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Abstract

Purpose

Development of a supervised machine-learning model capable of predicting clinically rele-

vant molecular subtypes of pancreatic ductal adenocarcinoma (PDAC) from diffusion-

weighted-imaging-derived radiomic features.

Methods

The retrospective observational study assessed 55 surgical PDAC patients. Molecular sub-

types were defined by immunohistochemical staining of KRT81. Tumors were manually

segmented and 1606 radiomic features were extracted with PyRadiomics. A gradient-

boosted-tree algorithm was trained on 70% of the patients (N = 28) and tested on 30% (N =

17) to predict KRT81+ vs. KRT81- tumor subtypes. A gradient-boosted survival regression

model was fit to the disease-free and overall survival data. Chemotherapy response and

survival were assessed stratified by subtype and radiomic signature. Radiomic feature

importance was ranked.

Results

The mean±STDEV sensitivity, specificity and ROC-AUC were 0.90±0.07, 0.92±0.11, and

0.93±0.07, respectively. The mean±STDEV concordance indices between the disease-free

and overall survival predicted by the model based on the radiomic parameters and actual
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patient survival were 0.76±0.05 and 0.71±0.06, respectively. Patients with a KRT81+ sub-

type experienced significantly diminished median overall survival compared to KRT81-

patients (7.0 vs. 22.6 months, HR 4.03, log-rank-test P = <0.001) and a significantly

improved response to gemcitabine-based chemotherapy over FOLFIRINOX (10.14 vs. 3.8

months median overall survival, HR 2.33, P = 0.037) compared to KRT81- patients, who

responded significantly better to FOLFIRINOX over gemcitabine-based treatment (30.8 vs.

13.4 months median overall survival, HR 2.41, P = 0.027). Entropy was ranked as the most

important radiomic feature.

Conclusions

The machine-learning based analysis of radiomic features enables the prediction of sub-

types of PDAC, which are highly relevant for disease-free and overall patient survival and

response to chemotherapy.

Introduction

Pancreatic ductal adenocarcinoma (PDAC) carries the worst prognosis of all tumor entities.

Complete resection, often combined with an adjuvant chemotherapy regimen, remains the only

curative therapy option in PDAC. In the metastatic setting, gemcitabine/nab-paclitaxel or FOL-

FIRINOX-based chemotherapy have been the mainstay in the treatment of PDAC [1–3]. How-

ever, although both intensified treatment protocols increased response rates up to approximately

30%, a substantial number of patients does not respond or acquires resistance in a considerably

short time. Pre-clinical and clinical evidence suggests differential response of specific PDAC sub-

types to these treatments. Among these, a particularly aggressive subtype, termed quasi-mesen-

chymal, basal-like or cytokeratin 81 positive (KRT81+) [4,5] has been investigated and found to

be more sensitive to gemcitabine treatment in vitro [6] and less sensitive to FOLFIRINOX in a

prospective clinical trial [7]. Thus, pre-therapeutic identification of specific subtypes in pancre-

atic cancer is urgently required to guide individual treatment decision.

So far, molecular profiling has relied on tissue biopsies, which are prone to undersampling,

not least because of this entity’s morphological heterogeneity, which manifests as a heterogenic

mix of tumor cell clusters, stroma and non-tumoral cell infiltrates. In addition, molecular sub-

typing requires high tissue quality and is both costly and time consuming, thus at current not

introduced in routine patient care.

Non-invasive diffusion weighted-magnetic resonance imaging (DW-MRI, DWI), is an

imaging technique which is part of the routine diagnostic work-up in many centers. It mea-

sures the random motion of water molecules and can thus quantify tissue microstructure and

heterogeneity with high sensitivity [8]. Radiomics, i.e. the computer-based analysis of non-per-

ceptual image features, provides a novel tool for the evaluation of DWI beyond traditional

descriptive radiology. Recent work has shown its potential in e.g. the differentiation of tumor

grading or the prediction of therapy response and survival in various tumor entities including

PDAC [9,10].

In the current study we developed a machine learning algorithm capable of predicting clini-

cally relevant histopathological PDAC subtypes from pre-operative DW-MRI derived ADC

maps, evaluated tumor subtype-stratified overall survival for different chemotherapy regimens

and assessed the clinical utility of this radiomic algorithm in the prediction of patient survival

and chemotherapy response.

