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Abstract: Most molecular chaperones belonging to heat shock protein (HSP) families are known to
protect cancer cells from pathologic, environmental and pharmacological stress factors and thereby
can hamper anti-cancer therapies. In this review, we present data on inhibitors of the heat shock
response (particularly mediated by the chaperones HSP90, HSP70, and HSP27) either as a single
treatment or in combination with currently available anti-cancer therapeutic approaches. An overview
of the current literature reveals that the co-administration of chaperone inhibitors and targeting drugs
results in proteotoxic stress and violates the tumor cell physiology. An optimal drug combination
should simultaneously target cytoprotective mechanisms and trigger the imbalance of the tumor
cell physiology.

Keywords: heat shock protein inhibitors; molecular chaperones; HSP90; HSP70; HSP27; concurrent
therapy; cancer therapy

1. Overview on Combinational Anti-Cancer Therapies

In the last decade, progress in the development of anti-tumor therapies has been achieved,
especially with respect to specifically targeting anti-tumor drugs that aim to interfere with molecular
mechanisms that are responsible for tumor growth. However, traditional chemotherapeutic agents
such as cisplatin, etoposide, 5-fluorouracil and their derivatives as well as ionizing radiation, are
still widely applied to cure cancer. Both strategies can exert harmful effects on normal cells and may
cause serious changes in the tumor microenvironment, which makes it difficult to predict outcome of
these approaches.

To improve tumor control, combinatorial therapies that target a wide range of tumorigenic
functions including extensive cell growth, motility, proteostasis, apoptosis, autophagy and others are
presently under investigation (see Figure 1). The concurrent administration of several drugs that are
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targeting different cellular drivers of tumor cell viability and propagation is often advantageous over
monotherapeutic approaches because they might act synergistically. Furthermore, in combinatorial
therapies, reduced doses of the individual drugs can be applied and therefore, unfavorable side effects
can be avoided [1,2]. Currently, bioinformatic models have been designed that might predict synergistic
effects of novel drug combinations [3–5]. Combinatorial formulations could also exert beneficial effects
in therapy-resistant tumor cells by down-regulating different metabolic factors, which are induced
by i.e., hypoxia, oxidative or reductive stress. Thirdly, combinatorial therapies may reduce tumor
recurrence by suppression of survival mechanisms in resistant tumor cells after first-line therapy [6].
The relevance of combinational therapies in oncology is documented by a large number of clinical
trials which are registered at clinicaltrials.gov and by 2548 references which appear when the two
terms “combination therapy” and “cancer, metastasis” are entered.
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Figure 1. Currently used drugs, physico-chemical factors, molecular devices and vectors, which are
presently tested in combinatorial treatment approaches of cancer.

Drugs target polypeptides, protein modifications like phosphorylation, proteolysis or acetylation,
nucleic acids (i.e., RNA and DNA), lipids, and cancer metabolites and thereby impact on mitochondria,
membranes, nucleus, ER and many other subcellular targets (Figure 1). By damaging multiple
cellular functions via combinatorial therapies alternative cell death mechanisms such as senescence or
autophagy can be induced or occasionally a conversion to a more resistant, stem-like phenotype can
occur [7,8]. The search for a successful combinatorial therapy may start with a better understanding of
molecular mechanisms of a drug hitting a certain target. Connectivity Map is a platform designed
to provide information on signaling pathways induced by a certain drug [9]. Another powerful
tool revealing clinically tested drug combinations is SynTarget which is based on 15 large-scale gene
expression data sets covering eight different cancer types.

The list of components of therapeutic combinations includes chemicals (small molecules), proteins,
particularly antibodies, physico-chemical interventions like radiation or hyperthermia, photodynamic
treatment, anti-cancer vaccines and some other agents (Figure 1; Table 1). Since therapies should
specifically target tumor cells and not the surrounding normal tissue, special constructs are designed
for a targeted delivery of the drug. Some of those vehicles are based on nanoparticles composed of a
magnetic or silicone core and specific peptides (aptamers) or antibodies that are directed against cell
surface molecules on cancer cells. A brief overview on anti-cancer therapies indicates that a specific
spectrum of drugs is necessary to cure certain types of cancer. For instance, for the optimal treatment of
prostate cancer cells a set of different compounds such as mTOR-inhibitor RAD001, the dual tyrosine
kinase inhibitor AEE788 and the histone deacetylase inhibitor, valproic acid should be applied. The
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cocktail was found to be more efficient in reducing tumor cell growth, adhesion and migration than
each of the drugs alone [10].

Table 1. Combinatorial anti-tumor therapies.

Therapeutic Factors 1 Factor 2 Cancer Type Outcome Reference

AC220 quizartinib
(FLT3 TK inhibitor)

TAK-165 HER2
inhibitor

Variety of human
tumors Cytotoxicity, autophagy Ouchida et al.,

2018 [11]

Vemurafenib,
inhibitor of mutant BRAF

PAC-1 pro-caspase
activator

Human melanoma
in vitro & in vivo

Effect in caspase-3
activation, inhibition of

tumor regrowth
Peh et al., 2016 [12]

Metformin AMPK
activator Cisplatin

Skov-3 and HEY
ovarian cancer

in vitro & in vivo

Inhibition of T and
Smad-Smad3

phosphorylation GFβ1
expression

Zheng et al., 2018 [13]

Cisplatin packed together
in amphiphilic PLG-g

Do Ve/PEG
graft copolymer cetaxel B16F1 cells & graft Anti-metastasis effect

and prolonged circulation Song et al., 2014 [14]

Cetuximab anti-ErbB/HER
monoclonal antibody

Erlotinib
tyrosine-kinase

inhibitor

NSCLC
non-small-cell lung

cancer

Antibody-dependent, NK
mediated cytotoxicity

Cavazzoni et al.,
2012 [15]

Anti-KRAS antibody Gemcitabine Pancreatic cancer
in vitro & in vivo Inhibition RAS signaling Kang et al., 2018 [16]

Bevacizumab CTLA4
blockade

Ipilimumab VEGF
inhibition

Patients with
metastatic
melanoma

Survival up to 25 months,
immune response Hodi et al., 2014 [17]

