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Abstract

In a cyber-physical system (CPS), the physical process is controlled by a software algorithm
running on a hardware platform, where there is a tight coupling between the physical behavior
of the system, the hardware, and the software. These systems are often safety-critical and have
stringent performance requirements (e.g., faster stabilization after a disturbance). Many of them
are also cost-sensitive and need to be implemented using limited platform resources (e.g., less
number of communication slots or lower energy dissipation). However, the comprehensive de-
sign of a CPS requires the integration of heterogeneous models coming from different engineer-
ing domains, e.g., mechanical processes, electrical and electronic devices, control algorithms,
and software implementations. Therefore, the design of high-performance yet resource-efficient
CPSs leads to challenging optimization problems.
Challenges towards multi-domain coupling in CPSs design: There are several challenges to
the comprehensive modeling and design of CPSs. First, it is not trivial to represent heteroge-
neous models in a unified framework. For example, a physical system evolves continuously ac-
cording to a set of differential equations while the corresponding controller might be dispatched
periodically and for each dispatch, it contests for the resource based on a certain scheduling pol-
icy that can be represented using a finite-state machine. Note that the theory of hybrid systems
is often applied to tackle such a heterogeneity, however, such an approach often faces scalabil-
ity issues. Second, with increasing size and complexity of industrial CPSs (like modern cars),
the integrated design space grows exponentially, and therefore, the design problem can easily
become intractable. Third, the requirements from different design domains might conflict with
each other, e.g., improving control performance is often possible at the cost of more resources.
Lastly, CPSs design typically involves a disjoint set of tools offered by different suppliers. It is
non-trivial to develop an automated toolchain offering state-of-the-art design techniques while
seamlessly interfacing the existing tools and preserving their advantages.

This thesis outlines our efforts in handling the aforementioned challenges using customized
hybrid optimization techniques and novel design flows. We take automotive systems for our
case study because they represent safety-critical, resource-constrained, and distributed CPSs.
Multi-objective co-optimization for distributed CPSs: Traditionally, in a CPS, control and
platform designs are carried out in their isolated design trajectories and then integrated. This
leads to an error-prone design or a long debugging and integration phase. In this context,
we study a specific automotive setting where multiple distributed control applications share
a FlexRay communication bus and propose a correct-by-construction co-design approach that
simultaneously synthesizes control and platform parameters. In the emerging area of control-
platform co-design, for the first time, we consider to co-optimize control performance and re-
source usage, thereby, obtaining a Pareto front where each Pareto point is a valid design configu-



iv

ration representing a trade-off between the two design objectives. While such a co-optimization
problem is often intractable, we explore the large design space using a tailor-made two-stage
optimization technique. In the first stage, for each application, we design prospective opti-
mal controllers using different amounts of resources considering constraints imposed by the
FlexRay protocol. In the second stage, we employ a nested three-layer optimization technique
to determine the Pareto front. In the outermost layer, we iterate through different possible values
of resource usage. In the second layer, we solve a mixed-integer linear programming (MILP)
problem to determine an optimal set of controllers that uses the given amount of resources and
maximizes the system performance. In the innermost layer, we try to find a feasible schedule for
the selected set of controllers by solving an integer linear programming (ILP) problem. Results
show that for a relatively small case study comprising 5 applications mapped on to 3 electronic
control units (ECUs), the average control performance can be improved by 41.14 % of the re-
quired value at the cost of 27.5 % more communication resource, i.e., there is a significant
trade-off opportunity. Our approach also scales to a bus cluster comprising 24 applications.
Tool integration for automated synthesis and implementation of distributed CPSs: While
we have developed a state-of-the-art co-design approach for FlexRay-based distributed auto-
motive CPSs, the lack of integrated industrial tools prevents it to be evaluated in industrial
settings. In effect, this leads to a gap in the state-of-the-art and the state-of-practice. Towards
bridging this gap, we have developed a toolchain by integrating the proposed co-optimization
approach into commercially available tools. This toolchain uses MATLAB/Simulink for mod-
eling control systems and SIMTOOLS/SIMTARGET (offered by Elektrobit) for modeling the
distributed embedded platform. Besides exploiting the functionalities of existing tools, we also
offer tools that automate specification extraction, control-platform co-design, and parameter
configuration. Therefore, the proposed toolchain enables design automation and therefore, al-
lows convenient design and implementation of FlexRay-based systems. Corresponding to the
proposed toolchain, we also introduce a customized methodology to develop control software
using a correct-by-construction technique.
Tighter dimensioning of multi-resource CPSs with control performance guarantees: We
consider a multi-resource CPS setup comprising high- and low-quality platform resources.
While a high-quality resource offers timing guarantees, and hence, a higher control perfor-
mance, they are significantly expensive. In cost-sensitive CPS domains like automotive, it is de-
sirable to optimize the usage of such expensive resources. Towards this goal, we study a control
scheme that comprises two modes using high-quality and low-quality resources respectively. We
propose cost-efficient yet safe static and dynamic scheduling strategies to allocate high-quality
resources to the bimodal controllers. For each application, we first study the switching con-
trol dynamics to derive the minimum requirement for high-quality resources based on control
specification. Subsequently, we formulate a Satisfiability Modulo Theories (SMT) problem to
statically allocate the required resources to the applications while maximizing the extensibility
of the schedule. Furthermore, for each application, we derive: (i) the maximum time for which
the controller can wait for high-quality resources without violating the performance constraint,
and (ii) for certain wait time, the minimum and the maximum time for which the controller can
use the high-quality resources continuously. Using these timing information, we devise a safe
switching scheme for the controllers and a scheduling policy based on dynamically computed
priorities of the applications. The resource dimensioning problem for the dynamic scheduling is
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solved in two nested layers where the outer layer is a first-fit heuristic while in the inner layer we
formally verify a network of timed-automata representing the applications and the scheduler.
Results suggest that resource dimensioning can be significantly tightened (i.e., 50% in certain
cases) using the proposed scheduling strategies compared to existing approaches.
Energy- and time-optimal active cell balancing in battery packs: Electric vehicles (EVs) are
becoming the mainstream in the automotive industry. In EVs, high-power battery packs, com-
prising several hundreds of cells in series and parallel, act as the main energy source. Safety
and performance of such a pack are ensured by a hardware/software system, i.e., the battery
management system (BMS). Cell balancing is a crucial task of BMSs that maximizes the usable
capacity of the pack. In active cell balancing, the charge is transferred between series-connected
cells such that the charge levels of all cells become equal. The problem of cell balancing has
been primarily studied in the power-electronics community where low-power charge transfer
circuits have been proposed. However, control algorithms operating these circuits have relied
only on heuristics. No results on optimal cell balancing with respect to energy dissipation and
balancing time respectively were known prior to our work. We, for the first time, formulate
the cell balancing problem from a real-time CPS perspective and propose control algorithms
that minimize energy dissipation and balancing time respectively. We show that holistic op-
timization is possible by integrated modeling of the cell chemistry, charge transfer process,
charge equalization, and the constraints imposed by the charge transfer circuit and by the BMS
architecture. We partition the cell balancing problem into two stages without losing any opti-
mality guarantee. In the first stage, we formulate MILP problems to determine the time- and
the energy-optimal sets of charge transfers respectively that will realize charge equalization.
In the second stage, we formulate a minimum vertex coloring (MVC) problem to schedule the
charge transfer sets obtained in the first stage. Using the proposed optimization, balancing time
can be improved from 11.04 h to 4.82 h and energy dissipation can be reduced from 211 Wh to
133 Wh for certain balancing scenarios. Our proposed technique has real benefits in improving
the charging time and extending the driving range of EVs.
Summary: This thesis shows that holistic optimization is possible in the design of CPSs when
models from different engineering domains are considered in an integrated framework. Towards
the optimal design of CPSs, it is important to determine the interplay between different design
domains. Exploiting the interplay and by studying the characteristics of the design problems,
customized optimization techniques are developed towards efficient and scalable design space
exploration (DSE) for CPSs.
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Kurzfassung

In einem cyber-physischen System (CPS) wird der physikalische Prozess durch einen Software-
Algorithmus gesteuert, der auf einer Hardware-Plattform läuft. Es existiert eine enge Kopplung
zwischen dem physikalischen Verhalten des Systems, der Hardware und der Software. Derartige
Systeme sind oft sicherheitskritisch und haben strenge Leistungsanforderungen (z.B. schnelle
Stabilisierung nach einer Störung). Häufig sind solch Systeme auch kosten-kritisch und müs-
sen mit begrenzten Plattform Ressourcen auskommen (z.B. eine geringe Zahl Kommunika-
tionsslots oder geringe Verlustenergie). Der umfassende Entwurf eines CPS erfordert jedoch
die Integration heterogener Modelle, die aus verschiedenen Engineering-domänen stammen,
z.B. mechanische Prozesse, elektrische und elektronische Geräte, Regelungsalgorithmen und
Software-Implementierungen. Daher führt der Entwurf von hochleistungsfähigen und dennoch
ressourceneffizienten CPS zu anspruchsvollen Optimierungsproblemen.
Herausforderungen bei der Multi-Domain-Kopplung beim Entwurf von CPS: Die umfas-
sende Modellierung und der Entwurf von CPS sind mit mehreren Herausforderungen verbun-
den. Erstens ist es nicht trivial, heterogene Modelle in einem einheitlichen Framework darzu-
stellen. Beispielsweise entwickelt sich ein physikalisches System kontinuierlich gemäß eines
Satzes von Differentialgleichungen, während der entsprechende Controller möglicherweise pe-
riodisch operiert, und bei jedem Einsatz konkurriert er um die Ressourcen je nach der einge-
setzen Scheduling Policy, die mit einem endlichen Zustandsautomat dargestellt werden kann.
Es ist zu beachten, dass häufig Hybridsystem-Theorie angewandt wird, um eine solche He-
terogenität zu bewältigen, wobei ein solcher Ansatz jedoch oft mit Skalierbarkeitsproblemen
einhergeht. Zweitens wächst mit zunehmender Größe und Komplexität industrieller CPS (wie
sie bei modernen Fahrzeugen eingesetzt werden) der integrierte Designraum exponentiell an,
so dass das Designproblem leicht unlösbar werden kann. Drittens könnten die Anforderungen
aus verschiedenen Designbereichen miteinander in Konflikt geraten, z. B. ist die Verbesserung
der Steuerungsleistung oft auf Kosten von mehr Ressourcen möglich. Schließlich beinhaltet der
Entwurf von CPS in der Regel einen disjunkten Satz von Werkzeugen, die von verschiedenen
Anbietern angeboten werden. Es ist nicht trivial, eine automatisierte Toolchain zu entwickeln,
die modernste Entwurfstechniken bietet und gleichzeitig eine nahtlose Verbindung zu den be-
stehenden Werkzeugen herstellt und deren Vorteile bewahrt.

Diese Arbeit beschreibt unsere Bemühungen zur Bewältigung der oben genannten Heraus-
forderungen unter Verwendung maßgeschneiderter hybrider Optimierungstechniken und neuar-
tiger Design-Flows. Wir nehmen Automobilsysteme für unsere Fallstudie an, weil sie sicher-
heitskritische, ressourcenbeschränkte und verteilte CPS darstellen.
Pareto-Optimierung für verteilte CPS: Traditionell findet beim Design von CPS die Entwick-
lung von Regelung und Plattform getrennt statt. Erst am Ende werden beide Entwürfe integriert.
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Dies führt zu einem fehleranfälligen Design oder zu einer langen Debugging- und Integrations-
phase. In diesem Zusammenhang untersuchen wir eine spezifische Automobilumgebung, in der
sich mehrere verteilte Steuerungsanwendungen einen FlexRay-Kommunikationsbus teilen, und
schlagen einen Correct-by-Construction-Co-Design-Ansatz vor, bei dem Steuerungs- und Platt-
formparameter gleichzeitig synthetisiert werden. Im noch jungen Gebiets des Co-Designs von
Steuerungsplattformen erwägen wir zum ersten Mal, die Steuerungsleistung und den Ressour-
cenverbrauch zu optimieren und dadurch eine Pareto-Front zu erhalten, bei der jeder Pareto-
Punkt eine gültige Designkonfiguration darstellt, die einen Kompromiss zwischen den beiden
Designzielen darstellt. Während ein solches Co-Optimierungsproblem oft unlösbar ist, unter-
suchen wir den großen Designraum mit einer maßgeschneiderten zweistufigen Optimierungs-
technik. In der ersten Phase entwerfen wir für jede Anwendung potentielle optimale Controller
unter Verwendung unterschiedlicher Ressourcenmengen und unter Berücksichtigung der durch
das FlexRay-Protokoll auferlegten Einschränkungen. In der zweiten Stufe verwenden wir ei-
ne verschachtelte drei-stufige Optimierungstechnik zur Bestimmung der Pareto-Front. In der
ersten Stufe iterieren wir durch verschiedene mögliche Werte der Ressourcennutzung. In der
zweiten Stufe lösen wir ein MILP-Problem (Mixed-Integer Linear Programming), um einen
optimalen Satz von Controllern zu bestimmen, der die gegebene Menge an Ressourcen nutzt
und die Systemleistung maximiert. In der letzten Stufe versuchen wir, durch die Lösung eines
ganzzahligen linearen Programmierungsproblems (ILP-Problems) eine realisierbaren Schedu-
le für den ausgewählten Satz von Controllern zu finden. Die Ergebnisse zeigen, dass bei einer
relativ kleinen Fallstudie mit 5 Anwendungen, die auf 3 elektronische Steuergeräte (ECUs)
abgebildet werden, die durchschnittliche Regelleistung um 41,14% des erforderlichen Wertes
verbessert werden kann, und das bei Kosten von 27,5% mehr Kommunikationsressourcen. D.h.
es besteht ein erheblicher Spielraum für Kompromisslösungen. Unser Ansatz lässt sich auch auf
ein Bus-Cluster mit 24 Anwendungen skalieren.
Tool-Integration für die automatisierte Synthese und Implementierung verteilter CPS:
Wir haben einen hochmodernen Co-Design-Ansatz für FlexRay-basierte verteilte CPS in der
Automobilindustrie entwickelt, jedoch verhindert das Fehlen integrierter industrieller Tools ei-
ne Evaluierung in industriellen Umgebungen. Tatsächlich führt dies zu einer Lücke im Stand
der Technik und in der Anwendungspraxis. Um diese Lücke zu überbrücken, haben wir eine
Toolchain entwickelt, indem wir den vorgeschlagenen Co-Optimierungsansatz in kommerziell
verfügbare Werkzeuge integriert haben. Diese Toolchain verwendet MATLAB/Simulink für die
Modellierung von Steuerungssystemen und SIMTOOLS/SIMTARGET (von Elektrobit) für die
Modellierung der verteilten eingebetteten Plattformen. Neben der Nutzung der Funktionalitäten
bestehender Werkzeuge bieten wir auch Werkzeuge an, die die Extraktion von Spezifikationen,
das Co-Design von Steuerungsplattformen und die Parameterkonfiguration automatisieren. Da-
her ermöglicht die vorgeschlagene Werkzeugkette die Automatisierung des Designs und damit
bequemen Entwurf und Implementierung von FlexRay-basierten Systemen. Entsprechend der
vorgeschlagenen Toolchain führen wir auch eine angepasste Methodik zur Entwicklung von
Steuerungssoftware mit einer Correct-by-Construction-Technik ein.
Engere Dimensionierung von Multi-Ressourcen-CPS mit Kontrollleistungsgarantien: Wir
betrachten einen Multi-Ressourcen-CPS-Aufbau mit hochwertigen und minderwertigen Platt-
formressourcen. Eine qualitativ hochwertige Ressource bietet zwar Timing-Garantien und
damit eine höhere Steuerungsleistung, ist aber erheblich teurer. In kostensensiblen CPS-
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Anwendungsgebieten wie der Automobilindustrie ist es wünschenswert, den Einsatz solch teu-
rer Ressourcen zu optimieren. Um dieses Ziel zu erreichen, untersuchen wir ein Kontrollsche-
ma, das zwei Modi umfasst, die qualitativ höherwertige bzw. qualitativ minderwertige Ressour-
cen nutzen. Und wir schlagen kosteneffiziente und dennoch sichere statische und dynamische
Planungsstrategien vor, um den bi-modalen Steuerungseinheiten qualitativ hochwertige Res-
sourcen zuzuweisen. Für jede Anwendung untersuchen wir zunächst die Schalt-Regeldynamik,
um auf der Grundlage der Regelspezifikation die Mindestanforderung an hochwertige Ressour-
cen abzuleiten. Anschließend formulieren wir ein Problem der Satisfiability Modulo Theories
(SMT) um den Anwendungen die erforderlichen Ressourcen statisch zuzuweisen und gleich-
zeitig die Erweiterbarkeit des Schedulers zu maximieren. Darüber hinaus leiten wir für jede
Anwendung folgendes ab: (i) die maximale Zeitspanne, während welcher der Controller auf
qualitativ hochwertige Ressourcen warten kann ohne die Leistungsbeschränkung zu verletzen,
und (ii) für bestimmte Wartezeiten die minimale und maximale Zeitspanne, während welcher
der Controller die qualitativ hochwertigen Ressourcen kontinuierlich nutzen kann. Unter Ver-
wendung dieser Zeitinformationen entwickeln wir ein sicheres Umschaltschema für die Con-
troller und eine Planungsrichtlinie, die auf dynamisch berechneten Prioritäten der Anwendun-
gen basiert. Das Ressourcendimensionierungsproblem für das dynamische Scheduling wird in
zwei verschachtelten Schichten gelöst, wobei die äußere Schicht eine First-Fit-Heuristik ist,
während wir in der inneren Schicht ein Netzwerk von timed automata, die die Anwendungen
und den Scheduler repräsentieren, formal verifizieren. Die Ergebnisse deuten darauf hin, dass
die Ressourcendimensionierung mit den vorgeschlagenen Scheduling Strategien im Vergleich
zu bestehenden Ansätzen deutlich (d.h. in bestimmten Fällen um 50%) gestrafft werden kann.

Energie- und zeitoptimales aktives Cell Balancing in Akkupacks: Elektrofahrzeuge (Elec-
tric Vehicles, EVs) werden mehr und mehr zum Mainstream in der Automobilindustrie. In EVs
dienen Hochleistungsbatteriepakete, die aus mehreren hundert Zellen bestehen, welche in Se-
rie sowie parallel geschaltet sind, als Hauptenergiequelle. Sicherheit und Leistung eines sol-
chen Packs werden durch ein Hardware/Software-System, d. h. das Batteriemanagementsystem
(BMS), gewährleistet. Das Ausgleichen der Batteriezellen (cell balancing) ist eine entschei-
dende Aufgabe der BMS, die die nutzbare Kapazität des Packs maximiert. Beim aktiven Cell
Balancing wird die Ladung zwischen in Reihe geschalteten Zellen so übertragen, dass die La-
dungsniveaus aller Zellen ausgeglichen werden. Das Problem des Cell Balancings wurde vor
allem in der Leistungselektronik untersucht, wo Ladungsübertragungsschaltungen mit geringer
Leistung vorgeschlagen wurden. Die Steueralgorithmen, die diese Schaltkreise betreiben, ha-
ben sich jedoch nur auf Heuristiken gestützt. Vor unserer Arbeit waren keine Ergebnisse zum
optimalen Cell Balancing in Bezug auf Energiedissipation bzw. Ausgleichsdauer bekannt. Zum
ersten Mal formulieren wir das Cell Balancing Problem aus einer Echtzeit-CPS-Perspektive
und schlagen Regelalgorithmen vor, die die Energiedissipation bzw. die Ausgleichsdauer mi-
nimieren. Wir zeigen, dass eine ganzheitliche Optimierung durch integrierte Modellierung der
Zellchemie, des Ladungstransferprozesses, des Ladungsausgleichs und der durch die Ladungs-
übertragungsschaltung und die BMS-Architektur auferlegten Einschränkungen möglich ist. Wir
teilen das Problem des Cell Balancing in zwei Phasen auf, ohne dabei die Garnatie auf Optima-
lität zu verlieren. In der ersten Stufe formulieren wir MILP-Probleme, um die zeit- bzw. energie-
optimalen Mengen von Ladungstransfers zu bestimmen, die einen Ladungsausgleich realisie-
ren. In der zweiten Stufe formulieren wir ein MVC-Problem (Minimum Vertex Coloring), um
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die in der ersten Stufe erhaltenen Ladungstransfermengen zu planen. Mit der vorgeschlagenen
Optimierung kann die Balancing Dauer von 11,04 h auf 4,82 h verbessert und die Energiedis-
sipation für bestimmte Ausgleichsszenarien von 211Wh auf 133Wh reduziert werden. Die von
uns vorgeschlagene Technik hat als Vorteile, dass sie sowohl die Ladezeit verbessert als auch
die Reichweite von EVs erhöht.
Zusammenfassung: Diese Arbeit zeigt, dass eine ganzheitliche Optimierung bei der Gestal-
tung von CPS möglich ist, wenn Modelle aus verschiedenen Engineering-Domänen in einem
integrierten Framework betrachtet werden. Für die optimale Entwicklung von CPS ist es wich-
tig, das Zusammenspiel zwischen verschiedenen Entwurfsbereichen zu bestimmen. Unter Aus-
nutzung des Zusammenspiels und durch Untersuchung der Charakteristika der Entwurfsproble-
me werden maßgeschneiderte Optimierungstechniken zur effizienten und skalierbaren Design
Space Exploration (DSE) für CPS entwickelt.
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1
Introduction

The term “cyber-physical system” was coined by Helen Gill in 2006 at the National Science
Foundation in the United States [1]. In a cyber-physical system (CPS), the physical process
is controlled by a hardware/software (cyber) system. That is, the controller, monitoring the
physical process and taking suitable control actions, is implemented as software components on
the hardware platform. These software components (or tasks) are executed using computation
and memory resources. In a distributed setting, these tasks are mapped on different processing
units and data transmission between them uses communication resources.

Traditionally, control engineers design controllers taking into consideration the dynamical
models of the controlled plants. On the other hand, computer engineers are only focussed
on developing algorithms that enable efficient usage of hardware resources (i.e., computation,
memory, and communication resources). However, for a CPS, there is a strong interplay be-
tween the control algorithm, the physical dynamics of the controlled plant and the hardware
resources. It is very important to consider this interplay while designing the CPSs [2].

Due to the aforementioned interplay, the physical behavior of a CPS depends not only on
the plant dynamics and the control law, but also on how the controller is implemented on the
hardware platform, i.e., the types of hardware resources (i.e., time- or event-triggered resources)
used and how the resources are allocated (i.e., the schedule) to the controller. In other words,
the choice of an optimal controller depends on the dynamical model of the controlled plant and
the timings of the control software [3]. Thus, for designing the controller, the relevant software
timing information are as follows: (i) What kind of sampling periods are possible? (ii) What
is the delay between sampling and actuation? (iii) How much is the sampling jitter? (iv) How
much is the output jitter?

Note that the above timing details are typically obtained based on the platform implementa-
tion of the controller and they might not be known apriori during the controller design. In that
case, certain assumptions are made on the controller implementation. These assumptions must
be then considered as specification while implementing the controller [4]. In the event when a
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timing assumption made during controller design could not be realized in the implementation,
the control guarantees provided during the controller design might not be preserved in the im-
plementation and safety can be jeopardized [5]. For example, the controller optimized based on
a sampling period of 5 ms, when implemented using a control task that runs every 10 ms, may
jeopardize the stability of the closed-loop system. In the same vein, an optimal controller, de-
signed considering a sampling period of 10 ms, might become sub-optimal when implemented
by a control task scheduled every 5 ms.

CPSs are common in domains such as automotive, avionics, industrial automation, energy,
health care, and defense. Some examples of CPSs are as follows:

• Adaptive Cruise Control Systems: Modern cars are equipped with the adaptive cruise control
feature, i.e., the speed of the car is automatically controlled to maintain a safe distance from
the car in front.

• Cyber-Physical Traffic Control Systems: In modern transportation networks, signalized inter-
sections are controlled based on real-time traffic information (i.e., queue lengths at incoming
and outgoing roads) and they have proved to be more efficient in reducing traffic delays.

• Artificial Pancreas Systems: In patients with type 1 diabetes, artificial pancreas systems track
blood glucose level continuously and automatically delivers hormone insulin when necessary.

• Heating, Ventilation and Air-Conditioning (HVAC) Systems: In smart homes and modern cars,
HVAC systems are used to monitor the ambience of the interior and provide thermal comfort
and ensure good indoor air quality.

• Smart Grids: In smart grids, advanced monitoring and forecasting is performed to deliver
energy reliably and with high operation efficiency for generators and distributors.

• Swarm Robotics: In swarm robotics, a group of co-ordinated robots are released in a phys-
ical environment to gather information and take necessary control actions. For example, in
smart agriculture, a number of unmanned aerial vehicles can be deployed in large farmlands
to gather real-time information about plant health and soil quality and these information can
then be used to automatically water the plants, and provide fertilizers and pesticides. Besides,
swarm robotics has found its application in the field of health care, defense, smart manufac-
turing, among others.

Chapter organization: The rest of this chapter is organized into five sections. Section 1.1
briefly describes the automotive CPS setup considered in this thesis. In Section 1.2, we first
motivate that a holistic approach is necessary integrating models from different design domains
towards safe and efficient design of CPSs. We further study the challenges towards multi-
domain coupling in CPSs. Section 1.3 outlines the evolution of design paradigms for CPSs. In
Section 1.4, we mention the scientific contributions of this thesis and provide the structure of
this thesis. Section 1.5 provides a list of publications that this thesis and other associated works
led to.
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Figure 1.1: A schematic of an automotive electronic control unit (ECU).

1.1 Automotive Cyber-Physical Systems

This thesis mainly studies automotive systems. Modern automotive electrical and electronic
(E/E) architectures are highly complex and heterogeneous with up to 100 electronic control
units (ECUs) connected over a communication network [6, 7]. The communication network
comprises various communication buses like FlexRay, CAN, and more recently also automotive
Ethernet. Several hundred million lines of software code are running on an automotive E/E
platform [8]. In these systems, software components typically implement control functions
that determine the physical dynamics of the car. The control applications come from various
domains [9] – like basic automotive functionality (brake control, engine control), advanced
driver assistance systems (cruise control, lane control), and also comfort features (like vibration
control). In electric vehicles (EVs), the battery pack is the main source of energy. It powers the
car, thereby, determining the maximum accerleration and the driving range of the car. These
high-power battery packs are typically provided with a hardware/software system called the
battery management system (BMS) [10]. The main functions of a BMS include monitoring
the state of the battery pack, maintaining its safe operation and ensuring the desired usable
capacity of the pack [11]. In this section, different components of automotive CPSs will be
briefly discussed.
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1.1. AUTOMOTIVE CYBER-PHYSICAL SYSTEMS

1.1.1 Electronic Control Units
Typically, as shown in Figure 1.1, an ECU in a modern car comprises a core (i.e., a micro-
controller), memory resources (i.e., SRAM and Flash), inputs (i.e., supply voltage, digital out-
puts, analog inputs), outputs (i.e., relay drivers, H bridge drivers, logic outputs, injector drivers),
communication controller (i.e., an FPGA or a micro-controller), and network interfaces (i.e.,
transceivers) [7]. Thus, software gets information about the physical system from the sensors
connected to the inputs of the ECU. Based on the inputs, software runs using the computation
and memory resources in the ECU. Control decisions taken by the software are then applied to
the physical system using the outputs of the ECU. In case of a distributed software implementa-
tion, software components communicate by sending data using the communication controllers
and transceivers (on sending and receiving side respectively) over the communication bus.

Communication controllers perform communication based on the corresponding communi-
cation protocol. For example, E-Ray IP module supports FlexRay v2.1 [12]. Communication
data, are therefore, first sent to the communication controller, where they are packetized into
communication frames as allowed in the protocol. Then, these frame are sent over the com-
munication bus based on their respective schedules and the scheduling policy of the protocol.
For example, in case of FlexRay protocol, a frame will be sent only when the current slot id
matches the slot id assigned to the frame. On the receiving ECU, the communication controller
monitors network activities. When there is a frame that is sent to the host micro-controller, it
receives the frame, depacketizes the frame to get the data and transmit the corresponding data
to the host micro-controller.

In the automotive industry, there is a large variation in the capabilities of the available ECUs.
For example, a low-end ECU might only have a 8 bit processor with 8 MHz, 4 kB flash memory,
and 256 byte RAM while a top-end automotive ECU might have a 32 bit multi-core processor
with 200 MHz, 6 MB flash memory, and 384 kB RAM1.

Typically, the software running on an ECU might be composed of several functions. For
example, a combustion engine controller implements various independent functions, such as the
adjustment of the fuel injection while monitoring the rotational speed of the turbo charger [13].
In the current state-of-practice, these functions do not run on the bare metal. Automotive ECUs
run a real-time operating system (RTOS) that manages the system resources. Thus, the software
functions mapped on to an ECU are scheduled based on the RTOS employed.

OSEK/VDX: In 1993, German automotive consortium (inlcuding BMW, Robert Bosch GmbH,
DaimlerChrysler, Opel, Siemens and Volkswagen Group) and the University of Karlsruhe
founded OSEK (Offene Systeme und deren Schnittstellen für Elektronik in Kraftfahrzeugen)
towards standardizing the software architecture [14]. In 1994, French car manufacturers Re-
nault and PSA Peugeot Citroën merged their project Vehicle Distributed eXecutive (VDX) with
OSEK, and formulated OSEK/VDX [15]. This group specified a standard for automotive RTOS
(Offene Systeme und deren Schnittstellen für Elektronik in Kraftfahrzeugen (OSEK)-OS) [16]
that has been widely deployed in automotive ECUs. OSEK-OS provides standards for task
management, synchronization, interrupt management, alarms, intra-processor message han-
dling, and error treatment. The earlier specification supported the event-triggered scheduling

1Data for Freescale automotive micro-controllers S08QD and MPC5676R, taken from
http://cache.freescale.com/files/microcontrollers/doc/roadmap/BRAUTOPRDCTMAP.pdf.
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Figure 1.2: An automotive E/E architecture comprising different communication buses includ-
ing High-Speed and Low-Speed CAN, FlexRay, LIN, MOST, and Automotive Ethernet.

of software tasks only, which is also extended later to OSEK time [17] to support the time-
triggered scheduling scheme.

1.1.2 Communication Buses

Automotive E/E systems are composed of several functional domains [9]: (i) Powertrain domain
including engine and transmission control; (ii) Chassis domain, e.g., steering and brake control;
(iii) Body and comfort domain including the control of doors, seats, lights, HVAC, among oth-
ers; (iv) Infotainment domain including telematics and entertainment. The large spectrum of
software applications has led to diverse requirements from the underlying E/E architecture, in
particular, the communication network architecture. The design of automotive in-vehicle net-
works depends on the nature of data to be transmitted. For example, safety-critical control data
in the chassis domain must satisfy real-time properties and reliability requirements while info-
tainment and camera-based driver assistance data require high network bandwidth [18]. As a
result, the E/E system has several subnetworks connected via gateways, as shown in Figure 1.2.
These subnetworks offer different network bandwidth and implements different communica-
tion protocol. Each subnetwork serves several applications belonging to a specific functional
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1.1. AUTOMOTIVE CYBER-PHYSICAL SYSTEMS

domain, e.g., FlexRay or High-Speed CAN for the chassis domain, High-speed CAN for the
powertrain domain, Low-Speed CAN and LIN for the body domain, and MOST and Ethernet
for the infotainment domain [19].

FlexRay: FlexRay communication bus is a deterministic, fault-tolerant and high-speed bus
system developed by the FlexRay consortium. FlexRay protocol v2.1 [20] was first published
in 2005 followed by FlexRay protocol v3.0 [21] in 2010. FlexRay is a hybrid communication
protocol, in which each communication cycle is partitioned into a static and a dynamic segment.
The static segment is composed of equal length time-division multiple access (TDMA) slots.
Each data frame mapped onto a static slot will be sent exactly within the assigned slot. Due
to time-deterministic communication in the static segment, it is used for the transmission of
safety-critical data with strict timing requirement [13]. On the other hand, dynamic segment is
composed of equal-length minislots where the size of a slot is larger (10 times or more) than
that of a minislot, and a frame mapped to the dynamic segment can take more than one minislot
for transmission. Thus, the dynamic segment offers flexible TDMA (FTDMA) where each
frame is assigned a slot number, however, the slot counter is incremented only after a message
is completely sent or after an empty slot. Thus, the exact time when a frame is transmitted in
the dynamic segment depends on the size of the frames that are assigned lower slot numbers.
While the static segment allows time-deterministic communication, the communication in the
dynamic segment can have jitters (i.e., there is a best- and a worst-case delay). On the other
hand, if there is no new data to be sent on a static slot the whole slot is wasted, while for the
dynamic segment, in the absence of a new data, only a minislot is wasted. Thus, the dynamic
segment is more resource-efficient than the static segment. As FlexRay supports TDMA, the
clocks of all FlexRay nodes in a network is synchronized, and therefore have the same notion
of time. FlexRay bus offers two communication channels that can be either used to multiply
bandwidth or for redundancy [22]. In each channel, a data rate of 10 Mbit/s is offered. Despite
the advantages, the usage of FlexRay in automotive systems is mostly limited to the chassis
domain due to the higher cost and complex parametrization when compared to CAN [13].

Controller Area Network (CAN): CAN [23] has been the de facto standard for in-vehicular
communication since it was introduced by Robert Bosch GmbH in 1986. CAN offers the max-
imum data rate of 1 Mbit/s. High-Speed CAN [24] with a common data rate of 500 kbit/s and
Low-Speed CAN [25] with a common data rate of 125 kbit/s are commonly used in automo-
tive systems. CAN frames can traditionally support a payload size of 8 bytes. However, this
limits its usage in advanced driver-assistance systems (ADASs), and therefore, CAN Flexible
Data-Rate (CAN FD) [26] has been developed that allows a payload of size up to 64 bytes.
CAN allows event-triggered communication, where a collision between two CAN frames is re-
solved using carrier-sense multiple access/collision resolution (CSMA/CR) [27]. That is, each
CAN frame is assigned a priority apriori and when two CAN data frames are sent simultane-
ously, the higher-priority frame will transmit first while the lower-priority one waits. There
have been efforts to extend CAN to allow time-deterministic communication in time-triggered
CAN (TTCAN) [28]. However, due to limitation of the data rate, TTCAN is not widely used in
modern automotive systems [29].

Local Interconnect Network: LIN [30] is a time-triggered low-speed bus that has been devel-
oped as a cheaper alternative to CAN bus to connect to sensors and actuators in the body domain
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for the control of doors and seats [13]. LIN offers a maximum data rate of 20 kbit/s and is based
on master/slave communication. In a LIN bus cluster, the master node polls each slave node
periodically using an empty frame, where the header contains the id (or number) of the slave
being polled and the slave adds data to the empty frame [31]. There is no collision possible in
this polling-based communication because each slave has a different id, and therefore, only one
slave responds at a time.

Media-Oriented Systems Transport (MOST): It is mainly used for multimedia and telematics
applications. It supports high data rates of 25 Mbit/s (MOST25), 50 Mbit/s (MOST50), and
150 Mbit/s (MOST150) [32]. It supports both time-triggered (i.e., audio and video data) and
event-triggered (i.e., navigation data) communication [13, 31]. It also follows a master-slave
communication like LIN, where a dedicated master ECU creates the message frames in which
the slave ECU can send their messages.

Automotive Ethernet: Ethernet has been widely used in local area networks (LANs),
metropolitan area networks (MANs), and wide area networks (WANs). However, the traditional
Ethernet protocol cannot be deployed in automotive systems due to the following reasons: (i) it
is susceptible to noise from other electronic devices, (ii) it cannot provide timing guarantees in
the order of microseconds, (iii) it supports only asynchronous communication, and (iv) there is
no means to prioritize communication traffics.

The first shortcoming, i.e., higher communication noise in high-speed Ethernet, is addressed
by using BroadR-Reach [33], the standard for the physical layer developed by Broadcom for
Ethernet. BroadR-Reach uses a robust and efficient three-level pulse-amplitude modulation
(PAM-3) signaling scheme that has a high spectral efficiency and therefore, enables a lower
signal bandwidth (33.3 MHz). This reduces crosstalk and and also ensures that electromagnetic
interference (EMI) requirements of automotive industry is met [34].

The primitive Ethernet protocol is based on carrier-sense multiple access with collision de-
tection (CSMA/CD) with half-duplex links, which is not time-deterministic. In CSMA/CD,
when multiple Ethernet frames are sent at the same time, they will collide, and then each Frame
is sent again after a random back-off period [35]. Thus, there is no guarantee on how many
maximum retransmissions are needed to send a frame reliably.

Towards a more reliable communication, first, full-duplex links are used to allow simulta-
neous bi-directional communications [36] and, second, switches are introduced in the commu-
nication path to forward frames. In full-duplex switched Ethernet network [37], only two nodes
share a communication link, and therefore, there is no collision between Ethernet frames. Fur-
thermore, IEEE 802.3br [38], an amendment to Ethernet protocol, make provision for Express
Traffic or high-priority traffic. High-priority frames can preempt other frames, and thus, have
latency of less than a microsecond.

The IEEE 802.1 Audio Video Bridging (AVB) Task Group, later renamed to Time-Sensitive
Networking (TSN) Task Group [39], has proposed several amendments to the Ethernet protocol
towards addressing further limitations. For example, (i) IEEE 802.1AS provides a standard
for time synchronization in Ethernet networks [40], (ii) IEEE 802.1Qat specifies a standard
to reserve bandwidth for traffic streams [41], and (iii) IEEE802.1Qav defines a standard for
queueing and forwarding of time-sensitive frames [42]. These aforementioned amendments
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enable time-triggered communication, while the traditional best-effort communication is also
supported.

Currently, Ethernet is deployed primarily in the infotainment systems of modern cars and
might even replace MOST [13, 43]. However, it is envisioned that Ethernet can serve as the
backbone network connecting different application domains [44] and time-triggered communi-
cation in Ethernet [45] can also be used for safety-critical systems.

1.1.3 Automotive Software
In recent years, increasingly more software applications are being deployed in the automotive
systems, including, e.g., applications for driver assistance systems, infotainment, and safety-
critical control systems. This trend is easily observed in the increasing number of ECUs, com-
munication buses, communication signals, lines of software code, among others [46]. However,
this trend is not sustainable using the existing federated architecture of the automotive E/E sys-
tems, where each ECU runs software pertaining to one application only [47]. Thus, automotive
industry is moving towards ECU consolidation, where multiple functions can be integrated
into one ECU, to efficiently utilize the hardware resources in future automotive systems [48].
However, to handle such software complexity, a sophisticated software architecture needs to be
considered [49, 50].

AUTomotive Open Software ARchitecture (AUTOSAR): A worldwide partnership of vehi-
cle manufacturers, suppliers, service providers, and companies from the automotive electronics,
semiconductor and software industry was formed to develop AUTOSAR [53]. It defines an open
industry standard for the automotive software architecture [54]. It specifies the software archi-
tectural components, their interfaces, and a standard design and implementation methodology.
It allows development of high level application software independent of underlying implemen-
tation details. The AUTOSAR ECU software consists of three components, as shown in Fig-
ure 1.3. (i) The basic software (BSW) layer provides the basic services (including memory,
communication, input-output, system calls, among others) and abstracts the hardware resources
by means of drivers and operating system (OS). Here, AUTOSAR-OS is backward compatible
with the OSEK-OS. BSW is further partitioned into micro-controller abstraction, ECU abstrac-
tion and complex drivers, and services. (ii) The application software (ASW) layer represents
the software components that define the functionality of an ECU by means of runnables, e.g.,
steering control software. (iii) The runtime environment (RTE) layer defines the communication
between ASW and BSW. Here, RTE allows development of application software independent
of hardware as it contains the details about when the runnables use the drivers. Therefore, if a
runnable is removed or added then the RTE must also change. This implies that the basic soft-
ware and RTE along with all existing applications have to be rebuilt in case a new application
is added in AUTOSAR classic platform [51].

Besides, the software components, AUTOSAR also defines the communication interfaces
between the components as ports. There are different types of ports (e.g., sender-receiver and
client-server) realizing different communication relations. The communication between compo-
nents is realized based on the configuration of the ports via the virtual functional bus (VFB) [52].
VFB abstracts the actual implementation of the communication that depends on the mapping
of the software components, i.e., VFB can represent communication bus systems if the soft-
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Figure 1.3: The automotive software architecture as defined by AUTOSAR. It consists of three
layers, namely, the application software (ASW), the runtime environment (RTE), and the basic
software (BSW). This figure is reproduced from [51] and [52].

ware components are mapped on different ECUs, while it can even represent communication
via RTE and the local memory if the software components are in the same ECU. Complying
with AUTOSAR standard makes automotive software highly modular, thus reducing the com-
plexity while also allowing reusability. Thus, the basic software and the application software
can be developed by different suppliers and then integrated by the original equipment manufac-
turer (OEM). Moreover, different applications mapped on to the same ECU can be developed
by different suppliers. Even an application software can be reused for a new vehicle variant
with different E/E architecture by properly configuring the RTE.

1.1.4 Battery Packs

Towards a pollution free and sustainable transportation solution, battery packs are used in EVs
and hybrid electric vehicles (HEVs) as a source of energy [55]. Batteries are widely used
to store electrical energy due to their high energy (and power) density and high specific en-
ergy (and specific power), which correlates to a lower required installation volume and a lower
weight respectively, compared to other electrical energy storage (EES) solutions such as super-
capacitors [56]. Moreover, batteries can be tailored to meet the specific requirements of the
application such as fast charging, longer shelf life, and higher power rating [55].
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Figure 1.4: Series and parallel connection of electrochemical cells to form high-power battery
packs. Series connection enables the pack to operate at high voltage while parallel connection
increases the capacity to drive higher load currents. Here, p cells are first connected in parallel
to form a group and then s such groups are connected in series.

Batteries are composed of electrochemical cells [57], where a chemical reaction can cause
an electron transfer. These cells consist of a positive electrode (i.e., cathode), a negative elec-
trode (i.e., anode), and an electrolyte that facilitates the movement of charge carriers between
electrodes. In general, batteries are broadly classified into primary (non-rechargeable) and sec-
ondary (rechargeable). The primary non-rechargeable batteries comprise galvanic cells that can
be used only once. They are discarded when the active chemical materials (generating electric-
ity) in the cells are fully utilized. By contrast, the secondary rechargeable batteries comprise
cells that can operate both as galvanic and electrolytic cell and are therefore, based on reversible
chemical reactions. The secondary batteries can be charged and discharged several times. Dur-
ing charging, positive ions (M+) are generated at the cathode that move to the anode through
the electrolyte. During discharging, the opposite reaction takes place where positive ions move
from the anode to the cathode. Note that electrons (e−) move in the opposite direction to that
of the ions through the outer circuit, which results in the charging and the discharging current
in the respective phases. For EES, the secondary rechargeable batteries are preferred since they
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allow to store (charge) and use (discharge) the electrical energy without the necessity to replace
the battery itself.

Several different cell chemistries are available for rechargeable batteries [58, 59]. Exam-
ples include: (i) Nickel-metal hydride (NiMH) cells consist of nickel oxide hydroxide as the
cathode, a hydrogen absorbing alloy as the anode, and potassium hydroxide as the electrolyte.
(ii) Lead-acid cells have lead-dioxide as the cathode, metallic lead as the anode, and sulphuric
acid solution as the electrolyte. (iii) In lithium ion (Li-ion) cells, the cathode is a lithium com-
pound (e.g., lithium magnesium oxide, lithium cobalt oxide, and lithium iron phosphate), the
anode is typically graphite, and the electrolyte comprises lithium salt in an organic solvent.

Compared to other rechargeable cell chemistries, batteries that consist of Li-ion cells have
the following advantages [60]: (i) They perform better in terms of energy and power densities
because the electrochemical potential of lithium is higher compared to other materials. There-
fore, Li-ion cells can be manufactured in smaller size and weight for the same energy and
power requirements of the application. Additionally, Li-ion cells can be manufactured in sev-
eral shapes, and therefore, can be organized in a battery pack compactly. (ii) Li-ion cells have
no memory effect and thus have a longer cycle life compared to NiMH and nickel-cadmium
(NiCd) where, due to the memory effect, energy capacity reduces with repeated charging after
partial discharges. (iii) Li-ion cells are generally stable to high currents. Thus, battery packs
composed of Li-ion cells are typically used in EVs and HEVs, where high currents are experi-
enced during acceleration and braking. (iv) Li-ion cells have a high coulombic efficiency and a
low self-discharge rate, and thus, they are energy-efficient.

Typically, battery packs for EVs and HEVs must operate at a high voltage (≈ 450 V) and
have a high capacity (≈ 200 Ah). However, the voltage and capacity of a single Li-ion cell is
insufficient to meet the aforementioned requirements. Therefore, automotive battery packs are
composed of a number of series- and parallel-connected Li-ion cells, as shown in Figure 1.4.
In order to drive a higher current, multiple Li-ion cells are connected in parallel and the high
operating voltage is obtained by series-connection of the cells [11]. Examples of automotive
battery packs include: (i) The Tesla Model-S uses a 85 kWh battery pack [61] that comprises
Panasonic “18650” Li-ion cells where each cell has a capacity of 3.2 Ah. The battery pack
is composed of 16 series-connected module and each module consists of 6 series-connected
groups of 74 cells that are connected in parallel. (ii) The battery pack in Nissan Leaf has 48
series-connected modules where each module has 2 groups of 2 cells in parallel [62]. Here,
sheet-shaped Li-ion cells are used that have a cell capacity of 32.5 Ah. (iii) The BMW i3
battery pack comprises 8 series-connected modules where each module has 12 series-connected
cells [63]. Here, 60 Ah prismatic cells are used.

1.1.5 Battery Management Systems

Typically, battery packs used in high-power automotive applications are provided with a hard-
ware/software system, i.e., the battery management system (BMS), to maintain their safety and
performance [64]. Despite the advantages offered by the Li-ion cells, they are sensitive to their
operating conditions in terms of voltage, current, and temperature, and thus, these parameters
must be tightly monitored and controlled to ensure safety [65]. Furthermore, the state of the
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Figure 1.5: Charge variation in a battery pack results in reduced usable capacity. (a) A battery
pack with series-connected cells cannot be charged further, if a cell has reached the maximum
threshold of charge, despite there are cells in the pack that are not fully charge. (b)A battery
pack with series-connected cells cannot be discharged further, if a cell has reached the minimum
threshold of charge, despite there are cells in the pack that can still drive current.

cells i.e., the state-of-charge (SoC) and the state-of-health (SoH), in a battery pack must be
controlled such that the maximum performance (i.e., energy output) can be obtained [64].

Safety concerns [65]: Li-ion cells have a defined set of safe operating conditions and operation
outside the specified limits can severely damage the cells, reduce their lifetime, and even cause
fire or explosion due to thermal runaway. (i) The minimum and maximum operating voltage of
most Li-ion cells are in the range of 2.7 V and 4.2 V respectively. Charging a Li-ion cell with a
voltage higher than that specified can cause lithium plating on the anode surface, reducing the
availability of lithium ions and thus, resulting in an irreversible capacity loss. Lithium plating
can also lead to an internal short-circuit of the cell causing excessive temperature that damage
the cell. Similarly, discharging a Li-ion cell below its minimum threshold voltage results in a
gradual breakdown of the internal cell electrodes, reducing their lifetime. (ii) The maximum
current with which a cell can be charged depends upon the design of the electrodes. Increasing
the charging current significantly increases the temperature of the cell. In certain cases, the
cells experience an increased pressure at higher currents and start to swell due to generation of
gases inside the cell. If the mechanical clearance between cells in the pack is not adequate, it
will result in a short circuit situation. Likewise, discharging the cell with higher currents results
in an inherent capacity loss, which is referred to as the rate capacity effect. (iii) Temperature
influences the safety and performance of the battery. On one hand, at low temperatures, the
speed of chemical reactions slows down that results in a reduced current carrying capacity of
the pack. Prolonged operation at reduced temperatures (below 0 °C) will result in a premature
capacity loss of the pack. On the other hand, increased temperatures will result in catastrophic
effects causing fire or explosion.

Performance concerns: As mentioned in Section 1.1.4, automotive battery packs comprise
multiple series-connected Li-ion cells. The usable capacity (or the maximum energy output)
of such a pack is limited by the cell with the minimum charge level or SoC, compared to other
series-connected cells [66]. Thus, it is desirable to charge each cell to the maximum SoC thresh-
old to maximize the usable capacity. However, the charging process stops when a cell in the
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pack reaches the maximum SoC threshold despite other cells not being fully charged [67], as
shown in Figure 1.5a. Similarly, during discharging, when a cell reaches the minimum SoC
threshold, no more power can be drawn, despite there is residual charge in the other cells of the
pack, as illustrated in Figure 1.5b. Note that when all cells in the battery pack have identical
charge/discharge characteristics, this imbalance in the SoCs is not observed. However, realisti-
cally, there is a variation in the SoCs primarily due to the following reasons: (i) There might be
a variation in cell characteristics (up to 10%) due to manufacturing variances [68,69]. A Li-ion
cell is manufactured by mixing granular raw materials to form a slurry [70]. The variation in the
shape or size of the grains or in the composition of the slurry can lead to different characteristics
of the manufactured cells [71]. These differences become more profound when these cells age.
(ii) Non-uniform temperature distribution is also a major reason for the variation in the SoC
levels in the pack. It has been observed that the temperature closer to the cooling inlet is more
than 10 °C lower than the temperature farthest away [72]. Arrhenius’ law states that the rate of
chemical reactions doubles with every 10 °C rise in temperature [73]. Thus, with non-uniform
temperature distribution, each cell will have a different discharge characteristic. Moreover, the
internal resistance and the self-discharge rate of a cell also vary with temperature [74].

BMS tasks: Towards the aforementioned safety and performance concerns in a battery pack,
the BMS is required. Typically, the BMS performs the following tasks [75]: (i) A BMS com-
prises sensors to read cell parameters, i.e., voltage, current and temperature. Based on the sensor
values, it maintains the operation of the battery pack within the safety limits. For example, it
co-ordinates with the HVAC control unit to regulate the temperature. It also prevents overcharg-
ing by communicating with the charging station. (ii) Typically, BMS performs cell balancing
to equalize the charge levels of the series-connected cells in the battery pack. In passive cell
balancing, it determines the amount of charge that each cell must dissipate across the resis-
tor. In active cell balancing, the excess charge needs to be redistributed, and therefore, it runs
the control algorithm that determines the charge transfer pairs. In addition, it also generates
the pulse-width modulation (PWM) signals to drive the power-electronic switches that enable
charge transfer from the source to the destination cells. (iii) BMS computes the SoC of each
cell in the pack. SoC values are required to perform cell balancing, which maximizes the usable
capacity of the battery pack and therefore increases the driving range of the EV. BMS also
needs to estimate the SoH of the battery pack, i.e., the ability to deliver energy. It is extremely
important to accurately estimate the SoH such that the battery can be replaced at an appropriate
time without inconveniencing the car user.

1.2 Motivation and Challenges
Designing a CPS can generally be described as a multidisciplinary engineering process [76–78].
A general design flow of a CPS can be described as follows:

• The design starts with the mathematical model of the physical system provided by the process
engineers (e.g., mechanical, electrical, production, chemical, and/or biomedical engineers).
For example, if a medical device is being developed, the biomedical engineer would have the
necessary knowledge of the physical process, while for a complex cyber-physical manufac-
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turing system, mechanical, electrical, and production engineers come together to develop the
process model.

• Based on the process model, the control engineer develop the control algorithm to meet cer-
tain stability and performance requirements. The control engineer might not have sufficient
knowledge of the implementation platform. In such a case, certain assumptions are made
to design the controller. Later, if these assumptions are not realized by the implementation,
controller redesign might be necessary.

• The codes generated from the control algorithm are then integrated with other software com-
ponents (including operating systems, driver software, interfacing with peripheral devices,
interrupts, among others) by the software developer. When multiple applications share plat-
form resources, this software integration is supervised by the systems engineer. Systems
engineers have a good overview of the system and decide on the system architecture, i.e., the
mapping of the software components on the ECUs, the physical layout of the ECUs and their
interconnections.

• Each ECU is then analyzed by specialized computer engineers for timing and functional cor-
rectness.

• A group of network engineers designs the communication systems, i.e., mapping data frames
on to different communication links, scheduling the frames and analyzing communication
timings. Each communication system is designed by a specific group trained on the corre-
sponding communication protocol.

• At different stages of the design process, test engineers perform model-in-the-loop (MIL),
software-in-the-loop (SIL), and hardware-in-the-loop (HIL) tests to establish functional and
timing correctness up to the required standard.

Therefore, CPSs design requires close collaboration between a multidisciplinary team of engi-
neers [79]. However, in the current state-of-practice, collaborations have primarily been ad-hoc
and manual [80]. For the design of CPSs, there is a lack of well-established approaches that in-
tegrate the models and design philosophies of different engineering disciplines. Therefore, tra-
ditional CPSs design approaches have largely been sub-optimal and significant improvements
are possible through more comprehensive modeling and design.

1.2.1 Motivation towards Multi-Domain Coupling in CPSs Design

This thesis advocates systematic coupling of multiple interacting domains towards designing
safe, high-performance, and cost-efficient CPSs. In this context, we will provide two motiva-
tional examples concerning distributed control systems and active cell balancing respectively.
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Figure 1.6: Control response depends both on the control law and the software implementation.
Three controllers are designed as follows: (i) K1 is designed for a sampling period of 20 ms
and zero delay; (ii) K2 is designed assuming a sampling period of 20 ms and a delay of 10 ms;
and (iii) K3 is designed for a sampling period of 100 ms and a delay of 10 ms. (a) This figure
shows the variation of system response with delay for the same control law K1. It further
shows that a controller K2 designed appropriately considering the delay of 10 ms achieve the
same performance as obtained with K1 and zero delay. (b) This figure shows that when K1 is
implemented using a sampling period of 100 ms, it can result in an unstable system. However,
the controller K3 designed appropriately for 100 ms can stabilize the system.

1.2.1.1 Distributed control systems: A motivational example

We study a DC motor speed control system [81]. The physical dynamics of the motor in con-
tinuous time is given by the following equation:[

θ̈(t)
i̇(t)

]
=

[
−0.2 0.667
−10 −100

] [
θ̇(t)
i(t)

]
+

[
0

100

]
V (t). (1.1)

Here, θ(t) is the angular position of the motor, i(t) is the motor current and V (t) is the motor
terminal voltage at a time t. The speed of the motor (θ̇) can be controlled to achieve a reference
speed θ̇r by varying the voltage applied at the motor’s terminal based on the values of speed and
current of the motor.

We consider a distributed embedded implementation of the controller. We first assume that
the controller samples the system every 20 ms. With the sampling period h = 20 ms and in the
ideal case of zero delay (d = 0 ms) between sensing and actuation, the discrete-time dynamics
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of the system evolve as follows:[
θ̈[k + 1]
i̇[k + 1]

]
=

[
0.9953 0.0057
−0.0862 0.1349

] [
θ̇[k]
i[k]

]
+

[
0.0076
0.8643

]
V [k], (1.2)

where k denotes a sampling instant. We design a state-feedback controller K1 based on the
dynamical model in Eq. (1.2) using standard techniques, where the control law is as follows:

V [k] = −
[
42.1013 0.2452

] [ θ̇[k]
i[k]

]
+ 42.5747 θ̇r. (1.3)

That is, the voltage applied at the motor’s terminal can be calculated using Eq. (1.3). We
simulate the closed-loop system comprising the motor and the controller assuming zero delay
between sensing and actuation to obtain the unit step response, as shown in Figure 1.6(a).

Now, let us assume that the control algorithm is implemented using three tasks Ts, Tc and
Ta, where the execution times of the tasks are 1ms, 3ms and 1ms respectively. Here, (i) Ts
reads the sensor values, i.e., speed and current, (ii) Tc computes the control input V [k] using
the control law, and (iii) Ta applies the input to the motor using a voltage regulator. Thus, the
start times of the task Ts co-incide with the sampling instants while the actuation takes place
at the end of the task Ta. The tasks are mapped on different ECUs, each with a time-triggered
scheduler. The data between Ts and Tc is transmitted as a message ms and the data between
Tc and Ta is transmitted as another message mc. The messages are transmitted over CAN,
which exhibits fixed-priority non-preemptive scheduling. Now, let us consider two scenarios
where the worst-case delays in ms and mc are respectively given as (i) Case 1: 2ms and 3ms,
and (ii) Case 2: 6ms and 8ms. For both cases, we schedule the tasks such that the events
from sensing-to-actuation (Ts, ms, Tc, mc, and Ta) are in the correct temporal order. In the
first implementation, the sensing-to-actuation delay d is 10 ms, while it is 19 ms in the second
implementation. This clearly violates the assumption of zero delay that we have made while
designing the control law given in Eq. (1.3).

Now, we simulate the closed-loop system for a unit step reference signal with sensing-to-
actuation delay of 10 ms and 19 ms respectively. The response curves for these simulations are
depicted in Figure 1.6(a). For the delayed systems, note that the control input V [k] is computed
using Eq. (1.3), based on the values of speed and current obtained in the k-th sampling instant.
However, V [k] is applied d time units after the k-th sampling instant. It may be noted that the
overshoot and the settling time have increased from the ideal case with no delay. Thus, we may
say that the performance has deteriorated, and more importantly, it does not match the expected
values that were obtained during the controller design stage. This performance degradation
can be attributed to the delays introduced in the loop which we will study in more detail in
Section 2.1 in Chapter 2. Similarly, when the controller K1 is implemented using a sampling
period of 100 ms and a sensing-to-actuation delay of 10 ms, it cannot stabilize the system as
shown in Figure 1.6(b). Thus, a controller is not reliably designed if the timing properties of
the platform implementation are not accounted in.

Safety properties of embedded control systems is usually captured in terms of stability and
performance guarantees. We can observe in the above example that when the controller is
designed separately from the embedded platform and is oblivious to the implementation details,
no such guarantees at the implementation level are possible. In practice, costly testing and
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integration efforts are necessary to obtain an acceptable implementation by iteratively changing
the controller model and the platform parameters.

There is a mismatch between the actual response and the expected response. This is because
the dynamical model of the closed-loop system changes with differnt platform implementations.
For example, for a sampling period h = 20 ms and a delay d = 10 ms, the discrete-time system
model becomes:[

θ̈[k + 1]
i̇[k + 1]

]
=

[
0.9953 0.0057
−0.0862 0.1349

] [
θ̇[k]
i[k]

]
+

[
0.0025
0.6321

]
V [k] +

[
0.0051
0.2323

]
V [k − 1]. (1.4)

Likewise, in case of h = 100 ms and d = 10 ms, the dynamical model is given as follows:[
θ̈[k + 1]
i̇[k + 1]

]
=

[
0.9743 0.0065
−0.0977 −0.0006

] [
θ̇[k]
i[k]

]
+

[
0.0528
0.9952

]
V [k]+

[
0.0065
−0.0006

]
V [k−1]. (1.5)

Both Eq. (1.4) and Eq. (1.5) are different from the model in Eq. (1.2).
Now, we design controllers K2 and K3 based on the dynamical models in Eq. (1.4) and

Eq. (1.5) respectively. K2 can be written as follows:

V [k] = −
[
43.9035 0.2946

] [ θ̇[k]
i[k]

]
− 0.2363 V [k − 1] + 44.4862 θ̇r. (1.6)

K3 is given by:

V [k] = −
[
12.666 1.1146

] [ θ̇[k]
i[k]

]
+ 0.9546 V [k − 1] + 13.0184 θ̇r. (1.7)

We simulate the closed-loop system with K2 and K3 according to their respective design
assumptions and the system responses are given in Figure 1.6(a) and Figure 1.6(b) respectively.
It can be observed that using K2, we can obtain a better response than K1 for the same im-
plementation. This shows that control performance can be improved if platform details are
appropriately considered during the controller design. On the other hand, Figure 1.6(b) shows
that the control response using K3 is stable. Moreover, if the performance of K3 is acceptable
according to the design specification, the implementation of K3 with a higher sampling period
of 100 ms is highly efficient (5 times) in terms of resource usage. This is because the tasks are
executed and the messages are sent only once in 100 ms. With a sampling period of 20 ms, the
same tasks and messages are repeated 5 times within a period of 100 ms. For the cases where
the design assumptions are preserved in the implementation, note that K3 does not perform
as good as K1 and K2. This shows that the reduction in resource usage comes at the cost of
performance and there exists a trade-off between the two.

Summary: This example shows that by studying the integrated models of the physical system,
the control law, and the platform implementatiion of the control software, it is possible to design
a controller that is stable, offers good control performance, and uses less resources.
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(a) Heuristic Approach (b) Optimal Solution

Figure 1.7: Optimal cell balancing vs existing heuristics. The heuristic takes 15 time units
for cell balancing while the optimal approach takes only 10 time units. The heuristic selects
non-neighbor charge transfer pairs of cells more often than the optimal approach, however,
transfering charge over a larger distance results in more energy dissipation.2

1.2.1.2 Active cell balancing: A motivational example

In active cell balancing, charges are transferred between cells in the pack until the SoCs of the
cells are within a certain threshold (i.e., approximately equalized). Thus, a cell balancing algo-
rithm selects charge transfers and schedule them such that the SoCs of the cells are equalized
eventually. However, there are numerous combinations of charge transfers that can lead to a

2The values presented in this figure are only approximate for the ease of understanding and not based on
profound mathematical models of charge transfer.
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balanced battery pack. For selecting a combination, the two main objectives are to minimize
energy dissipation and balancing time respectively [82–84].

Let us take an unbalanced battery pack of 4 cells with charge levels at 90 %, 75 %, 70 %, and
85 % respectively, in order of their serial connection. Here, charge is measured as a percentage
of full charge that a cell can hold. Now, consider a heuristic that selects the weakest cell among
the set of available cells as the charge receiver. Then, in the neighborhood of the receiver cell, it
looks for the donor cell that has the maximum charge level among the cells with which it can be
feasibly paired. For charge transfers, we consider the circuit architecture explained in [85]. In
this architecture, charge is transferred between cells via a charge transfer bus where concurrent
charge transfers are allowed, however, with certain restrictions. The details of this architecture
are provided in Section 2.3.

