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Abstract

The demand for increasingly autonomous robots is growing in both industrial and domestic
applications. Intelligent control technologies are required that enable robots to acquire
new skills, safely learn how to execute a task, or improve in order to deliver the desired
performance. Correspondingly, the field draws attention from researchers in the machine
learning, feedback control theory, and robotics communities. This thesis combines these
perspectives and is motivated by the question how machine learning may be employed
for performance optimization of a feedback control system, such that stability is always
preserved despite learning in the closed loop. Aiming to find solutions to this challenging
question, the thesis builds a bridge from the parameterization of stabilizing controllers to
reinforcement learning methods, with a particular focus on robotics. Novel learning control
architectures, algorithms, and insights are presented resulting from the combination of these
distinct approaches.

First, the parameterization of stabilizing controllers is investigated with attention to adap-
tive schemes and the robotic manipulator control domain. Opposed to data-driven machine
learning approaches that typically work without modeling of the physical plant, the parame-
terization is model based. Prior dynamical models of process and control are not ignored but
serve to structure the solution space to account for the effects of feedback. Motivated by the
fact that certain robotic applications demand for switching or interpolation between state
feedback, a simple architecture is derived for controller interpolation with a special focus on
applicability to robotic hardware. Subsequently, a novel robot manipulator control frame-
work is developed to assure stability to the loop in spite of online modifications of the feed-
back controller. The new parameterization for robust control of rigid manipulators leverages
a dual parameterization as the key tool to quantify uncertainty in the control loop. Hence,
the admissible search space can be systematically tightened to contain only robustly stabiliz-
ing controllers for robot manipulators. The proportional-derivative feedback controller com-
monly used among practitioners can serve as a starting point to implement the framework,
allowing for a wide range of approximate inverse dynamics control configurations, and a two-
degree-of-freedom controller design.

Next, intelligent control methods are presented aiming towards the important goal of pow-
erful online learning robot control. Two novel online least-squares policy iteration algorithms
are developed with both robotics as well as the deployment to the parameterization approach
in mind. In particular, an online algorithm with a polynomial basis for continuous action
representation is endowed with a kernel-inspired automatic feature selection method of low
computational complexity. In the subsequent analysis, the general interplay between the
model-free reinforcement learning methods and the model-based controller parameterization
is investigated. From the combination, five control architectures are systematically revealed
and the construction of the learning control framework is summarized in an overall workflow.
It is shown that from the reinforcement learning perspective, the model-based parameteriza-
tion can be seen as a structured way to create specific policies based on prior dynamic model
domain information.

Finally, the thesis presents two laboratory case studies to illustrate the proposed methods
by means of practical examples on robotic hardware. In the first experiment, active variable
impedance control based on the parameterization of arbitrarily interpolated state feedback is
deployed to an industrial robotic reference platform. The experiment verifies that the nominal



gains constitute a degree of freedom in the design to decrease uncertainty and construct a
suitable controller parameterization although the known dynamic model is imprecise. This
way, instabilities due to hidden coupling can be effectively avoided to reduce the constraints
that otherwise need to be imposed when learning stiffness schedules. The experimental results
of the second study confirm that the aim of learning performance enhancement directly on
hardware is feasible in the presented stability-by-design framework.

The thesis concludes with a summary of the proposed control strategy to exploit domain
knowledge for learning and feedback in robotics based on stabilizing controller parameteriza-
tions. Potential directions for future research based on the parameterization approach are
pointed out in the interdisciplinary fields of stable machine learning control as well as robotic
learning control.
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Kurzfassung

Der Bedarf an weiter autonom werdenden Robotern wéchst sowohl fiir industrielle als auch
private Anwendungen. Technologien intelligenter Regelungsverfahren sind erforderlich, die
es Robotern erméglichen, neue Fertigkeiten zu erwerben, sicher zu lernen wie eine Auf-
gabe auszufiithren ist oder sich selbst zu verbessern, um das gewiinschte Verhalten zu erre-
ichen. Dieses Forschungsgebiet zieht daher das Interesse von Forschern aus dem Bereich des
maschinellen Lernens, der Regelungstechnik und der Robotik auf sich. Die vorliegende Ar-
beit kombiniert diese Sichtweisen und ist durch die Frage motiviert, wie maschinelles Lernen
zur Leistungsverbesserung eines Regelungssystems eingesetzt werden kann, so dass die Sta-
bilitat im geschlossenen Kreis trotz des Lernens in der Riickkopplung erhalten bleibt. Um
Losungen fiir diese herausfordernde Fragestellung zu finden, schlagt diese Arbeit eine Briicke
zwischen der Parametrierung aller stabilisierender Regler und der Methode des Bestarkenden
Lernens, mit einem besonderem Augenmerk auf Robotik. Neuartige Architekturen lernender
Regelungen, Algorithmen und Erkenntnisse werden vorgestellt, die sich aus der Kombination
dieser unterschiedlichen Herangehensweisen ergeben.

Zunéchst wird die Parametrierung stabilisierender Regler hinsichtlich adaptiver Schemen
und dem Hintergrund der Manipulatorregelung untersucht. Im Gegensatz zu Ansétzen des
maschinellen Lernens, die typischerweise rein datengetrieben und ohne die Modellierung des
physikalischen Prozesses verwendet werden, ist die Parametrierung modellbasiert. Bereits ex-
istierende dynamische Modelle der Strecke und eines Reglers werden daher nicht verworfen,
sondern dienen der Strukturierung des Losungsraums, so dass die Auswirkungen der Riickkop-
plung berticksichtigt werden. Motiviert durch die Tatsache, dass bestimmte Robotikanwen-
dungen das Umschalten oder Interpolieren zwischen verschiedenen Zustandsriickfithrungen
erforderlich machen, wird mit Hinblick auf die Anwendbarkeit im realen System eine relativ
einfache Architektur fiir die Reglerinterpolation entworfen. AnschlieBend wird ein neuartiges
Konzept zur Regelung von Robotern entwickelt, das die Stabilitat der Regelschleife trotz
der Online-Modifikation des Reglers gewahrleistet. Diese neuartige Parametrierung zur ro-
busten Regelung von als Starrkérpern modellierten Manipulatoren nutzt eine duale Parame-
trierung als zentrales Element zur Quantifizierung der Unsicherheit im Regelkreis. Der zulés-
sige Suchraum kann somit systematisch auf robust stabilisierende Regler fiir Robotermanip-
ulatoren eingeschriankt werden. Als Ausgangspunkt zur Implementierung des Frameworks
kann die in der robotischen Praxis sehr weit verbreitete PD-Riickfiihrung verwendet wer-
den. Im Design ist ferner eine generelle approximationsbasierte Inversdynamik- und Zwei-
Freiheitsgrade-Regelungsstruktur berticksichtigt.

Als nachstes werden intelligente Methoden vorgestellt, die zum wichtigen Ziel performan-
ter online lernender Regelungen fiir Roboter beitragen. Es werden zwei neuartige Online
Least-Squares Policy Iteration Algorithmen entwickelt, sowohl im Hinblick auf den Einsatz
in der Robotik als auch dem Ansatz der obigen Reglerparametrierung. Insbesondere wird
einer der Algorithmen mit einer Polynomialbasis zur Approximation des kontinuierlichen Ein-
gangsraums ausgestattet, die aufgrund der geringen Rechenkomplexitit onlinefihig ist und
eine Kernel-inspirierte automatische Wahl der Merkmale ermoglicht. In der nachfolgenden
Analyse wird das allgemeine Zusammenspiel zwischen dem modellfreien Bestdrkenden Ler-
nen und der modellbasierten Reglerparametrierung untersucht. Die Kombination zeigt fiinf
systematische Steuerungsarchitekturen auf und fiihrt zu einem Workflow, der die Benutzung
der gesamten lernenden Regelungsstrategie zusammenfasst. Es wird gezeigt, dass die modell-
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basierte Parametrierung aus Sicht des bestédrkenden Lernens als ein strukturierter Weg ver-
standen werden kann, den Suchraum tiber Regelungsstrategien spezifisch derart zu gestalten,
dass vorab vorhandenes Doménenwissen eingebracht wird.

SchlieBlich werden zwei Fallstudien vorgestellt, um die vorgeschlagenen Methoden an-
hand von Laborexperimenten mit praktischen Beispielen auf Roboterhardware zu veran-
schaulichen. Im ersten Experiment wird die aktive variable Impedanzregelung mittels der Pa-
rameterierung beliebig interpolierter Zustandsriickfithrungen auf einer industriellen Roboter-
referenzplattform umgesetzt. Das Experiment bestétigt, dass trotz des nur ungenau ange-
nommenen Dynamikmodells eine geeignete Parametrierung konstruiert werden kann, indem
die nominellen Verstarkungsfaktoren als Entwurfsfreiheitsgrad zur Reduktion der Unsicher-
heit verwendet werden. Auf diese Weise kann Instabilitdt effektiv vermieden werden, die
ansonsten aufgrund der verborgenen Kopplung enstehen kann und somit Einschrénkungen
beim Lernen der benotigten Steifigkeitsprofile notwendig macht. Die experimentellen Ergeb-
nisse der zweiten Fallstudie belegen, dass es im vorgestellten, insgesamt primar auf Stabilitat
ausgelegten Regelungsansatz moglich ist, Lernalgorithmen zur Verbesserung der Performanz
direkt auf der Hardware einzusetzen.

Die Arbeit schlieffit mit einer Zusammenfassung der vorgeschlagenen Strategie, Domé-
nenwissen mittels der Parametrierung stabilisierender Regler fiir das maschinelle Lernen
und die Regelung in der Robotik zu verwenden. AbschlieBend werden mogliche kiinftige
Forschungsrichtungen basierend auf der Parametrierung fiir die interdisziplindren Forschungs-
felder der stabilitatserhaltenden Regelung mit maschinellem Lernen und der lernenden Roboter-
regelung aufgezeigt.
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Notation

Acronyms and Abbreviations

ADP
Al
AID
ALD
AOLSPI
BBO
BF
BIBO
CS
CQLF
DARE
DMP
DoF
DP
FMP
FIR
FRI
GP
GMM
1QC
KDHP
KDPP
KLSPE
KLSPI
KLSTD
LFT
LMI
LPV
LQN
LQR
LSPI

Approximate (Adaptive) Dynamic Programming
Artificial Intelligence

Approximate Inverse Dynamics
Approximate Linear Dependency
Automated Online Least-Squares Policy Iteration
Black-Box Optimization

Basis Function

Bounded-Input Bounded-Output

Coherence Sparsification

Common Quadratic Lyapunov Function
Discrete-Time Algebraic Riccati Equation
Dynamic Movement Primitive

Degree Of Freedom

Dynamic Programming

Feedback Motion Planning

Finite Impulse Response

Fast Research Interface

Gaussian Process

Gaussian Mixture Model

Integral Quadratic Constraints
Kernel-Based Dual Heuristic Programming
Kernel Dynamic Policy Programming
Kernel Least-Squares Policy Evaluation
Kernel-Based Least-Squares Policy Iteration
Kernel-Based Least-Squares Temporal Difference
Linear Fractional Transformation

Linear Matrix Inequality

Linear Parameter-Varying

Local ()-Network

Linear Quadratic Regulator

Least-Squares Policy Iteration

xiii



Notation

LTI Linear Time-Invariant

LTV Linear Time-Varying

LWR Lightweight Robot

MDP Markov Decision Process

MIMO Multiple-Input Multiple-Output

ML Machine Learning

MSDP Multi-Stage Decision Process

NN (Artificial) Neural Network
OKLSPI Online Kernel Least-Squares Policy Iteration
OLSPI Online Least-Squares Policy Iteration
PbD Programming By Demonstration

PD Proportional-Derivative

PI Policy Iteration

RBF Radial Basis Function

RMS Root Mean Square

RKHS Reproducing Kernel Hilbert Space
RL Reinforcement Learning

TD Temporal Difference

VFA Value Function Approximation

Mathematical Conventions

For the sake of readability, explicit function dependencies are generally dropped whenever
unambiguously clear from the context. The imaginary unit is denoted j, i. e., j2 = —1.

Scalars, Vectors, and Matrices

Scalars are written in lower case standard letters (a), lowercase boldface letters are for vectors
(v), matrices are written in upper case bold letters (M), sets are written in calligraphic (S),
and operators defining (system) input/output relations are in standard capital letters (G).
The " element of a vector v is denoted v; and the elements of a matrix M are referred
to as my; (i™ row, j™ column). The zero matrix 0, the all-one matrix 1 and the identity
matrix I are taken of appropriate dimensions given from the context. The dimension may
be stated explicitly by subscripts, e. g., O,,x, € R™*™ denotes a zero matrix with m rows

A
and n columns and 0,, = 0,,x,.