Trametinib and dabrafenib Anti-PD1 antibody BRAF(V600E)
melanoma

Anti-tumor effect in vivo,
reduction of metastasis

Hu-Lieskovan et al.,
2015 [18]

Dabrafenib or trametinib
BRAF & MEK inhibitors

Anti-PD-1, PD-L1, and
CTLA-4 (checkpoints)

antibodies

Carcinoma in vitro
& in vivo

Anti-tumor immune
response Liu et al., 2015 [19]

Physical exercise or
dihydroartemisinin

(inducer of
oxidative stress)

Temozolomide Glioblastoma
in vitro & in vivo

Reduced
clonogenicity/migration,

lowered metastasis
Lemke et al., 2016 [20]

Oncolytic virus both
encapsulated in

extracellular vesicles
Paclitaxel Lung cancer Anti-tumor effect in vivo Garofalo et al.,

2018 [21]

A long list of tyrosine kinases inhibitors and their combinations is already used in oncology, and
many more are tested in preclinical studies. Examples for such applications are AC220 Quizartinib
FLT3 tyrosine kinase and TAK-165 kinase inhibitors applied as small molecules [11], as shown in Table 1.
In another study two modulators of completely distinct signaling pathways, PAC-1 pro-caspase-3
activator and vemurafenib, inhibitor of BRAF oncogene, whose mutation is a common cause of
melanoma, demonstrated strong therapeutic activity in prevention of resistance to MAPK inhibitors
and tumor regrowth in preclinical melanoma models [12]. Combinations of anti-cancer drugs are often
packaged in special containers to preserve them from degradation or chemical modifications. An
example for such a construct is based on nanoparticles consisting of α-tocopherol and polyethylene
glycol linked to poly(L-glutamic acid). Docetaxel and cisplatin are often loaded into micelles which
were coated with an αvβ3 integrin targeting peptide to specifically address cancer cells. These dual
drug-loaded micelles showed anti-tumor and anti-metastatic efficacy and had a remarkable long
circulation time [14] (Table 1).

Small molecule inhibitors are often combined with monoclonal antibodies such as erlotinib and
the monoclonal antibody Erb/HER which neutralize tyrosine kinases and demonstrated efficacy in
non-small cell lung cancer (NSCLC) in vitro and in vivo [15]. Another example is the combination
of an antibody directed against mutated KRAS oncogene, a common cause of pancreatic cancer
with gemcitabine. This combination inhibited angiogenesis, migration, and invasion of tumor
cells and showed significant anti-cancer activity [16]. Many successful new combinations use
monoclonal antibodies inhibiting immune checkpoints, such as CTLA-4 or PD-1 receptors (i.e.,
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trametinib, dabrafenib) and MEK and BRAF inhibitors, respectively [18]. These combined therapies
show enhanced anti-metastatic effects and an enhanced anti-tumor immunity in clinical trials [22].

Besides drugs oxidative stress was also used to damage tumor cells. As an example, oxidative stress
induced by physical exercises in combination with temozolomide showed a reduction in metastases in
a few patients with glioblastoma [20]. Oncolytic viruses and paclitaxel encapsulated in extracellular
vesicles resulted in enhanced anti-tumor effects in an animal model of lung cancer [21]. The progress
of oncolytic virus-mediated therapies combined with anti-cancer drugs and the selection of effective
protocols is discussed in a recent publication [21]. Lastly, despite obvious problems in the clinical
application of gene therapies in clinical practice, a recent review reported on the application of a siRNA
approach in combination with traditional anti-cancer drugs [23].

In conclusion, the list of therapeutic tools applied in combinations includes standard drugs,
specific antibodies, oncolytic viruses, si- or sh-RNA, ultrasound radiation, local hyperthermia, exercise
and others. There are technologies available to packaging drugs, virus particles or antibodies
into multifunctional nanoparticles, liposomes or exosomes, and these constructs can be targeted
specifically to cancer cells via tumor-targeting peptides or antibodies. We found 133 records
at the site clinicaltrials.gov using the key words “nano-particle” and “cancer”. In a stage II
clinical trial (clinicaltrials.gov identifier NCT03531827) a formulation was used which consisted of
Enzalutamide serving as a first-line anti-hormonal therapy for prostate cancer patients combined with
CRLX101 nanoparticle drug conjugates composed of camptothecin, a highly selective topoisomerase
I inhibitor with anti-HIF-1α properties. Another complex which is also tested in a phase II trial to
target pancreatic duct carcinoma is composed of three well known anti-cancer drugs, nanoparticle
albumin-bound paclitaxel, gemcitabine, and cisplatin (Clinical.Trials.gov identifier NCT03410030).
Abraxane (albumin-bound paclitaxel) combined with gemcitabine showed a prolonged overall survival
and a delayed tumor growth in patients with pancreatic adenocarcinoma.

2. Molecular Chaperones as Drug Targets in Combinational Therapy

2.1. Inhibitors of HSF in Anti-Cancer Therapy Formulations

The heat shock response is a thoroughly regulated mechanism based on the activation of different
heat shock transcription factors [24,25]. The activity of HSF1 is controlled by the phosphorylation of
certain serine and threonine residues, acetylation of lysines, trimerization and its transport into the
nucleus [26]. Activated, trimeric HSF1 recognizes the heat shock element (HSE) in the promoter region
of genes coding for HSPs and regulates their transcription. Based on their molecular weights, HSPs can
be divided into different families: small HSPs (HSP27, crystallins), J-domain proteins (DNAJ, HSP40),
HSP60, HSP70, HSP90 and HSP110 (Figure 2). The role of HSF1 in cell/tissue/organism physiology is
controversially discussed. Since most HSPs, particularly HSP70 and HSP90, are known to protect cells
from deleterious effects of environmental stress, HSPs protect cells against stress-induced cell death.
In cancer cells the protective function of HSPs and their master regulator, HSF1 contribute to tumor
survival and metastatic dissemination. Thus, in the study by Dai et al. it was demonstrated that HSF1
expression was higher in the gastric cancer patients (as compared to normal tissue) and was correlated
with poor overall survival and recurrence-free survival [27]. In the previous study, when cells with
high and low malignant potential alongside their non-transformed counterparts were compared, the
authors identified HSF1-regulated transcriptional program related to highly malignant cells that was
distinct from heat shock response [28].