Using the heuristic, two charge transfers are successively selected in the aforementioned
example for cell balancing as shown in Figure 1.7(a). To begin with, the third cell has the
minimum charge at 70 % and therefore is selected as the receiver cell, while the first cell is the
donor with maximum charge at 90 %. The first cell transfers 10 % charge to the third cell until
their charge levels become equal at 80 %. During this charge transfer, the second cell becomes
unavailable for simultaneous charge transfer because the part of the bus from the first cell to the
third cell is already in use and no two charge transfers can have overlapping current flow paths
to prevent a short-circuit condition. This constraint is discussed in detail in Section 6.3.2.1.
Although the second and fourth cell are not equalized, they have to wait until the charge transfer
from the first to the third cell is concluded. After having waited, the second cell becomes the
receiver with minimum charge level at 75 % while the fourth cell is the donor with maximum
charge level at 85 %. Thus, 5 % charge is transferred from the fourth cell to the second cell till
they become equalized at 80 %. Now, all four cells in the pack have 80 % charge and the pack
is balanced. Assuming that 1 time unit is required to transfer 1 % charge, the total time taken
by the heuristic is 15 time units. Moreover, note that 15 % charge is transferred between non-
neighbors. Non-neighbor charge transfers have more energy dissipation compared to neighbor
transfers due to more resistances in the current flow path accounting for more switches and
longer wires. More details on energy dissipation will be provided in Section 2.3 and Section 6.3
respectively.

Now, the question is: Is there a charge transfer schedule that is more optimal with respect
to the design objectives of energy dissipation and balancing time? Here, we consider an alter-
native solution as depicted in Figure 1.7(b). This solution first schedules two charge transfers
in parallel, i.e., the first cell and the fourth cell transfer 5 % charge to the second cell and the
third cell respectively. After these transfers, the first cell transfers 5 % charge to the third cell,
thereby, resulting in a balanced battery pack. In this solution, 15 % charge is transferred in
10 time units by scheduling parallel transfers, thus, the solution is time-efficient. On the other
hand, 10 % charge is transferred between neighbors that is more energy-efficient. This solution
is better than the heuristic both in terms of resource usage (i.e., less energy dissipation) and
control performance (i.e., lower balancing time) respectively.

Summary: This example shows that a heuristic solution to cell balancing can be sub-optimal
if it is oblivious to the physical models of charge transfer between cells and the constraints of
the underlying charge transfer circuit architecture. A more integrated modeling and advanced
design space exploration is necessary for an optimal control of the cell balancing process.
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1.2.2 Challenges towards Multi-Domain Coupling in CPSs Design
It is established in the last section that multi-domain coupling is necessary to synthesize safe,
high-performance and resource-efficient CPSs. However, there are several challenges to be
addressed before multi-domain coupling can be realized for industrial-sized systems [86, 87].

• CPSs comprise heterogeneous models [88,89], coming from different engineering disciplines,
that might not be trivial to integrate. For example, a physical system evolves continuously
according to a set of differential equations while the corresponding controller might be dis-
patched periodically and after each dispatch it contest for the resource based on a certain
scheduling policy that can be represented using a finite state machine. An emerging ap-
proach to model such a hybrid system uses finite state automata, where system properties
like reachability and safety expressed as linear temporal logic (LTL) formulae can be verified
using well-established theories of computer science like model checking and game theory.
Although there has been sufficient emphasis on studying “hybrid control systems” [90–92],
existing solutions are still not scalable to realistic industrial systems.

• Design philosophies traditionally followed in different design domains are also very different
from each other. For example, a controller is designed by finding the correct set of parameters
like closed-loop poles, sampling period and delay, which optimize the QoC. Due to non-
linear dependence of QoC on these parameters and platform induced constraints on them,
the control design problem does not fit into any standard closed-form framework for optimal
control. Therefore, one needs to search for the optimal pole values either exhaustively or
using heuristics. Moreover, the controller for each application is designed separately. On
the other hand, the platform design problem is often formulated as a constraint programming
model. It must consider all applications that are mapped on the shared platform. The designed
values of the sampling periods and delays from the control design stage can be translated into
constraints for the platform design. However, in case a feasible solution does not exist, it is
difficult to systematically determine which controllers need to be redesigned. An even more
difficult question is what is the optimal way of redesigning the controllers to obtain a feasible
platform configuration [93].

• Integrated design of CPSs consists of large number of design dimensions coming from dif-
ferent design domains. For example, a combined design space of controllers and platform
parameters is huge and challenging to handle. Such synthesis problems require considerable
computational effort. This is aggravated by the increase in the system size. Therefore, the
scalability of the design space exploration (DSE) technique is an important criterion to be
considered before applying it to industrial-sized systems.

• The requirements from different design domains might be conflicting to each other. For ex-
ample, control engineers try to design optimal controllers with respect to QoC while systems
engineers aim to minimize the overall system cost pertaining to resource usage. In most
cases, the more is the resource attributed to a control application in terms of computation
time and communication bandwidth, the higher is the QoC. Therefore, it is important to study
the trade-off between the two design objectives. It is also desirable to allocate resource to
applications in a way such that an optimal trade-off between QoCs of different applications is
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achieved. Thus, the integrated design of controllers and platform parameters translates into a
non-trivial multi-objective optimization problem.

• CPSs design typically involves a disjoint set of tools offered by different suppliers [94]. Each
tool is a product of years of experience in specific domain. Tool developers mostly have a
particular set of expertise. Thus, it is challenging to extend one tool and incorporate the func-
tionalities of the other (from a different domain) without compromising the quality. Corre-
spondingly, an integrated toolchain will require a strong collaboration among tool developers
from different domains.

In this thesis, we explain our efforts to address these aforementioned challenges for a more
comprehensive design of distributed control systems and cell balancing algorithms.

1.3 Evolution of Design Approaches for CPSs

Over the last 10 years, the concept of CPS emphasizes the integrated modeling and analysis of
computational platforms and the physical processes that are controlled by such platforms. In
this section, we briefly study the evolution of design paradigms for CPSs. For a more detailed
study, please refer to [5]. Here, we first study the problems with separation of concerns, where
controller design and platform implementation are carried out in isolated design spaces without
sufficient knowledge of each other. Subsequently, we discuss the CPS-oriented approaches and
broadly classify them in terms of whether (i) the implementation platform is fixed and the con-
trol algorithm is adapted to fit the platform architecture (as in networked control systems (NCS)
where the characteristics of the wireless network such as delay and packet loss probabilities
are given and the control algorithms are designed taking them into account), (ii) the control
algorithm and its assumptions are given and the platform is designed to meet these assumptions
as closely as possible (e.g., by designing appropriate scheduling and resource allocation poli-
cies), or (iii) it is a true co-synthesis where the parameters of the control algorithms and the
implementation platform are jointly determined within an integrated optimization framework.

1.3.1 Separation of Concerns

Automatic control: It is a well-studied subject with several decades of history and a large pool
of design methods. Early works on design and analysis of a control system have focused on
the mathematical model of the closed-loop system, including the plant and the controller. The
controller is designed such that the system is stable and certain performance requirements are
satisfied. In this context, different notions of stability (e.g., stability in the sense of Lyapunov,
asymptotic stability, and exponential stability) [95] and several performance metrics (e.g., set-
tling time, peak overshoot, and integral cost) have been defined [96]. Several standard control
design techniques are known [97], i.e., (i) pole-placement allows to design stable controllers,
(ii) linear quadratic regulator (LQR) optimizes a quadratic cost function on state and control in-
put when the states are fully known, and (iii) linear quadratic Guassian (LQG) control optimizes
the cost function using a Kalman filter when all the states are not measurable. However, these
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Figure 1.8: Separation of concerns: Control and platform parameters are designed separately
followed by integration and testing.

techniques do not directly consider implementation related details like non-negligible and vari-
able times for software execution and data transmission, faulty networks, and finite precision
arithmetic.

Platform design for embedded systems: It is also studied extensively and is composed of sev-
eral stages: (i) task partitioning and mapping, (ii) frame packing (for communication messages),
and (iii) task and frame scheduling. Platform design and analysis consider timing properties,
e.g., application latencies, periods, relative deadlines, task execution times, and message frame
transmission times. The main focus has been to synthesize implementations that are schedula-
ble (i.e., all real-time software tasks meet their deadlines) and resource-efficient (i.e., minimum
usage of computation and communication resources). Time-triggered (e.g., OSEK time and
FlexRay static segment) and event-triggered implementations (e.g., OSEK and CAN) of soft-
ware algorithms have been studied in the literature.

In time-triggered implementations, a task is executed or a message is transmitted in an al-
located time window. These time windows for all tasks and messages in a system are often
calculated by solving a constrained optimization problem [98–101]. Typical constraints in-
clude: (i) Processor utilization and bus load can be at most 100 % or as given by the design
specification. (ii) Temoral order of the tasks and messages in an application must be respected,
e.g., sensor task must first read the sensor values and then only controller task can calculate the
control input according to the control law. (iii) No two tasks or messages mapped on the same
resource (processor or bus) must have overlapping time windows.

On the other hand, in event-triggered systems, tasks and messages are dispatched based
on events and then they are scheduled based on certain scheduling policies. Typical schedul-
ing policies include fixed-priority preemptive (e.g., OSEK) and non-preemptive (e.g., CAN)
scheduling and dynamic-priority scheduling (e.g., earliest deadline first). In fixed-priority
scheduling schemes, the main design paramters are the priorities of the tasks and messages.
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Typically, priorities are assigned based on well-known heuristics like rate-monotonic and
deadline-monotonic scheduling. For event-triggered scheduling policies, there exists different
schedulability tests [102, 103] and worst-case response-time analysis techniques [104–108].

Although there exists a rich literature of works for the design and analysis of embedded
platforms, the existing theory is not directly applicable to control applications. This is because
control requirements like stability and performance cannot always be expressed as timing prop-
erties like deadline and period, and however, when expressed in such a form, the parameters
can be overly pessimistic.

The semantic gap: In the context of CPSs, the separate design of controllers and platform
parameters leads to a semantic gap between the system models considered in the controller
design and the actual implementation.

On one hand, the controller design only considers the mathematical model of the phys-
ical plant. Therefore, system stability and performance are derived without considering the
cyber part, i.e., the implementation on the embedded platform. However, the implementation-
related timing properties like sampling period and sensing-to-actuation delay may degrade the
performance and in the worst case may also cause system instability. Thus, the semantics of
the control models may not be preserved in the implementation when the controller design is
oblivious to the implementation details.

On the other hand, the synthesis of platform parameters are based on the software-level
timing details and does not consider control-theoretic metrics like stability and performance.
An incorrect timing characterization of control properties can result in an inconsistency between
models and their implementation. For example, the performance requirement can enforce a
strict constraint on application latency which if not correctly modeled may not be satisfied by
the implementation.

Hence, it is difficult to design a safe CPS with such a separation of concerns due to the
associated semantic gap. We define a CPS to be safe when the corresponding software imple-
mentation meets the control requirements on stability and performance even in the worst case.
Now, to ensure safety with the separation of concerns, the whole process is usually carried out
in an iterative manner as shown in Figure 1.8. Here, the controllers and platform parameters
are separately designed followed by integration and testing. In case a test shows that the re-
quirements are not met, the steps are reiterated, possibly without any systematic feedback for
improvement. This paradigm relies strongly on the prior experience of engineers and can be
error-prone. With the increasing size and complexity of modern embedded systems, this design
paradigm is not sustainable. This leads to the need for new design approaches that can guarantee
safety in a correct-by-design manner and do not depend on testing.

1.3.2 CPS-Oriented Design Approaches

Due to the strong interplay between controller and platform designs, they are gradually coming
closer towards a more CPS-oriented design paradigm.

Platform-aware controller design and analysis: Control theorists have started accounting for
implementation details and constraints of the underlying embedded platform and are integrating
them in the mathematical models for controller design. In control theory, there exists mature
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Figure 1.9: CPS-oriented approaches: (i) In platform-aware controller design and analysis,
controllers are designed or control properties are analyzed considering the details of the imple-
mentation details. (ii) In controller-aware platform design and analysis, platform parameters
are designed or analyzed based on controller specification.

design and analysis techniques to handle delayed systems [97] which can be applied to consider
fixed sensing-to-actuation delay. Moreover, for multi-output systems, there might be a different
delay for each actuation signal that must be considered while determining the control law [109].
However, in event-triggered systems, task executions and message transmission do not occur in
precise time windows, and therefore, controller design must consider these timing uncertainties.
Towards this, Cervin et al. in [110] has proposed an analysis of system stability and worst-case
performance considering both sampling and actuation jitters. On the other hand, [111] has
proposed to do proactive delay compensation for improving performance in the presence of
large output jitters in wireless multi-hop networks.

Traditionally, controllers are implemented as hard real-time applications using only high-
quality resources that offers a certain level of timing determinism. However, this is expen-
sive especially for the cost-sensitive CPS domains. In the last decade, there have been works
showing that the inherent robustness in the control loops allows the tasks to miss deadlines
and packets to be dropped. In such cases, control loops are modeled as switched systems and
are analyzed to derive weakly-hard constraints that must be satisfied during the implementa-
tion [112–117]. These constraints are typically expressed as (m, k)−firm rule which states that
at least m out of k times the control loop must be successfully closed.
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Besides timing uncertainties, there are also constraints on the choice of sampling periods.
For example, only a discrete set of periods are allowed in OSEK due to a limited number of
timers. For such a constraint, the straightforward scheme is to find the largest sampling period
from the pre-configured set for which a controller can be designed satisfying the requirements.
However, this might result in using an unnecessarily high sampling rate, and thereby overload-
ing the processor. To address this issue, [117, 118] have proposed to design resource-efficient
controllers with non-uniform sampling.

Besides the timing details of the implementation, stability and control performance are also
influenced by the quantization errors that occur due to the finite-precision arithmetic in proces-
sors. Towards this, there have been works on quantization error aware verification of control
software [119–122], where the goal is to verify that the final state of the system is within a
bounded region of the equilibrium state. Furthermore, Majumdar et al. in [123] have proposed
to synthesize controllers by co-optimizing the LQR cost function and the quantization error,
thereby constructing a Pareto front of the two objectives.

In summary, platform-level details like sensing-to-actuation delay, sampling and actuation
jitter, packet drops, deadline misses, and finite-precision arithmetic are modeled and considered
in the controller design phase, so that the designed controllers are platform-aware.

Controller-aware platform design and analysis: In this design paradigm, engineers study
properties of control loops and consider them in the design of embedded platforms. As men-
tioned earlier, control stability and performance are influenced by the choice of platform pa-
rameters. Thus, during the platform design, if these control properties are considered as con-
straints, then it is possible to synthesize CPSs in a correct-by-construction manner. In this
context, [124,125] have suggested techniques to calculate priorities and periods of control tasks
for fixed-priority preemptive scheduling in the processor while ensuring stability and maximiz-
ing control performance respectively. Similarly, [126] has proposed a heuristic to efficiently
compute time-triggered schedules for control tasks and messages. Furthermore, in [127, 128],
server based scheduling of control tasks has been studied, where parameters of control servers
are synthesized by taking into account the stability and worst-case performance requirements
of controllers. While these works consider implementation of controller only, there have been
studies that consider a mixed-criticality system settings. In such a setting, control and non-
control tasks are considered together. While for non-control tasks, deadlines need to be met,
for control tasks, stability and performance need to be guaranteed. Here, Wu et al. in [129]
determine periods and deadlines of control tasks for the EDF scheduling policy such that all
tasks meet their deadlines while the overall performance of the system is maximized. Schneider
et al. in [130,131] calculate priorities of all tasks in the system for the fixed priority scheduling
scheme while maximizing the system performance.

While control theorists have derived (m, k)−firm constraints for controllers implemented
using unreliable platform resources, these constraints can also be exploited to design resource-
efficient implementations. In this context, Majumdar et al. in [116] have proposed a static
scheduling algorithm that satisfies the (m, k)−firmness of all controllers and at the same time
tries to maximize the overall performance of the system. In the same vein, there have been
works analyzing or formally verifying (m.k)−firmness of controllers for given implementa-
tions [4, 132–134].
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To minimize resource usage, event- and self-triggered controllers are studied. In event-
triggered control, the control law is executed only when a certain error threshold is violated for
the current system states [135]. This decision is taken by a feedback scheduler that also monitors
the system states. On the other hand, self-triggered controllers calculate the current control
input and also the next sampling instant based on the current system states [136]. Therefore,
they do not require an additional feedback scheduler. For these control schemes, triggering
instants are determined based on different stability and performance requirements [137–139].
Schedulability of event- and self-triggered controllers is also an important design aspect [140,
141].

Towards reducing system cost, researchers have further studied multi-resource platforms
consisting of high- and low-quality resources [142, 143]. While high-quality resources offer
timing guarantees, they are expensive, and therefore, they must be optimally distributed. In
this context, hybrid implementation of controllers have been proposed, where a controller uses
low-quality resources when the system is in steady state while it requests to switch to high-
quality resources on disturbance [144]. For such implementations, tighter dimensioning of
expensive high-quality resources have been considered by appropriate analyses of control re-
quirements [145, 146].

To summarize, the controller implementation (e.g., schedule paramters for tasks and mes-
sages) can be tuned according to control objectives like stability and performance, rather than
solely on intermediate objectives like deadline and latency.

Safe, yet not optimal: The aforemetioned CPS-oriented approaches, as shown in Figure 1.9,
consider realistic platform details while designing a controller or they study control specification
for platform implementation. In particular, they mathematically translate control properties
into timing characteristics and vice-versa to bridge the semantic gap between controller and
platform designs. However, these methods consider the parameters on one side as given and
design the parameters on the other side accordingly, and thus, there is a limited opportunity
for optimization. They may result in a sub-optimal design configuration with respect to control
performance, resource efficiency or both. In order to achieve higher design efficiency, it is
important to design the control and the platform parameters together from joint specification in
a holistic optimization framework.

1.3.3 Control-Platform Co-Synthesis for CPSs
In the cost-sensitive automotive domain, it is not only necessary to ensure safety but it is equally
desirable to achieve design optimality. We emphasize on the importance of control-platform co-
synthesis for CPSs towards safe and optimal designs.

In recent years, several control-platform co-synthesis approaches have been proposed that
consider the design of control and platform parameters as a holistic optimization, as shown in
Figure 1.10. Generally, the co-synthesis problem is formulated as a non-convex optimization
problem and is solved using a customized DSE technique. The solutions provide both sets of
parameters that are tuned according to certain objectives like control performance and resource
usage. Therefore, the synthesized parameters represent an optimal design configuration. More-
over, the control model semantics are fully preserved in the implementation. This is because
the controllers are designed according to the detailed constraints from the platform side and the
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Figure 1.10: Control-platform co-synthesis for CPSs: Control and platform parameters are
designed in an integrated optimization framework.

platform parameters are synthesized considering stability and performance requirements from
the control side. The synthesized parameters are, therefore, correct-by-design and ensure safety.

Co-synthesis approaches: One of the earliest approaches on integrated controller design and
scheduling is proposed by Aminifar et al. in [147]. This approach synthesizes LQG con-
trollers, sampling periods, and scheduling priorities of control tasks, while maximizing the
expected control performance and guaranteeing the worst-case performance. Here, an iterative
hybrid optimization technique is employed where the outer layer performs search on the periods
and the inner layer assigns priorities to the control tasks based on control-theoretic properties.
Later, [148] extends [147] to consider controller-server co-design, where controllers and server
parameters are designed simultaneously.

For distributed embedded controllers, communication schedules must also be calculated
during the co-synthesis. [149] is one of the first few works to propose a control-platform co-
synthesis approach for distributed systems, where both static cycling scheduling and priority
based scheduling is studied. In these settings, controllers, sampling periods, and static sched-
ules (or priorities) are determined using nested two-layer optimization technique. For priority-
based scheduling, genetic algorithm is used in both layers to decide on the periods and prior-
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ities respectively, while in case of static scheduling constrained logic programming is used to
determine the static schedules in the inner layer. Later, [150] extends this work with specific
characterization of the FlexRay parameters. Similarly, Aminifar et al. in [151] have extended
the approach developed for single-processor architecture [147], with added complexity due to
schedule computation for the CAN bus.

Challenges and future outlook: There exist multiple challenges that need to be addressed,
if the aforementioned approaches are to be applied to industrial-scale systems. As described
in detail in Section 1.2.2, these challenges include complex and large design space, model
integration, appropriate objective formulation, and lack of integrated toolchains. Moreover,
existing approaches have not thoroughly considered several aspects of platform architectures,
e.g., memory hierarchy [152], heterogeneous networks [153], or multi-core processors [154] –
all of which are common in modern embedded systems. Furthermore, they also do not take
into account complex characteristics of control systems, e.g., time variance, nonlinearity, or
input saturation. Hence, control-platform co-synthesis is a promising research direction with a
number of open problems.

1.4 Contributions and Organization
Contributions: In this thesis, we propose correct-by-construction approaches for the design
of distributed control systems and cell balancing algorithms respectively. Our works mainly
have a CPS-oriented approach and can be categorized under controller-aware design of em-
bedded platforms, platform-aware design of control algorithms, and control-platform co-design
respectively. The proposed techniques study integrated models of the systems and therefore,
optimize design objectives more comprehensively. These optimization objectives are control
performance and resource usage for distributed control systems and energy dissipation and
balancing time for cell balancing algorithms. Although our proposed techniques are mainly
targerted towards automotive CPS, these approaches can either be applied directly or extended
to other CPS settings. For example, distributed control systems are also common in other CPS
domains like avionics and industry automation. Similarly, battery packs are used in smart grids
as well. Moreover, the charge transfer circuits for cell balancing are analogous to transportation
networks. That is, two charge transfers cannot be scheduled simulataneously if their current
flow paths overlap, which is similar to the consideration that conflicting traffics cannot enter a
road intersection at the same time. Thus, our proposed approach for scheduling charge trans-
fers can be extended to manage traffic intersections and replace existing techniques, e.g., [155].
Nevertheless, in the context of automotive CPSs, we make the following contributions in this
thesis.

• We propose a co-optimization approach for a time-triggered distributed CPS comprising mul-
tiple control applications. The proposed approach maximizes the average control performance
of the system and minimizes the resource usage, while for each application, it determines the
control law and the task and message schedules implementating the controller. Note that
the two design objectives are often conflicting, i.e., to improve control performance more re-
sources need to be allocated to the controllers. The co-optimization approach consists of two
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stages. In the first stage, several optimal controllers are predesigned for each application con-
sidering all feasible implementations. In the second stage, a customized hybrid optimization
technique is used to construct a Pareto front. Here, a Pareto point is a valid design configura-
tion showing a trade-off between the objectives and comprising a set of controllers and their
implementation parameters corresponding to the set of applications.

• We also address the challenge of incorporating the aforementioned state-of-the-art co-
optimization approach in commercial-off-the-shelf (COTS) tools for the design of automo-
tive systems. We have developed an integrated tool-suite Co-Flex for automated design
and implementation of distributed control systems. Co-Flex comprises standard tools from
MATLAB/Simulink for the modeling and analysis of control systems. On the other hand,
Elektrobit’s SIMTOOLS is used for the specification, modeling and analysis of the embedded
platforms. In addition, Co-Flex offers a library comprising template blocks that can be con-
figured to specify details of a distributed control application, e.g., the plant to be controlled,
the control requirements, how the controller is mapped on the platform, among others. Us-
ing these information, a tool can be invoked to predesign prospective optimal controllers for
the application, i.e., the first stage of the co-optimization. Furthermore, a tool is offered that
automatically reads all relevant information provided in the Co-Flex and SIMTOOOLS spec-
ification blocks. Based on the extracted specification, a tool runs the hybrid optimization to
generate the Pareto front. The systems engineer can select the preferred design configura-
tion, i.e., the Pareto point with the optimal trade-off between average control performance
and resource usage. Based on designer’s choice, the software model is automatically created
using Simulink and SIMTOOLS. From this model, binaries can be generated for all ECUs
using Simulink Real-Time Workshop (RTW) and Elektrobit’s SIMTARGET. These binaries
can then be flashed on to the respective ECUs.

• We synthesize a cost-efficient static communication schedule for a set of distributed con-
trol applications mapped on a heterogeneous multi-resource platform. Here, system cost is
reduced by sharing expensive high-quality resources among the applications such that each
application gets only the minimum required amount of such resources, while for the remain-
ing time the controller uses cheaper low-quality resources. Here, a thorough analysis of the
control dynamics is needed for the switching scheduling strategy. Based on the results of
the analysis, we formulate a constrained optimization problem to determine the schedules
of the applications such that the minimum amount of high-quality resources are used, while
guaranteeing that all applications meet their worst-case performance requirements.

• For the same problem setting as above, we also propose a dynamic scheduling strategy for the
distributed controllers. According to the proposed strategy, an application uses low-quality
resources when the controlled plant is in steady state, and it requests the scheduler to switch
to high-quality resources on the arrival of a disturbance. The scheduler arbitrates between
requests based on their criticality, which is determined by the time an application can still wait
for the high-quality resources without violating its control requirement. Once an application
gets the high-quality resources, it uses them at least until a certain minimum performance
is guaranteed. For such a dynamic scheduling scheme, we also propose a nested two-layer
optimization approach to determine the minimum amount of high-quality resources necessary
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to meet the requirements of all applications. The approach comprises a first-fit heuristic in
the outer layer and model checking of a network of timed automata (TAs) in the inner layer.

• We study a BMS architecture where SoCs of all cells are reported to a master ECU that de-
termines a charge transfer schedule for cell balancing. This enables the master ECU to take a
holistic control decision considering the optimization objectives. For this setup, we propose a
closed-form optimal approach to minimize the total energy dissipation during cell balancing.
We exploit the electrochemical properties of Li-ion cells and appropriately model the charge
transfer process considering the underlying control circuits. We show that the total energy
dissipation in a charge equalization process depends only on the choice of charge transfers
(i.e., pairs of cells and their durations of charge transfer) and not on the exact schedule of the
charge transfers. Thus, we can formulate a mixed-integer linear programming (MILP) with
charge equalization as the constraint and minimization of energy dissipation as the objective.
Solution to the MILP gives the amount of time each feasible pair of cells must be scheduled
for charge transfer to realize charge equalization with minimum energy dissipation. Subse-
quently, these charge transfers are scheduled using an appropriately scheduling algorithm.

• In the context of cell balancing, we also propose an optimal technique to minimize the bal-
ancing time for the aforementioned BMS setup. Here, we show that for a given set of charge
transfers, we can formulate a minimum vertex coloring (MVC) problem to schedule them
in minimum time while respecting the constraints of the underlying charge transfer circuit.
Here, we represent the scheduling conflicts between charge transfers in a graph where each
vertex is a unit charge transfer time between a pair of cells and an edge between two vertices
imply that the corresponding two charge transfers cannot be scheduled at the same time. We
further prove that the constructed graph is an interval graph, i.e., the vertices can represent
an interval on real line and an edge between two vertices means that the corresponding two
intervals overlap. Next, we exploit the properties of the interval graphs and the characteris-
tics of the cell balancing problem to derive a linear expresssion for balancing time in terms
of durations of charge transfer between the feasible pairs of cells. Thus, we can use the de-
rived expression as the optimization objective to formulate an MILP that also considers the
constraint for charge equalization. Solution to the MILP provides a set of charge transfers
which when scheduled using the MVC algorithm for interval graphs will guarantee minimum
balancing time. Note that the proposed optimization approach consists of two stages, i.e., the
MILP and the MVC, however, the algorithm used in the second stage influences the objective
formulation in the first stage.

Organization: The remaining chapters of this thesis provide the necessary mathematical back-
ground and describe our proposed techniques and tools. The organization of the rest of this
thesis is explained as follows:

• Chapter 2 provides the existing mathematical models for the problem settings studied in
this thesis. In particular, it discusses the necessary mathematical background on (i) feed-
back control systems, (ii) time-triggered software tasks, (iii) FlexRay communication, and
(iv) charge transfer circuit architectures for active cell balancing. Furthermore, it briefly ex-
plains the well-known optimization techniques that we have employed in our works, i.e.,
MILP, Satisfiability Modulo Theories (SMT), and MVC.
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• Chapter 3 explains the proposed co-optimization approach for distributed control systems
that synthesizes controllers and platform paramaters simultaneously, while maximizing the
average control performance and minimizing the resource usage.

• Chapter 4 illustrates the proposed tool-suite Co-Flex that integrates existing COTS tools (like
MATLAB/Simulink and SIMTOOLS/SIMTARGET) and also offers additional tools to facil-
itate convenient and automated design and implementation of distributed control systems for
an automotive setting.

• Chapter 5 describes the proposed static and dynamic scheduling approaches for distributed
control applications that enables tighter dimensioning of the expensive high-quality resources
in a heterogeneous multi-resource CPS setting.

• Chapter 6 outlines our efforts in the design of optimal control algorithms for active cell bal-
ancing that determine the energy-optimal and the time-optimal schedules respectively for
charge transfer between feasible pairs of cells.

• Chapter 7 concludes this thesis with the main takeaway points and provides some promising
future directions in the area of modeling, design and analysis of CPSs.
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2
Mathematical Background

In this thesis, we study existing models from different design domains of CPSs and try to mathe-
matically derive the interplay between them. We formulate design optimization problems using
these models and by properly characterizing the interplay variables. These problems are then
solved by combining different well-established optimization techniques depending on the char-
acteristics of the problems. Towards better understanding of our proposed design approaches,
this chapter provides the necessary mathematical background.

Chapter Organization: This chapter is organized in four sections. Section 2.1 introduces feed-
back control systems and derives the equivalent discrete-time mathematical models for delayed
systems from the continuous-time models. Furthermore, it states the stability condition for
such systems and explains a controller design technique that guarantees asymptotic stability.
In Section 2.2, we discuss time-triggered scheduling of tasks and provide the timing models
of time-triggered tasks. Subsequently, we summarize relevant details of FlexRay protocol and
model the two scheduling schemes supported by FlexRay. Section 2.3 explains the working
principle of two different charge transfer architectures and derives the mathematical models of
charge transfer between two cells using these architectures. In Section 2.4, we outline different
optimization and verification models used in this thesis. In particular, linear programming (LP),
integer linear programming (ILP), mixed-integer linear programming (MILP), particle swarm
optimization (PSO), Satisfiability Modulo Theories (SMT), timed automata (TAs), and mini-
mum vertex coloring (MVC) are discussed with examples.

2.1 Feedback Control Systems
Control systems form an integral part of technological advancement in almost every field. We
may say that control systems help to derive intended functionality from machines and make
processes run adapting to the environment variables. More often than not, control systems
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Controlled 
Plant

Actuators

Sensors

manipulated variable 

controlled variable

State Estimation

control input

reference

plant output
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Control Action
state

Figure 2.1: Block diagram representing feedback control systems. In such systems, the control
action is taken based on the states of the system. When all states are not measurable, it is
required to estimate them.

are based on the theory of feedback as depicted in Figure 2.1. In feedback control systems,
control action is decided based on (i) the values of the state variables of the controlled plant and
(ii) the reference that the plant must follow. In practice, some variables of the plant may not
be measurable, and therefore, the corresponding values are estimated using an estimator. The
basic idea is to mitigate the error between the plant output and the reference and correspondingly
manipulate the plant satisfying some high-level requirements on safety and performance.

2.1.1 Continuous-Time State-Space Model
In this thesis, we study linear and time-invariant (LTI) feedback control systems. The state-
space mathematical model of the dynamic behaviour of such a system in continuous time can
be represented by the following differential equations:

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), (2.1)

where the vectors x(t) ∈ Rn×1, y(t) ∈ Rp×1, and u(t) ∈ Rm×1 represent the system states, the
system output, and the control input respectively at time instant t1. Here, the constant matrices
A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n are respectively the state, the input and the output
matrices.

Example: DC Motor Speed Control System

• The system dynamics of a DC motor speed control system are given by the following differ-
ential equations:

Jmθ̈m + bmθ̇m = Kt,mim,

Lmi̇m +Rmim = Vm −Kb,mθ̇m,

1R represents the set of real numbers.
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2. Mathematical Background

Figure 2.2: DC motor speed control system. The voltage across the motor armature can be
varied to control the motor angular speed.

where, (i) the constants are as follows: Jm is the moment of inertia of the rotor, bm is the mo-
tor viscous friction constant, Kt,m is the motor torque constant, Lm and Rm are the electric
inductance and resistance respectively of the motor armature circuit, and Kb,m is the elec-
tromotive force constant; and (ii) the continuous variables are as follows: θm is the motor
angular position, im is the motor current, and Vm is the voltage applied at the motor armature.

• In a DC motor speed control system, we need to regulate the speed. Thus the system output
is given by:

y = θ̇m.

• Speed can be controlled by manipulating the voltage at the motor armature. Thus, the control
input is given by:

u = Vm.

• By studying the system dynamics given by the differential equations, we can determine the
state vector as follows:

x =

[
x1

x2

]
=

[
θ̇m
im

]
.

• The state-space model is, therefore, given by: θ̈m = − bm
Jm
θ̇m + Kt,m

Jm
im

i̇m = −Kb,m
Lm

θ̇m − Rm
Lm
i+ 1

L
V

⇐⇒ ẋ =

 − bm
Jm

Kt,m
Jm

−Kb,m
Lm

−Rm
Lm


x1

x2

+

 0

1
Lm

u

y = θ̇m ⇐⇒ y =

[
1 0

]x1

x2

 .
• The constant matrices are, therefore, given by:

A =

 − bm
Jm

Kt,m
Jm

−Kb,m
Lm

−Rm
Lm

 , B =

 0

1
Lm

 , C =

[
1 0

]
. (2.2)
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Solution to the differential equation: Given a continuous-time state-space model as in
Eq. (2.1), we can solve the first-order differential equation to determine an expression for the
states at time t. Towards this, we take a Laplace transform [156] of Eq. (2.1) and get,

sX(s)− x(0) = AX(s) +BU(s)

=⇒(sI − A)X(s) = x(0) +BU(s)

=⇒X(s) = (sI − A)−1x(0) + (sI − A)−1BU(s).

(2.3)

Now, taking inverse Laplace of Eq. (2.3),

L−1[X(s)] = L−1[(sI − A)−1]x(0) + L−1[(sI − A)−1BU(s)],

we get,

x(t) = eAtx(0) +

t∫
0

eA(t−τ)Bu(τ)dτ. (2.4)

2.1.2 Discrete-Time State-Space Model
Considering the fact that the controller is implemented on an embedded platform with limited
resources, the control input is applied to the plant only at discrete instants tk where k ∈ Z∗.2 Let
us assume that the time interval between two consecutive instants is a constant h and the control
input to the plant is held constant till the next input is generated and applied, i.e., u(t) = u(tk),
where tk ≤ t < tk+1. This is equivalent to a system with sample and hold device connected at
the input, and correspondingly, h is the sampling period of the system.

The equivalent state-space model of the sampled-data (discrete-time) control system [97]
can be represented by the following difference equations:

x[k + 1] = φx[k] + Γu[k], y[k] = Cx[k], 3 (2.5)

where the discrete-time state and input matrices φ and Γ can be derived from the continuous-
time matrices for a given sampling period h as follows:

φ = eAh, Γ =

∫ h

0

(eAτ
′
dτ ′) ·B. (2.6)

Proving Eqs. (2.5) and (2.6): From Eq. (2.4), we can express x(tk) and x(tk+1) as follows:

x(tk) = eAtkx(0) +

tk∫
0

eA(tk−τ)Bu(τ)dτ. (2.7)

2Z∗ represents the set of non-negative integers.
3x[k] and u[k] represents the system states and control input at the time instant tk, i.e., x[k] = x(tk) and

u[k] = u(tk).
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x(tk+1) = eAtk+1x(0) +

tk+1∫
0

eA(tk+1−τ)Bu(τ)dτ . (2.8)

Eq. (2.8) can be rewritten as follows:

x(tk+1) = eA(tk+1−tk)eAtkx(0) +

tk∫
0

eA(tk+1−tk)eA(tk−τ)Bu(τ)dτ +

tk+1∫
tk

eA(tk+1−τ)Bu(τ)dτ

= eA(tk+1−tk)
[
eAtkx(0) +

tk∫
0

eA(tk−τ)Bu(τ)dτ
]

+

tk+1∫
tk

eA(tk+1−τ)Bu(τ)dτ

= eA(tk+1−tk)x(tk) +

tk+1∫
tk

eA(tk+1−τ)Bu(τ)dτ
[
∵ Eq. (2.7)

]
.

Applying zero order hold (ZOH) to the control input u(τ) between tk and tk+1, we get:

x(tk+1) = eA(tk+1−tk)x(tk) +
[ tk+1∫
tk

eA(tk+1−τ)Bdτ
]
u(tk). (2.9)

Changing the integration variable as τ ′ = tk+1 − τ , we get

x(tk+1) = eA(tk+1−tk)x(tk) +
[ tk+1−tk∫

0

eAτ
′
Bdτ ′

]
u(tk). (2.10)

Substituting tk+1 − tk = h, we get

x(tk+1) = eAhx(tk) +
[ h∫

0

eAτ
′
Bdτ ′

]
u(tk). (2.11)

Equivalently, Eq. (2.11) can be written using Eqs. (2.5) and (2.6). Hence, proved.

2.1.3 Delayed Discrete-Time State-Space Model
Ideal discrete-time system model, given by Eq. (2.5), considers zero delay between sensing
and actuation. This essentially means that the control input is applied to the plant immediately
after the sensors read the plant states. This assumption is idealistic because of two reasons:
(i) Computation of control input by a software task takes non-negligible time on an embedded
platform. This is because embedded processors often have limited computation bandwidth.
(ii) Sensors and actuators are often spatially distributed and control loops may involve some
communication over shared network. This might also introduce a significant delay between
sensing and actuation.
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measure acutuate measure acutuate measure acutuate

Figure 2.3: Timing diagram of a delayed discrete-time system. The system states are measured
periodically every h time units where h is the sampling period. There is also a delay d between
sensing and actuation. Thus, between two sampling instants, first the previous control input
u[k − 1] is applied till d time units and thereafter the new control input u[k] is applied for the
remaining time h− d.

In reality, the timings of a discrete-time system are as shown in Figure 2.3. Corresponding
to the figure, we may write u(t) = u[k − 1] for tk ≤ t < tk + d and u(t) = u[k] for tk + d ≤
t < tk+1, where d is the delay between sensing and actuation. Thus, we rewrite Eq. (2.9) as

x[k+1] = eA(tk+1−tk)x[k]+
[ tk+d∫
tk

eA(tk+1−τ)Bdτ
]
u[k−1]+

[ tk+1∫
tk+d

eA(tk+1−τ)Bdτ
]
u[k]. (2.12)

Substituting τ ′ = tk+1 − τ , we get:

x[k + 1] = eA(tk+1−tk)x[k] +
[
−

h−d∫
h

eAτ
′
Bdτ ′

]
u[k − 1] +

[
−

0∫
h−d

eAτ
′
Bdτ ′

]
u[k]

= eAhx[k] +
[ h∫
h−d

eAτ
′
Bdτ ′

]
u[k − 1] +

[ h−d∫
0

eAτ
′
Bdτ ′

]
u[k]

[
∵ tk+1 − tk = h, changing the limits of the integration

]
.

(2.13)

We may rewrite Eq. (2.13) as

x[k + 1] = φx[k] + Γ1u[k − 1] + Γ0u[k], (2.14)

where,

φ = eAh, Γ0 =

h−d∫
0

eAτ
′
Bdτ ′, Γ1 =

h∫
h−d

eAτ
′
Bdτ ′. (2.15)
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Eqs. (2.14) and (2.15) give the mathematical model for delayed discrete-time systems [97].

Now, let us consider an augmented state vector xa[k] =

[
x[k]

u[k − 1]

]
and rewrite the delayed

discrete-time system model [157] as follows:x[k + 1]

u[k]

 =

φ Γ1

0 0

 x[k]

u[k − 1]

+

Γ0

I

u[k],⇐⇒ xa[k + 1] = φaxa[k] + Γau[k],

y[k] =
[
C 0

] x[k]

u[k − 1]

⇐⇒ y[k] = Caxa[k],

(2.16)

where

φa =

φ Γ1

0 0

 , Γa =

Γ0

I

 , Ca =
[
C 0

]
. (2.17)

With state augmentation, the state-space model of a delayed discrete-time system is of the same
form as Eq. (2.5) and standard techniques like pole-placement and LQR can be applied to design
the controller.

2.1.4 Stability of Discrete-Time Systems

System stability is the most essential requirement for designing a controller. To understand
the notion of stability, we first define an equilibrium point xe in the state space as a point at
which a system remains in the absence of external inputs and/or disturbances. This implies
x[k + 1] = x[k] when x[k] = xe and u[k] = 0 [95].

An equilibrium point xe is stable in the sense of Lyapunov if for any given value of a pa-
rameter ε > 0 there exists a number δ such that when ||x[0] − xe|| < δ, then the state vector
satisfies ||x[k] − xe|| < ε for all k > 0 [95]. That is, when the state of the system is initially
within a radius δ from the equilibrium point, it will always remain within a radius ε from the
equilibrium point in the absence of external inputs or distrubances. This can be formulated as
follows:

∀
ε∈R+

∃
δ∈R+

∀
k∈Z+

(||x[0]− xe|| < δ) =⇒ (||x[k]− xe|| < ε). (2.18)

In this thesis, we consider asymptotic stability of feedback control systems. An equilibrium
point xe is asymptotically stable if (i) it is stable in the sense of Lyapunov and (ii) there exists a
number δ∗ > 0 such that if ||x[0]−xe|| < δ∗, the state vector satisfies limk→∞ ||x[k]−xe|| = 0.
Thus, in case of asymptotic stability, the state returns to the equilibrium point eventually if it
is initially at a pont within a radius δ∗ > 0 from the equilibrium point [95]. This is written as
follows:

∃
δ∗∈R+

(||x[0]− xe|| < δ∗) =⇒ lim
k→∞
||x[k]− xe|| = 0. (2.19)
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Condition for asymptotic stability: For an unforced LTI system (i.e., u[k] = 0 ∀k ∈ Z∗)
represented as x[k + 1] = φx[k], given the initial state x[0], we can write

x[k] = φkx[0]. (2.20)

Without loss of generality, we assume xe = 0. Therefore, for a system to be asymptotically
stable with a finite non-zero initial state,

lim
k→∞
||φk|| = 0. (2.21)

This is only possible when the eigenvalues of the of φ, i.e., λi, ∀i = 1, 2, .., n, satisfy

|λi| < 1. (2.22)

Here, λi also represent a system pole. Thus, for a system to be asymptotically stable, the poles
must lie within the unit circle in a complex z-plane [97].

Closed-loop stability of delayed systems: In this thesis, we consider that a control loop is
closed using a feedback controller based on the following control law:

u[k] = −Kxa[k] + Fr, (2.23)

where r is the reference that the system must track and K and F are the feedback and feedfor-
ward gains of the controller.

Corresponding to Eq. (2.23), we can rewrite Eq. (2.16) as

xa[k + 1] = (φa − ΓaK)xa[k] + ΓaFr,

y[k] = Caxa[k].
(2.24)

Without loss of generality, we assume r = 0. We denote φcl = φa−ΓaK and rewrite Eq. (2.24)
as follows:

xa[k + 1] = φclxa[k]. (2.25)

Therefore, for the closed-loop system to be asymptotically stable the eigenvalues of φcl must lie
within the unit circle.

2.1.5 Controller Design
In this thesis, we design controllers ensuring that the closed-loop poles are within the unit circle
in the complex z-plane. The controller design problem mainly boils down to determining the
values of K and F in the control law (given by Eq. 2.23) such that the closed-loop poles are at
desired locations. For a single-input single-output (SISO) LTI system, one can use Ackermann’s
formula for pole placement [97]. Using Ackermann’s formula, the feedback gain K can be
calculated as follows:

– Calculate the controllability matrix γ as follows:

γ =
[
Γa φaΓa · · · φn−1

a Γa
]
, (2.26)

where, n is the number of states in the augmented system model. Check if γ is invertible,
i.e., the closed-loop system is controllable. If the closed-loop system is not controllable,
then we cannot apply Ackermann’s formula.
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– Given the set of n poles
[
α1 α2 · · ·αn

]
, evaluate the desired characteristic polynomial

H(s) of the closed-loop system at φa as follows:

H(φa) = (φa − α1I)(φa − α2I) · · · (φa − αnI). (2.27)

– Apply Ackermann’s formula and calculate K as follows:

K =
[
0 0 · · · 1

]
γ−1H(φa). (2.28)

Given the value of the feedback gain K, we need to determine the value of the feedfor-
ward gain F such that the system output follows a reference input. In particular, considering
asymptotic stability, the output must satisfy the following constraint:

lim
k→∞

y[k] = r. (2.29)

Towards deriving an expression for F , we first take Z-transform [156] of the closed-loop
system model in Eq. (2.24) and we get:

zXa(z) = (φa − ΓaK)Xa(z) + ΓaF
z

z − 1
r,

Y (z) = CaXa(z).
(2.30)

We can further write:

(zI − φa + ΓaK)Xa(z) =
z

z − 1
ΓaFr,

=⇒ Xa(z) =
z

z − 1
(zI − φa + ΓaK)−1ΓaFr.

(2.31)

Substituting Xa(z) = C−1
a Y (z), we get:

Y (z) =
z

z − 1
Ca(zI − φa + ΓaK)−1ΓaFr. (2.32)

Now, applying final value theorem [158], we get:

lim
z→1

(z − 1)Y (z) = lim
z→1

(z − 1)
z

z − 1
Ca(zI − φa + ΓaK)−1ΓaFr

= Ca(I − φa + ΓaK)−1ΓaFr.
(2.33)

Considering that the output must reach the reference at infinite time, we get:

F =
1

Ca(I − φa + ΓaK)−1Γa
. (2.34)

Thus, a controller can be designed, i.e., the values of K and F can be calculated, such that
the closed-loop system is stable and the system output track the reference.
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2.2 Distributed Controller Implementation

Typically, a distributed embedded implementation of a controller comprises several software
tasks. A task is a software component or a code snippet that performs a specific function, e.g.,
reads the values of sensor, executes the control law to calculate the control input, or sends
an appropriate control input to the actuator to be applied to the plant. These tasks can be
sometimes very complex. For example, when the sensor is a camera, a task might be required to
perform non-trivial image processing to obtain useful information for the controller. Moreover,
for model-predictive control (MPC) [159], the controller task needs to solve an optimization
problem.

Tasks implementing the controller are mapped on different ECUs in a distributed controller
implementation, primarily due to the spatial distribution of sensors and actuators. In such a
case, the data output of one task might be an input to other task(s). Thus, data needs to be
sent from one ECU to another. Data communication is typically realized using messages sent
over the communication network. When an application is implemented within a bus cluster,
data needs to be sent only over a communication bus (such as FlexRay or CAN) or a series of
switches and data links (in case of Automotive Ethernet). However, modern ADAS applica-
tions are implemented across bus clusters where data needs to be sent over different buses and
communication gateways [153].

An ECU executes software tasks based on a scheduling policy. Similarly, a message is sent
over a bus according to the communication protocol of the bus. Thus, the timing models of
tasks and messages of a controller implementation are specific to the scheduling scheme used
in the processors and the communication protocol of the bus respectively. As mentioned earlier,
these implementation-level timings of the tasks and messages influence the performance of the
controller. Thus, we study the timing models of tasks and messages for the problem setting
considered in this thesis. In particular, we study time-triggered scheduling for tasks and the
FlexRay protocol for data communication.

2.2.1 Time-Triggered Tasks

In this thesis, we study time-triggered static scheduling of tasks. According to this scheduling
policy, processor time allocation is pre-configured, i.e., it is known when a task will be exe-
cuted by the ECU [160]. Thus, a time-triggered schedule of a task Ti is defined using a tuple
{oi, pi, ei}, where oi is the offset, pi is the period and ei is the execution time [161]. Task off-
set oi is defined as the time when the task is triggered to run for the first time. Task period
pi is the time difference between two consecutive starts of the task. Typically, the execution
time of a software task is usually not deterministic as it depends on several factors such as the
kinds of memory accesses made (i.e., cache hits or misses) or the program branches taken (if
any) [160]. Thus, we assume that a time window of length ei equal to the worst-case execution
time (WCET) is reserved for the task. Thus, in all possible scenarios, the reserved computation
time will be sufficient to run the task completely. We assume that the WCET of a task is given
by the specification. WCET analysis or calculation is out of scope of this thesis, which is also
an important research direction in the context of real-time embedded systems. [162] provides a
survey on WCET analysis.
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time (  ) 

Figure 2.4: Time-triggered scheduling of a software task. Here, a time window of ei time units
is reserved periodically for the task. The first time window starts at oi time units.

Given a schedule {oi, pi, ei} of the task Ti, the timing diagram for the task is as shown in
Figure 2.4. Here, Ti runs periodically based on its schedule. The start time of the k-th instance
of the task is denoted as t̂(Ti, k) and is given by:

t̂(Ti, k) = oi + (k − 1) · pi. (2.35)

Thus, the start times of the task instances can be computed as {oi, oi+pi, oi+2pi, oi+3pi · · · }.
Corresponding to the start time of the k-th task instance, we can also compute the latest finish
time of the instance t̃(Ti, k) as follows:

t̃(Ti, k) = t̂(Ti, k) + ei = oi + (k − 1) · pi + ei. (2.36)

Thus, in the worst case, a task instance will finish ei time units after its start. The aforemen-
tioned timing model of time-triggered tasks is later used to formulate constraints for the sched-
ule synthesis of control applications.

2.2.2 FlexRay Communication
As discussed in Section 1.1.2, FlexRay supports hybrid communication protocol, and corre-
spondingly, each FlexRay bus cycle is mainly partitioned into static (ST) and dynamic (DYN)
segments [20, 21], as shown in Figure 2.5. The static segment exhibits TDMA communi-
cation and comprises Ns number of slots of equal length (∆), which can be represented as
SST = {1, 2, ..., Ns}. Here, a message assigned to a static slot is transmitted within the cor-
responding time window. Thus, the start and the finish times of a message transmission are
known. On the other hand, dynamic segment is partitioned into Nd number of minislots of
equal length (δ), where typically δ << ∆. A message assigned to the dynamic segment may
consume more than one minislot, as shown in Figure 2.5. A dynamic slot is a logical entity with
one or more minislots enabling FTDMA communication. Here, dynamic slots are denoted by
SDYN = {Ns + 1, Ns + 2, · · · }.

The hybrid communication is realized using a slot counter, Cs, where the counter starts
from 1 at the beginning of each cycle. Here, when Cs = j, then the message mi assigned to
the j-th slot is sent over the bus (if ready). In the static segment, the counter is incremented
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Figure 2.5: An example of FlexRay communication schedule. Four messages are mapped on
the static segment while two messages are mapped on the dynamic segment. Static segment
enables time-division multiple access (TDMA) communication and the dynamic segment ex-
hibits flexible TDMA (FTDMA) communication. FlexRay 3.0.1 allows slot multiplexing, e.g.,
m1 and m3 are assigned the same slot in different cycles. When there is no data, an entire slot
is wasted in the static segment (e.g., slot 2 in cycle 5), while only a minislot is wasted in the
dynamic segment (e.g., slots 9 and 10 in cycle 2). While the timings of a message is exactly
known in the static segment, there might be communication jitters when using the dynamic seg-
ment (e.g., m6).

after every ∆ time units, i.e., at the end of each slot. If no new data has arrived at the beginning
of the slot then the whole slot length, i.e., ∆ time units, is wasted as shown in Figure 2.5 for
m2 in cycle 5. On the other hand, in the dynamic segment, when a message mi has some
data to be sent then the counter is updated at the end of the last minislot where the message is
transmitted. However, if there is no data then the counter is updated at the end of the current
minislot, and correspondingly, only δ time units are wasted (refer to Figure 2.5 for messagesm5

and m6). Thus, the start and the finsh times of a message transmission in the dynamic segment
may vary depending on the preceding message transmissions. It may be noted that FlexRay is
time-deterministic in the static segment and resource-efficient in the dynamic segment.

FlexRay schedules: FlexRay communication is organized as an infinite repetition of 2n bus
cycles where n is configurable. Each bus cycle is of length Tbus time units. Let us consider n =
6, i.e., 64 bus cycles which are repeated periodically. Thus, the cycle counter counts from 0 to 63
and then resets. Therefore, the resource allocation in any 64 consecutive cycles will be repeated
in the next 64 cycles and so on. In FlexRay communication, a message mi is transmitted with
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a schedule that is represented as a tuple {si, bi, ri}. These scheduling parameters are described
as follows:

• The assigned slot number is given by si.

• The base cycle, bi, represents the first cycle where the message is allocated the si-th slot.

• The cycle repetition rate, ri, denotes the number of cycles between two consecutive time
slot allocations.

In Figure 2.5, schedules of the messages are given by m1 ≡ {2, 0, 2}, m2 ≡ {2, 1, 2}, m3 ≡
{4, 1, 4}, m4 ≡ {4, 0, 4}, m5 ≡ {9, 0, 1} and m6 ≡ {10, 0, 2}.

It must be further noted that FlexRay 3.0.1 [21] allows slot-multiplexing, i.e., the same slot
number can be assigned to more than one message, however, they must not overlap. This is
illustrated by {m1,m2} and {m3,m4} in Figure 2.5. In case of FlexRay 2.1, messages can be
multiplexed for one slot but to a limted extent, i.e., a slot is assigned to an ECU and the ECU
can send different messages in different cycles using the same slot number. For example, in
Figure 2.5, if m1 and m2 are sent by the same ECU then it is allowed otherwise you get an error
in the FlexRay configuration tool.

In addition, there are certain scheduling constraints for FlexRay messages as follows:

• The repetition rates can assume only certain discrete values as follows:

ri ∈ {2k|0 ≤ k ≤ n}. (2.37)

This ensures that a schedule computed for 64 cycles when repeated will not violate the
periodicity of the messages.

• One slot must be assigned every ri number of cycles. This requires the following con-
straint:

bi < ri.
4 (2.38)

This will ensure that there is a slot assigned in the first ri cycles. Based on the definition
of repetition rate, a slot will be assigned every ri cycles thereafter.

The timing models corresponding to FlexRay messages are provided in [161] that are also
used in this thesis. For a message mi mapped on the static segment, the start time of the k-th
instance of the message, which is denoted as t̂(mi, k), can be determined as follows:

t̂(mi, k) = bi · Tbus + (si − 1) ·∆ + (k − 1) · ri · Tbus. (2.39)

Thus, the first message instance starts at t̃(mi, 1) = bi · Tbus + (si − 1) · ∆ where (i) the term
bi ·Tbus evaluates to the time elapsed before the start of the base cycle and (ii) the term (si−1)·∆
evaluates to the time elapsed from the start of the base cycle to the start of the slot in which the
first instance of the message instance is mapped. Now after the first instance, the message can
be sent every ri cycles or ri · Tbus time as given by the third term in Eq. (2.39). In the static

4Note that the cycle counter in FlexRay starts counting from 0.
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segment, the message is sent entirely within a static slot. Thus, it can be guaranteed that the
k-th instance of a message mi will reach the destination ECU before a time t̃(mi, k) that marks
the end of the slot. Thus, t̃(mi, k) is given by:

t̃(mi, k) = t̂(mi, k) + ∆ = bi · Tbus + (k − 1) · ri · Tbus + si ·∆. (2.40)

For a message mi mapped on the dynamic segment, we can determine the earliest start time
t̂(mi, k) of the k-th instance of the message as follows:

t̂(mi, k) = bi · Tbus +Ns ·∆ + (si −Ns − 1) · δ + (k − 1) · ri · Tbus. (2.41)

This corresponds to the case where no data is sent in the preceding slots. Thus, si − Ns − 1
minislots are wasted before the slot counter shows si. On the other hand, we can determine the
latest finish time t̃(mi, k) of the k-th message instance as follows:

t̃(mi, k) = bi · Tbus +Ns ·∆ + (

si∑
j=Ns+1

cj) · δ + (k − 1) · ri · Tbus, (2.42)

where cj is the number of minislots required to transmit the message mapped on the slot sj in
the cycle number bi + (k− 1) · ri. Here, we consider the worst case where all messages are sent
on the preceding slots in the cycle where the k-th message instance is assigned the slot. For
example, in Figure 2.5, m6 starts the earliest at the second minislot in cycle 4, while it finishes
after the sixth minislot in the worst-case in cycle 0. Note that for a message mapped later on
the dynamic segment would have a significant jitter. This must be taken into account while
designing the controller or for analyzing the control performance.

2.3 Charge Transfer Circuits for Active Cell Balancing

Existing cell balancing approaches could be classified as either passive or active [163]. In com-
parison to passive techniques, where the excess charge in all cells is dissipated as heat across
a high power resistor, active cell balancing approaches are energy-efficient, since they redis-
tribute the charge among the cells instead of wasting them as heat. This transfer of charge
between cells is facilitated using temporary energy storage elements such as inductors, ca-
pacitors or transformers coupled with a power metal-oxide-semiconductor field-effect transis-
tor (MOSFET) switching network. Several circuit architectures with varying charge transfer
features such as balancing between adjacent cells [164], direct charge transfer between non-
adjacent cells [85], and charge transfers between groups of cells [165] have been proposed in
the literature. In our work, we study two specific circuit architectures. In this section, we briefly
discuss the working principle of the active cell balancing architectures under study. We further
derive the necessary closed-form equations for charge transfer using these circuits. This will
be later used in Chapter 6 to formulate the optimization problem for energy- and time-efficient
active cell balancing.
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Figure 2.6: State-of-the-art charge transfer circuit architectures for active cell balancing. (a)
This represents a neighbor-only cell balancing architecture [164]. A charge transfer cycle be-
tween the source cell B1 and the destination cell B2 is shown. The brown solid line depicts the
charging phase when the inductor is charged by the cell B1. The green dashed line shows the
discharging phase when the inductor discharges to the destination cell B2 (b) This shows the
PWM control signals and the variation of the balancing current through the inductor during a
charge transfer cycle. (c) This represents a non-neighbor active cell balancing architecture [85].
A cycle of charge transfer from B1 to B4 is shown. The brown solid line and the green dashed
line depict the charging and the discharging phase respectively.
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2.3.1 Charge Transfer Circuit Architectures
Neighbor-only balancing architecture: Figure 2.6(a) shows the state-of-the-art active cell
balancing architecture that can transfer charge only between neighboring cells of the battery
pack [164]. This circuit architecture works on the principle of buck-boost chopper [166]. The
circuit architecture is modular in the sense that for each cell, there is an inductor and two
MOSFET switches. For example, cell B1 is connected to L1, M1

a and M1
b . In the example in

Figure 2.6(a), we show charge transfer from cell B1 to cell B2. A single charge transfer cycle
(TC) primarily consists of two phases, (i) the charging phase θ1 (TON ) and (ii) the discharging
phase θ2 (TOFF ), controlled by complimentary PWM control signals σ1 and σ2 respectively, as
shown in Figure 2.6(b). One charge transfer cycle between the source cell B1 and the destination
cell B2 can be described as follows:

• During θ1, the switch M1
a is actuated with σ1 and the excess charge in cell B1 is stored in the

inductor L1, as shown in Figure 2.6(a). The balancing current through the inductor starts to
increase linearly and the switch M1

a is opened when the current reaches a peak value Ipeak, as
shown in Figure 2.6(b).

• During phase θ2, the stored energy in the inductor is discharged to the destination cell B2

by actuating the MOSFET M2
b with the complimentary PWM control signal σ2, as shown in

Figure 2.6(a).

• Short free-wheeling phases θ′2 between the two control signals during which the inductor
current flows through the body-diodes of the MOSFET switches are required to prevent short-
circuit conditions.

Non-neighbor balancing architecture: The neighbor-only balancing architecture is energy-
inefficient, when it is required to shuttle charge through multiple cells for charge equalization.
By contrast, directly transferring charge between non-adjacent cells in a series-connected bat-
tery pack will provide a higher energy efficiency. Figure 2.6(c) shows such a balancing archi-
tecture [85] that can transfer charge directly between non-adjacent cells in a series-connected
battery pack. In this balancing architecture, transformers are used as energy storage elements
due to its inherent isolation properties that enables easy isolation between the balancing and the
load circuits. The direct non-neighbor balancing is facilitated by having a charge transfer bus
to which the cells are connected for exchanging charge between them and this bus is isolated
at multiple stages to allow concurrent balancing in a series-connected battery pack. Here, each
balancing unit corresponding to one cell in the series-connection comprises one transformer and
eight MOSFET switches. In Figure 2.6(c), corresponding to B1, there is a transformer T1 and
the switches M1

P , M1
S , M1

B, M1
T , M1

BB+ and M1
BB−. Note that M1

B and M1
T are composed of

two switches each. The primary winding of the transformer is connected to the cell B1 via the
switch M1

P while the secondary winding is connected to the charge transfer bus via the switch
M1

S . The two switches in M1
T and M1

B respectively are connected in a way such that their inter-
nal body diodes are blocking each other, thereby completely isolating the cell from the charge
transfer bus. The switches M1

BB+ and M1
BB− provide isolation between the balancing units,

thus, concurrent charge transfers are possible using the charge transfer bus.
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In the example in Figure 2.6(c), cellB1 directly transfers charge to cellB4 through the charge
transfer bus (BB+ andBB−). For this charge transfer, the bus is connected between the cells B1

and B4, i.e., the switches M1
BB+, M2

BB+, M3
BB+, M2

BB−, M3
BB− and M4

BB− are actuated. Now,
during the charging phase, M1

P is actuated using the control signal σ1. Charge from cell B1 is
stored in the primary winding of the transformer T1 where the primary winding current increases
linearly. After a predefined peak current value (Ipeak) is reached for a time period of TON , M1

P

is turned OFF. Due to the property of the transformer, where the current cannot be interrupted
instantaneously, the polarity of the voltages across the primary and secondary winding reverses.
This polarity reversal causes the internal body-diode of the secondary winding MOSFET M1

S to
be forward-biased. As a result, the primary-secondary energy transfer takes place and the charge
stored in the transformer is discharged to cell B3 through the secondary winding. This phase is
marked as the short freewheeling phase. To minimize the loss involved in balancing over the
diode, the discharging phase is initiated by actuating the secondary winding MOSFET M1

S by
the control signal σ2. Now the transformer discharges and the stored energy is transferred into
the cell B4 through the low-resistance MOSFET channel, as shown in Figure 2.6(c). Finally,
the last remaining amount of charge stored in the transformer is discharged over the body-diode
of M1

S in order to prevent the transformer being charged from cell B3. This completes a charge
transfer cycle using non-neighbor cell balancing architecture.

2.3.2 Modeling of Charge Transfer

The working principle and the modeling approach for both inductor- and transformer-based
active cell balancing architectures are similar. Therefore, the generalized modeling approach
is provided in this section. Modeling the charge transfer process between cells has been ex-
tensively studied in the literature so far [11, 165, 167, 168]. We follow a similar closed-form
modeling approach considering the parasitic resistances of the circuit components in the bal-
ancing architecture.

Charging phase: Applying Kirchoff’s voltage law [169] to the charging phase, we get:

Vα = Rα · iα(t) + L · d
dt
iα(t), (2.43)

where (i) Vα is the voltage of the source cell Bα; (ii) Rα is the sum of the parasitic resistances
of the circuit components in the current flow path, thus, the term Rα · iα(t) gives the sum of
the voltage drops across the resistances; and (iii) L is the inductance, and therefore, the term
L · d

dt
iα(t) gives the voltage drop across the inductor (or transformer). Rα for the architectures

shown in Fig. 2.6a and Fig. 2.6c is given by:

Rα = RBα +RL +RM , (2.44)

where RBα is the resistance of the Li-ion cell, RL and RM are the parasitic resistances of the
inductor and the MOSFET switch, respectively.

