)
D = diag(5, 5)

without any feed forward model.

• CTC: A computed torque controller based on a friction free model of the robot which
is generated from the CAD-model combined with the LG-PD.

• CTC-SP: A computed torque controller based on a friction free model of the robot and
a linear model of the rubber band combined with the LG-PD.

• CTC-SGP: A modified computed torque controller based on a friction free model of
the robot and the trained GP model (our approach) in combination with the LG-PD.

The high gain approach (HG-PD) is not directly comparable to the other approach as it
suffers from many disadvantages as discussed in the related work of this chapter, but it
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serves as a ”ground truth” here. It was also employed to generate the training data for
the CTC-SGP approach by recording 351 training points corrupted by sensor noise at a
rate of 30 ms while the robot follows the desired trajectory. The GPR is implemented with
the GPML toolbox [RN10]. The hyperparameter of the GP model are obtained through
a gradient based likelihood maximization. To obtain the best performance, we employ the
deterministic version of our controller, thus using the GP’s mean function. The performance
is evaluated using the root mean square error (RMSE) between the desired and the real
position of the joint angles for all controllers.

Results

Figure 5.7 shows the RMSE in both joints for the different controllers. The low gain con-
troller (LG-PD) performs very poorly, since no model knowledge is employed. This behavior
is improved by adding computed torque control (CTC). Since the accuracy of the first joint
increases heavily, the error of the second joint is slightly worse. If the influence of the rub-
ber band is taken into account (CTC-SP), the accuracy for both joints is improved. Our
approach (CTC-SGP) with low gain feedback clearly outperforms all other approaches with
low gain and is even competitive with the high gain controller (HG-PD).
The applied torque for the first joint is visualized in Fig. 5.8. The CTC-SGP generates a
torque, which is very similar to the high gain controller (HG-PD), while all others clearly
differ. The influence of the amount of training data on the performance of our approach is
shown in Fig. 5.9. With an increasing number of training points, the error is decreasing.
The simulation and the experiment show that our approach does not only provide theoret-
ical guarantees, but also provides performance advantages in real-world applications. The
experiment illustrates that the feedback gains can be reduced by a factor of 40 while keeping
the performance at a similar level. Such an significant improvement can not be achieved
with our most accurate, analytically derived, physical model. Further, the simulation shows
how highly nonlinear effects (turbulent airflow) can also be captured by our nonparametric
modeling approach, which leads to a guaranteed diminishing tracking error.

HG-PD LG-PD CTC CTC-SP CTC-SGP
0

0.05

0.1

0.15

RM
SE

[ra
d]

Joint 1
Joint 2

Figure 5.7: The RMSE between desired and true joint angles for the different control laws.
The error of the CTC-SGP is clearly smaller than for all other approaches with
low gains. The high-gain approach (HG-PD) has similar RMSE but multiple
undesired properties and, therefore, should not be directly compared.
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Figure 5.8: Applied torques on first joint (top) and second joint (bottom) for various state-
of-the-art controllers. Our CTC-SGP approach (blue dashed) generates similar
torques as the high-gain controller (red) but without the unfavorable properties
of high feedback gains.
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Figure 5.9: The learning curve of the CTC-SGP with increasing number of training points.

5.3 Confidence based Tracking Control
In the previous section, we need Assumptions 5.3 to 5.5 to prove the boundedness of the
tracking error. Thus, the approach was restricted to a limited class of Euler-Lagrange systems
where the unknown dynamics must be part of the inertia, Corilis or gravity term. In addition,
we sparsely use the information about the uncertainty of the GP model. In this section, we
develop a computed torque control law with GPR based feed-forward compensation (CTC-
GPR) with relaxed assumptions. The proposed control law uses the mean of the GPR to
compensate the unknown dynamics and the model confidence to adapt the feedback gains.
The derived method guarantees that the tracking error is ultimately bounded within a ball
with a specific radius and a given probability. For this purpose, we employ the error bounds
of the GP model as presented in Theorem 2.3.

5.3.1 Model Error
For the computation of the model error, we assume the following for the kernel function of
the GP model.

Assumption 5.6. The kernel functions k1, . . . , knq of a multi-output GP model (2.13) are
chosen such that the functions τ̌1, . . . , τ̌nq given by (5.5) have a bounded RKHS norm on any
compact set Ω ⊂ R3nq , i.e., ‖τ̌i‖ki <∞ for all i = 1, . . . ,nq.

Remark 5.5. Note that there are no further assumptions on the system and the unknown
dynamics fu of the EL system (5.2) in contrast to the approach in Section 5.2. Thus, any
system, which can be written as (5.2), can be considered as long as Assumption 5.6 holds.

Remark 5.6. The RKHS norm of a function is a smoothness measure relative to a kernel
function k that is uniquely connected with this RKHS. In particular, the norm is a Lipschitz
constant with respect to the metric of the used kernel function. For more details see Sec-
tion 2.1.5.

Assumption 5.6 requires that the kernel function must be selected in such a way that
the residual τ̌ (qq) is an element of the associated RKHS. This sounds paradoxical since the
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residual is unknown. However, there exist universal kernel functions, see Lemma 2.1, which
can approximate any continuous function arbitrarily precisely on a compact set. Therefore,
any continuous residual dynamics can be approximated by a universal kernel function, i.e.,
this assumption is not restrictive. An upper bound for the distance between the mean
prediction of the GPR and the actual function is presented in Theorem 2.3. In the following
lemma, we extend this bound to multidimensional functions.

Lemma 5.1. Consider an Euler-Lagrange system (5.2) and a trained GP model satis-
fying Assumption 5.6. Let ∆̄(δm) be a positive constant and Ω ⊂ R3nq a compact set.
Then, the model error is bounded by

P
{∥∥∥µ(τ̌ |qq,D)− τ̌ (qq)

∥∥∥ ≤ ∆̄(δm)
}
≥ δm ∈ (0, 1) (5.22)

with
∥∥∥β>Σ

1
2 (τ̌ |qq,D)

∥∥∥ ≤ ∆̄(δm) for all qq = [q̈; q̇; q] ∈ Ω. The constants β,γ ∈ Rnq

are given by

βj =

√√√√2‖τ̌j‖2
k + 300γj ln3

(
nD + 1

1− δ1/nq
m

)

γj = max
q
{1}
q ,...,q{nD+1}

q ∈Ω

1
2 log |Inz + σ−2

n,jK(z, z′)|, z, z′ ∈
{
q{1}q , . . . , q{nD+1}

q

}

for all j ∈ {1, . . . ,nq}.

Proof. The bound (5.22) is a generalization of Theorem 2.3,which concerns the one dimen-
sional case. In the multidimensional case, Lemma 5.1, we use a GP for each dimension
of τ̌ (qq) as shown in (2.15). For the calculation of (5.22), let two sets ΠA, ΠB be

ΠA=
{
∀qq ∈ D, |µ(τ̌j|qq,D)− τ̌j(qq)| ≤ βj var 1

2 (τ̌j|qq,D)
}

ΠB=
{
∀qq ∈ D,

∥∥∥µ(τ̌ |qq,D)− τ̌ (qq)
∥∥∥≤∥∥∥β>Σ

1
2 (τ̌ |qq,D)

∥∥∥} (5.23)

with the multidimensional extension β,γ ∈ Rnq , given by

βj =

√√√√2‖τ̌j‖2
k + 300γj ln3

(
nD + 1

1− δ1/nq
m

)
(5.24)

γj = max
q
{1}
q ,...,q{nD+1}

q ∈Ω

1
2 log |Inz + σ−2

j K(z, z′)|, z, z′ ∈
{
q{1}q , . . . , q{nD+1}

q

}
, j ∈ {1, . . . ,nq}.

Due to τ̌ being uncorrelated according to (2.15), the conditional probability for the set ΠA

is lower bounded by P {ΠA} ≥ δm, following (2.38). With the monotony property of the
probability measure P and the subset ΠA ⊆ ΠB, (5.22) provides an upper bound for the
norm of the model error with a probability of at least δm ∈ (0, 1).

Remark 5.7. If Assumption 5.6 is not fulfilled, due to the wrong choice of kernel function
or hyperparameters, for many common kernel functions the model error is still bounded on
a compact set [BH16b]. However, this upper bounds for the model error may be significantly
looser. A tighter bound can be achieved by the approach presented in Section 4.2.
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The information capacity γ has a sub-linear dependency on the number of training points
for many commonly used kernel functions [Sri+12]. Therefore, even though the values of the
elements of β are increasing with the number of training data, it is possible to approximate
the true function τ̌ (qq) arbitrarily exactly [Ber+16]. The result is an upper bound for the
model error, as described in Lemma 5.1. The stochastic nature of this bound is due to the
fact that just a finite number of noisy training points are available. Since the model is used
for a feed-forward compensation of the unknown dynamics of the system, the model error
directly effects the tracking error. More details about this relation is introduced in the next
section.