Multiple pro-cancer activities of HSF1 and HSP upregulation urged researchers to establish
inhibitors [29,30] (Table 2).
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Table 2. Concurrent anti-tumor therapies employing inhibitors of HSPs.

Inhibitor Concurrent Therapy Cancer Type Outcome Reference

HSF1 inhibitors

Triptolide Doxorubicin MCF-7 and MDA-MB-468 human
breast cancer

Inhibition of tumor growth and enhancement
of anti-tumor effects of doxorubicin Xiong et al., 2016 [31]

Triptolide Curcumin Ovarian cancer Tumor inhibition rate of 68.78% Liu et al., 2018 [32]

KRIBB11 Akt small molecule inhibitor
MK-2206 Breast cancer

Synergistic killing of breast cancer cells and
breast cancer stem cells; inhibition of tumor

growth
Carpenter et al., 2017 [33]

Cardenolide CL-43 Cisplatin/etoposide/doxorubicin HCT-116 human colon carcinoma Additive anti-tumor effect Nikotina et al., 2018 [34]

HSP90 inhibitors

Tanespimycin (17-AAG) Trastuzumab HER2-positive metastatic breast
cancer progressing on trastuzumab Significant anticancer activity Modi et al., 2011 [35]

Ganetespib (STA-9090) BRAF(V600E) inhibitor
vemurafenib/MEK inhibitor TAK-733 Melanoma Tumor regression in vemurafenib-resistant

xenografts Acquaviva et al., 2014 [36]

Ganetespib Anti-PD-L1 antibody STI-A1015 MC38 colon carcinoma and B16
melanoma

Enhanced anti-tumor efficacy of the
combinatorial regimen Proia et al., 2015 [37]

HSP70 inhibitors

VER-155008 17-AAD inhibitor of HSP90 NSCLC cells Synergistic effect on NSCLC cells proliferation Wen et al., 2014 [38]

VER-155008/MAL3-101 STA-9090 inhibitor of HSP90 Muscle invasive bladder cancer
(MIBC) cells Synergistic anti-tumor effect Prince et al., 2018 [39]

VER-155008 Radicicol inhibitor of HSP90 Anaplastic thyroid carcinoma cells Enhanced anti-tumor activity of combinatorial
therapy Kim et al., 2014 [40]

Pifithrin-µ Cisplatin/Oxaliplatin HT29 colorectal and PC-3 prostate
cancer cells Synergistic anti-tumor effect McKeon et al., 2016 [41]

HSP27 inhibitors

Apartorsen Docetaxel Platinum-resistant metastatic
urothelial carcinoma

Improved OS
compared to docetaxel alone Rosenberg et al., 2018 [42]

OGX-427 Autophagy inhibitor chloroquine PC-3 prostate cancer Inhibition of tumor progression in vivo Kumano et al., 2012 [43]

OGX-427 HSP90 inhibitor
PF-04929113 Castrate-resistant prostate cancer OGX-427 synergistically enhanced anti-tumor

effect of HSP90 inhibitor Lamoureux et al., 2014 [44]
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Figure 2. Inactivation of HSF1 transcription activator synergizes with anti-cancer therapy. Activation
of HSF1 leads to elevated synthesis of the set of protective heat shock proteins while inhibition of the
regulator (shown at the left side) combined with cytotoxic agents (right column) leads to enhanced
tumor cell death.

One compound, triptolide, a diterpenoid triepoxide compound isolated from the Chinese
herb Tripterygium wilfordii, has been shown to efficiently inhibit the HSPs synthesis [45]. The
mechanisms of HSF1 inactivation by triptolide include inhibition of RNA polymerase [6] or targeting
XPB, a subunit of the transcription factor TFIIH, which leads to the inhibition of RNA polymerase
II-mediated transcription [46]. Triptolide has a high anti-tumor potency; it inhibited growth of
pancreatic cancer cells in vitro already at a concentration of 50–200 nM. In in vivo models the drug
reduced tumor growth when administered in a concentration 0.2 mg/kg/day for 60 days [47]. Similar
effects of triptolide were demonstrated in cellular and animal models of neuroblastoma [48] and
osteosarcoma [49]. Administration of triptolide reduced the MDM2 expression in human breast
cancer cells and consequently, inhibited the activation of Akt. By regulating the MDM2/Akt pathway
triptolide inhibited proliferation, induced apoptosis, and caused cell cycle arrest. Earlier the drug was
demonstrated to activate caspase-mediated Bcl-2 cleavage, mitochondrial cytochrome c release and
further activation of caspases [50].

Importantly, a combination of triptolide with doxorubicin administered to nude mice bearing breast
cancer, inhibited tumor growth and demonstrated a higher anti-cancer effect than doxorubicin [31].
The clinical application of triptolide is limited by its high liver and kidney toxicity [51]. To overcome
the toxicity problem, the compound was loaded together with curcumin into nanoparticles consisting
of a mixture of mPEG-DPPE/calcium phosphate. This delivery system was found to synergistically
increase pro-apoptotic and cell-arresting effects in SKOV-3 ovarian cancer cells when compared to
the single drugs. The results of in vivo experiments showed that nanoparticles loaded by two drugs
had no significant side effects but showed a synergistic anti-cancer effect [32]. It is still unclear, which
activity of triptolide underlies its anti-cancer effects, however, reported studies on the role of HSF1 in
tumor growth and maintenance indicated that a considerable part of the anti-cancer effects may be
explained by triptolide-mediated inactivation of the heat shock response.