We assume that no charge was stored in the inductor (or transformer) at the beginning of the
charge transfer cycle and the initial value of the current is iα(0) = 0. Solving Eq. (2.43) with
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this initial value gives a time-domain representation of the balancing current as follows:

iα(t) =
Vα
Rα

(
1− e−

Rα
L
t
)
. (2.45)

Using Eq. (2.45), we can determine the time TON of the control signal σ1 such that the
balancing current iα reaches the saturation limit of the energy storage element Ipeak as follows:

Ipeak =
Vα
Rα

(
1− e−

Rα
L
TON
)

=⇒ Ipeak ·Rα − Vα = −Vαe−
Rα
L
TON

=⇒ e−
Rα
L
TON =

Vα − Ipeak ·Rα

Vα

=⇒ TON =
L

Rα

· ln
[

Vα
Vα − Ipeak ·Rα

]
.

(2.46)

By integrating iα(t), given by Eq. (2.45), for the time period 0 ≤ t ≤ TON , we obtain the
total charge (Qtx) transferred by the source cell as follows:

Qtx =

∫ TON

0

iα(t) · dt

=

∫ TON

0

Vα
Rα

(
1− e−

Rα
L
t
)

=
Vα
Rα

· TON −
L · Vα
R2
α

[
1− e−

Rα
L
TON
]
.

(2.47)

Substituting TON from Eq. (2.46), we get:

Qtx =
L · Vα
R2
α

ln

[
Vα

Vα − Ipeak ·Rα

]
− L · Ipeak

Rα

. (2.48)

Discharging phase: Similar to the charging phase, when we apply Kirchhoff’s voltage
law [169] during the discharging phase, we get:

L · d
dt
iβ(t) +Rβ · iβ(t) + Vβ = 0, (2.49)

where Vβ is the voltage of the destination cell, iβ(t) is the balancing current during the dis-
charging phase, and Rβ is the sum of the parasitic resistances in the discharge circuit. For
neighbor-only balancing architecture Rβ is equal to Rα and is given by Eq. (2.44). However,
for the non-neighbor balancing architecture, Rβ is given by:

Rβ = RBβ +RL + (7 + 2 · ď) ·RM , (2.50)

where RBβ is the resistance of the destination cell and ď is the number of cells in between the
source and destination cells. Here, we assume that all the MOSFET switches are identical.

52



2. Mathematical Background

In the example in Figure 2.6(c), there are 11 MOSFET switches in the discharging circuit as
follows: M1

BB+, M2
BB+, M3

BB+, M2
BB−, M3

BB−, M4
BB−, M1

S , two MOSFETs each in M4
T and

M4
B respectively.

The expression for iβ during the discharging phase can be obtained by solving the differen-
tial equation in Eq. (2.49) with the initial condition iβ(0) = Ipeak, which is given as follows:

iβ(t) = Ipeak · e
−Rβ
L

t − Vβ
Rβ

(
1− e

−Rβ
L

t
)
. (2.51)

The time TOFF , required by the energy storage elements to fully discharge its stored energy
to the destination cell, is calculated by substituting iβ(TOFF ) = 0 in Eq. (2.51). Thus, TOFF is
derived as follows:

0 = Ipeak · e
−Rβ
L

TOFF − Vβ
Rβ

(
1− e

−Rβ
L

TOFF
)

=⇒ Ipeak · e
−Rβ
L

TOFF =
Vβ
Rβ

(
1− e

−Rβ
L

TOFF
)

=⇒
(
Ipeak +

Vβ
Rβ

)
· e
−Rβ
L

TOFF =
Vβ
Rβ

=⇒ TOFF =
L

Rβ

· ln
[
Vβ + Ipeak ·Rβ

Vβ

]
.

(2.52)

The charge received by the destination cell (Qrx) is obtained by integrating iβ , given in
Eq. (2.51), for the time period 0 ≤ t ≤ TOFF , which is given by:

Qrx =

∫ TOFF

0

iβ(t) · dt

=

∫ TOFF

0

(
Ipeak · e

−Rβ
L

t − Vβ
Rβ

(
1− e

−Rβ
L

t
))
· dt

=
L · Vβ
R2
β

ln

[
Vβ

Vβ + Ipeak ·Rβ

]
+
L · Ipeak
Rβ

.

(2.53)

Note that the change in voltage in the source and destination cells during a charge transfer
cycle is less than 1 nV. For a nominal cell voltage of 3.6V, this will have a negligible impact on
the values of Qtx and Qrx in Eq. (2.48) and Eq. (2.53) respectively.

2.4 Optimization and Verification
The main goal of this thesis is to devise techniques that enable optimal design of CPSs. In the
process, we have proposed hybrid optimization techniques customized for the design problems
under study. These proposed design approaches combine different well-established optimiza-
tion and verification models by suitably applying them to specific sub-problems. In this section,
we will provide a brief background on these existing models that will help the readers to better
understand the intuition behind applying these modeling approaches to our problem settings.
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2.4.1 Linear Programming
We can formulate a linear programming (LP) model for a mathematical optimiza-
tion or a constraint satisfaction problem. An LP model consists of (i) decision
variables {var1, var2, ..., varNv}, (ii) an objective function Obj and (iii) constraints
con1, con2, · · · , conNc . Note that, in an LP problem, the constraints and the objective func-
tion are linear in variables. An LP problem in its canonical form can be written as follows:

Objective: Maximize
Nv∑
j=1

cj · varj

Constraints:
Nv∑
j=1

ai,j · varj ≤ bi, (i = 1, 2, 3, · · · , Nc)

Variables: varj ∈ R (j = 1, 2, 3, · · · , Nv)

In a mixed-integer linear programming (MILP) problem, a subset of variables can only
assume integer values. The variable declaration in an MILP model can be written as:

Variables: varj ∈ R, (j = 1, 2, 3, · · · , Nvr)

varj ∈ Z, (j = Nvr + 1, Nvr + 2, Nvr + 3, · · · , Nvr +Nvi).

Moreover, we can also formulate a linear model with integer variables only. Such a formu-
lation is termed as integer linear programming (ILP). The variable declaration in an ILP model
can be written as:

Variables: varj ∈ Z (j = 1, 2, 3, · · · , Nv)

For more details on linear optimization, please refer to [170].

Example: Consider a linear optimization problem as shown below:

Minimize −2 · var1 − 3 · var2

subject to:
2 · var1 + var2 + var3 = 4
3 · var1 − 9 · var2 + var4 ≥ 4
3 · var1 + 2 · var3 + var4 ≤ 35
var1, var2, var3, var4 ≥ 0

var1, var2 ∈ R and var3, var4 ∈ Z

The above example comprises four variables out of which var3 and var4 are integer vari-
ables while var1 and var2 can take real values. Note that the objective is to minimize a linear
function of decision variables, however, it can be translated into the canonical form as follows:

Maximize 2 · var1 + 3 · var2,
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where we just reverse the signs of the coefficients. Moreover, in case we want to formulate
a constraint satisfaction problem as an LP, ILP or MILP model, we can write the objective
function as a constant. With a constant objective, a value assignment to the decision variables
that satisfies all constraints will be returned as the solution. Note that the constraints in the
example are either a linear equality (=) or a linear inequality (≥ or ≤). In the canonical form,
we have only “less than or equal to (≤)” constraint. The “greater than or equal to (≥)” constraint
in the example can be transformed into the canonical form as follows:

3 · var1 − 9 · var2 + var4 ≥ 4

=⇒ − 3 · var1 + 9 · var2 − var4 ≤ −4.

On the other hand, the equality constraint in the example can be translated to the canonical form
as follows:

2 · var1 + var2 + var3 = 4

=⇒ 2 · var1 + var2 + var3 ≤ 4 and 2 · var1 + var2 + var3 ≥ 4

=⇒ 2 · var1 + var2 + var3 ≤ 4 and − 2 · var1 − var2 − var3 ≤ −4.

Here, we need two “less than or equal to” constraints to represent one “equality” constraint.
The above example can be, therefore, formulated as an MILP model.

Solvers: There are several commercial and non-commercial solvers available for solving LP,
MILP and ILP problems. For our experiments, we have used CPLEX [171] and Gurobi [172].
These solvers accept problem models in specific forms and return solutions based on the model
specifications. The underlying algorithmic implementation of these solvers are beyond the
scope of this thesis.

2.4.2 Particle Swarm Optimization

Particle swarm optimization (PSO) is a popular method to solve non-convex non-linear opti-
mization problems. It is a population based stochastic optimization technique developed by Dr.
Eberhart and Dr. Kennedy in 1995 [173], inspired by social behavior of bird flocking or fish
schooling. It is an example of how a computational technique can be developed based on the
bahavior of a biological system.

PSO is a DSE technique where a group of particles, i.e., candidate solutions, are initialized
randomly in the design space. These particles then search for the optima by moving in the design
space based on certain update equations. Each particle has a position, a velocity and a fitness
value. Position determines the current values of the decision variables. Velocity determines
how the position of the particle would change next. Fitness value is the value of the objective
corresponding to the current position.

In every iteration, each particle’s position is updated according to the velocity which is
calculated primarily based on two values. The first one is the best solution (in terms of the
fitness value) the particle has achieved so far. This value is called the personal best denoted by
pbest. The second one that is tracked by the optimizer, is the best solution obtained so far by
any particle in the population. This value is the global best which is denoted by gbest.
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While implementing the PSO algorithm, we need to define a set of rules to compare different
solutions for finding the pbest and the gbest. In our implementation, we let feasibility dominate
performance. The specified rules can be written as follows:

• A value assignment respecting all constraints is better than another assignment violating
one or more constraints. That is, the objective value has no influence.

• If two solutions respect all constraints, then the solution with a better fitness value (i.e.,
the optimization objective) is considered better.

• If two value assignments do not satisfy the constraints (i.e., both of them violate at least
one constraint), the value assignment with a better fitness value is considered better.

Let us denote a particle as pari and its current position and velocity as posi and veli. A
particle updates its position and velocity according to the following equations:

veli = α0 · veli + α1 · rnd(0, 1) · (pbesti − posi) + α2 · rnd(0, 1) · (gbest− posi), (2.54)

posi = posi + veli. (2.55)

Here, (i) rnd(0, 1) is a random number with uniform distribution from the open interval (0, 1),
(ii) pbesti is the personal best of the particle pari, (iii) α0 is the weight inertia and α1 and α2 are
cognitive and social scaling parameters respectively. Widely used values for these parameters
are: α0 = 0.4 and α1 = α2 = 2 [174]. The algorithm is terminated once all particles have con-
verged or the maximum number of iterations has been reached. The computational complexity
of PSO is clearly polynomial.
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Figure 2.7: Nonlinear optimization using particle swarm optimization (PSO). Five particles are
used for the optimization and their search trajectories are shown. ‘Particle2’, ‘Particle4’ and
‘Particle5’ are very close to the maxima.
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Example: Let us consider a nonlinear objective function as follows:

f(var1, var2) = var1 · e−var
2
1−var2

2 ,

where, −2 ≤ var1 ≤ 2 and −2 ≤ var2 ≤ 2. We apply PSO to maximize the value
f(var1, var2) within the bounds of the variables var1 and var2. We use five particles and
five iterations and their search trajectories are as shown in Figure 2.7. It can be observed that
four particles are approaching the maxima in only five iterations. The best result is obtained by
‘Particle5’ which is f(var1, var2) = 0.4277 while the optimal value of f(var1, var2) is 0.4289.

2.4.3 Satisfiability Modulo Theories
Satisfiability Modulo Theories (SMT) is a powerful modeling approach for constraint satisfac-
tion and verification problems. While a boolean satisfiability (SAT) problem is modeled as a
propositional logic formula, an SMT model can express a first-order logic formula [175].

A SAT problem comprises only boolean variables and is typically expressed as a boolean
formula containing variables in conjunctive normal form (CNF). A solution to the SAT problem
is a set of value assignments to the corresponding set of variables such that the boolean formula
evaluates to true. Let us consider an example as follows:

(a′∨b∨c)∧(a∨c∨d)∧(a∨c∨d′)∧(a∨c′∨d)∧(a∨c′∨d′)∧(b′∨c′∨d)∧(a′∨b∨c′)∧(a′∨b′∨c)

A solution to this SAT problem is as follows:

{a⇔ T, b⇔ T, c⇔ T, d⇔ T}5

SMT problems can be constructed with non-boolean variables as well. In a SAT problem,
if we replace boolean variables with predicates over non-boolean variables then it becomes an
SMT problem. A predicate evaluates to a binary value and can be an expression with non-
boolean variables. Examples of such predicates include:

• Arithmetic expressions, i.e., linear and non-linear equalities and inequalities with integer
and real variables, such as

(i) var1− 3 · var2 + 4 · var3 ≥ 10, (ii) 2 · var1 · var2 + 4 · var1 · var2
2 − 5 · var3 = 5.

For such a predicate, the solution would comprise the value assignment to the variables
such that the corresponding arithmetic expression evaluates to true. For example, the
following value assignment will make the above arithmetic predicates to be true.

var1 = 1, var2 = −3, var3 = 5.

• Logical, arithmetic and structural operations on bitvectors [176], e.g.,

(i) var1 ∨ ¬var2 = var3, (ii) var1 · var2 = var3, (iii) SHL(var1, var4) = var3.

5T refers to a “true” value assignment
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Here, var1, var2 and var3 are bit vectors while var4 is a natural number. The first pred-
icate states that bitwise-or between var1 and var2 must be equal to var3. If the number
of bits in a bitvector is equal to k, then the second predicate states that I(var1) · I(var2)
mod 2k − 1 = I(var3), where I(·) is the integer equivalent of a bitvector. The third
predicate implies that when the bits of the bitvector var1 are shifted var4 positions to
the left then we must get var3. Predicates on bitvectors are usually required to model
software verification problems.

• Predicates over arrays [177] involving read and write operations such as

[read(arr, ind) = elem1] ∧ [write(arr, ind, elem2) = arr] ∧ [¬(elem1 = elem2)] .

Here, arr denotes an array, ind is an array index and elem1 and elem2 are values. In
the above example, there are three predicates. The first one says that when the array arr
is read at the index ind, we should get the value elem1. The second predicate says that
we write the value elem2 at the index ind of the array arr. Thus, these predicates can
both be true only when elem1 and elem2 are equal. However, this is not true according
to the third predicate. Thus, there is no solution to the above example as the constraints
are unsatisfiable.

• Expressions involving uninterpreted functions [178] such as

var1 · [f(var2) +f(var3)] = var2 ∧ var2 · [f(var1) +f(var3)] 6= var2 ∧ var1 = var2.

Here, f(·) is an uninterpreted function as the input-output relation is not defined for the
function. However, it is possible to determine that the above formula is unsatisfiable. This
is because the first two predicates can be true only if var1 6= var2, however, this violates
the third constraint.

Thus, it is possible to formulate complex constraint satisfaction problems using SMT models
compared to SAT and LP because different constraints using different types of variables are
allowed in SMTmodels.

Solvers: Earlier SMT techniques, like in MathSAT [179] and iSAT [180], are based solely
on Davis-Putnam-Loveland-Logemann (DPLL) algorithm that is traditionally used for solving
SAT problems. This is called the eager approach [175] where an SMT formula is first translated
into an equivalent SAT formula and then DPLL algorithm [181] is used to solve the problem.
For example, a 32 bit integer value is represented by 32 binary variables and higher level integer
addition is replaced by lower level boolean operation. However, this approach is inefficient and
often a solver runs out of memory or time because of the complexity of the problem. Thus,
modern SMT solvers, like Z3 [182] and Yices [183], employ a combination of SAT solving
and theory solving (T-solver) techniques, which is known as the lazy approach [175]. In this
technique, a proposition can contain predicates involving real, integer, arrays, bitvectors or
uninterrupted functions. Here, SAT solver evaluates boolean relations while different theory
solvers (T-solvers) are used to evaluate other relations. For example, the theory of real numbers
is used to evaluate predicates with arithmetic expressions comprising real numbers while theory
of arrays is used to solve predicates over arrays. relations. T-solvers interact closely in the lazy
approach that makes it very efficient.
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2.4.4 Timed Automata
Real-time systems can be formally modeled using timed automata (TAs). A timed automaton
(TA) is a finite state machine with a finite set of real-valued clocks that progress synchronously.
A TA can be represented as a tuple (LOC, loc0, ClK,ACT,EDG, INV ) [184] where LOC is
a set of locations, loc0 is the initial location, CLK is a set of clocks, ACT is a set of actions,
EDG ⊆ LOC×ACT×grd(CLK)×2CLK×LOC is a set of edges between locations with an
action, a guard and a set of clocks to be reset respectively, and INV : LOC −→ GRD(CLK)
assigns invariants to locations. A clock valuation is a function cval : CLK −→ R

CLK
≥0 from

the set of clocks to non-negative reals. Here, grd(CLK) is a set of conjunctions over simple
conditions of the form clki ./ val or clki − clkj ./ val where clki, clkj ∈ CLK, val ∈ N and
./∈ {<,≤,=,≥, >}. Considering invariants as sets of clock valuations, cval ∈ INV (loci)
means that cval satisfies INV (loci), i.e., the invariant corresponding to the location loci.

The operation semantics of a TA is defined as a labeled transition system 〈ST, st0,→〉 [184],
where ST ⊆ LOC ×RCLK is the set of states, st0 is the initial state, and→⊆ ST × (R≥0 ∪
ACT )× ST is the transition relation such that:

• (loc, cval)
del−→ (loc, cval + del) if ∀del′ : 0 ≤ del′ ≤ del ⇒ cval + del′ ∈ INV (loc),

and

• (loc, cval)
act−→ (loc′, cval′) if there exists edg = {loc, act, grd, rst, loc′} ∈ EDG such

that cval ∈ grd, cval′ = [RST 7→ 0]cval, and cval′ ∈ INV (loc′),

where for del ∈ R≥0, cval+del maps each clock clk ∈ CLK to the values cval(clk)+del, and
[RST 7→ 0]cval denotes the clock valuation which maps each clock in RST to 0 and agrees
with cval over CLK\RST .

A number of TAs often compose a network over a common set of clocks and actions,
consisting of NTA TAs, where TAi = (LOCi, loci,0, CLKi, ACTi, EDGi, INVi), 1 ≤ i ≤
NTA [184].

Example: We consider a real-time system comprising several software tasks scheduled accord-
ing to a fixed-priority preemptive scheduling policy on a processor. We can model the system as
a network of TAs. Each task can be represented as a TA as shown in Figure 2.8(a). We can also
model the scheduler as a TA as shown in Figure 2.8(b). The task automaton and the scheduler
automaton are adapted from [185].

In Figure 2.8, the solid circles are locations, where two concentric circles denote an initial
location and a location marked with ‘C’ is a committed location. A state becomes committed if it
comprises a location that is committed. Time cannot elapse in a committed state, and therefore,
an outgoing edge of one of the committed locations must be taken in the next transition. The
black arrows connecting locations are the edges. Texts written in green along the edges are
guards while texts in brown corresponding to locations are invariants. Two TAs communicate
via synchronization channels (written in gray in the figure). Texts written in blue are the actions.

We consider that each task has a dispatch offset, a period, a worst-case execution time
(WCET) and a best-case execution time (BCET). As shown in Figure 2.8(a), a task automaton
starts in the location ‘Initial’ defined by the invariant that the time must be less than or equal
to the task’s dispatch offset. Thus, the automaton makes a transition to a committed location
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time[id] == offset()

x’ == 0 && 
time[id] <= offset()

x’ == isRunning() && 
x <= WCET()

x’ == 0 && 
time[id] <= period()
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C
time[id] = 0, x=0,
ready_task = id

x >= BCET()

Error

time[id] > deadline()
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ready?
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!empty()

insert(ready_task)
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empty()
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Figure 2.8: Modeling fixed-priority preemptive scheduling as a network of timed automata.
(a) The timed automaton (TA) representing a task defined by its offset, period, worst-case ex-
ecution time (WCET) and best-case execution time (BCET). (b) The timed automaton (TA)
representing the fixed-priority preemptive scheduler.

only after a time equal to the dispatch offset has elapsed. The next transition has to be from
the committed location where the clocks (‘time[·]’ and ‘x’) used by the task automaton are reset
and it communicates to the scheduler automaton that it is ready to run using the synchronization
channel ‘ready’. In the location ‘Wait & Execute’, ‘x’ is used as a stopwatch which runs when
the task is being run by the processor and it is paused when it is waiting. This location also
has an invariant that the automaton can stay here only if the task has not been allocated to the
processor for a time more than its WCET. If the task stays in this location for a time more
than its deadline then the automaton takes the transition to the ‘Error’ state, which implies that
the scheduling constraint is violated. If the time, the task ran on the processor is more than its
BCET, it can move to the ‘Finished’ state and communicate this to the scheduler automaton
using the synchronization channel ‘finished’. The ‘Finished’ state has an invariant that the
automaton must stay there till the task’s next dispatch that is measured based on its period. For
the next dispatch, the automaton again moves to the committed location.

As shown in Figure 2.8(b), the scheduler automaton starts in the ‘Idle’ state. Whenever
a task is dispatched as communicated by the ‘ready’ synchronization channel, it moves to a
committed location where it evaluates whether the ready queue is empty. If the buffer is empty,
it adds the ready task at the beginning of the queue, otherwise, the ready task is added to the
queue based on its priority. All dispatched tasks with a higher priority than the new task must be
aheady in the queue while the lower-priority tasks must be behind the new task. After adding the
task, the automaton moves to the location ‘In Use’ that implies that the processor is running a
task that is at the beginning of the queue. When a task notifies the scheduler using the ‘finished’
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synchronization channel that it has finished execution, the task is removed from the buffer and
the automaton moves to a committed location. If the buffer is not empty, it again comes back to
the ‘In Use’ state otherwise it makes a transition to the ‘Idle’ state.

Verification tools: There are a few tools available to verify properties of TAs such as
UPPAAL [186] and Kronos [187]. In our work, we have used UPPAAL as the modeling and
verification tool for TAs. In UPPAAL, properties can be specified using timed computation tree
logic (TCTL). It can be used to verify safety, reachability, liveness properties as well as dead-
locks. In the example in Figure 2.8, “A[] forall (i : task_id) not Task(i).Error” specifies that
for all states neither of the task automata must be in the location ‘Error’. We can use this
specification to verify whether all tasks satisfy their respective deadlines.

2.4.5 Minimum Vertex Coloring
Let us consider an undirected graph composed of vertices and edges represented as G = (V , E).
Here, two vertices v1, v2 ∈ V are connected by an edge {v1, v2} ∈ E only if a certain condition
is satisfied. Note that an edge is denoted by an unordered pair of vertices.

With regard to an unidirected graph, vertex coloring is the problem of assigning colors to
the vertices of the graph such that no two vertices connected by an edge have the same color
(Chapter 6 in [188]). Given a graph, it is trivial to color the vertices based on the aforementioned
rules. However, for real applications, typically, it is desirable to color the graph using the
minimum number of colors. This is a challenging problem. Practical applications of minimum
vertex coloring (MVC) include timetable formulation, mobile radio frequency assignment, map
coloring, sudoku, and register allocation in compiler optimization.

Example: Suppose we need to formulate an exam timetable for a particular class. In total
there are six subjects, i.e., english (E), science (S), mathematics (M), computer applications
(C), histotry (H) and geography (G). Students can choose different subjects. Thus, no two
exams can be scheduled simultaneously if there is at least one student who is registered for both
exams. These scheduling constraints can be represented in a graph as shown in Figure 2.9(a).
Here, each vertex represents a subject and if there is an edge between two vertices, it implies that
the exams for the corresponding two subjects cannot take place at the same time. For example,
mathematics and science cannot be scheduled together while mathematics and history can be
simultaneously scheduled. Now, the task at hand is to determine the minimum number of time
slots required to schedule all six exams.

This problem can be formulated as an MVC problem where a color represents a timeslot
and we need to color the graph shown in Figure 2.9(a) such that no two vertices sharing an
edge can have the same color. A possible solution to this problem is depicted in Figure 2.9(b)
where we have used four colors which implies we need four timeslots to schedule the exams.
According to the solution, mathematics and geography exams can share a timeslot, and science
and history exam can be conducted simultaneously, however, english and computer application
need a separate timeslot each.

MVC of chordal graphs: In graph theory, a chordal graph is a graph where every cy-
cle with four or more vertices must have a chord (Chapter 6 in [188]). Consider four or
more vertices Vcy = {v1, v2, v3, · · · , vn} that form a cycle denoted by a set of edges Ecy =
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Figure 2.9: Application of minimum vertex coloring (MVC). (a) An undirected graph repre-
senting the scheduling constraints between exams on different subjects is shown. Each vertex
represents a subject and two vertices connected by an edge implies that the exams for the corre-
sponding two subjects cannot be given simultaneously. (b) A colored undirected graph is shown
where each color represents a timeslot. The colored graph, therefore, illustrates the exam sched-
ule. Two vertices with the same colored will be conducted at the same time. Four colors are
used which implies that four timeslots are needed to schedule six exams.

{
{v1, v2}, {v2, v3}, · · · , {vi, vi+1}, · · · , {vk−1, vk}, {vk, v1}}. Now, if this cycle is a part of a

chordal graph Gch, then there exists at least an additional edge in the graph Gch shared by two
vertices in the set Vcy, that is not a part of the cycle. This can be written as

∃
vi,vj∈Vcy

({vi, vj} ∈ Ech) ∧ ({vi, vj} /∈ Ecy). (2.56)

The graph shown in Figure 2.9(a) is also a chordal graph. As can be seen in the figure, the cycle
C-S-E-G-C has a chord E-C and the cycle H-C-E-G-H has two chords H-E and C-G.

MVC is generally an NP-hard problem. However, for chordal graphs, there exists a linear
time algorithm for MVC [189]. Vertices of a chordal graph can be colored using the minimum
number of colors in two steps. First, a perfect elimination ordering of the vertices (PEOV)
of the graph is identified. Here, the ordered set (v1, v2, · · · , vi, · · · , vn) is a PEOV if and
only if each vertex vi is simplicial in the corresponding subgraph Gvi induced by the vertices
{vi, vi+1, · · · , vn}. A vertex vi is simplicial if vi along with its adjacent vertices Adj(vi) in a
graph form a clique. Here, Adj(vi) represents the set of vertices in Gvi that vi has edges with.
Such an ordering can be obtained for chordal graphs in linear time using the lexicographic
breadth first search (Lex-BFS) algorithm [190]. In the second step, the greedy vertex coloring
algorithm [189] is applied backwards to the obtained PEOV. Here, considering that the colors
are numbered as {1, 2, · · · }, each vertex vi is assigned a minimum numbered color that is not
used by any of its adjacent vertices in Adj(vi).

Lex-BFS algorithm is given in Algorithm 1 that determines the PEOV in a graph G = (V , E).
The input of the algorithm is the set of vertices V . The output is the PEOV Vord. We denote Ψ
as an ordered set of sets of vertices such that the vertices in the first set will be at the end of the
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Algorithm 1: Lexicographic breadth first search (Lex-BFS) algorithm.
Input : V
Output: Vord

1 Ψ =
(
V
)
;

2 nv =
∣∣V∣∣;

3 for k ← 0 to nv − 1 do
4 va = SelectVertex( Ψ[1] );
5 Vord

[
nv − k

]
= va;

6 Ψ[1] = Ψ[1] \ va;
7 Ψ∗ = NULL;
8 j = 1;
9 for i← 1 to

∣∣Ψ∣∣ do
10 Vc =

{
vb ∈ Ψ[i]

∣∣{va, vb} ∈ E};
11 Vnc = Ψ[i] \ Vc;
12 if Vc 6= ∅ then
13 Ψ∗[j] = Vc;
14 j = j + 1;
15 end
16 if Vnc 6= ∅ then
17 Ψ∗[j] = Vnc;
18 j = j + 1;
19 end
20 end
21 Ψ = Ψ∗;
22 end

PEOV. Moreover, Ψ will be refined in each iteration of the algorithm. In line 1, we initialize Ψ
with only one set, i.e., the set of all vertices in the graph V . In line 2, we determine the number
of vertices nv in the graph. Lex-BFS algorithm iteratively identifies a vertex that is simplicial
with respect to the subgraph induced by it together with the already selected vertices (lines 3 to
22). Thus, it determines the PEOV in the reverse order. In each iteration, a vertex va is randomly
selected from the first set of vertices in Ψ, i.e., Ψ[1] (line 4). Then, va is placed in the ordered
set Vord before the vertices selected in the previous iterations (line 5) and is removed from the
set Ψ[1] (line 6). We denote Ψ∗ as the new ordered set consisting of sets of remaining vertices
and initialize it as an empty set (line 7). Ψ∗ is populated iteratively based on the ordered sets
in Ψ (lines 9 to 20). We denote j as the current index in Ψ∗ where a new set can be added and
initialize it as 1 (line 8). Now, each set Ψ[i] ∈ Ψ, is partitioned into two mutually exclusive
subsets Vc and Vnc, where Vc (Vnc) consists of all vertices in Ψ[i] that have (do not have) an edge
with va (lines 10 and 11). If Vc is a non-empty set then we append it to Ψ∗ and subsequently
increment j by 1 (lines 12 to 15). Similarly, if Vnc is a non-empty set then we place it in Ψ∗

in the j-th position and then increment j by 1 (lines 16 to 19). When all the sets in Ψ are
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traversed then we replace the current ordering of sets in Ψ with the new ordering in Ψ∗ for the
next iteration (line 21).

Let us consider the example in Figure 2.9(a). The Lex-BFS algorithm when applied to this
example, Ψ and Vord obtained at different stages of the algorithm are given as follows:

– Initialization: Ψ =
(
{E, S,M,C,H,G}

)
, Vord = ().

– After iteration 1: Ψ =
(
{S,M,C,H,G}

)
, Vord = (E).

– After iteration 2: Ψ =
(
{M,C}; {H,G}

)
, Vord = (S,E).

– After iteration 3: Ψ =
(
{C}; {H,G}

)
, Vord = (M,S,E).

– After iteration 4: Ψ =
(
{H,G}

)
, Vord = (C,M, S,E).

– After iteration 5: Ψ =
(
{G}

)
, Vord = (H,C,M, S,E).

– After iteration 6: Ψ =
()

, Vord = (G,H,C,M, S,E).

Now, we can apply the greedy vertex coloring algorithm to the obtained PEOV Vord in the
reverse order. Let us assume an ordered color sequence as (orange, green, gray, blue, · · · ).
First, we color the vertex ‘E’ with orange. The vertex ‘S’ cannot have the same color as ‘E’
and, therefore, is colored green. The vertex ‘M’ cannot be colored the same as ‘E’ and ‘S’, and
thus, a new color, i.e., gray, is selected. The vertex ‘C’ needs a new color, i.e., blue, as all the
vertices traversed so far have edges with ‘C’. The vertex ‘H’ cannot have the same color as ‘E’,
however, it can be colored using green because it does not have an edge with ‘S’. The vertex ‘G’
cannot be colored with orange, green and blue as it has edges with ‘E’, ‘H’ and ‘C’ respectively,
and therefore, gray is used for ‘G’. Overall four colors are required to color the graph as shown
in Figure 2.9(b).

For a chordal graph, the minimum number of colors required to color all the vertices in the
graph is given by the cardinality of the clique with the maximum number of vertices [191].
A clique consists of a subset of vertices in a graph where each vertex has an edge with every
other vertices in it (Chapter 4 in [188]). Thus, the set of vertices in a clique induces a complete
subgraph. In the context of vertex coloring, no two vertices in a clique can have the same color.
Thus, the total number of colors required to color all the vertices in a clique is equal to the
cardinality of the clique. Now, a maximal clique is a clique to which no further vertices can
be added to form another clique [192]. Or, in other words, a maximal clique is not a proper
subset of any other clique of the graph. Thus, in a chordal graph, the clique with the maximum
cardinality, that determines the minimum number of colors required to color the vertices of the
graph, is one of the maximal cliques. In the example in Figure 2.9a, there are two maximal
cliques formed by (i) E, S, M, and C and (ii) E, C, H, and G respectively. Both maximal cliques
comprise four vertices. Thus, the maximum number of color required for this example is equal
to four which is also the number obtained by applying the Lex-BFS and greedy vertex coloring
algorithm.

Interval graphs: Our work further studies interval graphs and exploits specific properties
of such graphs. An interval graph is a graph where the vertices represent intervals on a real
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Figure 2.10: Minimum vertex coloring of interval graphs. (a) Six interval are shown that are
colored such that no two overlapping intervals have the same color. (ii) Two maximal cliques are
determined in the interval graph induced by the intervals. The first maximal clique is formed
by G, H, E, and C as these intervals contain ]4, 5[ where 4 is a left endpoint and 5 is a right
endpoint. The second maximal clique comprises E, C, M, and S and these intervals cover ]8, 9[
where 8 is a left endpoint and 9 is a right endpoint.

line, and when two intervals overlap, the corresponding two vertices will be connected by an
edge [193]. Note that all interval graphs are chordal [194]. Thus, the number of colors re-
quired to color the vertices of an interval graph is given by the cardinality of the maximum
clique. [192] provides a theorem to determine all the maximal cliques in an interval graph.
For an interval graph with n intervals, let us denote the sorted endpoints of all the intervals
as e1, e2, · · · , e2n. According to the theorem, “all the intervals that cover an open interval
]es, es+1[ form a maximal clique if and only if es is a left endpoint and es+1 is a right endpoint,
not necessarily of the same interval". Here, the left and the right endpoints imply the start and
end of the intervals respectively. For example, the left and the right endpoints of an interval
]5, 8[ are 5 and 8 respectively.

Consider an interval graph constructed for six open intervals as follows: (i) E =]3, 9[, (ii) S =
]8, 12[, (iii) M =]7, 11[, (iv) C =]4, 10[, (v) H =]2, 6[, (vi) G =]1, 5[. The intervals are given
in Figure 2.10(a) and the corresponding graph is as shown in Figure 2.9(a).. We can sort the
endpoints of the intervals as follows:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12.

Here, 4 and 5 are two consecutive endpoints where 4 is the left endpoint of C and 5 is the right
endpoint of G. Thus, the interval ]4, 5[ will correspond to a maximal clique. The intervals that
contain ]4, 5[ are E, C, H, and G, as shown in Figure 2.10(b). Similarly, 8 is the left endpoint of
S and 9 is the right endpoint of E. ]4, 5[ is covered by the intervals E, S, M, and C, as shown in
Figure 2.10(b). Thus, there are two maximal cliques for this interval graph as can also be seen
in Figure 2.9(a). Both maximal cliques have the same cardinality of four, thus, the number of
colors used to color the interval graph is four as shown in Figure 2.9(b).

In Chapter 6, we will show that the properties of interval graphs can be exploited to formu-
late a closed-form optimization problem to minimize the balancing time for cell balancing.
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3
Multi-Objective Co-Optimization for
Distributed Cyber-Physical Systems1

3.1 Introduction

One emerging research direction towards an efficient design of cyber-physical systems (CPSs)
is the co-design of the cyber platform and the controllers that will run on the platform. A
co-design technique integrates the two design domains in an early phase of the development
process, and therefore, the parameters on both sides can be computed according to certain
design objectives. Such a technique exploits control-theoretic properties and platform-specific
details to synthesize an optimal design configuration. In this chapter, we outline our proposed
co-design methodology for distributed CPSs in the automotive context. Our proposed approach
synthesizes feasible control and platform parameters, and at the same time, it also co-optimizes
the average control performance and the resource usage respectively.

Distributed CPSs: Compared to the conventional notion of the embedded systems, CPS em-
phasizes more on the tight interaction between the computational elements and the physical
entities. Here, we study embedded control systems, which are typical and important examples
of CPSs. In such a system, the software implementation of a controller running on an embedded
platform is used to control the physical plant. Such systems are often implemented on a dis-
tributed architecture where the control software is partitioned into multiple tasks mapped onto
different processing units and the data between the tasks are transmitted on the bus. The design
of embedded control systems mainly involves two aspects, namely the controller design and
the platform design. The control parameters include, e.g., the control law and the sampling pe-

1This chapter is primarily based on a publication entitled “Multi-objective co-optimization of FlexRay-based
distributed control systems” [195] that appeared at the 2016 IEEE Real-Time and Embedded Technology and
Application Symposium (RTAS).
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riod. The platform parameters refer usually to the design parameters of the underlying platform
implementation, e.g., the task partition and mapping and the task and message schedules.

Design objectives for automotive systems: Distributed control systems are commonly found
in the automotive domain. These systems are often safety-critical and have stringent perfor-
mance requirements. The general idea is that the control performance improves with higher
quality resources at higher quantity. Thus, to meet the safety requirements, high-quality re-
sources are typically provisioned for control applications with significant conservativeness.
That is, time-triggered resources are used at high frequency to execute software tasks and trans-
mit communication messages for a safety-critical control application. On the other hand, the
limitation of the resources is always one of the main constraints on an embedded platform in
the automotive domain. First of all, the automotive industry is highly cost-sensitive and provid-
ing more resources is often coupled with increasing cost. Moreover, the scale and complexity
of the hardware/software system in modern cars has increased drastically in the past decade.
The resources are, therefore, becoming scarce, that makes resource-efficient design an impor-
tant requirement for automotive systems. Note that the two objectives of maximizing control
performance and minimizing resource usage are often conflicting to each other.

Control-platform co-design: In conventional design paradigm, the embedded platform and
the controllers are designed separately and then integrated [196, 197]. Thus, control engineers
make certain assumptions on control timings while designing the controllers, however, control
timings depend on the platform implementation of the controllers. Similarly, platform parame-
ters are also selected assuming that the control loops to be robust to a certain degree, however,
the robustness of a control loop depends on the control law. If the assumptions made on con-
trol properties are too conservative, e.g., for safety-critical systems, the platform resources are
usually not optimally utilized. On the other hand, if more idealistic assumptions are made on
platform capabilities, the safety of the control loops can be jeopardized.

In recent years, the subject of control and platform co-design has emerged and has been
drawing increasingly more attention [149,161,198]. This design paradigm combines the design
of controllers and the underlying embedded platform together, often using a holistic approach,
to explore the characteristics of both sides in order to reduce design conservativeness. In this de-
sign approach, the control parameters like control gains and sampling periods and the platform
parameters like task and message schedules are computed by considering the interplay between
the parameters. Often a mathematical model with platform-specific constraints and high-level
control objectives is established and solved, which automates the design process. Thus, it of-
fers the developer the opportunity to co-design control and platform parameters according to
specific system-level objectives.

Challenges towards control-platform co-design: There still exist certain challenges towards
a more comprehensive design of control and platform parameters for automotive systems. One
challenge is the large design space. This is due to the fact that for various platform-specific
behaviors such as sampling period, delay, and jitter, the control design problem does not fit into
a standard closed-form optimal control framework. Therefore, it often becomes necessary to
perform heuristic-based search to find the right system parameters such as poles. In addition,
the platform requires the configuration of a huge number of parameters. A control application is
implemented using several tasks and messages where the schedule of a task or a message com-
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prises a few (two or three) configurable parameters, as discussed in Section 2.2. A combined
space with controller and platform parameters is huge and challenging to handle. Moreover,
in automotive systems, several applications share an ECU or a communication bus. There-
fore, the control-platform co-design problem must consider control and platform parameters of
all applications sharing the platform resources. Such a synthesis problem requires consider-
able computational effort. This is aggravated by the increase in the system size and the whole
problem easily becomes intractable. Secondly, existing approaches usually consider only the
optimization of the control performance as the design objective and there is no design freedom
for trade-offs between the control performance and the resource usage.

Contributions: In our work, we have studied FlexRay based ECU networks, i.e., a number
of ECUs are connected by a FlexRay bus. Such a FlexRay-based distributed platform is very
common in the automotive domain for implementing safety-critical systems like steering and
brake control. Towards control-platform co-design for distributed control systems, we make the
following contributions:

• Compared to the existing approaches, we propose to co-optimize both average control perfor-
mance and resource usage. Resource usage metric is formulated as the percentage of TDMA
slots allocated to the control applications in the FlexRay static segment. Minimizing the re-
source usage would imply that slots are not conservatively reserved for control applications
and unused slots can be used by other real-time data or for future applications, thus improving
resource efficiency. On the control side, each application can be designed based on different
control performance metrics (like settling time or quadratic cost) as per requirements. It
must be noted here that control performance of different applications can be interdependent
as these applications share limited platform resources. A single objective determining the
average control performance of all applications is formulated to make the problem tractable.
Thus, the individual performances are first normalized with respect to their required values.
Average control performance is given by the weighted sum of the normalized performances.
Now, for these objectives of resource usage and average control performance respectively, it
is desirable to obtain a Pareto front depicting the trade-off.

• We integrate the problems of controller design and scheduling by accurately modeling the in-
terplay between them. The sampling period and the delay with which a controller is designed
depend on the task and message schedules. Properties of control theory and FlexRay proto-
col are exploited here to formulate the co-design problem efficiently. Typically, the impact
of the closed-loop delay on the control performance is less as compared to the sampling pe-
riod [199]. We assume that the delay is equal to one sampling period to offer more scheduling
flexibility. In FlexRay, message cycle repetition rates can take only a limited number of val-
ues. The sampling period of a controller is equal to the period with which the corresponding
tasks and messages are scheduled. Thus, sampling periods are also restricted to a predefined
set of values corresponding to the feasible values of message repetition rates. Exploiting these
aforementioned properties, we partition the co-design problem into two subsequent stages:
(i) prospective controller design and (ii) co-optimization. Partitioning the whole problem into
two stages is necessary because we are dealing with a large design space combining the di-
mensions of both control and platform designs. Thus, partitioning the whole design space
into smaller sub-spaces while considering all feasible regions helps reducing the problem
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complexity. In the prospective controller design stage, optimal controllers are predesigned
at all possible values of sampling period for each application. The controller design can,
therefore, be integrated into the co-design problem where the solver in the co-optimization
stage only needs to select one of these predesigned controllers. In addition, application-level
constraints (like data dependency, sampling period and delay) and implementation rules (like
non-conflicting resource allocations and finite resource capacities) are considered in the co-
optimization stage. By predesigning the optimal controller at each possible value of sampling
period, we avoid unnecessary schedule synthesis for sub-optimal or unstable controllers in
the co-optimization stage, thus, enabling efficient design space pruning.

• The constrained multi-objective optimization problem considered in the second stage of the
control-platform co-design cannot be solved efficiently by existing solvers. A combination of
iterative search, MILP and integer linear programming (ILP) is applied to solve the problem.
Note that only a finite set of values are possible for resource usage according to its defini-
tion. These values are traversed in ascending order. For a given value of resource usage, an
optimization problem is formulated with average control performance as the only objective
and an equality constraint on the resource usage. To ensure Pareto-optimality, an additional
constraint is added, i.e., the objective value of the current solution must be the best among
all the solutions obtained so far. Now, this single-objective optimization problem is solved
in two nested layers to improve scalability. First, an MILP is solved with only sampling
periods as variables and average control performance as the objective such that the equality
constraint on the resource usage and the Pareto criterion are satisfied. Then, an ILP problem is
solved to determine a valid set of task and message schedules satisfying the application-level
and implementation-specific constraints. If a valid configuration is found then it represents
a Pareto point. Otherwise, the next best set of sampling periods (still satisfying the Pareto
criterion) is evaluated for feasibility.

• For a case study of only five control applications, 31 Pareto points are generated with a sig-
nificant trade-off opportunity. That is, the percentage of TDMA slots used in the FlexRay
static segment ranges from 5.5 % to 33 %, while the average control performance varies be-
tween 40.6 % and 81.74 %.2 We have also evaluated the scalability of our approach, where the
results show that this approach can scale up to a system size of at least 24 control applications.

Chapter organization: The rest of this chapter is organized as follows. In Section 3.2, we
formulate the co-design problem based on the problem setting under study. Here, we also ex-
plain our proposed two-stage design flow. Section 3.3 describes the details of the first stage, i.e.,
the prospective controller design. In Section 3.4, we formulate the application- and platform-
specific constraints for the multi-objective optimization in the second stage. Section 3.5 out-
lines the hybrid optimization technique that we have used in the second stage, i.e., the co-
optimization. In Section 3.6, the experimental results based on a case study are presented,
together with an analysis on the scalability of the proposed approach. Section 3.7 mentions the
related works. Then, we provide the concluding remarks in Section 3.8.

2The required control performance of each application is considered as 100%.
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3.2 Control-Platform Co-Design Problem
In this section, we will first study the problem setting where multiple physical plants are con-
trolled by software running on a network of ECUs connected by a FlexRay bus. Based on the
problem setting and the design objectives, we then define the co-design problem. Finally, we
propose a design flow comprising two stages to solve the co-design problem.

3.2.1 Problem Setting

We consider a distributed architecture where a set of ECUs represented byEi ∈ E are connected
through a FlexRay bus. A number of control applications denoted by Ci ∈ C are mapped on such
an embedded platform. Each control application is partitioned into several dependent software
tasks performing functions like sensor reading, computation and actuation. These tasks are
typically mapped on physically distributed ECUs and the data between the tasks are sent via the
FlexRay bus.

Task and message schedules: We consider the case where the scheduler used by the real-time
operating system (RTOS) on the ECUs follows a time-triggered non-preemptive scheme. The
tasks of the control applications are considered to be periodic tasks. Time-triggered periodic
tasks are described in Section 2.2.1. The schedule of a task Ti is defined by the tuple Ti ≡
{oi, pi, ei}, where oi, pi and ei denote the offset, the period and the execution time of the task
respectively. The start time t̂(Ti, k) and the finish time t̃(Ti, k) of the k−th instance of a task Ti
are given Eq. (2.35) and Eq. (2.36) respectively.

When two tasks need to communicate with each other while they are mapped on different
ECUs, data can be sent as a message over the FlexRay bus. As stated in Section 2.2.2, the
schedule of a FlexRay message mi can be represented as a tuple {si, bi, ri}, where si, bi, and ri
denote the slot id, the base cycle, and the repetition rate of the message. In this work, we assume
that safety-critical control application uses the FlexRay static segment for communication. In
the static segment, the start time t̂(mi, k) and the finish time t̃(mi, k) of the k−th transmission
of a message mi is given by Eq. (2.39) and Eq.(2.40) respectively. We consider FlexRay 3.0.1,
where slot multiplexing is possible without any restriction as mentioned in Section 2.2.2.

A set of communication tasks are required besides the application tasks. The communication
task on the sending ECU writes the data produced by the application tasks into the correspond-
ing transmit buffers of the communication controller, and on the receiving ECU, it reads the
data from the corresponding receiver buffers and forwards them to the application tasks. The
nature of these communication tasks depends on the specific implementation. Here we con-
sider that the execution time of all communication tasks is bounded by ecom and we schedule
the communication task directly after its corresponding application task at the sending side and
directly before the application task at the receiving side.

Control applications: In this work, we consider linear and time-invariant (LTI) systems, for
which the continuous-time plant dynamics can be written as in Eq. (2.1). Each controller Ci
controlling a physical plant (defined by the continuous-time state-space matrices {Ai, Bi, Ci})
is implemented in a distributed fashion using tasks and messages. We assume that a task execu-
tion or a message transmission takes non-negligible time. Furthermore, based on the interplay
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Figure 3.1: Distributed implementation of a controller. Each controller is implemented using
three tasks mapped on to three different ECUs. Data between the tasks are sent via messages
over the FlexRay bus.

ECU 1
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Bus
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Figure 3.2: Control timings depend on the implementation. The sampling period and the
sensing-to-actuation delay depend on the task and message schedules.

between the time-triggered schedules of tasks and messages constituting a control application,
there will be a constant delay between the sensing and the actuation. For a sampling period
hi and a delay di, we can derive the delayed discrete-time state-space model as discussed in
Section 2.1.3. Based on the augmented state-space model of delayed discrete-time systems as
given in Eq. (2.16), we define the feedback control law as in Eq. (2.23). For such a definition of
the controller, the feedback and feedforward control gains (i.e., Ki and Fi respectively) can be
calculated by pole placement using Ackermann’s formula as described in Section 2.1.5.

We consider that a control application is partitioned into three software tasks: (i) sensor task
measures the system states (using sensors) of the physical system if measurable; (ii) controller
task computes the controller input based on the measured system states; and (iii) actuator task
applies the control input (using actuators) to the physical system. These software tasks are
usually mapped onto different ECUs, due to the physically distributed topology of sensors and
actuators. Here we denote the sensor, controller and actuator task of a control application Ci
respectively as Ts,i, Tc,i and Ta,i. Without loss of generality, we assume that the three tasks are
mapped on different ECUs as shown in Figure 3.1. Then the sensor values measured by Ts,i are
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sent on the bus via a message ms,i to the control task Tc,i. The control input is sent as a message
mc,i by the control task Tc,i to the actuator task Ta,i. The time between the start of the sensor
task and the end of the actuator task is defined as the sensing-to-actuation delay, denoted as di.
As shown in Figure 3.2, this delay depends on the the task and message schedules.

3.2.2 Problem Definition
For the problem setting described in Section 3.2.1, we will determine the control law and the
task and message schedules for each control application, while co-optimizing the resource usage
and the average control performance.

Resource usage: In this work, we minimize the usage of communication resource. This is be-
cause sufficient communication resource need to be provisioned for future applications. While
adding a new application into a car, it might be possible to add an ECU if required but adding
a new bus cluster is always challenging. Here, we define resource usage as the total amount
of bandwidth of the FlexRay static segment that is allocated to the control applications. This
can be translated to the number of static slots assigned to the control applications in a sequence
of Ncom communication cycles. Here, Ncom is a power of 2 and it represents the number of
configurable FlexRay communication cycles that repeats infinitely. In this work, we assume
that Ncom is predetermined.

Now, letM denote the set of all FlexRay messages mapped on the static segment, where
mi ∈M, then the resource usage U can be defined as follows:

U =
∑
mi∈M

Ncom

ri
, (3.1)

where Ncom
ri

is the number of slots that the message mi uses in Ncom cycles The smaller the
value of U , the lower is the resource usage and more resources can be provisioned for the future
applications.

Note that the repetition rate of a message denotes how often the message is sent. For each
application, the period of repetition of its constituent tasks and messages are equal. Thus, the
metric U also gives an idea of how often the tasks are repeated. Thus, minimizing U will also
minimize the usage of the ECU computation bandwidth.

Average control performance: There are different metrics to measure the performance of a
control system. Here we consider two common metrics to measure the control performance.
(i) The performance of a controller can be commonly measured by a quadratic cost func-
tion [161], which in the discrete-time control can be represented as

J =
n∑
k=0

[λu[k]2 + (1− λ)σ[k]2]h, (3.2)

where λ is a weight taking the value between 0 and 1, u[k] is the control input and σ[k] =
|r − y[k]| is the tracking error. We further consider the (ii) settling time ξ as another control
performance metric, where ξ denotes the time necessary for the system to reach and remain
within a certain user-specified threshold of the reference value, i.e.,

J = ξ. (3.3)
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Depending on the specific requirements of the control application, one of the aforementioned
performance metric can be used. In both cases, smaller value of J implies better control perfor-
mance. For a specific control application Ci, Ji depends on the sampling period hi, the sensing-
to-actuation delay di and the control gains Ki and Fi. In a system consisting of multiple control
applications with different plant models and performance metrics, we need to normalize the
control performance in order to compare and combine them. Each control system Ci with con-
trol performance Ji must satisfy some control performance requirement Jri defined by the user.
Thus we can normalize it as follows:

Jni =
100 · Ji
Jri

(3.4)

and thus the average control performance of a set of control applications C is given by:

Jav =

∑
Ci∈C J

n
i

|C|
. (3.5)

Co-optimization problem: Consider a control application Ci consisting of a sensor task Ts,i, a
controller task Tc,i and an actuator task Ta,i and messages carrying the sensor data ms,i and the
control input mc,i. Each task Ttt,i maps to a schedule {ott,i, ptt,i, ett,i}, where tt is the task type
and tt ∈ {s, c, a}. Note that we assume that the execution time is given for each task. Similarly,
each message mmt,i maps to a FlexRay schedule {smt,i, bmt,i, rmt,i}, where mt is the message
type and mt ∈ {s, c}. The control parameters for an application Ci include the sampling period
hi, the delay di, and the control gains Ki and Fi. Then the co-optimization problem boils down
to finding a set of parameters for each Ci ∈ C, which can be denoted as pari and is given by

pari = {os,i, ps,i, oc,i, pc,i, oa,i, pa,i, ss,i, bs,i, rs,i, sc,i, bc,i, rc,i, hi, di, Ki, Fi}. (3.6)

In the process, we also consider to optimize the communication resource usage U as in Eq.
(3.1) and the average control performance Jav as in Eq. (3.5). Here, we further define the
control parameters of Ci as parci = {hi, di, Ki, Fi} and the embedded platform parameters as
parsi = {os,i, ps,i, oc,i, pc,i, oa,i, pa,i, ss,i, bs,i, rs,i, sc,i, bc,i, rc,i}, where pari = parsi ∪ parci . The
parameter set of the whole system is represented as P , where pari ∈ P .

3.2.3 Proposed Design Flow
For the co-optimization problem defined in the last section, we propose an efficient two-stage
approach as shown in Figure 3.3.

In the first stage, i.e., the prospective controller design stage, for each control application,
prospective controllers are designed that optimize the control performance at different possi-
ble sampling periods and the results are recorded in a look-up table. As shown in Figure 3.3,
for each application Ci, the continuous-time plant model (Ai, Bi, Ci), the performance metric
(i.e., settling time or quadratic cost) and the performance requirement (Jri ) are taken as in-
puts. According to the FlexRay protocol, repetition rates can take only a limited number of
values as given in Eq. (2.37). As the sampling period of a controller is equal to the period of
repetition of the messages using which the controller is implemented, the choice of sampling
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Figure 3.3: The proposed multi-stage control-platform co-design approach. The approach con-
sists of two stages: (i) the prospective controller design and (ii) the co-optimization. In the first
stage, prospective controller are designed for each application at each possible sampling period.
In the second stage, Pareto-optimal design configurations are synthesized comprising control
and platform parameters that respect all application-level and platform-specific constraints and
co-optimize the resource usage and the average control performance respectively.

periods are also restricted correspondingly. The set of feasible sampling periods is denoted
as H = {h(1), h(2), · · · , h(Nh)}. Corresponding to a sampling period h(k), we assume a delay
equal to the sampling period, i.e., d(k) = h(k), to allow more freedom to choose the task and
message schedules. However, our approach can also be applied to any case where for each pos-
sible sampling period there is a constant delay. Now, for an application Ci ∈ C and a sampling
period hi = h(k) ∈ H , we design a prospective controller (Kk∗

i , F
k∗
i ) that optimizes the con-

trol performance Ji assuming a sensing-to-actuation delay di = d(k). The optimal normalized
control performance for an application Ci at a sampling period h(k) is denoted as Jk∗i . Thus,
from the first stage, we obtain a table storing all prospective controllers and the corresponding
normalized control performances for each application as shown in Figure 3.3. This stage will
be explained in detail in Section 3.3.

In the second stage, the co-optimization stage, we synthesize feasible Pareto-optimal design
configurations comprising both control and platform parameters. Besides the look-up table ob-
tained from the first stage, this stage takes as inputs the task mapping (T )3, execution times of
the tasks implementing each control application {(es,i, ec,i, ea,i)|Ci ∈ C}, and certain FlexRay
configuration parameters like bus cycle time (Tbus), number of static slots (NS), and the length
of a static slot (∆). Using the input information, we mathematically formulate the application-
level and platform-specific constraints and the design objectives for the co-optimization prob-
lem. We explain the constraints and the objectives and formulate them in Section 3.4. The

3T (Ej) denotes the set of tasks mapped on to the ECU Ej
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co-optimization problem is solved using a customized hybrid optimization technique that gen-
erates the Pareto front for the two design objectives of resource usage and average control
performance respectively. In this technique, Pareto point candidates are iteratively identified,
exploring the characteristics of the resource usage objective, i.e., it can take only selected dis-
crete values. For each candidate, a nested two-layer optimization finds a feasible set of control
and platform parameters that optimize the control performance or proves that such a point is not
feasible. The output of the second stage is a Pareto front representing optimal parameter sets
taking both objectives into account. Based on this, the designer can select one set of parame-
ters that is the most suitable for the overall design requirements. The co-optimization stage is
dicussed in more detail in Section 3.5.

3.3 Stage 1: Prospective Controller Design
Controller design problem: Besides the control plant model, the control performance Ji of
a control application Ci depends mainly on three factors: (i) the sampling period hi, (ii) the
sensing-to-actuation delay di and (iii) the control gains Ki and Fi. In this work, we consider
that the schedules of the tasks and messages implementing a controller will lead to the case
where the sensing-to-actuation delay is close to the sampling period, i.e., di ≈ hi. This would
reduce the dimensions of the design space from all three factors (i) - (iii) to only (i) and (iii),
thus reducing the complexity and enhancing the scalability. It should be noted that our approach
is also valid for the cases with a fixed delay value (e.g., di = Di, where Di is a constant) or a
delay value proportional to the sampling period (e.g. di = ψhi).

With di = hi, the closed-loop system experiences one sampling period delay and we can use
the pole placement method discussed in Section 2.1.5 for such a delayed system. This method
enables to find the control gains according to a set of specified closed-loop poles for given values
of sampling period and delay. For a discrete-time system, poles must be placed within a unit
circle in the complex plane as discussed in Section 2.1.4. The design space for the controller
design then consists of two dimensions, namely the sampling period and the closed-loop system
poles. We can further make use of the fact the sampling period can only take discrete values
to prune the design space. Each control application Ci is implemented using the tasks Ts,i, Tc,i,
Ta,i and the messages ms,i, mc,i, and therefore, there is a relation between the sampling period
hi and the repetition rate of the messages rs,i, rc,i. This relation can be written as follows:

hi = rs,iTbus = rc,iTbus. (3.7)

That is, the sampling period of a controller is equal to the period of repetition of the messages
that are used for the controller implementation. Due to the fact that rs,i, rc,i can only take
discrete values in {2k−1|k ∈ {1, ..., 1 + log2Ncom}} as per Eq. (2.37), the choice of hi is also
constrained to the corresponding discrete values in the set H = {2k−1 · Tbus|k ∈ {1, ..., 1 +
log2Ncom}}. Thus, for each sampling period in the predefined set H , we need to determine the
optimal set of poles that optimize the control performance. To the best of our knowledge, there
is no standard closed-form optimal controller design framework for the performance metrics
considered in this work. Therefore, we need to employ a heuristic-search based optimization to
determine the optimal parameters.
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We can denote the control performance as Ji = f(hi, Ki, Fi). Then, the control performance
at each discrete value of the sampling period hi = 2k−1 · Tbus can be represented as Ji(k) =
gk(Ki, Fi). The purpose of the prospective controller design stage is to determine the control
gains for each possible value of the sampling period that optimizes the control performance.
Here, we search the space of the stable poles to determine a set of control gains Kk∗

i , F k∗
i , that

optimizes the control performance to Jk∗i at the sampling period hi = 2k−1 · Tbus.
Optimal controller design: In Section 2.1.5, we have discussed a pole placement technique
that ensures closed-loop stability. However, it is challenging to derive a closed-form relation
between pole locations and the control performance metrics considered here. Furthermore, we
consider a constraint on control input while designing the controller, that makes the problem
even more challenging. In almost every real-world system, due to physical constraints on the
actuator, there is a limit on the control input (e.g., the maximum voltage or current that can be
supplied by a battery) that can be applied to the plant. The controller needs to be designed such
that the maximum value of the control input does not exceed this limit u∗, i.e., ∀k≥0u[k] ≤ u∗.
There does not exist any closed-form optimal framework for such a controller design.

We can formulate the optimal pole placement problem as follows. The variables of the
problem are the poles denoted as λγs. For the system to be stable the poles must lie within
the unit circle in the complex plane, i.e., |λγ| < 1. The constraint on control input must be
considered, i.e., |u[k]| ≤ u∗. The objective of the problem is to minimize Ji. Note that Ji can
represent the settling time or the quadratic cost as mentioned in Section 3.2.2, and in both cases,
lower is the value of Ji, better the control performance is. In this work, we employ particle
swarm optimization (PSO) to solve the optimal pole placement problem. PSO is discussed in
detail in Section 2.4.2.

Algorithm 2 shows the optimal pole-placement algorithm using PSO. This algorithm deter-
mines the optimal controller for the application Ci at the sampling period hi = h(k) = 2k−1 ·Tbus.
It takes as inputs the augmented state-space system matrices (φa,i,Γa,i, Ca,i), the sampling pe-
riod h(k), the delay d(k), and the maximum permissible value of the control input (u∗). It returns
the optimal feedback and feedforward control gains (Kk∗

i and F k∗
i ) and the corresponding opti-

mal control performance (Jk∗i ).
The algorithm starts by finding the number of variables (NumPoles) of the optimization

problem, i.e., the number of poles to be placed (line 1). Here, the function CountStates(·)
determines the number of states of the system from the dimensions of the state transition ma-
trix φa,i. Let us consider that the number of particles that we use to search the pole space be
ParNum. For each particle, the algorithm tries to find a starting position that is a valid solution
(lines 2-16). Correspondingly, the following steps are carried out in order. (i) First, the poles
represented by the position of the particle are assigned random real values within the unit circle
while the velocities are initialized as 0 (lines 4-7). Here, rnd(-1,1) returns random real numbers
between -1 and 1. (ii) In line 8, the algorithm finds the feedback and feedforward gains by
placing the poles that are randomly assigned. (iii) For the calculated values of control gains, the
system is simulated to get the response and the input curves (line 9). (iv) We can calculate the
fitness value, i.e., the control performance from the result of the simulation using the function
FindPerformance(·) (line 10). (v) We find the maximum value of the control input from the
input vector u using the function FindMaximumInput(·) (line 11). (vi) If the constraint on
the control input is respected then the randomly assigned poles represent a valid solution and
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Algorithm 2: Optimal pole-placement using particle swarm optimization
Inputs : {φa,i,Γa,i, Ca,i}, h(k), d(k), u∗

Outputs : Kk∗
i , F

k∗
i , Jk∗i

Parameters : IterNum, ParNum, {α0, α1, α2}
1 NumPoles =CountStates(φa,i);
2 pt = 1;
3 while pt ≤ ParNum do
4 for np = 1 to NumPoles do
5 pospt[np] =rnd(−1, 1);
6 velpt[np] = 0;
7 end
8 [K,F ] =PolePlacement(φa,i,Γa,i, Ca,i, pospt);
9 [y, u] =Simulate(φa,i,Γa,i, Ca,i, K, F, h(k), d(k));

10 fitpt =FindPerformance(y, u, h(k), d(k));
11 û =FindMaximumInput(u);
12 if û ≤ u∗ then
13 pbestpt = {pospt, fitpt, û};
14 pt = pt+ 1;
15 end
16 end
17 gbest =FindBestSolution({pbestpt});
18 for in = 1 to IterNum do
19 for pt = 1 to ParNum do
20 velpt = α0 ·velpt+α1 ·rnd(0, 1)·(pbestpt−pospt)+α2 ·rnd(0, 1)·(gbest−pospt);
21 pospt = pospt + velpt;
22 [K,F ] =PolePlacement(φa,i,Γa,i, Ca,i, pospt);
23 [y, u] =Simulate(φa,i,Γa,i, Ca,i, K, F, h(k), d(k));
24 fitpt =FindPerformance(y, u, h(k), d(k));
25 û =FindMaximumInput(u);
26 pbestpt =FindBetterSolution(pbestpt, {pospt, fitpt, û});
27 end
28 gbest =FindBestSolution({pbestpt});
29 end
30 [Kk∗

i , F
k∗
i ] =PolePlacement(φa,i,Γa,i, Ca,i, gbest.pos);

31 Jk∗i = gbest.fit;
32 return Kk∗

i , F
k∗
i , Jk∗i ;

can be used as the starting position otherwise we try a new assignment (lines 12-15). (vii) The
starting position of a particle is also the personal best solution achieved so far by the particle
(line 14). After all particles are initialized, gbest can be calculated as the best solution among
all the particles using the function FindBestSolution(· · · ) (line 16). Note that two solution can
be compared using the rules described in Section 2.4.2 to determine the better one.
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Now, the next positions of all the particles are calculated iteratively until a finite number of
iterations IterNum (lines 18-29). In each iteration, for each particle, we first calculate the new
velocity and position using Eq. (2.54) and Eq. (2.55) respectively (lines 20-21). Corresponding
to the new position, we can again calculate the fitness value and the maximum input applied
(lines 22-25). Then, we can update the personal best of a particle by comparing the newly
evaluated point to the old personal best solution (line 26). At the end of each iteration we
must update gbest with the best solution among all the personal best solutions (line 28). After
IterNum number of iterations, the algorithm calculates the optimal gains (Kk∗

i and F k∗
i ) using

the position of the gbest solution (line 30) and the optimal control performance (Jk∗i ) is the
fitness value of the gbest solution (line 31). Finally, the algorithm returns the optimal controller
and the optimal control performance for the application Ci corresponding to the sampling period
h(k) and the delay d(k) (line 32).