5.3.2 Control Law
Before the control law is proposed, the following assumption of the confidence based feedback
gain functions Kd and Kp is introduced.
Assumption 5.7. Let the functions Σd : Rnq ×Rnq → Rnq×nq and Σp : Rnq → Rnq×nq be the
marginal variances of the GP model (5.4). These marginal variances are defined analogously
to (2.10) by Σd(q̇, q) := Σ(τ̌ |q̇, q,D) and Σp(q) := diag(var1(τ̌ |q1,D), . . . , varnq(τ̌ |qn,D)),
respectively. Let Kd,Kp : Rnq×nq → Rnq×nq be symmetric matrix functions such that

Kp(Σp) = diag([Kp]1,1([Σp]1,1), . . . , [Kp]nq ,nq([Σp]nq ,nq)) +Kc (5.25)

with Kc ∈ Rnq×nq . Additionally, let the compositions (Kd ◦Σd), (Kp ◦Σp) be continuous and
bounded by

kd‖z‖2 ≤ z>Kd(Σd(q̇, q))z ≤ kd‖z‖2 (5.26)
kp‖z‖2 ≤ z>Kp(Σp(q))z ≤ kp‖z‖2, (5.27)

for all q̇, q, z ∈ Rnq with kp, kp, kd, kd ∈ R>0.

Remark 5.8. Loosly speaking, the feedback gains depend on the posterior variance of the
GP model (5.4) to achieve confidence based feedback. We use the marginal variance such
that the function Kp implicitly depends exclusively on q and Kd on q, q̇, which is a common
approach for variable feedback gains [RWH04].

Example 5.1. The matrix function Kp and Kd should increase with increasing variance
to follow the idea that higher model uncertainty leads to higher feedback gains. Given
the kernels of the multi-output GP model are bounded, a possible choice for the feedback
gain functions is

Kp(Σp(q)) = c1 diag(var(τ̌ |q1,D), . . . , var(τ̌ |qn,D)) + kpInq (5.28)
Kd(Σd(q̇, q)) = c2 Σd(q̇, q) + kdInq . (5.29)

The matrix functions Kp and Kd fulfill Assumption 5.7 since the variance is positive
definite and bounded. The variables c1, c2 ∈ R>0 and kp, kp ∈ R>0 are design parameters,
which define the highest and lowest feedback gains.

The next theorem introduces the confidence based control law with guaranteed boundedness
of the tracking error.
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Theorem 5.2 (CTC-GPR). Consider the Euler-Lagrange system (5.2) and the GP
model (5.4) satisfying Assumption 5.3. Let e = q− qd be the tracking error and Kd,Kp

two matrix functions satisfying Assumptions 5.2 and 5.7, respectively. Then, the control
law

u(tc) = Ĥ(q)q̈d + Ĉ(q, q̇)q̇d + ĝ(q) + µ(τ̌ |qq,D)−Kd(Σd)ė−Kp(Σp)e (5.30)

guarantees that the tracking error is uniformly ultimately bounded and exponentially
convergent to a ball with

P {‖ė(tc), e(tc)‖ ≤ r(δm),∀tc ≥ t0 + t1(r0)} ≥ δm ∈ (0, 1). (5.31)

on a compact set Ω for any
∥∥∥ė>(t0), e>(t0)

∥∥∥ < r0 with t0, t1(r0), r0, r(δm) ∈ R>0.

In preparation of the proof of this theorem, we provide a series of results on a suitable
Lyapunov candidate.

Lemma 5.2. There exists an ε > 0 such that

V = 1
2 ė
>Ĥ(q)ė+

∫ e

0
z>Kp(Σp(z + qd))dz + εe>Ĥ(q)ė (5.32)

is a radially unbounded Lyapunov function.

Proof. To ensure that the Lyapunov candidate is positive definite, the domain of the integral
in (5.32) is analyzed. The integral is lower bounded by∫ e

0
z>Kp(Σp)dz ≥

∫ e

0
z>Inq min

i={1,...,nq}
λi (Kp(Σp)) dz (5.33)

≥ 1
2e
>e min

q∈Rnq ,i={1,...,nq}
λi (Kp(Σp(q))) ≥ 1

2kp‖e‖
2,

where λi denote the eigenvalues of the matrix Kp(·) and Inq the identity matrix. An upper
quadratic bound can be found in an analogous way using the maximum eigenvalue of Kp(·).
Since the integral is lower bounded and Ĥ(q) is always positive definite, the parameter ε can
be chosen sufficiently small to obtain a positive definite and radially unbounded Lyapunov
function. The valid interval for ε can be determined by the lower bound of the Lyapunov
function (5.32)

V (ė, e) ≥ 1
2h‖ė‖

2 + 1
2kp‖e‖

2 − 1
2εh

(
‖ė‖2 + ‖e‖2

)
. (5.34)

which is positive for 0 < ε < min
{
kp/h,h/h

}
. The variables kp and h,h are defined

in Assumption 5.7 and Property 5.2, respectively.

In the next step, we derive an upper bound for the time derivative of the Lyapunov func-
tion.
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Lemma 5.3. Given Assumptions 5.3 and 5.7, consider the Lyapunov function (5.32)
and the system (5.2) with the control law (5.30). The derivative of the Lyapunov function
is upper bounded with probability δm ∈ (0, 1) by

P
{
V̇ ≤ −3

4w1‖ė‖2 − 3
4εw2‖e‖+ εcC‖ė‖2‖e‖+ ∆̄(δm)2

w1
+ ε

∆̄(δm)2

w2

}
≥ δm, where

(5.35)

w1 := −εh+ kd −
εcpp

2 (cC ¯̇qd + kd)

w2 := kp
ε2

1 + ε2

cpp = (1 + ε2)cC
¯̇qd + kd
2kp

(5.36)

0 < ε < min
{
kp
h

, h
h

, 2kd
2h+ cpp(cC ¯̇qd + kd)

}
(5.37)

with maximum model error ∆̄(δm) given by (5.22), the helper variables w1,w2, ε, ε2 ∈
R>0 and for all qq = [q̈; q̇; q] ∈ Ω.

The bounds kp, kp, kd, kd for the feedback gain matrices are given by Assumption 5.7. The
bounds h,h for the estimated system matrices are given by Property 5.2. The maximum
model error ∆̄(δm) is provided by Lemma 5.1 and ¯̇qd denotes the maximum desired general-
ized velocity.

Proof. The time derivative of the Lyapunov function (5.32) is expressed by

V̇ =
 ė>Ĥ + εe>Ĥ

e>Kp(Σp) + 1
2 ė
> ˙̂
H + ε(e> ˙̂

H + ė>Ĥ)

> [ë
ė

]
, (5.38)

using the symmetry of Ĥ and the solution of the integral

∂

∂e

∫ e

0
z>Kp (Σp(z + qd)) dz = e>Kp(Σp(q)). (5.39)

For the computation of ë, the closed-loop dynamics of the EL system (5.2) with input (5.30)
is rewritten to

q̈d = Ĥ−1
(
Hq̈ + Cq̇ + g − fu(qq)− Ĉq̇d − ĝ − µ(τ̌ |qq,D) +Kd(Σd)ė+Kp(Σp)e

)
.