Another HSF1 inhibitor, benzylidene lactam compound, KNK-437, dose-dependently inhibited
the development of thermotolerance and the induction of various HSPs including HSP105, HSP70,
and HSP40 in COLO 320DM (human colon carcinoma) cells [52]. The compound sensitized bladder
cancer cells to the proteasome inhibitor bortezomib (Velcade®) in a similar manner to the action
of a sh-RNA-mediated silencing of the major stress-inducible member HSP70 (HSPA1A) [53]. The
encouraging conception of simultaneous effects of proteotoxic stress combined with a suppression of the
heat shock response through HSF1 was further exploited and extended by Bustany and co-authors who
reported that blocking HSF1 with KNK-437 in combination with bortezomib exhibited additive effects
on apoptosis induction in multiple myeloma cells from groups of patients with bad prognosis [54].

A compound termed KRIBB11 was found to inhibit the heat shock response by limiting
HSF1-dependent recruitment of p-TEFb (positive transcription elongation factor b) to the HSP70
gene promoter. The substance promoted apoptosis and induced growth arrest in human colon
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HCT-116 cells [55]. In combination with benzimidazole carbamates, parbendazole and nocodazole,
employed in treatment of colorectal cancers, KRIBB11 increased the latter potency two-fold probably
by inactivating Erk1/2 signaling cascade [56]. More recently, KRIBB11 was used concurrently with
the Akt inhibitor MK-2206 to reduce the rate of breast cancer metastasis. The application of this
combination resulted in killing of cancer cells and breast cancer stem cells almost irrespective of their
molecular subtypes. Furthermore, in a xenograft model of breast cancer a simultaneous targeting of
Akt and HSF1 significantly reduced tumor growth, delayed outcome of metastasis, and prolonged
the host survival [33]. The productive idea of concurrent and simultaneous inhibition of several
signaling pathways including the chaperone system was tested in a study in which U251 glioma
cells were treated with YM-1, a separator of the HSP70 complex with Bag-3 a co-chaperone, KRIBB11
as the inhibitor of a whole heat shock response and pan-Bcl-2 inhibitor AT-101. The drug complex
reduced the HSP70, Bag-3, and the anti-apoptotic Bcl-2-like protein Mcl-1 and caused mitochondrial
dysfunction resulting in apoptotic cell death via detachment from substrate [57]. However, Kang et al.
demonstrated that KRIBB11 could accelerate Mcl-1 degradation via Mule-dependent pathway that is
HSF-1 independent [58].

Importantly, KRIBB11 demonstrated beneficial results in inhibiting epithelial mesenchymal
transition (EMT), particularly, reduced motility and invasion. These data were obtained in an
orthotopic model of pancreatic cancer. Very similar results were reported when metformin, a known
activator of AMP-dependent protein kinase, has been employed, and it was shown that this drug was
also able to inhibit the HSF1 activity [59]. Although the authors have not applied the combination of
KRIBB11 and metformin, one may suggest that it might provide therapeutic effects on highly aggressive
tumors such as pancreatic ductal adenocarcinoma. The connection of metabolic and proteotoxic stress
was demonstrated in experiments showing that an activation of AMPK by metformin which suppresses
the HSF1 activity by phosphorylation of Ser121 inhibited tumor cell growth. Vice versa, proteotoxic
stress inactivated AMPK and down-regulated the metabolic stress response [60].

In order to inhibit HSF1 in tumor cells with an extremely high HSP70 content, like glioblastoma, the
protein kinase inhibitor D11 was applied together with 17-AAG, which is known to suppress the HSP90
activity. HSP90 inhibitors have been shown to induce resistance related to the increased synthesis of
HSP70. The combination of both drugs was successful in detaching EGFR client proteins from HSP90
and to reduce the heat shock response which led to an enhanced cytotoxicity [61]. Furthermore, as was
recently reported by Kühnel et al., combined therapeutic approach consisting of low concentrations
of the HSP90 inhibitor NVP-AUY922 and knockdown of HSF1 using RNAi-Ready pSIRENRetroQ
vectors significantly potentiated radiosensitization of tumor cells [62].

A deeper understanding of the mechanisms underlying the effects of anti-cancer drugs can unravel
unexpected activities. Triptolide was previously thought to activate caspase-dependent apoptosis [50].
However, the cardenolide UNBS1450 which has cardiotonic activity, was found to inhibit synthesis of
HSP70 both on mRNA and protein level. This indicates that the HSP70 reduction was regulated on the
transcriptional activation of HSF1. In NCI-H727 and A549 NSCLC cells and in xenograft tumor mouse
models a “non-classic” apoptosis signaling was induced by triptolide via the damage of lysosomal
membranes [63].

After screening for low-toxic HSF1 inhibitors with the help of heat-shock-element-luciferase
reporter assays we identified cardioglycoside CL-43 as a drug which was able to reduce the growth rate
of cancer cells. Furthermore, we could show that CL-43 could elicit an enhanced efficacy of inefficient
drugs like cisplatin in HCT-116 colon cancer cells [34].

In conclusion, the combinations of direct (KRIBB11) or indirect (triptolide, kinase inhibitors) HSF1
inhibitors with proteotoxic factors like proteasome inhibitors or traditional anti-cancer drugs, such as
cytostatics, can overcome the resistance of tumor cells which is based on chaperones.
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2.2. HSP90-Targeting Molecules in Anti-Cancer Therapeutic Schedules

The molecular chaperones of the HSP90 family in combination with their co-chaperones HSP70,
HSP40, HiP and HoP play an important role in proteostasis, regulation of metabolic pathways and
the protection of oncogenic factors that are involved in tumor progression and metastasis [64–66].
Like other chaperones, the functional activity of HSP90 is also dependent upon ATP. In case of ATP
depletion, the HSP90 chaperone complex cannot mediate polypeptide homeostasis and therefore
subsequently oncogenic client proteins undergo ubiquitin-mediated proteasomal degradation [67].
Application of various agents that interfere with the HSP90 chaperone cycle has emerged as a promising
approach for targeting multiple oncogenic signaling pathways that are of high importance for tumor
progression [68–70]. The employment of HSP90 inhibitors represents a plausible therapeutic strategy
to target various cancer types with an overexpression of HSP90 [71–74] (Table 2). HSP90 inhibitors can
be divided into two major groups: (i) inhibitors of the C-terminal domain (CTD) and (ii) inhibitors of
the N-terminal ATPase domain (Figure 3).
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Novobiocin, an antibiotic isolated from Streptomyces, represents one of the most potent inhibitors
that binds to the CTD of HSP90 [73]. Several preclinical in vitro and in vivo studies demonstrated
that novobiocin hampers the interaction of oncogenic client peptides and proteins with HSP90 and
thus induces their ubiquitin-proteasomal mediated degradation [73,74]. However, due to the low
therapeutic efficacy of the novobiocin several chemical modifications were subsequently proposed
including chlorobiocin and coumermycin A1. Although these agents showed a promising therapeutic
activity, none of these compounds have been assessed in clinical trials, yet [73,75]. Another inhibitor
of the C-terminal domain, the primary flavonoid component of green tea—epigallocatechin gallate
(EGCG)—was also shown to efficiently disrupt the dimerization of HSP90 [76,77]. However, subsequent
studies demonstrated low availability of EGCG, poor metabolic and chemical stability that prevented
further clinical trials of this compound.