General Sets

0 empty set

N set of all natural numbers

A set of all non-negative integer numbers

RS set of all non-negative real numbers

R” n-dimensional Euclidian space, with n = 1 if n is omitted
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Notation

RmX'I’L
By (v)

B (b)

max

col(xy, x2)
MT

M—l

M = (»)0
M <(=X)0
A(M)
sp(M)
p(M)
ﬁnax(M)
[]

ol
o] 2 ol

[0l

|- M|
|| = || M|
diag(v)

blkdiag(M,, ..., M,)

conv(Mjy, ...
lim sup

|||z,

, M)

set of real-valued m x n matrices

set of v-bounded m x n real matrices w.r.t. the induced p-norm,
i.e, B (y) £{M : M e R™",0 < |[M|, <~}

set of real-valued m x n matrices with elementwise b-bounded entries
set of p times continuously differentiable functions

set of all bounded sequences x(k) over Zg , satisfying ||x(t)||,. < oo
set of all bounded signals x(¢) over R{, satisfying ||(t)||,. < oo
set of all finite-energy signals x(t) over Ry, satisfying ||z (k)||z, < oo
set of all proper and real rational stable transfer matrices

set of all proper and real rational stable n x m transfer matrices
set of all strictly proper and real rational stable transfer matrices

if and only if

equality by definition

inequality

Kronecker product

vertical concatenation of two column vectors x1, s, i. €., [a:lT, :1:2T } !
transpose of a matrix M

inverse of a square matrix M

a symmetric matrix M is positive (semi-)definite

a symmetric matrix M is negative (semi-)definite

an eigenvalue of a matrix M

the spectrum of a matrix M, i. e., the eigenvalues of M

the spectral radius of a matrix M, i. e., p(M) = max {|A| : A € sp(M)}
the largest singular value of a matrix M

absolute value, for sets the cardinality

round a number up to the next largest integer, 7. e., [x| = min{n €
Z:n>uzx}

vector p-norm (1 < p < 00) of v € R™, ||v]|, & (20, |v;[P)*
Euclidian vector norm of v € R”, ||| = Vv v
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Introduction

Agile and highly flexible, customized production systems are a key technological trend in the
ongoing development of Industry 4.0 [83]. In the field of robotics, this trend is reflected by
a rapidly increasing interest in the branch of collaborative robotics, i. e., the development
of machines that are no longer restricted to cages in the industrial production hall but
perform tasks simultaneously with a human co-worker. While more and more commercial
applications are available on an increasing market [244], many scientific and technological
barriers must still be overcome in order to realize the vision of intelligent and autonomous
robots, seamlessly collaborating and sharing the workspace with humans.

Working towards the envisioned level of autonomy, robots are being equipped with artificial
intelligence (AI) capabilities. A lot of current robotics research therefore revolves around how
to employ machine learning (ML) methods to enable robots to learn tasks, instead of having
to perform explicit, inflexible, and expensive expert programming. In this learning context,
robot programming by demonstration (PbD) [25, 37] aims to teach skills to robots by guiding
the robot kinesthetically and deriving a mathematical representation of the demonstrated task;
this approach is also called imitation learning or learning from demonstration. Alternatively,
robots may be equipped with mechanisms to learn a task on their own [70, 115] by reinforce-
ment learning (RL) [228]. To this end, the robotic system attempts to perform the desired task
in trial-and-error fashion, aiming to maximize a reward quantity that assesses its performance.

Control theory and Al—synergetic perspectives on decision making. The aforementioned
trial-and-error paradigm of reinforcement learning has its roots in artificial intelligence and
is one approach to solving the sequential decision making problem of how to choose actions
given the state, such that the long-term performance is optimized. In other words, the
policy governing the behavior of the agent constitutes a state feedback control law. The
control community in turn has developed extensive knowledge not only about decision making
under uncertainty, but also about modeling of dynamic systems, feedback control, stability,
robustness, and so on. These properties, however, are not in the focus of the computational
intelligence driven research on reinforcement learning which allows for model-free, data-driven,
and broad applicability to unknown environments while aiming for high convergence rates of
the actor towards the optimal control policy. These two perspectives on the feedback loop
are contrasted in Fig. 1.1.
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Figure 1.1: Juxtaposition of two perspectives on sequential decision making of intelligent agents
with contrasting focus and priorities.

Research is contributed to the field of reinforcement learning from diverse backgrounds. For
example, standard resources on reinforcement learning exist with perspectives from artificial
intelligence [101, 228, 34, 253|, operations research [181], and control [249]. Due to the close
connection of the underlying Markov decision process (MDP) theory [182], also research from
optimal control includes methods classifiable as reinforcement learning: the corresponding
field is called approximate (adaptive) dynamic programming (ADP) [133, 135], and techniques
dubbed neuro-dynamic programming [22] are similar. Thus, the methods from the field of
control that are most clearly connected to reinforcement learning are optimal [7] and adaptive
control [11]. Surveys have been appearing since the nineties to cover the intersection of these
fields and explore their synergies [227, 133, 134, 104].

Due to the greatly different perception of the loop in Fig. 1.1 and priorities between control
and Al, beyond approximate dynamic programming considerably less research exists that
attempts to bridge the gap between control and reinforcement learning. Busoniu et al. only
lately emphasize “[...] the fact that Al researchers focus almost exclusively on performance
with respect to a freely chosen reward function, while control objectives revolve around sta-
bility.” [35] Recent publications [35, 109, 146, 187] however reflect the growing interest to
explore synergies between the stability-centric view of systems and control and the perfor-
mance as well as generality of reinforcement learning.

Robot learning control. In the robotics control community, the capability to learn has long
been recognized as an important means to cope with the uncertainty arising in the real world;
for example, Gullapalli etal. [70] already in the nineties use a multilayer (artificial) neural
network (NN) and a reinforcement learning approach for robot skill acquisition. Considerable
progress has since been made, e. g., concerning scaling to higher dimensionality as reviewed
in [201], learning rate and data efficiency [46], or model learning [216, 159]. Moreover,
substantially more algorithmic approaches from reinforcement learning have been explored
for robotic learning [115, 117]. However, compared to problem settings typical to the machine
learning domain such as information retrieval, time series forecasting or speech recognition,
feedback control is a less benign environment. The danger of instability clearly poses a
threat and must be avoided in robotic learning to avoid damage in the system itself or to
the environment around it. This may quickly become an issue particularly when dynamical
systems are used to represent learned controllers for some skill, when learning in feedback,
or when working with hardware.

From a control-theoretical perspective, concerning the stability of the robot control loop,
we can classify contemporary skill learning methods into three major categories.



The first category of acquiring robotic motion skills is the very widespread approach to only
learn in the feedforward control path and resort to a fixed, stabilizing feedback controller. For
example, the popular dynamic movement primitive (DMP) [92, 93] consists of a stable second
order system attracting to the goal and a parametric open-loop so-called forcing term which
allows to represent smooth movements. Although the DMP contains a stable dynamical
system inspired by feedback, integration over time yields a desired trajectory which is then
tracked by any standard robot feedback controller. Some work [64] incorporates the actual
robot state as a signal into the DMP; however, care should then be taken because such a
step in general voids the by-design stability philosophy of the DMP approach. Other popular
methods in this category, effectively acting as trajectory generators, are based on hidden
Markov models or on Gaussian mixture models (GMMs) over time, see for example [38].

A remarkable trend throughout the last decade in robot learning research has been driven
by the so-called “Dynamical Systems” approaches to programming by demonstration, see e. g.
[25, 107, 188, 214, 55], leading to our second category. We sort methods into this category if
the desired robot motion is generated (from a dynamical system) given the current state of the
robot, as opposed to the trajectory-based representations of motion over time or over a time-
like latent variable. The dynamical systems based approaches can be constructed from a small
set of training data, easily generate new motions in unseen areas, are robust to perturbations,
and react instantly to changes in the environment because the desired trajectory is constantly
recalculated from the systems representation [188]. Again, a Gaussian mixture model is a
typical representation to encode these skills and care must be taken to avoid the potential
for instability of the dynamic model, e. g., by enforcing a common Lyapunov function during
the learning process [107]. Another quite versatile approach to ensuring stability of the
motion model works indirectly by learning potential functions that act as a control Lyapunov
function to correct when needed the motion commands of any regression model [106].

The methods previously categorized are concerned with representations and learning of
robot motions. However, for collaborative robots working in uncertain environments, the
energy exchange with the environment during physical interaction must be considered in
order to learn the desired interactive behavior. Consequently, there is a need to understand
and refine the role of impedance control [84] in this context: because of the difficulty and
inflexibility of static robot programming, both impedance as well as motion parameters
should be learnable from demonstrated data. However, the stability of the resulting feedback
control structure is substantially harder to analyze, forming the third category of approaches.

First, this is because the feedback gains that realize active impedance are variable and it
is well-known that ad-hoc gain scheduling bears the potential of instabilities [212]. Many
approaches reported in the literature [32, 68, 121, 188, 267] simply ignore these potential
pitfalls. Kronander and Billard therefore propose a method to verify impedance profiles [123]
and a number of control approaches are also reported that are specifically tailored to the
robotics problem domain, such as a biomimetic adaptive controller [263] or a control law
mimicking energy reservoir ideas [54]. Another common approach helping to avoid stability
issues is to collect trajectory and feedback data from demonstrations [68, 39, 121, 136, 157,
267], effectively biasing the subsequent learning process towards admissible behavior. While
these approaches may oftentimes work in practice, particularly when damping is high and
variations are slow, stability might nonetheless be lost in continued learning processes.
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Second, the stability problem becomes even more severe when variable impedance con-
trol is combined with a dynamical systems approach to implicitly define motions. For ex-
ample, learning variable impedance control may refer to learning both trajectories and stiff-
ness/damping gain schedules with a combined DMP [32]. Another similar approach is pro-
posed by Yang et al. [264], creating two DMPs for encoding motion and impedance charac-
teristics measured from human muscle activation. Alternatively, the impedance profile is
encoded in an additional dimension in the DMP, yielding a so-called compliant movement
primitive [47]. All these methods benefit from the feedforward nature of DMP approaches
but the general drawbacks of ad-hoc gain scheduling remain. Similarly, Rey et al. [188] ensure
that the learned motion generation relies on a stable dynamical system, yet the learned stiff-
ness schedules constitute a state-dependent gain scheduling feedback control law. Therefore,
all these approaches work due to using admissible sets of demonstrations to derive the de-
sired gain schedules. Nonetheless, care must be taken if some reinforcement learning module
should be used to improve the policy further over time. Some work explicitly takes the sta-
bility problem into account when working with dynamical systems feedback motion planning.
To this end, Khansari-Zadeh et al. [105] propose to unify motion generation and impedance
control in a single asymptotically stabilizing Gaussian mixture model and provide a corre-
sponding learning method [108]. Another approach is built around ensuring passivity [122].
However, even if a programming by demonstration approach can be chosen to provide expert
training data, the robotic system may have to continuously optimize after initial learning in
order to achieve satisfactory performance [115].

In summary, to realize the vision of collaborative robot manipulators with the capability to
safely and autonomously learn feedback motion planning and interaction skills, more research
is required for methods that ensure stability under a wide range of operating conditions.

(Closed-loop stable) machine learning control. Beyond the scope of robotics, an extensive
body of literature exists on intelligent control methods [208], including control using genetic
algorithms [120], neural network control [89], iterative learning control [30], fuzzy and neuro-
fuzzy control [31], etc. When referring to learning control in this thesis, machine learning
control is the only subfield of interest and the reader should refer to the literature otherwise.
In particular reinforcement learning as outlined above as well as kernel methods [204] have
been receiving a lot of attention from the controls community throughout the last decade,
see for example [178] and the references therein.

The number of references that consider stability with reinforcement learning is much more
limited. While RL control aims to handle general optimization objectives (e. g., performance
ranking by a human supervisor) and usually permits failing during the learning process due to
the trial-and-error approach, adaptive control is subject to strict performance constraints [201].
Hence, the field of adaptive control offers a viable source of inspiration to address stability
also for learning control methods. Using adaptive approximations [53], for example the work
of Nakanishi et al. [155] falls into this category.

Concerning stability concepts for standard reinforcement learning methods, some efforts
have been made beyond the approximate dynamic programming literature. Early research
in this direction is limited to heuristics that should help to yield stabilizing policies. For
example, Perkins and Barto [176] define different control laws which render stability in the



sense of Lyapunov to the closed-loop system and the agent is only allowed to choose which one
to apply in each specific point in time. A similar approach is reported for continuous actions
spaces [56]. Thus, although [176, 56] resort to stabilizing policy elements, both essentially
learn switching rules. However, switching between controllers may induce instability even
if all controllers separately are stabilizing [137]. A congeneric problem applies to the actor-
critic approach of Rosenstein and Barto [192] who connect a feedforward NN in parallel to a
nominal controller, the so-called supervisor. The composition of the two elements is faded
from the nominal controller to the actor NN over time, hence the method interpolates control
outputs and eventually leaves stability to the authority of the NN actor.

A number of safe learning methods yield probabilistic stability or safety assertions to
reinforcement learning controllers. For example, Berkenkamp and Schoellig [19] employ a
Gaussian process (GP) to estimate uncertainties to adjust a robust controller. In [20], given
an a priori stable control policy, an estimation of the region of attraction is iteratively
expanded by means of a GP, allowing for safe policy updates within that region. A multitude
of probabilistic reinforcement learning methods focuses on feedforward control, see [225] and
the references therein.