3.4 Stage 2: Constrained Optimization Problem

Using the results of the prospective controller design stage, we can further formulate a con-
strained optimization problem as will be discussed in this section. The parameters to be syn-
thesized here include (i) the sampling period of the control applications, (ii) the task schedules
and (iii) the message schedules. Note that given a sampling period of an application, we can
look-up the optimal control gains from the table obtained from the first stage. The optimization
problem formulated here consists of the platform constraints and the control performance con-
straints. As the optimization objectives, we consider the resource usage and the average control
performance respectively.

3.4.1 Constraints

The scheduling constraints for FlexRay-based ECU networks are well-studied and discussed
in [161, 200, 201]. We state the constraints specific to the problem under study as follows:

(C1) Sampling period constraint: As mentioned earlier, all tasks and messages constituting a
control application must have the same period of repetition that must be equal to the sampling
period of the control loop. This constraint can be formulated as follows:

∀Ci ∈ C, tt ∈ {s, c, a},mt ∈ {s, c}, ptt,i = rmt,i · Tbus = hi. (3.8)

That is, the periods of the sensor, controller and actuator tasks must be equal to the sampling
period. The repetition rates of the sensor and control messages must be equal to hi

Tbus
.

(C2) Dataflow constraint: In a control application all task executions and message transmis-
sion have to be carried out in the correct temporal order, as illustrated in Figure 3.2. Corre-
spondingly, we can derive the following relations:

• Relation between the sensor task and the sensor message: The sensor data must be made
available at the sending buffer by the communication task (following the sensor task)
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before the sensor message is sent. This can be formulated as follows:

∀k ∈ Z+, Ci ∈ C, t̃(Ts,i, k) + ecom < t̂(ms,i, k) + βs,i · rs,i · Tbus
=⇒∀Ci ∈ C, os,i + es,i + ecom < bs,i · Tbus + (ss,i − 1) ·∆ + βs,i · rs,i · Tbus.

[∵ from Eq. (2.36) and Eq. (2.39)]
(3.9)

Here, βs,i ∈ {0, 1}. Note that the k−th instance of the sensor task can be followed by the
(k+ 1)−th instance of the sensor message without violating the dataflow constraint. This
is considered in this constraint by adding the term βs,i · rs,i · Tbus to the right side of the
inequality.

• Relation between the sensor message and the controller task: The sensor message must
reach the receiving buffer before the communication task (preceding the controller task)
starts reading the data. This constraint can be formulated as follows:

∀k ∈ Z+, Ci ∈ C, t̃(ms,i, k) + βs,i · rs,i · Tbus < t̂(Tc,i, k)− ecom + αc,i · pc,i
=⇒∀Ci ∈ C, bs,i · Tbus + ss,i ·∆ + βs,i · rs,i · Tbus < oc,i − ecom + αc,ipc,i.

[∵ from Eq. (2.40) and Eq. (2.35)]
(3.10)

Here, αc,i ∈ {0, 1}.

• Relation between the controller task and control message: The control input must be
made available at the sending buffer by the communication task (following the controller
task) before the control message is sent. This constraint can be formulated as follows:

∀k ∈ Z+, Ci ∈ C, t̃(Tc,i, k) + ecom + αc,i · pc,i < t̂(mc,i, k) + βc,i · rc,i · Tbus
=⇒∀Ci ∈ C, oc,i + ec,i + ecom + αc,i · pc,i < bc,i · Tbus + (sc,i − 1) ·∆ + βc,i · rc,i · Tbus

[∵ from Eq. (2.36) and Eq. (2.39)]
(3.11)

Here, βc,i ∈ {0, 1}.

• Relation between the control message and the actuator task: The control message must
reach the receiving buffer before the communication task (preceding the actuator task)
starts reading the data. This constraint can be formulated as follows:

∀k ∈ Z+, Ci ∈ C, t̃(mc,i, k) + βc,i · rc,i · Tbus < t̂(Ta,i, k)− ecom + αa,ipa,i

=⇒∀Ci ∈ C, bc,i · Tbus + sc,i ·∆ + βc,i · rc,i · Tbus < oa,i − ecom + αa,i · pa,i.
[∵ from Eq. (2.40) and Eq. (2.35)]

(3.12)

Here, αa,i ∈ {0, 1}.
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(C3) Sensing-to-actuation delay constraint: This constraint states that the start time of the
sensor task and the end time of the actuator task must be separated by a time equal to the sensing-
to-actuation delay. This is also illustrated in Figure 3.2. This constraint can be formulated as
follows:

∀k ∈ Z+, Ci ∈ C, t̃(τa,i, k) + αa,i · pa,i − t̂(τs,i, k) = di

=⇒∀Ci ∈ C, (oa,i + ea,i + αa,i · pa,i)− os,i = di. [∵ from Eq. (2.35) and Eq. (2.36)]
(3.13)

(C4) Non-overlapping tasks constraint: In a time-triggered non-preemptive scheduling
scheme as considered in this work, when more than one task is mapped on an ECU, they must be
scheduled in such a way that they do not overlap. This constraint can be formulated as follows:

∀ Ci, Cj ∈ C, tt, tt′ ∈ {s, c, a}, Ek ∈ E

∀ {k1 ∈ Z+|1 ≤ k1 ≤
lcm(ptt,i, ptt′,j)

ptt,i
}, {k2 ∈ Z+|1 ≤ k2 ≤

lcm(ptt,i, ptt′,j)

ptt′,j
}

if Ttt,i, Ttt′,j ∈ T (Ek) then
t̃(τtt,i, k1) + ecom · 1(tt ∈ {s, c}) < t̂(Ttt′,j, k2)− ecom · 1(tt′ ∈ {c, a})

or
t̃(Ttt′,j, k1) + ecom · 1(tt′ ∈ {s, c}) < t̂(Ttt,i, k2)− ecom · 1(tt ∈ {c, a}),

where T (Ek) denotes the set of all tasks mapped on the ECU Ek. 1(.) is the indicator function
and takes the value of 1 if the input is true and 0 if otherwise. From Eq. (2.35) and Eq. (2.36),
we can rewrite the constraint as follows:

∀ Ci, Cj ∈ C, tt, tt′ ∈ {s, c, a}, Ek ∈ E

∀ {k1 ∈ Z+|1 ≤ k1 ≤
lcm(ptt,i, ptt′,j)

ptt,i
}, {k2 ∈ Z+|1 ≤ k2 ≤

lcm(ptt,i, ptt′,j)

ptt′,j
}

if Ttt,i, Ttt′,j ∈ T (Ek) then
ott,i + ett,i + k1 · ptt,i + ecom · 1(tt ∈ {s, c}) < ott′,j + k2 · ptt′,j − ecom · 1(tt′ ∈ {c, a})

or
ott′,j + ett′,j + k2 · ptt′,j + ecom · 1(tt′ ∈ {s, c}) < ott,i + k1 · ptt,i − ecom · 1(tt ∈ {c, a}).

(3.14)

(C5) Non-overlapping messages constraint: FlexRay messages must be scheduled in such
a way that no two messages share the same slot in the same cycle. This constraint can be
established as follows:

∀ Ci, Cj ∈ C, mt,mt′ ∈ {s, c}

∀{k1 ∈ Z+|1 ≤ k1 ≤
max(Rmt,i, Rmt′,j)

Rmt,i

}, {k2 ∈ Z+|0 ≤ k2 <
max(Rmt,i, Rmt′,j)

Rmt′,j
}

if smt,i == smt′,j then bmt,i + k1 · rmt,i 6= bmt′,j + k2 · rmt′,j.
(3.15)
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(C6) FlexRay scheduling constraint: Taking into consideration the scheduling constraints
imposed by the FlexRay protocol as discussed in Section 2.2.2, we need to constrain the rep-
etition rates (rs,i and rs,i) and the base cycles (bs,i and bs,i) as per Eq. (2.37) and Eq. (2.38)
respectively. Furthermore, we consider scheduling FlexRay messages only in the static seg-
ment, and therefore, the slot ids (ss,i and sc,i) can take values as follows:

∀ Ci ∈ C, mt ∈ {s, c}, 1 ≤ smt,i ≤ Ns.
4 (3.16)

In addition, the resource usage as defined in Eq. (3.1) must not exceed the total number of static
slots available in Ncom communication cycles. This can be written as follows:

U ≤ Ncom ·Ns. (3.17)

(C7) ECU scheduling constraint: On the ECUs, for the task schedules, we consider the fol-
lowing constraint:

∀ Ci ∈ C, tt ∈ {s, c, a},
ecom · 1(tt ∈ {c, a}) ≤ ott,i <ptt,i − ecom · 1(tt ∈ {s, c})− ett,i − γsyn,

(3.18)

where, γsyn is a time constant required for ECU synchronization.
The utilization constraint on an ECU can be formulated as follows:

∀Ek ∈ E , tt ∈ {s, c, a},
∑

Ttt,i∈T (Ek)

ett,i + ecom + ecom · 1(tt ∈ {c})
ptt,i

≤ 1. (3.19)

This constraint states that an ECU cannot be more than 100% loaded.

(C8) Performance constraint: For each application Ci, the sampling period hi is restricted to
a discrete set of values, which can be written as follows:

hi =

1+log2 Ncom∑
k=1

ψi,k · 2k−1 · Tbus, where
1+log2Ncom∑

k=1

ψi,k = 1. (3.20)

That is, only one of the boolean variables ψi,ks is 1, and the corresponding value of sampling
period is selected.

In the prospective controller design stage as described in Section 3.3, we have obtained
the optimal control gains and the corresponding normalized control performance for each ap-
plication at all possible sampling periods. In this stage, the design space consists of only the
predesigned controllers from the first stage. Thus, the normalized control performance Jni of an
application can be written as:

Ji =

1+log2Ncom∑
k=1

ψi,kJ
k∗
i . (3.21)

4Ns is the number of static slots in a FlexRay communication cycle.
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That is, corresponding to choosing a sampling period hi = h(k) = 2k−1 · Tbus, the normalized
control performance attains the value JK∗i .

Note that each application Ci must satisfy a control performance requirement Jri , corre-
sponding to which the normalized value is 100%. The performance constraints can, therefore,
be written as follows:

Jk∗i > 100% =⇒ ψi,k = 0. (3.22)

That is, if the optimal normalized control performance Jk∗i corresponding to a sampling period
h(k) is greater than 100% (i.e., requirement is violated), then hi 6= h(k) or the corresponding
boolean variable ψi,k is equal to 0.

3.4.2 Optimization Objectives
As the objectives of the optimization problem, we consider the average control performance
and the resource usage.

(O1) Average control performance: Given the formulation of control performance in
Eq. (3.21), we can reformulate the objective of average control performance from Eq. (3.5)
as follows:

Jav =

|C|∑
i=1

1+log2 Ncom∑
k=1

ψi,kJ
k∗
i

|C|
. (3.23)

Thus, from the look-up table obtained in the prospective controller design stage, we can formu-
late the objective of resource usage.

(O2) Resource usage: Based on the problem setting and Eq. (3.8), we can reformulate the
objective of resource usage from Eq. (3.1) as follows:

U =
∑
Ci∈C

(
64

rs,i
+

64

rc,i

)
=
∑
Ci∈C

128Tbus
hi

. (3.24)

The value of the resources usage can only take certain discrete values and is bounded by the
upper and the lower limit (U+ and U−), which can be derived respectively as follows:

U+ =
∑
Ci∈C

128Tbus
min

h(k)∈dom(hi)
h(k)

,

U− =
∑
Ci∈C

128Tbus
max

h(k)∈dom(hi)
h(k)

,

(3.25)

where dom(hi), for each application Ci, is given by:

dom(hi) = {h(k) ∈ H|Jk∗i ≤ 100%}. (3.26)

Furthermore, we can also determine the minimum difference U∆ between two values of re-
source usage as follows:

U∆ =
128Tbus

max
Ci∈C

(
max

h(k)∈dom(hi)
h(k)

) . (3.27)
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3.5 Stage 2: Proposed Multi-Layer Hybrid Optimization

As discussed in Section 3.4, the control and schedule co-synthesis for the problem setting under
study can be formulated as a constrained optimization problem with two objectives, namely the
resource usage and the average control performance respectively. There exist several methods
dealing with multi-objective optimization. A simple way is to convert the multiple objectives
into one single objective with scalarization. However, the problems using this method here are
(i) both objectives are completely different in nature and difficult to be combined as a single
metric, and (ii) it would not be possible for the designer to fathom the design trade-off, which
is necessary since the two design objectives are noticed to be often conflicting. In this case, a
much more informative and designer-friendly approach is to first generate a Pareto front and let
the designer explore the trade-off between the two objectives according to his/her customized
preference.

In computing the Pareto points forming up the Pareto front, there are two requirements.
Firstly, the obtained design points cannot be dominated by any other point in the objective
space. In other words, there can be no point that is better than the solution points in both
objectives. Secondly, the Pareto front should have a good space distribution. Design points
too close to each other are of little help. It is noted that a Pareto point can be obtained by
assigning a weight to each objective depending on its importance and optimizing the sum of all
objectives. By changing the set of weights, different solutions can be obtained after solving the
single-objective optimization problem. With this method, the first requirement on dominance
is guaranteed. However, well distributed weights do not necessarily generate well distributed
Pareto points, which means that the second requirement on distribution might not be fulfilled.

In this work, we propose a customized optimization approach to obtain the desired Pareto
front. Our approach consists of three nested layers as shown in Figure 3.4. The objective of
resource usage U is discrete and only takes a limited number of integers. We iterate through all
feasible values of U in the outer layer. For a given value of U , we solve an optimization problem
with average control performance Jav as the only objective and an equality constraint on U .
This single objective optimization problem is solved in the inner two layers of the proposed
optimization approach. Here, the objectives of resource usage and average control performance
depend only on the values of sampling periods. Thus, in the middle layer, we compute the
values of sampling periods {hi|Ci ∈ C} that optimize Jav for a given value of U . Now, in
the innermost layer, we compute the schedules according to the obtained values of sampling
periods from the middle layer while respecting the scheduling constraints.

3.5.1 Outer Layer

Since the objective of resource usage U is discrete, we first compute the maximum and mini-
mum resource usage U+ and U−, that bound the set of U . For each possible value of U between
U− and U+, i.e., given the equality constraint on U , we solve the optimization problem with
Jav as the single objective and obtain a solution. The additional constraint is that Jav of this
solution has to be better than Jav of the last solution, in order to ensure that all solutions are non-
dominated, which corresponds to the first requirement of the Pareto points. With this method,
the obtained Pareto points have a good distribution on the resource usage, since for each possi-
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Get the next discrete value
of resource usage

If all values of
resource usage

explored?
YES

YES

Optimize average
control performance

If feasible, not 
dominated?

Find feasible schedules

If feasible?

Add to Pareto Front

NO

NO

YES

Not Valid Pareto Point

NO

Return Pareto Front

Inner Layer

Valid Pareto Point

Middle Layer

Outer Layer

Figure 3.4: The proposed multi-layer co-optimization of resource usage and average control
performance. In the outer layer, the discrete values of resource usage are explore one by one. In
the middle layer, the values of sampling periods are computed that optimize the average control
performance for the given value of resource usage. In the inner layer, schedules are synthesized
according for given values of sampling periods.

ble value of U , there is a solution generated, as long as there exists a non-dominated solution.
This fulfills the second requirement of the Pareto points.

Algorithm 3 shows the outer layer of the proposed multi-layer optimization approach. The
algorithm takes as inputs the feasible set of sampling periods H and a table J comprising the
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Algorithm 3: The outer layer.
Inputs : {2k−1 · Tbus ∈ H|1 ≤ k ≤ log2Ncom},

{Jk∗i ∈ J|Ci ∈ C ∧ 2k−1 · Tbus ∈ H}
Output : F
Initializations : F = {}, J+ =∞

1 U− = calculateMinU();
2 U+ = calculateMaxU();
3 U∆ = calculateMinDiff();
4 for U∗ ← U− to U+ by U∆ do
5 [P∗, isPareto, J∗av] = findPareto(U∗, J+);
6 if true == isPareto then
7 J+ = J∗av;
8 pp∗ = [U∗, J∗av,P∗];
9 F .addPareto(pp∗);

10 end
11 end
12 return F ;

optimal control performance value at each feasible sampling period for each application (as
obtained in the prospective controller design stage). Here we denote a Pareto point as pp∗ =
{U∗, J∗av,P∗}, where U∗ stands for a discrete value of U , and J∗av and P∗ represent respectively
the corresponding optimal average control performance and parameter set. The Pareto front is
denoted as F = {pp∗} which is the output of the algorithm. In Algorithm 3, the Pareto front F
is initialized as an empty set and J+ as infinity. Lines 1-2 calculate the minimal and the maximal
value of U according to Eq. (3.25) and Eq. (3.26). Line 3 calculates the minimum difference
between two discrete values of resource usage as per Eq. (3.27) and Eq. (3.26). Then, in the
for loop between line 4 and line 11, the algorithm traverses all possible values of U . For each
discrete value of resource usage U∗, the inner layers of the optimization (line 5) is called to find
a feasible parameter set that optimizes the average control performance and can be considered
as a Pareto point (i.e. it is not dominated by other points). The middle and the inner layers is
described next in Section 3.5.2. If the feasible parameter set can be obtained, it will be added
to the Pareto front F (lines 6 - 10). Note that here J+ stores the best obtained value of average
control performance so far in the algorithm, and it is used in the middle layer to ensure the
Pareto criterion for the next obtained design configuration.

3.5.2 Middle and Inner Layers
As already discussed in the previous section, the co-optimization problem with two objectives is
turned into a series of single-objective optimization problems, where each may generate a Pareto
point on the Pareto front. Popular approaches for solving such optimization problems include
MILP or meta-heuristic methods. However, MILP is not applicable in this case. This is due to
two facts. First, some constraints are not linear and cannot be linearized in a straightforward
way. Second, formulating the whole problem into one single model would cause the number
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of variables and constraints to explode, thus making it extremely computationally expensive
and not solvable for larger system sizes. On the other hand, although meta-heuristic methods
like evolutionary algorithms are often applied to deal with high complexity, their capability to
handle constraints is often limited. As the design space of the optimization problem formulated
here is highly constrained, it is difficult for meta-heuristics to find a solution that respects all
constraints, and this prevents meta-heuristics from being effective.

Algorithm 4: findPareto: The middle and the inner layers.
Inputs : U∗, J+

Outputs : P∗, isPareto, J∗av
Initializations : isPareto = false, J− = 0

1 while false == isPareto do
2 [{Pc}, J∗av, isFeasibleU ] = optimizeCP(U∗, J−, J+);
3 if false == isFeasibleU then
4 break;
5 else
6 J− = J∗av;
7 Pc∗ = {Pc}.getFirstSet();
8 while Pc∗ 6= {} and false == isPareto do
9 [Ps∗, isFeasibleH] = findSchedules(Pc∗);

10 if true == isFeasibleH then
11 P∗ = Pc∗ ∪ Ps∗;
12 isPareto = true;
13 break;
14 else
15 Pc∗ = {Pc}.getNextSet();
16 end
17 end
18 end
19 end
20 if true == isPareto then
21 return P∗, J∗av, isPareto;
22 else
23 return P∗ = ∅, J∗av = 0, isPareto;
24 end

Considering that some decision variables only appear in constraints, but are not related to
the objective, we propose to solve the single-objective optimization problem in two layer. First,
we consider only the performance constraint (C8) and an equality constraint for resource usage
translated from (O2) and optimize the average control performance (O1). This is the middle
layer of the proposed multi-layer co-optimization. Decision variables related to the objectives,
i.e., the sampling periods, are determined. Now, in the inner layer, we synthesize the remaining
decision variables satisfying all constraints from (C1) to (C7) based on the results of the middle
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layer. This process is iterative in the way that if the synthesis fails in the inner layer, we go back
to the middle layer for the next best solution. This optimization technique ensures optimality
and also efficiency. The success of this nested two-layer approach to solve the single-objective
optimization is due to the fact that the feasible region of the design space has good objective
values in this problem.

The middle and the inner layers of the co-optimization is given in Algorithm 4. This algo-
rithm takes as input, a discrete value of resource usage U∗ and the average control performance
J+ corresponding to the last obtained Pareto point. The outputs of this algorithm are isPareto,
P∗ and J∗av, where isPareto is a boolean value denoting whether a Pareto point is obtained for
the given value of resource usage U∗, and P∗ and J∗av denotes the parameter set and the average
control performance corresponding to the Pareto point (if obtained). We initialize isPareto
as false. We use a variable J− as a lower bound on the average control performance for the
Pareto point. J− is initialized as 0. That is, as J∗av will be a positive number, it initially does
not have a lower bound. However, when schedule cannot be obtained corresponding to the
best average control performance, we update J− to determine the next best value of the aver-
age control performance. Now, in each iteration of the while loop (lines 1-19), the algorithm
starts by trying to find the most suitable candidates based on the upper and lower bound of the
control performance J+ and J− (line 2). All the determined candidates have the same aver-
age control performance. One of the candidates can possibly represent a Pareto point. In the
function optimizeCP in line 2, an MILP model is formulated and solved according to the ob-
jective of average control performance. The candidates are each represented by a set of control
parameters Pc, where all the candidates found are represented by the set {Pc}. If a set of can-
didates can be found (lines 5-18), the lower bound on the average control performance J− will
be updated to the obtained value of average performance (line 6), in order to exclude already
evaluated candidates in the next iteration. Then the algorithm will evaluate them one by one
(lines 8-17). For each candidate, the inner layer (line 9) is called to find feasible schedules.
This is represented by the function findSchedules in line 9. In this function, an ILP model is
formulated and solved without objective for a feasible schedule set. If such a set can be found
for a candidate, the algorithm considers this candidate a valid Pareto point and stop evaluating
further ones (lines 10-13). If a valid schedule set is not obtained then the next solution from the
middle layer in the set {Pc} is evaluated in the next loop iteration (lines 14-15). The algorithm
also stops once it has rendered all the already generated candidates infeasible and no further
candidates can be found (lines 3-4). In the end, if a feasible solution can be found (line 20),
then the function returns the corresponding parameter set P∗, average control performance J∗

and a true flag isPareto (line 21). Otherwise, it returns a false flag, an empty parameter set and
zero average control performance (lines 22-24).

3.6 Experimental Results

In this section, we use a case study to (i) illustrate the flow of the proposed approach and to (ii)
show the importance of the Pareto front for the evaluation of trade-offs for distributed control
systems design. Furthermore, an analysis is provided to show the scalability of the approach.
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3.6.1 A Case Study
In this case study, we use a system motivated by the applications in the automotive domain.
Due to the confidentiality issue, it is difficult to find a case study system actually applied in the
industry and obtain all the details including the mathematical model of the plants and the task
and message models. Therefore, we use a synthetic case study, consisting of a FlexRay based
ECU network implementing five control applications typical to the automotive domain.

Plant models: We consider a system consisting of 5 control applications C =
{C1, C2, C3, C4, C5}. For each of the control applications, we use a plant model derived from
the automotive domain. C1 to C5 represent respectively a DC motor speed control (DCM), a
car suspension system (CSS), an electronic wedge brake (EWB), and two variants of the cruise
control (CC1) and (CC2). The plants used are described as follows:

• DCM is adapted from [202], where the state variables x = [x1 x2]T represent the rotational
speed of the motor shaft and the armature current. The control input u is the motor terminal
voltage. This control model can for example be applied to the wheel speed control in a
vehicle. The system matrices for this plant are represented as follows:

A =

[
−10 1
−0.02 −2

]
, B =

[
0
2

]
, C =

[
1 0

]
. (3.28)

For this plant, we consider that the objective is to have a control cost of an unit step response
lower than or equal to 0.7, where the cost function is given by Eq. (3.2). Here, we assume the
value of λ as 0.001. The maximum permissible value of the control input is u∗ = 100.

• CSS, adapted from [161], has the state variables x = [x1 x2 x3 x4]T , where x1 and x2

represent the position and velocity of the car and x3 and x4 are the position and velocity of
the mass of the suspension system. The control input u is the force applied to the body by the
suspension system. The system matrices can be represented as follows:

A =


0 1 0 0
−8 −4 8 4
0 0 0 1
80 40 −160 −60

 , B =


0
80
20
−1120

 , C =
[
1 0 0 0

]
. (3.29)

For this plant, the control objective is to reject a disturbance within 0.2 s. Here, we assume
that a disturbance brings the system to an initial state x(0) =

[
1 0 0 0

]T , and therefore,
the control objective is written as y(t) ≤ 0.01, ∀ t ≥ 0.2 s. The control input must not be
more than u∗ = 300.

• EWB is adapted from the self-reinforced brake-by-wire solution developed by Siemens [203].
Modeling of the wedge results in a second-order system. Two state variables x = [x1 x2]T

are the position and the velocity of the braking wedge, respectively. The DC motor model
is simplified and the control input u is the force applied by the motor. The plant model is
represented as follows:

A =

[
0 1

8.3951× 103 0

]
, B =

[
0

4.0451

]
, C =

[
7.9920× 103 0

]
. (3.30)
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Here, the control objective is to have a unit step response with a settling time lower than or
equal to 0.05 s. The input saturation is equal to u∗ = 1.

• CC1 is taken from [202], neglecting the dynamics of the powertrain and tires. Here, the state
variable x represents the speed of the vehicle and the control input u is the force exerted on
the vehicle. The plant can be represented as follows:

A = −0.05, B = 0.001, C = 1. (3.31)

For this plant, the control objective is to have a unit step response with a settling time lower
than or equal to 0.35 s. The control input must always respect the constraint: u ≤ u∗ = 20000.

• CC2 is used in [117] and derived from [204]. The cruise control system regulates the vehicle
speed to follow the driver’s command. The state space representation of this system can be
written as follows:

A =

 0 1 0
0 0 1

−6.0476 −5.2856 −0.238

 , B =

 0
0

2.4767

 , C =
[
1 0 0

]
. (3.32)

The control objective of CC2 is to guarantee a settling time lower than or equal to 0.6 s for a
unit step input. The control input must be less than or equal to u∗ = 5000.

Architecture: The platform architecture considered in this case study, as shown in Figure 3.5,
consists of three ECUs connected by FlexRay in a bus topology. Table 3.1 shows the task
mapping on the ECUs. Table 3.2 shows the assumed values of WCETs for all the tasks. We
further assume that the WCET of the communication tasks are equal and given by ε = 300 µs.
Furthermore, Table 3.3 shows two sets of bus parameters that we have considered. Set 1 is
obtained from a related work [161]. Set 2 is adapted from an industrial application [205].
According to the original parameter values specified in [205], the length of a static slot is not
able to accommodate the largest frame in our case study, the payload of which consists of 4
float sensor data of 4 bytes each. Therefore the static slot length is adjusted to 39.875 µs to
accommodate this frame. The bus topology is a common one in automotive domain, which
can be found in related works [117, 161, 201]. The number of ECUs, the number of control
applications and task mapping are chosen for the ease of demonstration. The applicability of
the approach, however, is not limited to this setup. In fact, as will be explained in the scalability
analysis in Section 3.6.2, the approach can be applied to a number of different setups with
varying system sizes and task mappings.

Table 3.1: Task mapping.

ECUs Tasks

E1 Ts,1, Tc,2, Ta,3, Ta,4, Tc,5

E2 Ta,1, Ts,2, Tc,3, Ts,4, Ts,5

E3 Tc,1, Ta,2, Ts,3, Tc,4, Ta,5

Table 3.2: Task WCETs in µs.

C1 C2 C3 C4 C5

es,i 200 400 200 100 300

ec,i 300 600 300 150 450

ea,i 100 100 100 100 100
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ECU1 ECU2 ECU3

FlexRay

Figure 3.5: The platform architecture in the case study.

Table 3.3: FlexRay Bus Configuration.

Bus Parameters Values
Set 1 Set 2

Bus Speed 10 Mbps 10 Mbps
Bus period (Tbus) 5 ms 5 ms

MacroTick 1 µs 1.375 µs

No. of static slots (Ns) 25 75

Number of minislots (Nd) 237 267

Lenth of a static slot (∆) 100 µs 39.875 µs

Length of a minislot (δ) 10 µs 6.975 µs

No.of configurable communication cycles (Ncom) 64 64

Synchronization constant (γsyn) 50 µs 50 µs

Prospective controller design: In this stage, i.e., the first stage of the co-design, we identify
prospective controllers at each possible value of the sampling period for a control application.
For Tbus = 5 ms and Ncom = 64, the choices of sampling period are constrained by h(k) ∈
{5, 10, 20, 40, 80, 160, 320} ms. Now, for each application Ci, we take a value for the sampling
period hi = h(k) from the predetermined set and with the closed-loop delay being equal to the
sampling period di = hi = h(k), we design an optimal controller using Algorithm 2. This
algorithm basically carries out PSO-based search for optimal closed-loop poles.

Figure 3.6 shows the normalized control performance of the optimal controller obtained at
each sampling period for the five control applications. Here, we plot the normalized control
performance because this allows us to illustrate different performance metrics in a single graph.
The absolute control performance can, however, be calculated from this graph and the given
performance requirement.
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Figure 3.6: Variation of the normalized control performance with feasible values of sampling
period for each application. Note that the plot is in semi-log graph where the normalized control
performance is plotted in the linear scale while the sampling period is plotted in the logarith-
mic scale. The black dashed line is drawn horizontally at 100 % that denote the normalized
required performance for all applications. Further note that for EWB, we can design stable
controllers only at sampling periods 5 ms and 10 ms respectively. For DCM, CSS, and CC1,
optimal controllers are respectively obtained also at 320 ms, however, they are not shown for
better readability.

For EWB, controllers that stabilize the plant could not be found for five sampling period
values, i.e., 20 ms, 40 ms, 80 ms, 160 ms, and 320 ms respectively. For all other applications,
stable controllers are obtained at each of the feasible sampling period values. Note that, here, we
do not say that a stable controller does not exist for EWB at the aforementioned sampling period
values. However, Algorithm 2 could not find discrete-time poles within a unit circle for which
the control input also respects the constraint u[k] ≤ 1, ∀k ∈ Z∗. Here, we have considered a
timeout of 1000 s, within which all particles must be assigned their respective initial positions

92



3. Multi-Objective Co-Optimization for Distributed Cyber-Physical Systems

via random number generation (lines 3 to 16 in Algorithm 2), otherwise the algorithm returns
that the controller design is infeasible for the given plant model, sampling period, delay, and
input saturation.

The black dashed line in the plot shows the normalized required performance for all con-
trol applications (i.e., 100%). Only the points below or on the black dashed line meet the
performance requirements. This enables efficient design space pruning. Here, DCM has five
controllers that meet the requirements, while CSS has four, EWB has two, and CC1 and CC2
have six each. However, it can be further observed in Figure 3.6 that for CC2 (i.e., plotted using
the purple line marked with triangles pointing upwards), the control performances correspond-
ing to the sampling period values of 5 ms, 10 ms, and 20 ms respectively are worse compared
to the optimal performance obtained for the sampling period of 40 ms. Thus, for CC2, the op-
timal controllers designed for the sampling period values of 5 ms, 10 ms, and 20 ms, will never
be selected by the optimizer in the next stage. This is because there already exists a better
controller using less resources, and therefore, implementing a low-performance yet resource-
intensive controller is highly inefficient in that case. After design space pruning, there are only
three prospective controllers for CC2 that are relevant for the co-optimization stage. Similarly,
CSS has three prospective controllers, EWB has two, DCM has five, and CC1 has six.

Although it is expected that the control performance improves with a shorter sampling pe-
riod, it might be observed in Figure 3.6 that for DCM and CC1, at lower values of sampling
period, the control performance does not vary appreciably. The main reason for this smaller
variation is the constraint that we have considered on the control input. Typically, with a lower
sampling period, higher values of control input can be appropriately managed that enables faster
stabilization of the system. However, we have considered that the control input cannot be in-
creased infinitely. At lower sampling periods, control input gets saturated and therefore, cannot
improve the performance as expected. Furthermore, for CC2 and CSS, the control performance
does not always improve with a lower sampling period. Here, note that with a higher sampling
period, the maximum permissible input is applied to the plant for a longer time, and if this does
not cause an overshoot, it can stabilize the system faster. Also, it might be that PSO has not
been able to find the optimal set of poles by a significant margin in certain cases.

The runtime of Algorithm 2 does not only depend on the number of closed-loop poles to
be searched, the number of particles ParNum, and the number of iterations IterNum. The
initialization of the particles in the design space (lines 3 to 16 in Algorithm 2) also depends
on the plant model and the maximum permissible value of the control input. For example,
if the control input is too constrained, it is challenging to randomly place particles such that
they respect the input saturation constraint, i.e, u[k] ≤ u∗, ∀k ∈ Z∗. For our experiments,
the maximum time this algorithm has taken to run is approximately 10 min and that is for the
fouth-order system CSS and the third-order system CC1, while the minimum time is taken for
first order system CC1 which is around 2 min. These times are acceptable considering that
the design is carried out offline. Furthermore, for EWB, when the sampling period is 20 ms,
40 ms, 80 ms, 160 ms, and 320 ms respectively, the algorithm has hit the timeout of 600 s for
the initialization stage of the PSO, and therefore, we could not design stable controllers in these
cases. Note that we run the algorithm with 100 particles and up to 100 iterations.

Co-optimization: In the co-optimization stage, we use two different sets of bus parameters
as given in Table 3.3. The Pareto fronts obtained in the co-optimization stage for both sets
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Figure 3.7: Pareto fronts showing the trade-off between average control performance and re-
source usage for the case study consider two different bus configurations as given in Table 3.3.
Note that the resource usage is illustrated, here, as the percentage of static slots being used by
the control applications. There are 31 Pareto points in each of the Pareto fronts, where each
Pareto point represents a valid Pareto-optimal design configuration for the system under study.

are shown in Figure 3.7. It can be observed in the figure that the proposed approach obtains
31 Pareto points for each bus configuration. Each point represents a design option that offers
a specific choice of trade-off between resource usage and average control performance. The
developer can then choose one design option according to his/her own preference. For Set 1,
(i) the value of the resource usage – percentage of static slots used – ranges from 5.5 % to 33 %,
and (ii) the value of the average control performance varies from 40.6 % to 81.74 %. It should
be noted that for the control performance defined in this paper, the smaller the value, the better
the performance. It is obvious that there is a large freedom among these viable designs. If
the resource efficiency is the top design priority, the engineer can only use 5.5 % of the bus
bandwidth in the static segment to achieve stable control. If a performance-optimal design
is desired, a much better performance (average improvement of 41.14 %) can be achieved at
the cost of an extra 27.5 % of the bandwidth. Therefore, the Pareto points obtained can be
explored to obtain a design choice most suitable for the requirement. Note that for a relatively
small system size, there is already such a considerable design freedom available. For larger
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systems, an engineer could possibly profit even more from the trade-off choices between the
two objectives.

For Set 2 comprising a different bus configuration, the number of Pareto points is exactly
the same as for Set 1, although each Pareto point corresponds to a different set of schedules for
the tasks and the FlexRay messages. The difference here is that the number of static slots in one
communication cycle is 75 instead of 25. Therefore, the percentage of static slots used in all
design options in the Pareto front ranges from 1.83 % to 11 % in this case. In terms of control
performance, the values are the same as for Set 1.

Furthermore, note that, not for all discrete values of resource usage, a Pareto point exists.
The reason for this could be that either (i) for such a resource usage value, a feasible parameter
set can not be synthesized, or (ii) the optimal solution for this value is dominated by other
points, and therefore, it cannot be considered as a Pareto point.

For the case study, the co-optimization stage for Set 1 and Set 2 took 27 s each on a laptop
with an Intel(R) Core(TM) i7-8550U processor of 1.80GHz and 16GB RAM. The approach is
implemented primarily in Matlab while using the Gurobi [172] optimizer in the inner layer and
the CPLEX solver [172] in the middle layer of the co-optimization to solve the ILP and the
MILP problems respectively. Here, Gurobi is significantly faster than CPLEX in solving the
scheduling problem in the inner layer while we exploit the solution pool feature of CPLEX in
the middle layer to obtain all optimal solutions.

Software simulation using COTS tools: In Chapter 4, we propose a toolchain that integrates
the control-platform co-design technique introduced here into COTS tools for automotive soft-
ware development. Using the proposed toolchain, we synthesize software for the system under
study, as will be outlined in Section 4.4. Correspondingly, we demonstrate, using the COTS
tools, functionality and schedule co-simulations for the design configurations representing a
few Pareto points.

3.6.2 Scalability Analysis

In order to evaluate the scalability of the proposed approach, we have conducted an analysis
on a set of synthetic test cases of different system sizes. We consider that the system size
range from 6 to 36 control applications. When the number of control applications increases,
we also increase the number of ECUs. We define η as the ratio between the number of control
applications and the number of ECUs in the whole system and η reflects the average ECU load.
We consider three different cases, i.e., η = 1, η = 1.5 and η = 2 respectively. We consider the
five plant models, i.e., DCM, CSS, EWB, CC1, and CC2, as given in Section 3.6.1. For each
plant model, we choose five different performance requirements, i.e., {0.8, 0.9, 1, 1.1, 1.2} ·
Jri , where Jri is the value of the performance requirement for the case study in Section 3.6.1.
Thus, we obtain 25 different look-up tables storing normalized optimal control performances for
different choices of sampling period. Now, for each system size and a value of η, 10 test cases
are randomly generated including task mapping on ECUs, WCETs of tasks, and a set of look-up
tables selected from the predetermined pool. We use a similar FlexRay bus configuration as the
Set 1 shown in Table 3.3. The only difference is that the dynamic segment is turned into extra
23 static slots.
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Figure 3.8: Runtime of the co-optimization stage for different problem sizes. In the x-axis,
we show the problem size for each box plot that is defined by the number of applications and
the number of ECUs in the co-design problem. Here, each box-plot shows the variation in the
runtime of the co-optimization algorithm for the given problem size. Furthermore, the increase
in the average runtime with the number of applications for three different values of η is also
shown, where η is the ratio between the number of applications and the number of ECUs.

Table 3.4: Scalability analysis.

η
No. Control Applications

6 12 18 24 30 36

1
Mean runtime 18.18 s 48.91 s 107.04 s 223.11 s 734.5 s 4887 s

Mean no. of Pareto points 36.6 75.4 124.4 162.7 203.5 248.1

1.5
Mean runtime 18.1 s 50.45 s 116.99 s 231.29 s 804 s 3474 s

Mean no. of Pareto points 34.5 74 119.2 164.1 214.2 245.5

2
Mean runtime 19.16 s 55.98 s 139.69 s 319.86 s 1011 s 6477 s

Mean no. of Pareto points 34.2 75.4 119.4 165.4 204.8 245.6

For better visualization, the times for executing the co-optimization stage in 120 test cases
are depicted as box plots corresponding to different system sizes up to 24 applications, as shown
in Figure 3.8. Futhermore, for each system size and a value of η, the average runtime of the
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co-optimization stage and the average number of Pareto points obtained are reported in Ta-
ble 3.4. It can be observed that with increase in the number of applications to be implemented,
there is a significant (approximately exponential) increase in the runtime of the co-optimization
stage. This is also expected because we solve an MILP and an ILP in the middle and the inner
optimization layers respectively and such optimizations can only be solved with exponential
complexity. Note that with increase in the number of applications, the number of tasks and
messages increases, and therefore, there is a linear increase in the number of unknowns in the
optimization problem, thereby increasing the runtime exponentially.

Nevertheless, our main goal in this work is to solve the control-platform co-design problem
for control applications within a bus cluster. From the obtained results, we can say that our
proposed approach can easily scale to a system size that approximately represents a bus cluster.
We study two real-world automotive benchmark subsystems: (i) In [206], the system comprises
9 ECUs, 44 tasks and 19 messages. (ii) In [207], the benchmark system contains 15 ECUs and
53 messages. For 30 applications, we have 90 tasks and 60 messages in the system, which is
larger than both benchmarks. In [206], the task to ECU ratio is 4.9 and the message to ECU
is 2.1, and in [207], the message to ECU ratio is 3.5. Therefore, we consider the value of η
up to 2, which results in the task to ECU ratio of 6 and the message to ECU ratio of 4. For
30 applications and η = 2, the average runtime of the co-optimization stage is 1011 s, while
the maximum time taken is 1294 s. This is very reasonable for an offline process. On average,
204 Pareto points are generated for 30 applications mapped on to 15 ECUs. Note that we have
used a time limit of 1 minute and 2 minutes to solve the ILP and the MILP problems in the
middle and the inner layers respectively. Our analysis shows that in certain test cases, one or
more Pareto points correspond to up to 80% usage of the FlexRay static segment and up to 55%
average ECU utilization.

3.7 Related Works

In this chapter, we have outlined our work towards multi-objective co-optimization in control-
platform co-design for FlexRay-based distributed control systems. In the context of this chapter,
the related works can be organized into four categories as follows:

• In this work, we have considered scheduling the control-related messages only in the static
segment of a FlexRay bus cycle. Optimal scheduling in the FlexRay static segment has been
studied in the past. [208] has proposed a genetic algorithm based schedule optimization for
the FlexRay static segment. [209] has further proposed an integer linear programming formu-
lation for a customized software architecture. [210] has considered slot multiplexing while
scheduling the FlexRay messages and has proposed simple heuristics for schedule optimiza-
tion. [200] has studied the AUTOSAR specifications, considering which a two-dimensional
bin packing problem is formulated for scheduling messages in the FlexRay static segment.
An ILP based optimal solution and an efficient heuristic is proposed. In these related works,
scheduling FlexRay messages are only considered, however, in our work, we considering
co-scheduling the tasks and messages together with the design of controllers for distributed
automotive applications.
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• The task and network schedule co-synthesis problem has been studied in the literature for
different system settings. In the context of time-triggered systems, [100, 101] have studied
the co-synthesis problem considering communication over a TTEthernet communication net-
work, while [211, 212] have considered FlexRay-based distributed systems. While [100] has
formulated the problem as an SMT model, [101, 211, 212] have provided an LP formulation.
Note that our approach of co-scheduling the tasks and messages in the inner layer of the co-
optimization is similar to these related works. However, these existing works do not consider
the interplay between the task and message schedules and the control parameters, which is
the main focus of our work.

• In the context of control-platform co-design, [149] has proposed a method that integrates the
controller design and the task and message scheduling, and optimizes the overall control per-
formance. In [149], genetic algorithm is employed to search for the optimal assignment of
sampling periods to the control applications. Later, [161] has proposed a constraint-driven
synthesis for the co-design of controllers with task and FlexRay schedules. A stable con-
troller is designed first for each control application assuming a permissible sampling period,
and based on the pre-selected sampling periods, the schedules are synthesized for the ap-
plications. [201] has proposed a co-design problem formulation for FlexRay-based systems
where the design of the controllers and the schedules are integrated into a holistic framework
with control performance as the only optimization objective. This work considers both vari-
able sampling period and delay in the controller design. Note that [149, 161, 201] have not
considered the trade-off between multiple optimization objectives. Furthermore, some ap-
proaches appear difficult to scale. For example, in [201], it already takes more than one hour
to synthesize a system of 5 applications, among which only 3 are control applications.

• Multi-objective optimization has been applied in scheduling of wireless communication net-
works [213,214]. Both time and energy consumption are optimized in [213], when scheduling
a wireless sensor network. In [214], radio resource scheduling is considered, aiming to opti-
mize outage, capacity and throughput, for the given available resources. The significance of
applying multi-objective optimization techniques in the problems naturally embedded with
more than one design objective is that the trade-off among various objectives can be ana-
lyzed and that the decision maker is given the flexibility to choose a design point based on
customized situations. But these related works do not address the specific problem in the
control-platform co-design domain.

3.8 Conclusion
In this chapter, we have proposed a two-stage approach for the design of distributed control
systems in an automotive setting. In the first stage, for each application, we design prospective
optimal controllers at different sampling periods as allowed by the underlying implementation
platform. Here, we use PSO-based optimal controller design technique to synthesize prospec-
tive controllers. Using the results from the first stage, we formulate a co-optimization problem
in the second stage with the control and platform parameters as the problem variables, while
the resource usage and the average control performance are considered as the optimization ob-
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jectives. To solve the co-optimization problem, we propose a multi-layer hybrid optimization
approach in the second stage exploiting the problem characteristics. In the outer layer, we iter-
ate through all possible discrete values of resource usage. For a given value of resource usage,
in the middle layer, we determine the sampling periods of the applications that optimize the av-
erage control performance by solving an MILP problem. In the inner layer, for given sampling
periods, we determine a feasible set of task and message schedules by solving an ILP prob-
lem. The proposed co-optimization approach generates a Pareto front to offer design trade-offs
between the objectives of average control performance and resource usage.

In the future, we would like to consider a more sophisticated controller design technique
considering variable sensor-to-actuator delays, while not making a compromise on the scala-
bility of the approach. Secondly, we have considered here only the co-optimization problem
within a single FlexRay bus cluster. Future works may extend this to multiple FlexRay bus
clusters, or even to heterogeneous networks comprising bus clusters exhibiting different com-
munication protocols. The challenges here include firstly the scalability to even larger system
sizes and possible trade-offs between more optimal designs and less computational effort. In
addition, to deal with less deterministic bus systems, extensions like timing analysis might be
required. Thirdly, in this work, we assume that each message is sent as a FlexRay frame. How-
ever, to better utilize the static slots in FlexRay, we can also consider to pack several messages
into one FlexRay frame. This will increase the design dimensions, and hence, the complexity of
the co-design problem. Thus, there are still several opportunities to improve the resource usage
and/or control performance in the design of distributed control systems, however, the challenge
is to handle the design complexity for a more holistic consideration.
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4
Tool Integration for Automated Synthesis

and Implementation of Distributed
Cyber-Physical Systems1

4.1 Introduction

In practice, the controller design and the software implementation for distributed embedded
controllers are carried out in their isolated design spaces using respective COTS design tools.
Nevertheless, the state-of-the-art along control-platform co-design made some progress over the
last few years, where the emphasis has been on joint co-synthesis for system-level optimization.
While the general challenge for these approaches is scalability, the lack of integrated industrial
tools has prevented these techniques to be evaluated in industrial settings. In effect, this leads
to a gap between the state of the art and the state of practice. In Chapter 3, we have proposed
a scalable control-platform co-design technique. Now, in this chapter, we introduce a toolchain
that integrates the proposed co-design approach into commercially available design tools to
bridge the gap between co-design schemes and the implementation of control software.

Conventional design and implementation flow: We study the implementation of controllers
on an automotive embedded platform comprising ECUs connected over a FlexRay bus. Further-
more, we review a toolchain, commonly found in the automotive domain, that enables design
and development of FlexRay-based systems. The toolchain consists of MATLAB/Simulink for
controller design and SIMTOOLS/SIMTARGET toolboxes [216, 217] for platform configura-
tion and software implementation. Correspondingly, we have studied the conventional design

1This chapter is based on a publication entitled “Tool integration for automated synthesis of distributed embed-
ded controllers” [215] that will appear in the ACM Transactions on Cyber-Physical Systems (TCPS).
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Figure 4.1: Schematic of the proposed framework and the toolchain support

and implementation flow of automotive embedded controllers using such a toolchain [218] as
shown in Figure 4.1.

The development of automotive control software can be partitioned into three subsequent
phases, namely (i) the design phase – that calculates and validates the parameters like the control
gains and the task and communication schedules from the specification (including, e.g., control
plant models, performance criteria and architecture model), (ii) the implementation phase –
where the system and application software is modeled and configured using the parameters ob-
tained from the design phase, (iii) the code generation phase – where the implemented models
are used to generate code and binary files for deployment on the hardware.

The available toolchain automates certain parts of the development as follows:
(i) SIMTOOLS/SIMTARGET provide specific blocksets that enable modeling of FlexRay net-
work and ECU, partitioning and mapping of tasks, packing of messages into frames, config-
uration of task and message schedules, and definition of input and output interfaces. (ii) The
Simulink Realtime Workshop along with SIMTARGET can be used to generate C-code and
binary files.

However, the design flow with the aforementioned toolchain also involves the following
manual processes and is thus tedious, time-consuming and error-prone. (i) In the design phase,
specification needs to be correctly interpreted to manually formulate the parameter synthesis
problem that can then be solved either manually or using some COTS tools. For example, the
control gains can be designed based on MATLAB/Simulink model of the plant by closed-loop
simulation of the plant and the controller. Subsequently, the control gains can be manually
tuned, and the ones corresponding to which closed-loop system meets higher level performance
requirements, are chosen as design parameters. On the other hand, the schedule synthesis
problem can be formulated manually as a constraint programming problem [211] consider-
ing schedulability constraints, data dependencies and assumptions made on the control side on
the values of sampling period and delay. Subsequently, the problem is solved using some com-
mercial solvers like Gurobi and Z3. However, when no feasible schedule set exists, the design
steps are reiterated. It may be noted here that for such an iterative design paradigm it is very
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time-consuming to explore the trade-off between different objectives. (ii) In the implementation
phase, high level design tool, i.e., Simulink is used to manually model the application and sys-
tem software, with the support of SIMTOOLS/SIMTARGET for FlexRay related and Electrobit
hardware dependent software design. The software model must be manually configured with
the calculated values of control and platform parameters.

Proposed design and implementation flow: Towards the aforementioned shortcomings of the
conventional flow, we propose a MATLAB/Simuink and SIMTOOLS/SIMTARGET based tool-
box, Co-Flex, that assists the designer by bridging the gaps between the aforementioned COTS
tools, automating most of the manual processes discussed above and offering the engineer a
larger design freedom. Towards reducing manual intervention, Co-Flex offers (i) template
blocks that can be conveniently used to model automotive control applications through easy
parametrization, and (ii) specific functionalities that automate the flow between different design
phases, e.g., specification extraction from template models, re-configuration of the control mod-
els with the obtained values of control parameters, and synthesizing the implementation model
with correct platform parameters, i.e., task and message schedules. In addition, Co-Flex also
introduces the novel co-optimization approach (as discussed in Chapter 3) for simultaneously
synthesizing the control and platform parameters considering different trade-offs between the
average control performance and resource usage, thereby offering more design choices.

With Co-Flex, the first two phases in the conventional design flow can be replaced by a spec-
ification modeling phase and a design and implementation phase, as shown in Figure 4.1. This
is done to considerably reduce the manual efforts in the design and the implementation phases
of the conventional flow. In the specification modeling phase, Co-Flex: Model blocksets can be
used together with Simulink/SIMTOOLS/SIMTARGET to develop a template software model
that is configured according to the design specifications, i.e., control plant models, architecture
model, performance requirements, among others. Subsequently, the design and implementation
phase is composed of five stages as shown in Figure 4.1.

In the first stage, i.e., the Specification Extraction, Co-Flex: Parse tool can be used to auto-
matically extract the specification from the template model. Stage 2 and 3, namely the Prospec-
tive Controller Design and the Co-optimization respectively, implement the co-design approach
proposed in Chapter 3. In the prospective controller design stage, Co-Flex: Control tool is
invoked for each application that synthesizes an optimal controller at each possible sampling
period. This is done by using the pole placement controller design method and exploring the
design space using the particle swarm optimization (PSO) technique, as given in Algorithm 2.
By designing first the prospective controllers, we avoid unnecessary schedule synthesis for sub-
optimal or unstable controllers. Subsequently, in the co-optimization stage, Co-Flex: Opti tool
formulates a bi-objective optimization problem according to the specification extracted and em-
ploys the multi-layer hybrid optimization technique, as described in Section 3.5, to generate
a number of feasible design parameter sets, where each set represents a Pareto point reflect-
ing the trade-off between the objectives of average control performance and resource usage
respectively. The designer can then select a parameter set corresponding to a Pareto point in
the Pareto front according to the design requirements. Based on the designer choice of the
Pareto point to be implemented, in the Parameter Writeback stage, Co-Flex: Writeback tool
can automatically interpret the synthesis result obtained from the prospective control design
and the co-optimization stage and configure the software model with the appropriate values
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of control and platform parameters. Finally, in the Application Software Modeling stage, the
Co-Flex: Dissemble tool gets rid of the specification models that were required only for the
design and need not be a part of the implementation. In addition, the designer can manually add
application-specific details to the model if required.

Contributions: Extending the novel control-platform co-design technique proposed in Chap-
ter 3, in this chapter, we make the following contributions:

• We introduce a novel design and implementation flow for FlexRay-based distributed control
systems that enables the application of a state-of-the-art co-design scheme and makes the
whole process much more convenient. Compared to the conventional approach where the
design and implementation is carried out successively, in the proposed development process,
we first create a partial model of the system based on the specification. Using this partial
system model, we synthesize the design parameters that are then used to model the remaining
parts of the system. ECUs can then be directly flashed using the codes generated from the
developed model.

• We develop a toolchain support that can automate the design process of distributed controllers
based on the introduced design and implementation flow. This toolchain enables automated
modeling of distributed control systems through easy parametrization. It further enables the
simultaneous design of control and platform parameters while co-optimizing the average con-
trol performance and the resource usage respectively by incorporating a tool that implements
the proposed co-design approach as described in Chapter 3. The proposed toolchain is com-
patible with commonly used industrial-strength development tools, i.e., MATLAB/Simulink
and SIMTOOLS/SIMTARGET (Elektrobit tools for platform configuration). It integrates the
aforementioned tools to enable automated synthesis of control software for FlexRay-based
systems.

• We consider a case study comprising five control applications mapped on to three different
ECUs communicating over a FlexRay bus. For the case study, we follow the development
process and the integrated toolchain proposed here, to generate codes that will run on the
ECUs. The model-in-the-loop simulation that is offered by the SIMTOOLS validates the
control and platform parameters synthesized using the proposed co-design scheme. Further-
more, we build a realistic distributed setup comprising three Elektrobit ECUs connected by
cables (unshielded twisted pair) and D-SUB9 connectors. We flash the software binaries on
the three ECUs respectively without any error which implies that the configuration of design
parameters have been correct.

Chapter organization: The rest of this chapter is organized as follows. In Section 4.2, we
discuss the conventional process for software development of FlexRay-based distributed control
systems where MATLAB/Simulink is used for controller modeling and design while platform
modeling and configuration is supported by Elektrobit tools, i.e., SIMTOOLS/SIMTARGET.
We further point out the shortcomings of the conventional development process. Thereafter, in
Section 4.3, we describe the proposed integrated toolchain for the design and implementation
of FlexRay-based distributed control systems, while we also outline the step-by-step process
for the automated software development of such systems using the integrated toolchain. In
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Section 4.4, we show a case study comprising five control applications implemented on three
ECUs connected by a FlexRay bus, for which we develop the ECU software using the proposed
integrated toolchain while following the suggested development process. The related works are
discussed in Section 4.5 and we provide the concluding remarks in Section 4.6.

4.2 Conventional Design and Implementation
of Distributed Automotive CPSs

We study the same problem setting as in Chapter 3, where multiple control applications are
implemented using a number of ECUs communicating over a FlexRay. The control and plat-
form models for such a setting are provided in Section 3.2.1. Typically, for this problem setting,
the conventional design only synthesizes the control and platform parameters while respecting
the system constraints, e.g., performance requirements and schedulability constraints, however,
without considering any optimization objective. For a given system with a set of control appli-
cations, C, the parameter synthesis problem essentially boils down to finding for each control
application Ci, (i) the control parameters including the control gains and the sampling period
(parci ), and (ii) the platform parameters including the task and message schedules (parsi ).

In order to develop the software for a FlexRay-based ECU network running a set of control
applications, the systems and the control engineers usually start with a system specification.
On the embedded platform side, the specification typically include (i) ECUs and their hardware
and OS characteristics and (ii) the basic parameters of the FlexRay bus, e.g., the length of a
communication cycle (Tbus), the length (∆) of a static slot and the number (Ns) of static slots,
and (iii) the task partitions (Ts,i, Tc,i, and Ta,i), and the task mapping T . On the control side,
the plant models ({Ai, Bi, Ci}s) and the performance requirements (Jri s) need to be specified.
Based on the specification, it is possible to develop the control software in three subsequent
phases as follows: (i) the design phase, (ii) the implementation phase, and (iii) the code gener-
ation and hardware implementation phase.

4.2.1 Design Phase
In this phase, the system parameters are synthesized and validated based on some theoretical
model of the underlying system. As a first step, the control and the embedded systems en-
gineers negotiate and agree on some constraints on fundamental parameters like the sampling
periods and sensing-to-actuation delays of the controllers depending on the platform architec-
ture. For example, ECUs running OSEK/VDX operating systems offer only a predefined set
of sampling periods. Similarly, the sensing-to-actuation delay of a controller is constrained
by non-negligible time taken by the tasks running on the ECUs and the data transmitted over
the communication bus. Execution time of a task on an ECU depends on the processor speed,
the memory architecture, and the scheduling scheme run by the OS. The transmission time
of a message over the communication bus depends on the communication protocol and the
bus bandwidth.

Now, the control engineer tries to calculate the control gains, sampling period, and the
closed-loop delay for each of the applications separately based on the respective plant models
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Figure 4.2: A controller is designed using MATLAB/Simulink. Control gains are calculated
using standard MATLAB functions while the controller and the plant models are connected in
closed-loop and are simulated to evaluate the control response.

and satisfying the preliminary constraints on sampling periods and sensing-to-actuation de-
lays. Typically, the control engineer uses modeling tools like Simulink to develop the plant
and the controller models for an application. Then, the control gains, the sampling period and
the sensor-to-actuator delay for the controller are tuned using closed-loop simulations of the
controller and the plant. The parameter values corresponding to which the closed-loop sys-
tem satisfies the performance requirement are chosen as design configuration. The process of
controller design is shown in Figure 4.2.

After the controller design, embedded systems engineer partitions the software model of
each controller into several tasks and maps those tasks onto ECUs depending on the layout
of the physical system, e.g., the placement of the sensors and actuators. Now, based on task
partitioning and mapping of all the applications, the embedded system engineer tries to gen-
erate schedules for tasks and the associated messages between communicating tasks. This
schedule synthesis problem can be formulated as a constraint programming problem while con-
sidering constraints on designed values of sampling periods and delays, data dependencies,
non-overlapping tasks and messages, and other architectural constraints. This problem, thus
formulated, can be solved using some commercial solvers like Gurobi, CPLEX, and Z3.

When no feasible schedule exists considering the scheduling constraints, the embedded sys-
tems engineer may inform the control engineer to re-design the controllers with updated con-
straints on sampling periods and delays. As a result, this conventional design paradigm can
be iterative and time-consuming as shown in Figure 4.3. Moreover, in order to save time, if
the engineers on either side make conservative assumptions then the design becomes resource-
inefficient which may not be sustainable in the cost-sensitive automotive domain. Furthermore,
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Figure 4.3: Iterative design of control and platform parameters. In this example, control and
platform parameters are synthesized consecutively without a proper mathematical interface.
The design is followed by analysis of platform timings and control performance. If the analysis
suggests that the requirements might not be met, then a redesign might be necessary without
any feedback on how to change the design.

this conventional design involves significant manual intervention, and therefore, can be error-
prone and tedious.

Figure 4.4: Adding the controller model into a task in the implementation phase
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4.2.2 Implementation Phase

In this phase, the whole system is modeled using certain COTS tools. In this work, we study
the toolboxes SIMTOOLS and SIMTARGET that can be used in combination with Simulink to
develop the system model. The Simulink models of the controllers as developed by the control
engineer in the design phase can be reused in this phase. The controller models are combined
to form a single model representing the whole system.

Keeping the control laws intact, this model is further manually modified to incorporate the
architectural details, i.e., ECUs and the FlexRay bus. SIMTOOLS provides specific blocks to
model the ECUs and the FlexRay bus. Details can be added as parameters to these blocks. For
example, the type of OS that will run on the ECUs can be selected and different bus parameters
like cycle time, static slot length, and number of static slots can be configured.

Furthermore, implementation-specific details like task partitioning and mapping, data map-
ping and frame packing can be modeled using SIMTOOLS. Model of a task must be inserted
into a specific block called ‘Function_Call_Subsystem’ as shown in Figure 4.4. On the other
hand, a task can be assigned to a specific ECUs using a ‘Function to ECU and MCU Assignment
Block’. Data can be mapped to a FlexRay signal using ‘RTE Signal Communication Block’ and
several signals can be packed into a FlexRay frame in the ‘SIM DB’ block.

Next, application-level details can be added to the model, i.e., the details of the sensors and
the actuators. Sensor tasks are modeled manually based on the type of sensors and how they are
connected. For example, when an absolute encoder is used to sense the speed of a motor, we
need to calculate the rate at which the absolute angular position changes, and therefore, in the
sensor task, we need to add a derivative block to which the sensor input is connected. Similarly,
an actuator task is modeled according to the actuator used and its operating limits. That is, a
saturation block must be required to limit the output of the actuator task.