Machine learning predicts histopathological subtypes of pancreatic ductal adenocarcinoma
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Materials and methods

Study design

The study was designed as a retrospective observational cohort study matched on histopatho-

logical tumor subtype.

Data collection, processing and analysis were approved by the institutional ethics commit-

tee (Ethics Commission of the Faculty of Medicine of the Technical University of Munich,

protocol number 180/17). The requirement for consent was waived. All procedures were car-

ried out in accordance to pertinent laws and regulations.

The STROBE checklist and inclusion flowchart can be found in S1 File. In brief, we consid-

ered 102 consecutive patients with final histopathological diagnosis of PDAC of the head or

body for inclusion in the study. Patients without a final diagnosis of PDAC, with unclassifiable
tumor subtype, who had undergone prior therapy (chemotherapy, resection prior to enrol-

ment), died within the first 6 weeks of follow-up (to limit bias from postoperative complica-

tions), did not undergo the full imaging protocol or did not have technically sufficient imaging

available (due to e.g. motion artifacts or stent placement), were excluded. A total of 55 patients

who underwent surgical resection in curative intention were included in the study using histo-

pathological subtype as the matching criterion. 27 patients with a KRT81+ subtype and 28

patients with a KRT81- subtype [5] were included. The follow-up interval began on the 1st of

January, 2010 and ended on the 31st of December 2016. All patients died within the follow-up

interval thus observed (uncensored) endpoint data is available for all patients. For 21 patients,

follow-up data and histopathological data was sourced from the “PR2” cohort described in [5].

For all other patients, clinical follow-up was handled by the departments of surgery and inter-

nal medicine, clinical data was sourced from the hospital’s clinical system and histopatholog-

ical data was generated during the study. Radiomic data for all patients was generated during

data analysis. All analyses were performed on pseudonymized datasets by separate individuals

(G.K. and S.Z.) from January to May 2019.

Clinical data

The following clinical data was collected: age at diagnosis, sex, pTNM, R, G, tumor volume

(from the final histopathological report), ECOG-status, adjuvant chemotherapy (gemcitabine-

based vs. no chemotherapy), palliative chemotherapy (gemcitabine-based vs. FOLFIRINOX)

and lymph-node ratio (LNR). Disease-free survival was defined as the time from diagnosis to

tumor recurrence or occurrence of metastatic disease and overall survival as the time from

diagnosis to disease-related death.

Imaging data

Patients underwent magnetic resonance imaging (MRI) at 1.5T (Siemens Magnetom Avanto,

release VB17). The protocol included the following sequences: axial and coronal T2-weighted

spin echo (SE) images at 5mm; axial T1w gradient echo (GE) images at 5mm before contrast

media injection and during the arterial, pancreatic parenchymal, portal-venous, systemic

venous and delayed phases (as determined by testing bolus injection); axial unidirectional dif-

fusion-weighed imaging at b-values of 0, 50, 300 and 600 with echo-planar imaging (EPI) read-

out and ADC map calculation. ADC map reconstructions were 5.5x5.5x5 mm (xyz) to a

192x192 voxel matrix. Furthermore, single-shot T2w magnetic resonance cholangiopancreato-

graphy (MRCP) was performed and reconstructed as a radial maximum intensity projection

(MIP) series. The imaging protocol, and the technical software and hardware specifications of

the MRI machine remained unaltered during the data acquisition period.
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Image segmentation

The datasets were exported in pseudonymized form to a segmentation workstation running

ITK-SNAP v. 3.8.0 (beta). Segmentation was performed under radiological reporting room

conditions by consensus reading of two experienced observers (G.K. and S.Z.). After a period

of two weeks, datasets were shuffled by a third person (F.L.) and segmented again by the same

observers. Segmentations were then quality-controlled by an abdominal radiologist with>10

years of experience in pancreatic MRI (R.B) and the best segmentations retained. Segmenta-

tion was performed manually in the b = 600 images and transferred to the ADC maps. All

other sequences were available to observers for anatomical correlation.