Some work aiming for deterministic stability guarantees in conjunction with reinforcement
learning agents exists as well. Ng and Kim [158] propose for linear systems a stable adaptive
control algorithm for online variation of a state feedback controller by an arbitrary learning
agent, based on a monitoring approach for time-varying feedback gains and rejection of
control matrices that lead to instability. Kretchmar etal. [118] use a feedforward NN as
actor in parallel to a nominal controller and employ integral quadratic constraintss (IQCs),
a robustness tool known in the controls community [149], to ensure stability of the overall
interconnection throughout the learning process. In [8], this idea is extended to recurrent
NNs. Unfortunately, the method requires to re-evaluate the IQCs during the learning process
and consequently the execution time to prove stability may become prohibitively high for
problem settings such as the control of physical robot manipulators. Jin and Lavaei [99]
more recently leverage 1QCs to derive conditions solvable by semidefinite programming to
certify via a smoothness argument the bounded-input bounded-output (BIBO) stability of
the feedback loop under a deep RL policy. Similarly to the work of [20], Gillula et al. [66]
develop a framework for quadcopter control which only allows to perform the control dictated
by the machine learning algorithm if the system state is not near to the unsafe set which
is approximately computed via reachability analysis. Contrary to the statistical approach
of [20], problem-specific knowledge about the system dynamics is required in [66].

In summary, more methods of intelligent control are needed that ensure stability throughout
the learning process in closed feedback loops.

Motivation. The research reported in this dissertation is driven by the following overarch-
ing question:

How may machine learning be employed for performance optimization of a (robotic) control
system, such that stability is always preserved despite learning in the closed feedback loop?

In order to tackle this question, the specific research approach in this thesis is to employ ma-
chine learning in conjunction with a technical tool commonly known as the parameterization
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of stabilizing controllers. That is, contrary to purely data-driven learning, available a priori
dynamic models of process and control are not dismissed but serve to structure the solution
space to account for the effects of feedback. Hence, we aim to combine both perspectives
depicted in Fig. 1.1 and exploit the domain knowledge available in robotics to realize an ar-
chitecture for stable learning of feedback for robot manipulator control.

1.1 Challenges

The introduction above provides an overview of the vast fields of learning control and robot
learning, summarizing the general background and motivation for this work. It is noted that
this thesis contributes results for selected specific research aspects in this area: the central
tool to address stability is the parameterization of stabilizing controllers, which will play a
paramount role in the following chapters. The machine learning methods considered mainly
belong to the class of reinforcement learning (RL) algorithms. Due to the difficulty outlined
above of applying RL in feedback configurations on physical systems, another focus is on
applicability to robotic hardware. The following questions portray the challenges addressed
in this thesis.

Challenge 1. How may model-based stabilizing controller parameterizations be constructed
that are suitable for learning control on robotic manipulators?

We will see that the established standard interpretations of the ()-parameterization of all
stabilizing controllers may be unfavorable for implementation purposes on real robotic hard-
ware. An additional central challenge is to understand how much prior model knowledge is
required to obtain a useful parameterization. Once such a parameterization is obtained, how
is the trade-off between model accuracy required for the parameterization and the search
space available for learning characterized mathematically? How is the approach connected
to robustness, such that we can use RL to adapt the control parameters on hardware? In or-
der to develop answers to these questions, a substantial amount of the thesis resolves around
the parameterization itself.

Challenge 2. How may reinforcement learning methods be employed in the stabilizing pa-
rameterization approach to robotic learning control?

In addition to the parameterization, some challenges related to the learning methods need to
be addressed. Specifically, what conditions must be imposed on RL methods to leverage the
benefits of the parameterization? What is a method of RL that is amenable to such modifi-
cations? How is the interplay between a RL learning mechanism and the parameterization
generally characterized?

Challenge 3. How is the free parameter (space) designed in particular robotic control appli-
cations?

While challenge 1 refers to the structure of the control scheme, a related challenge is then
how to find suitable parameters () in the parameterization. How can the parameter be cho-
sen when deploying learning to this controller structure? Given the proportional-derivative
(PD) controller widespread in robotic control, how to recover PD-like behavior in the param-
eterization to allow for more intuitive tuning on hardware?
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Figure 1.2: Overview of the structure of this thesis. The scientific background of the presented
interdisciplinary research can be classified into the three technical areas Model-Based
Stabilizing Controller Parameterizations, Feedback Control of Robot Manipulators,
and Machine Learning for Intelligent Control. The methods presented in this thesis
contribute mainly at the intersections of these areas.

1.2 Main Contributions and Outline

The main contribution of this thesis is to develop methods for an integration of machine
learning with the parameterization of stabilizing controllers, characterizing a general frame-
work that bridges model-free learning approaches with model-based control. Moreover, per-
formance enhancement by reinforcement learning in feedback loops is considered particularly
for robot manipulator control. Consequently, as shown in Fig. 1.2, the thesis covers specific
aspects of robotics, machine learning, and control. The contributions are interdisciplinary
and mainly where the technical areas model-based stabilizing controller parameterizations,
feedback control of robot manipulators, and machine learning for intelligent control intersect.
The methods are considered both theoretically as well as in case studies that summarize our
experiments conducted on robotic hardware in the lab.

It is noted that Roberts et al. [190] consider the parameterization of stabilizing controllers
in a basic performance comparison between several standard feedback controller structures in
conjunction with a simple RL algorithm. While Roberts et al. conclude that the parameteri-
zation performed best in their simulation study, none of the challenges outlined in Sec. 1.1
has been conclusively dealt with.
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Next, the contributions of this thesis are listed in greater detail, in order of the organi-
zation of the thesis. The interested reader may refer to Appendix A for some background
information on dynamical systems in general and on the coprime factorization approach to
control in particular. Part I considers stabilizing controller parameterizations and their us-
age in adaptive control with particular attention to manipulator control. Given these per-
spectives of the parameterization and robotics, intelligent control methods are developed in
Part II. First, a RL algorithm is presented that can be used in conjunction with the param-
eterization while being tailored towards robotics; next, the interplay between RL and the
parameterizations are investigated more generally. Part III of the thesis presents laboratory
case studies to eventually provide experimental evidence for the efficacy of the control strate-
gies studied in this thesis, integrating elements of all three technical disciplines.

Part I: Model-Based Stabilizing Controller Parameterizations for Robotics

Introduction to the stabilizing controller parameterization (Chapter 2). Chapter 2 first
presents introductory material about the class of all stabilizing controllers as well as the dual
parameterization of stabilized plants, as well as the resulting double parameterization. We
then review the most relevant applications in control to establish the relation of the methods
that will be developed in the subsequent chapter w.r.t. the state of the art.

Adaptive control in the parameterization with multiple modes (Chapter 3). Given the
background on existing parameterizations of Chap. 2, adaptive control methods that are
based on local modes and the parameterization will be developed in this chapter.

The first focus in Sec. 3.1 is on the derivation of a parameterization that will allow to be
implemented on robotic hardware in a later part of the thesis. Stability of a linear system
under fast switching or blending of a set of controllers can be ensured by an appropriate
observer-based state-space realization. In this chapter, the more specific problem is considered
of arbitrary interpolation of a set of state feedback gains based on an initial static state
feedback. First, the dynamic augmentation generating this parameterization is derived as
well as the associated parameters for local recovery of predefined static controllers. By further
simplification, a simple and intuitive structure is obtained with only a single design matrix.
We propose to exploit this remaining degree of freedom to maximize robustness in terms
of coprime factor uncertainty. The resulting parameterization is comparatively simple to
implement in both continuous and discrete time and the robotics problem of active variable
impedance control serves to illustrate utility of this parameterization.

Section 3.2 is concerned with some theoretical properties of the parameterization in switch-
ing plants, as these may occur in robotic contact situations. Specifically, we will investigate
the problem of designing an adaptive performance enhancement control law for an arbitrar-
ily fast switching linear plant given a switching compensator. Switching is assumed to be
uncontrolled and the characteristics of the reference or disturbance signals are changing over
time. Stability despite switching and adaptation are given by construction, using a parame-
terization of all quadratically stabilizing compensators. It is then shown that the so-called
adaptive-QQ control methodology is well suited to enhance performance online for switching
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linear cases. A simulation example of an unstable switching plant illustrates the efficacy of
the method and the performance enhancement when tracking a bounded reference signal
with unknown characteristics.

Parts of this chapter were previously published in the IEEE Control Systems Letters [58] and
in the IEEE Conference on Decision and Control [59].

Robust manipulator control: double-Youla approach (Chapter 4). The simple parame-
terization over state feedback of the previous chapter assumed the availability of a perfectly
accurate dynamical process model. In practical robotic settings, this assumption is hard to
fulfill. Therefore, in this chapter, the following question is tackled: Given some initial engi-
neering knowledge, i. e., a simplified dynamic model of the robot and a nominal controller,
how and how much can the feedback controller be modified on the real system without sac-
rificing stability of the closed loop? Intuitively, the less accurate the model and the more
uncertain the nominal loop, the more restricted any such modification will have to be. The
method proposed in this chapter allows to quantify this trade-off. Consequently, by the pro-
posed framework, the admissible search space can be systematically tightened to contain
only robustly stabilizing controllers for robot manipulators. Thus, the overall contribution
of this chapter is to provide a novel robot manipulator control framework to assure stability
to the loop in spite of online modifications of the feedback controller.

The material of this chapter was published in the International Journal of Robust and Non-
linear Control [60].

Part 1l: Model-Free Learning Control from the Robotics and Controller
Parameterization Viewpoints

In the first part of the thesis, the stabilizing controller parameterizations are developed with
a special focus on being implementable on robotic systems. In Part II, results are reported
concerning the quest of combining such a parameterization approach with RL algorithms.

Automated continuous online least-squares policy iteration (Chapter 5). First, in this
chapter, we consider a specific class of RL, namely least-squares policy iteration (LSPI) algo-
rithms. This choice was motivated by taking into account that the algorithm should be ana-
lyzable in the framework of stabilizing parameterizations. Moreover, for robot control prob-
lem settings, it is oftentimes characteristic that the algorithms have to learn online through
interaction with the system while it is operating, and that both state and action spaces are
continuous. Least-squares policy iteration (LSPI) based approaches are therefore particularly
hard to employ in practice, and parameter tuning is a tedious and costly enterprise. In order
to mitigate this problem, we derive an automatic online LSPI algorithm that operates over
continuous action spaces and does not require an a-priori, hand-tuned value function approx-
imation architecture. To this end, we first show how the kernel least-squares policy iteration
algorithm can be modified to handle data online by recursive dictionary and learning update
rules. Next, borrowing sparsification methods from kernel adaptive filtering, the continuous
action-space approximation in the online least-squares policy iteration algorithm can be ef-
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ficiently automated as well. We then propose a similarity-based information extrapolation
for the recursive temporal difference update in order to perform the dictionary expansion
step efficiently in both algorithms. The performance of the proposed algorithms is compared
with respect to their batch or hand-tuned counterparts in a simulation study. The novel al-
gorithms require less prior tuning and data is processed completely on the fly, yet the results
indicate that similar performance can be obtained as by careful hand-tuning. Therefore, en-
gineers from both robotics and Al can benefit from the proposed algorithms when an LSPI
algorithm is faced with online data collection and tuning by experiment is costly.

The material of this chapter appeared previously in the journal of the IFAC Engineering
Applications of Artificial Intelligence [61].

A synergistic perspective of reinforcement learning and model-based controller parame-
terizations (Chapter 6). While the previous chapter considered LSPI algorithms from the
perspective of robotics, in this chapter RL algorithms in general are investigated from the
viewpoint of the model-based stabilizing controller parameterization. Contrary to standard
RL, we incorporate prior dynamical model knowledge to construct the parameterization and
leverage RL in a stability-by-design paradigm. The main contribution of this chapter is to
systematically unravel for the first time the general interplay and the relations between RL
and the ()-parameterization. To this end, we first give a control-relevant classification of RL.
Then, five different architectures are outlined of how to employ RL in the parameterization.
It will be shown that, contrary to intuition, the affine property of the Q)-parameterization may
actually pose an obstacle in combination with RL, depending on the class of learning algo-
rithm. Next, model uncertainty is taken into consideration and it will be shown how to impose
the required norm bounds over any value-based critic-only RL algorithm. The chapter con-
cludes by discussing the overall framework by means of a reference workflow guiding through
the construction of combined stabilizing parameterizations reinforcement learning controllers.
The student thesis [205] partly contributed to the results presented in this chapter.

Part 1ll: Laboratory Case Studies

In the third part, experimental evidence will be reported for the efficacy of the control
strategies developed in part I and II of the thesis.

Active variable impedance control (Chapter 7). The first case study concerns the imple-
mentation of the parameterization developed in Chap. 3 on hardware. The overall contribu-
tion is to show that we can construct parameterizations for active variable impedance control
suitable for deployment to a KUKA lightweight robot (LWR) IV+. The key idea is that al-
though the dynamics of the underlying robotic control system is not exactly known, the nomi-
nal gains constitute a design degree of freedom to decrease uncertainty in a suitable controller
parameterization. It will be shown that the desired control modes computed from the Q)-pa-
rameters can be recovered using the superimposed torque interface of the robot. Our study
experimentally confirms that the novel control architecture based on the ()-parameteriza-
tion leads to admissible behavior under interpolation conditions that lead to instability when

10
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naively implemented. This result implies that in future work, RL can be employed straightfor-
wardly to learn stiffness schedules without the risk of instability due to interpolation-induced
hidden coupling. The chapter concludes with an outlook to a new way of implementing vari-
able impedance feedback motion planning skills based on the methods proposed in the thesis.
The student theses [165, 194] partly contributed to the case study presented in this chapter.