Task schedules Message 

schedules

Figure 4.5: Manually configuring the task and message schedules in SIMTOOLS blocks.
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The updated system model is then manually configured according to the task and message
schedules obtained from the design phase. SIMTOOLS provides a ‘Dispatch Event’ block that
can be used to specify the schedule of a task as shown in Figure 4.5. While the schedules of
FlexRay frames can be added in the ‘SIM DB’ block, as illustrated in Figure 4.5. After the
complete modeling, typically simulations are run to validate the correctness of the implemented
system. For example, SIMTOOLS offers different simulation option to validate both function-
ality and timing correctness.

4.2.3 Code Generation and Hardware Implementation Phase
In this phase, the binary file for each ECU is generated from the implemented system model and
then flashed. Firstly, the complete software implementation needs to be split into separate model
for each of the ECUs. Next, C-code and subsequently binary files are generated for each of the
ECUs from the corresponding model. Here, SIMTOOLS offers a function named Split and
Build that automates the splitting of the system model into separate models for the ECUs. Sub-
sequently, it generates C-code and binary files for each ECU by invoking Simulink Real-Time
Workshop (RTW) together with SIMTARGET. Simulink RTW facilitates code generation for
Simulink blocks while SIMTARGET generates codes from SIMTOOLS/SIMTARGET blocks.
The generated binary files are used to flash the corresponding ECUs.

4.2.4 Limitations of the Conventional Approach
The conventional design and implementation of distributed automotive CPSs has the following
limitations:

• The developer needs to model the system from scratch which is time-consuming.

• The developer needs to manually formulate the control and platform design problems
from the specification. Moreover, in the software implementation phase, the model is
manually configured with the designed control and platform parameter values. This is
error-prone, time-consuming and cumbersome.

• The final implementation is not efficient both in terms of control performance and re-
source usage.

4.3 Automated Software Synthesis using the Proposed Inte-
grated Toolchain

In our work, we propose a new design and implementation flow for distributed control systems,
as shown in Figure 4.6. We have also applied the proposed flow for the development of FlexRay-
based automotive control software. Aligned to the proposed flow, we have further developed
a toolchain, named Co-Flex, to support such software development in MATLAB/Simulink en-
vironment in conjunction with SIMTOOLS/SIMTARGET toolboxes. The proposed flow along
with Co-Flex can overcome the disadvantages of the conventional flow in the following ways.
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Figure 4.6: The proposed design and implementation flow for distributed automotive CPSs
using the proposed integrated toolchain.

1. Co-Flex provides a Simulink library which assists the developer to model a controller with
implementation-specific details like task partitioning and mapping, task schedules, and
data mapping. Thus, the developer need not model the software from scratch and, rather,
can use the control blocks provided by Co-Flex and then configure the block parameters
according to the specification.

2. Co-Flex offers a MATLAB toolbox that automates the manual parts in the conventional
design and implementation flow, e.g., specification extraction, problem formulation, and
parameter write back.

3. Co-Flex offers parameter synthesis by employing a state-of-the-art design approach that
can simultaneously synthesize the controllers and the platform parameters, and in the
process co-optimize the average control performance and the resource usage. The pro-
posed approach offers design optimality and also allows the designer to make a trade-off
between average control performance and resource usage.
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The proposed flow for software development mainly consists of three phases. In phase (i),
i.e., the specification modeling phase, the designer develops the application models and also
adds to them the implementation-specific details, e.g., task partitioning and mapping, data map-
ping, and frame packing, according to the system specifications. In phase (ii), i.e., the de-
sign and implementation phase, the parameter synthesis problem is formulated according to the
specification model from phase (i), and subsequently, the problem is solved to synthesize the
controllers and the platform parameters. The specification model is then configured with the
synthesized parameter values and application-specific details to complete the software model.
Phase (iii) or the code generation phase is exactly the same as in the case of conventional flow
where the C-code and binary files are generated from the software model to be flashed onto
the ECUs. It may be noted that we have only replaced the first two phases of the conventional
design and implementation flow with the specification modeling phase and the design and im-
plementation phase respectively. Subsequently, in this section we will explain these two phases
in further detail together with the respective tools.

4.3.1 Specification Modeling
In contrast to the conventional design and implementation flow where application software mod-
eling starts only after the synthesis of design parameters, the proposed flow starts with modeling
the system specification. For the problem setting described in Section 3.2.1, the system specifi-
cation typically includes (i) plant models, (ii) type of controllers used, (iii) task partitioning and
mapping, (iv) data mapping and frame packing, and (v) bus parameters.

We assume that the plant models are available and they are controlled using state-feedback
controllers. The plant models are given by the continuous-time state-space matrices {A,B,C}
as defined in Eq. (2.1). For task partitioning and mapping, we assume as given: (i) the physical
system layout, i.e., physical distribution of sensors, actuators, and ECUs, and (ii) the network
topology, i.e., how the sensors, the actuators, the ECUs and the FlexRay bus are connected. With
such assumptions, task partitioning and mapping is partially fixed, e.g., if a sensor is connected
to an ECU then it makes sense to map the sensor task on the corresponding ECU. However,
the rest can be synthesized by employing some well-established task partitioning and mapping
algorithms [219,220]. Furthermore, from task partitioning and mapping, data dependencies can
be derived, and the data that need to be transmitted as messages over the communication bus
can be identified. In this work, we assume that each frame is packed with only one message,
and do not consider frame packing in the design optimization. We understand that frame pack-
ing, i.e., packing of frame with more than one message, can result in a more efficient design,
however, to ensure the scalability of our approach we consider frame packing as given by the
specification. In addition, we assume that the FlexRay network parameters like bus cycle time
Tbus, clock frequency, number of static slots Ns, the size of each slot ∆, among others, are fixed
based on requirements, e.g., static slot size is determined by the size of the largest frame in the
system. Now, given the specification, it can be modeled as a preliminary application software
in Simulink Environment using Co-Flex:Model library and SIMTOOLS/SIMTARGET.

Co-Flex: Model – It is a Simulink library consisting of template blocks that aid the modeling of
FlexRay-based control software. For the time being, the library supports modeling of feedback
controllers only, however, it can be extended in future for other controllers like model predictive
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controllers (MPC), adaptive controllers, etc. The library mainly consists of two template blocks
as follows:

• FeedbackController: This block accelerates modeling of a feedback control application on
distributed FlexRay platform. For each control application, we need to add this block in the
specification model. The parameters to this block include (i) the nomenclature of the sen-
sor and control messages, (ii) sensor, controller and actuator task mappings and schedules,
(iii) sampling period, (iv) feedback and feedforward gains (vii) control performance metric,
and (viii) performance requirement. A newly added block basically represents a skeleton
implementation of a distributed control application with empty sensor, controller and actu-
ator task models. After parameterizing the block, the developer can push a button create
(provided in the mask) to automatically configure the underlying model to represent an im-
plementation of a distributed embedded controller. In addition, the block is reconfigurable,
i.e., the developer can use the same block to model a different controller in case of change
in the specification. However, if the order of the corresponding controlled plant is different
then the developer must first push a button clear to go back to the skeleton implementation.
Furthermore, a push button verify is provided in this block in order to check data consistency
between this block and the SIMTOOLS DB block that is used for platform specification. The
inputs of the block is the system state vector x and the output is the control input u.

• Plant: The developer can specify the plant model for a control application by parameterizing
this block. It can represent a controlled plant of any order. The parameters to this block
include (i) the system order, (ii) the state transition matrix, (iii) the input matrix, and (iv) the
output matrix. After parameterizing the block, the developer can push a button create to
automatically build an underlying plant model. This block is also reconfigurable and the
developer can use the push button clear to delete the underlying model. The input of the
block is the control input u and the outputs are the system state vector x and the system
output y. Closed-loop system model can be obtained by connecting (i) the output x of this
block to the input of the corresponding FeedbackController block and (ii) the output u of the
corresponding FeedbackController block to the input of this block. The main purpose of this
block is twofold: (i) the plant specification can be directly read from this block to design
the corresponding controller and (ii) the underlying plant models can be used for closed-loop
simulation to validate the designed controllers and platform parameters before the hardware
implementation.

Now, based on Co-Flex:Model and SIMTOOLS/SIMTARGET, the specification modeling
phase involves the following steps in order.

1. For each control application insert a FeedbackController and a Plant block, parameterize
them according to the given specification, and connect them appropriately.

2. Insert a Database File Block provided by SIMTOOLS that allows the complete platform
configuration.

3. In the Database File Block, configure the message signals, the ECUs and the FlexRay
network according to the specification.
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4. In the Database File Block, use Import constraints from model feature so that the task and
message mappings are read automatically from the model.

5. Configure frames and assign messages to frames such that for each control application
there are one sensor signal frame and one control signal frame.

6. Finally, the correctness of the specification model can be verified by pushing the button
verify in the FeedbackController blocks.

The output of this phase is a partially specified model, where the control and schedule
parameters are required to be configured and the remaining application-level details must be
added in order to model the complete software implementation.

4.3.2 Design and Implementation

The main goal in this phase is to synthesize the system parameters and then further config-
ure the specification model developed in the previous phase to represent the complete software
model. This phase starts with the extraction of relevant information from the specification
model which is required to formulate the parameter synthesis problem. Based on the extracted
information, a co-design problem is formulated, as described in Section 3.2.2, to determine
the control and platform parameters for each control application while minimizing the resource
usage and maximizing the average control performance. In Chapter 3, we have proposed to
solve the problem in two subsequent stages, i.e., the prospective controller design and the co-
optimization. According to the proposed two-stage approach, first, for each control application,
a set of prospective controllers is determined and recorded in a look-up table. Here, a prospec-
tive controller optimizes the control performance for a feasible sampling period. Particle swarm
optimization (PSO) is used in combination with pole-placement for optimal controller design,
as described in Section 3.3. Subsequently, we can automatically formulate a constrained multi-
objective optimization problem, as given in Section 3.4, based on the extracted information
from the specification model and the look-up table obtained in the previous stage. We fur-
ther employ the multi-layer hybrid optimization technique to solve the problem and generate
a Pareto front that comprise a number of Pareto-optimal design configurations, as described in
Section 3.5. The Pareto front depicts the trade-off between the two design objectives. On the
obtained Pareto front, the developer can select one of the Pareto points that is the most suitable
for the overall design requirements. The parameter values corresponding to the selected Pareto
point is then written back into the software model. Subsequently, the software is modeled fur-
ther to incorporate application-specific details, i.e., the models for sensor and actuator tasks.
The full software model can now be simulated using the plant models from the previous phase.
Finally, the plant models can be removed from the software and then binary and C-code files
can be generated to be flashed onto the ECUs. This aforementioned flow of the design and
implementation phase can be divided into five stages, as shown in Figure 4.6, that are discussed
in detail in the rest of this section.
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4.3.2.1 Specification Extraction

This is the first stage of the design and implementation phase. The main essence of this stage is
that it allows automated formulation of the control-platform co-design problem. In this stage,
the developer can first export the platform configuration from the specification model as a Field
Bus Exchange Format (FIBEX) file [221]. The Export as FIBEX feature is provided in the
SIMTOOLS Database File Block. FIBEX is a standard format used by the automotive industry
to exchange data. FIBEX file is typically an Extensible Markup Language (XML) document
with a standard XML Schema Definition (XSD), and therefore, can be read by any standard
parsing tool to extract important information. The exported FIBEX from the intermediate model
contains dummy values for task and message schedules as they are not yet synthesized. The
important valid information to be extracted from the exported FIBEX includes the following:

• FlexRay parameters, i.e., the bus cycle time (Tbus), the number of configurable commu-
nication cycles (Ncom), the number of static slots (Ns), and the length of a static slot
(∆).

• ECU attributes, i.e., the names of the ECUs and the corresponding FlexRay controllers.

• Task attributes, i.e., the task names, the WCETs, and the task mappings.

• FlexRay frame attributes, i.e., the frame names, the mapping of data to frames, and the
sizes of the constituent data.

It may be noted that the information is not complete, and the obtained FIBEX does not contain
any information of the plant model, the performance metric or the performance requirement for
an application, which are required to design the prospective controllers. Thus, the proposed Co-
Flex MATLAB toolbox offers a tool called Parse that helps to extract the missing information
from the specification model and also store all the relevant information in a systematic manner.

Co-Flex: Parse – Co-Flex Toolbox block must be inserted into the software model from which
this tool can be invoked. It basically enables the specification extraction and systematic stor-
age. Therefore, this tool parses the specification model as well as the exported FIBEX from
the model. This tool uses the common MATLAB semantics (e.g., find_system and get_param)
to parse the software model. It determines all the FeedbackController blocks inserted in the
software model. Each such block represents the controller implementation for an application.
Now, it can parse these blocks one by one, and from each of them, it can read the performance
metric for which the corresponding controller must be optimized and the required minimum
performance Jri . Note that these parameters are configured in these blocks during the specifi-
cation modeling phase. Furthermore, it also determines the Plant block that is connected to a
FeedbackController block and reads the plant model (i.e., A, B, and C matrices) and store the
information in the appropriate file. On the other hand, the Parse tool also uses the MATLAB
Document Object Model (DOM) parser to parse the FIBEX file. As discussed above, infor-
mation regarding the FlexRay parameters, ECU attributes, task attributes, and FlexRay frame
attributes can be extracted from the FIBEX file. This tool organizes the extracted informa-
tion from the FIBEX file and the software model, as shown in Figure 4.6, into several easy-
to-access csv files, i.e., BusParam.csv, ECUAttr.csv, WCET.csv, TaskMap.csv, FrameData.csv,
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and AppX.csv (for application X). These files can subsequently be used by the following stages
for problem formulation as well as for writing back the synthesized parameter values into the
software model.

4.3.2.2 Prospective Controller Design

This is the implementation of the first stage of the control-platform co-design approach as pro-
posed in Chapter 3. As mentioned before, the controller and the platform design approaches
have been traditionally very different in nature, and therefore, it is challenging to solve the two
problems comprehensively in one step. Thus, in our proposed two-stage approach, we first
design optimal controllers at all possible sampling periods for each control application. In the
next stage, during the co-synthesis of control and platform parameters, the controller design
basically boils down to selecting one of these prospective optimal controllers based on design
objectives. In this stage, there are two main tasks that must be executed subsequently as follows:

1. From the FlexRay bus configuration, we need to determine the possible sampling peri-
ods exploiting the relation in Eq. (3.8) and the fact that FlexRay supports only a limited
number of repetition rates for the messages.

2. For each application, determine the controller that maximize the control performance at
each of the obtained sampling periods.

Here, Co-Flex MATLAB toolbox offers a tool called Control that realizes the aforementioned
tasks in this stage.

Co-Flex: Control – This tool can be invoked for each application from the corresponding
FeedbackController block. This tool first reads the file BusParam.csv to fetch the values of bus
cycles time Tbus and the number of configurable communication cycle Ncom. We know that
the repetition rate of a FlexRay message can only take values in {2k−1|k ∈ N ∧ 1 ≤ k ≤
log2Ncom + 1}. If the sampling period of a controller is h, then the sensor and the control
messages must have a repetition rate that is equal to h

Tbus
according to the relation in Eq. (3.8).

Thus, corresponding to all possible choices for a repetition rate, we can determine the set of
feasible sampling periods as {2k−1 · Tbus|k ∈ N∧ 1 ≤ k ≤ log2Ncom + 1}. For example, when
Ncom = 64, which is a standard value for FlexRay bus configuration, the number of feasible
values for the sampling period of a control application is 7.

The Control tool iterates through the obtained values of sampling period one by one. For a
control application X, it fetches the plant model, the control performance metric, the required
performance value from the file AppX.csv. For a sampling period value in the predetermined
set, the Control tool first computes the augmented state-space model for the delayed discrete-
time system based on the continuous-time plant model using Eq. (2.15) and Eq. (2.17). Note
that, here, we assume that the sensing-to-actuation delay is equal to one sampling period. With
these augmented state-space matrices, the sampling period and the delay, the Control tool uses
Algorithm 2 for optimal controller design. Note that Algorithm 2 uses particle swarm optimiza-
tion to effectively search the pole space while employing standard pole-placement to determine
the control gains. The Control tool provides, as input to the algorithm, the control performance
metric that needs to be optimized. Based on the input, the algorithm invokes the appropriate
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function to calculate the control performance for a given set of control gains (in line 10 and
line 24 of Algorithm 2). The algorithm outputs the optimal normalized control performance
that can be calculated based on the required value of performance as per Eq. (3.4).

The Control tool, therefore, formulates a look-up table for each control application Ci, as
given in Figure 4.6, where for each possible value of sampling period h(k) = 2k−1 · Tbus, we
can assign an optimal normalized control performance Jk∗i corresponding to the control gains
Kk∗
i , F k∗

i . In the next stage, i.e., the co-optimization stage, the sampling periods of all control
applications will be used as variables in the optimization problem formulation. The objective
of the average control performance can, therefore, be formulated as a function of the sampling
periods as per Eq. (3.23). Therefore, the sampling periods here serve as the main interface
for the interplay between the prospective controller design stage and the co-optimization stage.
Also, given the values of the sampling periods, the control gains can be fetched from these
look-up tables in the parameter writeback stage.

4.3.2.3 Co-Optimization

This is the second stage of the control-platform co-design approach proposed in Chapter 3. In
this stage, we formulate a constrained optimization problem, as discussed in Section 3.4. The
variables of the problem are the sampling periods, the task schedules including the task periods
and the offsets, and the message schedules including the slot ids, the base cycles and the repe-
tition rates. The optimization objectives are the average control performance and the resource
usage as given by Eq. (3.23) and Eq. (3.24) respectively. As derived in Section 3.4.1, the prob-
lem considers the following constraints: (i) the sampling period constraints given by Eq. (3.8),
(ii) the dataflow constraints given by Eq. (3.9), Eq. (3.10), Eq. (3.11), and Eq. (3.12), (iii) the
sensing-to-actuation delay constraints given by Eq. (3.13), (iv) the non-overlapping tasks con-
straints given by Eq. (3.14), (v) the non-overlapping messages constraints given by Eq. (3.15),
(vi) the FlexRay scheduling constraints given by Eq. (2.38), Eq. (3.16), and Eq. (3.17), (vii) the
ECU scheduling constraints given by Eq. (3.18) and Eq. (3.19), and (viii) the performance
constraints given by Eq. (3.20), Eq. (3.21), and Eq. (3.22). The constrained optimization prob-
lem formulated here for the co-design of control and platform parameters can be solved using
a multi-layer hybrid optimization technique, as outlined in Section 3.5 and illustrated in Fig-
ure 3.4. Co-Flex MATLAB toolbox offers a tool named Opti that automates the formulation of
the constrained optimization problem, and subsequently, also solves the problem.

Co-Flex: Opti: This tool can be invoked from the Co-Flex Toolbox block in the software
model. It synthesizes valid Pareto-optimal design configurations. Towards this, it implements
the proposed multi-layer hybrid optimization technique. The implementation comprises three
functions as follows:

• The first function implements the outer layer of the optimization as given in Algorithm 3.
This function requires as input the look-up tables obtained from the prospective controller
design stage. For each application, it, therefore, determines the maximum and the min-
imum sampling periods for which optimal controllers can be respectively designed such
that the normalized control performance is less than or equal to 100%. Accordingly, the
function calculates the minimum U− and the maximum U+ possible resource usage using
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Eq. (3.25) and Eq. (3.26). It further calculates the minimum difference U∆ between two
feasible values of resource usage as per Eq. (3.27). Now, it can iterate through feasible
values of resource usage from U− to U+ with a step of U∆. For each value of resource
usage U∗, this function calls the inner layers to check if there exists a Pareto-optimal
design configuration corresponding to U∗.

• The second function implements the middle layer of the optimization. It formulates an
MILP problem that minimizes the average control performance while satisfying an equal-
ity constraint on resource usage, and in the process, determines the sampling periods of
the applications. Here, the function reads Jk∗i s from the look-up tables obtained from
the prospective controller design stage and the bus parameters, Tbus and Ncom, in Bus-
Param.csv obtained from the specification extraction stage. Considering that there are
1 + log2Ncom choices of sampling periods, we need to consider 1 + log2Ncom boolean
variables for each application. Correspondingly, the equality constraint on resource usage
can be derived from Eq. (3.24) as follows:

U∗ =

|C|∑
i=1

1+log2Ncom∑
k=1

ψi,k · 2log2Ncom+2−k. (4.1)

That is, when the sampling period hi = 2k−1 · Tbus, the number of slots used by the
messages of the application Ci in a series of Ncom cycles is equal to 2log2 Ncom+2−k. Fur-
thermore, we need to consider a constraint on the boolean variables such that only one of
them can be 1 for an application. This is written as follows:

∀Ci∈C

(
1+log2Ncom∑

k=1

ψi,k = 1

)
. (4.2)

The MILP also needs to consider the performance constraint in Eq. (3.22). In addition,
the MILP need to consider a constraint given by:

J− < J∗av < J+. (4.3)

Here, J+ ensures Pareto optimality of the solution while J− allows to search for Pareto
candidates even when the best candidate is not feasible. This is explained in more detail
in Section 3.5.2. The objective is to minimize the linear expression in Eq. (3.23). The
solution to this problem will provide the values of the binary variables that can be used to
calculate the values of the sampling periods using the value of Tbus as per Eq. (3.20). Note
that according to Algorithm 4, all the solutions of the MILP problem need to be deter-
mined. Here, we employ CPLEX [171] to solve the MILP problem, where the ‘Solution
Pool’ feature enables to determine all possible optimal solutions. Now, for each optimal
set of sampling periods obtained as a solution, this function invokes the inner layer until
a Pareto point is found.

• The third function implements the inner layer where an ILP is formulated to determine
the unknown parameters of task and message schedules while considering all platform
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constraints. According to the sampling period constraint in Eq. (3.8), we can determine
the task periods and the message repetition rates using the obtained values of sampling
periods from the middle layer. Here, the value of Tbus is read from BusParam.csv. Now,
the remaining unknowns are the offsets of the tasks, the slot ids and the base cycles of
the messages. The constraints of the ILP are the dataflow constraints, the sensing-to-
actuation delay constraints, the non-overlapping tasks constraints, the non-overlapping
messages constraints, the FlexRay scheduling constraints, and the ECU scheduling con-
straints. Note that all constraints are linear. SIMTOOLS allows configuration of timing
parameters with the granularity of one microsecond, and therefore, the variables of the
ILP are all integers. To formulate the constraints, the function reads the values of the con-
stant parameters from the files TaskWCET.csv and BusParam.csv. Furthermore, for non-
overlapping tasks constraints, the function reads the task mappings from TaskMap.csv.
Note that the ILP does not have an objective function. Here, we use Gurobi [172] to solve
the ILP. If there exists a feasible solution to the ILP, then this solution is combined with
the given values of the sampling periods, the task periods, and the message repetition
rates to form a Pareto point.

4.3.2.4 Parameter Writeback

The Pareto front thus obtained from the co-optimization stage consists of a number of Pareto
points where each represents a feasible Pareto optimal solution of the co-optimization problem.
The developer can choose one of these design configurations to be implemented based on de-
sign requirements. The optimal solution corresponding to the Pareto point must be interpreted
correctly to represent a valid design configuration. Thereafter, the specification model must
be parameterized accordingly. To facilitate convenient write back of the synthesized parameter
values, Co-flex MATLAB toolbox offers a tool named Writeback.

Co-Flex: Writeback – This tool can be invoked from the Co-Flex Toolbox block in the soft-
ware model. It automates (i) completely the result interpretation and (ii) partially the result
write back. The solution to the co-optimization problem is stored as a matrix where each row
represents a Pareto point. Therefore, if the developer selects the n-th Pareto point then the
Writeback tool will extract the n-th row from the solution matrix. The elements in the extracted
row can be interpreted to determine the sampling periods, the task and the message schedules
for the control application. Note that the WCET of a task, which is also a schedule parameter,
is already configured in the specification modeling stage. The result interpretation is performed
by exploiting the knowledge of the problem formulation from the previous stage, i.e., if a design
parameter is represented by the decision variable i then the synthesized value of the parameter is
the value corresponding to the i-th element of the extracted row. On the other hand, as shown in
Figure 4.6, the synthesized values of control gains can be obtained by this tool from the look-up
tables generated in the Prospective Control Design stage according to the synthesized values of
the sampling periods.

Following result interpretation, the developer needs to configure the software model with
the synthesis result, which is realized as follows:
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• The Writeback tool can directly write the control gains as parameters to the Feedback-
Controller. The underlying controller model are configured with the gain values auto-
matically.

• The application task schedules are also written by the Writeback tool as parameters to
the corresponding FeedbackController block. The underlying controller implementation
comprises Dispatch Event block for each task (i.e., sensor, controller and actuator tasks).
These blocks takes the value of the task offset and the task period automatically from the
parameters of the FeedbackController block.

• For the FlexRay frame schedules, the Writeback tool generates a csv file in the format
which can be directly imported in the SIMTOOLS Database File Block. The format
also includes other attributes of the frames like the transmitting and receiving FlexRay
controller and frame size, that can be obtained by referring to FrameData.csv generated
in the Specification Extraction stage.

• For the communication tasks, schedules are generated as a csv file in a format in which it
is to be entered in the SIMTOOLS Database File Block. However, SIMTOOLS does not
allow importing communication task schedules, and therefore, they are manually entered
by the developer according to the generated file. In our opinion, this process can be made
completely automated by collaborating with tool suppliers.

Following the parameter write back, the developed software model can be tested via closed-
loop simulation using the existing plant models. In this regard, SIMTOOLS offers a Simulation
Configuration Block that allows to verify timing accuracy in addition to functional correctness.

4.3.2.5 Application Software Modeling

The software implementation developed so far contains Plant blocks that are used only for the
design and simulation. They are not part of the final software that will run on the ECUs. In the
code generation phase later, we use SIMTOOLS Split and Build function to partition the whole
software model into several components, where each component represents the software model
for an ECU, from which codes can be generated for the ECU. Now, since the Split and Build
function does not look inside a subsystem block, the controller implementation that lie inside
the FeedbackController block must be brought to the first level for correct generation of codes
and binaries in the next phase. Co-Flex MATLAB toolbox offers a tool named Dissemble that
automates these two required steps.

Co-Flex: Dissemble – This tool can be invoked from the Co-Flex Toolbox block. It takes the
development closer to the implementation by (i) deleting the plant models and (ii) expanding
subsystem blocks that represent the controller implementations. However, it might be required
to reuse the model developed so far partially or completely for a different car with different
requirements. Therefore, it makes sense not to modify the software model developed so far and
rather create a new model by copying only the parts that will be implemented. The Dissem-
ble tool automatically copies the blocks used in controller implementations and the platform
configuration block (i.e., the SIMTOOLS’ Database File Block) into a new Simulink model
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Figure 4.7: Specification modeling using Co-Flex. (From left to right) (i) Task mapping and
signal definition; (ii) Control requirements; (iii) Plant model.

and also adds blocks for clock synchronization. This can be achieved by using the MATLAB
function add_block.

Furthermore, the implementation so far may not contain the detailed model of the sensor
and the actuator tasks. These models depend on the type of sensors and actuators used. For
example, in case of adaptive cruise control, the sensor can be a camera and the sensor task
requires image processing to detect the braking of the vehicle ahead. Therefore, in this stage,
the developer needs to manually incorporate these task models into the software. In future,
some standard task models can also be added to Co-Flex: Model Simulink library to further
reduce manual intervention. This final software with complete application models is then used
in the next phase for code generation and hardware implementation.

4.4 A Case Study

In this section, we consider the same case study as in Section 3.6.1 that comprises five control
applications, namely, a DC motor speed control (DCM), a car suspension system (CSS), an
electronic wedge brake (EWB), and two variants of cruise control (CC1 and CC2 respectively).
These applications run on three ECUs, namely, ECU_1, ECU_2, and ECU_3 respectively. Here,
we will outline how we can develop the control software for this system using the proposed
integrated toolchain and by following the suggested development process step-by-step.

Specification modeling: We first create a specification model as described in Section 4.3.1.
Here, we first start a new Simulink model and for each application, we drag and drop a Feed-
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Figure 4.8: Partially specified model. (i) Closed-loop system model (top); (ii) Plant model
(middle); (iii) Distributed controller implementation (bottom).
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Figure 4.9: Specification modeling using SIMTOOLS. (i) FlexRay configuration (top left);
(ii) Signal description (top right); (iii) Data mapping and frame packing (bottom).

backController block and a Plant block from the Co-Flex: Model library. These blocks cor-
responding to the DCM application are shown in the top snapshot in Figure 4.8. Now, we
configure these blocks as per the specification. As shown in the left snapshot in Figure 4.7,
the task mappings and the signal names are specified as parameters to the FeedbackController
block. Similarly, the control requirements captured by the performance metric, the required
value of the metric, and the value of λ can also be provided in the FeedbackController block as
shown in the middle snapshot in Figure 4.7. Furthermore, the right snapshot in Figure 4.7 shows
how we can specify the plant model in the Plant block including the order and the continuous-
time system matrices. Based on this parametrization, the underlying model of the plant and the
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Figure 4.10: Specification extraction: Co-Flex: Parse tool is invoked by checking the checkbox
as marked by the red box. This tool reads the partially specified software model and the FIBEX
file imported from the Database File Block to organize relevant information into several CSV
files (as shown). These files can be read to formulate the control-platform co-design problem.

controller are automatically generated. The middle snapshot in Figure 4.8 shows the simulation
model for the second order plant corresponding to the DCM application. The bottom snapshot
in Figure 4.8 illustrates the automatically generated distributed implementation of the DCM ap-
plication comprising the sensor, the controller, and the actuator tasks. In this snapshot, we can
also see that the tasks are dispatched in a time-triggered manner using the respective Dispatch
Event Blocks.

Now, we drag and drop a Database File Block into the Simulink model from the SIMTOOLS
library. In this block, we provide the platform details as shown in Figure 4.9. Here, we can first
specify the FlexRay parameters given in Table 3.3 as shown in the top left snapshot in the figure.
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Figure 4.11: Prospective controller design: Co-Flex: Control tool (marked by a red box) can
be invoked for the DCM application from the corresponding FeedbackController block. The
feedback and the feedforward gains and the control performances of the prospective optimal
controllers are tabulated in three separate CSV files (as shown). For all applications, such files
are generated at the end of this stage.

We further define signals corresponding to the sensor and control data that will be sent over the
FlexRay bus, as shown in the top right snapshot in the figure. Note that for a third-order plant,
e.g., CC2, we need to define three signals for the three states of the plant that will be read
periodically by the sensors. Next, we map signals to frames as shown in the bottom snapshot in
the figure. Note that only one sensor message carries all sensor signals from the sensor task to
the controller task and the signal mapping must be done accordingly. Furthermore, the details of
the tasks can be automatically imported from the Simulink model into the Database File Block
using an option offered by SIMTOOLS.

Specification extraction: We have a partially configured software model after the specification
modeling phase where certain parameters, e.g., the task and message schedules and the control
gains, are yet to be configured. In the design and implementation phase, we synthesize these
parameters. Towards this, in the specification extraction stage (as described in Section 4.3.2.1),
we first export a FIBEX file containing the data entered in the Database File Block. Then, we
drag and drop the Co-Flex: Toolbox block into the Simulink model and invoke the Co-Flex:
Parse tool from the block by checking the corresponding checkbox, as shown in Figure 4.10
(marked by a red box). This tool parses the Simulink model as well as the exported FIBEX file
to extract relevant information for the formulation of the control-platform co-design problem
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Figure 4.12: Co-optimization: Co-Flex: Opti tool (marked by the red box) can be invoked from
the Co-Flex Toolbox block by checking the checkbox (left). It generates the Pareto front by
running the co-optimization algorithm and stores it as an image (center). It further generates a
CSV file (right) that stores the resource usage and the average control performance correspond-
ing to each Pareto point.

and organize them into several machine readable files as shown in Figure 4.10. These files
contain details of the FlexRay configuration, signal and frame attributes and the mapping of
signals to frames, task WCETs, names of the ECUs and the corresponding FlexRay controllers,
task mapping, and plant models and control requirements.

Prospective controller design: In this stage, prospective optimal controllers are designed for
each application at each possible sampling period. Co-Flex: Control tool can be invoked for
each application from the corresponding FeedbackController block. In the left snapshot in
Figure 4.11, it is shown that for the DCM application, we can invoke the Co-Flex: Control
tool by checking a checkbox (maked by a red box) under the “Controller Design” tab in the
DCM FeedbackController block. This tool reads the details of the FlexRay configuration to
determine the choices of sampling period. It further reads the plant models and the control
requirements for the DCM application from the file generated by the Co-Flex: Parse tool. Now,
it runs Algorithm 2 for each possible sampling period to determine the optimal feedback and
feedforward control gains and the optimal control performance. At the end, this tool generate
files to store the gain and the performance values corresponding to all possible sampling periods
as shown in Figure 4.11.

Co-optimization: Now, we have all information required to formulate the control-platform
co-design problem as proposed in Chapter 3. We can invoke the Co-Flex: Opti tool from
the Co-Flex Toolbox block as shown in the left snapshot in Figure 4.12. This tool executes
the nested three layer optimization approach described in Section 3.5 and generates a Pareto
front as shown in the middle snapshot in Figure 4.12. This Pareto front is stored as an image
file that the user can view to evaluate the trade-off opportunity for a particular problem. In
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2

Figure 4.13: Parameter write back: The control gains (top left) and the task schedules (top right)
are directly written into the model. A CSV file is generated containing the frame schedules that
can be directly imported into the Database File Block.

126



4. Tool Integration for Automated Synthesis and Implementation
of Distributed Cyber-Physical Systems

addition, this tool also generates a CSV file that stores the values of the resource usage and the
average control performance for each Pareto point as shown in the right snapshot in Figure 4.12.
The developer can refer to this file to choose a Pareto point based on the requirements. The
Pareto point that must be implemented can also be specified in the Co-Flex Toolbox block in the
“Choose_Operation_Point” field as shown in the left snapshot in Figure 4.12. In this snapshot,
for example, the first Pareto point is selected.

Parameter writeback: Corresponding to the Pareto point that is selected for the implementa-
tion, we can invoke the Co-Flex: Writeback tool from the Co-Flex Toolbox block to parame-
terize the Simulink model according. As shown in top left snapshot in Figure 4.13, the control
gains are automatically written in the FeedbackController block that are then used in the un-
derlying controller implementation. The task schedules are also automatically configured in
the corresponding Dispatch Event Blocks, as shown in the top right snapshot in Figure 4.13.
These blocks are then responsible for periodically triggering the tasks. Finally, for the frame
schedules, the tool generates a CSV file in a certain format that can be imported directly in the
Database File Block, as shown in the bottom snapshop in Figure 4.13. Note that the CSV file
format is also partially shown in the figure.

Simulation validation: After configuring the software model with the design parameters corre-
sponding to the selected Pareto point, we can verify the control performance of the applications
via model-in-the-loop (MIL) simulations. Towards this, we insert the Simulation Configuration
block from the SIMTOOLS library into the software model. In this block, we select the simu-
lation option “Schedule Timing”, as shown in the top left snapshot in Figure 4.14. Using this
option, the ECUs and the communication system are simulated based on the timings of applica-
tion tasks, communication tasks and bus schedules. We can view the responses of the controlled
plants using oscilloscope in Simulink as shown in the top left snapshot in Figure 4.14.

For our case study, we have validated the control performance of the applications for three
different Pareto points, i.e., the 1st, the 16th, and the 31st Pareto points. The control responses
are recorded for each of the simulation runs and are shown in Figure 4.14. Here, C1, C3, C4,
and C5 are applied unit step references while C2 moves to the state x(0) =

[
1 0 0 0

]T on
disturbance. We have verified the recorded responses against the expected behavior that we
have obtained during controller design and they match perfectly.

It may be observed in Figure 4.14 that for CSS, the three Pareto points select three different
sampling period values, i.e., 80 ms, 40 ms, and 5 ms respectively. Corresponding to these values,
the expected settling times of the controllers are 187.3 ms, 101.8 ms, and 63.6 ms respectively.
The settling times of the control responses as obtained via simulations match these expected
values. It is evident from the plots in Figure 4.14 that the control response of CSS corresponding
to the 16th Pareto point stabilizes faster than in case of the 1st Pareto point. The response for
the 31st Pareto point is even faster than that obtained for the 16th Pareto point. For both EWB
and CC2, the responses for the 16th and the 31st Pareto points are identical despite different
task and message schedules while they differ from the response obtained for the 1st Pareto
point. This is because of the fact that the choices of sampling period values for EWB and CC2
respectively remain unchanged for the 16th and the 31st Pareto points while they are different
for the 1st Pareto point. However, this verifies the assumption we made for the co-optimization
that the control performance depends mainly on the sampling period of the control application.
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Pareto Point 1

Pareto Point 16 Pareto Point 31

Figure 4.14: System validation via simulation. (i) SIMTOOLS offers an option to simulate the
software functionality based on the timings of the tasks and the messages (top left). (ii) The
control responses for the 5 applications are plotted for the 1st, 16th, and the 31st Pareto points
(top right, bottom left, and bottom right respectively).

For CC1, it might be noted that despite choosing different sampling periods, i.e., 20 ms and
5 ms respectively, for the 16th and the 31st Pareto points, the control responses are similar.
This observation also matches the expectation as can be seen in Figure 3.6, where the control
performances for the two sampling periods differ by only 6 % or 20 ms.

Application software modeling and code generation: After validating the synthesized param-
eters, we invoke the Co-Flex: Dissemble tool from the Co-Flex Toolbox block by checking the
checkbox as shown in the left snapshot in Figure 4.15. This tool automatically generates a new
Simulink model from the current model that has all the essential blocks for which codes need to
be generated. Note that in the new model, the controller implementation is on the first level and
is not masked by any subsystem. This is done to overcome a limitation of the code generation
tool, i.e., it does not look under the mask. Furthermore, we manually add certain hardware
level details, e.g., to which analog input the sensors are connected to, as shown in the center
top snapshot in Figure 4.15. Once all details are added, we use the “Split and Build” option in
the Database File Block, as shown in the center bottom snapshot in Figure 4.15, to partition the
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Figure 4.15: (i) Application software modeling: Co-Flex: Dissemble tool (left) automatically
generates a new Simulink model for code generation based on the current model by getting rid
of the blocks for which codes need not be generated. Hardware-level details, e.g., sensor and
actuator ports, are added manually (center top). (ii) Code generation: “Split and Build” option
(center bottom) in the Database File Block is used to extract the software model for each ECU
from which C-codes and the binary file are generated (right).

whole software model into the sub-models corresponding to the ECUs and generate C-code and
binaries from these sub-models for the respective ECUs. In our case study, three sub-models
are generated for the three ECUs that we have considered. The codes and the binary generated
for ECU_1 is shown in the right snapshot in Figure 4.15. The binary files, thus generated, are
then flashed onto ECUs without any error.

4.5 Related Works
Towards meeting the high performance and low cost requirements for CPSs, it has been em-
phasized that the co-design of cyber and physical components is the key. That is, the modeling,
design, simulation, and validation of computation and communication algorithms, the hard-
ware/software platform, the physical processes, and the human behavior must be considered in
an holistic framework [222]. One important problem, in this context, is the co-design of control
algorithms and their platform implementations [5]. Although there have been some progress in
the state of the art for control-platform co-design, as discussed in Section 3.7, these co-design
techniques have not been implemented in practice due to the lack of integrated toolchains.
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For this work, firstly, we have reviewed existing industrial toolchains for automotive soft-
ware development. Major automotive tier 2 suppliers include Vector, dSPACE, Elektrobit,
and Siemens Industry Software (formerly known as Mentor Graphics). Vector offers PREE-
vision [223] where the software architecture and the mapping of software components to ECUs
can be specified and the in-vehicle network can be configured. Specification for each ECU
can be extracted from PREEvision and imported into DaVinci Configurator Pro, where it is
integrated with the basic software and the codes for the software components generated from
model-based design tools like Simulink. The developer needs to configure the runtime environ-
ment (RTE) for the ECU in the DaVinci Configurator Pro [224] and then the binary file can be
generated that will be flashed on the ECU. Similar tool flow is offered by Siemens Industry Soft-
ware where Capital [225] allows architecture and network design while Volcano Vehicle System
Builder [226] enables software integration for the ECUs. In the same vein, dSPACE provides
SystemDesk [227] for architecture design and TargetLink [228] for functionality development
and code generation. In this work, we have studied software development for FlexRay-based
distributed control systems using MATLAB/Simulink and SIMTOOLS/ SIMTARGET (offered
by Elektrobit), as discussed in Section 4.2. Note that using the aforementioned toolchains, con-
trollers are designed in model-based design tools while the schedule configuration for ECUs
(e.g., in DaVinci Configurator Pro and Volcano Vehicle System Builder) and communication
buses (e.g., in PREEvision and Capital) are realized in different tools. None of the toolchains of-
fer co-design of control and platform parameters as we do in the proposed integrated toolchain.

In the context of hardware/software co-design, there also exist certain academic tools like
Metropolis [229], Metro II [230], Ptolemy II [231], and Metronomy [232] that allow modeling
of heterogeneous components and their co-simulation, thereby enabling design space explo-
ration for heterogeneous systems. Metropolis offers a unified language for capturing different
models of computation like dataflow, state machine, and discrete time. Later, Metropolis was
extended to Metro II that also allows different specification language for different components.
For example, in the case of building design automation, controller can be specified as a Simulink
model, specification for the physical building can be in Modelica, while the architecture can be
modeled in Metro II [233]. The controller and the building models can be co-simulated with
the computing platform in Metro II. Both Metropolis and Metro II use SystemC based engine
for the simulation [234]. Ptolemy II can also be used to model functions and architecture in
an integrated framework, however, it is more focused on functional modeling allowing several
models of computation including process networks, synchronous reactive and continuous time.
Metronomy combines the advantages of Ptolemy II and Metro II and allows to model the func-
tions in Ptolemy and the architecture in Metro II. Note that none of the aforementioned tools
offer to co-design controllers and their platform implementations, and moreover, they are based
on the principle of separation of concerns. Nevertheless, we believe that our proposed co-design
technique presented in Chapter 3 can also be integrated in these aforementioned tools. Also,
these tools do not have in-built models for the target platform under study and the corresponding
basic software. therefore, we have considered a commercial toolchain from Elektrobit that can
be used to develop software that will run on a distributed platform comprising EB 6120 ECUs
connected over a FlexRay bus.
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4.6 Conclusion
In this chapter, we have introduced a step-by-step software development procedure for FlexRay-
based distributed control systems that enables correct-by-construction and convenient design
and implementation of such systems. We have also developed an integrated toolchain that
automates the development process to a large extent. The proposed toolchain integrates a state-
of-the-art control-platform co-design approach and the COTS tools for controller design and
platform configuration respectively. Therefore, the integrated toolchain reduces the manual
efforts on one hand and enables optimal design on the other.

Our proposed toolchain is only a preliminary one showing that such an integrated design
and implementation of CPSs is possible in an automotive setting. We would like to extend the
toolchain with state-of-the-art techniques considering a more comprehensive design problem
including frame packing and task partitioning and mapping. Moreover, the toolchain in its cur-
rent state only considers LTI feedback control systems. In the future, we can consider nonlinear
systems and more complex control techniques like model predictive control, gain scheduling
or adaptive control. In our work, we have studied SIMTOOLS and SIMTARGET that are only
used for the design of FlexRay-based systems while we would like to investigate the applicabil-
ity of our proposed design and implementation flow on other communication bus systems like
CAN and time-triggered Ethernet. It would be also interesting to study a more complex tool
flow for software synthesis of distributed control systems implemented on heterogeneous plat-
forms comprising different communication bus systems and allowing different ECU scheduling
policies. We believe that this work would motivate further research towards closing the gap
between the state of the art and the state of practice in the context of CPSs design.
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5
Tighter Dimensioning of Multi-Resource

Cyber-Physical Systems with Control
Performance Guarantees1

5.1 Introduction

In the last two chapters, we have considered time-triggered implementation of embedded con-
trollers. In such an implementation, software timings are precisely known, and therefore, the
controller can be optimally tuned to meet the control requirements. However, the time-triggered
implementation is expensive as time-triggered resources may not have a good utilization due
to the conservatism involved in their design and allocation. In this chapter, we show that a
cost-efficient yet high performance implementation of controllers is possible using a mix of
time-triggered and event-triggered resources.

Resource over-dimensioning in safety-critical cyber-physical systems (CPSs): Modern au-
tomotive systems deploy a large number of safety-critical functions and many of them are feed-
back control functions. These functions closely interact with the physical environment using
sensors and actuators, and the computation of the control signals is performed on the electri-
cal and electronic (E/E) architecture. Design of such CPSs requires guarantee on functional
and timing behavior in all scenarios including the worst case, even if it may rarely occur. This
leads to significant resource (computation or communication) over-dimensioning — a particular
concern for cost-sensitive domains like the automotive.

1This chapter is compiled based on two publications as follows: (i) “Tighter dimensioning of heterogeneous
multi-resource autonomous CPS with control performance guarantees” [235] appeared at the 2019 ACM/IEEE
Design Automation Conference (DAC). (ii) “GoodSpread: Criticality-aware static scheduling of CPS with multi-
QoS resources” [236] appeared at the 2020 IEEE Real-Time Systems Symposium (RTSS).
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Interplay between the physical dynamics and the resource requirements: In the context
of CPSs, the timing behavior and resource requirements of applications are governed by the
dynamics of the physical processes that are being controlled. That is, when the physical plant
is in steady state, delay or jitter in closed-loop timings can be tolerated to some extent without
jeopardizing safety, however, when there is a disturbance, timing requirements must be strictly
satisfied to reject the disturbance quickly. The main message of our work is that by appro-
priately modeling and analyzing the physical dynamics, a cost-efficient resource allocation is
possible. This essentially requires a synergistic study on both platform architecture and physical
processes. In particular, in this chapter, we describe a novel interplay between control theory
and resource scheduling.

Multi-resource CPS platform under study: Currently, the E/E architecture of automotive sys-
tems are highly heterogeneous consisting of different types of resources. High-quality resources
often have straightforward timing guarantees, however, they typically have large implementa-
tion overheads, and therefore, are expensive. On the other hand, low-quality resources might
not offer timing determinism but are significantly cheaper compared to the high-quality re-
sources. In this work, we consider distributed implementation of controllers, where the control
signals are exchanged over a FlexRay communication bus. As studied in Section 2.2.2, FlexRay
exhibits a hybrid communication protocol offering both TDMA and FTDMA communication.
While TDMA is time-deterministic, FTDMA leads to timing jitters. The multi-resource plat-
form under study, therefore, comprises ECUs communicating over a common FlexRay bus.
Nevertheless, our proposed implementation can also be applied to other heterogeneous bus
systems like TTCAN and TTEthernet or even to a platform offering both wired and wireless
communications.

High-cost mode

Fast controller

High quality 

resource

Low-cost mode

Slow controller

Low quality 

resource

Plant

Figure 5.1: Bimodal control strategy over heterogeneous resources. In the high-cost mode,
high-quality resources are used by the controller, and therefore, high control performance can
be guaranteed. In the low-cost mode, low-quality resources are used by the controller, and
therefore, only a lower performance might be obtained.
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Bimodal control strategy exploiting heterogeneous resources: In this work, we study a bi-
modal control strategy comprising a high-cost mode and a low-cost mode, similar to [144], as
shown in Figure 5.1. For the multi-resource platform under study, a control signal can be sent
using the TDMA (i.e., high-quality) or the FTDMA (i.e., low-quality) communication. In the
high-cost mode, the control signal is sent using a TDMA slot and the task schedules can be
optimized accordingly to have a negligible delay between the sensing and the actuation. With
negligible sensing-to-actuation delay, the controller can be optimized to obtain a high perfor-
mance. On the other hand, in the low-cost mode, the control signals are sent via the FTDMA
communication, and therefore, the communication delay might be non-negligible and variable.
Therefore, for the low-cost mode, the controller needs to consider the worst-case, and corre-
spondingly, a slow controller might only be possible that provides a lower control performance.
Using a bimodal switching control strategy, it is possible to share TDMA slots among several
applications. Here, the main challenge is to determine how to optimally switch between the
two modes such that the usage of TDMA slots is minimized while meeting the performance
requirements in all scenarios.

Contributions: Towards tighter dimensioning of the TDMA slots, we make the following con-
tributions in this chapter:

• Considering the fact that FlexRay, in general, is not dynamically reconfigurable, we propose
a strategy to allocate the TDMA slots statically to the applications such that they satisfy their
control requirements in all scenarios.

– Our proposed scheduling strategy first determines for each application, its minimum
requirement to stay in the high cost mode. This requirement is derived as the number
of times nT an application must use TDMA slots to send the control data out of nR
consecutive transmissions. Note that this is similar to the weakly hard constraint that
is typically expressed in terms of a (m, k)-firm constraint, however, in the scheduling
problem under study, the remaining nR − nT times the application uses the FTDMA
communication to send the control data instead of just dropping them. Note that accord-
ing to the FlexRay protocol, nR must be a power of 2, i.e., nR = 2k, and thus there are
limited choices for nR. We model the closed-loop system comprising the plant and the
embedded controller for both high-cost and low-cost modes and analyze the physical
dynamics for different combinations of nT and nR. Here, we assume that the nT TDMA
slots are allocated consecutively to keep the problem tractable.

– From the evaluations, we take the value of nT and nR that meet the control requirements
and results in the minimum usage of the TDMA slots, as the scheduling requirement for
the application. Now, with the obtained scheduling requirements for all the applications,
we formulate a Satisfiability Modulo Theories (SMT) problem to minimize the total
number of slot ids in the FlexRay static segment that must be used for scheduling the
applications. The solution to the problem gives a static allocation of TDMA slots to
applications in different FlexRay bus cycles.

• Although FlexRay does not allow dynamic reconfiguration, a middleware-based approach is
proposed in the literature [237] that allow online slot multiplexing for an ECU. That is, the

135



5.1. INTRODUCTION

middleware can select among several signals in an ECU the one that will be sent on a TDMA
slot. Considering such a middleware, we propose a strategy to dynamically allocate TDMA
slots to applications as and when it is necessary. Figure 5.2 illustrates the proposed switching
control strategy based on dynamic priority assignment that can be described as follows:

Low-Cost Steady High-Cost Non-Preemptive

Low-Cost Wait
Highest 

Priority? 

Slot 

Idle?

Preempt

Running

App?

High-Cost PreemptiveLow-Cost Safe

Disturbance 

Rejected

Disturbance

Request TT YES

YES YES

NO NO

After 𝑛
+

𝑇 || preempted?

𝑛
−

𝑇
After

Figure 5.2: The proposed switching control strategy based on dynamic priority assignment.
When the closed-loop system is in steady state, the controller is in the low-cost mode. On
disturbance, it tries to switch to the high-cost mode based on its availability. It then uses the
high-cost mode for a certain minimum number of samples to meet its control requirements.

– According to our proposed strategy, an application stays in the low-cost mode when the
controlled plant is in steady state. Here, a stabilizing controller in the low-cost mode
will be sufficient to ensure that the plant continues to be in the steady state. Now, when
a disturbance arrives, the goal is to reject the disturbance within a certain time. To
realize this goal, the application requests the scheduler to switch to the high-cost mode.
Depending on the scheduler decision, the application might have to wait before it gets
the TDMA slot and switches to the high-cost mode. Corresponding to the number of
samples nw it has waited in the low-cost mode after the disturbance has arrived, there
is a minimum number of samples n−T that it needs to stay in the high-cost mode to
meet the performance requirement. Therefore, once an application switches to the high-
cost mode, it stays there non-preemptively for n−T samples. Now, depending on nw,
there is also a maximum number of samples till which the application can improve its
performance by staying in the high-cost mode. Thus, the application can continue to
stay in the high-cost mode till n+

T samples if there are no other waiting applications.
After n+

T samples or if preempted, the application switches back to the low-cost mode
where the remaining disturbance (if any) is rejected. Note that the main advantage of the
dynamic scheduling over the static scheduling is that the former offers the applications
to improve its performance if possible. In static scheduling, the control performance is
fixed as additional resources cannot be allocated to an application online even if there
are ones not used by applications in their steady states.

136



5. Tighter Dimensioning of Multi-Resource Cyber-Physical Systems with
Control Performance Guarantees

– In this proposed strategy, the scheduler runs a priority-based scheduling scheme, i.e.,
the application with the highest priority gets the TDMA slot when multiple applications
are contesting for it. For each application, we can calculate the maximum number of
samples n∗w for which it cant wait in the low-cost mode without violating the control
requirement. A waiting application is dynamically assigned priority based on the max-
imum number of samples n∗w it can wait in the low-cost mode. That is, the application
for which n∗w will elapse the soonest will get the highest priority.

• For the proposed dynamic scheduling strategy, we also determine the minimum number of slot
ids required in the FlexRay static segment to meet the control requirements of all applications.
Here, we assume that each application is mapped to a slot id and one slot id can be shared
by several applications. Towards accurate dimensioning of TDMA slots, we propose a nested
two-layer technique. In the outer layer, we map applications to slot using a first-fit heuristic.
In the inner layer, we validate that the requirements are met for all applications in a given
mapping using a formal verification technique. In particular, we model the whole system
comprising the applications and the scheduler as a network of timed automata (TAs) and then
we use model checking for the verification of TAs models.

– While there have been previous works on formulating schedulability analysis as model
checking problems (e.g., [238,239]), the main challenge here is to accurately character-
ize the interplay between the physical dynamics and the scheduling policy. Studying the
closed-loop dynamics of the switched system, we can determine the maximum number
of samples n∗w that an application can wait (after a disturbance) for the high-cost mode
without violating its performance requirement. Similarly, we can also calculate n−T and
n+
T for all possible values of nw. Note that n−T and n+

T are not constants and strongly de-
pend on the controller design and the switching instants. Using the timing variables n−T ,
n+
T , nw and n∗w, it is possible to abstract the behavior of the closed-loop system during

a disturbance as a TA. Furthermore, the scheduling policy can also be represented as a
TA. Therefore, the whole system can be modeled as a network of TA. We can verify
that each of the applications must get the TDMA slots before its n∗w expires.

• We compare our results with state-of-the-art switching control strategies that assume the
TDMA slots to be reconfigurable online and uses a fixed-priority scheduling of the appli-
cations onto the TDMA slots. Compared to the state-of-the-art techniques, we can show that
for certain cases, our proposed static and dynamic scheduling strategies can save 50% more
TDMA slots.

Chapter organization: The rest of this chapter is organized as follows. In the next section, we
describe the problem setting. Here, we first study the different types of platform resources in
hand and how they impact the control timings. Accordingly, we derive the closed-loop math-
ematical models for the bimodal controller under consideration. In Section 5.3, we propose
a strategy to statically allocate high-quality resources to control applications in a cost-efficient
way while taking into consideration the control requirements of the applications. In Section 5.4,
we first study the physical dynamics of the controlled plant for the bimodal controller, and ac-
cordingly, we derive a cost-efficient switching strategy for the controller. Then, we also outline
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ECU 1 ECU 2 ECU 3 ECU 4 ECU 1 ECU 2

(a) (b)

Figure 5.3: Distributed controllers sharing a communication bus. Two different cases are
shown: (a) The ECUs sending and receiving the control data respectively are different for dif-
ferent applications. In this case, it is only possible to statically map control data to TDMA
communication slots. (b) Control data are sent between the same pair of ECUs. In this case,
middleware-based online reconfiguration of TDMA slots is possible.

a scheduler that will dynamically allocate high-quality resources to applications. Section 5.5
describes the proposed nested two layer technique to accurately dimension the high-quality
resources for the proposed dynamic scheduling strategy. In Section 5.6, we consider a case
study to which we apply the proposed scheduling strategies (static and dynamic) and outline
the results. We discuss the related works in Section 5.7 and provide the concluding remarks in
Section 5.8.

5.2 Problem Setting
We consider a distributed automotive setting where several ECUs communicate over a shared
communication bus, as shown in Figure 5.3. Multiple control applications, denoted by C =
{C1, C2, . . . , Cn}, are implemented on this distributed E/E platform. Each application Ci is im-
plemented using three tasks (Ts,i, Tc,i, Ta,i) that is similar to the problem setting described in
Section 3.2.1, where Ts,i is the sensor task, Tc,i is the controller task, and Ta,i is the actuator
task. Ts,i and Tc,i are mapped on the same ECU while Ta,i is mapped on a different ECU. The
control input is calculated by Tc,i and is then communicated to Ta,i over the shared bus. This
is a common scenario in the automotive setting due to the spatial distribution of sensors and
actuators. Note that the analysis presented in this chapter can also be applied to other settings
with different task partitioning and mapping schemes.

5.2.1 Heterogeneous Resources
In this work, we consider the provision of both high-quality and low-quality resources for the
implementation of a controller. In this context, we study the FlexRay communication bus. As
described in Section 2.2.2, FlexRay is a hybrid communication protocol where each bus cycle
is composed of a static segment and a dynamic segment. The static segment exhibits time-
deterministic communication and comprises a number of TDMA slots of equal length. There-
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fore, a message assigned to a static slot is transmitted within the corresponding time window.
The start and the end of a message transmission are precisely known. Therefore, TDMA slots
in the static segment are high-quality resources. The dynamic segment implements FTDMA
communication and is partitioned into a number of minislots of equal length, where a minislot
is much shorter than a slot in the static segment. A message assigned to the dynamic segment
may consume more than one minislot. Thus, the timing of a message depends on other pre-
ceding messages. This results in time-varying transmission delay while the worst case may
still be determined [107]. The timing jitters in the dynamic segment render the communication
low-quality.

FlexRay schedules are typically static and configured offline. In Section 2.2.2, we define
a FlexRay message schedule as a tuple of slot id, base cycle and repetition rate. That is, the
schedule of a control message mc,i corresponding to the application Ci is represented using
a tuple {sc,i, bc,i, rc,i} where sc,i, bc,i, and rc,i represent the slot id, the base cycle, and the
repetition rate respectively. While configuring the FlexRay schedules, we must consider the
constraint that no two messages are assigned the same slot in a FlexRay cycle. However, one slot
can be provisioned for different messages in different cycles. This enables sharing of TDMA
slots in FlexRay that we exploit in this work. Let us consider two application Ci and Cj that
are implemented as shown in Figure 5.3. Both applications send the control message over
the FlexRay bus. Let us consider the schedules for mc,i and mc,j as {5, 0, 2} and {5, 1, 2}
respectively. Here, both messages share slot 5, i.e., mc,i is sent on the slot in the even cycles
while mc,j is sent on the slot in the odd cycles. Also note that in this case, the schedules are
static, i.e., mc,i cannot be sent on the slot in the odd cycles even if it improves the performance
of Ci while there is no disturbance experienced by Cj .

In this chapter, we also consider dynamic scheduling of messages on TDMA slots. How-
ever, FlexRay schedules, as per the definition, are not runtime-configurable. Here, we exploit
the middleware-based solution proposed in [237] that enable dynamic scheduling of FlexRay
messages with certain restriction. This middleware can be explained using the example in Fig-
ure 5.3(b). Here, ECU 1 needs to send two control data to ECU 2. However, it is desirable to
send the high-priority data using a TDMA slot while the low-priority data can be sent on the
dynamic segment. Here, the priorities can change during runtime. Now, let us consider that
there is a middleware task TMW in ECU 1 that sends two messages mst and mdyn to ECU 2
in each FlexRay cycle. Here, mst is scheduled using a TDMA slot in the static segment while
mdyn is sent on the dynamic segment. TMW reads both control data, and based on their pri-
orities, it decides in each FlexRay cycle, the mapping of data to the messages mst and mdyn.
Thus, effectively, in each cycle, only one of the control data is sent on the high-quality TDMA
slot while the other one is sent on the dynamic segment. Here, TMW does not only send the
control data but also an identifier that determines the sending task. Correspondingly, on the
receiving side, each of the tasks Ta,i and Ta,j will read the messages mst and mdyn and check
the respective identifier to determine if the control data in the message is useful to the task, and
act accordingly. The middleware task, here, enables sharing of a TDMA slot among several
applications, where the control data can be scheduled dynamically on the slot. However, note
that this solution imposes a restriction on the mapping of data to a slot. That is, a slot can be
used to transmit data from one sender ECU only.
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ECU 1

ECU 2

FlexRay

LC

HC

Figure 5.4: Closed-loop timings for the bi-modal controller. The control input generated by
the controller task Tc can be sent either on a TDMA slot in the static segment (if available) or
over the dynamic segment. When the control input is sent on the static segment, the sensing-
to-actuation delay dHC can be optimized to a negligible value compared to the sampling period
h. When the control input is sent on the dynamic segment, the sensing-to-actuation delay dLC
becomes approximately equal to the sampling period h.

5.2.2 Bimodal Control Strategy
We consider linear and time-invariant (LTI) physical plants for which the continuous-time math-
ematical model is given by Eq. (2.1). In this work, the controller is implemented using periodic
software tasks that are mapped in a distributed manner. The sensor and the controller tasks (i.e.,
Ts and Tc respectively) are mapped on one ECU while the actuator task (i.e., Ta ) is mapped on
a different ECU. In such a distributed setting, control data is sent over the communication bus,
i.e., FlexRay. Here, the sampling period, given by the time interval between two consecutive
sensing operations, is a constant h, as shown in Figure 5.4.

In the bimodal control strategy under study, the controller in the high-cost mode uses the
TDMA slots in the static segment of FlexRay for the communication of the control input. For
such a time-triggered communication, the timings of a message transmission is exactly known.
This allows to optimally schedule the tasks such that the delay dHC between the sensing and the
actuation operations is negligible compared to the sampling period. Here, the execution times of
tasks and the length of TDMA slots adds up to a few hundred microseconds, while the sampling
period is in the range of tens of milliseconds. Therefore, we can assume dHC ≈ 0, as shown in
Figure 5.4. The feedback controller for the high-cost mode can be designed as follows:

u[k] = −KHCx[k], (5.1)

where KHC is the feedback gain. Combining the discrete-time equivalent model of the plant in
Eq. (2.5) and the controller model in Eq. (5.1), the closed-loop system dynamics is given by:

x[k + 1] = (φ− ΓKHC)x[k]. (5.2)
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Eigenvalues of the closed-loop system matrix (φ− ΓKHC) determine the control performance,
such as settling time. Here, settling time is defined as the period of time the controller takes
to reject the disturbance and get the plant back to the steady state. Optimization-driven pole-
placement controller design technique can be used similar to Algorithm 2.