(5.40)

With Ĉq̇d = Ĉq̇ − Ĉė and the residual dynamics (5.5), the closed-loop dynamics (5.40) is
rewritten to

ë = q̈ − q̈d = Ĥ−1
(
µ(τ̌ |qq,D)− τ̌ (qq)−Kd(Σd)ė−Kp(Σp)e− Ĉė

)
. (5.41)
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Using (5.41) and the Lyapunov function (5.32), the time derivative of the Lyapunov func-
tion (5.38) is expressed by

V̇ =
[
ė
e

]>

−Kd(Σd) + εĤ︸ ︷︷ ︸

M11

ε

2(−K>d (Σd) + Ĉ)︸ ︷︷ ︸
M12

ε

2(−Kd(Σd) + Ĉ>)︸ ︷︷ ︸
M21=M12

− εKp(Σp)︸ ︷︷ ︸
M22


︸ ︷︷ ︸

M∈R2nq×2nq

[
ė
e

]
+ (ė+ εe)>(µ(τ̌ |qq,D)− τ̌ (qq)),

(5.42)

where the skew-symmetry of ˙̂
H − 2Ĉ is exploited. For the following analysis, we compute

bounds for the elements of the matrixM to bound the drift of the Lyapunov function, based
on [RWH04]. The matrix M11 ∈ Rnq×nq is negative definite for sufficiently small ε > 0 and
upper bounded by ė>M11ė ≤ (−kd + εh)‖ė‖2. Analogously, the submatrix M22 ∈ Rnq×nq

is negative definite with e>M22e ≤ −εkp‖e‖2. With Assumption 5.2 and Property 5.2, the
submatrix M12 ∈ Rnq×nq is upper bounded by

e>M12ė ≤ ε
(
cC‖ė‖+ cC ¯̇qd + kd

)
‖ė‖‖e‖. (5.43)

With Lemma 5.1, the overall upper bound for the time derivative of the Lyapunov function
is given by

P
{
V̇ ≤ (εh− kd)‖ė‖2 − εkp‖e‖2 + ε

(
cC‖ė‖+ cC ¯̇qd + kd

)
‖ė‖‖e‖

+ (‖ė‖+ ε‖e‖)
∥∥∥β>Σ

1
2 (τ̌ |qq,D)

∥∥∥} ≥ δm. (5.44)

For the next step, we consider the Peter-Paul inequality given by

‖ė‖‖e‖ ≤ 1
2
(
cpp‖ė‖2 + ‖e‖2/cpp

)
(5.45)

that holds for all ė, e ∈ Rnq and cpp ∈ R≥0. With the Peter-Paul inequality, (5.44) can be
rewritten as

P
{
V̇ ≤ (εh− kd)‖ė‖2 − εkp‖e‖2 + ε

2
(
cC ¯̇qd + kd

)(
cpp‖ė‖2 + ‖e‖

2

cpp

)
+ εcC‖ė‖2‖e‖

+ (‖ė‖+ ε‖e‖)
∥∥∥β>Σ

1
2 (τ̌ |qq,D))

∥∥∥} ≥ δm with (5.46)

cpp = (1 + ε2)cC
¯̇qd + kd
2kp

, ε2 ∈ R>0. (5.47)

This choice of cpp guarantees that the factors of the quadratic parts in (5.47) are still negative:

P
{
V̇ ≤

(
εh− kd + εcpp

2 (cC ¯̇qd + kd)
)
‖ė‖2 − εkp

ε2

1 + ε2
‖e‖2 + εcC‖ė‖2‖e‖

+ (‖ė‖+ ε‖e‖)
∥∥∥β>Σ

1
2 (τ̌ |qq,D)

∥∥∥} ≥ δm (5.48)

Since the kernel functions are continous and bounded on the compact set Ω, the posterior
variance Σ(τ̌ |qq,D) is bounded, for more details see Theorem 3.3. Thus, there exists an
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upper bound ∆̄(δm) for the model error. Applying the inequality w1‖z‖ ≤ w2
1/w2+w2‖z‖2/4,

that holds ∀z ∈ Rnq and w1,w2 ∈ R≥0, the model error in (5.48) can be bounded by a
quadratic function, which results in (5.35). The restrictions for ε must be extended to (5.37)
to ensure that the variables w1,w2 ∈ R>0 are positive.

The results of Lemmas 5.2 and 5.3 were presented in preparation of the proof of Theo-
rem 5.2, which we provide in the following.

Proof. Proof of Theorem 5.2 According to [RWH04, Theorem 1], there exist a c3, c4 ∈ R≥0
for the time derivative of the Lyapunov function (5.44), given by Lemmas 5.2 and 5.3, such
that

P
{
V̇ (ė, e) ≤ −c3V (ė, e) + c4

}
≥ δm. (5.49)

Consequently, using [Cor90, Theorem 2.1], the closed-loop is uniformly ultimately bounded
and exponentially convergent to a ball with a probability of at least δm. Thus,

P {‖ė(tc), e(tc)‖ ≤ r(δm),∀tc ≥ t0 + t1(r0)} ≥ δm (5.50)

holds on a compact set Ω for any
∥∥∥ė>(t0), e>(t0)

∥∥∥ < r0 with t0, t1(r0), r0, r(δm) ∈ R>0. Since
the desired trajectory is bounded, see Assumption 5.2, it is always possible to find a set Ω
such that qq ∈ Ω. That concludes the proof.

In addition to the proof of the existence of a bound for the tracking error by Theorem 5.2,
we can quantify the maximum tracking error of the closed-loop.

Proposition 5.1. Let the allowed set of ε in (5.37) be restricted to

0 < ε < min


kp
h

, h
h

, 2kd
2h+ 2kpc2pp

1+ε2 + 8
3cC

√
2V (ė(t0),e(t0))

kp−εh

 .

Then, the radius r of the ball for the tracking error in (5.31) is

r =
√√√√ 2c4

c3 min
{
kp − εh,h− εh

} , where (5.51)

c3 = 2
3

min
{
εw2,w1 − 4

3εcC

√
2V (ė(t0),e(t0))

kp−εh

}
max

{
εh+ kp, (1 + ε)h

} (5.52)

and c4 = ∆̄(δm)2
/w1 + ε∆̄(δm)2

/w2 with w1,w2 defined in Lemma 5.3.

Proof. The proof follows directly from [WB88, Lemma 2.1] and is therefore not repeated
here.

For the sake of completeness, we analyze in the following the pathological case of a perfect
GP model.
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Corollary 5.3. If a perfect GP model of the unknown residual dynamics was avail-
able, such that the maximum model error ∆̄ = 0, the tracking error of the closed-loop
system (5.41) is asymptotically stable on Ω.

Proof. Asymptomatic stability is given, if the drift of the Lyapunov function (5.42) is neg-
ative for all qq ∈ Ω. This is fulfilled by the negative definiteness of M ∈ R2nq×2nq in (5.42)
since the model error µ(τ̌ |qq,D) − τ̌ (qq)) is zero for all qq ∈ Ω. According to Schur’s
lemma, the matrix M in (5.42) is negative definite if the upper left block of M , given
by M11 = −Kd(Σd) + εĤ, and

M ′ = −εKp(Σp) + ε2

4 (Kd(Σd)− Ĉ>)(Kd(Σd)− εĤ)−1(K>d (Σd)− Ĉ) (5.53)

are negative definite, where M ′ ∈ Rnq×nq is the Schur complement. Since Kd, Ĥ, and Kp

are positive definite and bounded, ε can be chosen sufficiently small to ensure the negative
definiteness ofM11. The second summand of the Schur complementM ′ is quadratic in ε and
positive definite, while the first summand is linear in ε and negative. Thus, for every q, q̇ ∈
Rnq , an ε can be found which guarantees the negative definiteness of the Schur complement.
Therefore, there exists an ε > 0, so that matrix M is negative definite.

5.3.3 Design Guidelines
Theorem 5.2 provides an ultimate bound with an adherence probability depending on the
gains, the system parameters and the variance of the GP. The radius of the bound depends
on the upper bound of the model error ∆̄. Thus, the radius r shrinks, if the upper bound of
the GPR variance decreases. The consequence is an improved tracking performance in terms
of tracking error and the possibility to decrease the feedback gains, which is beneficial for
noise attenuation. The posterior variance of the GP model is correlated to the number and
distribution of the training points. It can be decreased, e.g., with a Bayesian optimization
approach where the next training point is set to the position of maximum variance. For the
commonly used squared exponential kernel, each new training point reduces the posterior
variance [Uml+17]. The bounds of the adaptive gains additionally affect the radius of the
ball. Increasing the lower bound of Kd shrinks the radius since ε can be arbitrarily small
and w1 depends linearly on kd. The influence of Kp depends on the Euler-Lagrange sys-
tem. Figure 5.10 visualizes how different design goals can be addressed with our proposed
control law: i) Computing the performance for specified feedback gain functions, ii) Gener-
ating a sufficiently accurate model for a predefined performance, or iii) Design feedback gain
functions to obtain a predefined performance.

5.3.4 Numerical Evaluation
In this section, we present examples illustrating the properties of the proposed computed
torque control law with GPR (CTC-GPR) and a detailed case study.