Episodic performance enhancement in tracking control (Chapter 8). The second case
study contains elements of all three technical areas of the thesis. The novel framework is
employed to safely enhance the performance of the tracking controller with machine learning.
To this end, first we discuss how to obtain a suitable dynamic model from prior knowledge
about the robot manipulator without excessive modeling effort. Next, a learning framework
is constructed upon a parameterization tailored for PD control and an episodic learning
approach. In other words, one of the architectures discussed in Chap. 6 was implemented,
based on the parameterization derived in Chap. 4. Simulation studies as well as an experiment
on a two degree of freedom (DoF) robotic manipulator were conducted. The results confirm
that the novel methods constitute a stability framework applicable to real-world robots, such
that performance enhancement is feasible by learning directly on hardware.

The contributions of this chapter were presented at the IEEE International Conference on
Robotics and Automation [57].
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Introduction to the Stabilizing Controller
Parameterization

This chapter provides an introductory overview of the parameterization of stabilizing con-
trollers and reviews its utility in selected hybrid, adaptive, and learning control approaches.

First, in Sec. 2.1, a concise summary of the controller parameterization based on coprime
factorizations is given. This parameterization is a classic result in control theory, used in
a wide range of applications. It is one of the core concepts used in this thesis; therefore,
the chapter is supposed to provide the necessary background. The reader may also refer
to Appendix A for basic concepts of dynamical systems, the stability concepts of relevance
in this thesis, and the representation of matrix transfer functions by means of coprime
factorizations. Next, in Sec. 2.2, the dual parameterization of plants stabilized by a given
controller is summarized as well as the combined primal and dual parameterization, yielding
a framework to simultaneously deal with both plant and controller uncertainty. In Sec. 2.3,
the role of the controller parameterization is summarized for the problem of interpolation
and arbitrary switching among controllers. Finally, some selected approaches that make
use of the parameterization in the context of adaptive and learning control are reviewed in
Sec. 2.4. The introductory expositions presented in this chapter were partly used in previous
publications [57, 58, 59, 60].

2.1 Class of All Stabilizing Feedback Controllers

The class of all stabilizing feedback controllers for a plant can be described by means of
an interconnection between an initial stabilizing controller and a stable parameter system.
Note that this parameter system is often, though not consistently, denoted () in the control
literature. The resulting parameterization is therefore oftentimes called @Q-parameterization,
and it is well covered by standard reference literature [6, 269, 231, 246]. The parameterization
is also dubbed Youla parameterization, Kucera parameterization, Youla-Kucera parameter-
ization, Youla-Jabr-Bongiorno-Kucera by some authors; arguably, both YOULA etal. [265]
and KUCERA [124] independently described the parameterizations. Closely related is also
VIDYASAGAR's factorization approach to control [246] which is summarized in Appendix A.3.
In what follows, a concise and intuitive explanation of the parameterization is given. For

15



2 Introduction to the Stabilizing Controller Parameterization

more complete treatments and detailed expositions, the interested reader is referred to [6,
269, 231, 246].

Consider a continuous- or discrete-time system G such that

z G Go | |w
L’] a [ Gyw Gyu ] [u] 21)
and assume Gy, Gy, Gy € RH .. Then, if the feedback loop (Gy, Ky) formed by Gy = G,

and a (nominal) controller K is well-posed and internally stable, the closed-loop matrix
transfer function T, = G + G, Ko (I — GyuKo)*1 Gy s also stable.

As shown next, for linear systems, the set of all controllers that stabilize a given system G
can be expressed in terms of a stable parameter system () and two stable rational matrix
factors of the system G and a controller K that satisfy a Bezout identity.

2.1.1 Controller Parameterization by Coprime Factorization

To parameterize all stabilizing controllers by a factorization [246], G and K are written in
terms of double coprime factorizations

GO = MO_INO = N()Mo_l and K() = ‘70_1(70 = U()‘/O_l, (22)
where N07 M()aNOa MO; %7 U07 ‘707 UO € m—[ooa

such that the left and right factors have no unstable pole-zero cancellations, i. e., chosen to
satisfy the double Bezout identity

Vo =Uo][Mo Uo] _[Mo Up][ Vo =Uo] _[1 0 (2.4)
—No My || No Vo| | No Vo||-No My | |0 I] '

The following result is summarized e. ¢g. from [269, Th. 12.17] and [231, Th. 2.5.1].

Proposition 2.1 (@Q-parameterization). Given coprime factorizations (2.3) of the plant
Gy and the controller Ky that fulfill (2.4), the set K of stabilizing controllers for Gy can be
characterized in terms of an arbitrary stable parameter @ as K = {K(Q) | @ € Q C RH_},

K(Q) = UQVQ)™, where U(Q) = Up+ MoQ, V(Q) =Vo+NoQ  (25)

to obtain a right factored form, or

K(Q) = V_I(Q)U(Q>» where V(Q) = Vo + QNy, ﬁ(Q) = Uy + QM, (2.6)

for a left stable linear fractional form. Reformulating from the definition, using the Bezout
identity, (2.5) can be reformulated as

K(@Q) = Vi ' Oo+ V'@ (1 + V' No@) Vi 2 F(1,Q), (2.7)

16



2.1 Class of All Stabilizing Feedback Controllers

z | PE— z W z | PE—
G G T

= T =

(a) Standard feedback loop (b) Q-parameterization (c) Closed loop and @Q-parameter

Figure 2.1: Reformulation of a feedback controller in terms of a lower fractional transformation
of an initial stabilizing controller and a stable parameter system Q).

where Q € RH,_ such that (I + V; ' NgQ)(o0) is invertible and the generator system .J can
be implemented as

J— Jin Ji2 _ ‘707100 ‘7{)71 _ UVt ‘7071 (2.8)
Jo1 Jao |/ VAV Vol =Vo'Ng | '
Proof: See [269, p. 324f] and [231, p. 41f]. ]

In words, by a ()-parameterization shown in Fig. 2.1b, every linear internally stabiliz-
ing controller K can be implemented as a lower linear fractional transformation (LFT)
K(Q) = F¢(J,Q). That is, some central system J is interconnected with another stable fil-

ter () € RH,, such that
u\ Jin Jio Yy _
('r) = [ Tor T 1 (s) ., s=Qr. (2.9)

Note that the entry Ji; corresponds to the nominal controller K.

Proposition 2.2 (All stabilizing controllers). With @ varying over RH_,, Prop. 2.1
characterizes the set of all possible proper stabilizing controllers for Gj.

Proof: See [269, p. 324f] and [231, p. 41f]. ]

The relationship between K and () is bijective, and the nominal controller Ky is recovered
by Q = 0. The pre-stabilized system obtained by interconnecting G with J is henceforth
denoted 7', yielding the interconnection shown in Fig. 2.1c. The corresponding signal mapping
can be shown [231, p. 47] to be

ﬁ B [Tu Tm] m :[Gw%—C:’ZUUOMOGW GMMO] m

2.1
r T21 T22 S M()Gyw 0 S ( 0)

Hence, in the standard parameterization, the closed-loop system relating the exogenous
inputs w to the performance signals z is

Tzw(Q) = sz + quUOMOGyw + quMOQMOGyw- (211)
Note that (2.11) is of the well-known [28, 269, 51, 231] affine form

T.w(Q) = T + T12QT01, (2.12)

leading to convexity for many standard control objectives in the parameter Q).

17



2 Introduction to the Stabilizing Controller Parameterization

Remark 2.1 (Q-parameterization closed-loop properties, ideal case).

« Note from (2.10) that Ty = 0, 7. e., the gain from the output of the system @ to its
input is zero in the closed-loop system. This property can be intriguing: the signal r
driving the plug-in filter () is not affected by the specific choice of (), because the signal
does not depend on s. In consequence, the feedback loop is “unwrapped” based on the
nominal model and controller, leading to the convenient formula (2.12).

e Due to the affine form of (2.12), the parameterization approach allows for efficient
optimization-based design of the feedback controller, for both offline optimal controller
design [28] and online, adaptive versions [231]. Therefore, when using a machine learning
approach to optimize performance, the cost function will be better suited for numerical
search as well by employing a ()-parameterization to implement the controller, cf. [190].

<

2.1.2 State-Space Interpretation of Stabilizing Controllers

While the @-parameterization above is constructed by means of the coprime factors involved,
in this section, state-space interpretations of the parameterization of stabilizing controllers
are given. Therefore, although originally developed in the frequency domain, the parame-
terization can be calculated and set up using state-space models. The viewpoint from state-
space allows for a more transparent understanding of the controller structure and can be
advantageous from a numerical controller design perspective. To proceed in state space, let
the plant be given by

A| B B
G Cl D11 D12 s (213)
Cs | Dy Doy
. . o A | By .
with the inherited realization of the control channel G, : . D . Internal stability of
2 22

the controlled general setup is then equivalent to internal stability of the feedback control loop
with G, provided the realization is stabilizable and detectable from w and y, respectively.

Proposition 2.3 (Internal stability via G, [269]). Let (A, B;) and (A, C5) be stabi-
lizable and detectable pairs, respectively. Then, the system F; (G, K) is internally stable iff
the loop (G, K) is internally stable.

Proof: See Lemma 12.2 in [269]. ]

State-estimate feedback (observer-based) initial controller. The most common state-
space form of the )-parameterization is the Youla-Kucera parameterization based on a
state-estimate (observer-based) central feedback controller K. This parameterization can
be derived directly in state space, see e. g. [269, Ch. 12.3], as well as from suitable coprime
factors as in [231, Ch. 2.5] or [269, Ch. 12.6].

18



2.1 Class of All Stabilizing Feedback Controllers

Dy <

8
[
0 =

W=

> F >0
1

Ty 8

Figure 2.2: In the most common state-space interpretation of stabilizing controllers, the central
system .J is an observer-based (state-estimate) feedback controller. The signal r
then simply corresponds to the residual between measured quantities y and their
estimates. The filtered signal s = Q7 is input to both the state estimate controller
and the actual plant.

To construct the central controller, let F' and L be such that A + BoF and A + LC5 are
stable. In order to generate the parameterization, the estimation residual is simply becoming
the input » € R™ to the block (). The filtered s = Qr,s € R™ is then an input to both the
state estimate controller and the actual plant. The corresponding central system is given by

Szy= (A+ ByF + LCy+ LDy F)x;
— Ly+ (By+LDs)s, x;0=0
u= Fxj+ s,
r= — (Cy+ DyF)x;+1y— Dos.

(2.14)

For the derivation of (2.14), the reader is referred to [269, Th. 12.8] or [231, Ch. 2.5]. The
structure corresponding to (2.14) is depicted in Fig. 2.2.

Proposition 2.4 (State-estimate feedback based parameterization [269, Th. 12.8]).
All controllers that internally stabilize G can be parameterized as F; (J,Q), with J from
(2.14) and any @ € RH,, and I + DyQ)(c0) nonsingular.

Proof: See [269, p. 312]. ]

Static initial controller. It is common to use the state-estimate feedback structure Fig. 2.2
to provide a state-space interpretation of all stabilizing controllers as summarized above
and first discussed in [152]. However, an alternative parameterization can be constructed
using a static controller K = Dy  as nominal feedback controller in the generator system .J.
Although such a parameterization based on static state feedback has been used in the context
of Ha-control at least since [195], this parameterization is a lot less prominent in the literature;
it is typically not found in standard reference book that discuss the Youla parameterization,
e.g., 231, 269, 51, 28, 81].

19
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Proposition 2.5 (Generator system based on static feedback). Let F' be such that
A+ By F is stable and Dy such that A+ By Dy o is stable. For (I — DK,ODQQ)_I invertible,
i. e., a well-posed loop, a generator system based on u = Dk oy is

dxy= (A+ByF)x;+ Bsys, x;0=0

u = ((I - DK7OD22)F - DK,OC2) Ty
+ Dxoy + (I — Dk oD3) s,

r= — (Cy+ DyF)x;+vy— Dys.

(2.15)

Proof: This parameterization follows from (2.8) with suitable coprime factors. To this end,
state-space realizations are constructed for the case of a static initial controller by reducing

0
the general formulae given in (A.21) for a controller K : [%‘T] , yielding
K,0

w1 [[A+BF | B 0
l o F I Dx, |,
No Vo | ’
| Co+ DyoF | Dy 1 (2.16)
o g1 [ATBYDiC | -BY ByY Dy '
[_]QV || F-YDiCs Y -YDg, |
R ZC, ~ZDy Z

where Y £ (I — DK70D22)_1 and Z £ (I — D22DK70)_1. Removing uncontrollable states,
the following factors are obtained:
0 0 A+ B,F | B
Uy : * : * , Np: + 2 ‘ 2|,
I 0| Dko 0 Cs+ Dy F ‘ D»,
v A+ B, (I—- DK,0D22>_1 Dy (Cs ‘ —B, (I - DK,0D22)_1
0°: - —
F—(I — DxoDy) 'DxoC: | (I —DkoDx)™

=

Y

Inverting Vj results in

* | (I = DxoDy) F—DxoC; | (I — DyoDa) |’

and —V; ' Ny gives

A+B,F | B,
—Cy — Dy F | —Dy, |

—‘/E)_lNO . [

The realization (2.15) is eventually obtained by stacking the systems according to (2.8) and
removal of one uncontrollable stable mode. [ |

A number of special cases of the general parameterization (2.15) occurred in the literature
in different contexts. Particularly, special cases of (2.15) were used for Hy-control [195],
switching controllers [164], intermittent redesign [150] and robotic learning control [57].
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r
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(b) Parameterization over two-degree-of-freedom

(a) General two-degree-of-freedom controller
controllers

Figure 2.3: Two-degree-of-freedom controllers and structure of corresponding parameterization
of all stabilizing controllers.