Up-to-date the most studied inhibitors of the ATPase domain of HSP90 belong to the group
of benzoquinone ansamycins (e.g., geldanamycin (GDA)) and antifungal macrolactone antibiotics
(radicicol, RDC). As shown previously, GDA can efficiently block the phosphate region of the HSP90
binding pocket [77], whereas, RDC was demonstrated to bind to the ATPase domain of the chaperone
that binds the adenine ring of ATP to produce hydrogen-bonding interactions within the protein
binding pocket [78]. Subsequent studies have proven the therapeutic potency of GDA to reduce tumor
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progression. However, hydrophobicity and high hepatotoxicity significantly limit the application
of the inhibitor in clinical practice. Therefore, novel HSP90 inhibitor derivatives with a lower
hepatoxicity and an improved water solubility (i.e., 17-(allylamino)-17-demethoxy-geldanamycin
(17-AAG) and 17-desmethoxy-17-N,N-dimethylaminoethylaminogeldanamycin (17-DMAG)) have
been synthesized [79–81]. Modified inhibitors demonstrated an enhanced binding affinity and
therapeutic efficacy as compared to GDA. Thus, 17-AAG IC50 values constituted 8–35 nM as compared
to the IC50 values of GDA of µM range [77,82]. IC50 for 17-DMAG also ranged in nM values [83].
17-AAG represents one of the best studied HSP90 inhibitors with anti-tumor efficacy in various
cancer cell models and in subsequent clinical trials [35,84]. Although 17-AAG demonstrated a higher
tumor-selective targeting compared to GDA, subsequent clinical phase I and II trials in breast cancer [85],
metastatic pancreatic cancer [86], multiple myeloma [87], renal cell carcinoma [88], metastatic prostate
cancer [89], and metastatic melanoma [90] failed to prove the therapeutic potential of the agent. Other
synthesized small molecule inhibitors of HSP90, including AT13387, MPC3100, STA9090, XL888,
NVP-AUY922, and purine-based compounds (PU-H71, CNF-2024 (BIIB021), PU-DZ8) have been
investigated in clinical trials, however, they demonstrated only moderate clinical efficacy when applied
as a monotherapy [91,92].

In contrast, when the inhibitor 17-AAG was employed in combination with trastuzumab in
patients with HER2-positive metastatic breast cancer the authors reported an improved clinical
outcome [93]. Indeed, a combination of the HSP90 inhibitors with conventional therapies (including
chemo- and radiotherapies, targeted therapy, and immunotherapy) might significantly improve the
therapeutic outcome [36,94,95]. Therefore, a combination of the chemotherapeutic agent 5-fluorouracil
(5-FU) and anti-metabolites that impair DNA and RNA repair and synthesis, with HSP90 inhibitor
ganetespib demonstrated a sensitizing effect in colorectal cancer cells (HCT-116, HT-29) and in a
colorectal xenograft model [96]. Furthermore, a phase I clinical trial (NCT01226732) using AUY922
and capecitabine in patients with advanced solid tumors resulted in partial responses in 4/23 patients
and stable diseases (median 25.5 weeks) in 8/23 patients [97]. Subsequent preclinical studies also have
proven radiosensitization effects of HSP90 inhibitors in various tumor models [98,99].

Another therapeutic option for HSP90 inhibitors could be the combination with targeted therapies.
The addition of the multi-kinase inhibitor sorafenib to tanespimycin demonstrated clinical efficacy in 4/6
melanoma and 9/12 renal cancer patients [100]. Due to the involvement of HSP90 in tumor angiogenesis
several therapies are combining anti-angiogenic treatment with HSP90 inhibition. Although, the
application of the ziv-aflibercept and ganetespib achieved a stable disease in 3/5 patients, the study
had to be stoped due to severe adverse events [101].

Recent developments in the immunotherapy employing immune checkpoint inhibitors have led
to the investigation of combinatorial approaches with HSP90 inhibitors. Mbofung et al. has shown
an up-regulated therapeutic response to anti-CTLA4 and anti-PD-1 therapies in combination with
the HSP90 inhibitor ganetespib in vivo due to an upregulation of the interferon response genes [36].
In another study a combination of the anti-PD-L1 antibody (STI-A1015) and ganetespib in the B16
melanoma and MC38 colon carcinoma models resulted in higher therapeutic efficacy as compared
to the monotherapy regimens [37]. The effect of ganetespib could be explained partially by the
influence of the HSP90 client proteins on the PD1 and PD-L1 expression as well as HIF-1α, JAK2 and
mutated EGFR [37]. Another plausible mechanism of the anti-tumor activity of the HSP90 inhibitors
is the increased presentation of oncogenic antigens upon proteasomal degradation. The application
of 17-DMAG induced the degradation of EphA2 with a subsequent presentation of the tyrosine
kinase receptor genes to EphA2-specific CD8+ T lymphocytes which caused protective anti-tumor
immunity [102].