Biostatistical and machine learning modeling

For assessing bias due to clinical confounders, overall survival time was evaluated by a multi-

variate Cox proportional hazards model. The distributions of covariates were compared

between groups with different histopathological subtype using Fisher’s exact test.
Biostatistical modeling was performed using the Python (v.3.7.3) packages Lifelines and Sci-

kit-Survival [11]. Kaplan-Meier-Plots were drawn in GraphPad Prism (v.8). For all inferential

statistical procedures, a P-value of<0.05 was considered statistically significant.

Image postprocessing, feature extraction, feature preprocessing, feature engineering and

machine learning modeling are described in S1 File. In brief, radiomic features were derived

using PyRadiomics (v. 2.1) [12] yielding a total of 1606 features, of which 40 were retained after

exclusion of features with low-variance or repeated segmentation instability. Unless otherwise

noted, a randomized, 10-fold shuffle-splitting cross-validation strategy was used with 70%

(N = 38) of the cohort used for training and 30% (N = 17) for testing.

For the prediction of tumor subtype, a supervised Gradient Boosted Decision Tree model

(XGBoost [13], instantiated as a binary classifier within the Python library scikit-learn) was fit

with histopathological subtype as a binary label to the radiomic features and tested for predic-

tive sensitivity, specificity and ROC-AUC. Significance testing for model evaluation metrics

was carried out using permutation testing [14]. The threshold probability for classification was

the default value of .50. Feature importance was assessed by the inbuilt feature importance

classifier (using the “gain” parameter).

For survival modeling, two strategies were followed: For assessing the agreement between

model survival predictions and actual patient survival, the cohort was split into an interleaved

training/testing set of 70%/30% and a stochastic gradient boosted survival regression model

was trained using a subsampling tree building approach. The concordance indices between the

resulting proportional hazards survival model and the actual patient survival of the unseen

holdout set were calculated separately for disease-free and overall survival. 95% confidence

intervals were calculated by bootstrap resampling. For evaluating the capacity of the model to

separate between patients with a high and low survival risk, disease-free and overall survival

were assessed for patients for whom the algorithm predicted a KRT81+ subtype (designated as

KRT81+ or high risk signature) vs. patients predicted KRT81- (low risk signature). The

Kaplan-Meier/ log-rank methods were used to compare the survival functions in the cross-val-

idation folds.

Finally, for the assessment of chemotherapy sensitivity, disease-free and overall survival

were evaluated stratified by radiomic signature (KRT81+/high risk vs. KRT81-/low risk) and

chemotherapy regimen under the assumption of a differential response of the subtypes identi-

fied by the signature to the applied chemotherapy regimen, using the Kaplan-Meier/log-rank

methods in the cross-validation folds.
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Histopathological workup

Histopathological staining and immunohistochemical workup were performed by application

of surrogate markers to determine the molecular subtype of PDAC based on the previously

established immunohistochemical protocol described in [5]. In brief, 2μm sections were

stained for HNF1a and KRT81+ and tumors were categorized into either one of two classes:

KRT81+[/HNF1a-] or KRT81-[/HNF1a+](Fig 1). Tumors positive or negative for both mark-

ers were excluded, the former due to recently reported suspicions of contamination with aci-

nar cells [15], the latter due to unclassifiability.

Results

The molecular subtype of PDAC was significantly associated with overall survival. Patients

with a KRT81+ subtype experienced significantly diminished overall survival (7.0 [1.93 to

29.0] vs. 22.6 [2.63 to 96.97] months median survival, HR 4.03 log-rank-test P =<0.001, Fig 2,

Table 1). No other covariate was significantly associated with overall survival in this cohort

and the baseline distribution of clinical covariates did not differ significantly between the two

patient subcohorts (Table 2).

The machine learning algorithm achieved a mean±STDEV sensitivity, specificity and

ROC-AUC of 0.90±0.07, 0.92±0.11, and 0.93±0.07, respectively; all P = 0.01 (Fig 3).

The feature importance evaluation of the algorithm yielded 13 radiomic parameters with an

importance greater than zero for the classification process. Among these, entropy, a radiomic

feature derived from the histogram of the original image and signifying the degree of heteroge-

neity in the tumor region [16], was classified as the most important feature by a large margin.