2.1.3 Parameterization of Two-Degree-of-Freedom Controllers

For the study of the interplay between learning and (feedback) control in the later chapters
of this thesis, it is crucial to clearly distinguish feedback from feedforward control action. Let
the exogenous signal w contain measurable quantities, e. g., some desired output trajectory.
Feedforward signals can then be processed independently from the feedback controller, i. e.,

<
u = ug + up = [Kg, Kp) ['wT, yT} . This situation is depicted in Fig. 2.3a.

Remark 2.2 (Feedforward control elements). “Feedforward elements link measured distur-
bances to manipulated inputs.” [217, p. 421] For the developments in later parts of this the-
sis, the following property of measured disturbances is emphasized: by definition, the gain
from measured quantities y, performance quantities z, and manipulated inputs u to exoge-
nous inputs (measured disturbances) w is zero. This statement is rather obvious but has a
profound consequence in the selection of algorithmic classes of reinforcement learning. This
matter will be discussed in Chap. 6.1.2. <

For analysis, it is convenient to consider the two-degree-of-freedom controller as a single

&
controller K = [Kg, Kp,| in feedback connection with an augmented plant {O, GT] [231,
p. 32f]. All two-degree-of-freedom controllers stabilizing G are obtained [231, p. 49f, p. 53]

as all one-degree-of-freedom controllers for [O, GT}T. As spelled out in [231, p. 49f], using
augmented coprime factors, the class of all stabilizing feedforward /feedback controllers can
then be constructed as depicted in Fig. 2.3b.

For simplicity, in the remainder of this thesis, we assume that the nominal feedforward
controller Kg is stable, 7. e., Kgg € RH,,. Consequently, to parameterize all stabilizing
feedforward /feedback controllers, only a feedforward component sg = Qgw has to be added to
the output of the corresponding feedback controllers, i. e., s = sg + sp, = [Qs, Q| [wT, rT}T
as in Fig. 2.3b. Internal stability of the resulting control loop is exclusively determined by

the feedback loop, provided w is bounded and Kgp, Qx € RH .

Summary. The significance of the parameterization for learning-based control is due to
the fact that, once a single stabilizing feedback controller is known, it is possible to obtain
all stabilizing feedback controllers for a given plant G by variation of a stable parameter.
The problem of finding stabilizing feedback controllers K is transformed to a search only
over stable operators (). This is a much simpler constraint to enforce during learning. This

21



2 Introduction to the Stabilizing Controller Parameterization

advantage, however, generally comes at the cost of needing a dynamical process model in the
implementation of the feedback controller.

2.2 Plant Uncertainty Description in the Parameterization

2.2.1 Dual Youla Parameterization

Interchanging the role of the plant and the controller in the derivation, one can parameterize
all plants that are stabilized by a given controller K, [6]. A widespread convention in the
literature is to denote this free parameter system S [231, 160]. The resulting parameterization
is also referred to as dual Youla parameterization [160] in the remainder.

Proposition 2.6 (S-parameterization [231, Th. 3.4.1]). Given coprime factorizations
(2.3) of the nominal plant Gy and the controller K that fulfill (2.4), the set of (all) proper
plants stabilizable by K is characterized in terms of an arbitrary stable operator S as
G={G(S)|SeSCRH,}, where

G(S) = N(S)M(S)™!, with N(S)= No+ VS, M(S)= M,+UyS, or (2.17)
G(S) = M(S)'N(S), with M(S)= My+ SU,, N(S)= Ny + SVj. (2.18)

Proof: The coprime factors of G(S) and of K| satisfy the Bezout identity, hence the result
is dual to Prop. 2.1. A detailed derivation is spelled out in [231, Chap. 3.4]. [ |

The relation between any S and the corresponding G(S) is bijective, and S ¢ RH_,
implies that (G(S), Ky) does not constitute a stabilizing loop. Analogously to the controller
parameterization, the dual setup can be reformulated in terms of a LFT in S; precisely,
using (2.4), from (2.17) it follows [231, p. 70]

G(S) = Gy + My 'S(I + My'US) My = Fy (Jg, S), (2.19)

where the central system is

ngl Go My ]

It is emphasized in particular that the transfer function matrix from the input s to the output
r in the pre-stabilized loop of Fig. 2.1b is the parameter S [234, Rem. 8|. Note that the
nominal system G is recovered by S = 0, corresponding to the ideal case assumed in the
previous section.

2.2.2 Double-Youla Parameterization

Using both parameterizations of plant G(S) and controller K(Q), a double-Youla [50] parame-
terization results, i. e., a description for the set of loops formed by a nominal plant/controller
pair and the perturbations of the closed loop described by the parameter systems S and Q).
Concerning the stability of the resulting loop, the nominal interconnection cancels out pro-
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vided it is stable [234, 231]; thus, in order to establish robust stability under both plant and
controller uncertainty, the loop (Q, S) is decisive.

Proposition 2.7 (Double-Youla parameterization [234, Th. 2.1]). Let (G, Ky) be
a stabilizing nominal plant-controller pair, G(S) be the class of plants described by (2.17)—
(2.18), and K(Q) be the class of controllers (2.5)—(2.6). Then (G(S), K(Q)) is well-posed
and internally stable if and only if the feedback system (Q,S) is well-posed and stabilizing,

-1
. : I —-@Q
i. €., there exists [—S 7 1 € RH..

Proof: See [234] and [231, p. 76ff]. ]

Proposition 2.7 immediately allows to characterize a set Q of maximally allowed perturba-
tions @ € Q of the controller K subject to robust stability of the closed loop for some set S
of permissible models S € S.

Proposition 2.8 (Stable plant/controller perturbations). Consider a set of plants G
and a set of controllers K given by

G(Go, Ko,7s) = {(No+VoS)(Mo+UpS) ™" | [|S]|se < s}
IC(G(%KO/VQ) £ {(UO+MOQ)(%+NOQ)_1 | ||Q||oo S /YQ}'

Then all plants in G are stabilized by all controllers in K if and only if 75 - v < 1.

(2.21)

Proof: Application of the small-gain theorem [48] on the (@, S) loop [231, p. 166f, p.224]. &

For the developments later in this thesis, it is important to note that the open-loop transfer
function matrix from the input s to the output 7 in the closed (pre-stabilized) feedback loop
of Fig. 2.1b is precisely the parameter S [231, p. 79]. Also note that the closed-loop T, is
not affine anymore if S # 0 but instead becomes [161, Th. 7]

Tzw - sz - quMOGsw + (qu(MO + UOS) + GZ’I'S)

1/, : (2.22)
(1= Q)™ ((Ty + QMo) Gy + G-
Summary. When implementing controllers based on a Youla parameterization, the dual
parameterization of stabilized plants is a complementary and handy tool. In this thesis, the
dual parameter is not explicitly implemented as if the predominant goal were to identify
the plant, for example in closed-loop system identification. Instead, while the controller
parameterization is used for implementation, conceptually the dual parameter will serve for
analysis of the loop. Hence, a double-parameterization approach is used in order to narrow
down the search space for learning of the controller.

2.3 Controller Switching and Interpolation

The concept to switch or blend controllers is common in practice, particularly if the plant is
nonlinear and the controller needs to be adapted along the operating conditions. Research
on gain scheduling correspondingly has a long history, see [131, 197] and the references
therein. Switching-based adaptive control schemes, in turn, employ some logic-based rule to
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2 Introduction to the Stabilizing Controller Parameterization

entirely swap controllers during operation. Thus, a supervisor [82] dictates which controller
is active, usually based on some decision logic given the performance signals z or some pre-
processed version thereof. The piecewise constant signal o : 7 — Z then rules which of the
Nk controllers is active, where Z = {1,..., Nx} denotes the index set and 7 the time set.

Switching or interpolation of controllers can lead to instability even if each controller
separately stabilizes the system [137]. Therefore, ensuring stability under switching or
interpolation of the family of controllers is crucial and a wealth of approaches exists, see for
example [137, 138] and the references therein. One specific way to ensure stability when
switching between linear controllers is to exploit the state-space realization of each controller
as a design degree of freedom [213]: the class of all stabilizing controllers is particularly useful
as reviewed next.

2.3.1 State-Space Realizations for Arbitrary Switching and Interpolation

Given that the notion of quadratic stability is similar w.r.t. arbitrary switching and convex
interpolation between controllers (¢f. Prop. A.5 in Appendix A.2), results exploiting the
Youla parameterization can be found in both the literature on gain scheduling and on
switching systems. A specific realization useful for interpolation is by using a construction
within the class of all stabilizing controllers, 7. e., in terms of the stable parameter system Q).
Stabilizing controller interpolation then reduces to the simpler task of interpolating stable
systems [161]. In similar spirit, the so-called J-@Q-interpolation constitutes an important
stability preserving scheme for gain scheduling [222]. Hespanha and Morse [80] prove that a
similarity transformation of the parameters () is sufficient to construct a common quadratic
Lyapunov function (CQLF), ensuring stability under arbitrary switching between linear
controllers.

2.3.2 Switching Stabilization of Linear Switching Systems

In this section, the case is considered when also the plant is switching according to some
external rule. This problem is of interest because the stabilization results of [80] for arbitrary
switching between controllers for a linear system extend to the case when also the plant is
switching [27]. Therefore, some results of Blanchini etal. [27] on switching stabilization of
linear switching systems are reviewed. While more general conditions for switching stability
are given in [27], only quadratic stability is considered in this thesis.

Consider the problem of stabilizing the time-varying system

0z = Asyx + Boyu,  x(0) = o, (2.23)
y = Copym,

whose dynamics can switch arbitrarily between Ny modes as governed by a switching signal
o:T—TI, IT={1,2,.., Ny} Theindexi = o(t) is called active mode at time instant ¢. Let
x € R" denote the state-space vector with initial state xy, u € R™ and y € R™ are the input
and output signals, and the set of associated switching controllers is K = { Ky, Ka, ..., Ky, }.
This situation is visualized in Fig. 2.4.

We assume the standard case of stabilizability and detectability of all modes.
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Figure 2.4: Switching control of a linear switching system. The signal o(t) dictates the
plant/controller pair that is active at time instant ¢.

Assumption 2.1. For all i € Z, the pairs (A;, B;) are stabilizable and (A;, C;) are detectable.

o
Concerning the switching signal, it is assumed that there is no delay in communicating the
currently active mode from plant to controller; moreover, non-zenoness is assumed for the
continuous-time case (implicit in the discrete-time domain).

Assumption 2.2. Switching occurs uncontrolled, the number of switching instants is finite
on every finite interval, and switching is instantaneous for both the plant and the controller,
i. e., for all time instants ¢, the currently active mode o(t) is known, but not dictated by the
controller. o

The following proposition summarizes results from [27] and provides linear matrix inequality
(LMI) conditions that are efficiently solvable by semidefinite programming.

Proposition 2.9 ([27]). There exists a linear switching compensator K for the switching
plant (2.23) assuring switching quadratic stability to the closed-loop system iff there exists
symmetric positive definite matrices Pr € R™*", P, € R™", U; € R™*™ and Y; € R"*"
such that

e in the discrete-time case:

Pr (A;Pr + B,-Ui)T <0
A, Pr + B,U; Pr ’ (2.24)
P, (PLA;, +Y.C)" 0 '
PLA, +Y,C; P, ’
e in the continuous-time case:
APy +P:A + BU,+B'U" <0
P ARA T2 Y <D, (2.25)

AP, +PLA+YC +C'Y, <0.

Note that, just as in the case of a single plant under switching control [80], the controller
family IC cannot be arbitrary, but must be suitably realized. If the LMIs (2.24) respectively
(2.25) are solvable, a set of stabilizing compensators K is given by the observer-based con-
trollers J = {Ji,..., Jn,.} constructed as

{w ( &~ Liy + Bis (2.26)

u= F&+ s,
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2 Introduction to the Stabilizing Controller Parameterization

where
F,=UP:""' and L;=P 'Y, (2.27)

A key result in [27] is that the set of all switching quadratically stabilizing compensators
is given by an observer-based pre-compensator J and an input injection s, in coherent
extension of the LTI theory [269]. With the switching pre-compensator J,u in place,
the estimation error r(k) = Co&(k) — y(k) is fed into a proper stable switched system

Qo) € Q=1{Q1,Q2; ..., Qn,,.} to determine
s(t) = Qo7 (1). (2.28)

In order to ensure stability of the overall loop for arbitrary switching o, each of the parameters

Qi = [ CQ7 DQ7 ]
Q’Z’ Q7i

must be realized such that set of systems Q is switching stable [27]. Corresponding similarity
transformations always exist.

Summary. Taking advantage of the parameterization of stabilizing controllers, realizations
of linear controllers can be constructed that preserve quadratic stability even when blending
controllers or switching arbitrarily among them. Assuming full knowledge about the switching
signal, the scheme extends to switching linear systems in analogous fashion, i. e., using an
appropriate observer-based realization.

2.4 Adaptive-Q and Learning-Q Control

Usage of the @)-parameterization also has a long history in adaptive and learning control. In
this section, we briefly summarize the main ideas of the adaptive-() and learning-¢) methods
dating back to the 1990s; for a more comprehensive treatise, see [231] and the references
therein.