Noise attenuation and saturation

In the following numerical evaluation, we show the advantages of the CTC-GPR in compar-
ison to the classical CTC. For this purpose, we consider a one dimensional EL system given
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Figure 5.10: Guidelines for different design goals.
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by τ = q̈ + q̇ + q + fu(qq) with 30 randomly generated, normally unknown, dynamics

fu(qq) = q̇2 sin(q − c)− sin(c)
cos(q − c)− 1.1 cos−1(q − c) , (5.54)

where each c is uniformly sampled from the set [0, 2π]. For the parametric model, we use
the estimates Ĥ = Ĉ = ĝ = 1. A total number of 441 training data pairs {[q̈; q̇; q], τ̌}
for a GP model with squared exponential kernel function are equally distributed on the
set [0]×[−1, 1]×[−1, 1]. A conjugate gradient algorithm is used to minimize the log likelihood
function to find suitable hyperparameters. The desired trajectory is given by qd = sin(tc)
with tc ∈ [0, 2π] and the initial system value is q0 = 0, q̇0 = 1. The measurements of q̈, q̇, q
are corrupted by Gaussian noise, with zero mean and a variance of 0.042, for training and
control. In the simulation, the CTC-GPR and the classical computed torque are compared
in terms of the maximum tracking error, the noise attenuation and the maximum control
action. The feedback gains of the CTC are Kp = 100,Kd = 100, whereas the CTC-GPR is
parameterized with

Kp(q) = 10 + 100 Σp(q), Kd(q̇, q) = 10 + 100 Σd(q̇, q). (5.55)
The results of our proposed CTC-GPR approach in percentage of the classical CTC are
shown in Fig. 5.11. We visualize the median (red), the first and third quartile (blue box)
and the minimum/maximum (black) for the control of the 30 randomly generated dynamics.
The variation of the gains is minimal since the desired trajectory is inside the training area
where the variance is low. The maximal tracking error max ‖ė(tc), e(tc)‖ of the CTC-GPR
is decreased compared to the CTC for all 30 random systems with a median of 61.6%.
The CTC-GPR shows remarkably better noise attenuation, as indicated by a higher signal
to noise ratio (SNR) of the system trajectory. The SNR is computed as the ratio of the
summed squared magnitude of the state to that of the noise. Also, the maximal control
action of the CTC-GPR is reduced in comparison to the CTC, due to the lower feedback
gains of the CTC-GPR, which can prevent actuator saturation.

Case study

In this case study, we contrast the approaches of the CTC-GPR and the CTC for a 2-link
robotic manipulator, as depicted in Fig. 5.12. We use a CTC as reference for our performance
comparison, since most of the robotic control schemes can be considered as special cases of a
computed torque controller. We assume point masses for the links of mlink,1 = mlink,2 = 1 kg,
which are located in the center of each link. The length of the links is set to llink,1 = llink,2 =
1 m. The joints are without mass and not influenced by any friction. Gravity is assumed
to be g = 9.81 ms−2. As estimates, we use m̂link,1 = 0.9 kg, m̂link,2 = 1.1 kg, l̂link,1 = 0.9 m,
and l̂link,2 = 1.1 m. Following [MLS94, Page 164], the estimated system matrices of the EL
system (5.2) are given by

Ĥ =
[
1.41 + 1.09 cos(q2) 0.61 + 0.54 cos(q2)
0.61 + 0.54 cos(q2) 0.61

]

Ĉ =
[
−0.54 sin(q2)q̇2 −0.54 sin(q2)(q̇1 + q̇2)
0.54 sin(q2)q̇1 0

]

ĝ =
[
9 sin(q1) + 6.05 sin(q1 + q2)

6.05 sin(q1 + q2)

]
, (5.56)
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Figure 5.11: Comparison between the CTC and the proposed CTC-GPR for 30 randomly
selected systems. The values of the CTC-GPR are given as a percentage of
the CTC performance. Our CTC-GPR approach significantly outperforms the
standard computed torque controller.

where q1 and q2 are the joint angles. The initial angles and velocities are set to q0 = [0, 1]>
and q̇0 = [1, 0]>, respectively. The unknown dynamics fu(qq) is simulated by an arbitrarily
chosen function

fu(qq) =
[
sin(2q̇2) + cos(2q1) + q̈1

sin(2q̇2) + 2 sin(q̇1)

]
. (5.57)

A GP model with a squared exponential kernel learns the difference between the estimated
model and the true system based on 576 equally distributed training pairs on the do-
main q, q̈ ∈ [0, 1]2, q̇ ∈ [−1, 1]2. The measurements of q̈, q̇, q are corrupted by Gaussian
noise with zero mean and a variance of 0.12. The hyperparameters are optimized by means
of the likelihood function. The desired trajectory is a sinusoidal function with q0 = [0, 1]>.
In this example, the feedback gains are adapted with

Kp(Σp) = 7I + 400 Σp(q)
Kd(Σd) = 6I + 400 Σd(q̇, q).

(5.58)

For comparison, we use a classical CTC with Kp,s = Kd,s = diag(10, 10), which is a trade-off
between tracking error and high feedback gains. Additionally, the CTC-GPR is compared
to a CTC-GPR with static feedback gains where the values of the static gains are set to the
minimum of the variable gains such that the noise attenuation is comparable. The top plot
of Fig. 5.13 shows the resulting trajectory of the classical CTC for the first joint (blue dashed)
along with the desired trajectory (red dashed). The trajectory of the CTC-GPR with static
feedback gains (blue solid) based on the training data (black crosses) significantly improves
the tracking error. However, in the area without training data (left half plane), the tracking
error is still high due to the poor accuracy of the GP model. The bottom plot of Fig. 5.13
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Figure 5.12: Configuration of a 2-link robotic manipulator.

visualizes the trajectory of the CTC-GPR with variable feedback gains (color-coded solid).
In the area with training data (right half plane), the feedback gains are low (blue) since the
model error is low. If the training data becomes sparse, the model uncertainty is increasing
and, thus, the feedback gains are increasing (red) to keep the tracking error low.
An overview about the numerical performance of the CTC-GPR in contrast to the CTC are
presented in Table 5.1. Both CTC-GPR approaches show a lower tracking error than the
classical CTC. The reason is that the CTC-GPR uses the mean function to compensate the
unknown dynamics, such that the feedback gains can be lower in comparison to the CTC.
Additionally, the variable CTC-GPR outperforms (bold values) the static CTC-GPR for the
absolute position and velocity error because the variable gains are increased as soon as the
trajectory leaves the training area. The result is that the tracking error of the variable CTC-
GPR is kept low and bounded even for areas where no training data is available. Further
benefits of low feedback gains for noise attenuation are presented in Fig. 5.11.

Remark 5.9. The MATLAB source code of the numerical evaluation and the case study is
available at: https: // github. com/ TBeckers/ CTC_ GPR

CTC
Static

CTC-GPR
Variable

CTC-GPR

‖Kp‖ 10 7.01 7.01 - 9.38
‖Kd‖ 10 6.06 6.06 - 9.38∥∥∥e>, ė>

∥∥∥
L2 4.7281 1.8760 1.5118

max(‖e(tc)‖) 0.2420 0.1066 0.0819

max(‖ė(tc)‖) 0.2377 0.1234 0.1002

Table 5.1: Comparision between CTC, CTC-GPR with static gains, and CTC-GPR with
variable gains. Our proposed CTC-GPR approach outperforms (bold values) the
classical CTC.
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5.4 Passivation of Euler-Lagrange Systems with
Unknown Dynamics

Mechanical and electrical systems, represented by Euler-Lagrange (EL) dynamics, are often
interconnected with other systems. Passivity based techniques allow the analysis and syn-
thesis of large and complex systems because of the particular composition properties. For
instance, the parallel and feedback interconnection of passive sub-systems induces a passive
overall system. The passivity property is also helpful for the interconnection with other
systems, which are mostly unknown but assumed to be passive such as in telepresence sys-
tems [NBO11], robot manipulation [EH16] or physical human-robot interaction [San+08].
Hence, passive systems possess very useful and beneficial properties which make them so
interesting in control theory and also in real-world applications. However, many modern EL
systems are not inherently passive, e.g., high-performance aircraft. Thus, to take advantage
of the passivity properties, these systems need to be rendered passive by control, which is
called passivation. However, the dynamics of a system must be known to render it passive.
In this section, we propose a control law for the passivation of EL systems with unknown
dynamics.

5.4.1 Problem Setting
We consider the EL system (5.2) with output yex ∈ Rnq

u(tc) = H(q)q̈ + C(q, q̇)q̇ + g(q)− fu(qq)
yex = cexq + q̇

(5.59)

with qq = [q̈; q̇; q] and cex ∈ R>0.

