TUTI

TECHNISCHE UNIVERSITAT MUNCHEN
Fakultat fir Elektrotechnik und Informationstechnik
Lehrstuhl fir Informationstechnische Regelung

Gaussian Process based Modeling and
Control with Guarantees

Thomas Beckers

Vollstdndiger Abdruck der von der Fakultat fiir Elektrotechnik und Informationstechnik der
Technischen Universitdat Miinchen zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzende/-r: Prof. Dr.-Ing. Klaus Diepold
Priifende/-r der Dissertation:
1. Prof. Dr.-Ing. Sandra Hirche

2. Prof. George Pappas, Ph.D.

Die Dissertation wurde am 04.05.2020 bei der Technischen Universitat Miinchen eingereicht
und durch die Fakultéat fiir Elektrotechnik und Informationstechnik am 28.11.2020 angenom-
men.

Preamble

This thesis summarizes the research results from my work at the Chair of Information-
Oriented Control (ITR) at the Technical University of Munich. I am very grateful for the
support and inspiration of numerous people during this time. First of all, I deeply thank my
doctoral advisor and head of the Chair of Information-Oriented Control, Prof. Dr. Sandra
Hirche, for her outstanding support and motivation in accomplishing the necessary scien-
tific work that led to the present results. I had the great pleasure to be one of the first
PhD students working on her ERC starting grant “Control based on Human Models”, which
allowed an extensive freedom in conducting my research. Without Sandra’s dedication to
excellence in research and the international scientific exchange with leading experts, initiated
and coordinated by her, this thesis would never have been possible. My work profited deeply
from the international network of collaborators, especially with Prof. Dr. Tomlin’s group at
UC Berkeley and Prof. Dr. Kuli¢ at Monash University, and the thereof resulting fruitful
research discussions.

Furthermore, I would like to thank my colleagues for the scientific discussions and the en-
joyable time. In particular Jonas, who was very generous with his time to find solutions
for any kind of problems and Hendrik, who used his sharp sense of humor to spice up the
daily office life. In addition, many thanks to Martin and Fred for an uncountable number
of funny evenings at ITR. I am also indebted to the administration and technical staff for
providing support whenever needed. I would also like to thank my parents and my sister
who laid the early foundations for my scientific career. Most important, I am very grateful
for the enormous support and help of my wife Muriel. She might be the only person who
really enjoys discussions about mathematical indices during lunch.

Acknowledgments

This work was supported by the EU Seventh Framework Programme FP7/2007-2013 within
the ERC Starting Grant “Control based on Human Models” (con-humo), grant agreement
no. 337654, and the BaCaTec grant “Stability and performance guarantees for data-driven
control methods”, grant agreement no. 9-[2018/1]

Abstract

In modern technologies such as autonomous vehicles and service robots, control engineering
plays a crucial role for the overall performance and safety of the system. However, the control
design becomes often very time-consuming or unfeasible due to the increasing complexity
of recent technological advancements. The classical control approaches, which are based
on models of the systems using first-order principles, are not satisfactory in the presence
of complex dynamics, e.g., for highly nonlinear systems or interaction with prior unknown
environment. Recent findings in the area of computational intelligence and machine learning
have shown that data-driven approaches lead to very promising results in a wide application
range as they require only a minimal prior knowledge for the modeling of complex dynamics.
Within the past two decades, Gaussian process (GP) models have been used increasingly as
a data-driven technique due to many beneficial properties such as the bias-variance trade-
off and the strong connection to Bayesian mathematics. However, the major drawback in
data-driven approaches frequently manifests as unpredictable outcomes. Thus, guarantees
about the stability and performance of the control loop are absent which is translated as
compromised safety in control systems. As a consequence, the current application of GP
models in control scenarios is limited to non-critical and low performance systems due to
their unpredictable “blackbox” behavior.

In this thesis, we analyze the behavior of GP models and present their application in con-
trol scenarios with formal guarantees in three steps. First, we analyze the control related
properties of GP dynamical models which heavily depend on the underlying kernel function.
For GP state space models and nonlinear output models, conditions for the stability of the
system are derived. As GP dynamical models generally lead to non-Markovian systems,
we introduce approximations that achieve Markovian dynamics. For these approximations
quantitative results for the stability and equilibrium points are derived to incorporate con-
trol theoretic prior knowledge into the GP model. Next, for the usage of GPs in model
based control laws, we propose a Bayesian optimization based approach to select the kernel
function such that the closed-loop performance is optimized. In case of a misspecified kernel,
an upper bound for the model error is provided.

Last, a GP model based control law is presented which guarantees the safe control of Euler-
Lagrange systems with unknown dynamics. These systems are omnipresent as they include
most of electromechanical systems such as robots and electric circuits. A GP model is used
for the feed-forward compensation of the unknown dynamics of the system. The gains of
the feedback part are adapted based on the uncertainty of the learned model. Thus, the
feedback gains are kept low as long as the learned model describes the true system with
sufficient precision. We demonstrate how to select a suitable gain adaption law that incor-
porates the uncertainty of the model and guarantees a bounded tracking error. Additionally,
a quantification of the maximum tracking error, based on the number of training samples,
is derived.

In summary, the results of this thesis increase the understanding of GP models and allow to
use this data-driven technique not only to improve the performance but also to guarantee
the safety of control systems.

iii

Zusammenfassung

In vielen modernen Systemen, wie autonomen Fahrzeugen oder Service Robotern, spielt
die Regelungstechnik eine wichtige Rolle. Die Entwicklung eines geeigneten Reglers wird
mit zunehmender Komplexitit der Systeme jedoch schwieriger, da ein prézises Modell der
Regelstrecke benotigt wird. Bisher wurde die Dynamik eines Systems héufig mittels Dif-
ferenzialgleichungen basierend auf physikalischen Grundprinzipien hergeleitet. Auf Grund
des bendtigten Zeitaufwands ist dieser Ansatz fiir komplexe Systeme, wie zum Beispiel
hochgradig nichtlineare Systeme, jedoch nicht mehr zufriedenstellend. Das Problem ver-
starkt sich noch durch die zunehmende Verschmelzung der Systeme mit unbekannten Umge-
bungen, wie zum Beispiel bei der Mensch-Roboter-Interaktion.

Datenbasierte Verfahren haben bei der Modellierung solcher Systeme iiberzeugende Ergeb-
nisse erzielt und daher in den letzten Jahren signifikant an Bedeutung gewonnen. Vor allem
GauB-Prozess (GP) Modelle haben sich, auf Grund der starken Verbindung zur Bayesschen
Statistik, als besonders vielversprechender Ansatz erwiesen. Hierbei werden die Trainings-
daten mit Hilfe einer Kernel-Funktion in einen hoch-dimensionalen Raum transformiert,
wodurch eine flexible Regression ermdéglich wird. Ein entscheidender Nachteil bei der Ver-
wendung von datengetriebenen Modellen in dynamischen Systemen sind jedoch die fehlenden
formalen Garantien beziiglich der Stabilitdt und Performanz des Regelkreises. Auch wenn
bereits einige erfolgreiche Regelungen basierend auf datengetriebenen Modellen existieren,
so sind diese daher nicht fiir sicherheitskritische oder hochperformante Systeme geeignet.
In dieser Arbeit analysieren wie das regelungstechnische Verhalten von GP Modellen und
prasentieren die Anwendung in Regelungsverfahren mit formalen Garantien. Zunéchst wird
gezeigt, wie GP Modelle als dynamisches System eingesetzt werden konnen. Da dies zu
nicht-Markov Systemen fiihrt, stellen wir eine Markovische Naherung zur Verwendung der
Modelle in Simulationen und modellbasierte Regelungsverfahren vor. Fiir verschiedene Arten
von dynamischen GP Modellen wird die Stabilitat und die Anzahl der Ruhelagen untersucht
und nachgewiesen. Des Weiteren ermoglicht die Wahl des Kernels zuséatzliches Vorwissen in
das Modell zu integrieren. Fiir den Einsatz von GP Modellen in der Regelung entwickeln
wir ein Verfahren, welches durch die Wahl des Kernels die Performanz des Regelkreises op-
timiert. Sollte der Kernel fiir das zu lernende System nicht geeignet sein, so wird eine obere
Schranke fiir den Modellfehler berechnet.

Schlussendlich zeigen wir, wie GP Modelle zur Regelung von Euler-Lagrange Systeme mit
unbekannter Dynamik eingesetzt werden kénnen. Die unbekannte Dynamik kann durch
externe, schwierig zu modellierende Krafte wie den Menschen, Reibung oder die Manipula-
tion von Fliissigkeiten entstehen. Fiir die Modellierung der unbekannten Dynamik mittels
GP Modellen werden zunéchst Trainingsdaten des Systems gesammelt. Das so erzeugte,
datenbasierte Modell wird, zusammen mit eventuell vorhandenem Vorwissen iiber das Sys-
temverhalten, als Vorsteuerung zur Kompensierung der unbekannten Dynamik genutzt. Um
einen moglichst niedrigen Feedback Anteil im Regler zu erhalten, wird die Verstiarkung des
Feedbacks basierend auf der Unsicherheit des gelernten Modells angepasst. Dabei wird nicht
nur die Stabilitat des Regelkreises garantiert, sondern auch die Berechnung des maximalen
Regelfehlers ermdglicht.

Die Resultate dieser Arbeit erzielen ein besseres Versténdnis von GP Modellen und erlauben
die Verwendung dieses datengetriebenen Verfahrens in der Regelung komplexer Systeme, um
sowohl die Performanz zu verbessern, als auch die Sicherheit zu garantieren.

v

Contents

(1 _Introductionl

(1.1 Challenges in Data-driven based Control|

(.2 Data-driven Models in Controll.