Fig 1. Histopathological samples of two patients showing comparable tissue morphology in H&E staining (A,C) but a

KRT81+ subtype (B) in one patient and KRT81- subtype (D) in the other patient.

https://doi.org/10.1371/journal.pone.0218642.g001
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Fig 2. Patients with a KRT81+ subtype experienced significantly diminished overall survival.

https://doi.org/10.1371/journal.pone.0218642.g002

Table 1. Multivariate Cox proportional hazards analysis results of clinical parameters.

Parameter coef exp(coef) p lower 0.95 upper 0.95

Subtype
(KRT 81+ vs. KRT 81-)

1.44 4.03 <0.001 0.76 2.12

pN (0 vs. 1) 1.20 3.32 0.20 -0.63 3.03

Age 0.02 1.02 0.30 -0.01 0.05

pM (0 vs. 1) 0.50 1.65 0.30 -0.45 1.44

Palliative CTX
(Gem mono vs. FOLFIRINOX)

-0.39 0.68 0.32 -1.16 0.38

pT 0.22 1.25 0.36 -0.25 0.70

Tumor Volume -0.01 0.99 0.38 -0.04 0.01

Grading (2 vs. 3) 0.21 1.24 0.49 -0.40 0.83

Adjuvant CTX
(Gem-based vs. None)

-0.45 0.64 0.53 -1.85 0.95

LNR -2.69 0.07 0.65 -14.23 8.85

R (0 vs. 1) -0.14 0.87 0.69 -0.84 0.56

Sex (F vs. M) 0.08 1.08 0.81 -0.57 0.73

ECOG (0 vs. 1) -0.06 0.94 0.88 -0.81 0,70

https://doi.org/10.1371/journal.pone.0218642.t001
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All features alongside their importance metrics can be found in Table 3 and further informa-

tion about the radiomic parameters can be found in S1 File.

To test the association of the radiomic parameters with patient survival, a survival regres-

sion model including all radiomic features was developed. The concordance index between

model predictions and actual survival on the entire dataset was 0.76±0.05 [95% CI 0.66–0.86]

for disease-free and 0.71±0.06 [95% CI 0.60–0.80] for overall survival.

Patients with a KRT81+ (high risk) radiomic signature experienced diminished disease-free

and overall survival. Over the 10 cross-validation folds, the median hazard ratio for patients

with a high risk vs. a low risk radiomic signature was 3.08 [range 0.46 to 3.37] for disease-free

and 3.04 [range 0.27 to 3.36] for overall survival. The radiomics-derived stratification led to a

Table 2. Distribution of clinical parameters between the cohorts with KRT81+ and KRT81- tumor subtypes alongside crosstabulation results.

Parameter KRT 81+

Subcohort (27)

STDEV KRT 81-

Subcohort (28)

STDEV P

Age 67 11.7 65 10.5 .52

Adjuvant CTX Gem-based: 25,Did not receive: 2 Gem-based: 26, Did not receive: 2 -

Palliative CTX Gem-based: 14, FOLFIRINOX: 13 Gem-based: 16, FOLFIRINOX: 12 .78

Experienced Event Yes: 27 Yes: 28 -

G 2: 16, 3: 11 2: 15, 3: 13 .79

pM 0: 22,1: 5 0: 23,1: 5 1.0

pN 0: 6, 1: 21 0: 8, 1: 20 .76

pT 1: 3, 2: 2, 3: 22 1: 3, 2: 3, 3: 22 -

R 0: 20, 1: 7 0: 21, 1: 7 1.0

Sex Female: 12, Male: 15 Female: 13,Male: 15 1.0

ECOG 0:11,1:16 0:13,1:15 .79

Tumor Volume (ml) 16.4 15.6 15.0 14.0 .72

Lymph Node Ratio 0.12 0.07 0.10 0.07 .29

P: Fisher’s exact test P

https://doi.org/10.1371/journal.pone.0218642.t002

Fig 3. ROC curves (colored) and average ROC-curve (black dotted) over 10 random stratified shuffle-splits of the

dataset.

https://doi.org/10.1371/journal.pone.0218642.g003
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statistically significant difference in survival functions (log-rank-test p<0.05) in 7 out of 10

cross-validation folds for disease-free and in 8 out of 10 folds for overall survival. Figs 4 and 5

show exemplary survival curves. All survival curves can be found in the S1 File.

Table 3. Radiomic features alongside their importance as ranked by the algorithm.