Remark 5.10. The output yex ∈ Rnq is often used in interconnection scenarios of mechan-
ical systems, where it represents a velocity plus scaled position feedback.

The task is to find an input u such that the system (5.59) becomes passive.

5.4.2 Control Structure
For the passivation of the EL system (5.59), a closed-loop with a GP model and a feedback
control law is proposed. The GP model is used as feed-forward compensation of the unknown
dynamics so that the drift function of the closed-loop is bounded. Subsequently, a feedback
control law is exploited to render the system strictly semi-passive, as defined in Definition A.7.
Loosely speaking, semi-passive systems behave like passive system outside a ball Br with
radius r > 0, as depicted in Fig. 5.14. For this purpose, the input u of the system (5.59) is
decomposed

u = uc + ugp − uex (5.60)

into a prediction of a GP model ugp ∈ Rnq , a feedback control law uc ∈ Rnq , and an
additional external input uex ∈ U ⊂ Rnq . The feedback control law is given by

uc = Kdq̇ +Kpq (5.61)

with positive definite, symmetric matrices Kp,Kd ∈ Rnq×nq .
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Br

Ωpass
V̇ ≤ y>

exu

Figure 5.14: Concept of semi-passivity. The system behaves passive in Ωpass\Br.

Remark 5.11. For the sake of an intuitive understanding, we use static feedback gains in
contrast to the CTC-GPR approach. However, the presented passivation can be extended to
confidence depended feedback gains, following the idea of the proof of Theorem 5.2.

The EL system (5.59) with input (5.60) can be rewritten as

q̈ = τ̌ (qq)−Kdq̇ −Kpq − ugp + uex (5.62)

with τ̌ of the residual dynamics (5.5). The input ugp is the predicted mean of the multi-
output GP model (5.4) for the unknown function values τ̌ , i.e.,

ugp = µ(τ̌ |qq,D) (5.63)

computed with (2.15). Thus, the prediction is based on qq = [q̈; q̇; q] of the EL system and
the training set D, given by (5.5). The control structure is sketched in Fig. 5.15

5.4.3 Passivation
Preparing the main result about the passivity of the closed-loop system (5.62), the following
definition and lemmas are introduced.

Definition 5.1. Consider a matrix-valued function Υ mapping Rnq×nq × Rnq×nq × R>0 →
R2nq×2nq . We define Υ to be block-symmetric with

Υ(Kd,Kp, ε) :=
[
Kd − εInq ε

2Kd
ε
2Kd εKp

]
. (5.64)

PD controller EL System

GP modelTraining set D

uex

yex

uc

q̇, q

ugp qq

Figure 5.15: Semi-passively rendered EL System with respect to uex and yex.
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Lemma 5.4. For any ε,λd ∈ R>0, there exist positive definite and symmetric matri-
ces Kd,Kp ∈ Rnq×nq , such that the smallest eigenvalue of Υ is lower bounded by

λ (Υ(Kd,Kp, ε)) ≥ λd. (5.65)

Proof. The goal is to prove the existence of matricesKd,Kp such that the smallest eigenvalue
of Υ is lower bounded by (5.65). Let Ǩd, Ǩp ∈ Rnq×nq be positive definite, symmetric
matrices. The matrix Υ̌M ∈ R2nq×2nq with

Υ̌M =
[
Ǩd

ε
2Ǩd

ε
2Ǩd εǨp

]
(5.66)

is positive definite, if εǨp � 0 and

Ǩd − ε
ǨdǨ

−1
p Ǩd

4︸ ︷︷ ︸
Υ̌S∈Rnq×nq

� 0 (5.67)

using the property of the Schur complement. The eigenvalues of the matrix Υ̌S are lower
bounded by

λi(Υ̌S) ≥ λ(Ǩd)− ε
λ̄2(Ǩd)
4λ(Ǩp)

(5.68)

exploiting the smallest and largest eigenvalue of Ǩd and Ǩp. Thus, it is always possible to
choose a Ǩp, such that the matrix Υ̌S � 0. As a consequence, Υ̌M � 0 due to the positive
definiteness of (5.67) and εǨp. Now, consider a scaling factor c1 ∈ R≥0. The eigenvalues of
the overall sum Υ̌ ∈ Rnq×nq of the two symmetric matrices

Υ̌ = c1

[
Ǩd

ε
2Ǩd

ε
2Ǩd εǨp

]
+
[
−εInq 0

0 0

]
(5.69)

are lower bounded by λ(Υ̌) ≥ −ε + c1λ(Υ̌M). Since Υ̌M � 0, for any ε and λd there exists
a c1 such that the eigenvalue λ(Υ̌) ≥ λd. Finally, defining Kd = c1Ǩd and Kp = c1Ǩp

concludes the proof.

Lemma 5.5. For any ε ∈ R>0, there exist positive definite and symmetric matrices
Kd,Kp ∈ Rnq×nq with

λ̄(Kd) ≤ k̄d ∈ R>0, with k̄d > ε (5.70)

λ̄(Kp) ≤ k̄p ∈ R>0, with k̄p >
ε

4
k̄2
d

k̄d − ε
, (5.71)

such that Υ(Kd,Kp, ε) � 0.
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Proof. The matrix Υ(Kd,Kp, ε) is positive definite, if and only if εKp � 0 that is fulfilled by
definition, and

Ǩd − εInq − ε
KdK

−1
p Kd

4︸ ︷︷ ︸
ΥSS∈Rnq×nq

� 0. (5.72)

Analogous to the proof of Lemma 5.4, the eigenvalues of ΥS are lower bounded by

λi(ΥSS) ≥ λ(Kd − cInq)− ε
λ̄2(Kd)
4λ(Kp)

. (5.73)

Hence, it is possible to obtain λ(ΥSS) > 0 with matrices Kd,Kp, which satisfy λ̄(Kd) ≤ k̄d
and λ̄(Kp) ≤ k̄p.

Theorem 5.3. Given Assumption 5.6 and the closed-loop system (5.62), there exist
positive definite matrices Kp,Kd with λ(Kp) > c2

ex, such that the EL System (5.59) is
rendered strictly semi-passive with probability δm ∈ (0, 1) and radius

r =

√√√√ (1 + cex)∆̄(δm)
λ (Υ(Kd,Kp, cex))

(5.74)

on a compact set Ωpass ⊂ R3nq .

Proof. We consider the storage function

V (q̇, q) = 1
2q
>Kpq + 1

2 q̇
>q̇ + cexq̇

>q, (5.75)

which is positive for λ(Kp) > c2
ex for all q̇, q ∈ Rnq and zero for q̇ = q = 0. With the

closed-loop dynamics (5.62), the derivative of V is given by

V̇ (q̇, q) = −
[
q̇> q>

]
Υ(Kd,Kp, cex)

[
q̇
q

]
+ (q̇ + cexq)>︸ ︷︷ ︸

yex

(τ̌ (qq)− µ(τ̌ |qq,D) + uex). (5.76)

The first summand of (5.76) depends on the feedback gains, whereas the second summand
depends on the model error ∆ = τ̌ (qq)− µ(τ̌ |qq,D). According to Lemma 5.4, there exist
matricesKd andKp, such that the matrix Υ is positive definite for any cex. The error between
the true dynamics and the mean of the GP model in (5.76) is bounded by a constant ∆̄(δm) ∈
R>0 with probability δm for all qq ∈ Ωpass , using Lemma 5.1. Thus, the derivative of the
Lyapunov function (5.76) is upper bounded by a storage function hex : Rnq ×Rnq → R with

V̇ (q̇, q) ≤ y>exuex − hex(q̇, q) (5.77)

hex(q̇, q) = λ(Υ)
∥∥∥∥∥q̇q
∥∥∥∥∥

2

− ∆̄(δm)‖q̇‖ − cex∆̄(δm)‖q‖ (5.78)
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for all [q̈; q̇; q] ∈ Ωpass. The function hex is positive for

∥∥∥∥∥q̇q
∥∥∥∥∥ >

√√√√(1 + cex)∆̄(δm)
λ(Υ) = r, (5.79)

i.e., outside a ball Br with the radius r ∈ R>0. Therefore, the system (5.59) is rendered
strictly semi-passive with the probability δm in respect to uex and yex.

Remark 5.12. The radius of the Ball Br can be set arbitrary small by either decreasing
the maximum model error ∆̄ with more training data or increasing the feedback gains such
that λ(Υ).

Remark 5.13. The derivative of the Lyapunov function (5.76) is similar to the deriva-
tive (5.42) for the boundedness proof of CTC-GPR with cex = ε. However, the situation
differs as cex can not be chosen arbitrarily as it is defined by the output of the system (5.59).