P11

Gaussian Process Regression|

P12

Marginal Variance| .

[2.1.3 Multi-output Regression|

2.1.4 Kernel-based View|

[2.2.2 Hyperparameter Optimization|

[2.3 Gaussian Process Dynamical Models|

P31

Gaussian Process State Space Models|

[2.3.2 Gaussian Process Nonlinear Output Error Models|

2.4 Summary]

[3 Control Properties of Gaussian Process Dynamical Models|

(3.1 The Crux of GPDM Predictionl
B.1.1 The non-Markovian Structurel
[3.1.2 Approximation krror|o

3.2 Boundedness of GPDMs|
[3.2.1 GP State Space Models|o
[3.2.2 GP Nonlinear Output Error Models[.
[3.2.3 Case Study|

8.3 Deterministic Markov Modeld
[3.3.1 Deterministic GP State Space Models|.
[3.3.2 Equilibrium Points| o000
[3.3.3 Stability]
[3.3.4 Numerical Examples|

3.4 Stochastic Markov Modeld
[3.4.1 Stochastic GP State Space Models|
[3.4.2 Equilibrium Distribution| 0000
[3.4.3 Remarks on Convergence|.
[3.4.4 Stability|
[3.4.5 Numerical Examples|

11
12

15
15
16
18
18
19
21
24
27
27
31
34
35
35
36

37
38
41
45
49
49
53
54
57
o8
58
63
64
67
68
68
70
71
74

Contents

B5 Discussionl 7

4 _Kernel Selection of GP Models| 79
[4.1 Closed-loop Model Selection using Bayesian Optimizationl. 80
[4.1.1 Problem Setting|. 80

[4.1.2 Bayesian Optimization| 81

[4.1.3 Closed-loop Model Selection Procedurel 82

[4.1.4 Numerical Evaluationl. 86

[4.1.5 Robotic Experiment{ 89

4.2 Error of Misspeciied Models| 92
[4.2.1 Problem Setting|. L. 92

[4.2.2 Mean Square Prediction Error| 000000 94

4.2.3 Closed-form Solutionl 97

4.2.4 Pseudo-concave Kernel Functions 99

4.2.5 Numerical Bvaluationl.o 100

4.3 Discussionl 103

[5 GP based Control of Euler-Lagrange Systems| 105
(5.1 Dynamics of Euler-Lagrange Systems| 106
[.1.1 Hybrid Learning with GP Models| 107

(5.2 GP based Augmented Computed Torque Controll 108
b.21 Control Lawl 109

0.2.2 Numerical Bvaluationl. oo 112

[5.2.3 Experimental Evaluation|00 . 114

[>.3 Confidence based Tracking Controll 118
b.3.1 Model Error|o 118

b.32 Control Lawl 120

[5.3.3 Design Guidelines| 125

[H.3.4 Numerical Fvaluationl. oL 125

[>.4 Passivation of Euler-Lagrange Systems with Unknown Dynamics| 131
[.4.1 Problem Setting|. 131

b.4.2 Control Structurelo 131

(.43 Passivationl 132

Hh.4.4 Numerical Bvaluationl.o oL 135

b5 Discussion] 137
6 Conclusion and Future Directionsl 139
(A Appendix] 143
[A.1 Conditional Distributionlo 143
[A.2 Stability Definitions|. oo 144
[List of Figures| 149
G FTables 153
[Bibliography| 155

vi

Notation

Acronyms

GP

GPR

GPDM

GP-SSM

GP-ASSM

GP-NOE

GP-ANOE

SVM

BO

PD

MSPE

RMSE

RKHS

CTC

CTC-GPR

CTC-SGP

EL

Gaussian process

Gaussian process regression

Gaussian process dynamical model

Gaussian process state space model

Gaussian process approximated state space model
Gaussian process nonlinear output error

Gaussian process approximated nonlinear output error
support vector machine

Bayesian optimization

proportional-derivative

mean square prediction error

root mean square error

reproducing kernel Hilbert space

computed torque control

computed torque control with Gaussian process regression

computed torque control with stochastic Gaussian process model

Euler-Lagrange

Notation

Mathematical Conventions

Sets and Spaces

A, B sets

N set of natural numbers

R set of real numbers

R+ set of positive real numbers

R set of non-negative real numbers

c” set of x-times continuously differentiable functions
AUB union of sets A and B

ANB intersection of sets A and B

A\ B set A without B

Scalars, Vectors, Matrices and Functions

a,b,c

a, b c

A B, C

I, € R

a’ e R AT ¢ Rvxm
A1 ¢ Rrxm

A+ — AT(AAT)—l c Rnxm

a;
a_;

Aa:b,c:d

A=A
la,b] € R™*?

[a;b] =[a",b"]" € R

scalars (small letters)

column vectors (bold small letters)

matrices (capital letters)

identity matrix

transpose of a € R", A € R™*"

inverse of A=! € R™" with A™'A = AA"' =1,

Moore-Penrose pseudo inverse of A € R™*" where
m < n,rank(A) = m, AAT = I,

i-th element of vector a
vector a without the i-th element

submatrix of A formed between the a-th and the b-th
rows, and the c-th and the d-th column

index : indicates all rows and columns, respectively
horizontal concatenation of a,b € R"

vertical concatenation of a,b € R"

Notation

det(A)
rank(A)

ker(A)

Probability
P

P(A)

P(A|B) = 55

N(m,X)

a-norm of x € R", without index a = 2
component wise inequality with a; < b;, V2
Hilbert space norm of function f

time derivative of function f

partial derivative of function f with respect to z
gradient of function f

determinant of A € R"*"

rank of A € R"*™

null space of A € R™™

trace of A € R™*"

eigenvalue of A € R™*™

smallest eigenvalue, singular value of A € R™*"

largest eigenvalue, singular value of A € R™*"

probability measure

probability distribution

probability of A

conditional probability of A given B

Gaussian distribution with mean m € R™ and variance > € R™"
mean

variance

expected value

Notation

Accents and Subscripts

—~
~—

—~~
~— —

—
—

estimate
corrupted by noise
mean

modified /extended
upper bound
lower bound

sequence

Main Variables

covariance vector times Gram matrix
general constant

cost for current state and input

upper bound of estimated Coriolis matrix
Lipschitz constant

total cost functional for whole task
Kullback-Leibler-divergence

error of generalized coordinates

state mapping

state mapping of a deterministic GP-SSM
general function

Gaussian process distribution
time-dependent mean vector of GP-ASSMs
generalized gravity vector

lower bound of estimated inertia matrix
upper bound of estimated inertia matrix

state mapping of GP-NOE models

Notation

hex(.’)

np
n;
Nin
N
nO

Nout

Ty
Ny

Ty

ne

Okbm('7 ERE))

storage function

time-dependent mean vector of GP-ANOE models
kernel function

covariance vector function

lower / upper bound of feedback matrix function Ky(-)
lower / upper bound of feedback matrix function K,(-)
actual length of memory

maximum length of memory

mean function of Gaussian process

number of training points

number of discretization intervals

number of input values for GP-NOE models

number of kernels

dimension of output of a kernel-based model

number of output values for GP-NOE models
dimension of generalized coordinates

number of time-steps

dimension of system input

dimension of system state

dimension of output data points

dimension of index set

dimension of parameterization vector

dimension of concatenated output and input vector ¢,
dimension of concatenated state and input vector &,
number of hyperparamters

dimension of the feature space

number of hyperparameter sets

output function of a kernel-based model

Notation

Oy

Uctrl
Uy,

w, w

output of a kernel-based model
general degree

generalized coordinates
desired generalized coordinates
concatenation [q4; 44; 4|

upper bound of desired generalized coordinates

concatenation [g; q; q|

discrete time step

continuous time

sampling time

continuous-time system input

general control law

discrete-time system input

weighting value / vector

continuous-time system state

input data point

discrete-time system state

state of GP-ASSMs with maximum length of memory m
continuous-time system output

output data point

discrete-time system output

output of GP-ANOE models with maximum length of memory m
helper variable

system matrix of linear system

generalized Coriolis matrix

time-dependent variance matrix of GP-ASSMs

generalized inertia matrix

time-dependent variance matrix of GP-ANOE models

Notation

va Kp(')

(SR

SIS = OO

NN R

a

Gram matrix

extended Gram matrix with time-dependent size

feedback gain / adaptive feedback function for derivative term
feedback gain / adaptive feedback function for proportional term
diagonal matrix of lengthscales

Lyapunov function

input training matrix

extended input training matrix with time-dependent size
output training matrix

extended output training matrix with time-dependent size
integral operator

numerical integral operator

drift operator

backshift operator

ball

set of training data

Hilbert space

o-algebra

reproducing kernel Hilbert space

invariant set

neighborhood set

set of valid kernel functions

Lagrangian function

kinetic energy function

potential function

state space

set of equilibrium points

index set

Notation

(i)

5,8

Ymax; Vmax>
Ty

o

Om

€

Gy

V, Vbrw

weighting vector for kernel function

weighting vector for ¢-th dimension

variance scaling factor / vector

maximum information gain / vector
parameterization vector for output mapping
probability for model error

probability for multi-output model error
positive number

concatenation of past outputs and inputs vector
Gaussian distributed noise / Brownian noise
concatenation of state vector and input vector
standard deviation of Gaussian distributed noise
residual dynamics

vector of hyperparameters

feature map

model error

upper bound of model error

matrix of outputs and inputs with maximum length of memory m
matrix of states and inputs with maximum length of memory m
set of hyperparameters

set of sets of hyperparameters

compact set for model error

sample space

Introduction

In many modern technologies such as autonomous vehicles and service robots, control engi-
neering plays a crucial role for the overall performance and safety of the system. The task
of a controller includes the monitoring of the actual output of a system, e.g., the position
of a robot, and compareing it with a desired value. If needed, a control action is gener-
ated to bring the system to this value. The starting point is usually to derive a reliable
model of the system. This is not only necessary for a subsequent controller synthesis but
also for simulation and verification purposes. The classical approach is to derive a model
of the system using first-order principles, for instance, by hand or exploiting software tools
to obtain the system dynamics. However, these approaches are very time-consuming and
challenging in the presence of complex dynamics [Pil4+14], e.g., for highly nonlinear systems
or interaction with prior unknown environment. These complex dynamics can be found in,
but are not limited to, human motion prediciton [WEFHOS; Bre97], (soft-)robotics [Mog+16;
NSPO08; |AMS14] and chemical processes [PGK13; |Arc96).