Principle of adaptive-Q control. Adaptive-Q) control [153, 233, 251, 231, 232] is easiest
understood as an online variant of Q-Design [28], i. e., taking advantage of the affine param-
eterization for numerical optimization of the controller. The underlying philosophy is to first
robustly stabilize the plant under control and then improve performance online by limited
adaptation within the parameterization of all stabilizing controllers. Direct adaptive-() con-
trol is therefore most suitable when model uncertainty is limited, but an existing controller
must be re-tuned online because the design criterion is altered or the characteristics of the
reference signal is not known during the design stage. Otherwise, indirect [234] and itera-
tive approaches exist as well, including a plant uncertainty model characterized by a dual
Youla operator. For nonlinear plants, adaptive-() methods were developed to enhance the
robustness and performance of a linear time-varying feedback controller along the trajectory
(u*, z*) of a smooth nonlinear system [94].
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2.5 Conclusion

To briefly illustrate the direct adaptive-() approach, consider in discrete time the standard
observer-based parameterization shown in Fig. 2.2. Let @) be realized as a stable dynamic
system with state £q € R" and adaptively adjusted output

s(k) = E(k)zq (k). (2:29)

0. { zq(k+ 1) = Aqzq(k) + Bor(k), @o(0) = zqo,
The matrix Aqg € R™*"a is a design parameter and E(k) € R™*" is the adaptation matrix
with variable parameters. Due to the affine form (2.12) of the closed-loop in the parameter @),
choosing a suitable law to determine Z(k) online, the system (2.29) constitutes an (adaptive)
notch filter in the closed loop. Therefore, the control system performance can be enhanced
using a suitable generalized plant setup. Examples of practical applications of adaptive-Q)
control include suppression of vibration caused by unknown disturbances in rotor /magnetic
bearing systems [41] and active jitter reduction in precision optical systems [147]. Kalyanam
and Tsao [102] give an elaborate experimental case study on the application of adaptive-Q
control in a hard-disk drive track-following servo problem. Luo etal. [142] more recently
report the real-time optimization of a motor controller using, in essence, an adaptive-Q)
control approach.

Learning-Q control. Leveraging the Q)-parameterization in the context of learning dates
back to the 1990s, when Moore and co-workers [94, 95] coined the term learning-@ control!
for the approach. The classic learning-¢) method refers to an adaptive-() approach along pre-
defined trajectories of a nonlinear system; however, the function approximation used in the
filter system () is designed to depend on the current state. Some form of functional learning
is then used to adapt the parameters of the approximation architecture in the filter system:
“The major objective of the learning-) method is to learn from one trajectory, or set of
trajectories information which will enhance the control performance for a new trajectory.” [95]

Summary. The methods investigated in this thesis, 7. e., construction of a parameterization
of stabilizing controllers and performance enhancement by means of RL, constitute an ad-
vanced form of a learning-Q) approach, with a particular emphasis on robotics.

2.5 Conclusion

In this chapter, the methodological foundations for the developments in the remainder of
the thesis were reviewed. While the construction of stabilizing controllers is typically stated
in a coprime factor (frequency-domain) description, it is more convenient to work directly
in state space or to construct suitable factors in state space for practical implementations.
The observer-based interpretation of stabilizing controllers is well-known, and additionally
the derivation of a parameterization based on static state feedback was shown. In the next
chapter, a similar approach will be used to derive a simple parameterization to implement
variable state feedback controllers, for instance for the purpose of robot control.

Not to be confused with the famous RL algorithm Q-learning [252], cf. Sec. 5.1.
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2 Introduction to the Stabilizing Controller Parameterization

2.6 Bibliographical Notes

In addition to the applications reviewed above, the Q)-parameterization is ubiquitously used
in control theory, e.g., in robust control [269, 51], computer aided (optimization-based)
controller design [28], gain scheduling [221, 184, 23|, model predictive [237], hybrid [80], and
adaptive [231, 126] control. Vidyasagar’s classic book [246] on the factorization approach
provides an algebraic view on control system synthesis and stabilizing controllers. In the
context of robotics, the factorization approach has been introduced to the robust control of
robots in [218] in a one-degree-of-freedom and in [226] for two-degree-of-freedom controller
design and is nowadays covered in textbooks [132, 127] as well. Anderson’s survey |[6]
constitutes an excellent overview of the primary and dual Youla parameterizations up to
the 1990s. In this section, we briefly address some relevant work that has appeared in the
wealth of related literature since then.

The parameterization has been recognized as a useful approach to explore arbitrarily
switching and interpolated controllers. Hespanha and Morse [80] leverage the parameteri-
zation for hybrid control and prove that a similarity transformation of the parameters @ is
sufficient to construct a CQLF, ensuring stability under arbitrary switching between linear
controllers. As summarized in Sec. 2.3.2 above, Blanchini et al. [27] extend the result of [80]
to the case when also the plant is switching. Parameterizations also exist for polytopic lin-
ear parameter-varying (LPV) systems [256, 185], allowing for example to construct switched
LPV controllers [24]. Under certain conditions, gain scheduling is admissible in the param-
eterization even on endogenous signals [184]. Also based on [80], a hybrid regulator is pro-
posed in [40] to enforce output regulation using an estimation of the frequencies in an un-
known exogenous system. Several structures to implement switching controllers based on the
Youla parameterization are compared in [156]. Stability under switching, however, does not
yet ensure performance. This drawback is resolved by the parameterization of Hencey and
Alleyne [78] that preserves suboptimal H_ performance and suppresses transient peaks ef-
fectively. Similarly, this result was shown to extend to switching linear systems [257] as well.

The parameterizations above all consider specific factorizations or construct the central
controller as needed. However, if an existing controller must remain implemented, param-
eterizations can also be built upon only the terminal connections [239]. This requirement
will also be imposed on the parameterization developed in the next chapter. Thereby, one
can also set up a parameterization without the need to factorize the initial stabilizing con-
troller K explicitly, a fact exploited in the framework of so-called plug-and-play control [16].
An architecture for Youla-like parameterizations based on reduced order models is presented
in [163]. Another important result is the parameterization over stabilizing structured con-
trollers, allowing to employ convex optimization in decentralized problems; see [196] and
the references therein. While the Youla parameterization has also been used to derive anti-
windup controllers for some time, the relation of the Youla parameterization itself compared
to established, well-known anti-windup structures has been very recently explored [162], al-
lowing to include an anti-windup element directly via the parameterization. Finally, it is
noted that not all the parameterizations above yield closed-loop maps that are affine in Q.

The dual parameterization is most known for its use in closed-loop system identification in
the Hansen scheme [71]. Parameterizations of the dual form nowadays have been recognized to
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play a key role to reduce conservatism in the robust design of advanced motion control systems,
see [168]. The dual parameterization is also used for active fault diagnosis [223], closed-
loop system identification of LPV systems [17], and multiple-model adaptive control [18]. A
constrained model predictive control scheme based on the primary and dual Youla parameters
is proposed in [237]. A robust switching control scheme for scalar plants is presented in [14],
leveraging the dual Youla parameter to show that switching among robust controllers is
possible while ensuring robust stability under arbitrary switching.

Finally, on the one hand, it can be shown that all stabilizing controllers for a linear plant
can be constructed using the observer-based structure [2]. On the other hand, some of the
stabilizing parameterizations listed above actually cannot recover all stabilizing controllers.
In the context of this thesis, this difference is largely irrelevant. In order to optimize and
adapt the parameter system () using learning methods, in practice, a restriction of the search
space has to be made in order to limit the complexity of the learning problem.
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Adaptive Control by Parameterization and
Multiple Modes

The previous chapter set the foundation for the contributions of this thesis by providing a
concise background on the parameterization of stabilizing controllers and its use in control.
This chapter presents novel contributions to adaptive control methods that leverage the pa-
rameterization. The overarching approach is to consider multiple modes in the parameteri-
zation, first only in the controller and later also in the plant. This chapter presents results
previously published in [58, 59] and is structured in two larger parts.

In the first part of this chapter in Sec. 3.1, a feedback controller architecture is derived to
simplify arbitrary interpolation by means of the controller parameterization with a special
focus on applicability to robotic hardware as required in part I1I of the thesis. After motivating
the developments by the variable impedance control problem in Sec. 3.1.1 and comparing to
other state-of-the-art parameterizations in Sec. 3.1.2, we proceed to give a formal problem
statement in Sec. 3.1.3. The main result of this section, the parameterization and the choice
of parameters are presented in Sec. 3.1.4-Sec. 3.1.6. In Sec. 3.1.7 the result is discussed in
relation to previous parameterizations before we return to the active variable impedance
control problem in Sec. 3.1.8 as an example for the utility of the method.

In Sec. 3.2, the second part of this chapter, the starting point is different in that now also
the plant is assumed to be switching among several modes. This section is to explore the
synergy between the control of switching linear systems and the adaptive-) method. To this
end, in Sec. 3.2.1 the motivation for this problem is outlined before formalizing it in Sec. 3.2.2.
The major result of this second part of this chapter is given in Sec. 3.2.3, a design methodology
to enhance the control of switching linear systems with adaptive fine-tuning of the distinct
controller modes. The approach is illustrated by simulation of an example system in Sec. 3.2.4.

With Sec. 3.3 we conclude by giving an outlook on possible future work building on the
methods presented in this chapter.

3.1 Arbitrary Interpolation of State Feedback Controllers

Certain control systems demand for switching or interpolation between state feedback. This
section is to make the parameterization approach easily accessible for interpolated control
problems where state information is available. Before we proceed to the general problem set-
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3 Adaptive Control by Parameterization and Multiple Modes

ting, the active variable impedance control problem is reviewed which motivates the develop-
ment of such a parameterization. Active impedance control requires a robot manipulator to
achieve by regulation some desired stiffness/damping characteristics, respectively, a specific
mechanical impedance. Hence, as will be shown next, to implement variable impedance it is
required to vary the feedback gains.

3.1.1 The Active Variable Impedance Control Problem

Consider a torque-controlled, fully actuated robot manipulator with revolute joints. The
goal of (Cartesian) impedance control [84] is to shape the mechanical impedance of the
manipulator such that the response of the end effector to external wrench f. € R® becomes
similar to that of a mass-spring-damper system:

M(&cq — &c) + Kp(ca — @c) + Kp(xca — xc) = fe. (3.1)

The positive definite matrices M, Kp, Kp € R%*¢ denote the desired inertia, damping, and
stiffness, and xcq € RY is the virtual reference trajectory in the generalized coordinates
xc € RS, For simplicity, only the case is considered where the inertia of the manipulator is
not affected; in this case, the impedance control can be implemented without measurement
of external forces. In order to achieve (3.1), it is then sufficient to feed the deviation of the

&
states ¢ = {mg, aza back as
fT = [Kp, KD] ({Bd - QU) = [Kp, KD] rq — [Kp, KD] xTr = Ug + Uy, (32)

where f, € RS is the input vector, realized via the Jacobian J of the manipulator by the
controlled joint torques 7 = J ' f,. For a variable desired impedance, Kp(t, x), Kp(t, x) are
chosen depending on time- or even state and the feedback term wug, in (3.2) becomes an
instance of interpolated state feedback.

It is well-known [197] that standard linear analyses, e. g., assessment of the closed-loop eigen-
values over time, are in general not sufficient to conclude stability of the resulting closed loop
system, as shown exemplarily in Remark 3.1. This concern is nonetheless frequently ignored
[32, 68, 121, 188] in favor of simplicity in implementation: it is mitigated by using demonstra-
tions to bias towards admissible behavior [121, 32, 39]. High damping on hardware and slow
variations as in [136, 157] in practice further alleviate the potential for instabilities caused by
ad-hoc gain scheduling. Current solutions which consider stability are tailored specifically to
the robotics problem domain [54, 108] or do not provide a synthesis method [123].

Remark 3.1 (Eigenvalue assessment in the linear time-varying (LTV) case). In general,
stability of the matrix A(¢) is not sufficient to check uniform asymptotic stability for LTV
systems. Consider the following counterexample from [103]:

—1+1.5c08%(t) 1 — 1.5sin(t) cos(t)

z=Av(H)z(t), with Av(t) = l —1—15sin(t)cos(t) —1+ 1.5sin2(¢)

which the solution x(t) = [ fiotgf :15158)

~tsin(
~tcos(

Although the eigenvalues are eig(Ay(t)) = —1 & 1/7j for all ¢, there are initial states x, for
€
€

?) }mo is unbounded. <
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3.1.2 Comparison to the State-of-the-Art Parameterizations

With these issues in mind, we report a novel interpolation scheme for state feedback controllers
addressing the following requirements.

R1) The closed loop must be stable under arbitrary interpolation or switching, and the
state feedback controllers must be recovered in the design points.

R2) The scheme must be based on a static state feedback controller and use the terminal
connections, 1. e., the initial state feedback controller cannot be replaced!.

R3) The interpolated controller must be simple to implement and allow for a transparent
interpretation of its components.

One common drawback of the parameterizations reviewed in Chap. 2 is a potentially
high dynamic order. In addition, the complexity of the schemes seems to restrict the scope
of applications. In this section, a complementary parameterization is provided, i.e., an
architecture fulfilling the requirements R1-R3. To this end, the general YK switching
framework is specialized to the state feedback case and the dynamic parameters () are derived
that recover state feedback behavior in the design points. In contrast to many works that do
not provide guidelines how to systematically exploit the freedom in the choice of the coprime
factorization, [231]480],[185], [239]{156], we also propose a design for the free parameter
matrix to simplify the structure and to allow for a transparent and intuitive interpretation
of the scheme. In this section, the formulae for all design steps involved are provided in both
continuous- and discrete-time domains.