Remark 5.14. We have extended the results beyond EL systems to a more general class of
nonlinear systems, see [BH18].

5.4.4 Numerical Evaluation
In this simulation, we use a modified Duffing oscillator [KB11b]

q̈ = u1/3 − 0.1q̇ + 0.1q + 0.1q3 + 1 (5.80)

as sample system, where not only the parameters are unknown but also the entire parametric
form of the dynamics is assumed to be unknown. This nonlinear, second-order system
describes the motion of a damped oscillator with a more complex potential than in simple
harmonic motion. The parameters are selected, such that the equilibrium point of the
oscillator is unstable, see the top phase plane portrait of Fig. 5.16. For the demonstration
of the flexibility of the proposed method, the control input is chosen to be not input affine.
Now, the passivation approach of Theorem 5.3 is applied. We define cex = 0.5 for the passive
output and set the external input uex to zero. Additionally, we set

k̄d := 0.9 > 0.5 = cex (5.81)

k̄p := 1 > 0.253 = cexk̄
2
d

4(k̄d − cex)
, (5.82)

such that Υ(Kd,Kp, cex) � 0 with the feedback gains Kd = 0.9 and Kp = 1. Since the drift
function of the oscillator is continuous, we employ the squared exponential kernel for the
GP model to approximate τ̌ . For this purpose, we generate 720 pairs of inputs {qq} and
outputs {τ̌} as training data on Ωpass = [−5, 5]×[−2, 2]×[−2, 2]. The hyperparameters of the
squared exponential kernel function are optimized by the means of the log likelihood function.
Assumption 5.6 is fulfilled as qq is element of Ωpass for the maximum model error ∆̄ = 0.045
on the set Ωpass, see Fig. 5.17. In addition, the ball Br is a subset of Ωpass, which is visualized
in the bottom of Fig. 5.16. Thus, the Duffing oscillator is rendered strictly semi-passive. The
result is that inside the set Ωpass\Br, the closed-loop system behaves passive.
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Figure 5.16: Phase plane portrait. Top: The uncontrolled Duffing oscillator. Bottom: The
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5.5 Discussion
In this chapter, we introduce GP model based control laws for Euler-Lagrange systems
with unknown dynamics. For this purpose, a GP model learns the difference between an
estimated, parametric model and the actual system dynamics. This learning approach en-
ables to include prior knowledge in form of an estimated parametric model, which is often
available using classical system identification. In Section 5.2, we introduce an augmented
computed torque control law based on GPR for Euler-Lagrange systems. The control law
uses the estimated and the GP model to compensate the unknown dynamics. The derived
method guarantees stochastic sample path boundedness of the tracking error around zero.
If the number of training points tends to infinity, the tracking error becomes asymptoti-
cally stable. The proposed control law is of stochastic nature and the convergence occurs
in probability. Therefore, also its deterministic pendant (the GP’s mean function) leads to
the stable behavior. The experiment in Section 5.2.3 shows the superiority of the GP model
based approach in comparison to classical approaches. However, this learning approach re-
quires several assumptions to be satisfied that restrict the class of Euler-Lagrange systems,
where the approach can be applied. In addition, the information about the uncertainty of
the GP model is not exploited which leads to a poor control performance outside the area
with training data.
Therefore, in Section 5.3, we propose a GP model based control approach with relaxed as-
sumptions, where the feedback gains are adapted by the model fidelity. For this purpose, we
use the mean prediction of the GP model to compensate the residual dynamics of the system
and the variance to adapt the feedback gains. The idea is to increase the feedback gains if
the model uncertainty is increasing to keep the tracking error low. If the model is reliable,
i.e., low variance, the feedback gains are reduced such that the control law focuses on feed-
forward compensation. This approach keeps the feedback gains low while the tracking error
of the closed-loop system is proven to be uniformly ultimately bounded and exponentially
convergent to a ball for a given probability. The result shows the correlation between the
bound of the tracking error, the uncertainty of the model and the value of the feedback gains.
In contrast to the first approach, here the only assumption on the Euler-Lagrange system is
that the RKHS norm of the residual dynamics is bounded. Even though we focus on Euler-
Lagrange system, this allows the consideration of a significantly larger class of systems that
are described by the dynamics (5.2).
Finally, we show how a GP model based control approach is used to render Euler-Lagrange
systems with unknown dynamics strictly semi-passive. As consequence, the closed-loop sys-
tem behaves passive outside a ball Br on a set Ωpass. It is shown, that an arbitrary small
radius of the ball Br can be achieved, depending on the model error and the feedback gains.
The approach is similar to the approach in Section 5.3.2 but differs in the existence of a
predefined output for the system.
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Many classical control approaches are based on physical dynamic models, which describe
the underlying system behavior in a sufficiently accurate fashion. For complex dynamical
systems, however, such descriptions are often extremely hard to obtain, or even non-existent.
Therefore, data-driven approaches are highly attractive to overcome this issue. Data-driven
models are based on observations and measurements of the true system and need a minimum
amount of prior knowledge of the system only. Especially, Gaussian process (GP) models
have been used extensively for modeling dynamical systems due to their beneficial properties
as the bias-variance trade-off and the adherence to Bayesian mathematics. However, they
require new analytic tools and control approaches as classical methodologies are not suitable
for data-driven probabilistic models. Therefore, the current application is often limited to
non-safety critical and low performance systems.
In this thesis, we analyze the behavior of GP models and introduce their application in control
settings including explicit mathematical guarantees for the stability and performance of the
control loop.

Summary of the Contributions
The contribution of this thesis can be separated into three parts. In Chapter 3, we analyze
the control theoretic properties of GP dynamical models, namely GP state space models
(GP-SSM) and GP nonlinear output error (GP-NOE) models. It is shown that the sampling
of GP dynamical models for simulation purposes results in non-Markovian dynamics and how
Markovian approximated GP dynamics are constructed. We derive conditions for bound-
edness of the dynamics that heavily depend on the selected kernel function. Furthermore,
the approximation error of these stochastic models is quantified, focusing on the relation
between different approximations and the true, non-Markovian dynamics. For the special
case of deterministic GP-SSMs, the number and stability of equilibria is determined in terms
of Lyapunov stability and ultimate boundedness. GP-SSMs with a linear, polynomial, and
squared exponential kernel function are analyzed. For the squared exponential kernel, we
show globally uniform ultimate boundedness for the GP dynamical model. For stochastic
GP-SSMs, we present a method to compute the equilibrium distribution, which is based on
the solution of a Fredholm integral equation. The method is applicable to arbitrary kernel
functions. Furthermore, we present an upper bound in the mean square sense and a set
which is positive recurrent, for stochastic GP-SSMs with a squared exponential kernel. By
exploiting these results, we prove that by the choice of the kernel control theoretic prior
knowledge can be inserted into a GP dynamical model. The derived results are illustrated
in numerical simulations.
In Chapter 4, we present a Bayesian optimization based framework to optimize the ker-
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nel function and its hyperparameters of a kernel-based model. In contrast to the standard
data-based optimization, our approach optimizes the performance of the closed-loop. Ad-
ditionally, the stability properties are preserved during the optimization process. Through
numerical examples and an experiment on a real 3-DoF robot, we demonstrate the advan-
tages of the proposed approach over classical model selection methods. For the case where
an unfit kernel is selected that is not suitable to represent the underlying unknown function,
an upper bound for the mean square prediction error between an estimated GP model and
the suitable but unknown GP model is derived. For this purpose, we exploit the property
that many commonly used kernel functions are pseudo-concave with respect to their hyper-
parameters. As a result, the upper bound is the solution of a pseudo-concave optimization
problem. For common application scenarios, a closed-form solution is provided.
In Chapter 5, a GP model-based control scheme for Euler-Lagrange systems with unknown
dynamics is proposed. Formal mathematical guarantees ensure the safety, by means of sta-
bility and adherence to specified performance of the closed-loop. The mean prediction of
the GP model is used for the feed-forward compensation of the unknown dynamics of the
system. The gains of the feedback part are adapted based on the uncertainty of the learned
model. Thus, the feedback gains are kept low as long as the learned model describes the
true system with sufficient precision. We show which class of feedback gain adaption laws
guarantees a globally bounded tracking error while incorporating the uncertainty of the GP
model. Additionally, the performance of the closed loop is derived, i.e., the quantification
of the maximum tracking error based on the number of training points. Furthermore, we
provide a control law to achieve the passivation of Euler-Lagrange systems, which is bene-
ficial for the safe interconnection of multiple systems. A robotic experiment and numerical
simulations demonstrate the superiority of the presented approaches.