In contrast, measured process data of the systems can easily be collected due to the ad-
vancements in information and storage technology [Loh12|. Thus, making full use of the
information of the data to enhance the modeling and control of complex systems will be
valuable for coping with rapid technological advancements [HW13]. The data-driven ap-
proaches were originated from the machine learning community where they have led to very
convincing results, e.g., in pattern recognition [Lea05] and decision making [PF13]. These
data-driven models require only a minimal prior knowledge for the modeling of complex
dynamics, as established in recent findings in the area of computational intelligence and
machine learning [Ras06].

However, the transfer of these models to the control community rises challenges, as well
established analysis and synthesis tools are not suitable. Therefore, the stability and per-
formance of control loops with data-driven models can not be analyzed and, thus, not be
guaranteed. Furthermore, data-driven models can provide additional information about the
uncertainty of the model which might be worth to exploit. Due to this lack of knowledge,
the current application of data-driven approaches in control is often limited to non-critical
and/or low performance systems.

1.1 Challenges in Data-driven based Control

The lack of interpretability and analyzability of data-driven models narrows their applica-
bility in control. This “blackbox” behavior manifests as the absence of guarantees about the
stability and performance of the control loop [Qiu02|, which is translated as compromised
safety in control systems. To overcome this issue, the understanding of data-driven models

1 Introduction

must be improved, and the relation to classical control concepts as well as new approaches
has to be evaluated.

Challenge 1.1. How can data-driven models be employed in control?

In control theory, there exist many approaches for modeling dynamical systems based
on parametric models. Nonlinear modeling techniques, such as nonlinear auto regressive
models, are well-established and define a strategy how a dynamical system can be modeled.
In contrast, data-driven models basically provide a way to exploit data for predictions. The
step towards data-driven models for dynamical systems raises a question if and how these
models can be used in similar settings as parametric models.

Challenge 1.2. What are the control theoretic properties of data-driven models?

Once the step from data-driven models to a dynamical systems is established, the analysis
of the control relevant properties is necessary. The knowledge about boundedness, stability
and equilibria, for instance, are not only necessary for a successful modeling with data-driven
techniques but also for further application in model based control approaches. Furthermore,
if specific control properties are related to specific classes of data-driven models, this informa-
tion can be used as control relevant prior knowledge to the model. Therefore, investigations
in control theoretic properties are key for guarantees in applications.

Challenge 1.3. How can the remaining degrees-of-freedom be selected and what are the
consequences of an incorrect selection?

Data-driven models normally depend on additional functions and (hyper)parameters that
must be determined. This is referred to model selection in the machine learning community:.
This selection classically depends on prior knowledge, as stated in the previous challenge,
and the data itself. However, if the models are used in a control setting, additional in-
formation such as the desired task can become relevant. Furthermore, the stability and
performance of the closed-loop are often from a higher interest than the quality of the model
itself. Therefore, it might be worth performing the model selection based on control relevant
requirements. Finally, the consequences of an incorrect selected models are vague and need
further investigations.

Challenge 1.4. How can a controller, which exploits the additional information of data-
driven models, be designed?

After the identification of the unknown system, the data-driven models should be used
in control settings. There are some approaches available that use these models, typically
by simply replacing a parametric model. However, data-driven models often contain much
more information, e.g., about the uncertainty of the model, which is worth exploiting. The
classical control approaches are not tailored for these kind of models and, thus, are not
sufficient. Therefore, the design of a suitable control approach that exploits the full power
of data-driven models is an open challenge.

Challenge 1.5. Is there a way to provide stability and performance guarantees for control
based on data-driven models?

10

1.2 Data-driven Models in Control

Stability and performance guarantees are necessary for the application of controllers to
safety critical and/or high-performance systems. Therefore, a major step for data-driven
control approaches is essentially to provide rigorous guarantees. However, general assurances
are hard to obtain due to the enormous flexibility of these models which makes the analysis
extremely different in contrast to parametric models. Therefore, giving guarantees in data-
driven control is still an open problem, which is one of the key steps for the application to
a broad range of safety critical systems.

1.2 Data-driven Models in Control

Many classical control approaches are based on physical dynamic models, which describe
the underlying system behavior in a sufficiently accurate fashion. For complex dynamical
systems, however, such descriptions are often extremely hard to obtain, or sometimes non-
existent. Even though neural networks show remarkable results in many application areas,
the complexity is still limited due to its finite size of parameters (number of neurons and
layers) [KecO1]. Therefore, data-driven approaches are highly attractive to overcome this
issue. Data-driven models are based on observations and measurements of the true system
and need a minimum amount of prior knowledge of the system. In contrast to paramet-
ric models, which are defined by a finite dimensional parameter vector, the complexity of
data-driven models is not limited as their convolution grows with the amount of training
data [HW13|. For this reason, data-driven models are also called non-parametric models.
A very promising idea in terms of interpretability is to combine the advantages of data-driven
models with a Bayesian perspective. Bayesian probability mathematics enables an efficient
quantification of uncertainty of data-driven models. The Bayesian methodology is a prob-
abilistic construct that allows new information to be combined with existing information:
using Bayes’ theorem, the existing knowledge is combined with information from the new
data to update the knowledge [Rad96]. A promising Bayesian data-driven model for control
is the Gaussian process (GP) model as it provides an analytic solution for the predicted mean
and variance - the uncertainty measure - for a new test point based on collected training
data [Ras06]. A GP model uses an underlying kernel functions to perform the prediction in a
high-dimensional, implicit feature space. The characteristics of the kernel directly influence
control related properties of the GP [SHS06; Aro50]. The application of GP models for the
control of complex systems has already led to many convincing results, especially for cases
with small data sets [Kocl6; Koc+03a]. So far, GPs are treated as “blackbox” models in
modeling and control as the prediction behavior of data-driven Bayesian models are only
poorly explored. In particular, a holistic approach to determine the properties of GP models
in control is missing.

In the last ten years, learning of dynamics has propelled many areas of control forward at
a high pace — except for physical systems. This lag is crucial as learning physical models is
critical for the safety of control applications involving reasoning of prior actions or planning
of future actions, e.g., service robotics and industrial automation. Instead, most engineering
approaches focus on classical off-the-shelf modeling as it ensures physical plausibility of the
model and controller — at a high cost of precise measurements and time exposure. The plau-
sible representations are often preferred, as these models guarantee to extrapolate well to
unknown samples, while the outcome of learned models are often hard to predict. Recently,
first approaches to encode control related structures for modeling dynamical systems are

11

1 Introduction

presented [LRP19]. However, the existing methods focus on the integration of structures
for modeling dynamical systems only and neglect control theoretic properties. Furthermore,
most of the existing approaches are applied to deterministic data-driven models. Hence, the
probabilistic nature of Bayesian models is not considered.

The control design based on data-driven models can improve the controller’s quality [HW13].
Thus, it allows a more performant control of unknown systems by making use of the data-
driven plant model prediction to derive the control input for the actual plant. Once a model
of the plant is learned from the data, control strategies such as model predictive control or
feedback linearization can be applied, as some types of data-driven models can be integrated
in existing control structures [KMO05; [Uml+17]. First promising results on safety with these
types of control settings have been presented in |[Ber+17; Fis+19]. However, GPs provide
much more information than classical models. The exploitation of such information would
lead to considerable improvements for the control loop. In conclusion, preserving the safety
of data-driven based control strategies is challenging due to the missing structure and un-
certainty quantification. As consequence, existing data-driven based control approaches lack
of formal stability and performance guarantees.

1.3 Main Contributions and Outline

The thesis addresses the recent challenges in GP model based control to allow data-driven
methods in safety critical applications. For this purpose, we start with the embedding of
GP models in dynamical systems. For different types of structure, the control relevant
properties are analyzed and we propose how to insert prior knowledge about the system. As
the kernel selection is one of the key parts in GP modeling, a task-based selection algorithm
is proposed which surpasses the classical data-based selection. Furthermore, error bounds
for the case of a misspecified kernel are derived. In the next step, a GP model based control
law is introduced. The full probabilistic capabilities of the GP are exploited as the mean
predication is used for a feed-forward compensation of the unknown dynamics and the model
uncertainty to adapt the feedback gains. This trade-off between feed-forward and feedback
control allows to keep the gains as low as possible without losing a desired performance. For
this approach, we guarantee the passivity and the boundedness of the tracking error for the
closed-loop. In addition, the performance is quantified based on the number and distribution
of the training data.

In the following, we summarize the main contributions of this thesis addressing the presented
challenges. At the beginning of each chapter, a brief review of the relevant related work and
the open problems is provided.