3.1.3 Formal Problem Setting
Consider the nominal system G with measurable state € R", control input w € R™ and

output y € R™

‘ { dx = Ax + Bou, x=(0)= x, (3.3)

z=Cz+ Dpu, y=u=,

such that some desired performance is expressed by the quantities z € R™. Assuming
stabilizability of (A, Bs), let a set

K ={K\ Ko ... Ky} (3.4)

of static state feedback controllers K; : u = Dg,;x, Dx,; € R™*" be given such that
A+ B, Dk is stable for all i = 1,..., Nk.

!The user interface of some robotic hardware only allows to modify the control torque by adding to some
implemented, ever-present state feedback. One robot that can be considered in this category is the KUKA
LWR IV+ that will serve as experimental platform in the case study in Chap. 7.
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For the interpolated controller K (cx(t)), let the variable a(t) € RV« describe the extent
of how much each controller of the family K contributes at instant ¢t. We allow for the set of
piecewise continuous arbitrary interpolation signals [77]

A= {a(t) RE s [0, 1 | M0, =1, > o}, (3.5)

covering both arbitrarily fast switching and blending of controllers. The controller interpola-
tion criteria from [77] are adopted accordingly to characterize admissible controllers.

Definition 3.1 (Admissible interpolated state feedback). Given a set K of local state feed-
back controllers, an admissible interpolated controller K () satisfies the following controller
interpolation criteria [77]:

1. K(a) is stabilizing for all a € A.

2. K(a) ~ K for constant o; = 1, Vi = 1,..., Nk.

3. K(a) is a continuous function of a(t). o

We are now ready to give the formal problem statement for arbitrary interpolation of state
feedback controllers subject to requirements R1-R3.

Problem 3.1 (Arbitrary Interpolation of State Feedback). Consider an initial controller K :
u = Dy ox such that A+ By Dy is stable. Given a set K of static state feedback controllers,
construct a dynamic augmentation of Ky such that K () is an admissible interpolated state
feedback controller and Dy g is the only free design parameter. o

3.1.4 Parameterization for Arbitrary Interpolation

In general, under arbitrary interpolation of the set of feedback gains (3.4) by

Kla): u= (i oziDK,l) x, (3.6)

stability cannot be guaranteed. In order to solve Prob. 3.1, first the realization of an admissible
interpolated state feedback controller is derived in Sec. 3.1.4 before we discuss the choice of
parameters in Sec. 3.1.6 to further simplify the scheme.

Theorem 3.1 (Interpolation of State Feedback Controllers). Consider an LTI plant
(3.3), a stabilizing state feedback controller uw = Dk, a set of stabilizing static con-
trollers (3.4), and a matrix F' € R™*" such that A + BsF is stable. An admissible interpo-
lated controller K () is given by interconnecting

6$J = (A -+ BQF).’BJ + BQS, (BJ(O) = O,

J: u = DK70 T+ (F - DK70)mJ + s, (37)
r=x—Xj
with s =Q(a)r,

where the interpolated system @Q(a) of parameters Q = {Q; | Q; € RH,i=1,..., N} is
realized such that all ) € Q share a CQLF, 7. e.,

34



3.1 Arbitrary Interpolation of State Feedback Controllers

€T ul i AN [« Ay i
- E-EL N, |« Mn—lL
1

("— %/l 4?(— BQ |4 > FN —>(
d ]
T A+ByF s (‘ST %/l <—T<r B («¢
L7
QY A+ B, Fy

(e} yr S

Y

!
=~
=

[l 4

Y

(a) Structure of interpolation (b) Simplified structure and
based on static state feed- model of the nominal
back controller Dy g closed state feedback loop

contained in J

Figure 3.1: Proposed parameterization for arbitrary interpolation of state feedback controllers.

Py e RV Py=Py - 0:

Ve #0:V(x) =2 Pozr >0and Yo € A : (3.8)
(continuous-time) PpAq(o) + A(g(a)PQ =<0, (3.9a)
(discrete-time)  Aq(a)" PaAg(a) — Pg < 0. (3.9b)

The dynamic parameters (); corresponding to the local state feedback controllers K; are
given by

dxq = (A+ BQDK,i)wQ + By (DK,O - DK”') r,
Qi: { zq(0) =0, (3.10)
S, = (F — DKJ) xrq + (DK,z - DK,O) T.

Proof: The proof is provided in Appendix B.4. [ |

The interpolated Q(a) can be realized to satisfy (3.8)—(3.9) by the standard procedures
summarized in the next section.

Discussion. In order to construct an admissible Pq for (3.8), all @; in (3.10) have to be
stable. Therefore, the requirement that all Dk ; must stabilize the plant model cannot be
relaxed. The order of the resulting controller is 2n or (N + 1)n, depending on the scheme
to implement the interpolated () according to (3.12) or (3.11), respectively. Requirement
R1 is fulfilled directly given Thm. 3.1. As the original controller Dy (o stays in place and
the dynamic augmentation to realize J only requires to measure  and to add to w, R2 is
satisfied as well. The structure of the interpolation scheme is depicted in Fig. 3.1a.
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3.1.5 Implementation of ()-filter

Two approaches are predominant in the literature to implement the interpolated system Q ()
subject to (3.8)—(3.9).

Implementation as local ()-network. It is straightforward to interpolate the output of
stable parallel systems @Q; € RH, i. e. Quon(a) = SV ;Q; € RH,,. This is sometimes
termed local @Q-network (LQN) [184, 78]. Formally, a realization is

Aq = diag(A A By = |B), Bl .| 3.11
Q — lag( Q, 1y QJ\/'K)7 Q — |: Q,l’ ceey Q7NK:| 3 ( . a)

CQ = [alCQJ, ce ;aNKCQ,NK]y DQ == ZgﬁlaiDQﬂ‘ 5 (311b)

yielding an admissible Pq in (3.8) since Aq is a constant block diagonal matrix of stability
matrices.

Implementation with shared states. The interpolated controller can also be implemented
as a polytopic LPV system. By a similarity transformation of all Aq;, a common Lyapunov
matrix Pgy = S(;T2 Sq € R™" exists as first shown in the switching literature [80, App. A.1].
As Q; € RH,, by construction, there exist associated Pg; obtained by solving (3.9) with
a; =1,Vi=1,...,Nx. Denote by nonsingular Sqg; a Cholesky factorization such that
54.:5q, = Pq,;. Then, Q(c) can be realized as a system of order n as

N _
Zkfl aiBQ,i

N — )
Zkfl aiDQ,i

S a;Aqg
Quev(a) : ———
22\751 aiCQ,i

(3.12)

where AQ,i £ S(QISQ,iAQ’iS(iIiSQ, BQJ £ S§1SQ7iBQ’i, C’Q’i £ CQ,Z'S(ilZ'SQa and DQ,,' £
D

3.1.6 Choice of Parameters

Free parameters in the parameterization (3.7)-(3.10) are the initial static controller Dk
and the virtual gain F' which is used to construct the coprime factorizations (B.11) of the
plant and controllers. In general, these gains affect the transient behavior under varying o
and are a degree of freedom to be chosen by the designer.

One specific choice is particularly beneficial and key to satisfy requirement R3. By choosing
the virtual gain F' equal to the static initial controller,

F = D, (3.13)

the structure of the generator system (3.7) is further simplified. The control input is then
simply u = Dk ox + s. Note that the dynamic augmentation in (3.7) models the effect of the
filtered signal s on the closed controlled nominal loop. Therefore, the principle of function
of the parameterization in Fig. 3.1 becomes very transparent.

It remains to design the gain Dg . The most obvious choice is to take some Dk € K.
However, we propose to employ a specific LQR gain.
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Corollary 3.1 (Choice of initial gain). Consider the solution Fy to the standard linear
quadratic regulator (LQR) problem of designing u = Fyx such that the continuous- or the
discrete-time cost functional [;° 2"z + u'u dt respectively S°5° (sz + uTu) is minimized.
Then, choosing Dk = Fy yields a central controller which is maximally robust w.r.t. nor-
malized coprime factor uncertainty Ay, Ay € RH ., @ e., the robust stability margin of the
nominal loop is maximized. O
Proof: The central controller of the parameterization in Thm. 3.1 is F; (J,Q = 0). By con-
struction, F' is stabilizing; hence, (3.7) reduces to F; (J,0) = Dk . The finding of u = Fyx
being a maximally robust state feedback controller for the plant G = (N, + Ay) (Mg + Ap)
with normalized right coprime factor uncertainty is due to [110]. [ |
The resulting generator system of the proposed parameterization is visualized in Fig. 3.1b.

3.1.7 Relation to Other Parameterizations

Some remarks are in order so as to put the proposed parameterization in context to the
literature.

Given R2, parameterization (3.7)-(3.10) can be seen as an instance of those in [239]
specialized to state feedback. Compared to the classic parameterization based on a state-
estimate controller [269, 231], the order of the interpolated controller K («) according to
Theorem 3.1 is lower, as the order of the elements in Q for controller recovery of a family I
of desired static controllers is higher than n when using an observer-based central controller.
By (3.13), the system J in (3.7) reduces to the generator systems utilized in [195] and [150]
for purposes other than interpolation. In particular, [195] is relevant w.r.t. achievable
robustness as detailed in the following remark.

Remark 3.2 (On Robustness). The generator system J of (3.7) can be used to construct the
set of Hy-optimal controllers— in this case, some specific Dk o = F' and certain ) € RH,
come into place [195, Th. 1]. By centering the parameterization on Fy according to Corol-
lary 3.1 as depicted in Fig. 3.1b, one might similarly parameterize a set of sub-optimal co-
prime factor uncertainty robust controllers. To this end, just as in the more general output
feedback case [148], an appropriate restriction of ||Q;||« would have to be enforced. The re-
quirement R1 of local controller recovery conflicts, however, as Dy ; is only assumed to be
stabilizing and consequently ||@;||o becomes arbitrarily large. <

3.1.8 Illlustrative Study: The Variable Impedance Control Problem

To illustrate the utility of the parameterization, let us revisit the exemplary variable impedance
control problem from [54, 123] with a single translational degree of freedom. The system con-
sists of a mass M of nominally M, = 10kg in free motion. For brevity, all quantities are nor-

malized to SI units in what follows. Consequently, as a plant model we have G, (s) = & s72

10
g H, B, = [0,0.1]" is taken. The initial state is

x(0) = [2(0),%(0)] " = [10,0]", the virtual reference trajectory is x4(¢) = 10sin(0.1¢) and the
desired variable stiffness and damping are

and a minimal realization with A =

Kp(t) =12+ 10sin(t) & K. + K'(t), Kp(t) = 1. (3.14)
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Figure 3.2: Simulation of a mass under standard implementation of impedance control with
variable gains.

A simulation of the system with standard impedance control, 7. e., feedback of position and
velocity errors with direct interpolation (3.6) of the gains, results in the trajectory shown
in Fig. 3.2 for the first 100s. The increasing magnitude of the oscillation results only
from the hidden coupling induced by time-varying K’(t), as the error system reduces to an
exponentially stable LTI system for all constant K'(t) = K’ € [—10, 10].

This problem can be circumvented by the architecture of Sec. 3.1.4; for simplicity, the
one-degree-of-freedom setup is used for design while the state error is used during implemen-
tation. First, the desired gains are reformulated as a convex combination of the two ma-
trices Dk, 2 —max [Kp(t), Kp(t)] = —[22,1] and Dk £ —min [Kp(t), Kp(t)] = —[2,1].
The interpolation signal such that — [Kp(t), Kp(t)] = a1 Dk + asDxk s is then given by
o] = % (sin(t) +1) and as = 1 — ay. Next, one needs to design the initial gain Dk . It may
seem natural to choose Dy ; € K or average Dg 2 M = —[12,1]. As by Cor. 3.1, we
also calculate Dk = Fy by simply taking C) = I and D;; = 0, 7. e., the performance vari-
able is z = @ and equally weighs position and velocity. This results in Dx g ~ [—1.00, —4.58].
The dynamic parameters ()1 and ), for controller recovery of Dx ; and Dk 2 can now be cal-
culated by (3.10). The resulting controllers are labeled A-D as summarized in Tab. 3.1. In
order to realize the interpolated Q(a) to satisfy (3.8), both (3.11) and (3.12) with Pq = I
are considered, yielding Qrqn () of order 4 and Qrpv(a) of order 2, respectively.

The simulation results are shown in Fig. 3.3. Controllers A—D achieve asymptotic stabi-
lization of the error system, effectively avoiding the scheduling-induced instability of Fig. 3.2.
Opposed to [54], the simple controller of this section does not result in high-frequency chatter-
ing of the control input w. The analysis of [123] in turn only allows to check if an impedance

Table 3.1: Controller configurations used for the illustrative simulation study of a point mass
under variable impedance control

Label Dx o Q1| 1Q2 ]| 150 for M/Myom

0.1 1 5
A Dx 0 894.7 1.203 0 1.808
B Dk » 270.4 0 2.404 0 5.060
C Dy 68.16 226.6 1.347 0 2.270
D Fn 317.0 18.97 0.399 0 1.267
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(b) Implementation with Q qn (3.11)

timeins

(c) Simulation with QLpy (3.12)

Figure 3.3: Simulation of the mass-spring damper system with varying impedance, implemented
by the controller of Fig. 3.1 with single gain (3.13). Labels A-D refer to the settings
according to Tab. 3.1.
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profile is suitable for ad-hoc implementation by (3.6). Indeed, the stiffness profile (3.14)
is disqualified in [123], whereas the parameterization approach reported here constitutes a
straightforward synthesis method to render admissible behavior to the system, implicitly al-
tering the transient behavior as required.