Implications

We summarize the implication of the presented results in terms of the challenges imposed
by control based on data-driven models, as introduced in Section 1.1.

Challenge 1.1 is addressed by presenting different scenarios for GP models as dynamical
system, i.e., GP-SSMs and GP-NOE models. The crux of GP dynamical models is the cross-
correlation between the states. We solve this challenge with a modified training set, which
includes a memory with past states and inputs. Markovian stochastic and deterministic GP
dynamical models are introduced, which allow the application of classical control analysis
and synthesis techniques.

Challenge 1.2 is met by the probabilistic analysis of GP dynamical models with respect
to the stability, boundedness, and number and distribution of the equilibrium points. The
multiple ways to use GP models as dynamical systems are considered and analyzed depending
on the kernel functions used. The proposed relation between different kernel functions and
the resulting control related properties of the GP dynamical model enables an appropriate
selection of the kernel. Furthermore, it allows to include prior knowledge about the actual
system behavior.

140



Challenge 1.3 is met by the introduction of Bayesian optimization (BO) based selection
of the kernel function. In contrast to data-based selection, the BO aims to find the kernel and
hyperparameters which optimize the control performance with respect to a cost functional of
the closed-loop. During the optimization, the stability of the closed-loop is preserved due to
the boundedness of the reproducing kernel Hilbert space (RKHS) norm for different kernels
and sets of hyperparameters. In case an unfit kernel function is selected for a GP model,
the predicted variance is misleading as measure for the model uncertainty. In this case, we
provide an upper bound which successfully confines the true model error without knowing
the corresponding kernel and hyperparameters.

Challenge 1.4 is addressed by a computed-torque based control law based on GP models
for Euler-Lagrange systems with unknown dynamics. The mean prediction of the GP model
is used as feed-forward compensation of the unknown dynamics. Furthermore, the model
uncertainty is exploited to adapt the feedback gains. If the model uncertainty is increasing,
the feedback gains will be increased to keep the tracking error low. Thus, the full information
of the GP model is exploited to balance between feed-forward and feedback control.

Challenge 1.5 is met by the usage of the uncertainty of the GP model. The model uncer-
tainty is transformed into a model error on a compact set, exploiting the Bayesian properties
of the GP. This leads to adoption of probabilistic results not only about the boundedness
of the tracking error but also about the performance given as the maximal tracking er-
ror. The presented relation between model error, training data and closed-loop performance
guides different design strategies to guarantee the stability and a specific performance of the
closed-loop.
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Outlook
In this thesis, we take a step towards a full understanding of GP models. We investigate
how they can be exploited for safety-critical control scenarios. Novel analysis techniques for
GP dynamical models are presented and numerical as well as experimental results demon-
strate the superiority against classical control techniques. Although a number of issues are
addressed, there are still challenges in the area of data-driven control for future works.

Complex prior knowledge Although the presented approaches allow to include prior
knowledge about the stability and equilibrium points, the consideration of more complex
prior knowledge seems to be possible. Especially physical structures, such as conservation of
energy, will help to extend the application of GP models. In general, there exist various ways
to integrate prior knowledge into data-driven models, e.g., through the topology, constrained
learning or specific activation/kernel functions. So far, the research on integration of physical
structures is often focused on specific partial differential equations. Recently, first approaches
to encode physical structures for modeling of dynamical systems into deep neural networks
are presented [RK18]. This is, however, still an open problem for stochastic data-driven
models.

Non-parametric control laws The presented control law for Euler-Lagrange systems
with unknown dynamics show an enhanced performance of the closed-loop in contrast to
classical methods. However, the control law still depends on parameters, such as the feedback
gain function, that must be determined and tuned by the user. Thus, fully non-parametric
control laws are an interesting direction for further research.

Online learning The extension of the training data set during the control process allows
the GP model to adapt to a changing situation or to further improve the accuracy. However,
this approach rises computing time issues as the inversion of the Gram matrix and the
hyperparameter estimation must be performed online. Furthermore, the analysis of the
closed-loop must be adapted to keep the stability and performance guarantees. First steps
in this direction are recently made, for instance in [Uml+20a].
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Appendix A

A.1 Conditional Distribution
Let ν1 ∈ Rnν1 ,ν2 ∈ Rnν2 with nν1 ,nν1 ∈ N be probability variables, which are multivariate
Gaussian distribution [

ν1
ν2

]
∼ N

([
µ1
µ2

]
,
[
Σ11 Σ>12
Σ12 Σ22

])
(A.1)

with mean µ1∈ Rnν1 ,µ2∈ Rnν2 and variance Σ11∈ Rnν1×nν1 , Σ12∈ Rnν2×nν1 , Σ22∈ Rnν2×nν2 .
The task is to determine the conditional probability

p(ν2|ν1) = p(ν1,ν2)
p(ν1) . (A.2)

The joined probability p(ν1,ν2) is a multivariate Gaussian distribution with

p(ν1,ν2) = 1
(2π)(nν1+nν2 )/2 det(Σ) 1

2
exp

(
−1

2(x− µ)>Σ−1(x− µ)
)

(A.3)

µ :=
[
µ1
µ2

]
, Σ :=

[
Σ11 Σ>12
Σ12 Σ22

]
, (A.4)

where x = [x1;x2],x1 ∈ Rnν1 ,x2 ∈ Rnν2 . The marginal distribution of ν1 is defined by the
mean µ1 and the variance Σ11 such that

p(ν1) = 1
(2π)

nν1
2 det(Σ11) 1

2
exp

(
−1

2(x1 − µ1)>Σ−1
11 (x1 − µ1)

)
. (A.5)

The division of the joint distribution by the marginal distribution results again in a Gaussian
distribution with

p(ν2|ν1) = det(Σ11) 1
2

(2π)
nν2

2 det(Σ) 1
2︸ ︷︷ ︸

∗

exp
(
−1

2
[
(x− µ)>Σ−1(x− µ)− (x1 − µ1)>Σ−1

11 (x1 − µ1)
]

︸ ︷︷ ︸
∗∗

)
,

(A.6)

where the first part ∗ can be rewritten as

∗ = 1
(2π)

nν2
2

(
det(Σ11)

det(Σ11) det(Σ22 − Σ12Σ−1
11 Σ>12)

) 1
2

= 1
(2π)

nν2
2 det(Σ22 − Σ12Σ−1

11 Σ>12) 1
2

. (A.7)
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Thus, the covariance matrix Σ22|1 of the conditional distribution p(ν2|ν1) is given by

Σ22|1 = Σ22 − Σ12Σ−1
11 Σ>12. (A.8)

For the simplification of the second part ∗∗ of (A.6), we exploit the special block structure
of Σ, such that its inverse is given by

Σ =
[
Σ11 Σ12
Σ21 Σ22

]
, Σ−1 =

[
Σ′11 Σ′12
Σ′21 Σ′22

]
(A.9)

Σ′11 = Σ−1
11 + Σ−1

11 Σ12NΣ21Σ−1
11

Σ′12 = −Σ−1
11 Σ12N

Σ′21 = −NΣ21Σ−1
11

Σ′22 = N

(A.10)

with N = (Σ22 − Σ21Σ−1
11 Σ12)−1. Thus, we compute ∗∗ as

∗∗ =
[
x1 − µ1
x2 − µ2

]> [Σ11 Σ>12
Σ12 Σ22

]−1 [
x1 − µ1
x2 − µ2

]
− (x1 − µ1)>Σ−1

11 (x1 − µ1) (A.11)

= (x2 − µ2)>Σ−1
22|1(x2 − µ2) + 2(x2 − µ2)>

(
−Σ−1

11 Σ>12Σ−1
22|1
)

(x1 − µ1)

+ (x1 − µ1)>
(
Σ−1

11 + Σ−1
11 Σ>12Σ−1

22|1Σ12Σ−1
11

)
(x1 − µ1)− (x1 − µ1)>Σ−1

11 (x1 − µ1) (A.12)

=
(
x2 − µ2 +Σ12Σ−1

11 (x1 − µ1)︸ ︷︷ ︸
µ2|1

)>
Σ−1

22|1
(
x2 − µ2 +Σ12Σ−1

11 (x1 − µ1)︸ ︷︷ ︸
µ2|1

)
(A.13)

Finally, the conditional probability is given with the conditional mean µ2|1 ∈ Rnν2 and the
conditional covariance matrix Σ22|1 ∈ Rnν2×nν2 by

p(ν2|ν1) = 1
(2π)

nν2
2 det(Σ22|1) 1

2
exp

(
−1

2(x2 − µ2|1)>Σ−1
22|1(x2 − µ2|1)

)
(A.14)

µ2|1 = µ2 +Σ12Σ−1
11 (x1 − µ1)

Σ22|1 = Σ22 − Σ12Σ−1
11 Σ>12.