Chapter 2: We start with the introduction of the required background knowledge about
GP models. For this purpose, the general idea of GPs and the application in regression is
presented. The relation between GPs, kernel-based models and reproducing Kernel Hilbert
spaces is introduced. A set of the most common kernel functions is presented and the
individual properties are highlighted. Furthermore, we show the general embedding of GP
models into dynamical systems. Finally, the different ways on how model uncertainty can
be transformed into error bounds are summarized. The formal descriptions are supported
by several examples for an intuitive understanding.

12

1.3 Main Contributions and Outline

Chapter 3: In this chapter, we address Challenges|l.1]and [1.2) which deal with the control
related properties of data-driven models. We start with the analysis of certain GP dynamical
systems, in particular state space systems and nonlinear output error models. It is shown
that the GP based dynamical model is generally non-Markovian and we present approxima-
tions to obtain Markovian dynamics. The difference between the actual behavior and the
approximations is analyzed in terms of prediction error. Furthermore, we introduce a com-
prehensive analysis for the approximated model which includes, among others, boundedness
and number /distribution of the equilibria. The analysis is separated in a deterministic and

stochastic point of view on GP dynamical models. The results presented in this chapter have
been published in [BH16a; BH16b; BH20| and contributed to [Yam+-20; Uml+20b; Led-+20].

Chapter 4: In this chapter, we address Challenge that states the model selection
problem of GP models. Here, the model selection process is transferred from a classical
data-based approach to a control focused method. For this purpose, the performance of the
control loop is evaluated by means of a cost functional and the model selection is optimized
based on the outcome. In case of a misspecified GP model, we propose an upper bound for
the modeling error. The results presented in this chapter have been published in [BUH18}
Bec+19].

Chapter 5: In this chapter, we address Challenges and which seek GP model based
control approaches with formal guarantees. For this purpose, a GP model is integrated in
an extended computed torque control scheme for Euler-Lagrange systems with unknown
dynamics. We use the mean prediction of the GP to cancel the unknown dynamics in a
feed-forward manner and the model fidelity to adapt the feedback gains. This approach is
motivated to focus on feed-forward control as long as a sufficiently accurate model of the
plant is learned. Otherwise, the feedback gains are automatically increased to preserve the
performance. For this control setting, we provide not only boundedness guarantees but also
the performance in terms of the maximum tracking error depending on the number and dis-
tribution of the training data. Finally, simulations and an experimental evaluation show the
superiority of the proposed approach. The results presented in this chapter have been pub-
lished in [BKH19; BH19; BH18} Bec+17; BUH17| and contributed to [Uml+20aj; |(Cap+20;
BCH20|.

13

2

Gaussian Process models

A Gaussian process (GP) is a stochastic process that is in general a collection of random
variables indexed by time or space. Its special property is that any finite collection of these
variables follows a multivariate Gaussian distribution. Thus, the GP is a distribution over
infinitely many variables and, therefore, a distribution over functions with a continuous
domain. Consequently, it describes a probability distribution over an infinite dimensional
vector space. For engineering applications, the GP has gained increasing attention as su-
pervised machine learning technique, where it is used as prior probability distribution over
functions in Bayesian inference. The inference of continuous variables leads to Gaussian
process regression (GPR) where the prior GP model is updated with training data to obtain
a posterior GP distribution. Historically, GPR was used for the prediction of time series, at
first presented by Wiener and Kolmogorov in the 1940’s. Afterwards, it became increasingly
popular in geostatistics in the 1970’s, where GPR is known as kriging. Recently, it came back
in the area of machine learning [Rad96; WR96|, especially boosted by the rapidly increasing
computational power.

In this chapter, we present the necessary background information about GPs and GPR,
mainly based on |[Ras06|, focusing on the application in control. We start with an intro-
duction of GPs, explain the role of the underlying kernel function and show its relation to
reproducing kernel Hilbert spaces. Afterwards, the embedding in dynamical systems and
the interpretation of the model uncertainty as error bounds is presented. Several examples
are included for an intuitive understanding in addition to the formal notation.

2.1 Gaussian Processes

Let (s, F,, P) be a probability space with the sample space), the corresponding o-
algebra F, and the probability measure P. The index set is given by Z C R"* with positive
integer n,. Then, a function fop(2,wss), which is a measurable function of wg € Qg with
index z € Z, is called a stochastic process. The function fgp(2z,wss) is a random variable
on Q) if z € Z is specified. It is simplified written as fgp(z). A GP is a stochastic process
which is fully described by a mean function m: Z — R and covariance function k: Zx2Z — R
such that

fap(z) ~ GP (m(z),k(z,2")) (2.1)
m(z) = E[fer(2)]
k(z,2") = E[(far(2) — m(2)) (far(2') — m(2))]

with z, 2’ € Z. The covariance function is a measure for the correlation of two states (z, z’)
and is called kernel in combination with GPs. Even though no analytic description of the

(2.2)

15

2 Gaussian Process models

probability density function of the GP exists in general, the interesting property is that any
finite collection of its random variables { fap(21), ..., fap(Zngp)} follows a ngp-dimensional
multivariate Gaussian distribution. As a GP defines a distribution over functions, each
realization is also a function over the index set Z.

Example 2.1. A GP fgp(t.) ~ GP (m(t.), k(t.,t.)) with time ¢, € R>, where

0.1A)?2 t. =t
m(t.) = 1A, k(t.,t.) = (2) ¢

(0A) iy 5 1
describes a time-dependent electric current signal with Gaussian white noise with a
standard deviation of 0.1 A and a mean of 1 A.

2.1.1 Gaussian Process Regression

The GP can be utilized as prior probability distribution in Bayesian inference, which allows
to perform function regression. Following the Bayesian methodology, new information is
combined with existing information: using Bayes’ theorem, the prior is combined with new
data to obtain a posterior distribution. The new information is expressed as training data
set D = {X,Y}. It contains the input values X = [z}, &l .. zl'?}] ¢ zvm> and

output values Y = [t 52} gi"NT € R where
ot = for(g) +v (2.3)

for alli =1,...,np. The output data might be corrupted by Gaussian noise v ~ N (0, 02).

Remark 2.1. Note that we always use the standard notation X for the input training data
and 'Y for the output training data throughout this thesis.

As any finite subset of a GP follows a multivariate Gaussian distribution, we can write
the joint distribution

m(m{l})
dat
2 *
Y N - K(X,X)+o0:1,, k(z"X) (2.4)
(T ot)
fap(z¥) m(z*) k(z*, X)T k(z*, z*)

for any arbitrary test point z* € Z. The function m: Z — R denotes the mean function.
The matrix function K : Z1Xmp x Zxnp _y R0X"D ig called the covariance or Gram matrix
with

K (X, X)=FkX,,,X. ;) forall j,l € {1,...,np} (2.5)

where each element of the matrix represents the covariance between two elements of the
training data X. The expression X.; denotes the [-th column of X. For notational sim-
plification, we shorten K(X,X) to K when necessary. The vector-valued kernel func-
tion k: Z x ZX"» — R" calculates the covariance between the test input z* and the
input training data X, i.e.,

k(2" X) = [k(z*, X.1), ... k(2" Xon)] (2.6)

)

16

2.1 Gaussian Processes

To obtain the posterior predictive distribution of fop(z*), we condition on the test point z*
and the training data set D given by

p(fep(2),Y|X, 2")
p(Y'|X)
Thus, the conditional posterior Gaussian distribution is defined by the mean and the variance
i(fap(29)]27, D) = m(z") + k(=" X) (K + 02 Ly,) ™ (V= [m(X.0), - m(Xenp)])
var(fap(2%)|2*, D) = k(2*, 2%) — k(z*, X)" (K + 021,,) 'k(z*, X). (2.8)

p(fer(27)[2", D) = (2.7)

A detailed derivation of the posterior mean and variance based on the joint distribution (2.4)
can be found in appendix . Analyzing we can make the following observations:
i) The mean prediction can be written as
np
p(far(2)|2", D) = m(2") + Y ajk(z", X.;) (2.9)
j=1
with @ = (K+021,,)"" (Y — [m(X.1),... ,m(X:mD)}T) € R". That formulation highlights
the data-driven characteristic of the GPR as the posterior mean is a sum of kernel functions
and its number grows with the number np of training data.
ii) The variance does not depend on the observed data, but only on the inputs, which is a
property of the Gaussian distribution. The variance is the difference between two terms: The
first term k(z*, 2*) is simply the prior covariance from which a (positive) term is subtracted,
representing the information the observations contain about the function. The variance
expresses the uncertainty about the underlying function fgp(z*) and does not include the
measurement noise given by the variance o2. To prediction the uncertainty of the measured
output, i.e. the output of the function fgp(2z*) plus the measurement noise, an additional
noise term o021, must be added to the variance in . Finally, clearly shows the
strong dependence of the posterior mean and variance on the kernel k£ that we will discuss

in depth in Section [2.2]

Example 2.2. We assume a GP with zero mean and a kernel function given by

no_ 2 . (’Z — Z,)2
k(z,z") = 0.3679° exp (5 2.71832>

as prior distribution. The training data set D is assumed to be
-
X = [1 3 6 10} . Y= [0 0.3 0.3 —0.2} ,

where the output is corrupted by Gaussian noise with o, = 0.0498 standard deviation
and the test point is assumed to be z* = 5. According to (2.5) to (2.8) the Gram
matrix K (X, X) is calculated as

0.1378 0.1032 0.0249 0.0006
0.1032 0.1378 0.0736 0.0049
0.0249 0.0736 0.1378 0.0458
0.0006 0.0049 0.0458 0.1378

K(X,X) =

17

2 Gaussian Process models

and the kernel vector k(z*, X) and k(z*, z*) are obtained to be

k(=% X) = [0.0458 01032 0.1265 0.0249]
k(z*,z*) = 0.1378.