On the other hand, in the low-cost mode, control data is transmitted in the dynamic segment
and for the task schedules, as shown in Figure 5.4, the sensing-to-actuation delay becomes
approximately equal to the sampling period, i.e., dLC ≈ h. Note that the control data can be sent
anywhere in the dynamic segment depending on its schedule and the corresponding preceding
messages. However, we assume that the message will not be dropped as can be verified from
the latest finish time of the transmission in the dynamic segment as per Eq. (2.42). For one
sample delay, as is the case in the low-cost mode, at t[k], u[k − 1] is applied to the plant and is
held till t[k + 1]. Thus, the plant model can be derived from Eq. (2.14) as follows:

x[k + 1] = φx[k] + Γ1u[k − 1], y[k] = Cx[k]. (5.3)

For this delayed system, an augmented state vector z[k] =
[
x[k] u[k − 1]

]T is considered, as
discussed in Section 2.1.3. Therefore, the stabilizing control law becomes:

u[k] = −KLCz[k] = −KLC

[
x[k]

u[k − 1]

]
. (5.4)

For the system with augmented state z[k], pole-placement can be applied to design KLC as
discussed in Section 2.1.5.

Switching stability: Using the bimodal controller, we switch between two closed-loop dynam-
ics corresponding to the high-cost and the low-cost modes respectively. Typically, to ensure
that such a switched system will be stable for any arbitrary switching between the two modes,
we need to verify for switching stability in addition to designing stable controllers (KHC and
KLC) separately for the individual modes. A survey on stability of switched linear systems can
be found in [240].

Note that the controllers KHC and KLC are of different dimensions. Thus, we write the
discrete-time state space model in the high-cost mode for the augmented states z[k] as follows:

z[k + 1] =

[
φ 0
0 0

]
z[k] +

[
Γ
1

]
u[k] =

([
φ 0
0 0

]
−
[
Γ
1

] [
KHC 0

])
z[k] = ΦHCz[k]. (5.5)

On the other hand, the state-space model representing the low-cost mode for the augmented
states can be written as follows:

z[k + 1] =

[
φ Γ1

0 0

]
z[k] +

[
0
1

]
u[k] =

([
φ Γ1

0 0

]
−
[
0
1

]
KLC

)
z[k] = ΦLCz[k]. (5.6)

To ensure switching stability between the two closed-loop subsystems, given by Eq. (5.5) and
Eq. (5.6) respectively, there must exist a positive definite matrix P such that:

ΦT
HC ·P · ΦHC −P < 0

ΦT
LC ·P · ΦLC −P < 0.

(5.7)
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Here, z[k]T ·P · z[k] is a common quadratic Lyapunov function (CQLF) and its value decreases
with every discrete time step even during switching from one subsystem to another.

Note that our proposed static and dynamic scheduling strategies are oblivious of the exis-
tence of a CQLF for the switched system. For a given pair of controllers, KHC and KLC , we
study the control dynamics for all switching sequences corresponding to each of the prospective
schedules. In our proposed static scheduling scheme, we select one of the prospective sched-
ules such that it allows only those switching sequences that meet the control requirements. That
is, the synthesized static schedule will be correct-by-construction. On the other hand, for the
proposed dynamic scheduling strategy, we verify that for all switching sequences as allowed by
the scheduler, the control requirements must be met. Thus, our proposed scheduling strategies
can meet the requirements even in those cases where the high-cost and the low-cost modes do
not satisfy the switching stability condition given in Eq. (5.7).

However, intuitively, if switching between the two subsystems are not stable, there might be
an increase in the system’s energy during switching, and therefore, the controller might require
more time to stabilize the system. Alternatively, this would imply that the controller would need
to stay in the high-cost mode for a longer time to meet the control requirements, and therefore,
would require more high-quality resources. As the main goal of this work is to minimize the
usage of high-quality resources, we recommend that the two controllers, i.e., KHC and KLC ,
are designed such that they satisfy the switching stability condition given in Eq. (5.7). Later,
in Section 5.3.2 and Section 5.4.3, using a motivational example, we evaluate the impact of the
existence of a CQLF on the performance of the switching control strategy under study.

5.3 Statically Scheduling the Bimodal Controllers

Typically, safety-critical control applications need to meet stringent performance requirements.
Thus, they are implemented using only high-quality resources to extract maximum control per-
formance. However, high-quality resources are also expensive and they are limited in quantity.
That is, these resources easily become scarce when increasingly more application are imple-
mented using them. Thus, the main idea in this chapter is to share these resources among mul-
tiple safety-critical applications without jeopardizing the control requirements. As discussed in
Section 5.2.2, the bimodal controller that we consider here, can either stay in the high-cost mode
where it uses the high-quality resources or it can move to the low-cost mode and use low-quality
resources. In this section, for the problem setting under study, we propose a novel strategy to
statically allocate the high-quality resources (i.e., TDMA slots in the FlexRay static segment) to
the bimodal controllers such that each of them meet their respective control requirements. Our
proposed strategy comprises two stages: (i) In the first stage, we derive, for each application, the
minimum amount of high-quality resources required to meet the control requirements. (ii) In
the second stage, we formulate an optimization problem, to statically allocate the high-quality
resources to applications so that the resource requirements are met. The rest of this section
describes our proposed strategy in greater detail.
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5.3.1 Stage 1: Deriving Minimum Resource Requirements

As mentioned before, the TDMA slots in the static segment of FlexRay communication cycle
is regarded as high-quality resources. Typically, when a control application uses only these
TDMA slots for communication, then one slot is assigned periodically to the application based
on the period with which the controlled plant is sampled. Let the sampling period for an appli-
cation Ci be hi. For a bus cycle time Tbus, the control data is sent as a message mc,i for which
the repetition rate is rc,i = hi

Tbus
. Now, if we assume that the number of configurable communi-

cation cycles for FlexRay be Ncom, then the total number of slots used by the message in every
Ncom cycles is equal to Ncom

rc,i
. However, for the bimodal controller under study, it might not be

required to provide a TDMA slot for every message instance as the message can alternatively
be sent on the dynamic segment. Here, we suggest a scalable technique to derive the number
of slots that must be assigned to an application for sending the control data in Ncom communi-
cation cycles such that the control requirements are met in all scenarios. Note that according to
the FlexRay protocol, the slot assignments repeat every Ncom cycles.

In this work, we consider the settling time Ji as the performance metric which is defined
as the time taken by a controller to bring the system back to a steady state after a disturbance.
We denote J∗i as the minimum settling time requirement. We further consider the standard
sporadic model for disturbance arrivals, i.e., two disturbances are separated by a time ta,i where
J∗i < ta,i. Here, a new disturbance will not arrive until the preceding one is completely rejected.
If we guarantee that the designed controller will stabilize the system before J∗i , then we ensure
that two successive disturbances will never overlap.

Now, let JHC,i be the settling time of the system when the controller always stays in the high-
cost mode, i.e., KHC,i is applied and the static segment is used for the transmission of control
data. We further denote JLC,i as the settling time of the system when the low-cost mode of the
controller is exclusively used, i.e., KLC,i is applied and the control data is sent on the dynamic
segment. Now, in this chapter, we are interested in the case where JHC,i < J∗i < JLC,i. In
such a case, on one hand, if the controller always stays in the low-cost mode then the control
requirements will not be met, and therefore, the controller needs to switch to the high-cost
mode. On the other hand, the controller might not be required to stay in the high-cost mode
exclusively and switching back to the low-cost mode for a certain number of samples will not
jeopardize the control requirements. Now, the primary question is: how the controller must
switch between the two modes such that the requirements are met in all possible scenarios?

It is challenging to deduce a mathematical expression for the settling time of a system in
terms of the fraction of time the controller stays in the high-cost mode. Moreover, the settling
time will depend on the exact sequence of the control modes after a disturbance. Let us consider
a case where the sampling period of an application Ci is equal to the bus cycle time, i.e., hi =
Tbus. For Ncom = 64 cycles, let us consider that the controller sends the control data on the
static segment in 32 cycles while for the remaining cycles it uses the dynamic segment for
communication. In such a case, there are more than 1018 possible slot allocations in the static
segment for the application. To guarantee that the settling time requirements will be met for any
such slot allocation, we have to perform closed-loop simulations for all such cases. However,
this is not feasible in practice. Therefore, towards a more scalable approach, we only consider
schedules where TDMA slots are allocated for nT,i consecutive transmissions of control data
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within nR,i transmissions. Here, nR,i can take values in {2k|0 ≤ k ≤ log2
Ncom
rc,i
}. The value

of nR,i is constrained due to the fact that FlexRay schedules repeat every Ncom cycles and
Ncom = 2k, where k ∈W. Now, for the case where nR,i = 64 and nT,i = 32, there are only 64
possible slot allocations that we need to evaluate. This can be done in reasonable time.

Algorithm 5: Deriving the resource requirements for a control application.
Parameter : Tbus, Ncom

Input : (Ai, Bi, Ci), hi, KHC,i, KLC,i, J∗i
Output : nR,i, nT,i

1 nR = Ncom·Tbus
hi

;
2 nR,i = 1;
3 nT,i = 1;
4 for k ← 1 to log2 nR do
5 nkR = 2k;
6 LT = 0;
7 RT = nkR;
8 for q ← 1 to log2 n

k
R do

9 nkT = LT+RT
2

;
10 SEQ =

[
Zeros(1, nkR − n

q
T ) Ones(1, nqT )

]
;

11 for m← 1 to nkR do
12 Jmi = Simulate ((Ai, Bi, Ci), hi, KHC,i, KLC,i, SEQ);
13 if Jmi > J∗i then
14 LT = nkT ;
15 break;
16 else if m == nkR then
17 RT = nkT ;
18 else
19 SEQ = SEQ� 1;
20 end
21 end
22 end
23 nkT = RT ;

24 if nkT
nkR

<
nT,i
nR,i

then
25 nT,i = nkT ;
26 nR,i = nkR;
27 end
28 end
29 return nR,i, nT,i;

Algorithm 5: We employ this algorithm to derive the minimum resource requirements, i.e., in
terms of nT,i and nR,i, for a control application Ci. The parameters of the algorithm are the
given values of the bus cycle time Tbus and the number of configurable FlexRay communication
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cycles Ncom respectively. It takes as input the continuous-time plant model (Ai, Bi, Ci), the
sampling period hi, the control gains, KHC,i and KLC,i, for the high-cost and the low-cost
modes respectively, and the settling time requirement J∗i . It generates as output the minimum
required high-quality resources in terms of the number of consecutive control instances nT,i for
which the controller must stay in the high-cost mode out of nR,i instances, where the controller
switches to the low-cost mode for the remaining instances.

In line 1 of the algorithm, we calculate the number of control instances nR in Ncom con-
secutive communication cycles for the application. This also corresponds to the number of
TDMA slots that can be maximally assigned to the application within Ncom communication
cycles. In lines 2 and 3, we initialize nR,i and nT,i respectively as 1. Note that this initialization
corresponds to the maximum resource requirement, i.e., in each control instance the controller
operates in the high-cost mode or the control data is sent exclusively on the static segment.

As mentioned earlier, nR,i can take only discrete number of values constrained by the
FlexRay protocol. As assigned in lines 2 and 3, for nR,i = 1, nT,i = 1, i.e., the controller
operates only in the high-cost mode. This is because of the fact that the only other possible
assignment is nT,i = 0, in which case, the controller is always in the low-cost mode, and there-
fore, the performance requirement is violated as JLC,i > J∗i . Now, the for loop in lines 4-26
iterates through the remaining possible values of nR,i given by {2k|1 ≤ k ≤ log2 nR}. In line 5,
we determine the choice of nR,i in the current iteration as nkR based on the loop variable k.
Corresponding to nkR, we use a binary search algorithm to determine the number of consecutive
control instances nkT for which the controller must stay in the high-cost mode (lines 6-21).

Note that nkT will have a value between 0 and nkR. Correspondingly, we initialize the lower
and upper limits (LT and RT ) of the search as 0 and nkR respectively in lines 6 and 7. Using
this technique, it will take log2n

k
R iterations to determine the value of nkT (lines 8-20). In each

iteration, we take the midpoint between the lower and the upper limits as nkT (line 9). Based
on the values of nkT and nkR, we formulate an initial sequence (SEQ) of control modes where
nkR − nkT instances in low-cost mode is followed by nkT instances in high-cost mode (line 10).
For example, if nkT = 3 and nkR = 8, then SEQ is initialized as 00000111, where 0 stands for
the low-cost mode and 1 represents the high-cost mode. Note that for 0 < nkT < nkR, there
are exactly nkR possible sequences, where the controller stays in the high-cost mode for nkT
consecutive instances before switching to the low-cost mode. Furthermore, note that a sequence
repeats infinitely, and therefore, for both sequences, SEQ = 10000011 and SEQ = 00000111,
the controller stay in the high-cost mode for three consecutive control instances before switching
to the low-cost mode for 5 consecutive instances. Moreover, for any periodic sequence of nkR
instances, there are exactly nkR distinct points where a disturbance can arrive, and it is necessary
to evaluate the control response for all possible scenarios. Thus, for the current choice of nkR
and nkT , we evaluate all possible sequences in lines 11-19.

For each sequence, we simulate the closed-loop system based on the continuous-time plant
model (Ai, Bi, Ci), the sampling period hi, and the control gains in the two modes (KHC,i and
KLC,i). From the simulated control response, we calculate the value of the settling time Jmi
(line 12). If the obtained settling time violates the minimum requirement then we update the
lower limit as the current value of nTR and do not evaluate any further sequence for this value of
nTR (lines 13-15). Here, the assumption is that for an increasing number of instances in the high-
cost mode the settling time improves. Thus, by updating the lower limit, we notify the algorithm
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to only look for higher number of instances in the high-cost mode in the next iterations as the
current number of instances is not sufficient. Moreover, as for the current value of nkT , there
exists a certain disturbance arrival point for which the settling time requirement is not met, we
cannot take this value as feasible, and therefore, there is no need to evaluate further sequences
for the same value of nkT . On the other hand, if the obtained settling time meets the requirement,
then we further check if we have evaluated all possible sequences for the current value of nkT
(line 16). If this is the case, then it implies that the value of nkT is feasible and we update the
upper limit with the current value of nkT (line 17). This is done to notify the algorithm that we
can now look if there exists a lower value of nkT that meets the requirement. Note that the goal
is to determine the minimum requirement for the high-quality resources. Now, if all sequences
are not evaluated for the current value of nkT , then the next sequence is obtained by shifting the
literals in SEQ to the left by one position (lines 18-20). Note that this is a circular left shift,
e.g., 11100000� 1 = 11000001.

Note that the current value of the search’s upper limit gives the minimum value of nkT that
satisfies the requirement (line 23). Now, we compare if the feasible combination of nkR and nkT
obtained in the current iteration will take less slots on average than the best solution obtained
so far (line 24-27). If this is the case, then we update the best solution in lines 25 and 26. In
line 29, the algorithm returns the minimum resource requirements for the application in terms
of nR,i and nT,i.

Summary: We can use Algorithm 5 to determine the minimum resource requirement for each
application. The resource requirement is expressed in terms of the number of control instances
nT,i for which the controller must consecutively stay in the high-cost mode out of nR,i instances.
This information can be used to formulate an optimization problem for slot allocation. Also,
note that using this algorithm, we do not guarantee optimality. This is because we do not
evaluate several sequences of control modes to preserve the scalability of our approach.

5.3.2 A Motivational Example
A DC motor position control system [241] is considered for which the continuous-time plant
model is given by:

A =

0 1 0
0 −0.0227 54.5455
0 −34.2857 −70

 , B =

 0
0

28.1754

 , C =
[
1 0 0

]
. (5.8)

It is desired to keep the position at y = 0 and on disturbance the system moves to a state given
by x =

[
1 0 0

]T . The settling time threshold is assumed as ||y[k]|| ≤ 0.02, ∀k ≥ J . The
settling time requirement is J ≤ 0.36 s.

For a sampling period of h = 0.02 s, we synthesize a control gain KHC for the high-cost
mode and two control gains, Ks

LC and Ku
LC , for the low-cost mode. They are given as follows:

KHC =
[
30 1.2626 1.1071

]
, (5.9)

Ks
LC =

[
13.8921 0.5773 0.8672 1.0866

]
, (5.10)

Ku
LC =

[
2.9120 −0.6141 −1.0399 0.1741

]
. (5.11)
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Figure 5.5: Control responses for different static schedules. The gray dashed line shows the
response when the controller only operates in the high-cost mode and uses KHC . The orange
dash-dotted line and the purple dotted line show the responses when the controller operates only
in the low-cost mode using the control gains Ks

LC and Ku
LC respectively. The blue marked-

dotted line and the green solid line show the control responses when bimodal controllers, i.e.,
{KHC , K

s
LC} and {KHC , K

u
LC} respectively, are used.

When the controller uses KHC in the high-cost mode and Ks
LC in the low-cost mode, switching

between the modes is stable, i.e., there exists a CQLF as per Eq. (5.7). However, arbitrary
switching between the two modes might not be stable when Ku

LC and KHC are used in the
low-cost and the high-cost modes respectively.

In Figure 5.5, we show control responses for different static schedules. When the controller
only operates in the high-cost mode using the control gain KHC , the settling time is 0.18 s (gray
dashed line). When the controller operates only in the low-cost mode using the control gains
Ks
LC and Ku

LC respectively, the settling time becomes 0.7 s (orange dash-dotted and purple
dotted line respectively). When the controller stays in the low-cost mode and uses Ks

LC for six
control instances followed by two instances in the high-cost mode usingKHC , and then repeats,
the settling time is 0.36 s. Here, the controller uses the high-quality resources 25% of the time.
On the other hand, when the controller stay four instances in the low-cost mode followed by
four instances in the high-cost mode and then repeats, where it uses KHC in the high-cost (HC)
mode and Ku

LC in the low-cost (LC) mode, the settling time is also 0.36 s. In this case, the
high-quality resources are used 50% of the time.

There are two important observations here: (i) By switching to the high cost mode for 25%
of the instances, we can improve the settling time by almost 50%. Thus, using our proposed
strategy, it is possible to save high-quality resources significantly. (ii) When the bimodal con-
troller is designed satisfying the switching stability condition, we can save more resources (i.e.,
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Table 5.1: Deriving resource requirements for the DC motor position control application

No. of instances in the repeating sequence (nkR)

1 2 4 8 16

No. of consecutive
instances in the

high-cost mode (nkT )

KHC +Ks
LC 1 1 1 2 4

KHC +Ku
LC 1 1 2 4 8

25% high-quality resources) compared to the case when switching stability condition is ignored.
Thus, we suggest to design the controllers for the low-cost and the high-cost modes respectively
such that there exists a CQLF for the closed-loop dynamics representing the two modes. This
will ensure that during switching between modes the energy of the system will always decrease.

Furthermore, we apply Algorithm 5 to determine the resource requirements for this control
application. Let us assume a bus cycle time Tbus = 0.005 s and Ncom = 64. Now, for a
sampling period h = 0.02 s, nR can take values in {1, 2, 4, 8, 16}. Corresponding to each nkR ∈
{1, 2, 4, 8, 16}, we compute the value of nkT for both bimodal controller, i.e., {KHC , K

s
LC} and

{KHC , K
u
LC} respectively, and we tabulate the results in Table 5.1. It can be observed that

when KHC and Ks
LC are used in the high-cost and the low-cost modes respectively, allocating

the high-quality resources for 25% of the control instances is enough to meet the performance
requirements for nkR ∈ {4, 8, 16}. However, when Ku

LC is used in the low-cost mode, the
controller needs the high-quality resources in 50% of the instances for nkR ∈ {2, 4, 8, 16}. This
again shows that considering switching stability during controller design can reduce usage of
high-quality resources. Using Algorithm 5, we can derive the resource requirement as nT = 1
and nR = 4 for the bimodal controller using KHC in the high-cost mode and Ks

LC in the
low-cost mode. That is, out of four consecutive control instances, exactly in one instance, high-
quality TDMA slot is used to send the control input.

5.3.3 Stage 2: Optimal Allocation of the TDMA Slots
In Stage 1, based on the control requirements, we determine the minimum resource require-
ments for each application. In this stage, we take the resource requirements as input and deter-
mine a feasible static allocation of slots to applications such that the requirements are met. As
discussed in Section 5.2.1, a FlexRay schedule is denoted using a tuple of slot id, base cycle,
and repetition rate. In the slot allocation problem that we are considering here, it is desirable to
minimize the number of slot ids assigned to the bimodal controllers. This essentially improves
the extensibility of FlexRay schedules.

Let us consider two bimodal controllers (C1 and C2), as described in Section 5.2.2, where
each has a sampling period that is equal to the bus cycle time, i.e., h1 = h2 = Tbus. Now,
both need to spend nT,1 = nT,2 = 4 consecutive control instances in the high-cost mode out of
nR,1 = nR,2 = 8 instances. Let us consider two different schedules for this example.

• Case 1: The control data for C1 is sent using four messages that are scheduled as {3, 0, 8},
{3, 1, 8}, {3, 2, 8}, and {3, 3, 8}. On the other hand, C2 is also implemented using four
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messages that are scheduled as {4, 0, 8}, {4, 1, 8}, {4, 2, 8}, and {4, 3, 8}. Using these
schedules, we fulfill the resource requirements of both applications, i.e., we allocate four
slots in 8 bus cycles for each application. Here, we assign two slot ids, i.e., 3 and 4. Note
that these two slot ids cannot be used any further by a message that requires a repetition
rate of 1, 2 or 4, despite not being fully utilized. Messages with higher repetition rates,
i.e., 8, 16, · · · , Ncom, can only be accommodated.

• Case 2: The message schedules for C1 remain the same as in Case 1, while the messages
for C2 are sent using the following schedules: {3, 4, 8}, {3, 5, 8}, {3, 6, 8}, and {3, 7, 8}.
Again, we allocate 4 slots in 8 bus cycles for each application to fulfill the resource
requirements. Here, however, we assign only one slot id, i.e., 3. Although slot id 3 cannot
be assigned to any further messages as it is fully utilized, slot id 4 is free to be allocated
to any message irrespective of its repetition rate.

Thus, in Case 2, FlexRay static segment is more extensible as it can accommodate messages
with different requirements [242, 243] in contrast to Case 1, where messages with only certain
periodicity can be accommodated. Note that the slot requirements of a bimodal controller in
the static segment are not exactly periodic. For example, both C1 and C2 require to stay in the
high-cost mode for 50% of the control instances, however, the requirement is not periodic in a
general sense. If these requirements were periodic and we could have used two messages for C1

and C2 that are scheduled as {3, 0, 2} and {4, 0, 2} respectively, then such a schedule would have
been more extensible as it would have allowed messages with repetition rates of 2, 4, · · · , Ncom.
Thus, the main issue here is that the aperiodic message transmissions in the static segment as
required by the bimodal controllers cannot be easily interleaved with periodic messages using
the same slot id. Therefore, we try to derive a static schedule that interleaves the messages for
the bimodal controllers and correspondingly uses as less slot ids as possible. The main goal is
to maximize the number of free slot ids that can be used for non-control or future messages with
different kinds of requirements.

Slot allocation problem: We formulate a Satisfiability Modulo Theories (SMT) problem to
derive a static allocation of slots to applications. In this problem, we consider the resource
requirements of each application as a constraint while minimizing the total number of slot ids
assigned to the applications.

For an application Ci with resource requirements given by nT,i and nR,i, we consider nR,i
boolean variables denoted as {γi,j ∈ {0, 1}|1 ≤ j ≤ nR,i}. If γi,j = 1 then it denotes that a
TDMA slot is assigned to the application in its j-th control instance and thereafter every nR,i
instances. That is, if γi,j = 1 then the controller is in the high-cost mode for the (j+ k ·nR,i)-th
instance, where k is a non-negative integer, i.e., k ∈ Z∗. Using these variables, we can formulate
constraints for each application to ensure that the resource requirements are met as follows:

nR,i∑
j=1

γi,j = nT,i, ∀ Ci ∈ C. (5.12)

nR,i∨
j=1

min(j+nT,i−1,nR,i)∧
k=j

γi,k

 ∧
max(0,j+nT,i−1−nR,i)∧

k=1

γi,k

 = 1, ∀ Ci ∈ C. (5.13)
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Here, Eq. (5.12) implies that exactly nT,i slots are allocated for nR,i consecutive control in-
stances, while Eq. (5.13) ensures that the nT,i slots that are allocated will be used in consecutive
instances. For example, when nT,i = 2 and nR,i = 4, Eq. (5.12) gives:

γi,1 + γi,2 + γi,3 + γi,4 = 2,

and Eq. (5.13) formulates:

(γi,1 ∧ γi,2) ∨ (γi,2 ∧ γi,3) ∨ (γi,3 ∧ γi,4) ∨ (γi,4 ∧ γi,1) = 1.

That is, the first constraint will ensure that exactly two out of the four boolean variables are
equal to 1, and the second constraint will only allow two consecutive variables to take the value
of 1. Thus, satisfying these two constraints will guarantee that the resource requirements are
met, as obtained from Stage 1.

Towards formulating the optimization objective, let us assume that we can get a solution
using a minimum of nid number of slot ids. Here, we consider that all applications in C have
the same sampling period. However, our formulation can easily be extended to a more general
case. With all applications having the same sampling periods, we can formulate a constraint to
ensure that no more than nid applications must be in the high-cost mode at the same time as
follows:

|C|∑
i=1

γi,mod(k−1,nR,i)+1 ≤ nid, ∀ 1 ≤ k ≤ n∗R = max
∀ Ci∈C

nR,i. (5.14)

Note that we determine the maximum among all nR,is obtained from Stage 1 denoted as n∗R.
We formulate a constraint for each control instance till n∗R. This is because nR,i is a power
of 2, and therefore, the least common multiple of all nR,is, that determines the periodicity of
the schedule, is also given by the maximum among these nR,is. That is, the schedule repeats
after the n∗R control instances. Now, for each instance till the n∗R-th instance, we formulate
a constraint to ensure that the number of control applications that will use a TDMA slot for
communication is less than or equal to nid.

Let us consider an example with three applications C1, C2, and C3 with nR,1 = 4, nR,2 = 8,
and nR,3 = 16. Here, we need to formulate 16 constraints as the maximum among nR,1, nR,2,
and nR,3 is equal to 16. Here, the constraint for the 13-th instance can be written as follows:

γ1,1 + γ2,5 + γ3,13 ≤ nid.

For C1, if a slot is allocated for the first instance given by γ1,1 then it will also be allocated for
the 13-th instance. Similarly, for C2, slot allocation for the 5-th instance given by γ2,5 will be
repeated for the 13 − th instance. Satisfying the constraints in Eq. (5.14) will ensure that the
maximum number of applications that are scheduled on the static segment in the same bus cycle
cannot be greater than nid. Accordingly, our objective is to minimize the value of nid.

Summary: In Stage 2, we formulate an SMT problem considering constraints derived from the
resource requirements of the applications obtained from Stage 1, while minimizing the number
of slot ids assigned to the applications. The optimization problem can be written as follows:

Minimize nid s.t. Eq. (5.12), Eq. (5.13), and Eq. (5.14). (5.15)
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5.4 Dynamically Scheduling the Bimodal Controllers
In the last section, we have derived a static schedule for the bimodal controllers such that the
control performance requirements are met. However, note that in the static scheduling scheme,
the controller will always use the minimum amount of high-quality resources required to meet
the control requirements. In the event when only one application is experiencing disturbance, it
is not possible to provision more high-quality resources to the application such that the distur-
bance is rejected faster even though other applications do not require the resources as they are
in the steady state. Thus, there might be a scope to improve the average control performance of
applications using the same amount of resources if online re-allocation of resources is allowed.

Towards this, we further propose a dynamic scheduling strategy for the bimodal controllers
in this section. Here, we first study the physical dynamics of the controlled plant to derive timing
constraints from control specifications based on which we determine a switching scheme. For
the case where multiple application are sharing one TDMA slot, we devise a dynamic priority
based arbitration strategy for the scheduler. We further show using a motivational example how
to calculate the timing parameters for a given requirement on control performance and further
demonstrate the effectiveness of our proposed scheduling strategy.

5.4.1 Switching Strategy

As discussed in Section 5.2.1, we consider a problem setting where each control application Ci
can send the control data either on the static segment or on the dynamic segment of a FlexRay
communication cycle. Using the bimodal controller studied in Section 5.2.2, KHC,i is used to
calculate the control input when the communication is carried out using a TDMA slot in the
static segment, while KLC,i is applied when FTDMA communication is used. As discussed in
Section 5.3.1, for a settling time requirement given by J∗i and JHC,i < J∗i < JLC,i, we can
save the TDMA slots in the static segment without jeopardizing the control requirements by
switching between the high-cost and the low-cost modes. Here, JHC,i (or JLC,i) is the settling
time when the controller operates exclusively in the high-cost mode (or in the low-cost mode).

In this work, we propose a switching scheme for the bimodal controllers, as shown in Fig-
ure 5.6, that enables sharing a TDMA slot among multiple applications. According to the
proposed scheme, when the system is in the steady state, it is sufficient to apply a stable control,
i.e., the controller should not force the plant out of the stability threshold. Now, if the closed-
loop system in the low-cost mode, as given by Eq. (5.6), is stable, then the controller can stay in
the low-cost mode when the system is in the steady state. Thus, to realize our proposed switch-
ing scheme, it is necessary to design KLC,i such that the eigenvalues of the closed-loop state
transition matrix ΦLC,i for the low-cost mode are within a unit circle in the complex plane. Note
that using the low-cost mode for the steady state control will not impact the control performance
as it is measured by the settling time of the system after a disturbance.

Now, when a disturbance arrives, the controller needs to reject the disturbance within a cer-
tain time threshold given by J∗i . As JHC,i < J∗i < JLC,i, the controller needs to switch to the
high-cost mode for a certain number of control instances to meet the requirements. Thus, on
the arrival of a disturbance, the controller tries to switch to the high-cost mode. Switching to
the high-cost mode here means that the controller must get a TDMA slot to send its control
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Figure 5.6: The proposed dynamic switching scheme for bimodal controllers. When the con-
trolled plant is in steady state, the controller stays in the low-cost mode and on disturbance,
it requests for a switch to the high-cost mode. When the controller switches to the high-cost
mode, it stays there until the control performance can be guaranteed.

data on the FlexRay static segment. Now, when multiple applications share a slot, there must
be a scheduler that allocates the slot to the application. Therefore, the application experiencing
disturbance must request the scheduler for the TDMA slot. Depending on the scheduler deci-
sion, the application can either get the slot immediately on request or it might have to wait for
a certain number of samples nw,i.

Now, for a certain number of samples nw,i that the controller has waited in the low-cost
mode after a disturbance, there is a minimum number of samples n−T,i for which the controller
must stay in the high-cost mode continuously to meet the settling time requirement. Therefore,
once a controller switches to the high-cost mode after waiting for nw samples, it stays there for
a minimum of n−T,i samples. During this time, the scheduler cannot allow other applications to
switch to the high-cost mode that share the same slot even if they are disturbed. For a certain
nw,i, there is also a maximum number of samples n+

T,i until which if the controller stays in
the high-cost mode it will improve the control performance. However, staying in the high-cost
mode beyond n+

T,i samples will not improve the control performance further, and thus, it does
not make sense to use high-quality resources beyond n+

T,i samples. When a controller have
stayed in the high-cost mode for n+

T,i samples, it automatically switches back to the low-cost
mode. On the other hand, note that a controller can also be forced by the scheduler to switch
back to the low-cost mode after n−T,i samples in the high-cost mode. This is possible because
the application has already fulfilled the requirements and the high-quality TDMA slot might
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be required by another application experiencing disturbance. It is to be also noted that once a
controller switches back to the low-cost mode, it stays there at least until the arrival of the next
disturbance. That is, the controller does not switch back to the high-cost mode even in the case
where the high-quality resource (i.e., the TDMA slot) is free, the disturbance is not completely
rejected, and the controller has not yet spent n+

T samples in the high-cost mode.
Given the requirement J∗i and the control gains KHC,i and KLC,i for the high-cost and the

low-cost modes respectively, we can simulate the closed-loop system for all possible switching
sequences allowed by the proposed strategy. Thus, we can precalculate n−T and n+

T for all
possible nw. Note that we can choose nw with a certain granularity to enhance scalability. This
also allows to implement the control strategy using less memory. There is a trade-off between
conservativeness on one hand and scalability and memory requirements on the other.

5.4.2 Scheduling Policy

As mentioned earlier, we consider a case where multiple bimodal controllers share a TDMA
slot. This essentially means that only one controller can operate in the high-cost mode at any
point in time. Therefore, a scheduler selects the application based on a certain allocation policy
that will get the slot when multiple applications are contesting for the slot. In this work, we pro-
pose a dynamic priority based policy for slot allocation. According to our proposed scheduling
policy, each application is assigned priority dynamically based on the current state of the appli-
cation. The scheduler allocates the slot to the application that has the highest priority among all
the contesting applications.

First, the scheduler needs to identify the applications that are contesting for the slot. The
applications that are in the steady state and not experiencing any disturbance are obviously not
contesting for the slot. However, it is also not true that all applications that are currently in
the transient state, are requesting for the slot. For example, let us consider a case where an
application C1 has switched to the high-cost mode after a disturbance and stayed in that mode
for the mandatory n−T,1 samples. Now, the application is forced to switch back to the low-cost
mode because another application C2 is experiencing a disturbance. Now, even if C1 has not
fully rejected the disturbance when C2 has completed the minimum n−T,2 samples in the high-
cost mode, C1 will not be considered again by the scheduler for a switch back to the high-cost
mode. That is, as shown in Figure 5.2 and Figure 5.6, for one disturbance event, the controller
switches from the low-cost mode to the high-cost mode and then again back to the low-cost
mode where the remaining disturbance (if any) is rejected. Thus, the arrival of a disturbance
on an application triggers a switching request from the application to the scheduler. Once an
application switches back to the low-cost mode after staying in the high-cost mode for the
required number of samples, the request is withdrawn from the scheduler.

Among the applications that are contesting for the slot, each application has a priority. The
highest priority is assigned to the application Ci that is currently using the slot and has not yet
stayed in the high-cost mode for n−T,i samples. Thus, such an application cannot be preempted
by any other application waiting for the slot. On the other hand, the lowest priority is assigned
to the application that is currently using the slot but has stayed in the high-cost mode for more
than n−T,i samples but less than n+

T,i samples. This application will immediately switch back to
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Figure 5.7: Control responses for different switching strategies. The blue dashed line shows
the response when the controller only operates in the high-cost mode and uses KHC . The black
dotted line and the brown marked-solid line show the responses when the controller operates
only in the low-cost mode using the control gains Ks

LC and Ku
LC respectively. The green solid

line and the pink dash-dotted line show the control responses when bimodal controllers, i.e.,
{KHC , K

s
LC} and {KHC , K

u
LC} respectively, are used.

the low-cost mode when a new application has requested to switch to the high-cost mode after
being disturbed.

For all other applications waiting for the slot, the priorities are assigned based on their
criticality. For each application, there is a maximum number of samples n∗w,i for which it can
wait in the low-cost mode after a disturbance without violating the control performance. If an
application waits for more than n∗w,i samples in the low-cost mode after a disturbance then it
will not satisfy the control performance irrespective of the number of samples it stays in the
high-cost mode thereafter. Now, the scheduler uses this value to determine the criticality of the
application. That is, it assigns priority to an application depending on the number of samples
remaining till n∗w,i, i.e., n∗w,i − nw,i. Lower the number of samples remaining within which the
application must be provided with the TDMA slot, more critical it is, and therefore, higher is its
priority. That is, during the arbitration, among all contesting applications, the application that
is nearest to having waited the maximum number of permissible samples, will get the slot, and
therefore, will switch to the high-cost mode.
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Figure 5.8: Impact of switching stability on control performance. For all possible switching in-
stants defined by nw and nT , the settling time is plotted for two bimodal controllers comprising
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s
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} respectively. For the same switching combination, the settling

time is alway lower for the former bimodal controller than the latter.

5.4.3 A Motivational Example

Again, we review the example of the DC motor position control system that is described by
the continuous-time state-space model given in Eq. (5.8). The control requirements are as out-
lined in Section 5.3.2. Three controllers KHC , Ks

LC , and Ku
LC are designed for this system as

explained in Section 5.3.2 and given in Eq. (5.9), Eq. (5.10), and Eq. (5.11) respectively.

We plot control responses for different switching strategies in Figure 5.7. Here, the re-
sponses for KHC , Ks

LC , and Ku
LC are exactly same as the ones shown in Figure 5.5. Note

that when KHC is used then communication is carried out on the static segment, and for Ks
LC

and Ku
LC , dynamic segment is used for the communication. The control responses using the

switched control for two different cases are also shown. In both cases, the controller stays in the
low-cost mode for four control instances after a disturbance, followed by four instances in the
high-cost mode, before returning to the low-cost mode again. As expected, better settling times
are obtained by using the high-cost mode for four samples as compared to none. However, when
Ks
LC and KHC are used it gives a better settling time of 0.28 s (green solid line), as compared

to 0.58 s (pink dash-dotted line) that is obtained when Ku
LC and KHC are used. Note that both

Ks
LC and Ku

LC give the same performance when applied individually. Thus, the settling time
requirement is not met when Ku

LC is used in the low-cost mode while it is met with Ks
LC . This

difference in performance again suggests that, for our proposed scheduling strategies, the two
controllers used in the high-cost and the low-cost modes respectively must satisfy the switching
stability constraint as per Eq. (5.7).
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We have also simulated the system for all possible switching combinations considering both
pairs of control gains, i.e., KHC + Ks

LC and KHC + Ku
LC . J as a function of nw (number of

instances the application has waited for the high-cost mode after a distrubance) and nT (number
of instances for which the controller switches to the high-cost most during a disturbance) is
plotted in Figure 5.8. The result shows that the system design without considering switching
stability is less efficient in terms of the control performance.
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Figure 5.9: Resource requirements for the proposed dynamic scheduling of the TDMA slots.
Given a settling time requirement J∗ = 0.36 s, this plot shows the minimum and the maximum
number of samples (n−T and n+

T ) that the controller can stay in the high-cost mode for a certain
number of samples it has waited in the low-cost mode after a disturbance. Each point is anno-
tated with the corresponding settling time value in seconds.

Using KHC and Ks
LC , the system is simulated for all possible switching combinations con-

sidering J∗ = 0.36s, and the results are shown in Figure 5.9. In the figure, Note that the best
settling time for a certain nw is achieved when the controller stays in the high-cost mode for n+

T

instances and it is non-decreasing with increase in nw. For nw = 0, switching from high-cost
mode to the low-cost mode after six samples can still result in the same performance as for the
case when the controller only operates in the high-cost mode. Thus, it is pessimistic to stay in
the high-cost mode till the whole disturbance is rejected. It can be observed that n−T and n+

T

varies with nw. All points between n−T and n+
T also satisfy the settling time requirement.

5.5 Resource Dimensioning for Dynamic Scheduling
In the last section, we have proposed a strategy that dynamically allocates a TDMA slot to
applications based on requirements. Now, an important research question is: Given a pool
of applications and the proposed strategy what is the minimum number of slots required to
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guarantee control performance of all applications? Towards this question, we propose a nested
two layer technique. In the outer layer, we use a first-fit heuristic to map applications to slots,
while in the inner layer we verify the control performance for a set of applications mapped on
to one slot. Note that here we obtain a many-to-one mapping of applications to slots. That is,
one application is mapped on to one specific slot that it can use when required, and more than
one application can be mapped to one slot. Here, we do not use a many-to-many mapping of
applications to slots, where an application can use any slot if available. This is because such a
mapping might not be as resource-efficient as the many-to-one mapping.

Let us consider four applications, out of which two applications C1 and C2 have n∗w,i = 8
and n−T,i = 3 and the other two applications C3 and C4 have n∗w,i = 20 and n−T,i = 10. Here, we
assume a constant n−T,i for all applications. Now, using many-to-one mapping, we can map C1

and C2 to one slot id and C3 and C4 to another slot, and such a mapping will guarantee that no
applications will have to wait more than their given n∗w,i number of samples. However, a many-
to-many mapping of these applications to two slots will violate the requirements. Consider a
case where C3 and C4 are disturbed together followed by C1 and C2 after one sample. Thus, the
two slots will be first occupied by C3 and C4 and they will use the slots for 10 samples. However,
by that time C1 and C2 will have already waited for 9 samples that violates their requirements.
Thus, with many-to-many mapping these applications would require three slots to fulfill their
performance requirements, which is 50% more resources than in case of many-to-one mapping.

In this section, we will consider many-to-one mapping of applications to slots and explain
the proposed nested two layer technique for accurate dimensioning of TDMA slots.

5.5.1 Inner Layer: Verifying Control Performance
Given the switching bimodal control strategy and the scheduling policy, in this layer, we verify
that all applications mapped on a TDMA slot in the static segment will meet their requirements
in all possible scenarios. The problem can be reformulated to verify that each application Ci
switches to the high-cost mode before n∗w,i has elapsed. Note that this problem is similar to
verifying schedulability of multiple tasks running on a processor. However, an important dif-
ference is that the minimum time an application must stay in the high-cost mode to meet its
requirement depends on the time it has waited in the low-cost mode after the disturbance. Thus,
this verification problem does not fit into any standard schedulability analysis framework and
we use model checking to solve it. Towards this, we propose to model the whole system as a
network of timed automata and verify the model using UPPAAL [184]. Here, we abstract the
control dynamics using timing variables like nw,i, n∗w,i, n

−
T,i and n+

T,i. For each application, n∗w,i
and the variation of n−T,i and n∗T,i with nw,i can be predetermined. Here, the assumption is that
the control models are fully known with no uncertainties.

A timed automaton (TA) is a finite state automaton with a finite set of real-valued clocks
which progress synchronously, as studied in Section 2.4.4. Different TAs can communicate via
shared variables and synchronization channels. Our system model consists of TAs representing
the applications, the scheduler and the arbitration policy.

There are two main challenges in modeling the system as a network of TAs. (i) The system
under study is discrete-time, i.e., disturbances can be sensed only at periodic instants. However,
timed automata has continuous-time semantics. Thus, it is challenging to model that the sched-
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Figure 5.10: An Application automaton.

uler sees multiple slot requests at the same time. (ii) For a certain nw,i, the values of n−T,i and
n+
T,i need to be looked up from a precomputed table. Here, nw can be measured using a clock.

However, this clock cannot be used to reference table elements.
We describe the TAs used to model the system and explain how these challenges are ad-

dressed as follows:

• Application automaton: Each application automaton has an id and uses a clock time[id]. As
depicted in Figure 5.10, it starts in the Steady state. In the event of a disturbance, it requests
the scheduler for the TDMA slot using the synchronization channel reqHC and moves to
the state LC_Wait. In this state, it waits for the slot such that it can switch to the high-cost
mode. Here, time[id] measures the time that has elapsed since the disturbance is sensed. The
transition from the LC_Wait state to the Error state can be taken if the maximum waiting time
has elapsed, i.e., time[id] is greater than n∗w,i. Thus, an application meets the requirement
in all scenarios only if it never reaches the Error state. On the other hand, slot allocation is
notified via the synchronization channel getHC[id]. Correspondingly, the automaton takes
the transition to the state HC. During this transition, the minimum and the maximum number
of samples (T-[id] and T+[id], i.e., n−T,i and n+

T,i) that the application will stay in the HC state
is looked up based on the shared variable WT[id] that stores nw,i. The scheduler preempts
the application from the slot via the synchronization channel leaveHC[id]. The automaton
correspondingly moves to the state LC_Safe. It waits here until the minimum disturbance
inter-arrival time has elapsed, after which it moves to the Steady state again.

• Automata representing the scheduling policy: Two nested TAs (Policy and Sort), as shown
in Figure 5.11, implement the scheduling policy. They basically sort the requests from the
applications for the use of the TDMA slot and keep them in the order in which it will be
served. The scheduler maintains two queues, i.e., buffer0 and buffer. Any requests coming
in between two time samples are first stored in buffer0. At each time sample, the scheduler
invokes these automata to transfer requests from buffer0 to buffer and sort them according
to their respectively deadlines. Time does not pass during this operation and requests are
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Figure 5.11: Automata representing the scheduling policy. (a) The Policy automaton. (b) The
Sort automaton.

served from buffer only after this operation. This partially addresses the first challenge where
scheduler sees the disturbances that arrive during a period together at the next time instant.
Here, Policy automaton checks for new requests in buffer0. For each new request in buffer0,
Sort is invoked to insert the request correctly in buffer. Note that when a request is transferred
from buffer0 to buffer, the corresponding clock time[id] and the waiting time counter WT[id]
are reset. This marks the time sample when the scheduler sees the disturbance for the first
time. To place a new request correctly, Sort iterates through the requests in buffer one by one
and compares their relative deadlines to that of the incoming request.

• Scheduler automaton: It implements the scheduler and is shown in Figure 5.12. It can regis-
ter asynchronous requests from applications in between time samples via the synchronization
channel reqHC. These requests are stored with the application id in buffer0. Besides, it also
invokes a sequence of operations at every time sample based on a clock x which resets every
time unit. This is done to implement a discrete-time scheduler and thereby addresses the first

159



5.5. RESOURCE DIMENSIONING FOR DYNAMIC SCHEDULING

C

C

C

CC C

C

C C

C

slot_idle()

leave[app]=1
run=0

cT==T+[app]

d
o

n
e

Po
lic

y?

callPolicy!
buffer0.len>0

upd_WT()

x==1

req==1
reqHC?

x<=1

x=0

cT>=T-[app] &&
cT<T+[app] &&
empty()

cT>=T-[app] 
&& cT<T+[app] 

&& !empty()!e
m

p
ty

()

ge
t[

b
u

ff
er

.r
eq

[0
]]

=1
,

ap
p

=b
u

ff
er

.r
eq

[0
],

ru
n

=1

remove(),
cT=0, x=0

getHC[app]!

insert_buffer0(),
req=0

cT
<T

-[
ap

p
]

leaveHC[app]!

Figure 5.12: The Scheduler automaton.

challenge. At each sample, the scheduler first increments the waiting time counter WT[id] of
each application in LC_Wait state. WT[id] is used to reference the look-up table (that stores
n−T,i and n+

T,i as a function of nw,i) during the transition of an Application automaton from
LC_Wait to the HC state. This addresses the second challenge. A more intuitive way of ad-
dressing the second challenge is by adding a self transition every time unit at LC_Wait state
in the Application automaton. However, it turns out to be very inefficient due to an additional
clock in each Application automaton and also numerous additional state transitions. Now, af-
ter updating the wait time counters, the scheduler automaton calls Policy and Sort if buffer0 is
not empty. After the requests are arranged in buffer, it checks if the slot is idle. When the slot
is free and the buffer is not empty, the first application in the buffer gets the slot and the cor-
responding request is removed from the buffer. The application is simultaneously notified via
the synchronization channel getHC[·] and the clock cT is reset. On the other hand, if the slot
is occupied then the scheduler checks if the allocated application can be forced to switch back
to the low-cost mode. Here, it uses the clock cT and the shared variable T-[·] to check if the
application that is currently using the slot has stayed in the high-cost mode for the minimum
number of required samples. If yes, the application is forced to switch from the high-cost
mode via the synchronization channel leaveHC[·]. Thereafter, the free slot can be assigned
to a waiting application (if any). After completion of all the operations, the clock x is reset.
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Algorithm 6: Mapping algorithm to slots using a first-fit heuristic.
Input :

{
ta,i, n

∗
w,i, fT,i(nw,i)

∣∣∀ Ci ∈ C
}

Output : Map

1 Csrt = SortAscending
({
n∗w,i, fT,i(nw,i)

∣∣∀ Ci ∈ C
})

;

2 Map =
[
{Csrt[1]}

]
;

3 for j ← 2 to |Csrt| do
4 Cj = Csrt[j];
5 for k ← 1 to |Map| do
6 flag = Verify

({
ta,i, n

∗
w,i, fT,i(nw,i)

∣∣∀ Ci ∈Map[k] ∪ Cj
})

;

7 if flag == 1 then
8 Map[k] = Cj ∪Map[k];
9 break;

10 else if k == |Csrt| then
11 Map =

[
Map, {Cj}

]
;

12 break;
13 end
14 end
15 end
16 return Map;

Verification: The whole system is schedulable or the performance requirements of all applica-
tions will be met if none of the applications ever reach its Error state. Thus, the problem boils
down to reachability analysis. This can be formulated in UPPAAL as follows:

A[] not (C1.Error || C2.Error || · · · || Cn.Error) (5.16)

5.5.2 Outer Layer: Mapping Applications to Slots
In the proposed nested two layer approach for the accurate dimesnioning of TDMA slots, we
use a first-fit heuristic in the outer layer to map applications to slot ids. The first-fit heuristic that
we use is outlined in Algorithm 6. The algorithm takes as input the timing information for each
application Ci, i.e., the interarrival time for disturbances ta,i, the maximum number of samples
n∗w,i that Ci can wait in the low-cost mode after a disturbance, and a function that determines the
value of the minimum and the maximum number of samples, n−T,i and n+

T,i, that Ci can stay in
the high-cost mode after waiting for nw,i samples. The output of the algorithm is the minimum
number of slots ids required to meet the requirements of all applications as well as the groups
of applications that must use the same slot id. The output variable Map is an array of sets of
application, where each set is a group of applications that will use the same slot id based on the
proposed scheduling policy and switching control strategy.

In line 1, the algorithm sorts the applications in the ascending order with respect to n∗w,i and
this ordered list is denoted as Csrt. The less number of samples the application can wait in the
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low-cost mode, lower is it position in the sorted list. Now, for two applications Ci and Cj with
n∗w,i = n∗w,j , the order is decided based on the maximum value of n−T,i and n−T,j denoted as n∗T,i
and n∗T,j respectively. That is, if n∗T,i is lower than n∗T,j then Ci comes before Cj is the list. In
line 2, the algorithm maps the first application in the ordered list to the first slot id, i.e., Csrt[1]
is added to the first set in Map.

Using the for loop in lines 3-15, we traverse through the remaining applications in Csrt in
order and map each of them to a slot id. Let us take the application Cj in the j-th position
in Csrt (line 4). Now, we traverse the sets of applications in Map one by one (lines 5-14).
In the k-th iteration, we check if Cj and the applications in the k-th set of Map can satisfy
the requirements using only one slot id (line 6). Here, we build a network of TAs comprising
Application automata for Cj and the applications in the k-th set of Map, together with the
Scheduler, Policy, and Sort automata and we verify the model as per Eq. (5.16). If the control
performances can be guaranteed, we add Cj to the k-th set in Map (line 7-9). Now, if Cj
cannot be feasibly added to any of the existing sets then a new set is created with Cj as the only
application and added to Map (lines 10-13). This essentially means that none of the existing
slot ids have enough bandwidth to accommodate Cj and a new slot id is added where Cj is
mapped. In line 16, the algorithm returns Map.

According to the algorithm, the minimum number of slot ids required by all applications is
given by the number of sets in Map. Each set in Map will require a unique slot id.

5.6 Experimental Results
Case Study: We consider a case study comprising 6 control applications. C1 [241] and C2 [202]
are DC motor position control. C3 [81], C4 [202] and C5 [161] represent DC motor speed control.
C6 [202] is a cruise control. The plant models are provided in Table 5.2. We consider a sampling
period h = 0.02 s. For each application Ci, control gains, KHC,i and KLC,i, are synthesized for
the high-cost and the low-cost modes respectively (see Table 5.2). Here, KHC,i and KLC,i

satisfy the switching stability condition. For each application Ci, the minimum interarrival time
ta,i for disturbances and the settling time requirement J∗i are provided in Table 5.2. Note that
these times are given in terms of the number of samples. For example, in case of C1, interarrival
time for disturbances ta,1 is equal to 25 samples or 0.5 s, and the settling time requirement is 18
samples or 0.36 s.

Application of bimodal controllers: For the given control gains, KHC,i and KLC,i, and the
plant model, we can determine the settling times, JHC,i and JLC,i, that are obtained when KHC,i

and KLC,i are applied individually to the plant and the static and the dynamic segments of
FlexRay are used respectively for the communication. These obtained values are provided in
Table 5.3. Note that for each application JHC,i < J∗i < JLC,i. Thus, to meet the requirements
without over-provisioning the high-quality resources, we can use bimodal controllers and switch
between the high-cost and the low-cost modes as defined in Section 5.2.2. This will enable
sharing of high-quality resources among applications.

Proposed static scheduling strategy: Towards static scheduling of TDMA slots in the static
segment of FlexRay, we first derive the resource requirements for each application using Algo-
rithm 5. The requirement is expressed as the number of consecutive control instances nT,i in
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Table 5.2: Specification data for the case study (time is measured in terms of the number of samples)

Ci Plant Model KHC,i KLC,i ta,i J∗
i

C1 Eq. (5.8) Eq. (5.9) Eq. (5.10) 25 18

C2
A =


0 1 0

0 −1.0865 8.4872 · 103

0 −9.9636 · 103 −1.4545 · 106

,

B =
[
0 0 3.6364 · 105

]T
, C =

[
1 0 0

]


0.1198

−0.0130
−2.9588


T


0.0864

−0.0128
−1.6833
0.4059


T

100 25

C3 A =

[
−0.2 0.67

−10 −100

]
, B =

[
0

37000

]
, C =

[
1 0

] [
0.0500

−0.0002

]T 
0.0336

0.0004

0.4453


T

50 20

C4 Eq.(3.28)

[
100.0000

15.6226

]T 
−77.8275
24.3161

1.0265


T

40 19

C5 A =

[
−10 1

−0.2 15

]
, B =

[
0

20

]
, C =

[
1 0

] [
10.0000

1.0524

]T 
−2.4223
0.7014

0.2950


T

25 18

C6 Eq.(3.31) 15000

[
8125.6

0.8659

]T
100 20
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Sl
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Figure 5.13: Static allocation of TDMA slots to applications. For each application, the resource
requirements, as given by {nT,i, nRi} in Table 5.2, are met.

which the controller must stay in the high-cost mode in a sequence of nR,i instances. For the
bus cycle time Tbus = 0.005 s and the number of configurable communication cycles Ncom, the
values of nT,i and nR,i are determined that are provided in Table 5.3. Based on the values of
nT,is and nR,is, we can determine a lower bound on the number of slots ids required as follows:⌈

1

4
+

3

8
+

1

4
+

1

4
+

1

8
+

1

4

⌉
= 2.

Now, we can apply the optimization given in Eq. (5.15) to obtain a static schedule as shown in
Figure 5.13. It is shown in the figure that we can can schedule all application using 2 slot ids,
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Table 5.3: Resource requirements of the bimodal controllers for static and dynamic scheduling
(Time is measured in terms of the number of samples)

Ci JHC,i JLC,i {nT,i, nR,i} n∗w,i n−T,i n+
T

C1 9 35 {1, 4} 11
[3,4,3,3,3,3,

3,3,3,4,4,5]

[6,6,5,5,5,6,

5,5,4,4,5,5]

C2 15 50 {3, 8} 13
[7,7,6,7,6,7,6,

7,6,7,6,7,7,8]

[10,10,9,10,8,9,

9,10,8,8,9,8,8,8]

C3 10 31 {1, 4} 15
[4,4,4,4,4,4,4,4,

4,4,4,4,4,4,4,4]

[8,8,7,7,7,6,6,6,

6,5,5,5,5,4,4,4]

C4 10 31 {1, 4} 12
[5,5,5,5,5,5,5,

5,5,5,5,5,5]

[9,8,8,8,8,7,7,

7,7,6,6,6,5]

C5 10 25 {1, 8} 12
[4,3,3,3,3,3,3,

4,4,4,4,4,4]

[9,8,7,8,7,6,7,

6,5,5,4,4,4]

C6 11 41 {1, 4} 12
[7,8,7,8,7,8,7,

8,7,8,7,8,8]

[11,11,10,10,10,

10,9,9,9,8,8,8,8]

sk and sl. Here, C1, C3, and C4 share the slot id sk and C2, C5, and C6 share sl. Note that the bus
cycles in Figure 5.13 are numbered as c0, c4, c8, · · · . This is because the sampling period of the
applications are 0.02 s that is four times the bus cycle time of 0.005 s, and therefore, the control
instances for these applications come every 4 cycles. The frame schedules for the applications
are provided in Table 5.4.

Table 5.4: FlexRay frame schedule assignments for the control applications

Ci C1 C2 C3 C4 C5 C6

{sc,i, bc,i, rc,i} {sk, 0, 16}
{sl, 0, 32}
{sl, 4, 32}
{sl, 8, 32}

{sk, 4, 16} {sk, 12, 32} {sl, 16, 32} {sl, 12, 16}

An important thing to note in the obtained schedule is that the slot ids, sk and sl, are not
fully utilized. Here, sk can still be used to send messages with repetition rates of 16, 32, and 64,
while sl only offers the repetition rates of 32 and 64. Thus, with static scheduling, we can use
expensive resources only as much is required. Note that if C5 was scheduled using {sk, 12, 32}
instead of {sl, 16, 32}, then both sk and sl can only offer schedules with repetition rates of 32
and 64. Thus, the schedule will become less extensible. We can also optimize for extensibility
in the order of fraction of a slot id, i.e., we can maximize the the number of repetition rates
allowed for other real-time or even future messages. Here, after determining the minimum
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number of slot ids required to fulfill the requirements of all applications, we can try to add a
dummy message with the lowest possible repetition rate without increasing the slot id.

In the case study, for example, we have obtained a minimum requirement of 2 slot ids. Now,
for all applications, we get that 1

4
+ 3

8
+ 1

4
+ 1

4
+ 1

8
+ 1

4
= 1.5 slot ids are required. Thus, in

the best-case, a message with {nT,i, nR,i} = {1, 2} might be possible. We try to see if such a
dummy message can be scheduled together with the applications in the case study. Here, we
do not consider the optimization objective, i.e., minimization of nid as in Eq. (5.15), but rather
consider nid = 2 as given. In this case study, we cannot add such a dummy message without
increasing the number of slot ids. Now, we try to add a message with {nT,i, nR,i} = {1, 4} and
this is possible using the schedule as shown in Figure 5.13. Thus, in the case study considered
here, this is the most extensible schedule as new messages can be added with a repetition rate
of 16, 32, and 64. Note that as h = 4 ·Tbus, the repetition rate rc,i is four times the value of nR,i.

Proposed dynamic scheduling strategy: For the given control gains, KHC,i and KLC,i, and
the plant model, we can simulate the closed-loop system to determine the maximum number of
samples n∗w,i that the application Ci can stay in the low-cost mode after a disturbance without
violating the settling time requirement J∗i . Now for a certain number of samples nw,i ≤ n∗w,i,
we can determine the minimum and the maximum number of sample the application can stay
in the high-cost mode, n−T,i and n+

T,i. For each application, n∗w,i and n−T,is and n+
T,is are provided

in Table 5.3. Note that n−T,is and n+
T,is are stored in an array and array indices give nw,i where

0 ≤ nw,i ≤ n∗w,i. These arrays can be stored in a memory-efficient way exploiting the fact that
n−T,i and n+

T,i take only a few values. Now, using these values, we apply the nested two-layer
technique, as described in Section 5.5 to determine the minimum number of slot ids required to
meet the performance of all applications. Using Algorithm 6 as the outer layer and the TA-based
verification (explained in Section 5.5.1) in the inner layer, we obtain a mapping of applications
to slots as follows: (i) C1, C5, C4, and C3 are mapped to slot sk and (ii) C6 and C2 share slot sl.

Comparison with state-of-the-art techniques: In the literature, dynamic scheduling strategies
are only studied so far. We apply the two scheduling strategies proposed in [146] on the case
study. Note that a recent paper [244] also uses one of the strategies in [146]. According to
the strategies in [146], applications get the TDMA slot according to their fixed priorities and
then use the slot till the whole disturbance is rejected. The priorities are assigned according
to the deadline monotonic scheme where J∗i is considered as the deadline. The first strategy
is similar to the standard non-preemptive deadline monotonic scheme. In the second strategy,
the slot requests from the lower priority applications are delayed to reduce the blocking time
for higher priority applications. Using the schedulability analysis and the first-fit heuristic pro-
posed in [146], these applications require minimum 4 slots to meet their requirements. The slot
partitions are {C1, C5}, {C4, C3}, {C6} and {C2}. Thus, our proposed strategies allow a tighter
and accurate dimensioning of high-quality TDMA slots and save 50% of slots compared to the
existing state-of-the-art techniques.

Simulation results: For the static scheduling strategy, we consider the case when all appli-
cations are disturbed at the same time in the beginning of the FlexRay cycle C0. The control
response for the applications are plotted in Figure 5.14. We can verify from the plot that all
applications meet their respective settling time requirements as provided in Table 5.2. Note
that for the proposed static scheduling strategy, the performance of a bimodal controller is not
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Figure 5.14: Control response of the applications for the proposed static scheduling strategy.
Each application meets its settling time requirement as can be verified from this plot.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

time (s)

0

0.2

0.4

0.6

0.8

1

y(
t)

C
3
 (HC)

C
5
 (HC)

C
4
 (HC)

C
1 

(HC)

C
3

C
4

C
5

C
1

Figure 5.15: Control responses when disturbances arrive simultaneously at applications sharing
a slot id according to the proposed dynamic scheduling strategy. All applications meet their
respective settling time requirements as they switch to the high-cost mode for at least the mini-
mum number of required samples before the maximum waiting time.

impacted by the state of other applications sharing the same slot id. That is, the response of C1

will also be the same if C3 and C4 were not disturbed simultaneously with C1. This is because
the switching instants between the low-cost and the high-cost modes for C1 depends only on the
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Figure 5.16: Control responses when disturbances arrive separately at applications sharing a
slot id according to the proposed dynamic scheduling strategy. Both applications can achieve
the maximum performance that is equal to the performance of a controller that operates only in
the high-cost mode.

obtained static schedule and is independent of the state of C3 and C4. This is the main disadvan-
tage of static scheduling, i.e., even if high-quality resources are available, they cannot be used
to improve the performance of an application that is experiencing a disturbance. Therefore, the
average control performance of the applications might be lower in case of static scheduling as
compared to a dynamic scheduling strategy.

For the proposed dynamic scheduling strategy, we have build two networks of TAs repre-
senting two slot ids. Using UPPAAL, we simulate the TA models for the following two cases:
(i) Disturbances arrive simultaneously at C1, C3, C4 and C5. (ii) Disturbance arrives at C6 10
samples after the disturbance at C2. Using the obtained switching sequences from UPPAAL sim-
ulations, we simulate the control loops in MATLAB. The response curves for the two cases are
shown in Figure 5.15 and Figure 5.16 respectively. The shaded regions indicate the occupants
of the slots. It can be verified that each application meets its settling time requirement. C3 uses
sk for n+

T,3 = 5 slots as there is no preemption while all others using sk are preempted at n−T,i. C2

and C6 are not preempted and can achieve the maximum performance equal to JHC,2 and JHC,6
respectively. C2 stays in the high-cost mode for 10 samples to achieve the settling time of 0.3 s
while the conservative switching in [146, 244] would require C2 to stay in the high-cost mode
for 15 samples and still obtain the same performance.

When disturbance did not arrive simultaneously at C2 and C6 sharing the TDMA, they can
achieve a settling time of 0.3 s and 0.22 s respectively for the proposed dynamic scheduling
strategy. However, in case of static scheduling, the settling time of C2 and C6 are 0.4 s and 0.34 s
respectively, and these times would remain the same even if only one of them is disturbed at a
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time. Thus, the control performance obtained using the proposed dynamic scheduling strategy
can be higher on average than that obtained with the proposed static scheduling strategy.