Feature Importance

original_firstorder_Entropy 0.73

gradient_firstorder_Kurtosis 0.10

log-sigma-1-0-mm-3D_glcm_Imc2 0.09

log-sigma-3-0-mm-3D_firstorder_Kurtosis 0.05

original_glszm_SizeZoneNonUniformityNormalized 0.005

wavelet-HHL_glcm_Imc2 0.005

wavelet-HHL_glszm_SmallAreaEmphasis 0.004

wavelet-HHL_glszm_ZonePercentage 0.003

original_shape_Maximum2DDiameterRow 0.003

log-sigma-2-0-mm-3D_glszm_SmallAreaHighGrayLevelEmphasis 0.002

original_glszm_LargeAreaLowGrayLevelEmphasis 0.001

wavelet-HLL_glszm_ZonePercentage 0.001

wavelet-LHL_firstorder_Kurtosis 0.0005

https://doi.org/10.1371/journal.pone.0218642.t003

Fig 4. Exemplary Kaplan-Meier disease-free survival curve drawn from the 10 cross-validation folds representing the median hazard

ratio. Patients with a high risk radiomic phenotype experienced significantly diminished survival (7.90 vs. 24.20 months median DFS, log-
rank-test p = 0.004, HR = 3.17, N = 17).

https://doi.org/10.1371/journal.pone.0218642.g004
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For evaluating the potential of the radiomic algorithm to inform the choice of palliative che-

motherapy regimen, overall survival was evaluated stratified by radiomic signature (KRT81+/

high risk vs. KRT81-/low risk) and assessed separately by selected chemotherapy regimen.

Patients with a KRT81+ radiomic signature experienced prolonged overall survival under pal-

liative gemcitabine therapy compared to FOLFIRINOX (median HR 1.13 [range 0.03 to 2.57])

but statistical significance was only observed for log-rank-tests of 2 out of 10 cross-validation

folds. Inversely, patients with a KRT81- radiomic signature experienced improved overall sur-

vival under palliative FOLFIRINOX compared to gemcitabine (median HR 2.89 [range 0.99 to

3.34] with statistical significance observed in 6 out of 10 cross-validation folds. Figs 6 and 7

show exemplary survival curves and all survival curves can be found in the S1 File.

Lastly, overall survival was evaluated separately for histopathological subtypes stratified by

chemotherapy regimen. Patients with a KRT81+ histopathological subtype who received gem-

citabine-based palliative chemotherapy experienced significantly improved survival compared

to patients with KRT81+ tumors who received FOLFIRINOX (10.14 vs. 3.8 months median

survival, HR 2.33, P = 0.037, Fig 8). Conversely, KRT81- subtype patients experienced signifi-

cantly improved survival under FOLFIRINOX chemotherapy compared to gemcitabine-based

regimens (30.8 vs. 13.4 months median survival, HR 2.41, P = 0.027, Fig 9).

Fig 5. Exemplary Kaplan-Meier overall survival curve drawn from the 10 cross-validation folds representing the median hazard ratio.

Patients with a high risk radiomic phenotype experienced significantly diminished survival (10.97 vs. 25.70 months median OS, log-rank-test
p = 0.006, HR = 3.03, N = 17).

https://doi.org/10.1371/journal.pone.0218642.g005
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Discussion

In this exploratory study, we demonstrate that radiomic analysis of ADC maps paired with

machine-learning modeling can discriminate with high sensitivity and specificity between two

groups of histomorphologically defined molecular subtypes of pancreatic ductal adenocarci-

noma (PDAC), associated with significantly different disease-free and overall survival and pre-

dictive of distinct responses to commonly employed chemotherapeutic regimens in the

palliative setting. Although our findings should be interpreted mindful of the small cohort

size, we provide evidence for the utility of radiomics and machine learning for the non-inva-

sive therapy stratification and survival risk-assessment of pancreatic cancer patients.

The potential of non-invasive imaging-derived biomarkers (from non-perceptual image

features or source data) has been demonstrated in several studies with the prediction of tumor

genetics and patient outcome [17–19]. However, their widespread application beyond proof-

of-principle studies requires the identification of stable and reproducible parameters, embed-

ded within a standardized and quality-controlled workflow [20–23].