Finally, with (2.8)), we compute the predicted mean and variance for fgp(z*)
p(fap(2")|2", D) = 0.0278, var(fgp(z¥)|2z*, D) = 0.0015,

which is equivalent to a 2c-standard deviation of 0.0775. Figure shows the prior
distribution (left), the posterior distribution with two training points (black crosses) in
the middle, and the posterior distribution given the full training set D (right). The
solid red line is the mean function and the gray shaded area indicates the 2o-standard
deviation. Five realizations (dashed lines) visualize the character of the distribution
over functions.

8 05 L.
o Lo AT
n ‘~__:<: >
5 0 e
o RN
+2 ¢ \
: XY

—05 |

0 5 10 0 5 10 0 2*=5 10

Input space

Figure 2.1: The prior distribution of a GP is updated with data that leads to the pos-
terior distribution.

2.1.2 Marginal Variance

The computation of the variance with respect to a subset of elements of z* can be done by
marginalization. Assume z* = [27; 23] with 27 € R™, 25 € R™ and z* € R"=="1""2 The
marginal variance of the prediction based on z7 is given by

Var(fGP|z>{7 D) = k(zi ZT) - k(z; Xl:nl,:)T(K<X1:n1,:a Xl:nl,:) + [nlo—i)_lk(z; Xl:n1,:)-
(2.10)

The expression Xi.,, . denotes the first n; rows of X such that X = [X1.,,.; X, 41m..)-

2.1.3 Multi-output Regression

So far, the GP regression allows functions with scalar outputs as in . For the extension
to vector-valued outputs, multiple approaches exist: i) Extending the kernel to multivariate
outputs |[ARL12], ii) adding the output dimension as training data [Ber+17] or iii) using
separated GPR for each output [Ras06]. While the first two approaches set a prior on the
correlation between the output dimensions, the latter disregards a correlation without loss

18

2.1 Gaussian Processes

of generality. Following the approach in iii), the previous definition of the training set D is
extended to a vector-valued output with

1 2 n n ~{1 ~{2 ~1Nn n Ny -
X =l el . el e zvor vy =gt g, gliPT e R e (2.11)

where n,4.¢ € N is the dimension of the output and the vector-valued GP is defined by

GP(m! (=), k'(2,2))
fap(z) ~ : : (2.12)
gp (m”ydat (2), kMvdat (2, z’))

-
m(z) = |m'(2),...,m"(z)] (2.13)
Following ({2.4) to (2.8, we obtain for the predicted mean and variance

u(fGP,i(Z*>’z*7 D) = ml(z*) + ki(z*7X>T(Ki+0'r21,i[nD>il (K,i_[mi(X:,1)7 s ’mi(XunD)]T)
var(fapi(2%)|25 D) = K'(2*, 2*) — k:i(z*,X)T(Ki—i—ai’ilm)*lki(z*,X) (2.14)

for each output dimension i € {1,...,nyqa} With respect to the kernels k', ..., k™. The
variable o, ; denotes the standard deviation of the Gaussian noise that corrupts the i-th
dimension of the output measurements. The n,q4,, components of fqp|z*, D are combined
into a multi-variable Gaussian distribution with

p(feplz™, D) = [u(fep1lz", D), . .. i (fapmyan 2" D)]T

2.1

YX(faplz", D) = diag (var(fgp,llz*, D), ...,var(fapny. 2" D)) , (2.15)
where X(fp|2*, D) denotes the posterior variance matrix. This formulation allows to use a
GP prior on vector-valued functions to perform predictions for test points z*. This approach
treats each output dimension separately which is mostly sufficient and easy-to-handle. An
alternative approach is to include the dimension as additional input, e.g., as in [Ber+17],
with the benefit of a single GP at the price of loss of interpretability. For highly correlated
output data, a multi-output kernel might be beneficial, see [ARL11].

Remark 2.2. Without specific knowledge about a trend in the data, the prior mean func-
tions m', ..., m"de are often set to zero, see [Ras00]. Therefore, we set the mean functions
to zero for the remainder of the thesis if not stated otherwise.

2.1.4 Kernel-based View

In Section 2.1.1], we target the GPR from a Bayesian perspective. However, for some appli-
cations of GPR a different point of view is beneficial; namely from the kernel perspective. In
the following, we derive GPR from linear regression that is extended with a kernel transfor-
mation. In general, the prediction of parametric models is based on a parameter vector w
which is typically learned using a set of training data points. In contrast, non-parametric
models typically maintain at least a subset of the training data points in memory in order to
make predictions for new data points. Many linear models can be transformed into a dual
representation where the prediction is based on a linear combination of kernel functions. The

19

2 Gaussian Process models

idea is to transform the data points of a model to an often high-dimensional feature space
where a linear regression can be applied to predict the model output, as depicted in Fig. [2.2]
For a nonlinear feature map ¢: Z2 — F, where F is a ny, € NU {oco} dimensional Hilbert
space, the kernel function is given by the inner product k(z, 2') = (¢(2), P(2)),Vz,2' € Z.
Thus, the kernel implicitly encodes the way the data points are transformed into a higher
dimensional space. The formulation as inner product in a feature space allows to extend
many standard regression methods. Also the GPR can be derived using a standard linear
regression model

fin(z) = 2Tw, G = for(all) +v (2.16)

where z € Z is the input vector, w € R" the vector of weights with n, = dim(Z2)
and fi,: £ — R the unknown function. The observed value gﬁ;{ € R for the input m(g;}t S
is corrupted by Gaussian noise v ~ AN(0,02) for all @ = 1,...,np. The analysis of this
model is analogous to the standard linear regression, i.e., we put a prior on the weights such
that w ~ N (0,%,) with ¥, € R"*":. Based on np collected training data points as defined
in Section that leads to the well known linear Bayesian regression

p(fin(29)|2", D) = /\/(;Z*TA_IXY, 2T A 2) (2.17)

lin lin

u(fiin(z*)12*, D) var(fiin(2*)|z*,D)
where Ay = 0,°XX" + X', Now, using the feature map ¢(z) instead of z directly,
leads to fgp(z) = ¢(z) w with w ~ N(O,ip), f]p € R™*" As long as the projections
are fixed functions, i.e., independent of the parameters w, the model is still linear in the
parameters and, thus, analytically tractable. In particular, the Bayesian regression (|2.17)
with the mapping ¢(z) can be written as

(fap(2")]2", D) ~ N (;¢<z*>TAG%J (S(X.0)i 5 B(Xon)]Y ¢<z*>TAG;¢<z*>) - (218)

n

with the matrix Agp € R"¢*"¢ given by

v

Ace = 0,7 [9(Xo1)s- 1 (X)| [D(Xen)s -1 (X)) + 5,7 (2.19)
This equation can be simplified and rewritten to
(far(27)2", D) ~ N (k(2" X) K'Y k(27 27) = k(2" X)TK k(2. X)), (2.20)
m(fap(z*)|z*,D) var(fap(2*)|2*,D)

with k(z, 2") = (p(z)Tiqu(z’) that equals 1D The fact that in 1' the feature map ¢(2)
is not needed is known as the kernel trick. This trick is also used in other kernel-based models,
e.g., support vector machines (SVM), see [SCO8|] for more details.

Figure 2.2: The mapping ¢ transforms the data points into a feature space where linear
regressors can be applied to predict the output.

O

20

2.1 Gaussian Processes

2.1.5 Reproducing Kernel Hilbert Space

Even though a kernel neither uniquely defines the feature map nor the feature space, one
can always construct a canonical feature space, namely the reproducing kernel Hilbert space
(RKHS) given a certain kernel. After the introduction of the theory, illustrative examples
for an intuitive understanding are presented. We will now formally present this construction
procedure, starting with the concept of Hilbert spaces, following [BLG16|: A Hilbert space F
represents all possible realizations of some class of functions, for example all functions of
continuity degree 4, denoted by C*. Moreover, a Hilbert space is a vector space such that any
function fr € F must have a non-negative norm, ||fz|| > 0 for fz # 0. All functions fr
must additionally be equipped with an inner-product in F. Simply speaking, a Hilbert
space is an infinite dimensional vector space, where many operations behave like in the finite
case. The properties of Hilbert spaces have been explored in great detail in literature, e.g.,
in [DM+05]. An extremely useful property of Hilbert spaces is that they are equivalent to
an associated kernel function [Aro50]. This equivalence allows to simply define a kernel,
instead of fully defining the associated vector space. Formally speaking, if a Hilbert space H
is a RKHS, it will have a unique positive definite kernel k: Z x Z — R, which spans the
space H.

Theorem 2.1 (Moore-Aronszajn [Aro50]). Every positive definite kernel k is associated
with a unique RKHS H.

Theorem 2.2 ([Aro50]). Let F be a Hilbert space, Z a non-empty set and ¢: Z — F.
Then, the inner product (¢(z), d(2"))F = k(z,2') is positive definite.