In conclusion, the application of HSP90 inhibitors in a series of preclinical studies demonstrated
therapeutic potential, however, subsequent clinical trials reported only moderate effects when the
reagent was used in a monotherapy. Presumably, low anti-cancer efficacy of HSP90 inhibitors could
be explained by various specificity of the agents towards the four HSP90 paralogs which include
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two cytosolic forms (HSP90α (inducible/major form) and HSP90β (constitutive/minor forms), 94-kDa
glucose-regulated protein (Grp94) in the ER (endoplasmic reticulum), and Trap1 (tumor necrosis
factor receptor associated protein 1) in mitochondria [103]. Thus Liu et al. showed that NECA
(5’-N-ethylcarboxamidoadenosine) inhibitor preferably targets cytosolic form of HSP90 with a less
affinity towards Grp94 [104]. Combinatorial regimens with conventional treatment modalities (such as
chemo- and/or radiotherapy), targeted therapy and immunotherapy could improve the anti-tumor
activity of chaperone inhibitors suggesting further experimental and clinical studies.

2.3. Combinations of HSP70 Inhibitors with Anti-Tumor Drugs

Proteins belonging to HSP70 family are evolutionary highly conserved in their ATPase and
substrate-binding domain and EEVD sequence at the C-terminus [105]. For their chaperone activity
both domains are required, the ATPase domain serves as a receptor of ATP which is attached under
the control of DNAJ class proteins and can be substituted with ADP in a reaction regulated by
a few of nucleotide exchange factors, including HSP110, proteins of Bag family and others [106]
(Figure 4). During the chaperone cycle the substrate, such as a newly synthesized polypeptide chains
or stress-damaged proteins are captured by HSP70 and released refolded or become degraded by
proteasomes via the HSP70/HSC70-Bag-CHIP complex. It is of importance that HSP70 and some of
its co-chaperones, like Hdj1/HSP40, Bag-1 and Bag-3 are also over-expressed in many cancer types
which recruit these proteins as a powerful anti-apoptotic machinery [107]. Bag-1 has a ubiquitin-like
domain, which can target HSP70/Bag-1 complexes to proteasomal degradation [108], whereas Bag-3
represents a key player for an autophagic degradation pathway of client proteins in complex with
HSPA8 [106,107]. There are numerous studies demonstrating an enhanced expression of HSP70 in
a large variety of different tumor types. HSP70 is known to reduce aggregation of client proteins
thus supporting the cellular proteostasis upon various stress conditions (i.e., oxidative stress, hypoxia,
ionizing radiation, chemotherapy, etc). To cope with aggregation-prone polypeptides HSP70 together
with its co-chaperones provides an attractive drug target. Upon drug treatment or radiotherapy the
HSP70 synthesis is further enhanced. Many anti-cancer drugs trigger multiple signaling pathways
that cause protein modifications, e.g., phosphorylation, dephosphorylation, acetylation or proteolysis.
These events can change protein conformations which then serve as a target for HSP70. HSP70 exerts
pleiotropic reactions in cancer cells which are prone to apoptosis. HSP70 binds and inactivates a
number of pro-apoptotic molecules, i.e., caspase 3/7 and thereby delays apoptosis [107–111].
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Up-to-date numerous HSP70 inhibitors were tested in various preclinical models, including
MKT-077, PES (Pifithrin-µ), VER-155008, JG-98, Aptamer A-17, apoptozole, and others [112–114]
(Table 2). These molecules bind to different parts of HSP70 with extremely high affinity and comparable
IC50 values are reached in the nM range [115]. PES and PES-Cl recognize the substrate-binding domain
(SBD); VER-155008 targets the ATP binding site, and MKT-077 links to an allosteric site near the
ATP-binding site [116–118]. Recently, as was shown by Lazarev et al. colchicine derivative AEAE has
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been shown to target several distinct sites of the binding pocket of HSP70 with an average dissociation
constant of nM [119]. A distinct group of compounds was shown to inhibit HSP70 association with its
co-chaperones of DNAJ class, exemplified by myricetin [120] and MAL3-101 [121], or with Bag family
of nucleotide exchange factors, like Thio-2 or JG-98 known to suppress binding of HSP70 to Bag-1 or
Bag-3, respectively [110,122].

The main HSP70 inhibitor function separates client proteins from the chaperone similar to those
shown for HSP90 inhibitors. In addition to its separation activity the HSP70 inhibitor JG-98 was found
to destabilize its “client proteins” Akt1 and Raf1 in breast cancer cells MDA-MB-231 and MCF-7 [123].
BT-44 a benzodioxole derivative was found to disrupt the complex of HSP70 with the apoptosis inducer
caspase 3. An etoposide-stimulated apoptosis in human U-937 leukemia cells could be recovered
by BT-44 via dissociation of caspase 3 from HSP70 [124]. Erlotinib, an efficient inhibitor of EGFR
tyrosine kinases is applied in the therapy of NSCLC harboring EGFR-activating mutations. A treatment
with erlotinib inhibited the phosphorylation at tyrosine 41 and increases HSP70 ubiquitination with
subsequent degradation of the protein. Intriguingly, induction of the HSP70 degradation enhanced
the gene mutation rates in tumor cells indicating the role of the chaperone in the cell survival [125].
Combinations of HSP70 inhibitors and anti-cancer drugs are tested to date only at a pre-clinical level. It
is not surprising that the most efficient drug complexes are using inhibitors targeting both chaperones,
HSP70 and HSP90. One approach including VER-155008 and 17-AAG was found to efficiently eliminate
NSCLC cells. VER-155008 was found to sensitize A549 cells to ionizing radiation [38]. In a more
recent study HSP70 inhibitors, VER-155008 and MAL3-101 were tested either alone or concurrently
with the HSP90 inhibitor, STA-9090, for their ability to reduce viability of muscle invasive bladder
cancer cells. Combinations of VER-155008 with MAL3-101 synergistically lowered tumor cell viability
while STA-9090+MAL3-101 also reduced cell viability but induced the expression of the cytoprotective
HSP70 [39]. In another study VER-155008 was applied with the HSP90 inhibitor radicicol. This
combination was found to be much more efficient in killing of anaplastic thyroid carcinoma cells than
radicicol alone. The effect coincided with a decrease in the amount of HSC70 cognate protein, Akt and
survivin which suggests the implication of multiple signaling cascades of apoptosis [40]. The rationale
underlying the anti-chaperone drug combination effect may be based on the release of oncogenic client
proteins from the chaperones which are important for cancer cell proliferation/survival and thereby
allowing an improved apoptosis induction by cytostatic drugs. On the other hand, HSF1 is also among
the client proteins of HSP90 and its release and subsequent activation causes an increased HSP70
synthesis which is cytoprotective. This unwanted effect must be neutralized by a co-administration of
an HSP70 inhibitor.