(A.15)

A.2 Stability Definitions
In this thesis, we use various types of common stability definitions for discrete-time and
continuous-time systems. For the sake of clarity, a short overview about the necessary
definitions is presented.

Deterministic and discrete-time

Consider a deterministic, autonomous system

xt+1 = f(xt) (A.16)

with state xt ∈ Rnx , t ∈ N and a mapping f : Rnx → Rnx .
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Definition A.1. Any state x∗ ∈ Rnx that satisfies x∗ = f(x∗) is called an equilibrium point
of the autonomous system (A.16).

Definition A.2. Without loss of generality, an equilibrium point x∗ = 0 of the autonomous
system (A.16) is called

• stable, if for each ε > 0, there exists a δ = δ(ε) > 0 such that ‖x0‖ < δ ⇒ ‖xt‖ < ε
for all t ≥ 0.

• unstable, if it is not stable.

• asymptotically stable, if it is stable and δ can be chosen such that for any ‖x0‖ < δ ⇒
limt→∞ ‖xt‖ = 0.

In addition to the stability of equilibrium points, there exist more general stability defini-
tions.

Definition A.3. The nonempty set I ⊂ Rnx is called invariant for the autonomous sys-
tem (A.16) if ∀x0 ∈ I, the system evolution satisfies xt ∈ I, ∀t ∈ N>0.

Loosely speaking, the invariant set is a subset in space Rnx which any trajectory of the
system will never leave once it has enters the invariant set. Important classes of invariant
sets are, for example, equilibrium points and limit cycles.

Definition A.4. The nonempty set I ⊂ Rnx is called attractive for the autonomous sys-
tem (A.16), if there is a neighbourhood In of I for which for all x0 ∈ In the trajectory
xt → I with t→∞. If the neighbourhood In equals Rnx , then the set is globally attractive.

Definition A.5. The solutions of a discrete-time system (A.16) are

• uniformly ultimately bounded with ultimate bound b if there exist positive constants b
and c1 and for every c2 ∈ (0, c1), there exists a T = T (c2, b) ≥ 0, such that

‖x0‖ ≤ c2 ⇒ ‖xt‖ ≤ b, ∀t ≥ T . (A.17)

• globally uniformly ultimately bounded, if (A.17) holds for arbitrarily large c2.

Deterministic and continuous-time

Consider a deterministic, autonomous system

ẋ(tc) = f(x(tc)) (A.18)

with time tc ∈ R>0, state x ∈ Rnx and a mapping f : Rnx → Rnx .

Definition A.6. The solution of a continuous-time system (A.18) is

• uniformly ultimately bounded with ultimate bound b if there exist positive constants b
and c1 and for every c2 ∈ (0, c1), there is T = T (c2, b) ≥ 0, such that

‖x(0)‖ ≤ c2 ⇒ ‖x(tc)‖ ≤ b, ∀tc ≥ T . (A.19)
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• globally uniformly ultimately bounded if (A.19) holds for arbitrarily large c2.
In contrast to stability and boundedness, the concept of passivity depends also on the

output of the system. Semi-passivity is an extension of the passivity concept and defined in
the following. Consider a deterministic system

ẋ = f(x,uex)
yex = g(x)

(A.20)

with state x ∈ Rnx , input uex ∈ U , output yex ∈ Rny and a mapping f : Rnx × U →
Rnx , g : Rnx → Rny .
Definition A.7. Following [Pog98], the system (A.20) is called

1. semi-passive in Ω, if there exists a nonnegative function V : Ω→ R≥0 where V (0) = 0
such that

V̇ (x) = ∂V

∂x
f(x,uex) ≤ y>exuex − h(x). (A.21)

The passive output yex ∈ Rny is state-dependent and the function h : Ω → R is non-
negative outside the ball Br = {x ∈ R|‖x‖ ≤ r ∈ R≥0} ⊂ Ω with radius r, i.e.,

∃r > 0, ‖x‖ > r ⇒ h(x) ≥ 0. (A.22)

2. strictly semi-passive in Ω, if the system is semi-passive and the function h(x) is positive
outside some ball Br.

Hence, outside the ball Br, the behavior of semi-passive systems is identical to passive
systems. Additionally, a feedback interconnection with another passive system has an ulti-
mately bounded solution, see [Pog98], such that every trajectory of the closed-loop systems
enters a compact set in finite time and remains there.

Stochastic and discrete-time

For stochastic system, the following stability definitions are used, see [LZL13]. Consider a
stochastic, autonomous system

xt+1 = f(xt,wt) (A.23)
with state xt ∈ Rnx , t ∈ N, a stochastic process wt defined on the complete probability space
(Ωss,Fσ,P ) and a mapping f : Rnx × Ωss → Rnx .
Definition A.8. The discrete-time dynamical system (A.23) is called mean square bounded,
if the solution xt for t ∈ N is bounded with supt∈N E

[
‖xt‖2

]
<∞.

Definition A.9. The nonempty and measurable set Ir ⊂ Rnx is called positive recurrent for
(A.23) if supxt∈Ir E[tI ] < ∞, where tI = inf {t ≥ 1: xt ∈ Ir} is the first return time to Ir
if x0 ∈ Ir and the first hitting time, otherwise.
More general, the boundedness can be defined for an arbitrarily generated sequence of

stochastic variables.
Definition A.10. A sequence of random variables {xt}, t ∈ N with is called p-bounded

sup
t∈N

E
[
‖xt‖p

]
<∞ for p ∈ N. (A.24)

Note that this general definition is independent of the underlying generating process of
the random variables.
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Stochastic and continuous-time

Consider a stochastic, autonomous system

dx = f(x, tc)dt+G(x, tc)dνbrw (A.25)

with f : Rnx × R>0 → Rnx , G : Rnx × R>0 → Rnx×nx , where νbrw indicates the Brownian
motion and nx ∈ N.

Definition A.11. Let there exist a ball Br = {‖x‖ ≤ r|x ∈ Rnx , r > 0} and a time t1,
denoting the first exit time from Rnx\Br for the solution x(tc) with x0 ∈ Rnx\Br. The
system (A.25) is stochastically sample path bounded, if for each ε > 0 there exists a δ > 0
such that

P

(
sup

0≤tc≤t1
‖x(t)‖ ≤ δ

)
> 1− ε. (A.26)

The following theorem provides a way to determine stochastically sample path bounded-
ness.

Theorem A.1 ([Gar88]). Consider the stochastic system (A.25). Let V ∈ C2 be a
proper Lyapunov function for which the drift operator satisfies

LV (x) := ∂V

∂x
f + 1

2 tr
(
G>

∂2V

∂x∂x
G

)
≤ 0 (A.27)

for all x ∈ Rnx\Br. Then, the solution of (A.25) is stochastically sample path bounded
with Br = {‖x‖ ≤ r|x ∈ Rnx , r > 0}.

Another stability criteria is given as follows:

Definition A.12. Let Ω be a neighborhood of the trivial solution of the system (A.25). The
trivial solution is stochastically stable on Ω, if for every pair of ε ∈ (0, 1) and r > 0, there
exists a δ = δ(ε, r) > 0, such that

P (‖x(tc)‖ < r for all tc ≥ 0) ≥ 1− ε (A.28)

whenever x0 ∈ Ω and ‖x0‖ < δ.

Definition A.13. Let Ω be a neighborhood of the trivial solution of the system (A.25). The
trivial solution is stochastically asymptotically stable on Ω if it is stochastically stable on Ω,
and for every ε ∈ (0, 1), there exists a δ0 = δ0(ε) > 0, such that

P
(

lim
tc→∞

‖x(tc)‖ = 0
)
≥ 1− ε (A.29)

whenever x0 ∈ Ω and ‖x0‖ < δ.

The following theorem provides a way to proof the stochastic asymptotic stability.

Theorem A.2 ([Mao07]). If there exists a positive-definite radially unbounded func-
tion V (x) ∈ C2 such that the drift operator LV is negative-definite on Ω, then the trivial
solution of (A.25) is stochastically asymptotically stable on Ω.
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