Importantly, any function f3 in H can be represented as a weighted linear sum of this kernel
evaluated over the space H, as

Fu() = (fu(), H—Zal (=5), (2.21)

with a; € R for all ¢ = {1,...,n4}, where n, € NU {oo} is the dimension of the feature
space F. Thus, the RKHS is equipped with the inner-product

ng Ng
Frs Frr = D> audlk(x), i), (2.22)

i=1j=1

with f},(-) = X252, ok (a:d{;t},) € H,a; € R. Now, the reproducing character manifests as

Vz € ZNfy € H, (fu, k(z,)n = fu(2z), in particular k(z, 2") = (k(-, 2), k(-, 2'))%.
(2.23)

According to [SHS06], the RKHS is then defined as
H= {fH zZ = REIC S JT:: f’H(z) = <C, (ﬁ(Z))]:,VZ S Z}a (224)
where ¢(z) is the feature map constructing the kernel through k(z, 2") = (¢(2), p(2'))#.

21

2 Gaussian Process models

Example 2.3. We want to find the RKHS for the polynomial kernel with degree 2 that
is given by

k(z,2') = (sz’)2 = (212))% + 2(212) 2225 + (2225)*.

for any z, 2’ € R?. First, we have to find a feature map ¢ such that the kernel corre-
sponds to the inner product k(z,y) = (¢(2), ¢(y)). A possible candidate for the feature
map is

o(z) = [zf, V2212, zgr, because
(0(2), (2w = 9(2) D(y) = (2121)? + 2(21212025) + (2225)* = k(z, 2').

We know that the RKHS contains all linear combinations of the form

3

fu(z) = ; aik (zf), 2) = ;ai<¢<z'>, D(2))rs = Y (c, p(2))rs

=1

= clzf Sl 02\/52122 + 6323,
with a, ¢, mga}t € R3. Therefore, a possible candidate for the RKHS # is given by
_ . T2 _ 2 V2 2 3
H = {fH. R® — R|fu(z) = c12{ + caV2z129 + c325,c € R } (2.25)

Next, it must be checked if the proposed Hilbert space is the related RKHS to the
polynomial kernel with degree 2. This is achieved in two steps: i) Proving that the space
is a Hilbert space and ii) confirming the reproducing property. First, we can easily proof
that this is a Hilbert space rewriting fy(z) = 2" Sz with symmetric matrix S € R?*2
and using the fact that H is euclidean and isomorphic to S. Second, the condition for an
RKHS must be fulfilled, i.e., the reproducing property fy(2z) = (fu(-),k(-, 2))%. Since
we can write

3

() k(20 = (T D), k(- 2))u = D_cik(-, 2) = ¢ ¢(2) = fu(2),

i=1

property ([2.23)) is fulfilled and, thus, H is the RKHS for the polynomial kernel with
degree 2. Note that, even though the mapping ¢ is not unique for the kernel k, the
relation of £ and the RKHS H is unique.

Given a function f € H defined by np observations, its RKHS norm is defined as

"D "D . .
1 fscll3e = (s From = D23 cvask(gy,) = @ K(X, X)a, (2.26)
i=1j=1
with @ € R" and K (X, X) given by (2.5). We can also use the feature map such that
Il = int{|le]7: e € F, ful(z) = (¢, ¢(2)) 5, V2 € Z}. (2.27)

As there is a unique relation between the RKHS #H and the kernel &, the norm || f||3 can
equivalently be written as || fx||z. The norm of a function in the RKHS indicates how fast

22

2.1 Gaussian Processes

the function varies over Z with respect to the geometry defined by the kernel. Formally, it
can be written as

|fu(z) — fu(#)]
d(z,2")

< | el (2.28)

with the distance d(z,2')? = k(z,z) — 2k(2z,2') + k(2/,2'). A function with finite RKHS
norm is also element of the RKHS. A more detailed discussion about RKHS and norms is
given in [Wah90)].

Example 2.4. We want to find the RKHS norm of a function fz that is an element of
the RKHS of the polynomial kernel with degree 2 that is given by

k(z,2) = (272)? = (212])? + 2(212, 202}) + (2225)*.

Let the function be

3 .
fu(z) = Y aik (2l 2) , with (2.29)
=1
] = 1, Qg = —2, O3 = 3 (230)
el =LY, 28 = (1,27, 28 = [2,1]". (2.31)

Hence, function (2.29) with (2.30) and (2.31)) corresponds to

fu(z) = 112% + 62129 — 423.

Now, we have two possibilities how to calculate the RKHS norm. First, the RKHS-norm
of fy is calculated using (2.26) by

4 9 9771
||fn||%=aTK(X,X)a:[1 92 3} 9 25 16| |-2| = 155
9 16 25| | 3

with X = [w(g;};, w(ﬁ};, a:g;’]t'] Alternatively, we can use ([2.27) that results in | frlla = llell,
where c is defined by (2.25)). Thus, the norm is computed as

fu(z) = 1122 + 62120 — 425 = ¢ =11, ¢ = c3 = —4 = || full3, = 155.

6
\/57

Example 2.5. In this example, we visualize the meaning of the RKHS norm. Figure 2.3
shows different quadratic functions with the same RKHS norm (top left and top right), a
smaller RKHS norm (bottom left) and a larger RKHS norm (bottom right). An identical
norm indicates a similar variation of the functions, whereas a higher norm leads to a
more varying function.

23

2 Gaussian Process models

Figure 2.3: Functions with different RKHS-norms: || f1(|3,= | f2|3, =4l /313, = 3| f4l|3%-

In summary, we show the unique relation between the kernel and its RKHS. The reproducing
property allows us to write the inner-product as a tractable function which implicitly defines
a higher (or even infinite) feature dimensional space. The RKHS-norm of a function is a
Lipschitz-like indicator based on the metric defined by the kernel. This view of the RKHS
is related to the kernel trick in machine learning. In the next section, the RKHS-norm
is exploited to determine the error between the prediction of GPR and the actual data-
generating function.

2.1.6 Model Error

One of the most interesting properties of GPR is the uncertainty description encoded in the
predicted variance. This uncertainty is beneficial to quantify the error between the actual
underlying data generating process and the GPR. In this section, we assume that there is
an unknown function fy: R™ — R that generates the training data. In detail, the data
set D = {X,Y} consists of

X = [33;{13, wg{, cey méZf}] € R=xnp -
Y — "’{1} ~{2} N{n’D} T Rn’D (')
—[yda“ydat”"’ydat] c ,

24

2.1 Gaussian Processes

where the data is generated by
Jins = Ju(@i) + v v ~ N(0,07) (2:33)

for all i« = {1,...,np}. Without any assumptions on fy it is obviously not possible to
quantify the model error. Loosely speaking, the prior distribution of the GPR with kernel k
must be suitable to learn the unknown function. More technically, f, must be an element

of the RKHS spanned by the kernel as described in (2.24). This leads to the following
assumption.

Assumption 2.1. The function fu has a finite RKHS norm with respect to the kernel k,
i.e., || furllz < oo, where H is the RKHS spanned by k.

This sounds paradoxical as fu is assumed to be unknown. However, there exist kernels
that can approximate any continuous function arbitrarily exact. Thus, for any continuous
function, there exists an arbitrarily close function to fu which is element of the RKHS of
an universal kernel. For more details, we refer to Section [2.1.5]

We classify the error quantification in three different approaches: i) the robust approach,
ii) the scenario approach, and iii) the information-theoretical approach. The different tech-
niques are presented in the following and visualized in Fig. 2.4, For the remainder of this

section, we assume that a GPR is trained with the data set (2.32)) and Assumption [2.1/ holds.

Robust approach

The robust approach exploits the fact that the prediction of the GPR is Gaussian distributed.
Thus, for any z* € R, the model error is bounded by

|fu(2") — u(fep|z®, D)| < cvar(fep|z", D) (2.34)
with high probability where ¢ € Ry adjusts the probability. However, for multiple test
points 27, 25, ... € R"= this approach neglects any correlation between fop(27), fap(25),. . ..

Figure shows how for a given zj and 23, the variance is exploited as upper bound.
Thus, any prediction is handled independently, which leads to a very conservative bound,
see [UBH1§].

Scenario approach

Instead of using the mean and the variance as in the robust approach, the scenario approach
deals with the samples of the GPR directly. In contrast to the other methods, there is no
direct model error quantification but rather a sample based quantification. The idea is to
draw a large number ng.e, € N of sample functions flp, fép,- - ., f&se over n, € N sampling
points. The sampling is performed by drawing multiple instances from fgp given by the
multivariate Gaussian distribution

:] (1) T
m(wdat)
y : K(X,X)+ 02, K(X*X)
{np}
VARl : 2.35
far(27) m(z7) (2:39)
: : K(X*,X)T K(X* X™)
Lfar(2;,). L m(z;,) 1| l

25

2 Gaussian Process models

*

where X* = [2],---, 2}, | contains the sampling points. Each sample can then be used
in the application instead of the unknown function. For a large number of samples it is
assumed that the unknown function is close to one of these samples. However, the crux
of this approach is to determine, for a given model error ¢ € R+, the required number of
samples ngeen and probability ds.., > 0 such that

P (| fuc(2") = fip(2)] < i € {1, Nacen}) > Oecen (2.36)

for all z* € Z. In Fig.[2.4] five different samples of a GP model are drawn as example.

Information-theoretical approach

Alternatively, the work in [Sri+12| derives an upper bound for samples of the GPR on a
compact set with a specific probability. In contrast to the robust approach, the correlation
between the function values are considered. We restate here the theorem.