One of the few proteotoxic factors approved for clinical use is local hyperthermia which besides
positive anti-cancer effects causes an elevation of the expression of HSPs and an enhanced survival
of tumor cells. This adverse effect can also be surmounted by HSP70 inhibitors. In two reports
PES demonstrated a synergistic tumoricidal effect when applied to LNCaP and DU-145 human
prostate cancer cells or administered before the application of magnetic fluid hyperthermia to HeyA8
intraperitoneal tumor model [126,127]. Proteotoxic stress which is a challenge for HSF1, HSP90 and
also for HSP70 can be caused by inhibitors of proteasomes and autophagy. In a study performed to
understand how to break HSP70-mediated protection rhabdomyosarcoma cells which are resistant
to MAL3-101 chaperone inhibitor were genetically engineered. Notably, the resulting cells acquired
activated endoplasmic reticulum-associated degradation pathways and an increased activity of
autophagy. Chemical inhibitors (chloroquinone) or siRNA-mediated knock-down of the autophagy
protein (ATG-5) restored MAL3-101 sensitivity and caused apoptosis [128].

A further interesting approach to increase the capacity of drug combinations with HSP70 inhibitors
was recently demonstrated by Yaglom and coauthors. JG-98 was reported to dissociate the functional
link between HSP70 and the co-chaperone Bag-3 to cause tumor cell death. A protein screening was
performed to reveal efficient combinations of the inhibitor with other drugs. The search performed
with Broad Institute Connectivity Map database and the IPAD service provided by ActivSignal, Inc.
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generated two pathways which are sensitive to concurrent treatment, proteasomes and RNApolII
that were targeted by JG-98 concurrently with MG-132 and alpha-amanitin, respectively. Both drugs
demonstrated synergistic anti-tumor activity in models of breast cancer [129].

Inhibition of HSP70 chaperone activity may lead to multiple defects in tumor cell signaling,
particularly those involved in apoptosis. In one of such studies HSP70 inhibitor, pifithrin-µ was
found to complement with the caspase-activating capacity of gambolgic acid leading to cumulative
anti-tumor effect by targeting distinct pathways of apoptosis [130]. Pifithrin-µ was also employed in
combination with cisplatin or oxaliplatin in the treatment of prostate PC-3 and colorectal HT-29 cancer
cells and showed “moderate” and “significant” synergistic effects, respectively [41].

Another HSP70 inhibitor, PET-16, was employed to overcome the resistance of melanoma. In this
study two polypeptides involved in enhanced tumorigenicity, phospho-FAK (PTK2) and mutant BRAF,
were shown to be HSP70 client proteins. PET-16 synergized with BRAF inhibitor PLX4032 and reduced
the level of phospho-FAK, impaired migration, invasion and metastasis in cell and animal models of
melanoma [112].

Most HSP70 inhibitors were generated based on calculations of the efficacy of their molecule
binding activity to HSP70 structure motifs e.g., with the use of molecular docking or molecular
dynamics programs. Such approaches gave rise to YM-1, JG-98 [131] or to YK-5 chemical probe [116].
In our study the search of HSP70 inhibitors was focused on the compounds able to suppress two
basic activities of HSP70, substrate-binding and refolding capacities. The appropriate assays were
created and after the testing of more than 1000 compounds, 2–3 chemicals were found to inhibit the
abovementioned activities of HSP70. One of these compounds, an amino-ethyl-amino-derivative of
colchicine (AEAC) was found to bind the chaperone as proved by high-resolution assays including
molecular docking and microscale thermophoresis (MST). Notably, AEAC was able to synergize
with doxorubicin in killing mouse melanoma and rat glioblastoma cells in vitro and in vivo [119].
Interestingly, the toxicity of AEAC was lower by at least 20-fold than colchicine and the new compound
had no microtubule-dissociating activity.

HSP70-binding peptides constitute distinct classes of HSP70 inhibitors. One of those, aptamer A17,
expressing in human lung and breast cancer cells was demonstrated to increase the radiosensitizing
effect of the HSP90 inhibitor NVP-AUY922, though the aptamer per se did not affect apoptosis [132].
The authors speculate that such effect may relate to the increase of DNA double strand breaks or
up-regulated G2/M arrest caused by A17 expression. The aim of our study was to explore the effects
of HSP70 peptides on the self-chaperone activity. According to numerous data certain peptide parts
of the chaperone may interact with each other in the process of the protein oligomerization or with
structurally similar and/or homologous peptides of the nucleotide-exchange factor HSP110. The data
obtained with the aid of substrate-binding and refolding assays performed similarly to that in the
search of AEAC (see above) allowed us to select the peptide showing high HSP70 binding capacities.
Furthermore, the peptide ICyt2 significantly elevated the chemosensitivity of A431 epithelial carcinoma
cells towards doxorubicin [124].

In conclusion, the inhibitors of HSP70 chaperone demonstrated a certain therapeutic potential
that was further enhanced when the agents were combined with other treatment modalities. However,
future preclinical studies should also include analysis of the inhibitors specificity towards HSP70 family
homologous proteins, which currently include members in endoplasmatic reticulum and mitochondria
as well as six members in the cytosol and nucleus. Low affinity of the inhibitor to various HSP70
homologs could result in the cancer cell resistance towards employed therapeutic strategies.