Among the parameters tested for classification in our study, Entropy was ranked the

most important by the algorithm. Entropy and Entropy-related features, which express disor-

der and heterogeneity of the image and -by extension- are hypothesized to mirror tumoral

Fig 6. Exemplary Kaplan-Meier plot of patients with a predicted KRT81+/ high risk radiomic signature drawn from the 10 cross-

validation folds and representing the median hazard ratio. Patients who received gemcitabine experienced improved survival, although no

statistical significance is observed in this case (median survival 4.70 vs 9.30 months, p = 0.23, HR = 1.03, N = 7).

https://doi.org/10.1371/journal.pone.0218642.g006
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heterogeneity itself, have been demonstrated in (meta-)analyses of several different tumor enti-

ties and across imaging modalities as reliable and repeatable quantitative parameters [24–26].

Considering the sampling errors immanent in this histopathologically heterogeneous

tumor entity, the complexity of mutational events (e.g. variable amounts of mutational Kras
[27] and the likelihood of ongoing transitional processes, Entropy as a continuous variable can

be imagined as a non-invasive measure of the KRT81+ partition of the tumor region. To test

this hypothesis would require an integrated whole-tumor analysis, including high resolution,

data-rich imaging, histopathology and molecular profiling [28].

The rapid evolution of new therapeutic options in the treatment of PDAC requires the

development of markers for a reliable pre-therapeutic patient stratification and -in light of the

above-mentioned tumoral plasticity, therapy monitoring. Conroy et al. demonstrated signifi-

cantly improved survival rates of FOLFIRINOX over Gemcitabine monotherapy in the pallia-

tive setting [3]. However, the COMPASS trial [7] demonstrated differential response of the

basal-like versus non-basal-like PDAC subtypes to FOLFIRINOX treatment, which is well in

accordance with our study results. If further validated in prospective trials, these findings

could have tremendous implications in patient stratification and subtype-guided therapy selec-

tion. In addition, targeted therapies such as Olaparib, are highly effective yet even more spe-

cific for a certain molecular profile [29] and many new targeted, stroma- and immune-based

treatment strategies are being explored. This increasing complexity requires robust and cost-

Fig 7. Exemplary Kaplan-Meier plot of patients with a predicted KRT81-/ low risk radiomic signature drawn from the 10 cross-

validation folds and representing the median hazard ratio. Patients who received FOLFIRINOX experienced significantly improved

survival, (median survival 17.83 vs 30.10 months, p = 0.01, HR = 2.57, N = 10).

https://doi.org/10.1371/journal.pone.0218642.g007
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efficient tools for clinically relevant patient stratification to best leverage current knowledge

and advance the field. Informed decision based on molecular profiling (microdissection and

genome sequencing) as applied in the COMPASS trial faces serious limitations (i.e. sampling

error, high cost) and is therefore currently not feasible in routine patient care. Quantitative

noninvasive imaging, and especially radiation and contrast-free quantitative modalities such

as DWI may serve this purpose and are thus excellent candidates for exploration in a prospec-

tive trial design.

Limitations of this study are the small cohort size, precluding statistical significance in the

survival predictions and necessitating a cross-validation approach, and the lack of an external

testing cohort as well as the retrospective, single-center nature of the investigation. Such issues

are still common in the imaging field and compounded by the lack of standardization in

sequence acquisition between institutions and of overarching registers or study centers per-

mitting patient pooling. Recently, initiatives have arisen to combat some of these issues by

harmonization of MRI protocols [30] and the standardization of imaging markers [31].

In conclusion, our study is an exploratory venture into the field of quantitative imaging

analysis and radiology/pathology-correlation in PDAC. We encourage the validation of our

findings in a larger cohort and in a prospective trial design.

Fig 8. Patients with KRT81+ subtype experience longer overall survival under palliative gemcitabine chemotherapy.

https://doi.org/10.1371/journal.pone.0218642.g008
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Supervision: Fabian Lohöfer, Hana Algül, Ernst Rummeny, Helmut Friess, Roland Schmid,

Wilko Weichert, Jens T. Siveke, Rickmer Braren.

Validation: Georgios Kaissis, Jens T. Siveke, Rickmer Braren.

Visualization: Georgios Kaissis, Katja Steiger, Hsi-Yu Yen.

Writing – original draft: Georgios Kaissis, Sebastian Ziegelmayer, Fabian Lohöfer, Jens T.
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