Theorem 2.3 ([Sri+12]). Given Assumption[2.1], the model error A € R
A =|p(forlz, D) = fur(2)| (2.37)
is bounded for all z on a compact set Q@ C R™ with a probability of at least § € (0,1) by
P{Vz €Q, A < |353(feplz. D)|} > 4, (2.38)

where B € R is defined as

1
5=\ 2l + 3005 ("2, (2.3
The variable Ve € R is the maximum of the information gain
— max gl 4+ 02K (2, 2)| (2.40)
Ymaz) {"‘D+1}€Q 9 g {np+1 n) .
dat """ dat
with Gram matriz K(z,2') and the input elements z,z' € {:1:33, o ,wéﬁfﬂ}},

To compute this bound, the RKHS norm of f, must be known. That is in application
usually not the case. However, often the norm can be upper bounded and thus, the bound
in Theorem can be upper bounded. For this purpose, the relation of the RKHS norm to
the Lipschitz constant given by is beneficial as the Lipschitz constant is more likely
to be known. In general, the computation of the information gain is a non-convex optimiza-
tion problem. However, the information capacity vm.x has a sub-linear dependency on the
number of training points for many commonly used kernel functions [Sri+12]. Therefore,
even though [is increasing with the number of training data, it is possible to learn the true
function f, arbitrarily exactly |Ber+16]. In contrast to the other approaches, Theorem
allows to bound the error for any test point in a compact set. In Chapter [5 we will exploit
this approach in GP model based control tasks. The right illustration of Fig. [2.4] visualizes
the information-theoretical bound.

26

2.2 Model Selection

1 {|— Mean |- Training points T 2-sigma

Output space

0 x] xy 10 0 5
Input space

Figure 2.4: Different approaches to quantify the model error: Robust approach (left), sce-
nario approach (middle), information-theoretical approach (right).

2.2 Model Selection

Equation clearly shows the immense impact of the kernel on the posterior mean and
variance. However, this is not surprising as the kernel is an essential part of the prior model.
For practical applications that leads to the question how to choose the kernel. Additionally,
most kernels depend on a set of hyperparameters that must be defined. Thus in order to
turn GPR into a powerful practical tool it is essential to develop methods that address the
model selection problem. We see the model selection as the determination of the kernel and
its hyperparameters. We only focus on kernels that are defined on Z C R"#. In the next two
subsections, we present different kernels and explain the role of the hyperparameters and
their selection, mainly based on |Ras06].

Remark 2.3. The selection of the kernel functions seems to be similar to the model selection
for parametric models. However, there are two major differences: i) the selection is fully
covered by the Bayesian methodology and ii) many kernels allow to model a wide range of
different functions whereas parametric models a typically limited to very specific types of
functions.

2.2.1 Kernel Functions

The value of the kernel function k(z, 2z’) is an indicator of the interaction of two states (z, 2’).
Thus, an essential part of GPR is the selection of the kernel function and the estimation of its
free parameters ¢y, o, . .., @y, called hyperparameters. The number n,, of hyperparameters
depends on the kernel function. The choice of the kernel function and the determination of
the corresponding hyperparameters can be seen as degrees of freedom of the regression. First
of all, we start with the general properties of a function to be qualified as a kernel for GPR.
A necessary and sufficient condition for the function k: Z x Z — R to be a valid kernel is
that the Gram matrix, see ([2.5), is positive semidefinite for all possible input values [SC04].

Remark 2.4. As shown in Section[2.1.5, the kernel function must be positive definite to span
a unique RKHS. That seems to be contradictory to the required positive semi-definiteness of
the Gram matriz. The solution is the definition of positive definite kernels as it is equivalent
to a positive semi-definite Gram matriz. In detail, a symmetric function k: Z x Z — R is

27

2 Gaussian Process models

a positive definite kernel on Z z'f

° S kel 2l > 0 (2.41)
Jj=1i=1
holds for any np € N, a:({jﬁ, . :c;{;;f} € Zandcy,...,c, € R. Thus, there exists a positive
semi-definite matriz Ag € R"DX”D such that
np np
T AcTan =Y > k((' 2P (2.42)
Jj=1li=1

holds for any np € N and z € Z.

The set of functions k which fulfill this condition is denoted with . Kernel functions
can be separated into two classes, the stationary and non-stationary kernels. A stationary
kernel is a function of the distance z — z’. Thus, it is invariant to translations in the input
space. In contrast, non-stationary kernels depend directly on z,z’ and are often functions
of a dot product z'z. In the following, we list some common kernel functions with their
basic properties. Even though the number of presented kernels is limited, new kernels can
be constructed easily as K is closed under specific operations such as addition and scalar
multiplication. At the end, we summarize the equation of each kernel in Table and
provide a comparative example.

Constant Kernel
The equation for the constant kernel is given by
k(z,2') = ¢ (2.43)

This kernel is mostly used in addition to other kernel functions. It depends one a single
hyperparameter ¢; € R>g.
Linear Kernel
The equation for the linear kernel is given by

k(z,2)=2"2. (2.44)

The linear kernel is a dot-product kernel and thus, non-stationary. The kernel can be ob-
tained from Bayesian linear regression as shown in Section [2.1.4l The linear kernel is often
used in combination with the constant kernel to include a bias.

Polynomial Kernel
The equation for the polynomial kernel is given by
kz.2) = (272 +¢}) peN. (2.45)

The polynomial kernel has an additional parameter p € N, that determines the degree of
the polynomial. Since a dot product is contained, the kernel is also non-stationary. The
prior variance grows rapidly for ||z|] > 1 such that the usage for some regression problems
is limited. It depends on a single hyperparameter ¢; € R>¢.

28

2.2 Model Selection

Matérn Kernel
The equation for the Matérn kernel is given by

‘/_HZ_Z'H> ,Zp:(p“ <\/8_25Hz2—z’||>p_i

©a —il(p ©

k(z,2") = ¢ eXp((2.46)

with p=p+ %, p € N. The Matérn kernel is a very powerful kernel and presented here with
the most common parameterization for p. Functions drawn from a GP model with Matérn
kernel are p-times differentiable. The more general equation of this stationary kernel can be
found in [Bis06]. This kernel is an universal kernel which is explained in the following.

Lemma 2.1 ([SCO08, Lemma 4.55]). Consider the RKHS H(Z.) of an universal ker-
nel on any prescribed compact subset Z, € Z. Given any positive number € and any
function fe € CY(Z¢), there is a function fy € H(Z.) such that ||fe — fullz. <e.

Intuitively speaking, a GPR with an universal kernel can approximate any continuous func-
tion arbitrarily exact on a compact set. For p — oo, it results in the squared exponential
kernel. The two hyperparameters are ¢; € R>g and ¢ € Rp.

Squared Exponential Kernel

The equation for the squared exponential kernel is given by

/|12
Mz 2) = Pexp [MZ=ZIEY 24
(2.2 = o (122 (2.7

Probably the most widely used kernel function for GPR is the squared exponential kernel,
see [Ras06]. The hyperparameter ¢, describes the signal variance which determines the av-
erage distance of the data-generating function from its mean. The lengthscale o defines
how far it is needed to move along a particular axis in input space for the function values to
become uncorrelated. Formally, the lengthscale determines the number of expected upcross-
ings of the level zero in a unit interval by a zero-mean GP. The squared exponential kernel
is infinitely differentiable, which means that the GPR exhibits a smooth behavior. As limit
of the Matérn kernel, it is also an universal kernel, see [MXZ06].

Example 2.6. Figure 2.5 shows the power for regression of universal kernel functions.
In this example, a GPR with squared exponential kernel is used for different training
data sets. The hyperparameter are optimized individually for each training data set by
means of the likelihood, see Section [2.2.2] Note that all presented regressions are based
on the same GP model, i.e. the same kernel function, but with different data sets. That
highlights again the superior flexibility of GPR.

29

2 Gaussian Process models

= L\

Figure 2.5: Examples for the flexibility of the regression that all are based on the same
GP model.

Rational Quadratic Kernel

The equation for the rational quadratic kernel is given by

k(z,2) = 1+M B eN (2.48)
) _901 2p§0% y D . .

This kernel is equivalent to summing over infinitely many squared exponential kernels with
different lengthscales. Hence, GP priors with this kernel are expected to see functions which
vary smoothly across many lengthscales. The parameter p determines the relative weighting
of large-scale and small-scale variations. For p — oo, the rational quadratic kernel is identical
to the squared exponential kernel.

Squared Exponential ARD Kernel
The equation for the squared exponential ARD kernel is given by
k(z,2) = @lexp (—(z = 2) PN (z = 2)), P = diag(¢3, ..., ¢},0.)- (2.49)

The automatic relevance determination (ARD) extension to the squared exponential kernel
allows for independent lenghtscales o, ..., ¢11,. € Ry for each dimension of z,z" € R™=.
The individual lenghtscales are typically larger for dimensions which are irrelevant as the
covariance will become almost independent of that input. A more detailed discussion about
the advantages of different kernels can be found, for instance, in [Mac97] and [Bis06].

Example 2.7. In this example, we use three GPRs with the same set of training data
X =1[1,3,5,7,9],Y =10,1,2,3,6] (2.50)

but with different kernels, namely the squared exponential (2.47)), the linear (2.44]), and
the polynomial (2.45) kernel. Figure shows the different shapes of the regressions
with the posterior mean (red), the posterior variance (gray shaded) and the training

30

2.2 Model Selection

points (black). Even for this simple data set, the flexibility of the squared exponential
kernel is already visible.

Output space

Input space

Figure 2.6: GPR with different kernels: squared exponential (left), linear (middle) and
polynomial with degree 2 (right).

Kernel name k(z,2) =
Constant 0>
Linear 2T + cpf
Polynomial p € N (ZTz/ . (p%)p

¢ D p|lz—2’ i S5/ [\ P—i
Matérn p = p + %,p eN 0% exp (_%> £ S, z'gj i (\/@LQ H>
Squared exponential @2 exp(%)

2
-p

Rational quadratic ©? (1 + ||z2p; |)

Squared exponential ARD % exp (—(z —2) Pz - z’)), P = diag(¥3,...,¢7,,.)