Apart from the inhibition of HSP70 the tumor-specific membrane expression of HSP70 can serve
as a tumor target for anti-tumor immune responses [133,134] or for the specific nanoparticle-based
therapies [135,136]. Our group has established a method to trigger the activity of natural killer (NK)
cells by an HSP70 peptide TKD and low dose IL-2 to recognize and kill highly aggressive membrane
HSP70 positive tumor cells [137]. Subsequent phase I clinical study demonstrated that treatment of
tumor patients with autologous ex vivo HSP70-derived peptide plus IL-2 activated NK cells was safe
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and well tolerated [138]. The trial showed that intravenous administration of escalating numbers of
treatment cycles (up to 6 cycles) of stimulated NK cells did not induce any severe toxicities. Clinical
responses were assessed in patients with histologically confirmed metastatic colorectal cancer (n = 11)
and non-small cell lung cancer (NSCLC) (n = 1). One stable disease was observed in one patient with
colorectal cancer and one mixed response in NSCLC patient [138]. Presently the efficacy of TKD/IL-2
activated, autologous NK cells is tested in a randomized phase II clinical trial in patients with advanced
NSCLC after standard radio-chemotherapy [138]. Patients (n = 90) with NSCLC in non-metastasized
but locally advanced stages IIIA and IIIB after standard radio-chemotherapy (60–70 Gy; platinum
based chemotherapy) will be enrolled and treated four times every 2–6 weeks with ex vivo TKD/IL-2
stimulated NK cells [139]. Subsequent preclinical studies further demonstrated that combination of
activated NK cells with anti-PD-1 monoclonal antibodies resulted in tumor growth delay and increased
overall animal survival in syngeneic GL261 glioblastoma or human xenograft A549 lung tumor models,
indicating the therapeutic potency of adoptive cell therapies combined with immune check point
inhibitors [140]. Indeed, recent case study of the patient with inoperable NSCLC (CT4, cN3, cM0,
stage IIIb) treated with autologous ex vivo activated (TKD/IL-2) NK cells with anti-PD-1 antibody as a
second-line therapy demonstrated a long-term tumor control [141].

2.4. Combinations of HSP27 Inhibitors with Anti-Tumor Drugs

HSP27 (HSPB1) belongs to a separate group of so-called small heat shock proteins. Like many
other chaperones it demonstrates cytoprotective activities. Its chaperone activity is induced by the
phosphorylation and thereby HSP27 multimers prevent aggregation and/or regulate activity and
degradation of certain client proteins. HSP27 expression becomes highly up-regulated in cancer cells
after chemotherapy indicating that the chaperone impacts on tumor cell resistance and progression
in bladder, lung and other types of cancer [142]. It is also of importance that HSP27 promotes
interleukin-6-mediated EMT in prostate cancer cells via modulation of STAT3/Twist signaling [143].
Among the HSP27 inhibitors most notable is OGX-427, an anti-sense oligonucleotide (apatorsen)
(Table 2). The efficacy of the oligonucleotide was proven in a variety of animal cancer models and a few
years ago it was studied in phase II clinical trials [144]. High therapeutic activity of OGX-427 was shown
in a few other anti-cancer combinations, particularly with traditional drugs, such as gemicatabine [145]
or docetaxel [42] in phase II clinical trials. As in the case of other chaperone inhibitors their combinations
with proteotoxic factors showed a remarkable efficacy. In one of the studies OGX-427 was employed
concurrently with inhibitor of autophagy chloroquinone which significantly inhibited prostate tumor
growth in animal models [43]. Also similar to concurrent inhibition of two major chaperones (see
the description of combination of HSP70/HSP90 inhibitors in this section) administration of Hsp90
inhibitor PF-04928473 with OGX-427 was found to efficiently suppress tumor cell growth and induce
apoptosis. In a xenograft castrate-resistant prostate cancer model the above mentioned combination
caused an enhanced delay of tumor growth and a prolonged survival of animals [44].

3. Conclusions

Heat shock proteins have been demonstrated to play key roles in tumor progression and resistance
to currently applied therapies and thus could be employed as a potential target in development of
new therapeutic approaches. However, recent clinical trials using established inhibitors against HSP90
or HSP70 demonstrated limited clinical efficacy and undesired toxicity when being employed as a
monotherapy. Presumably, combinations of the inhibitors with standard chemotherapeutic agents
or targeted therapies might improve the anti-tumor potency of the HSP-inhibitors even at lower
concentrations and thereby reduce their side effects. Another approach is based on combinations of
several HSP inhibitors in cancer therapy. A combination of HSP90 and HSP70 inhibitors could revert
the compensatory effects of HSP90 inhibitors towards an enhanced expression of HSP70 in cancer
cells. Novel approaches using different HSP-inhibitors in combination with conventional therapeutic
strategies might provide promising strategies to improve clinical outcome of therapy-resistant cancers.
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Abbreviations

17-AAG 17-(allylamino)-17-demethoxygeldanamycin
17-DMAG 17-desmethoxy-17-N,N-dimethylaminoethylaminogeldanamycin
ADP adenosine diphosphate
Akt serine-threonine protein kinase
AMPK AMP-activated protein kinase
ATP adenosine triphosphate
ATPase adenosine triphosphatase
Bcl-2 B-cell lymphoma 2 protein
BRAF B-Raf proto-oncogene
CTD C-terminal domain
CTLA-4 cytotoxic T-lymphocyte-associated protein 4
EGCG epigallocatechin gallate
EGFR epidermal growth factor receptor
EMT epithelial mesenchymal transition
EphA2 ephrin type-A receptor 2
GDA geldanamycin
GRP94 glucose related protein
HER human epidermal growth factor receptor
HIF-1α hypoxia-inducible factor 1-alpha
HSE heat shock element
HSF1 heat shock factor 1
HSP heat shock proteins
JAK2 Janus kinase 2
KRAS K-Ras proto-oncogene
MAPK mitogen-activated protein kinase
MCL-1 induced myeloid leukemia cell differentiation protein
MDM2 mouse double minute 2 homolog
MEK mitogen-activated protein kinase
mTOR mammalian target of rapamycin
NBD nucleotide-binding domain
NSCLC non-small cell lung cancer
PAC-1 procaspase activating compound 1
PES 2-phenylethynesulfonamide, pifithrin-µ
PD-1 programmed cell death protein 1
PD-L1 programmed death-ligand 1
pTEFb positive transcription elongation factor b
RDC radicicol
TFIIH transcription factor II human
XPB xeroderma pigmentosum type B
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