Comments on verification time: Towards solving the resource dimensioning problem for the
proposed dynamic scheduling strategy, we have used model checking of networks of TAs. The
main drawback of using model checking for schedulability analysis has always been the issue
of scalability. In the case study under consideration, all except one verification took less than
a minute. Even few took less than a second. A particular case of mapping {C1, C5, C4, C3} to
one slot took close to 5 hours. However, it is possible to accelerate the verification if we do not
consider infinite instances of disturbance. For each application, we can calculate the maximum
number of disturbance instances in other applications that can coincide with its disturbance.
Accordingly, we can adapt the model and verify. With this approach, we can verify the mapping
of {C1, C5, C4, C3} to one slot within 15 minutes (i.e., a speed up of 20 times). We used a
computer with Intel(R) Core(TM) i7 − 5600U CPU @2.60 GHz processor and 8 GB RAM for
the verification. Note that for the problem setting we study here, it may not be required to
analyze too many applications in one slot. Moreover, this whole process being offline, time is
not the main constraint here.

5.7 Related Works
Communication-aware design of distributed CPSs [245] has emerged as an important research
topic and attracted extensive attention since [246]. The main idea is to consider the charac-
teristics of the underlying communication protocol (e.g., scheduling policy [161, 195, 201] and
uncertainties [116, 117]) while designing control algorithms and, accordingly, scheduling con-
trol tasks to guarantee safety and performance.

Our work follows the bimodal control strategy proposed in [144], that exploits the hybrid
communication protocol. The control scheme suggests that there is no performance degrada-
tion when the controlled plant is in steady state and low-quality resources are used. However,
using high-quality resources during the transient state can improve the control performance
significantly. It has been also shown in [144] that there exists a good trade-off opportunity
between the control performance and the amount of high-quality resources being used. Later,
there have been efforts in [145, 146, 244] towards dynamic allocation of high-quality resources
and correspondingly, minimizing the amount of high-quality resources required to guarantee
performance of all applications.

Although these works have also studied FlexRay as the heterogeneous communication re-
source, none of them consider the fact that resource allocation cannot be reconfigured online
in FlexRay. Thus, these works cannot be applied to a CPS setting where the platform does
not support dynamic reconfiguration. In this context, we propose a cost-efficient strategy that
statically allocate high-quality resources to the bimodal controllers. Moreover, our proposed
strategy saves more resources than the existing dynamic scheduling strategies.

In the context of dynamic allocation of high-quality resources, there are two main shortcom-
ings of these works. First, the switching strategy that these works consider is very conserva-
tive. [146, 244] have studied a switching scheme where once a controller gets the high-quality
resources, it switches back to the low-quality resource only when the plant has reached the
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steady state. In such a switching strategy, when an application gets the high-quality resource
immediately after a disturbance has arrived, it will use only the high-quality resources in the
transient state even if another application is disturbed in the meanwhile. This is restrictive be-
cause after using the high-quality resources for a certain number of control instances, switching
back to the low-quality resources might not violate the requirements. Now, on the other hand, al-
though [145] allows to switch back from the high-quality resources to the low-quality resources
in the transient-state, this involves a retransmission cost that is even more pessimistic. Com-
pared to these existing strategies, we study the closed-loop dynamics more accurately and allow
to switch back from the high-cost mode to the low-cost mode even in the presence of a distur-
bance only when we can guarantee that such a mode change will not violate the requirements.
This reduces the conservatism involved in the existing strategies. Second, although the switch-
ing control dynamics are analyzed in the existing techniques, the full information is not used
while dimensioning the high-quality resources. Instead, these works only consider the timing
information for the worst switching instant for each application. This leads to over-provisioning
of resources. Note that in the critical instant when all applications sharing the high-quality re-
sources experience disturbance at the same time, only one application may encounter the worst
switching instant where it uses the high-quality resources for the maximum number of samples,
while all other application will partially reject the disturbance using the low-quality resources
and therefore, will take less samples of the high-quality resources.

In order to guarantee the worst-case performances of all the applications that are assigned
the same slot id, we formulate a network of timed-automata representing the system and use
model checking for the verification. This is more accurate and, therefore, less conservative com-
pared to the analytical techniques use in the existing works. Earlier works [145, 146, 244] have
adapted the timing analysis technique used for CAN communication [106]. In CAN commu-
nication, there is a constant transmission time for each message, while in our case, the number
of control instances an application stays in the high-cost mode depends on the number of sam-
ples it has waited in the low-cost mode after the disturbance has arrived. Thus, existing works
have applied the CAN timing analysis to calculate the maximum number of samples that an
application might have to wait for the high-quality resources by assuming that the high-priority
applications will always stay in the high-cost mode for the maximum number of samples. This
adds a lot of pessimism to the analysis and is, therefore, not accurate.

It may be noted here that the slot sharing among multiple applications requires the underly-
ing communication architecture to be runtime reconfigurable. This is not the case with FlexRay.
However, this can be partially addressed by developing a communication middleware as pro-
posed in [237]. The proposed middleware can dynamically allocate a slot to different messages,
however, these messages are sent from the same sender ECU. Moreover, it is envisioned that fu-
ture automotive architectures must be reconfigurable to support automated or semi-automated
driving [247, 248]. We also believe that our proposed dynamic scheduling strategy will find
extensive applications in the future as resource-efficient design will become very important to
handle the increasing size and complexity [249, 250].
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5.8 Conclusion

In this chapter, we have studied a bimodal controller for multi-resource automotive CPSs. Here,
the controller can switch between a high-cost mode and a low-cost mode. In the high-cost mode,
the controller uses high-quality resources and therefore offers high performance. In the low-
cost mode, lower quality resources are used, and therefore only a lower level of performance
can be guaranteed. For a system comprising several bimodal controllers sharing high-quality
resources, we have proposed a cost-efficient strategy to statically allocate the expensive high-
quality resources to these controllers such that their respective control requirements are met.
In the proposed strategy, each controller gets only the minimum amount of such expensive re-
sources. We have further developed a dynamic scheduling strategy that can increase the average
control performance of the applications as compared to the static scheduling. Towards this, we
have proposed a switching scheme for the bimodal controllers and a dynamic scheduling policy
for the scheduler. Such a dynamic resource allocation leads to the problem of minimum dimen-
sioning of high-quality resources. Towards an accurate resource dimensioning for the proposed
dynamic scheduling policy and switching control strategy, we have proposed a nested two layer
optimization technique. In the inner layer, we verify the control requirements for a set of ap-
plications using one slot id by modeling the system as a network of TAs and then using model
checking for the verification. In the outer layer, we use a first-fit heuristic to map applications to
slots. Our experiments show that both static and dynamic scheduling strategies that we propose
here are more cost-efficient compared to the state-of-art techniques.

Although our proposed schemes can achieve tighter resource dimensioning, it does not op-
timize the average control performance. In case of static scheduling, we only consider that a
controller stays periodically for consecutive instances in the high-cost mode. However, with-
out increasing the resource usage, a different combination of instances in the high-cost mode
might increase the average or the worst-case performance. Also note that we do not guarantee
optimality for the sake of scalability of the proposed static scheduling approach. There might
be a non-consecutive pattern of instances in high-cost mode that uses less resource while still
guaranteeing minimum performance. Thus, there might be a scope for improvement in con-
trol performance and resource usage while statically allocating slots to applications that can
be explored in the future. In case of dynamic scheduling, we force an application to switch
to the low-cost mode as soon as they have stayed for the minimum mandatory samples in the
high-cost mode, when there is an application waiting for the slot. However, in certain cases,
delaying the change might improve the performance of the current occupant of the high quality
resource without degrading the performance of the waiting applications. In the future, we can
investigate if machine learning techniques can improve the decision making while still guaran-
teeing the minimum control performance. Furthermore, in case of dynamic scheduling, we have
considered only many-to-one mapping from applications to slots as it is more resource-efficient
than the many-to-many mapping. However, many-to-many mapping can lead to an increase in
the average control performance. Thus, in the future, we can have a partitioned many-to-many
mapping, i.e., we can partition the pool of applications into sets where each set of application
can use a number of slots if that will not increase the resource usage. For example, using our
proposed technique, if we use two slots for six applications, and now, if we allow each of the
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six applications to use any of the two slots and they still meet the requirements, then such a
mapping will offer higher average control performance.
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6
Energy- and Time-Optimal

Active Cell Balancing1

6.1 Introduction
In this thesis, until now, we have studied the CPS problem of designing and implementing dis-
tributed embedded control systems, where only the generic feedback control of physical systems
is considerd. In this chapter, we study a more specific CPS problem of active cell balancing in
high-power battery packs. Here, we discuss the optimal control problem for active cell balanc-
ing and propose customized techniques to synthesize the optimal control of the cell balancing
process such that the energy dissipation and the balancing time are minimized respectively.
Cell balancing in battery packs: High-power battery packs, consisting of multiple individ-
ual series-connected cells, are gaining more importance, especially with the rapid introduction
of EVs and HEVs. Due to manufacturing variances and nonuniform temperature distribution
within the pack, charge and discharge rates of the individual cells may differ, thereby result-
ing in variations in their charge levels (as discussed in Section 1.1.5). The cell with the lowest
charge level determines the discharging threshold, and similarly, the cell with the highest charge
will cut-off the charging process. This premature cut-off of the charging and the discharging
processes significantly reduces the usable capacity of the battery pack. Cell balancing is typi-
cally performed to minimize the charge variations in a battery pack. Conventional approaches
for cell balancing are passive, where the excess charge in cells is dissipated as heat across a high
power resistor, and are therefore energy-inefficient [163]. By contrast, energy-efficient active
cell balancing approaches are an emerging alternative where the excess charge is redistributed

1This chapter is compiled based on two publications as follows: (i) “Multi-stage optimization for energy-
efficient active cell balancing in battery packs” [251] appeared at the 2019 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD). (ii) “Optimal scheduling for active cell balancing” [252] appeared at the
2019 IEEE Real-Time Systems Symposium (RTSS).
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across the cells. Note that this redistribution is not lossless due to the parasitic resistances and
capacitances of the circuit components in the balancing architecture. Moreover, active cell bal-
ancing is typically performed using a very low current due to certain physical limitations of
the charge transfer circuit architectures, and therefore, a balancing session for a battery pack
requires a significant amount of time.

Balancing goals: Minimizing the energy dissipation and the time taken to equalize the charge
levels of the cells in a pack are the important optimization objectives for cell balancing [82–84].
Lower energy dissipation for cell balancing during the charging process implies lower cost.
Moreover, cell balancing can also be performed on a car to increase the driving range in the
absence of a charging source. In such cases, lower energy dissipation directly correlates to
higher charge and, practically, a higher driving range. When cell balancing is performed during
the charging process of the battery pack, a prolonged balancing time will eventually increase
the charging time of the pack. For instance, the charging process is stopped as soon any cell, in
a series-connected pack, is fully charged irrespective of the charge levels on the other cells. The
cell balancing process is then initiated for the charge equalization. Once the charge levels of
all the cells are equalized, the battery pack is not fully charged anymore and again the charging
process is initiated. Therefore, minimizing the cell balancing time (interchangeably also called
as the charge equalization time) significantly reduces the charging time, thereby improving the
user acceptance in case of EVs. Similarly, when the car battery is dying during driving, quickly
increasing the charge level of the weakest cell will extend the driving range so that the nearest
charging station can be reached.

Balancing architectures and algorithms: Until now, active cell balancing has been studied
in the power electronics domain, where different hardware circuit architectures have been pro-
posed for charge transfers, see [85, 164, 165, 253–257]. Charge transfer between cells is facil-
itated using temporary energy storage elements such as inductors, capacitors or transformers
coupled with a power MOSFET switching network. Several balancing architectures with vary-
ing charge transfer features such as balancing between adjacent cells [164], direct charge trans-
fer between non-adjacent cells [85] and charge transfers between groups of cells [165] have
been proposed in the literature. Although these architectures have progressively improved the
cell balancing process in terms of energy dissipation and balancing time, the full potential of
these architectures has not been explored yet.

Besides the balancing architectures, software algorithms that control the charge transfer
significantly influence the energy dissipation and the total time of an equalization process. The
control algorithm here is basically a feedback scheduler and its main task is to schedule charge
transfers optimally based on the SoCs of the cells in the pack. Different algorithms for con-
trolling the cell balancing architectures came up in the recent past [84,165,255,256,258,259].
These algorithms adopted an iterative approach either based on heuristics or by borrowing con-
cepts from control theory to select charge transfer pairs of cells for minimizing the overall
charge variation. However, these techniques only guaranteed charge equalization. No optimal-
ity results were known until our works on cell balancing that we will describe in this chapter.

Challenges towards optimal cell balancing: Formulating a scalable one-step optimization
problem to synthesize the optimal charge transfer schedule is non-trivial. This is mainly due to
the constraints imposed by the underlying balancing architecture for selecting the charge trans-
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Figure 6.1: Cell balancing in a battery pack of four cells. There are two balancing options.
(a) B1 transfers charge to B3 and then B4 to B2. (b) B1 and B2 transfers charge in parallel with
B3 and B4, and then B1 and B3 equalizes.

fer pairs of cells. For instance, no two charge transfer pairs can share the same current flow path
at the same time, as it will result in a short circuit condition. For example, in the non-neighbor
charge transfer circuit architecture, as explained in Section 2.3.1 and illustrated in Figure 2.6,
charge transfer between the cells B1 and B3 blocks the cell B2 to get involved in charge transfer
simultaneously. Such scheduling constraints will be further discussed in Section 6.3.2.1. Fur-
thermore, not all cells can be paired with each other since the maximum range in which a cell
can transfer charge in a series connection is limited by the capabilities of the underlying bal-
ancing architecture. A more detailed discussion on this constraint is provided in Section 6.2.1.
We also know that charge transfer occurs in cycles as described in Section 2.3.2.

The charge transfer schedule is composed of time slots, where in each slot, multiple charge
transfers can be scheduled that do not cause any short circuit condition. Here, the length of
each time slot is, therefore, equal to that of a charge transfer cycle assuming that the operation
frequency of all MOSFET switches in a charge transfer circuit is a constant. Now, considering
the aforementioned constraints, a closed-form problem formulation will require a binary vari-
able representing the schedule of a feasible charge transfer pair of cells in a time slot. A cell
balancing session will typically comprise hundreds of millions of such time slots, and therefore,
such a problem formulation cannot be feasibly solved.

Minimizing the overall balancing time of a cell balancing session essentially boils down to
minimizing the number of time slots in the balancing schedule. This is even more challeng-
ing because the balancing time depends non-trivially on the duration for which a pair of cells
performs charge transfer. This is mainly because of the scheduling constraints imposed by the
balancing architecture. For the example in Figure 6.1, there are two balancing options, as shown
in Figure 6.1(a) and Figure 6.1(b) respectively. Both options would ensure charge equalization,
however, the charge transfers in Figure 6.1(b) will result in a lower balancing time. In Fig-
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ure 6.1(a), the pairs π1,3 (i.e., B1 and B3 are the source and destination cells respectively) and
π4,2 cannot be simultaneously scheduled, and therefore, the overall balancing time is the sum
of the individual times (i.e., 1 h + 0.5 h = 1.5 h). For the option in Figure 6.1b, π1,2 and π4,3 can
transfer charge in parallel while π1,3 has scheduling conflicts with π1,2 and π4,3. Let us denote
the time taken by π1,2, π4,3 and π1,3 as x, y and z respectively. Thus, exploiting the capability
of the balancing architecture to support concurrent charge transfers, the overall balancing time
for this option is given by: max(x, y) + z = max(0.5 h, 0.5 h) + 0.5 h = 1 h. Note that for
the two balancing options in Figure 6.1, the times for charge equalization are calculated using
two different models. Moreover, considering that the concurrency relation between the pairs is
intransitive, it is not trivial to obtain a closed form expression for the total balancing time for
a large battery pack (e.g., 96 cells) consisting of more than a thousand feasible charge transfer
pairs. Furthermore, the model of the balancing time will depend on the nature of these charge
transfers, e.g., possibility of preempting a charge transfer once started.

Existing approaches [84, 256] follow an iterative scheduling strategy, where in each step
charge transfer pairs of cells are selected while reducing the variance in SoCs of the cells in
the pack. However, these approaches are based on heuristics and do not guarantee optimality.
For such an approach, formulating an optimization objective in each iteration to minimize both
energy dissipation and charge variance, is challenging since these two objectives are conflicting.
For example, to minimize the energy dissipation in each step, the obvious solution would be to
not perform any charge transfers. However, this will never equalize the SoCs of the cells.
Moreover, the charge transfer pairs selected during the initial stage might not be optimal at a
later point in time since the SoCs of the selected cells change during the course of balancing.
It is difficult to determine the time for which the selected pairs must balance and when to re-
evaluate the next set of optimal charge transfer pairs.

By borrowing concepts from control theory, it is possible to guarantee charge equalization
(i.e., asymptotic stability) [258,259]. However, the optimal cell balancing problems under study
do not fit into any standard optimal control framework due to the architectural constraints that
need to be respected.

Contributions: Towards optimal cell balancing, we make the following contributions:

• We propose a two-stage optimization problem formulation to minimize energy dissipation.
As such the cell balancing problem does not fit into any standard closed-form optimization
framework, we exploit the functional behavior of the underlying charge transfer circuit ar-
chitectures to partition the whole problem into two stages while preserving the guarantee on
minimum energy dissipation.

– In the first stage, we propose a mixed-integer linear programming (MILP) problem formu-
lation to minimize the energy dissipation of a cell balancing process. We exploit the fact
that only the number of charge transfer cycles between each feasible pair of cells have an
impact on the energy dissipation, while the exact order in which the charge transfers are
performed does not influence the energy dissipation. The output of this first stage will iden-
tify the energy-optimal charge transfer pairs πi,js and the corresponding number of cycles
ci,js for which these pairs must perform charge transfer.

– We show that the schedule synthesis in the second stage can be formulated as a minimum
vertex coloring (MVC) problem. Here, each charge transfer cycle of a selected pair of cells
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forms a node in a conflict graph and if an edge connects two nodes then the corresponding
two charge transfer cycles cannot be schedule in one slot. Hence, the minimum number of
colors required to color all vertices in the conflict graph is equal to the minimum number
of time slots necessary for charge equalization.

• We prove that the conflict graph constructed in the second stage can represent an interval
graph. Therefore, the conflict graph is also chordal as mentioned in Section 2.4.5. By exploit-
ing specific properties of interval graphs and chordal graphs, we derive an expression for the
minimum schedule length in terms of the number of cycles each pair must transfer charge,
which is also equivalent to the overall balancing time. Now, we use the derived expression
for the overall balancing time as the optimization objective in the MILP problem of the first
stage. Hence, we can solve the MILP to directly minimize the balancing time.

• Given that the conflict graph is chordal, we can apply lexicographic breadth first search
(Lex-BFS) and greedy vertex coloring algorithms to color the vertices of the graph using
minimum number of colors. We propose a memory- and time-efficient implementation of
these algorithms to solve the scheduling problem in the second stage for optimizing energy
dissipation and balancing time respectively. Here, we exploit the fact that two nodes repre-
senting two charge transfer cycles of the same charge transfer pair will always be in the same
clique of the conflict graph.

• Experiments show that compared to state-of-the-art approaches, our proposed optimization
can reduce the energy dissipation by up to 78.6 Wh (i.e., from 211.61 Wh to 133.01 Wh),
when the energy dissipation is considered as the optimization objective. On the other hand,
when we optimize for the balancing time, we can improve it by up 6.22 h (i.e., from 11.04 h
to 4.82 h) compared to existing heuristics.

Chapter organization: The rest of this chapter is organized as follows. In Section 6.2, we
mathematically model the constraints for charge equalization considering the details of the un-
derlying charge transfer circuit architectures. Section 6.3 describes the proposed two-stage opti-
mization framework for minimizing the energy dissipation, where in the first stage, the optimal
charge transfers are obtained that minimize the energy dissipation, while in the second stage, the
obtained charge transfers are scheduled. Section 6.4 shows that the same two-stage framework
can also be used for minimizing the balancing time. In particular, first a model is derived for
the balancing time exploiting concepts of graph theory, and subsequently, it is explained how
this model can be used in the first stage of the optimization to determine the optimal charge
transfers that minimize the balancing time. Section 6.5 illustrates the customized implementa-
tion of the Lex-BFS and the greedy vertex coloring algorithms respectively exploiting specific
characteristics of the scheduling problem in the second stage. Section 6.7 mentions the related
works and Section 6.8 provides the concluding remarks.

6.2 Constraint Formulation for Charge Equalization
In this section, we mathematically model the constraints imposed by the neighbor and the non-
neighbor charge transfer circuits on the charge equalization process. The charge transfer process
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between a pair of cells using these circuits is described in Section 2.3.1, while the corresponding
mathematical models are provided in Section 2.3.2. The constraints derived in this section can
also be extended for other charge transfer circuit architectures depending on their charge transfer
patterns.

6.2.1 Feasible Pairs of Cells for Charge Transfer
Let us consider a battery pack B comprising NB series-connected cells. These cells are denoted
as {B1,B2, · · · ,BNB} in the order of their serial electrical connection in the pack. Constrained
by the voltage rating of the switches used in the balancing architecture, there can be a maximum
d̂ number of cells in between a charge transfer pair of cells. For example, when B1 transfers
charge to B4 in Figure 2.6c, then M1

T needs to withstand an approximate terminal voltage of
V1 +V2 +V3. Thus, switches with higher rating (higher cost) will be required to increase d̂. For
neighbor-only balancing architecture, d̂ = 0. Corresponding to d̂, a cell Bi can be paired with
any cell belonging to the list Pi, where:

Pi = {Bj |j 6= i ∧ max(i− d̂− 1, 1) ≤ j ≤ min(i+ d̂+ 1, NB)}. (6.1)

The set of all feasible charge transfer pairs can be written as:

CT =
{
πi,j|(Bi,Bj) ∈

NB⋃
i=1

{Bi} × Pi
}
. (6.2)

Note that A × B implies Cartesian product between two sets A and B. Here, πi,j denote an
ordered pair of cells Bi and Bj where Bi is the source cell and Bj is the destination cell. Here,
for two cells Ba and Bb (where, 0 < |a − b| ≤ d̂ + 1), Ba can transfer charge to Bb or Bb can
transfer charge to Ba, i.e., πa,b, πb,a ∈ CT . Thus, we do not fix the source and destination cells
during modeling and let the solver take the decision based on the optimization problem.

6.2.2 Charge Transfer Cycles
Typically, the voltage of a Li-ion cell changes negligibly throughout the operating re-
gion [83, 84]. Moreover, cell balancing typically takes place when the charge levels of the
cells are within a very short spectrum. Therefore, the cell voltage can be assumed to remain
constant during charge equalization. The assumption of a constant voltage leads to a negligible
error (less than 0.5%) in estimating the energy dissipation and the time duration for a charge
equalization session.

As discussed in Section 2.3, the charge transfer occurs in cycles. Assuming that the cell
voltages remain constant during the whole balancing process, the charge transmitted Qtx(i, j)
by the source cell Bi and the charge received Qrx(j, i) by the destination cell Bj , in one cycle,
are constants, according to Eq. (2.48) and Eq. (2.53) respectively. Now, for πi,j ∈ CT , let ci,j
be the number of cycles Bi transfers charge to Bj in an entire balancing session. In these ci,j
cycles, the charge transmitted Q−i,j by Bi and the charge received Q+

j,i by Bj are given by:

Q−i,j = Qtx(i, j) · ci,j and Q+
j,i = Qrx(j, i) · ci,j. (6.3)
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Therefore, the total charge (QT
i ) transmitted by Bi and total charge (QR

i ) received by Bi during
the charge equalization process can be written as:

QT
i =

∑
Bj∈Pi

Q−i,j =
∑
Bj∈Pi

Qtx(i, j) · ci,j, (6.4)

QR
i =

∑
Bj∈Pi

Q+
i,j =

∑
Bj∈Pi

Qrx(i, j) · cj,i. (6.5)

Note that ci,j denotes the number of cycles Bi transfers charge to Bj while cj,i is the number
of cycles Bi receives charge from Bj . As mentioned earlier, we do not fix the role of a cell in
charge transfer while modeling the constraints.

For each cycle of charge transfer from Bi to Bj , there is a certain amount of energy dissipa-
tion. Let Vi and Vj be the cell voltages of Bi and Bj respectively. Then, the energy transferred
from Bi and the energy received by Bj are respectively given by:

Etx(i, j) = Qtx(i, j) · Vi and Erx(j, i) = Qrx(j, i) · Vj. (6.6)

Thus, the energy dissipated per cycle E∆(i, j) as heat in the parasitic resistances of the circuit
components is:

E∆(i, j) = Etx(i, j)− Erx(j, i) = Qtx(i, j) · Vi −Qrx(j, i) · Vj. (6.7)

Here, E∆(i, j) is also a constant for our assumption of constant cell voltage. For ci,j cycles of
charge transfer from Bi to Bj , the energy dissipation Ei,j is:

Ei,j = E∆(i, j) · ci,j. (6.8)

Note that this value is independent of the exact schedule for these ci,j cycles.
We assume that the operation frequency of the charge transfer circuit is constant. That is,

the duration of a charge transfer cycle is independent of the pair of cells involved in the transfer
and is a constant TC . Thus, ci,j cycles of charge transfer between a pair πi,j will require ci,j ·TC
time units.

6.2.3 Balanced Battery Pack
It must be ensured that the charge transfers must lead to a balanced battery pack. Here, we
formulate two sets of constraints to ensure that all the cells in the battery pack must have their
charge levels within a certain range after charge equalization. These constraints are explained
as follows.

(i) The first set of constraints considers that the change in charge levels of a cell is equal to
the difference in the amounts of charge received and the amounts of charge transmitted by the
cell. LetQi,s andQi,f be the initial and final charge levels of a cell. The total charge transmitted
(QT

i ) and received (QR
i ) by a cell are given by Eq. (6.4) and Eq. (6.5) respectively. Thus, the

constraints can be written as follows:

∀Bi ∈ B, Qi,f −Qi,s = QR
i −QT

i =
∑
Bj∈Pi

Qrx(i, j) · cj,i −Qtx(i, j) · ci,j. (C1)
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Here, the summation over Pi ensures that a cell can perform a charge transfer only within a
certain distance d̂, according to Eq. (6.1). The variables ci,js will ensure that if a transmitting
cell loses charge then a receiving cell will gain charge according to Eq. (6.3).

(ii) The second set of constraints considers that the final charge levels of the cells are within
a certain threshold Qth. In other words, the difference between the charge levels of any two
cells in the battery pack must be less than or equal to Qth. These constraints can be formulated
as follows:

∀Bi, Bj ∈ B, −Qth ≤ Qi,f −Qj,f ≤ Qth. (C2)

Note that in Eq. (C1) and Eq. (C2), the only variables are the final charge levelsQi,fs and the
number of charge transfer cycles between all feasible pairs of cells ci,js. Qi,fs are continuous
while ci,js are integer variables. Also, note that both constraints are linear.

6.3 Minimizing Energy Dissipation

In this section, we describe the proposed two-stage optimization to determine a charge transfer
schedule that minimize the energy dissipation for cell balancing. In the first stage, we formulate
an MILP problem to determine the optimal charge transfers that minimize energy dissipation
and guarantee charge equalization. In the second stage, we formulate an MVC problem to
schedule the obtained charge transfers from the first stage in minimum time.

6.3.1 Stage 1: Determining Optimal Charge Transfers

The energy dissipated Ei,j during charge transfer in a cell balancing session between a pair πi,j
is given by Eq. (6.8). Thus, the total energy dissipationED during a charge equalization process
is the summation of all the individual losses as follows:

ED =
∑

πi,j∈CT

Ei,j =
∑

πi,j∈CT

E∆(i, j) · ci,j. (C3)

Here, ED is a linear function of ci,js. Note that ED is independent of the exact schedule of ci,j
cycles of charge transfer between the pair πi,j . Furthermore, in Section 6.2.3, we have derived
two sets of linear constraints, i.e., Eq. (C1) and Eq. (C2), for charge equalization. Both sets of
constraints are independent of the order of charge transfers and depend only on the number of
cycles each feasible pair of cells performs charge transfer. Thus, we can formulate an MILP to
minimize the energy dissipation while ensuring charge equalization using the variables Qi,fs,
ci,js and ED, which can be written as:

Minimize ED, s.t. (C1), (C2), (C3). (OPT-ED)

Solving the MILP problem will determine the minimum possible energy dissipation. The
solution will also give the number of cycles each feasible pair of cells must be involved in
charge transfer so that the minimum energy dissipation is achieved.
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6.3.2 Stage 2: Scheduling Charge Transfers
In addition to the energy dissipation, minimizing the time taken for equalizing the charge levels
of the cells is an important objective for cell balancing. Therefore, it is desirable to optimally
schedule the charge transfer pairs of cells obtained from Stage 1. Towards this, in this section,
we will first formulate the concurrency constraints for charge transfers as enforced by the cell
balancing architectures. Subsequently, based on the derived concurrency constraints, we show
that the schedule optimization problem can be formulated as an MVC problem. Note that we
discuss the method to solve the MVC problem thus formulated in Section 6.5.

6.3.2.1 Concurrent Charge Transfers

For the neighbor and non-neighbor cell balancing architectures under study, concurrent charge
transfers are allowed, however, with certain restrictions. For example, in a battery pack of four
cells connected in series as {B1,B2,B3,B4}, there can be simultaneous charge transfers between
the pairs π1,2 and π3,4. Conversely, the pairs π1,2 and π3,2 cannot exchange charge at the same
time. For non-neighbor architecture, π1,4 and π3,2 cannot be scheduled together, although the
pairs do not have a common cell.

We must consider concurrency constraints to ensure that two pairs of cells do not use the
same circuit path for charge transfer concurrently as this would lead to a short circuit condition.
Thus, when Bi and Bj exchange charge, then no cell in between them can be involved in charge
transfer simultaneously. Moreover, Bi and Bj cannot be paired with any other cell for charge
transfer at the same time. Thus, when πi,j ∈ CT is scheduled for charge transfer, the set of cells
that are blocked and, therefore, unavailable to be simultaneously paired for additional charge
transfers can be written as follows:

Ui,j = {Bk ∈ B|min (i, j) ≤ k ≤ max (i, j)}. (6.9)

For example, when π5,9 ∈ CT is scheduled, then U5,9 = {B5,B6,B7,B8,B9} is the set of cells
that cannot appear in any other pair scheduled concurrently.

Now, we can identify the pairs of cells that have scheduling conflict with each other. We can
construct a conflict graph G showing all scheduling conflicts. G is an undirected graph where
each vertex represents a feasible charge transfer pair and an edge between two vertices denote
a scheduling conflict. The set of vertices in G is, therefore, equal to the set of feasible charge
transfer pairs (CT ). An edge exists between two vertices representing the pairs πa,b and πc,d
respectively, if they are not simultaneously schedulable. Such an edge can be denoted as an
unordered set consisting two pairs, i.e., {πa,b, πc,d} ∈ EG, where EG is the set of edges in G.
Thus, we can identify the edges as follows:

Ua,b ∩ Uc,d 6= ∅ ⇐⇒ {πa,b, πc,d} ∈ EG. (6.10)

Example: Figure 6.2 shows an example conflict graph G for a battery pack with 4 cells in series.
For this graph, d̂ = 0 is considered for better readability. There are 6 vertices corresponding to
6 feasible charge transfer pairs of cells. Here, Ui,js can be determined as follows:

U1,2 = U2,1 ={B1,B2}, U2,3 = U3,2 = {B2,B3},
U3,4 = U4,3 = {B3,B4}.
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Figure 6.2: An example conflict graph for a battery pack with four cells having a neighbor-
only balancing architecture. Each vertex represents a feasible charge transfer pair and an edge
between two vertices imply that the corresponding two pairs are not simultaneously schedulable.

We can find all pairs of unconnected vertices as follows:

U1,2 ∩ U3,4 = U2,1 ∩ U3,4 = U1,2 ∩ U4,3 = U2,1 ∩ U4,3 = ∅
⇐⇒ {π1,2, π3,4}, {π2,1, π3,4}, {π1,2, π4,3}, {π2,1, π4,3} /∈ EG.

All other pairs of vertices are connected by edges as shown in Figure 6.2.

6.3.2.2 Equivalent Vertex Coloring Problem for Schedule Synthesis

As mentioned in Section 6.3.1, we obtain the number of charge transfer cycles ci,j for each
feasible pair of cells πi,j ∈ CT from Stage 1. We can annotate the conflict graph G, representing
the concurrency constraints, with these values. Thus, a vertex representing a pair of cells πi,j ∈
CT is annotated with the number of cycles of charge transfer ci,j they must be scheduled for.
For the example of four series-connected cells in Figure 6.2, let us assume that:

c1,2 = 2, c2,1 = 0, c2,3 = 0, c3,2 = 1, c3,4 = 2, c4,3 = 0.

The annotated conflict graph for this example is shown in Figure 6.3(a).
Now, we can reduce the conflict graph by deleting the vertices with ci,j = 0, as shown

in Figure 6.3(b). We denote the reduced conflict graph as Gr. This is possible because the
corresponding pairs of cells have no scheduling requirement, and therefore, it is not required to
consider concurrency constraints involving them.

Furthermore, we expand the reduced conflict graph Gr, as shown in Figure 6.3(c), such that
each vertex represents one charge transfer cycle of a pair of cells (with non-zero requirement).
Thus, this graph not only contains information on the concurrency constraints but also represent
the scheduling requirements. This detailed graph is denoted as Gd. Let πi,j ∈ CT be a charge
transfer pair with ci,j = ζ > 0. A vertex representing this pair is now expanded into ζ number
of vertices as {π1

i,j, π
2
i,j, · · · , π

ζ
i,j}.

Now, two vertices representing charge transfer cycles of the same pair will have an edge
between them, i.e., πpa,b and πqa,b will be connected by an edge. This is because these two charge
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Figure 6.3: Charge transfer schedule synthesis using the minimum vertex coloring (MVC).
(a) Annotating the conflict graph with scheduling requirements. (b) Deleting cells pairs with
zero requirement. (c) Adding vertex corresponding to each required charge transfer cycle.
(d) Synthesizing schedule by optimally coloring the vertices.

transfer cycles cannot be executed in parallel and thus have a scheduling conflict. Note that
both πpa,b and πqa,b block the same set of cells, i.e., Ua,b, according to Eq. (6.9). Therefore, the
intersection set, Ua,b ∩ Ua,b = Ua,b, is not empty, and it follows from Eq. (6.10) that these two
vertices must have an edge in between. Two vertices representing charge transfer cycles of
different pairs will have an edge only if the pairs have a scheduling conflict. That is, there is an
edge between πpa,b and πqc,d if and only if {πa,b, πc,d} ∈ EG in G.

As defined in Section 2.4.5, vertex coloring is the process of assigning a color to each vertex
of a graph such that no two vertices connected by an edge have the same color. The schedule
synthesis problem can be formulated as a minimum vertex coloring of the conflict graph Gd
using the following theorem.

Theorem 1. If the vertices of Gd can be colored with a minimum ofNG colors then the minimum
time T ∗Φ required for scheduling all the charge transfer cycles represented in Gd is given by

T ∗Φ = NG · TC , (6.11)
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where, TC is the duration of a charge transfer cycle determined by the operation frequency of
the charge transfer circuit, and it is a constant.

Proof. Let us consider that a charge transfer schedule Φ is composed of equal-sized time slots
{φ1, φ2, · · · , φk, · · · }. Here, each slot is of length equal to TC . Each charge transfer cycle
fits into one slot and several of them can share a slot if they are simultaneously schedulable.
Synthesizing a schedule that minimizes the balancing time boils down to determining a mapping
of charge transfer cycles to slots such that the minimum number of slots are used.

Now, let us label colors as {ω1, ω2, · · · , ωk, · · · } and use them to color the vertices of the
graph Gd respecting the rule that two vertices sharing an edge cannot be assigned the same
color. In Gd, there is a vertex corresponding to each charge transfer cycle and there exists
an edge between two vertices only when the corresponding two charge transfer cycles are not
simultaneously schedulable. Thus, we can derive a schedule from the colored graph where the
charge transfer cycles corresponding to the vertices colored using ωk can be mapped to the slot
φk. Now, if NG is the minimum number of colors used to color all vertices in the graph then
it is possible to schedule all charge transfer cycles in NG slots. The corresponding balancing
time is given by NG · TC as TC is the duration of each slot. Thus, the scheduling problem is
equivalent to coloring the vertices in Gd with the minimum number of colors. �

Example: Figure 6.3(d) shows that three colors are required to color all five vertices in the
graph Gd. The total time required to schedule five charge transfer cycles is 3TC instead of 5TC .
Thus, 2TC time units could be saved by allowing concurrent charge transfers as compared to a
sequential schedule, where the charge transfer pairs are scheduled one after the other.

6.4 Minimizing Balancing Time
In the previous section, the two-stage optimization problem formulation can only guarantee
minimum energy dissipation. In this section, we will show how a similar framework can also
be used to minimize the balancing time. However, balancing time will depend on the exact
schedule of the charge transfers. Therefore, we will exploit the characteristics of the MVC
problem formulated in the second stage of the optimization to derive a model for the balancing
time in terms of ci,js (i.e., the number of cycles for which each feasible pair of cells performs
charge transfer). Using the derived model, we will formulate an MILP problem in the first stage
to minimize the balancing time. Solving this MILP, we will obtain the values of ci,js that can
guarantee minimum balancing time.

6.4.1 Modeling Balancing Time
In Section 6.3.2.2, we have formulated an MVC problem to determine the minimum-length
charge transfer schedule for given values of ci,js. Here, we will show that it is possible to opti-
mally solve the MVC problem in linear time for the detailed conflict graph Gd that is constructed
based on the scheduling requirements of the feasible charge transfer pairs and the concurrency
constraints between these pairs. In particular, we show that Gd can represent an interval graph
equivalently. Considering that interval graphs are chordal, Gd is a chordal graph. Therefore,
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MVC of Gd is possible in linear time using Lex-BFS and greedy vertex coloring in subsequent
steps respectively (as described in Section 2.4.5). Furthermore, we exploit the characteristics of
interval graphs, as described in Section 2.4.5, to derive an expression for the minimum number
of colors required to color Gd, which is also equivalent to the balancing time, as per Theorem 1.

6.4.1.1 Proof of Chordality

A graph is called chordal if every induced cycle in it, with four or more vertices, has at least
one chord. Interval graphs are chordal, where each vertex represents an interval on a real line
and there is an edge between two vertices if the corresponding two intervals overlap. Chordal
graphs and interval graphs are explained with examples in Section 2.4.5. Here, we prove that
the conflict graph Gd, as derived in Sec. 6.3.2.2, is a chordal graph from the definition of interval
graphs using Lemma 1.

Lemma 1. Gd can represent an interval graph.

Proof. We prove the lemma by defining an interval Iri,j for each vertex πri,j in Gd as follows:

min(i, j)− ε < Iri,j < max(i, j) + ε. (6.12)

Here, ε is a constant positive real number and ε < 0.5. Without loss of generality, we have
assumed here open intervals as seen in Eq. (6.12), i.e., the intervals do not include the endpoints.

From the definitions of Ui,j and Iri,j in Eq. (6.9) and Eq. (6.12) respectively, it can be ob-
served that the integers contained in an interval Iri,j correspond to the indices of the cells in Ui,j .
As ε < 0.5, two intervals Ipa,b and Iqc,d will overlap if and only if Ua,b and Uc,d have a non-empty
intersection set. This can be written as:

Ipa,b ∩ I
q
c,d 6= ∅ ⇐⇒ Ua,b ∩ Uc,d 6= ∅. (6.13)

Now, from Eq. (6.10) and Eq. (6.13), we can say that two vertices πpa,b and πqc,d share an edge if
and only if the corresponding two intervals overlap, i.e., Ipa,b ∩ I

q
c,d 6= ∅. Hence, it is proved that

the graph Gd can represent an interval graph where the intervals are given by Eq. (6.12). �

Example: Let us assume ε = 0.1. For a vertex representing the charge transfer cycle π2
4,7,

I2
4,7 ∈ ]3.9, 7.1[ and U4,7 = {B4,B5,B6,B7}. Thus, the only integers in I2

4,7 are {4, 5, 6, 7}
which are also the indices of the cells in U4,7. In Figure 6.3(c), π1

3,2 and π1
3,4 represent charge

transfer cycles of different pairs and they are connected by an edge. In this case, I1
3,2 ∈ ]1.9, 3.1[

and I1
3,4 ∈ ]2.9, 4.1[ where I1

3,2 ∩ I1
3,4 = ]2.9, 3.1[ 6= ∅. Similarly, π1

1,2 and π2
1,2 are charge

transfer cycles of the same pair of cells and there is an edge between them. For these two
vertices, I1

1,2, I
2
1,2 ∈ ]0.9, 2.1[ and I1

1,2 ∩ I2
1,2 = ]0.9, 2.1[ 6= ∅. However, as I1

1,2 = ]0.9, 2.1[,
I1

3,4 ∈ ]2.9, 4.1[ and I1
1,2 ∩ I1

3,4 = ∅, the vertices corresponding to the charge transfer cycles π1
1,2

and π1
3,4 are not connected by an edge.

6.4.1.2 Identifying Maximal Cliques

As stated in Section 2.4.5, for a chordal graph, the minimum number of colors required to color
all the vertices in the graph is given by the cardinality of the clique with the maximum number
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of vertices. A clique consists of a subset of vertices in a graph where each vertex has an edge
with every other vertices. Now, a maximal clique is a clique to which no further vertices can
be added to form another clique. One or more of the maximal cliques consist of the maximum
number of vertices among all cliques in a conflict graph, and hence, determine the minimum
colors required to color the vertices of the graph. More details on cliques and maximal cliques
have been provided in Section 2.4.5.
Example: In Figure 6.3(c), there are two maximal cliques in Gd: (i) {π1

1,2, π
2
1,2, π

1
3,2} and

(ii) {π1
3,2, π

1
3,4, π

2
3,4}. Both maximal cliques have three vertices, and thus, we require three dif-

ferent colors to color all vertices in Gd, as shown in Figure 6.3(d).

Sets of conflicting pairs of cells: Let us denote a set of pairs of cells with non-zero charge
transfer cycles as CT + which is given by:

CT + = {πi,j ∈ CT |i, j > 0}. (6.14)

We define a set of conflicting pairs of cells CPk as follows:

CPk = {πi,j ∈ CT +|Bk ∈ Ui,j}. (6.15)

According to Eq. (6.10), two pairs πa,b, πc,d ∈ CPk cannot be scheduled concurrently as
the intersection set, given by Ua,b ∩ Uc,d, is not empty and has at least the cell Bk. All
charge transfer cycles of the pairs of cells in CPk are conflicting to each other, and there-
fore, they form a clique clk in Gd. We can therefore determine a set of these sets of conflict-
ing pairs as SCP = {CP1, CP2, · · · , CPNB}, corresponding to which we get a set of cliques
Sc = {cl1, cl2, · · · , clN}. Note that NB is the total number of cells in the battery pack. Towards
determining the maximum clique using these sets, we can derive the following Lemma.

Lemma 2. All the maximal cliques in Gd are in Sc.

Proof. We exploit the theorem given in [192] to identify all the maximal cliques in an interval
graph. This theorem is also described in Section 2.4.5 with examples. Using the theorem, we
can prove this lemma as follows:

– According to Lemma 1, Gd is an interval graph. From the sorted endpoints of all the vertices
in Gd, we consider two consecutive endpoints where a left endpoint es is followed by a right
endpoint es+1. According to Eq. (6.12), we can write, es = K − ε and es+1 = L + ε. Here
K,L ∈ Z+ as K and L are the indices of the cells involved in charge transfer. As ε < 0.5, we
can deduce,

es < es+1

=⇒K − ε < L+ ε [∵ from definition in Eq. (6.12)]
=⇒K < L+ 2 · ε
=⇒K ≤ L [∵ (2 · ε < 1) ∧ (K,L ∈ Z+)].

We can further write 1 ≤ K ≤ L ≤ NB as K and L are indices of the cells in the pack.

– As K − ε < K ≤ L < L + ε, the interval ]K − ε, L+ ε[ must contain the integer K. Thus,
if ]K − ε, L+ ε[ ∈ Iri,j then K ∈ Iri,j .
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1 2 3 4

(a) (b)
Figure 6.4: Maximal cliques in an interval graph. (a) Five intervals corresponding to the five
vertices in Figure 6.3c. The intervals I1

1,2, I2
1,2 and I1

3,2 overlap and the intervals I1
3,2, I1

3,4 and I2
3,4

overlap. (b) Two maximal cliques formed by {π1
1,2, π

2
1,2, π

1
3,2} and {π1

3,2, π
1
3,4, π

2
3,4} respectively.

– As es and es+1 are two consecutive endpoints in the sorted list, there are no other endpoints
in between them. Thus, all intervals that contain K will also contain ]K − ε, L+ ε[.

– From Eq. (6.9) and Eq. (6.12), we can say that if K ∈ Iri,j then BK ∈ Ui,j .

– According to Eq. (6.15), each pair of cells πi,j ∈ CPK will have BK ∈ Ui,j . Thus, the
maximal clique formed by the intervals that cover ]K − ε, L+ ε[ is equivalent to the clique
cK formed by the charge transfer cycles of the conflicting pairs of cells in CPK .

Thus, the maximal clique formed corresponding to the interval ]es, es+1[ will be in Sc. We
can, therefore, conclude that all the maximal cliques of Gd are in Sc. �

Example: Let us assume ε = 0.1. For the example in Figure 6.3(c), we can sort the endpoints
of the intervals corresponding to the five vertices as follows:

0.9, 0.9, 1.9, 2.1, 2.1, 2.9, 2.9, 3.1, 4.1, 4.1.

The intervals are shown in Figure 6.4(a). Here, 1.9 is a left endpoint and 2.1 is a right endpoint
corresponding to the intervals π1

3,2 and π1
1,2 respectively. Here,K = L = 2 and the open interval

]1.9, 2.1[ contains the integer K = 2. Intervals (I1
1,2, I2

1,2 and I1
3,2) that contain 2 will cover the

interval ]1.9, 2.1[. Now, CP2 = {π1,2, π3,2}. Thus, the maximal clique formed by the pairs in
CP2 is given by c2 = {π1

1,2, π
2
1,2, π

1
3,2}, as shown in Figure 6.4(b). Similarly, corresponding to

the open interval ]2.9, 3.1[ formed by the left endpoint 2.9 and the right endpoint 3.1 of I2
3,4 and

I1
3,2 respectively,K = 3 and CP3 = {π3,2, π3,4}. Charge transfer pairs in CP3 will form a clique
c3 = {π1

3,2, π
1
3,4, π

2
3,4}, as shown in Figure 6.4(b). Both maximal cliques c2 and c3 are in Sc.

Minimum balancing time: Using Theorem 1 and Lemmas 1 and 2, we can derive an expression
for the minimum balancing time T ∗Φ as follows.
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Theorem 2. Given the number of charge transfer cycles required by each feasible pair of cells
for charge equalization, we can determine the minimum time T ∗Φ required to schedule all the
charge transfer cycles as follows:

T ∗Φ = max
ck∈Sc

∑
πi,j∈CPk

ci,j · TC . (6.16)

Proof. From Lemma 1, we can say that Gd is an interval graph and therefore it is chordal. The
minimum number of colors NG required to color Gd is equal to the cardinality of the maximum
clique in Gd. From Lemma 2, we know that all the maximal cliques in Gd are in Sc. The clique
with the maximum cardinality is one of these maximal cliques. Now, let γk be the cardinality of
the clique ck. The cardinality of the maximum clique can therefore can be calculated as follows:

NG = max
ck∈Sc

γk. (6.17)

The clique ck is formed by the charge transfer cycles of the pairs of cells in CPk. Therefore, the
number of vertices in ck is equal to the summation of these charge transfer cycles that can be
written as follows:

γk =
∑

πi,j∈CPk

ci,j. (6.18)

Combining Eq. (6.17) and Eq. (6.18), we get

NG = max
ck∈Sc

∑
πi,j∈CPk

ci,j. (6.19)

From Eq. (6.19), using Theorem 1, we get T ∗Φ (as in Eq. (6.16)). �

Example: For the example in Figure 6.3(c), we can determine the cardinality of the cliques cks
corresponding to the sets of conflicting pairs as follows:

γ1 = c1,2 = 2, γ2 = c1,2 + c3,2 = 3, γ3 = c3,2 + c3,4 = 3, γ4 = c3,4 = 2

Therefore, the minimum number of colors required to color the conflict graph Gd is given by:

NG = max(γ1, γ2, γ3, γ4) = 3.

Both maximal cliques have 3 vertices, i.e., γ2 = γ3 = 3, and therefore, NG = 3 as seen in
Figure 6.4(b).

6.4.2 Stage 1: MILP formulation
Minimizing balancing time: Until now, we have shown how to determine the balancing time
when ci,js are known. Exploiting that, here, we will explain how we can formulate the MILP in
the first stage of the optimization framework considering the balancing time as the minimization
objective. Towards this, we modify Eq. (6.15) as follows:

CPk = {πi,j ∈ CT |Bk ∈ Ui,j}. (6.20)
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Thus, we determine sets of conflicting pairs SCP = {CP1, CP2, · · · , CPN} based on all feasible
cells pairs in CT irrespective of their required charge transfer cycles. This will not change the
clique ck formed by the pairs of cells in CPk because if a pair πi,j ∈ CPk has ci,j = 0 then
there will be no vertices in Gd corresponding to its charge transfer cycles. The cardinality of the
clique, therefore, will not change as can be also observed in Eq. (6.18). That is, if ci,j = 0 then
it will not add to the value of γk. Thus, we can use the expressions in Eq. (6.16) to calculate the
balancing time, even with the modified formulation of CPk in Eq. (6.20).

Now, we want to determine the values of ci,js such that the balancing time T ∗Φ is minimized.
Note that, in Eq. (6.16), T ∗Φ is not a linear function of ci,js. However, γks depend linearly on
ci,js. This is a standard minimax optimization and there exists a technique to formulate a linear
programming model [260]. In order to formulate a linear objective, we need to consider linear
constraints as follows:

∀CPk ∈ SCP ,
∑

πi,j∈CPk

TC · ci,j ≤ T ∗Φ. (C4)

And then we can minimize T ∗Φ.
In summary, the MILP formulation to minimize the balancing time, comprises the variables

Qi,fs, ci,js and T ∗Φ, and can be written as:

Minimize T ∗φ , s.t. (C1), (C2), (C4). (OPT-BT)

Minimizing balancing time with energy constraint: In the formulation in Eq. (OPT-BT),
there is no constraint on energy dissipation. The objectives of balancing time and energy dissi-
pation are often conflicting. That is, to minimize balancing time we might dissipate more heat.
For such cases, it is possible to consider a constraint on energy dissipation while minimizing
balancing time. Let the bound on energy dissipation be denoted as E∗D. The constraint on
energy dissipation can be written as:

ED ≤ E∗D, , (C5)

where, ED is given by Eq. (C3). Thus, the MILP problem to minimize the balancing time with
a budget on the energy dissipation can be formulated as follows:

Minimize T ∗φ , s.t. (C1), (C2), (C3), (C4), (C5). (OPT-EC-BT)

This formulation can also be used to study the variation of balancing time with energy dissi-
pation. To explore such a trade-off, we can increase ED gradually starting from the minimum
energy dissipation and note the minimum balancing time for each value of ED by solving the
MILP in Eq. (OPT-EC-BT).

Minimizing energy dissipation with a deadline on balancing time: The MILP, formulated
in Eq. (OPT-BT), when solved will determine the minimum possible balancing time for a given
initial charge distribution of the battery pack. However, in certain cases, it might be possible to
perform cell balancing for a longer time, especially when the EV is parked for a certain known
duration. In those cases, we might consider a deadline T̂ on the balancing time based on user
feedback and the charge transfer schedule must satisfy the deadline.
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In order to ensure that the balancing time is not more than the deadline, we reformulate the
constraints in Eq. (C4), and replace T ∗Φ by T̂Φ, which is a constant in this case. This can be
written as follows:

∀CPk ∈ SCP ,
∑

πi,j∈CPk

TC · ci,j ≤ T̂Φ. (C6)

This essentially implies that the charge transfer cycles of a set of conflicting pairs of cells
CPk, given by Eq. (6.20), cannot form a clique ck in Gd that has a cardinality greater than T̂Φ

TC
.

Thus, no clique can have more vertices than the number of colors allowed to color the graph,
as determined by T̂Φ

TC
. Note that the set of cliques Sc, corresponding to SCP , contains all the

maximal cliques of the graph Gd.
In addition to the constraint on the balancing time, here we consider to minimize the energy

dissipation during charge equalization. In summary, we can formulate an MILP to minimize
the energy dissipation with a deadline for the balancing time using the variables Qi,fs, ci,js and
ED, which can be written as follows:

Minimize ED, s.t. (C1), (C2), (C3), (C6). (OPT-DL-ED)

6.5 Efficient Implementation of Minimum Vertex Coloring
By solving the MILP problems in Eq. (OPT-ED), Eq. (OPT-BT), Eq. (OPT-EC-BT) and
Eq. (OPT-DL-ED), we obtain certain values of ci,js. Corresponding to these values, there is
an expected balancing time that can be calculated using Eq. 6.16. In Section 6.4.1, we have
derived this expression for balancing time considering that a set of charge transfer cycles ci,js
can be scheduled in minimum time using the minimum vertex coloring algorithm for chordal
graphs.

As discussed in Section 2.4.5, vertices of a chordal graph can be colored using the minimum
number of colors in two steps. First, a perfect elimination ordering of the vertices (PEOV) of
the graph is identified using the lexicographic breadth first search (Lex-BFS) algorithm given in
Algorithm 1. In the second step, the greedy vertex coloring algorithm is applied backwards to
the obtained PEOV. Here, considering that the colors are numbered as {1, 2, · · · }, each vertex
vk is assigned a minimum numbered color that is not used by any of the vertices with which vk
shares an edge.

For a realistic cell balancing scenario, the total number of charge transfer cycles required
for charge equalization is in the order of 108 to 109. The conflict graph Gd, as defined in Sec-
tion 6.3.2.2, will, therefore, have hundreds of millions of vertices. Applying Lex-BFS and the
greedy vertex coloring algorithms on such a huge set of vertices can be cumbersome in terms
of memory management and execution. In this section, we propose an efficient implementation
of the algorithms using the reduced conflict graph Gr (defined in Section 6.3.2.2).

The proposed implementation of minimum vertex coloring: In Gr, each vertex represents a
pair of cells πi,j ∈ CT + and an edge between two vertices determines that the corresponding
two pairs cannot be scheduled simultaneously. Gd is expanded from Gr where each vertex is a
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charge transfer cycle πri,j (3 1 ≤ r ≤ ci,j) of a pair of cells πi,j ∈ CT +. If two charge transfer
cycles cannot be mapped onto the same slot then there is an edge between the corresponding
two vertices in Gd. Note that Gr is chordal which can be proved in a similar way as Lemma 1.
Exploiting the relation between Gr and Gd, we can deduce the following theorem.

Theorem 3. If Or = (πa,b, · · · , πk,l, · · · , πy,z) is a PEOV for Gr, then Od = ({πra,b|1 ≤ r ≤
ca,b}, · · · , {πrk,l|1 ≤ r ≤ ck,l}, · · · , {πry,z|1 ≤ r ≤ cy,z}) is a PEOV for Gd. That is, all the
vertices corresponding to the charge transfer cycles of a pair are placed consecutively in Od
while keeping the relative ordering between the pairs same as in Or.

Proof. CT +, as obtained using Eq. (6.14), is a subset of CT and comprises the pairs of
cells where each pair requires non-zero charge transfer cycles. Each vertex in Gr represents
a cell pair in CT +. Corresponding to Gr, there is an equivalent subgraph (G1

d) in Gd con-
sisting of one charge transfer cycle of each pair in CT +. Here, the charge transfer cycle
π1
i,j in G1

d corresponds to πi,j in Gr. Now, if (πa,b, πc,d, · · · , πi,j, · · · ) is a PEOV in Gr then
O1
d = (π1

a,b, π
1
c,d, · · · , π1

i,j, · · · ) is a PEOV in G1
d .

Now, if we add one more vertex to G1
d corresponding to the charge transfer cycle π2

c,d, we get
another subgraph of Gd which we denote as G2

d . For G2
d , let us consider an ordering of vertices as

O2
d = (π1

a,b, π
2
c,d, π

1
c,d, · · · , π1

i,j, · · · ), i.e., π2
c,d is placed immediately before π1

c,d while keeping
the relative ordering of other vertices the same as O1

d. Each vertex, π1
i,j following the vertex

π2
c,d in O2

d, is simplicial in the subgraph induced by it and the vertices following it in O2
d. This

is because the induced subgraph remains the same as in case of O1
d and O1

d is a PEOV in G1
d .

Therefore, π1
c,d forms a clique with all its adjacent2 vertices in the subgraph induced by it and

and the vertices following it in O2
d. Now, π1

c,d is adjacent to π2
c,d and all adjacent vertices of π1

c,d

are also adjacent to π2
c,d (from the construction of Gd). This implies that there does not exist any

vertex following π1
c,d in O2

d that is adjacent to π2
c,d but not adjacent to π1

c,d. Thus, π2
c,d joins the

clique formed by π1
c,d and its adjacent vertices in the subgraph induced by it and the vertices

following it in O2
d. This implies that π2

c,d is simplicial in this induced subgraph.
Now, let us consider a vertex π1

a,b preceding π2
c,d in O2

d. π
1
a,b and its adjacent vertices form a

clique in the subgraph induced by it and the vertices following it in O1
d as O1

d is a PEOV in G1
d .

If π1
c,d is not an adjacent vertex of π1

a,b then π2
c,d also cannot be adjacent to π1

a,b. Therefore, the
same clique will be formed, as in case of O1

d, in the subgraph induced by π1
a,b and the vertices

following it in O2
d. On the other hand, if π1

c,d is a vertex in the clique formed by π1
a,b and the

vertices following it in O1
d, then π2

c,d will join the clique. This is because each adjacent vertex
of π1

c,d is also adjacent to π2
c,d. Thus, π1

a,b remains simplicial in the induced subgraph formed by
it and the vertices following it in O2

d.
We can add charge transfer cycles of πc,d one after the other to form a new subgraph of

Gd and place it in in the ordered set immediately before the last charge transfer cycle of πc,d.
That is, if πkc,d is added to form a subgraph Gkd then it is placed immediately before πk−1

c,d in the
new ordered set of vertices Okd . Okd is a PEOV in Gkd using the same philosophy as explained
above. Similarly, we can add the charge transfer cycles of all charge transfer pairs of cells in
CT + consecutive to each other to form a PEOV in Gd. Given the PEOV Or in Gr we can derive
the PEOV Od in Gd by placing the charge transfer cycles of each pair consecutively while

2Two vertices are adjacent to each other if they are connected by an edge.
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preserving the relative ordering of pairs from Or. Therefore, Od = (π
ca,b
a,b , · · · , π1

a,b, π
cc,d
c,d , · · · ,

π1
c,d, · · · , π

ci,j
i,j , · · · , π1

i,j, · · · , π
cy,z
y,z , · · · , π1

y,z). Hence, proved. �

According to Theorem 3, we can, therefore, first apply the Lex-BFS algorithm (i.e., Algo-
rithm 1) to determine a PEOV (Or) in Gr. Then, we apply the adapted greedy heuristic for
vertex coloring, as outlined in Algorithm 7. The main adaptation is that we assign ranges of
colors to a vertex in Gr in each iteration instead of assigning a color to each vertex in Gd. This
is possible because we know from Theorem 3 that, a PEOV for Gd will have the vertices corre-
sponding to the charge transfer cycles of a pair of cells in succession, while keeping the relative
ordering of pairs same as Or.

Algorithm 7: Greedy vertex coloring algorithm.
Input : ci,js, Or
Output : Ω

1 Ω = NULL;
2 for k ← 1 to

∣∣Or∣∣ do
3 πa,b = Or[k];
4 σ = NULL;
5 for m← 1 to k − 1 do
6 πc,d = Or[m];
7 if Ua,b ∩ Uc,d 6= ∅ then
8 σ.Append(Ω[m]);
9 end

10 end
11 σord = SortAscending( σ );
12 Ω[k] = FindFirstAvailableSlots(σord, ca,b);
13 end

As the greedy vertex coloring algorithm is applied backwards to the PEOV, we take as input
Or, that is the reverse ordering of the vertices in Or. The number of required charge transfer
cycles ci,j for each pair of cells πi,j ∈ CT + is also taken as input. The output is the mapping σ
where, the k-th pair inOr is mapped to the ranges of slots numbers in σ[k], that the pair can use
for charge transfer. In line 1, σ is initialized as an empty set. Now, we iterate in order through
each pair in Or, and in each iteration, we assign the lowest numbered slots to the current pair,
that are not already mapped to any conflicting pair preceding it (lines 2 to 13).

We get the current pair from Or as πa,b (line 3). We use σ to store the ranges of slots that
cannot be assigned to πa,b, and it is initialized as an empty set (line 4). Now, each pair of
cells, with allocated slots, is traversed one by one (lines 5 to 10). In line 6, we take a pair πc,d
that is preceding πa,b in Or. If πc,d has a scheduling conflict with the current pair πa,b then
the ranges of slots used by πc,d are appended to σ (lines 7 to 9). The ranges of unusable slots
are then arranged in ascending order and stored in σord (line 11). Note that the ranges cannot
be overlapping, because all the preceding vertices that are adjacent to πa,b form a clique and
therefore are conflicting to each other. This is because Or is a PEOV for Gr. In line 12, we
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search for a set of contiguous slot numbers that can be assigned to πa,b, avoiding the ranges of
slot numbers in σord, such that the assigned slots add up to ca,b.

At the end of Algorithm 7, we obtain for each pair of cells, with non-zero requirement of
charge transfer cycles, the time slots where it must be scheduled. Or in other words, we know
the set of pairs that must be scheduled in a time slot. The BMS can take this information and
schedule charge transfers accordingly for the battery pack to achieve charge equalization.

6.6 Experimental Results
In this section, we compare our proposed optimization approach to a state-of-the-art heuristic
with respect to balancing time and energy dissipation. We also compare the performances of
different charge transfer circuit architectures that are studied in this thesis. We further study the
impact of the balancing range, peak balancing current and balancing threshold on the charge
equalization process.