Table 2.1: Overview of some commonly used kernel functions.

2.2.2 Hyperparameter Optimization

In addition to the selection of a kernel function, values for any hyperparameter must be
determined to perform the regression. The number of hyperparameters depends on the
kernel function used. We concatenate all hyperparameters in a vector ¢ with size n, € N,
where ¢p € & C R™. The hyperparameter set ¢ is introduced to cover the different spaces
of the individual hyperparameters as defined in the following.

Definition 2.1. The set ® is called a hyperparameter set for a kernel function £ if and only
if the set @ is a domain for the hyperparameters ¢ of k.

31

2 Gaussian Process models

Often, the signal noise 02, see , is also treated as hyperparameter. For a better
understanding, we keep the signal noise separated from the hyperparameters. There exist
several techniques that allow computing the hyperparameters and the signal noise with
respect to one optimality criterion. From a Bayesian perspective, we want to find the vector
of hyperparameters ¢ which are most likely for the output data Y given the inputs X and a
GP model. For this purpose, one approach is to optimize the log marginal likelihood function
of the GP. Another idea is to split the training set into two disjoint sets, one which is actually
used for training, and the other, the validation set, which is used to monitor performance.
This approach is known as cross-validation. In the following, these two techniques for the

selection of hyperparameters are presented.

Log Marginal Likelihood Approach

A very common method for the optimization of the hyperparameters is by means of the
negative log marginal likelihood function, often simply named as (neg. log) likelihood func-
tion. It is marginal since it is obtained through marginalization over the function fgp. The
marginal likelihood is the likelihood that the output data Y € R"? fits to the input data X
with the hyperparameters ¢. It is given by

1 1
log p(Y|X,) = —§YT(K +021,,) 'Y — Elog K + 021, %)log 2. (2.51)

D|_

A detailed derivation can be found in [Ras06]. The three terms of the marginal likelihood
in (2.51)) have the following roles:

o 1Y (K+02l,,) 'Y is the only term that depends on the output data Y and represents
the data-fit.

° %log|K+a§]n
input data X.

| penalizes the complexity depending on the kernel function and the

e "2 log2m is a normalization constant.

Remark 2.5. For the sake of notational simplicity, we suppress the dependency on the
hyperparameters of the kernel function k whenever possible.

The optimal hyperparameters ¢* € ® and signal noise o in the sense of the likelihood are
obtained as the minimum of the negative log marginal likelihood function

lf*]:arg min_ logp(Y|X,). (2.52)

n ped,0n€R>o
Since an analytic solution of the derivation of (2.51)) is impossible, a gradient based opti-
mization algorithm is typically used to minimize the function. However, the negative log
likelihood is non-convex in general such that there is no guarantee to find the optimum ¢*, o;:.

In fact, every local minimum corresponds to a particular interpretation of the data. In the
following example, we visualize how the hyperparameters affect the regression.

32

2.2 Model Selection

Example 2.8. A GPR with the squared exponential kernel is trained on eight data
points. The signal variance is fixed to ¢; = 2.13. First, we visualize the influence of
the lengthscale. For this purpose, the signal noise is fixed to o, = 0.21. Figure
shows the posterior mean of the regression and the neg. log likelihood function. On
the left side are three posterior means for different lengthscales. A short lengthscale
results in overfitting whereas a large lengthscale smooths out the training data (black
crosses). The dotted red function represents the mean with optimized lengthscale by
a descent gradient algorithm with respect to (2.52)). The right plot shows the neg.
log likelihood over the signal variance ¢; and lengthscale 5. The minimum is here
at ¢* = [2.13,1.58]".

Output space

1.2 2 2.5

Input space ¥1

Figure 2.7: Left: Regression with different lengthscales: o = 0.67 (cyan, solid), ps =
7.39 (brown, dashed), and po = 1.58 (red, dotted). Right: Neg. log likeli-
hood function over signal variance ¢; and lengthscale @s.

Next, the meaning of different interpretations of the data is visualized by varying the
signal noise o,, and the lengthscale 5. The right plot of Fig. shows two minima
of the negative log likelihood function. The lower left minimum at log(c,) = 0.73
and log(yp2) = —1.51 interprets the data as slightly noisy which leads to the dotted red
posterior mean in the left plot. In contrast, the upper right minimum at log(c,) = 5
and log(yps) = —0.24 interprets the data as very noisy without a trend, which manifests
as the cyan posterior mean in the left plot. Depending on the initial value, a gradient
based optimizer would terminate in one of these minima.

3 . 0 >13
)
O &L -
a 2 __|_|_ + + X
7 S 11
ER . = =
© T 9

0 : : : : : -2

0 2 4 6 8§ 10 0 2 4
Input space log(o,,)

Figure 2.8: Left: Different interpretation of the data: Noisy data without a trend (cyan,
solid) and slightly noisy data (red, dotted). Right: Negative log likelihood
function over signal noise o,, and lengthscale (5.

33

2 Gaussian Process models

Cross-validation approach

This approach works with a separation of the data set D in two classes: one for training
and one for validation. Cross-validation is almost always used in the k.,-fold cross-validation
setting: the k.,-fold cross-validation data is split into k., disjoint, equally sized subsets; vali-
dation is done on a single subset and training is done using the union of the remaining k., —1
subsets, the entire procedure is repeated k., times, each time with a different subset for vali-
dation. Here, without loss of generality, we present the leave-one-out cross-validation, which
means k., = np. The predictive log probability when leaving out a training point {m({i;}t, géa};
is given by

A1) 2
1 Ydat — H—i np
logp(ydat\X Y.ip) = —5 log (var_;) — (2var<> - log 2, (2.53)

where ps = p(fip (@au)aus X0, Y=0) and var_s = var(fop (@ o) |2gar, X, Y=i). The 1
index indicates X and Y without the element .ﬂlf:dat and ydat, respectively. Thus,
is the probability for the output y({ig at wdat but without the training point {wdat,y{i}}.
Accordingly, the leave-one-out log predictive probability Lioo € R is

np
Lioo = 3 log p(yi X, Y.,). (2.54)

=1

In comparison to the log likelihood approach (2.52)), the cross-validation is in general more
computationally expensive but might find a better representation of the data set, see [GE79)
for discussion and related approaches.

2.3 Gaussian Process Dynamical Models

So far, we consider GPR in non-dynamical settings where only an input-to-output mapping is
considered. However, Gaussian process dynamical models (GPDMs) have recently become
a versatile tool in system identification because of their beneficial properties such as the
bias variance trade-off and the strong connection to Bayesian mathematics, see [FCR14].
In many works, where GPs are applied to dynamical model, only the mean function of the
process is employed, e.g., in [WHBO05| and [Cho-+13]. This is mainly because GP models are
often used to replace deterministic parametric models. However, GPDMs contain a much
richer description of the underlying dynamics, but also the uncertainty about the model
itself when the full probabilistic representation is considered. Therefore, one main aspect
of GPDMs is to distinguish between recurrent structures and non-recurrent structures. A
model is called recurrent if parts of the regression vector depend on the outputs of the model.
Even though recurrent models become more complex in terms of their behavior, they allow
to model sequences of data, see [Sj6+95]. If all states are fed back from the model itself, we
get a simulation model, which is a special case of the recurrent structure. The advantage of
such a model is its property to run independently from the real system. Thus, it is suitable
for simulations, as it allows multi-step ahead predictions. In this thesis, we focus on two
often-used recurrent structures: the Gaussian process state space model (GP-SSM) and the
Gaussian process nonlinear error output (GP-NOE) model.

34

2.3 Gaussian Process Dynamical Models

2.3.1 Gaussian Process State Space Models

Gaussian process state space models are structured as a discrete-time system. In this case,
the states are the regressors, which is visualized in Fig. 2.9 This approach allows to be
more efficient, since the regressors are less restricted in their internal structure as in input-
output models. Thus, a very efficient model in terms of number of regressors might be
possible. The mapping from the states to the output is often be assumed to be known. The
situation, where the output mapping describes a known sensor model, is such an example.
It is mentioned in [Fri+13] that using too flexible models for both, the state mapping f and
the output mapping, can result in problems of non-identifiability. Therefore, we focus on a
known output mapping. The mathematical model of the GP-SSM is thus given by

f1(&) ~GP (ml(&% kl(fta 5;))

x1 = f(§) = (2.55)

fro (&) ~ GP (m"=(&,), k"= (&, €})) -
Y, Np(yt|wta'7y)a

where §, € R", ne = n, + n, is the concatenation of the state vector ¢; € X C R"
and the input u, € Y C R™ such that & = [x;;u;]. The mean function is given by
continuous functions m?!,...,m": R" — R. The output mapping is parametrized by a
known vector v, € R™ with n, € N. The system identification task for the GP-SSM mainly
focuses on f in particular. It can be described as finding the state-transition probability
conditioned on the observed training data.

Remark 2.6. The potentially unknown number of regressors can be determined using es-
tablished nonlinear identification techniques as presented in (KL99], or exploiting embedded
techniques such as automatic relevance determination (Kocl6]. A mismatch leads to similar
issues as in parametric system identification.

777

| —igp
: | | Tiy1 {p(yt+1|ﬂ3t+1; ,Yy)}_%

Figure 2.9: Structure of a GP-SSM with 93 as backshift operator, such that P~tx;,, =z,

2.3.2 Gaussian Process Nonlinear Output Error Models

The GP-NOE model uses the past n;y, € Ny input values u; € U and the past noy € Nug
output val