Simulation setup: We use a realistic EV battery pack of capacity 21.6 kWh for our case study.
This battery pack is obtained by connecting 96 series-connected modules, where each module
is made of 24 parallel-connected SAMSUNG INR 18650-25R Li-Ion cells that have a nominal
capacity of 2.5 Ah. For this pack, we synthesize different balancing scenarios by generating 60
random initial charge distributions. We takemn ∈ {30, 50, 70}% and sd ∈ {1, 2, 3, 4}%, where
for each combination of mn and sd, five different initial charge distributions are randomly
generated with mean mn and standard deviation sd. We consider Qth = 300 C, i.e., balancing
is performed till the charge levels of the cells are within a range of 300 C.

For active cell balancing architectures, commercially available inductors, transformers and
MOSFETs are used for our simulations. Accordingly, architectural parameters are:[

RB RL RM

L Ipeak d̂

]
=

[
1
24

22.5mΩ 12 mΩ 8.5 mΩ

10 µH 12 A 6

]
.

We consider both neighbor-only (NO) and non-neighbor (NN) balancing architectures respec-
tively for each balancing scenario.

Balancing algorithms: We use the proposed optimization framework to develop four Pareto-
optimal schedulers as follows:

• In the MIN-ED algorithm, we first minimize the energy dissipation for a charge equalization
session using Eq. (OPT-ED). We consider the obtained minima as an upper bound to the
energy dissipation and correspondingly, minimize the balancing time using Eq. (OPT-EC-BT)
to obtain a Pareto-optimal set of charge transfers that can be scheduled using the minimum
vertex coloring algorithm. The obtained values of energy dissipation and balancing time are
denoted as ED(1) and T ∗Φ(1) respectively. Note that there does not exist a Pareto-optimal
schedule that will have a balancing time higher than T ∗Φ(1).

• MIN-BT algorithm first minimizes the balancing time using Eq. (OPT-BT). Then, it considers
a time deadline equal to the obtained minima and minimizes the energy dissipation using
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Eq. (OPT-DL-ED) to get a Pareto-optimal result. Here, we denote the energy dissipation and
the balancing time as ED(2) and T ∗Φ(2). Note that a Pareto-optimal charge transfer schedule
cannot result in a higher energy dissipation than ED(2).

• Note that ED(1) and ED(2) are the minimum and the maximum energy dissipation a Pareto-
optimal balancing schedule can offer. In HALF-ED, we take the average of ED(1) and ED(2)
and consider as an upper bound to the energy dissipation to minimize the balancing time using
Eq. (OPT-EC-BT). We consider the obtained balancing time as a deadline and minimize the
energy dissipation using Eq. (OPT-DL-ED) to obtain a Pareto-optimal result. The Pareto-
optimal values of energy dissipation and balancing time are denoted as ED(3) and T ∗Φ(3).

• T ∗Φ(1) and TΦ(2) are the maximum and the minimum balancing time for a Pareto-optimal
solution. In HALF-BT, we take the average of T ∗Φ(1) and T ∗Φ(2) and consider it as an upper
bound to the balancing time while minimizing the energy dissipation using Eq. (OPT-DL-
ED). Then, we consider the obtained minima as an upper bound to the energy dissipation and
minimize the balancing time using Eq. (OPT-EC-BT) to obtain a Pareto-optimal solution. The
values of the energy dissipation and the balancing time, thus obtained, are denoted as ED(4)
and T ∗Φ(4) respectively.

We also study a state-of-the-art balancing algorithm, i.e., HRT, where balancing is per-
formed in fixed time steps, and in each step, a set of charge transfer pairs are iteratively deter-
mined based on a heuristic. In each iteration, HRT [256] identifies the cell with the maximum
charge level among the set of available cells. If the identified cell can feasibly transfer charge
to either side, then it selects the side with the lower average charge as the direction of charge
transfer. If only one direction is feasible then it is automatically selected. However, if no direc-
tion is feasible then the cell is disregarded for subsequent iterations. Now, among the feasible
partner cells in the direction of charge transfer, one with the minimum charge level is selected
for charge transfer. Note that when two cells are paired for charge transfer then the cells in
between them become unavailable to be scheduled in the same time step.

For the two balancing architectures and the five balancing algorithms, there are ten balancing
options as follows: (i) NO-MIN-ED, (ii) NO-MIN-BT, (iii) NO-HALF-ED, (iv) NO-HALF-BT,
(v) NO-HRT, (vi) NN-MIN-ED, (vii) NN-MIN-BT, (viii) NN-HALF-ED, (iX) NN-HALF-BT,
and (x) NN-HRT.

Linear programming (LP) relaxation: In Section 6.3.1 and Section 6.4.2 respectively,
Eq. (OPT-ED), Eq. (OPT-BT), Eq. (OPT-EC-BT), and Eq. (OPT-DL-ED) are formulated as
MILP models because the variables ci,js can only take integer values while the variables Qi,fs
can also take decimal values. However, we relax the integrality constraint on ci,js to solve them
as LP problems, as it reduces the time complexity from NP-hard to polynomial time. We round
up the values of ci,js, obtained from solving the LP problems, to the next integer. For the setup
under study with d̂ = 6 and NB = 96, the number of feasible charge transfer pairs are 1288.
This implies that by rounding up we can increase at most 1288 charge transfer cycles. How-
ever, charge transmitted (or received) per cycle Qtx (or Qrx), energy dissipated per cycle E∆

and the duration of a charge transfer cycle TC are in the range of 0.1 mC to 1 mC, 0.01 µWh to
0.1 µWh, and 10 µs to 100 µs, respectively. Moreover, the total number of charge transfer cycles
required for charge equalization is in the range of hundreds of millions. Thus, the impact of
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these 1288 additional cycles on the final charge levels Qi,fs, the energy dissipation ED, and the
balancing time T ∗Φ, is negligible.
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Figure 6.5: Energy dissipation in 60 random balancing scenarios (30 in the top plot and 30 in
the bottom plot) using different scheduling algorithms for neighbor-only balancing architecture.
The energy dissipation obtained using MIN-ED is the minimum in all the cases.

Performance evaluation of MIN-ED: We apply MIN-ED to calculate the minimum possible
energy dissipation ED(1) during charge equalization for the 60 random cases while considering
both NO and NN architectures. Note that MIN-ED guarantees optimality on energy dissipa-
tion and therefore, obviously results in a lower dissipation than all other scheduling algorithms
for both NO and NN architectures in all scenarios as can be seen in Figure 6.5 and Figure 6.6
respectively. We further compare MIN-ED with HRT in Table 6.1. For the NO architecture,
MIN-ED can reduce the energy dissipation on average by 25.92 % or 27.24 Wh, while the max-
imum reduction obtained is 48.17 % or 74.62 Wh. On the other hand, the average reduction
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Figure 6.6: Energy dissipation in 60 random balancing scenarios (30 in the top plot and 30 in
the bottom plot) using different scheduling algorithms for non-neighbor balancing architecture.
The energy dissipation obtained using MIN-ED is the minimum in all the cases.

Table 6.1: Comparing MIN-ED and HRT in terms of energy dissipation and balancing time.

NO-MIN-ED vs NO-HRT NN-MIN-ED vs NN-HRT
Min Avg Max Min Avg Max

Reduction in
Energy Dissipation

in Wh 6.75 27.24 74.62 9.9 36.49 78.6

in % 5 25.92 48.17 27.53 35.75 41.8

Reduction in
Balancing Time

in h 0.01 1.75 4.34 −1.79 −0.39 0.22

in % 0.48 29.69 43.02 −28.06 −11.12 5.34
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obtained using MIN-ED on the NN architecture is 35.75 % or 36.49 Wh and the maximum ob-
tained reduction is 41.8 % or 78.6 Wh.

By applying MIN-ED, we also get a balancing time T ∗Φ(1). Note than T ∗Φ(1) is the max-
imum among all the balancing times obtained by applying Pareto-optimal balancing options,
i.e., MIN-ED, MIN-BT, HALF-ED, and HALF-BT respectively. This can be also seen in Fig-
ure 6.7 and Figure 6.8 respectively. Furthermore, it can be observed in Table 6.1 that for the NN
architecture, the balancing time obtained using MIN-ED is larger than that obtained using HRT
on average by 11.12 % or 0.39 h. This shows that towards minimizing the energy dissipation,
charge transfers over a long distance are selected by MIN-ED as they are more energy-efficient
compared to shuttling charge over multiple intermediate transfers. However, such transfers sig-
nificantly limit concurrent transfers, therby increasing the overall balancing time. On the other
hand, for the NO architecture, MIN-ED always performs better than HRT in terms of balanc-
ing time by 29.69 % or 1.75 h on average. This is because the energy-efficient charge transfer
pairs selected by MIN-ED for the NO architecture do not increase the balancing time as they
are only between neighbors and cannot significantly influence the parallel execution of other
charge transfers.

Table 6.2: Comparing MIN-BT and HRT in terms of energy dissipation and balancing time.

NO-MIN-BT vs NO-HRT NN-MIN-BT vs NN-HRT
Min Avg Max Min Avg Max

Reduction in
Balancing Time

in h 0.62 2.66 6.22 0.09 1.2 3.22

in % 36.24 46.97 58.99 12.82 36.48 51.12

Reduction in
Energy Dissipation

in Wh −16.04 17.67 67.14 −54.3 2.86 37.9

in % −12.41 15.27 37.34 −43.13 2.23 28.98

Performance evaluation of MIN-BT: Towards minimizing the balancing time, we apply MIN-
BT on the 60 random cases for both NO and NN architectures respectively. MIN-BT guarantees
to determine the global minima on the balancing time and therefore, obviously achieves the
lowest balancing time among all balancing options as can be seen in Figure 6.7 and Figure 6.8
respectively. We compare the performance of MIN-BT with that of HRT in terms of balancing
time and energy dissipation respectively and tabulate the results in Table 6.2. For the NO ar-
chitecture, MIN-BT improves the balancing time by 46.97 % or 2.66 h on average as compared
to HRT while for certain cases, it can even reduce the balancing time upto 6.22 h, i.e., from
11.04 h to 4.82 h. Similarly, for the NN architecture, the average reduction in balancing time as
achieved by MIN-BT is 36.48 % or 1.2 h and the maximum reduction is 51.12 % or 3.22 h.

Using MIN-BT, we get a value for energy dissipation ED(2) that is also higher than those
obtained by other Pareto-optimal algorithms, i.e., MIN-ED, HALF-ED, and HALF-BT. This is
also evident in Figure 6.5 and Figure 6.6 respectively. As given in Table 6.2, MIN-BT per-
forms better than HRT on average also in terms of energy dissipation for both NO (by 15.27 %
or 17.67 Wh) and NN (by 2.23 % or2.86 Wh) architectures. However, note that for certain
cases, energy dissipation obtained using HRT is lower than that obtained from MIN-BT. This
is because MIN-BT might select time-efficient charge transfers exploiting the capabilities of
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Figure 6.7: Balancing time in 60 random balancing scenarios (30 in the top plot and 30 in the
bottom plot) using different scheduling algorithms for neighbor-only balancing architecture.
The balancing time obtained using MIN-BT is the minimum in all the cases.

the balancing architectures to support concurrent transfers. However, such transfers might not
always be energy-efficient.

Pareto-Optimal charge transfer schedules: For our experiments, we have considered four
Pareto-optimal balancing options, i.e., MIN-ED, MIN-BT, HALF-ED, and HALF-BT respec-
tively, as defined earlier in this section. MIN-ED gives the minimum energy dissipation ED(1)
while MIN-BT schedules charge transfers in minimum time T ∗Φ(2). In Table 6.3, we compare
the energy dissipation and balancing time of the Pareto-optimal schedules synthesized using the
four balancing options with respect to the minimum values, i.e., ED(1) and T ∗Φ(2) respectively.

It can be observed in Figure 6.5 and Figure 6.6 respectively, that the energy dissipation
ED(4) in case of HALF-BT is less thanED(3) that is obtained for HALF-ED in all the cases, i.e.,
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Figure 6.8: Balancing time in 60 random balancing scenarios (30 in the top plot and 30 in
the bottom plot) using different scheduling algorithms for non-neighbor balancing architecture.
The balancing time obtained using MIN-BT is the minimum in all the cases.

ED(4) ≤ ED(3). The statistics presented in Table 6.3 also suggests likewise where (i) ED(4)
is on average 4.08 % and 10.78 % more than the minimum ED(1) for NO and NN architectures
respectively, and (ii) ED(3) is 7.24 % and 25.73 % more than the minimum on average in case
of NO and NN architectures respectively. When the four balancing options are used for the 60
random balancing scenarios, we can write ED(1) ≤ ED(4) ≤ ED(3) ≤ ED(2). Furthermore,
we can note from ED(2) obtained using MIN-BT, that the energy dissipation can be varied up
to 31.36 Wh for the NO architecture and 94.08 Wh for the NN architecture. For the NO ar-
chitecture, the variation is not very high as the choices for charge transfers are limited to only
neighbors. For any cell, the algorithm can choose between two neighbors while the energy dis-
sipation values per cycle with either of the neighbors are almost equal. For the NN architecture,
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Table 6.3: Comparing Pareto-optimal scheduling algorithms.

NO architecture NN architecture
Min Avg Max Min Avg Max

MIN-ED T ∗Φ(1)− T ∗Φ(2)
in h 0.04 0.89 2.66 0.17 1.59 4.94

in % 5.79 34.51 86.41 20.54 83.76 154.14

MIN-BT ED(2)− ED(1)
in Wh 0.97 9.57 31.36 4.82 33.64 94.08

in % 0.44 14.48 32.69 19.08 52.05 109.24

HALF-ED
ED(3)− ED(1)

in Wh 0.48 4.79 15.68 2.37 16.68 47.04

in % 0.22 7.24 16.24 9.4 25.73 54.62

T ∗Φ(3)− T ∗Φ(2)
in h 0.01 0.26 0.66 0.04 0.37 1.15

in % 0.14 9.46 19.79 6.71 19.56 37.62

HALF-BT
ED(4)− ED(1)

in Wh 0.11 2.82 12.12 0.59 7.36 28.82

in % 0.09 4.08 13.63 3.1 10.78 33.57

T ∗Φ(4)− T ∗Φ(2)
in h 0.02 0.44 1.33 0.09 0.8 2.49

in % 0.3 17.26 43.16 10.35 42.25 77.38

there is a significant trade-off possible with energy dissipation considering that the maximum
energy dissipation is around 200 Wh.

Figure 6.7 and Figure 6.8 show that T ∗Φ(2) ≤ T ∗φ(3) ≤ T ∗φ(4) ≤ T ∗Φ(1). Using HALF-
ED, the balancing time is 9.46 % and 19.56 % higher than the minimum on average for the NO
and the NN architectures respectively. Similarly, HALF-BT increases the balancing time by
17.26 % and 42.25 % respectively on average for the NO and the NN architectures. This reduces
the energy dissipation appreciably to within 4.08 % and 10.78 % of the minimum respectively
on average. Comparing MIN-ED and MIN-BT, we get the maximum variation in balancing time
up to 2.66 h and 4.94 h for the NO and the NN architectures respectively. Again, for the NN
architecture, the trade-off possibilities are significant considering that the maximum balancing
time is around 8 h.

Note that it is also possible to obtain other Pareto-optimal solutions by considering an energy
constraint like in HALF-ED or by adding a time deadline similar to HALF-BT. Moreover, it is
also possible to formulate an optimization objective as a linear combination of the balancing
time and the energy dissipation and then solve the problem with different choices of weights for
the objectives. Here, for each combination of weights, we obtain a Pareto-optimal solution.

Comparing neighbor-only and non-neighbor architectures: Using the proposed optimiza-
tion framework, we can also compare the performance of the balancing architectures under
study. By applying MIN-ED and MIN-BT respectively, we can obtain the minimum energy
dissipation and the minimum balancing time for different balancing scenarios in a balancing
architecture. For the NO and the NN architectures, we compare the results in Table 6.4 and in
Figure 6.9 respectively. Using the NN architecture, the minimum energy dissipation obtained
is lower than that obtained using the NO architecture in 95 % of the cases and on average it is
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Figure 6.9: Neighbor-only balancing architecture vs non-neighbor balancing architecture. The
green and the yellow bar shows the minimum possible balancing time (top plot)/energy dissipa-
tion (bottom plot) using the NO and the NN architectures respectively. The blue and the red bar
shows the difference between the maximum and the minimum value of balancing time/energy
dissipation using the NO and the NN architectures respectively.

15.36 % or 16.78 Wh lower. Note that in the NO architecture, the parasitic resistances during
the discharging phase is much smaller compared to that in the NN architecture when trans-
ferring charge between neighbors. Thus, when most of the energy-efficient pairs of cells are
neighbors then it might be efficient using the NO architecture. With regard to the minimum bal-
ancing time obtained using MIN-BT, the NN architecture is always more efficient than the NO
architecture and on average it allows 39.2 % or 1.23 h savings in time as compared to the NO
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Table 6.4: Comparing neighbor-only and non-neighbor balancing architectures.

NN-MIN-ED vs NO-MIN-ED NN-MIN-BT vs NO-MIN-BT
Min Avg Max Min Avg Max

Reduction in
Energy Dissipation

in Wh −1.18 16.78 84.1 −62.5 −7.29 16.79

in % −6.38 15.36 38.45 −61.9 −11.82 7.64

Reduction in
Balancing Time

in h −1.69 0.53 2.09 0.16 1.23 3.47

in % −26.18 16.29 44.31 21.04 39.2 51.39

architecture. Moreover, for certain cases, it can reduce the balancing time from 6.76 h (using
the NO architecture) to 3.29 h.

Furthermore, note that using MIN-ED, the NN architecture is also efficient in terms of bal-
ancing time than the NO architecture by 16.29 % or 0.53 h on average. However, in certain cases
where the energy-efficient charge transfers for the NN architecture are more distant, balancing
using the NO architecture might be quicker due to more number of concurrent charge transfers.
On the other hand, the NN architecture can improve the balancing time up to 44.31 % or 2.09 h
as compared to the NO architecture, when MIN-ED is used.

MIN-BT always offers a lower balancing time using the NN architecture as compared to the
NO architecture, however, this comes at the cost of a higher energy dissipation up to 61.9 % or
62.5 Wh. Note that towards minimizing the balancing time, MIN-BT might select pairs of cells
that are close to each other such that the number of parallel transfers can be increased. However,
transferring charge over a shorter distance is more energy-efficient using the NO architecture
than the NN architecture.

In Figure 6.9, we show the minimum and the maximum possible Pareto-optimal values of
balancing time (top plot) and energy dissipation (bottom plot) respectively for both NO and NN
architectures. It can be observed in the figure that, in most cases, using the NN architecture we
can obtain a shorter balancing time than the NO architecture while doing a Pareto optimization.
However, to obtain a lower energy dissipation using the NN architecture, one must not optimize
too much for balancing time as this would force the optimization framework to select pairs of
cells closer to each other, and this is not energy-efficient in the NN architecture. In general, it
can be concluded that the NN architecture is more efficient than the NO architecture both in time
and energy if appropriately optimized. However, it must be also noted that the NN architecture
is more expensive than the NO architecture due to more number of MOSFET switches, and
therefore, in the future, it will be interesting to perform a utility analysis for the NN architecture.

Different balancing ranges, peak currents and balancing thresholds: We evaluate the im-
pact of the balancing range (d̂), the peak current (Ipeak), and the balancing threshold Qth, on
balancing time and energy dissipation. We obtain the minimum energy dissipation using MIN-
ED and we apply MIN-BT to determine the minimum balancing time. We evaluate 20 randomly
generated initial charge distributions with mean mn = 50% and standard deviation sd = 2%.
We vary (i) d̂ from 0 to 6, (ii) Ipeak from 1 A to 12 A (at an interval of 1 A), and (iii) Qth from
100 C to 1000 C (at an interval of 100 C). The mean energy dissipation and the mean balancing
time for these variations are plotted in Figure 6.10, Figure 6.11, and Figure 6.12 respectively.
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Figure 6.10: Variation in energy dissipation and balancing time with balancing range.
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Figure 6.11: Variation in energy dissipation and balancing time with peak current.
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Figure 6.12: Variation in energy dissipation and balancing time with balancing threshold.

It can be observed that with increase in d̂, the minimum balancing time reduces, however,
the reduction is not appreciable for d̂ > 3. Similarly, the minimum energy dissipation also
decreases exponentially with d̂. With increase in Ipeak, balancing time decreases exponentially
while the energy dissipation increases linearly. Thus, when there is a longer time available
for charge equalization, e.g., when the car is in the garage overnight, it might be possible to
use lower balancing current to reduce energy dissipation. Moreover, at higher values, the im-
provement in balancing time with increase in Ipeak, is negligible while the increase in energy
dissipation is still significant. Note that to make provision for higher balancing range and peak
current, cost pertaining to circuit components increase significantly, however, they do not offer
any appreciable benefit in terms of energy dissipation or balancing time after a certain point.

With increase in Qth, both energy dissipation and balancing time decrease linearly. This
is expected because less balancing effort is required as we allow a higher variation in the final
charge levels of the cells in the battery pack. Note that our proposed framework can also be
used to find the maximum balancing threshold that can be reached for a given deadline on the
balancing time.

Active vs passive cell balancing As shown in Figure 6.13, the energy dissipation for passive
balancing is at least 10 times more than that of active cell balancing for the 60 random balancing
scenarios that we consider. The average energy dissipation in case of passive balancing is
1360 Wh compared to 67 Wh for active balancing. Thus, with active balancing, we save almost
6% of the battery capacity which is equivalent to approximately 5 miles of driving for a BMW
i3 with 22.6 kWh battery [63].
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Figure 6.13: Active vs passive cell balancing in terms of energy dissipation.

Runtime of the proposed optimization: We used a computer with Intel(R) Core(TM) i7 −
5600U CPU @2.60 GHz processor and 8 GB RAM to run the proposed two-stage optimization
in MATLAB. We use CPLEX as the optimization solver to solve the MILP problems as well
the LP (relaxed) problems. We measured the time taken by MIN-BT when applied for NN
architecture on 60 randomly generated balancing scenarios. For a time limit of 300 seconds,
MILP could be solved for 53 problem instances out of 60 and the average time taken to solve
these 53 problems is 34.3 s. Using LP relaxation, all the 60 problem instances could be solved
in less than 0.7 s (0.39 s on average). This time is negligible compared to a balancing time of
tens of minutes to a few hours.

6.7 Related Works
Charge transfer circuit architectures: Several circuit architectures have been proposed in the
power electronics domain for exchanging charge between the cells in a battery pack, where the
primary goal has been to provide the maximum flexibility for charge transfer. For instance, the
balancing circuit proposed in [165] supports different types of charge transfer such as cell-to-
cell, a cell to a group of series-connected cells or vice-versa and from group of cells to another
group of cells. A comprehensive overview of different active cell balancing architectures is

205



6.7. RELATED WORKS

provided in [261, 262]. Depending upon the energy storage element used for charge transfers,
the active cell balancing architectures are classified into capacitor-based [253, 254], inductor-
based [165, 256], and transformer-based [85, 257] approaches. Furthermore, the active cell
balancing architectures are classified based on the offered charge transfer flexibility as neighbor-
only [164] (as shown in Figure 2.6(a)) and non-neighbor charge transfer architectures [85] (as
shown in Figure 2.6(c)). While the circuit architectures aim to achieve a high energy efficiency
during a charge transfer by minimizing the parasitic resistances and capacitances of the circuit
components, the system-level goals such as minimizing the energy dissipation and the balancing
time are not considered. Moreover, the system-level performance of any active cell balancing
architecture significantly depends on the control algorithm that selects the charge transfer pairs
of cells.

Control algorithms for cell balancing: In addition to the circuit architectures facilitating
charge transfer between the cells in a battery pack, algorithms for controlling these architectures
have been proposed in the literature. The primary goal of these balancing algorithms has been
to determine the source and destination cells for charge transfers such that the charge levels of
all the cells in a battery pack are equalized eventually. Towards this, early works [258,259] have
adopted a control-theoretic approach that guarantees asymptotic stability (i.e., charge equaliza-
tion). On the other hand, other existing algorithms are based on heuristics. For instance, [256]
(as explained in Section 6.6) proposes a balancing heuristic that selects pairs of cells such that
the variance in the charge levels of the cells reduces with time. These aforementioned algo-
rithms do not guarantee minimum energy dissipation or minimum balancing time. They are de-
signed for centralized battery management topologies, where a single master controller knows
the charge levels of all the cells in the battery pack and decides the source and destination cells
for charge transfers. Recently, decentralized battery management approaches, where each cell
is controlled by a dedicated control unit that interacts with other cell-level controllers without
a central master controller, are also being studied [263]. Subsequently, decentralized active
cell balancing algorithms have been proposed for both neighbor-only balancing architectures
in [84] and for non-neighbor balancing architectures in [82]. These decentralized balancing
algorithms are also heuristics following a similar approach to [256]. Furthermore, similar bal-
ancing heuristics [165, 255] are also proposed for controlling complex balancing architectures
that can support different charge transfer schemes (such as from a single cell to a group of
cells and vice versa, and also between two groups of cells). Although several balancing al-
gorithms for controlling different balancing architectures considering different topologies for
battery management systems have been proposed in the literature so far, however, none of them
guarantee optimality in terms of energy dissipation or balancing time. Thus, the full potential of
the existing balancing architectures is not known. Moreover, these algorithms are strictly tied
to the capabilities of the underlying balancing architecture, i.e., the algorithms proposed for
the neighbor-only architecture are not directly scalable for the non-neighbor architecture. On
the other hand, we have shown that our proposed scheduling framework for cell balancing can
be used for both neighbor and non-neighbor architectures, while extending this framework for
other complex architectures can be considered in the future. For our framework, we assumed
a centralized battery management system, however, note that our framework can also be used
as a benchmark for evaluating the performance of different balancing heuristics proposed for
decentralized systems. Moreover, for future battery management systems, this schedule com-
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putation can also be performed on the cloud and the charge transfer schedules for a cell can be
communicated to the corresponding cell-level controller. Finally, our framework also provides
guidelines for designing the balancing architecture, e.g., suggesting an appropriate balancing
range (d̂) that the architecture should support.

Real-time energy systems: Real-time systems community has studied energy systems at mul-
tiple abstraction-levels. On individual cell-level, several reconfiguration architectures and their
corresponding scheduling strategies have been studied in [264, 265]. These approaches im-
prove the runtime of a battery powered application, by dynamically modifying the electrical
connection of individual cells in a battery pack depending upon the real-time changes in the
load. On one level higher, batteries are considered as a single energy storage unit and several
real-time scheduling algorithms for their charging, discharging and rest periods have been pro-
posed [266–268]. Improvements in the system software design [269] and controller design [81]
based on the battery capacity have been studied. Further in the higher abstraction-level, event-
driven scheduling strategies have been proposed in [270] to optimize the design of a large-scale
EV charging stations.

In summary, while several balancing algorithms exist in the literature, they do not guaran-
tee optimality in terms of energy dissipation and balancing time. While the real-time systems
community have proposed multiple scheduling techniques for charging or discharging the bat-
tery pack, the problem of improving the usable capacity of a battery pack by performing charge
redistribution has not been studied till now. In this thesis, we propose a two-stage optimal
scheduling framework that determines the charge transfer schedule for charge equalization in a
battery pack while minimizing the energy dissipation and the balancing time respectively.

6.8 Conclusion
In this work, for the first time, we formulate the active cell balancing problem from a real-time
systems perspective. We propose a multi-stage scheduling framework to minimize the energy
dissipation and the balancing time respectively for charge equalization in a battery pack. In the
first stage, we formulate an MILP problem to determine the optimal set of charge transfer pairs
and the number of cycles for which each pair must perform charge transfer. In the second stage,
we apply the minimum vertex coloring algorithm for chordal graphs to synthesize a schedule
for the charge transfers obtained from Stage 1.

Our experimental results show that there exists a trade-off between the balancing time and
the energy dissipation. Moreover, we also show that other control knobs like peak balancing
current can be tuned based on requirements. In the future, a more comprehensive framework
can be developed that can optimally tune different control knobs for each balancing scenario.
Note that our proposed framework assumes a centralized BMS. The optimal results obtained
for different balancing scenarios using our framework can be studied to determine if there is
any pattern that can be exploited to select charge transfer pairs in case of a decentralized BMS.
Furthermore, these results can also be studied to optimize the design of charge transfer circuit
architectures with respect to cost and performance.
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7
Concluding Remarks

7.1 Lessons Learnt

This thesis primarily advocates comprehensive modeling of CPSs towards more optimal de-
signs. Such approaches are particularly useful in safety-critical and resource-constrained CPSs,
where improving control performance and reducing resource usage are important. However,
such a design paradigm is faced with several challenges such as the heterogeneity of the system
models, the large number of design dimensions, conflicting design objectives, and the disjoint
set of available design tools. Through our works, we show that these challenges can be ef-
fectively tackled by (i) systematically analyzing the models, (ii) deriving interfaces between
the models, (iii) exploiting the interfaces to partition the holistic design problem into several
partitions, and (iv) solving each sub-problem using the most suitable mathematical tool. Note
that in our works, we do not try to model the whole system using a unified language unlike
in the theory of hybrid systems that is based on the unification of differential equations and
automata [271]. In this section, we briefly revisit our works and give the intuitions behind the
design approaches. We believe that these approaches can be extended to other CPS settings.

Multi-objective co-optimization for distributed CPSs: We have considered distributed time-
triggered implementation of controllers. For such a setting, we design controllers and their
platform implementation in a holistic framework while co-optimizing the average control per-
formance and the resource usage. As a communication bus, we take the example of FlexRay.
We assume that the messages are transmitted on TDMA slots in the FlexRay static segment. We
know that FlexRay messages can be sent using only a limited number of repetition rates. We
exploit this fact to constrain the choices of sampling period corresponding to the permissible set
of repetition rates. Controller design depends on the sampling period and the closed-loop delay,
while it is oblivious to the exact schedule of the tasks and messages in the implementation. For
a given sampling period, we fix the value of delay as equal to one sampling period to allow
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maximum flexibility in the implementation. Thus, we have limited number of combinations
of sampling period and delay. For each combination, we can predesign the optimal controller.
Thus, we have a set of prospective controllers using which an application can be implemented.
Note that the controller design problem that we have considered in this thesis, does not fit into
any standard closed-form optimization framework, and therefore, we use evolutionary method,
i.e., PSO.

We further formulate a multi-objective optimization problem considering control require-
ments and implementation-specific and application-level constraints. As the two objectives are
conflicting, we aim to generate a Pareto front. Exploiting the discrete nature of resource usage,
we split the co-design problem into several sub-problems with the average control performance
as the only objective and an equality constraint on the resource usage, thereby, reducing the
problem complexity. We note that both control performance and resource usage will only de-
pend on the choices of sampling periods. Therefore, we can further reduce the problem com-
plexity by partitioning each single-objective optimization problem into two nested layers. In
the outer layer, we solve an MILP to find a set of sampling periods that maximize the control
performance while matching the discrete value of the resource usage. In the inner layer, we
find a feasible set of task and message schedules by solving an ILP according to the obtained
sampling periods from the outer layer. Our approach has shown to easily scale to a reasonable-
sized system comprising 24 applications mapped on to 12 ECUs. In summary, this work shows
that it is possible to exploit problem characteristics and control-theoretic knowledge to partition
a complex optimization problem into several smaller sub-problems without compromising the
design optimality.

Tool integration for automated synthesis and implementation of distributed CPSs: We
have further developed an integrated toolchain for automated synthesis of distributed con-
trol software that uses the proposed control-platform co-design approach. In this work, the
main goal has been to minimize manual interventions in the process of software development.
Here, we study the conventional approach for software development in the automotive indus-
try, in particular, using the Elektrobit tools SIMTOOLS/SIMTARGET for platform modeling
and MATLAB/Simulink for controller design and modeling. We exploit the advantages of the
COTS tools, e.g., platform modeling and code generation, while offering tools to automate
other important steps such as modeling the software implementation of a controller, specifi-
cation extraction, control-platform co-design, and parameter writeback. Using Simulink and
SIMTOOLS blocks, we create a library offering template blocks that can be configured to auto-
matically generate a plant model and the software implementation of a controller respectively.
These blocks are used for specifying the system while the platform architecture is specified in
SIMTOOLS. Now, SIMTOOLS can export the platform specification as a FIBEX file, while a
Simulink model can be parsed using standard MATLAB functions. Using these features, we can
automatically extract the control/architecture specification. Based on the extracted details, we
can apply the proposed control-platform co-design approach to generate a Pareto front. Now,
the developer can select the Pareto point to be implemented. While the controller gains and
the task schedules can be automatically written into Simulink and SIMTOOLS models respec-
tively, we generate a CSV file for the message schedules that can be directly imported into
SIMTOOLS model. Finally, the binary files can be generated automatically using SIMTAR-
GET and Simulink RTW. The ECUs can be then flashed using the respective binary files. In
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summary, this work shows that different tools that are used to design different parts of a CPS
can be interfaced if studied systematically.

Tighter dimensioning of multi-resource CPSs with control performance guarantees: We
consider a setting where a controller can be implemented using different types of resources,
i.e., high-quality and low-quality resources. Using high-quality resources, faster rejection of
disturbances is possible, however, they are expensive. For such a setting, we study the resource
dimensioning problem, i.e., the minimum amount of such expensive resources required to meet
the requirements of all applications. A bimodal switched controller is considered that operates
either in the high-cost mode using high-quality resources or in the low-cost mode using low-
quality resources. For such controllers, we propose static and dynamic scheduling schemes.

First, an algorithm is developed to determine a periodic pattern in which a bimodal controller
must switch, such that it meets the control requirements while using the minimum amount
of high-quality resources. This algorithm analyzes the dynamics of the physical system for
different switching patterns. Now, given these patterns, we can formulate an SMT problem to
synthesize a static schedule for the bimodal controllers sharing the high-quality resources. The
obtained static schedule also has the maximum extensibility.

We further propose a dynamic scheduling policy where a controller operates in the low-cost
mode during the steady state and requests to switch to the high-cost mode only when disturbed.
Dynamic priority based arbitration of requests from contesting applications is proposed. Based
on the proposed scheduling scheme, we study the physical dynamics to derive switching con-
straints from the control requirements. Based on these constraints, we tightly dimension the
high-quality resources using a nested two-layer approach. In the outer layer, a first fit heuristic
is used to determine a many-to-one mapping of applications to resources. Here, a mapping of
an application to a resource means that whenever the application is disturbed, it can only use the
allocated resource. Now, for a given set of applications mapped to a single resource, we formu-
late a formal verification problem in the inner layer to verify if all applications will meet their
respective requirements in the worst-case. Here, we model the applications and the scheduling
algorithm as a network of TA and use model checking for the verification.

In summary, this work brings into attention that an interdisciplinary study of control the-
ory, scheduling, formal verification, and advance optimization techniques might be required to
effectively solve many CPS design problems.

Energy- and time-optimal active cell balancing in battery packs: In this thesis, we also study
high-power battery packs, in particular, the problem of active cell balancing in such a pack,
and propose algorithms to determine schedules that optimize energy dissipation and balancing
time respectively. We show that the cell balancing problem can be partitioned into two sub-
problems. Here, we study the charge transfer model between a pair of cells using state-of-the-
art charge transfer circuit architectures. We establish that the charge equalization in a battery
pack only depends on the amount of time each feasible pair of cells transfers charge and not
on the exact order of charge transfer. Similarly, we also derive a linear expression for the total
energy dissipation during a cell balancing session that is independent of the schedule of charge
transfer. This enables us to formulate an MILP problem to determine the duration of charge
transfer between each feasible pair of cells such that the battery pack is balanced and the energy
dissipation is minimized. We further show that an MVC problem can be formulated to schedule
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the obtained charge transfers in minimum time. Note that the obtained charge transfer schedule
using this two-stage approach will only guarantee minimum energy dissipation. This is because
we start with a set of charge transfers in the second stage, and hence, we do not explore the
whole design space when minimizing the balancing time. Thus, the obtained balancing time is
the minimum possible only for the given set of charge transfers.

Balancing time is directly influenced by the charge transfer schedule, hence, can we min-
imize the balancing time using the same framework? Towards this, we study the scheduling
problem in the second stage in detail. That is, we prove that the conflict graph, to which the
MVC algorithm is applied, possesses special features that can be exploited to derive a linear ex-
pression for balancing time in terms of the charge transfer times of the feasible pairs. Thus, we
can directly use the derived expression in the MILP in the first stage to minimize the balancing
time directly. Now, we obtain a set of charge transfers from the first stage that will guarantee
minimum balancing time when scheduled using the MVC algorithm. Note that here we exploit
the characteristics of the scheduling problem in the second stage to formulate the MILP prob-
lem in the first stage. In summary, this work emphasizes the need for novel hybrid optimization
techniques to tackle the heterogeneous models involved in CPS designs.

7.2 Future Research Directions
While this thesis lays the foundations for comprehensive modeling and design of CPSs, there
are still several aspects of CPSs design that have received little or no attention in the litera-
ture. In this section, we will list several future research directions towards more holistic design
considerations for CPSs.

Nonlinear physical dynamics: While in this thesis, we have studied linear dynamics only,
nonlinear plants are common in several domains of CPSs, including avionics and automotive.
However, co-synthesis of controllers that handle nonlinear plants, and their platform implemen-
tations is still not considered in the literature. There have been some works in the stabilization
and control of nonlinear plants using abstractions of the implementation platform. Many related
works in this direction are based on concepts like input-to-state stability [272, 273], small gain
theorem [274], passivity [275] and feedback linearization [276].

Fuzzy-model based analysis and control of nonlinear systems have also received significant
attention. Among different fuzzy models, nonlinear systems fit well into Takagi-Sugeno (T-S)
models [277]. In such a model, at each sampling time the system is represented as an averaged
linear model. Based on T-S models, there have been works that consider network-specific prop-
erties like packet dropout, signal quantization and time delays. Towards considering packet
drops, data loss in T-S fuzzy-based systems is modeled as a Bernouli process. Correspond-
ingly, (i) stability is studied based on a common quadratic Lyapunov function and a fuzzy Lya-
punov function [278] and (ii) design ofH∞ state feedback control [279], static/dynamic output
feedback control [280, 281], observer-based output feedback reliable control [282] and model
predictive control [283] are proposed. Towards time-delayed nonlinear systems, most works
study properties like maximum allowable delay bound [284], maximum allowable transfer in-
terval [285] and delay distribution [286, 287]. Corresponding to these parameters, the stability
and control of nonlinear systems can be evaluated. Furthermore, there have been works that
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consider the impact of network-induced signal quantization on T-S fuzzy-based nonlinear sys-
tems. They use abstracted platform models based on time-invariant logarithmic quantizer [288]
or time-varying quantizer [289] to study stabilization and control problems. However, we may
point out again that all these works start with platform abstractions. Therefore, in the context
of CPSs, we can leverage on these advanced theories of fuzzy-based control. We can consider
co-synthesis of platform parameters and controllers by systematically deriving an interface be-
tween the platform parameters and the abstraction models.

Time-varying physical dynamics: This thesis mainly shows results for time-invariant plant
dynamics. However, there are several real-world physical processes with time-varying dynam-
ics especially in flight and vehicular controls due to the effect of weather conditions like wind
speed and direction on the physical behavior. An adaptive controller can typically manipulate
the control gains online based on the changing plant dynamics. Therefore, it can stabilize the
system in the event of unforeseen environmental variations. However, these techniques have
not been considered for safety-critical systems in the past as it is challenging to quantify the
transient performance of an adaptive control loop.

A popular adaptive control technique is Model Reference Adaptive Control (MRAC). In
this technique, the error between the output of the reference model and the actual output is
fed back to adapt the control gains. In order to improve the transient performance, closed-
loop reference models are considered of late. Here, the error is also fed back to change the
reference model. Using such a controller, there have been a few works [290–293] that quantify
the transient performance using L2-norm of error signals. An important research question here
is: Can we co-adapt the control gains along with the platform implementation to better react to
the varying plant dynamics? On the other hand, a few works [294–296] have considered using
adaptive controllers to tackle time-varying platform behavior, e.g., network induced variable
delay. However, comprehensive control-platform co-design approaches considering variations
in plant dynamics and platform behavior are still largely missing in the literature.

Heterogeneous networks: Modern CPSs like automotive systems consist of several bus clus-
ters connected via gateways. These bus clusters serve different functional domains, e.g., chas-
sis, powertrain, body, and infotainment. Today, with increasing demand for ADASs and au-
tonomous driving, the need for inter-domain interaction and communication has increased.
Control applications are, therefore, implemented over heterogeneous networks. Designing such
applications is not a straightforward extension of existing techniques. The problem is that dif-
ferent communication protocols have different timing models, and therefore, require different
analysis framework. For example, CAN employs a fixed-priority non-preemptive scheduling
scheme while FlexRay uses TDMA for static segment and FTDMA for the dynamic segment.
Designing an application across CAN and FlexRay will require finding TDMA schedules for
FlexRay messages and priorities for CAN messages. Moreover, inter-domain communication
involves transmission of messages across communication gateways. This requires additional
timing analysis and buffer characterization for gateways. Therefore, the design of applications
across different network domains leads to increase in design dimensions and a more compli-
cated timing analysis.

In this context, [153] has proposed a hybrid analysis framework where different timing
analysis techniques can be composed together to determine, for example, end-to-end delay of

213



7.2. FUTURE RESEARCH DIRECTIONS

a message. However, control applications over such heterogeneous networks are not yet con-
sidered. Co-synthesis of controllers, heterogeneous network schedules and gateway parameters
will be challenging to explore.

Multi-core processors: ECUs with multiple processing cores are becoming increasingly more
popular in embedded systems. The cores may share different hardware components, e.g., mem-
ory, I/O and on-chip bus. Simultaneous access to these shared resources may result in con-
tention. Access to shared resources, if not properly managed or synchronized, may result in
nondeterministic timing behavior that is difficult to analyze. There have been few works ad-
dressing this problem from both hardware [297, 298] and software [299] perspective.

For example, Tabish et al. have proposed a scratchpad-centric solution [154]. They have
assumed that each core has its own scratchpad with size greater than any two tasks running on
the core. The access to the main memory is according to a TDMA-based schedule via a direct
memory access (DMA). The idea is that the code for the next task can be pre-fetched in one
half of the scratchpad while the current task is running from the other half. In this approach,
there is no resource contention. Additionally, the WCETs of the tasks are also reduced as the
instructions are already in the scratchpad before execution. Consequently, control codes can be
mapped on such an architecture to achieve higher control performance. However, large-sized
and dedicated scratchpad for each core substantially increases the cost of the system which
may not be acceptable in cost-sensitive domains. Therefore, we believe there is a possibility of
using smaller dedicated scratchpad or shared scratchpad. Program analysis techniques may be
used for appropriate memory partitioning and code mapping. Program analysis integrated with
co-synthesis of controllers, processor and memory access schedules may result in an improved
control performance and better load balancing across the cores.

Other emerging design considerations: In addition to complex physical dynamics and
advanced platform architectures, the requirements of security, battery-awareness, and fault-
tolerance have imposed new challenges in the design of resource-constrained CPSs. There are
a few initial works done in these directions.

Towards secure CPSs, Zheng et al. have proposed a cross-layer design framework [300] that
combines controller design and implementation along with security integration. It offers a trade-
off analysis between degree of security, control performance and platform schedulability. More
recently, Liang et al. in [301] have leveraged weakly-hard constraints for control application to
add security monitoring tasks in the system.

Towards battery-aware CPSs, Chang et al. in [81] have proposed to design a DC motor
speed controller taking battery characteristics into consideration. In the same vein, Vatanparvar
et al. have proposed design of heating, ventilation and air conditioning (HVAC) control together
with BMS [302]. This design improves battery lifetime and driving range of EVs while keeping
vehicle climate within acceptable range.

Towards fault-tolerant CPSs, Goswami et al. in [303] have considered designing controller
such that the control loop is stable to intermittent hardware faults. A hardware fault is character-
ized using intermittent bit flip model. The probability that a faulty sample is followed by at least
N non-faulty samples is calculated using Monte Carlo simulations. Using this information, a
controller is designed that guarantees stability even in the event of a fault.
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It must be noted that research in these aforementioned directions is far from being complete.
We envision a stronger emphasis in the future for a more comprehensive consideration of the
aspects of security, battery-awareness, and fault-tolerance in the design of CPSs.
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analysis of nonlinear networked control systems with asynchronous communication: A
small-gain approach,” in Conference on Decision and Control (CDC), 2013.

[275] Y. Wang, M. Xia, V. Gupta, and P. J. Antsaklis, “On feedback passivity of discrete-
time nonlinear networked control systems with packet drops,” IEEE Transactions on
Automatic Control, vol. 60, no. 9, pp. 2434–2439, 2014.

[276] J. Lei and H. K. Khalil, “Feedback Linearization for Nonlinear Systems With Time-
Varying Input and Output Delays by Using High-Gain Predictors,” IEEE Transactions
on Automatic Control, vol. 61, no. 8, pp. 2262–2268, 2016.

[277] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to mod-
eling and control,” IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-15,
no. 1, pp. 116–132, 1985.

237



BIBLIOGRAPHY

[278] X. Zhang, G. Lu, and Y. Zheng, “Stabilization of networked stochastic time-delay
fuzzy systems with data dropout,” IEEE Transactions on Fuzzy Systems, vol. 16, no. 3,
pp. 798—-807, 2008.

[279] H. Gao, Y. Zhao, and T. Chen, “H∞ fuzzy control of nonlinear systems under unreliable
communication links,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 2, pp. 265—-
278, 2009.

[280] H. Li, C. Wu, and Z. Feng, “Fuzzy dynamic output-feedback control of non-linear net-
worked discrete-time system with missing measurements,” IET Control Theory & Appli-
cations, vol. 9, no. 3, pp. 327—-335, 2015.

[281] J. Qiu, G. Feng, and H. Gao, “Fuzzy-model-based piecewise H∞ static-output-feedback
controller design for networked nonlinear systems,” IEEE Transactions on Fuzzy Sys-
tems, vol. 18, no. 5, pp. 919—-934, 2010.

[282] D. Du, “Reliable H∞ control for Takagi-Sugeno fuzzy systems with intermittent mea-
surements,” Nonlinear Analysis: Hybrid Systems, vol. 6, no. 4, pp. 930—-941, 2012.

[283] Y. Zhao, H. Gao, and T. Chen, “Fuzzy constrained predictive control of nonlinear systems
with packet dropouts,” IET Control Theory & Applications, vol. 4, no. 9, pp. 1665—-
1677, 2010.

[284] H. Zhang, J. Yang, and C. Su, “T-S fuzzy-model-based robust H∞ design for networked
control systems with uncertainties,” IEEE Transactions on Industrial Informatics, vol. 3,
no. 4, pp. 289—-301, 2007.

[285] H. Zhang, D. Yang, and T. Chai, “Guaranteed cost networked control for T-S fuzzy sys-
tems with time delays,” IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), vol. 37, no. 2, pp. 160—-172, 2007.

[286] C. Peng and T. C. Yang, “Communication-delay-distribution-dependent networked con-
trol for a class of T-S fuzzy systems,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 2,
pp. 326—-335, 2010.

[287] E. Tian, D. Yue, and Z. Gu, “Robust H∞ control for nonlinear systems over network: A
piecewise analysis method,” Fuzzy Sets and Systems, vol. 161, no. 21, pp. 2731—-2745,
2010.

[288] M. S. Mahmoud and A. A. Saif, “Robust quantized approach to fuzzy networked control
systems,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 2,
no. 1, pp. 71—-81, 2012.

[289] J. Yan, Y. Xia, and L. Li, “Stabilization of fuzzy systems with quantization and packet
dropouts,” International Journal of Robust and Nonlinear Control, vol. 24, no. 10,
pp. 1563—-1583, 2014.

238



BIBLIOGRAPHY

[290] T. E. Gibson, A. M. Annaswamy, and E. Lavretsky, “Improved transient response in
adaptive control using projection algorithms and closed loop reference models,” in AIAA
Guidance Navigation and Control Conference, 2012.

[291] T. E. Gibson, A. M. Annaswamy, and E. Lavretsky, “Closed–loop Reference Model
Adaptive Control: Composite control and Observer Feedback,” in IFAC International
Workshop on Adaptation and Learning in Control and Signal Processing, 2013.

[292] T. E. Gibson, A. M. Annaswamy, and E. Lavretsky, “Adaptive systems with closed-
loop reference-models, Part I: Transient performance,” in American Control Conference
(ACC), 2013.

[293] T. E. Gibson, A. M. Annaswamy, and E. Lavretsky, “Closed-loop reference models for
output-feedback adaptive systems,” in European Control Conference (ECC), 2013.

[294] L. Chunmao and X. Jian, “Adaptive Delay Estimation and Control of Networked Control
systems,” in International Symposium on Communications and Information Technologies
(ISCIT), 2006.

[295] H. Voit and A. Annaswamy, “Adaptive control of a Networked Control System with
hierarchical scheduling,” in American Control Conference (ACC), 2011.

[296] H. Voit, A. M. Annaswamy, R. Schneider, D. Goswami, and S. Chakraborty, “Adaptive
switching controllers for systems with hybrid communication protocols,” in American
Control Conference (ACC), 2012.

[297] D. Bui, E. Lee, I. Liu, H. Patel, and J. Reineke, “Temporal isolation on multiprocessing
architectures,” in Design Automation Conference (DAC), 2011.

[298] T. Ungerer, F. Cazorla, P. Sainrat, G. Bernat, Z. Petrov, C. Rochange, E. Quinones,
M. Gerdes, M. Paolieri, J. Wolf, H. Casse, S. Uhrig, I. Guliashvili, M. Houston, F. Kluge,
S. Metzlaff, and J. Mische, “Merasa: Multicore Execution of Hard Real-Time Applica-
tions Supporting Analyzability,” IEEE Micro, vol. 30, no. 5, pp. 66–75, 2010.

[299] S. Girbal, X. Jean, J. L. Rhun, D. G. Pérez, and M. Gatti, “Deterministic platform soft-
ware for hard real-time systems using multi-core COTS,” in Digital Avionics Systems
Conference (DASC), 2015.

[300] B. Zheng, P. Deng, R. Anguluri, Q. Zhu, and F. Pasqualetti, “Cross-Layer Codesign
for Secure Cyber-Physical Systems,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 35, no. 5, pp. 699–711, 2016.

[301] H. Liang, Z. Wang, D. Roy, S. Dey, S. Chakraborty, and Q. Zhu, “Security-Driven Code-
sign with Weakly-Hard Constraints for Real-Time Embedded Systems,” in International
Conference on Computer Design (ICCD), 2019.

[302] K. Vatanparvar and M. A. Al Faruque, “Battery lifetime-aware automotive climate con-
trol for electric vehicles,” in Design Automation Conference (DAC), 2015.

239



BIBLIOGRAPHY

[303] D. Goswami, D. Müller-Gritschneder, T. Basten, U. Schlichtmann, and S. Chakraborty,
“Fault-tolerant embedded control systems for unreliable hardware,” in International Sym-
posium on Integrated Circuits (ISIC), 2014.

240



List of Tables

3.1 Task mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.2 Task WCETs in µs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.3 FlexRay Bus Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.4 Scalability analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.1 Deriving resource requirements for the DC motor position control application . 148
5.2 Specification data for the case study (time is measured in terms of the number of samples) 163
5.3 Resource requirements of the bimodal controllers for static and dynamic

scheduling (Time is measured in terms of the number of samples) . . . . . . . . . . . . 164
5.4 FlexRay frame schedule assignments for the control applications . . . . . . . . 164

6.1 Comparing MIN-ED and HRT in terms of energy dissipation and balancing time. 196
6.2 Comparing MIN-BT and HRT in terms of energy dissipation and balancing time. 197
6.3 Comparing Pareto-optimal scheduling algorithms. . . . . . . . . . . . . . . . . 200
6.4 Comparing neighbor-only and non-neighbor balancing architectures. . . . . . . 202

241



LIST OF TABLES

242



List of Figures

1.1 A schematic of an automotive electronic control unit (ECU). . . . . . . . . . . 3
1.2 An automotive E/E architecture comprising different communication buses. . . 5
1.3 The automotive software architecture as defined by AUTOSAR. . . . . . . . . 9
1.4 A battery pack with series- and parallel-connected electrochemical cells. . . . . 10
1.5 Charge variation in a battery pack results in reduced usable capacity. . . . . . . 12
1.6 Control response depends on the control law and the software implementation. . 15
1.7 Optimal cell balancing vs existing heuristics . . . . . . . . . . . . . . . . . . . 18
1.8 Separation of concerns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.9 CPS-oriented approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.10 Control-platform co-synthesis for CPSs . . . . . . . . . . . . . . . . . . . . . 27

2.1 Block diagram representing feedback control systems. . . . . . . . . . . . . . 36
2.2 DC motor speed control system. . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3 Timing diagram of a delayed discrete-time system. . . . . . . . . . . . . . . . 40
2.4 Time-triggered scheduling of a software task. . . . . . . . . . . . . . . . . . . 45
2.5 An example of FlexRay communication schedule. . . . . . . . . . . . . . . . . 46
2.6 State-of-the-art charge transfer circuit architectures for active cell balancing . . 49
2.7 Nonlinear optimization using particle swarm optimization (PSO). . . . . . . . . 56
2.8 Modeling fixed-priority preemptive scheduling as a network of timed automata. 60
2.9 Application of minimum vertex coloring (MVC) . . . . . . . . . . . . . . . . . 62
2.10 Minimum vertex coloring of interval graphs. . . . . . . . . . . . . . . . . . . . 65

3.1 Distributed implementation of a controller. . . . . . . . . . . . . . . . . . . . . 72
3.2 Control timings depend on the implementation. . . . . . . . . . . . . . . . . . 72
3.3 The proposed multi-stage control-platform co-design approach. . . . . . . . . . 75
3.4 Multi-layer co-optimization of resource usage and average control performance. 85
3.5 The platform architecture in the case study. . . . . . . . . . . . . . . . . . . . 91
3.6 Normalized control performance vs sampling period for each application. . . . 92
3.7 Pareto front showing the trade-off between the design objectives. . . . . . . . . 94
3.8 Runtime of the co-optimization stage for different system sizes. . . . . . . . . . 96

4.1 Schematic of the proposed framework and the toolchain support . . . . . . . . 102
4.2 Controller design using MATLAB/Simulink. . . . . . . . . . . . . . . . . . . . 106
4.3 Iterative design of control and platform parameters. . . . . . . . . . . . . . . . 107
4.4 Adding the controller model into a task in the implementation phase . . . . . . 107

243



LIST OF FIGURES

4.5 Manually configuring the task and message schedules in in SIMTOOLS blocks. 108
4.6 The proposed design and implementation flow for distributed automotive CPSs. 110
4.7 Specification modeling using Co-Flex. . . . . . . . . . . . . . . . . . . . . . . 120
4.8 Partially specified model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.9 Specification modeling using SIMTOOLS. . . . . . . . . . . . . . . . . . . . . 122
4.10 Specification extraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.11 Prospective controller design. . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.12 Co-optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.13 Parameter write back. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.14 System validation via simulation. . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.15 Application software modeling and code generation. . . . . . . . . . . . . . . 129

5.1 Bimodal control strategy over heterogeneous resources. . . . . . . . . . . . . . 134
5.2 The proposed switching control strategy based on dynamic priority assignment. 136
5.3 Distributed controllers sharing a communication bus. . . . . . . . . . . . . . . 138
5.4 Closed-loop timings for the bi-modal controller. . . . . . . . . . . . . . . . . . 140
5.5 Control responses for different static schedules. . . . . . . . . . . . . . . . . . 147
5.6 The proposed dynamic switching scheme for bimodal controllers. . . . . . . . 152
5.7 Control responses for different switching strategies. . . . . . . . . . . . . . . . 154
5.8 Impact of switching stability on control performance. . . . . . . . . . . . . . . 155
5.9 Resource requirements for the proposed dynamic scheduling of the TDMA slots. 156
5.10 An Application automaton. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
5.11 Automata representing the scheduling policy. . . . . . . . . . . . . . . . . . . 159
5.12 The Scheduler automaton. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.13 Static allocation of TDMA slots to applications. . . . . . . . . . . . . . . . . . 163
5.14 Control responses of the applications for the proposed static scheduling strategy. 166
5.15 Control responses when disturbances arrive simultaneously at applications shar-

ing a slot id according to the proposed dynamic scheduling strategy. . . . . . . 166
5.16 Control responses when disturbances arrive separately at applications sharing a

slot id according to the proposed dynamic scheduling strategy. . . . . . . . . . 167

6.1 Cell balancing in a battery pack of four cells. . . . . . . . . . . . . . . . . . . 175
6.2 Concurrency constraints between feasible charge transfer pairs of cells. . . . . 182
6.3 Charge transfer schedule synthesis using the minimum vertex coloring (MVC). 183
6.4 Maximal cliques in an interval graph. . . . . . . . . . . . . . . . . . . . . . . 187
6.5 Energy dissipation using different schedulers for neighbor-only architecture. . . 195
6.6 Energy dissipation using different schedulers for non-neighbor architecture. . . 196
6.7 Balancing time using different schedulers for neighbor-only architecture. . . . . 198
6.8 Balancing time using different schedulers for non-neighbor architecture. . . . . 199
6.9 Neighbor-only balancing architecture vs non-neighbor balancing architecture. . 201
6.10 Variation in energy dissipation and balancing time with balancing range. . . . . 203
6.11 Variation in energy dissipation and balancing time with peak current. . . . . . . 203
6.12 Variation in energy dissipation and balancing time with balancing threshold. . . 204
6.13 Active vs passive cell balancing in terms of energy dissipation. . . . . . . . . . 205

244



List of Symbols

Variables Descriptions
x state of the plant
u control input applied to the plant
y output of the plant
A continuous-time state matrix
B continuous-time input matrix
C continuous-time or discrete-time output matrix
h sampling period
φ discrete-time state matrix
Γ discrete-time input matrix
d delay between sensing (or sampling) and actuation
xa augmented state of the plant
φa augmented discrete-time state matrix
Γa augmented discrete-time input matrix
Ca augmented discrete-time output matrix
λi a system pole or a eigenvalue of the state-stransition matrix
K feedback control gain
F feedforward control gain
r reference input for the plant
φcl closed-loop state-transition matrix
γ controllability matrix

H(s) characteristic polynomial of the closed-loop system
Ti a software task
oi offset of the task Ti
pi period of the task Ti
ei (worst-case) execution time of the task Ti

t̂(Ti, k) start time of the k-th instance of the task Ti
t̃(Ti, k) finish time of the k-th instance of the task Ti
Ns number of slots in the FlexRay static segment
Nd number of minislots in the FlexRay dynamic segment
∆ length of a static slot in the FlexRay static segment
δ length of a minislot in the FlexRay dynamic segment
mi a message

245



Variables Descriptions
Tbus bus cycle time
si slot number assigned to a message mi

bi base cycle assigned to a message mi

ri repetition rate assigned to a message mi

t̂(mi, k) start time of the k-th instance of the message mi

t̃(mi, k) finish time of the k-th instance of the message mi

Bi a cell in the battery pack
TC the time duration for a single charge transfer cycle
TON the time duration for the charging phase in a charge transfer cycle
TOFF the time duration for the discharging phase in a charge transfer

cycle
Ipeak the peak balancing current
Vα the voltage across the cell Bα
Rα total resistance in the current flow path during the charging phase

Rβ
total resistance in the current flow path during the discharging
phase

L inductance of the inductor (or transformer)
Qtx amount of charge transferred from the source cell in a charge

transfer cycle
Qrx amount of charge received by the destination cell in a charge

transfer cycle
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Qi,f final charge level of the cell Bi after balancing
Qi,s initial charge level of the cell Bi before balancing
Qth charge threshold for cell balancing, i.e., any two cells in the pack

must be within the charge threshold for the battery pack to be
balanced

ED total energy dissipation in the battery pack during a cell balancing
session

Ui,j When Bi transfers charge to Bj , the set of cells that become un-
available for additional charge transfers

G a conflict graph where the vertices are the charge transfer pairs
and an edge between two vertices denote that the corresponding
two pairs are not simultaneously schedulable

EG the set of edges in the graph G
{πa,b, πc,d} an edge in the conflict graph represented by the unordered pair of

vertices
πpa,b a charge transfer cycle of the pair πa,b
Gr a conflict graph where the vertices are the charge transfer pairs

with non-zero charge transfer cycles and an edge between two
vertices denote that the corresponding two pairs are not simulta-
neously schedulable

Gd a conflict graph where the vertices are the charge transfer cycles
of feasible pairs of cells and an edge between two vertices denote
that the corresponding two cycles cannot occur at the same time

NG minimum number of colors required to color all vertices in the
graph Gd

T ∗Φ Balancing time corresponding to a charge transfer schedule
Iri,j an interval on the real line representing the charge transfer cycle

πri,j

249



Variables Descriptions
CT + set of charge transfer pairs of cells with non-zero charge transfer

cycles
CPk set of charge transfer pairs that have scheduling conflicts with

each other
SCP set of sets of conflicting charge transfer pairs
clk a clique in the graph Gd
Sc set of cliques in the graph Gd
E∗D an upper bound on energy dissipation during cell balancing
T̂Φ An upper bound on the balancing time
Or a perfect elimination ordering of vertices in the graph Gr
Od a perfect elimination ordering of vertices in the graph Gd
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Abbreviations

ADAS advanced driver-assistance system

ASW application software

AUTOSAR AUTomotive Open Software ARchitecture

BCET best-case execution time

BMS battery management system

BSW basic software

CAN Controller Area Network

COTS commercial-off-the-shelf

CPS cyber-physical system

CQLF common quadratic Lyapunov function

CSMA/CD carrier-sense multiple access with collision detection

CSMA/CR carrier-sense multiple access/collision resolution

DMA direct memory access

DSE design space exploration

EES electrical energy storage

E/E electrical and electronic

ECU electronic control unit

EV electric vehicle

FTDMA flexible TDMA

HEV hybrid electric vehicle

HIL hardware-in-the-loop

ILP integer linear programming

Lex-BFS lexicographic breadth first search

Li-ion lithium ion

LP linear programming

LQG linear quadratic Guassian

LQR linear quadratic regulator
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LTI linear and time-invariant

LTL linear temporal logic

MIL model-in-the-loop

MILP mixed-integer linear programming

MOSFET metal-oxide-semiconductor field-effect transistor

MOST Media-Oriented Systems Transport

MVC minimum vertex coloring

OEM original equipment manufacturer

OS operating system

OSEK Offene Systeme und deren Schnittstellen für Elektronik in Kraftfahrzeugen

PEOV perfect elimination ordering of the vertices

PSO particle swarm optimization

PWM pulse-width modulation

RTE runtime environment

RTOS real-time operating system

RTW Real-Time Workshop

SAT boolean satisfiability

SIL software-in-the-loop

SISO single-input single-output

SMT Satisfiability Modulo Theories

SoC state-of-charge

SoH state-of-health

TA timed automaton

TDMA time-division multiple access

TSN Time-Sensitive Networking

TTCAN time-triggered CAN

VDX Vehicle Distributed eXecutive

WCET worst-case execution time
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