3.1.9 Additional Discussion and Implementation Aspects

Recall that K(a) reduces to the corresponding static feedback for frozen a. Therefore,
the effect of the stabilizing parameterization becomes discernible only when « is varying.
The central controller Dy, the coprime factor stabilizing gain F', and the realization of
interpolated Q(a) all affect the transient behavior.

It depends on the particular application if the implementation by either Qrqon or Qrpy is
preferable. In our simulation studies, we could not observe a general advantage of the higher-
order Qrqon over Qrpy except for a more straightforward implementation. However, the state
dimensionality of Qrqox may become an issue particularly if |K| is large.

Due to the parameterization architecture, the difference of the feedback controllers w.r. t.
the nominal loop is separated by (B.12) into the corresponding plug-in filters Q. Therefore,
one could aim to keep IQnEel)Q(HQll‘OO low by choice of the parameters. With equal gains (3.13),

the only decisive factor in (3.10) is (Dk; — Dxo). This point of view suggests to use
Dy o, = Dx (controller C), instead of Dx o € K (controllers A and B).

Given the requirement of local controller recovery, in general no assertions can be made
concerning robustness— the maximum coprime factor uncertainty margin of the central gain
FY is lost once the local recovery filters )1 and ()5 are employed, cf. Remark 3.2. Nonetheless,
controller D constitutes a reasonable compromise of transient performance (see Figs. 3.3
and 3.4) and robustness: in order to ensure the effectiveness of the parameterization, the
dual Youla operator S [231] characterizing the model mismatch should be stable and build a
stable feedback loop with ). As summarized in Tab. 3.1, if for example the mass M is varied,
the setup with gain Fy yields a lower H_ norm to the dual Youla parameter computed
according to [160, Th. 3.1]. Guaranteed robust arbitrary interpolation and controller recovery,
however, would require that the controllers individually ensure robust stability w.r.t. the
dual Youla parameter. In this case, a robust arbitrary switching scheme comes in reach as
recently shown in a SISO setting [14].

When switching controllers, peaks occur in the proposed scheme just as in the standard YK
parameterization. Recall that controller D is based on the LQR criterion of Cor. 3.1, hence
with an implicit penalty on the performance variables z respectively the control input w. An
example of good transient performance achievable with the scheme is shown in Fig. 3.4 for
the mass-spring damper system. However, if the transient peaks are of primary concern and
must be suppressed, requirement R3 of simple implementation should be lifted in favor of the
full dynamic #H_, interpolation scheme of [78]. In this case, notably more engineering effort
is required to tune the weighting filters involved in the H_ design; moreover, the dynamic
order of the resulting controller is considerably higher.
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(C) Simulation with Qpv (3.12)

Figure 3.4: Transient behavior under switching. The switching instants are marked by vertical
dotted lines for enhanced visibility. Direct K refers to (3.6) and labels C-D to the
controller architecture with Dy according to Tab. 3.1.
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3.2 Direct Adaptive-Q Control for Switching Linear Systems

In the previous section, a parameterization was derived with a focus on simplicity and ease of
implementation. In this parameterization, multiple controllers can be switched or interpolated
in order to adapt to changing control objectives; however, the plant dynamics must not change
substantially. In this section, we consider arbitrarily switching linear systems as a starting
point and extend the adaptive-() method to achieve fine-tuning of the switching controller.

3.2.1 Motivation

Linear switching systems constitute an important class of hybrid systems. On the one hand,
the dynamics of many systems can be described or approximated by a hybrid system switching
among a number of linear systems, see e. g. [137]. On the other hand, it is common to switch
between several controllers to adapt to different operating conditions, as for example in [82].
Sufficient conditions for a linear plant to be stabilizable under arbitrary controller switching
were given in [80]. The switching controller can be constructed using state reset maps, or
in a suitable realization based on the theory of all stabilizing controllers [265, 125]. In [27]
these results were generalized to the case when also the plant is switching. Under certain
conditions, a switching, quadratically stabilizing observer-based controller can be designed
by solving a set of linear matrix inequalities. Then, any set of desired controllers must be
realized appropriately to ensure quadratic stability under arbitrary switching. Such a set
of controllers is usually designed a priori for a range of operating conditions or family of
disturbance signals. During operation, a suitable controller is then plugged into the loop.

In order to improve the performance of a switching controller, one approach is to calculate
optimized reset maps to determine the initial state of the controller when switching [220, 79,
198]. These approaches tackle particularly the performance loss due to the transients induced
by switching dynamic controllers. In this section, a complementary approach is developed,
i. e., an adaptation scheme to continuously adjust each controller while it is in operation. To
this end, we employ the adaptive-() control approach reviewed in Sec. 2.4.

The contribution of this section is to show that the use of an adaptive-() control scheme
is advantageous particularly in a switching context: this is due to the fact that both the
adaptation scheme to enhance performance online, as well as the baseline design of a switching
stabilizing compensator operate on the set of all stabilizing controllers. In other words, the
switching stable controller realization is given in terms of an observer-based pre-compensator
and an additional input injection by means of a stable filter; this filter in turn can be tuned
online. The results on adaptive-() control reported in the literature were so far mainly
based on linear systems or time-varying linearizations of nonlinear systems along a particular
trajectory [231].

3.2.2 Problem Statement

Throughout this section, we consider discrete-time systems only. We are now ready to state
the problem setup, which is depicted in Fig. 3.5.
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Figure 3.5: The problem setup considered in this section: online adjustment of a switching
compensator to enhance performance w.r.t. a cost index depending on z, under
the influence of a partially unknown external input w.

Problem 3.2. Consider the discrete-time switching plant G,

ac(t—i—l) Acr(t) ‘ Bl,a(t) B2,a(t) :c(t)
z(t) | = Cio) | D11ty Di2,o() w(t)|, (3.15)
y(t) 0270—(15) DQLO’(t) O 'U,(t)

where o(t) € T is arbitrarily switched. The state vector is & € R" with initial state x;
w € R™ and u € R™ denote exogenous and control inputs, respectively; z € R™ are
the outputs subject to performance specifications and y € R"™ are the outputs available
to the controller. Let Assumption 2.1 hold for the Ga channel and switching is according
to Assumption 2.2. Design an adaptive switching compensator {7, Q} with adjustable
parameters Z(t) to reduce the cost index
A
C,(B) = — 3 =(t) R,z(1) (3.16)

N k=0

during operation, while assuring quadratic stability under arbitrary switching for partially
unknown-but-bounded w € /., and a weighting matrix R, = R = 0. o

3.2.3 Design Methodology
The result shown in this section is a procedure to solve Problem 3.2.

Procedure 3.1 (Adaptive-Q for switching linear systems).

1. Check that Assumption 2.1 is fulfilled, 7. e., the switching plant defined by the matrices
(A;, By, Cy;) is switching quadratically stabilizable. This is the case if (2.24) is
solvable.

2. Calculate the feedback gain and state estimation matrices according to (2.27) and realize
the pre-compensator J, ;) as in (2.26). This ensures switching quadratic stability of G,

43



3 Adaptive Control by Parameterization and Multiple Modes

according to Theorem 2.9 and consequently bounded-input bounded-output stability
of the setup in Fig. 3.5 for Q = ().

3. Add the input injection s according to (2.28) using a set Q = {Q1,Q2, ..., Qn,,.},
where each QQ; € RH is realized as

A AQz’ BQz‘
L2 + : 1
@ [CQ,Z' 0 | (3.17)

Aq,; € RmaXma Bg, € R Cq,; € R™*"a such that
AL PaAq;— Py <0, Viel (3.18)

is solvable for a positive definite symmetric matrix Py € R"*". Thus, the set Q of
additional filters shares a CQLF function, preserving switching stability of the closed
loop.

4. During operation, interpret Cgq; as adjustable matrix parameter E;(t), E;(0) = Cq
forall € Z. Apply a least-squares update rule in order to adapt the parameter matrices

E,(t) such that the overall cost index (3.16) is being minimized.

One particular choice is given by a stochastic gradient descent such that the variables

of the currently active Q)-parameter are updated, 7. e.

Vi=1,...,Ngs : Vm=1,...nyq, Vn=1,... nq:

~ 0z(t)T
) ’ 8‘:’1,7’?’”’1, El(t)
lifi=o0o(t
where 9; = { 0< ) (3.20)
0 otherwise.

In order to guarantee that E;(t) stays bounded for all ¢, project the parameters back
on a ball B(0,¢) after the update,

[

(1) A B+ 1)) <&,
E(t+1)=

[

i(t + 1) —=———— otherwise.
125 (2 + 1))

In the following, the factors 9J; and u; are called submodel adaptation factors and submodel
update rates, respectively. The stability of the resulting closed loop is analyzed as follows.

Theorem 3.2 (Stability of switching adaptive-Q) control). Let a switching quadratically
stabilizing compensator be given as the interconnection of a baseline controller 7 according to
(2.26)-(2.27), and a switching quadratically stable Q according to (3.17)-(3.18), as depicted
in Fig. 3.5. As long as E;(t) is bounded Vi € Z,Vt, quadratic stability is guaranteed despite
parameter adjustment using a switching adaptive-Q law.

Proof: The proof is provided in Appendix B.5. [ |
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Theorem 3.2 implies that adjusting the output equations of the ()-parameters does not
compromise stability when there is a mechanism in the adaptive law to ensure that Z;(¢)
remains finite. This offers an additional degree of freedom usable in switching control: just
as in the linear adaptive-Q) case [231], for each mode ¢ suitable zeros can be placed in the
closed-loop transfer function T,,_,. by adaptation of Z;.

It remains to give an expression for the gradient vector in (3.19). It can be calculated
analytically for the nominal model, but depends on the signal interconnection used in the
generalized plant (3.15). When employing the standard adaptive-Q) scheme reviewed in
Sec. 2.4, we have Yy = Yp — Yo, W' = [dT, ygf] and z! = [(yp — yref)T,uT}, where yp is
the actual plant output. Analogously as shown in [231, Chapter 6.3] for a single plant without

A 9z)7

8Ei,mn

switching, the dynamics of the ith gradient vector %Tmn(t) € R™*™ can then

Ei(t)

be found from (B.13) as

A, + By, F;, | By;1
Fz7mn(t+ 1) z+ 2444 24 4mn Fzmm(t)
ey o || (3.21)
with
T;mn(0) = 0. (3.22)

Note that due to the affine nature of the closed-loop dynamics w.r.t. to the functions @);, the
transient behavior of each gradient vector +; is independent of Z;().

Convergence. Next we show that the cost index (3.16) is improved by the adaptation. For
brevity, we only summarize the result for linear systems and the specific adaptive-@) algorithm
used. For a complete analysis based on averaging theory and a proof of convergence in the
linear case, the reader is referred to [231, Chapter 6.4] and the remarks therein.

Proposition 3.1 (Parameter Convergence). Consider an interval t; <t < ¢, such that
o(t) =i. Assume the disturbance signal w(t) is bounded and such that there exists a unique
=r fulfilling C,(E}) < C,(E;) for all E;. Then there exists a submodel update rate pr > 0,
such that for all y; € (0, if) the system state is bounded and near optimal performance

lim sup |4 (1) — =] < e
t,to—00

is achieved exponentially, where ¢; is a constant depending on ;.

Proof: With (3.20), adaptation is only applied to the active mode i. Thus, it suffices to
consider segments without switching and the proposition is a reformulation of the analysis
given in [231, Theorem 4.3], where also a detailed expression for ¢; can be found. [ |

Therefore, near optimal parameters =, — E7 are recovered after each switching instant if
switching occurs sufficiently slow, . e., the convergence of the parameters Z; in mode ¢ is
not disrupted by the next switch. The dynamics (3.21),(3.22) then approximate a steepest
gradient for the currently active submodel and can be used to implement (3.19). The
convergence rate depends on the submodel update rate p; being upper bounded by pf. It is
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consequently required that the adaptation is slow compared to the dynamics of the control
loop in each mode 3.

Discussion. The limitations of the proposed switching adaptive-() algorithm are twofold.
Firstly, quadratic stability is conservative as there are stable systems which are not quadrat-
ically stable and also systems stabilizable by switching which are not quadratically stabiliz-
able [137]. Second, as in the linear case [231], direct adaptive-@Q) control may destabilize the
loop if plant-model mismatch needs to be accounted for.

In the switching case, the achievable performance enhancement is more sensitive w.r.t. the
submodel update rates p; than in the linear adaptive-@) algorithm. While a higher update
rate p; < pf generally leads to faster convergence, the adaptive enhancement can lead to
a worsening of the transients occurring due to switching. One simple way to mitigate this
problem is to reset the gradient state I' in (3.21) to zero after a mode switch at time ¢, where
o(ts — 1) # o(ts), and to disable the adaptation for a short time until the transients begin to
decay. For this purpose, a suitable modification of the submodel adaptation factor (3.20) is

Lifi=o(t) A t>t +t,
19:{ if i = o(t) = bs F Lt (3.23)

0 otherwise,

such that ¢y, > 1 is a threshold design parameter to disable the adaptation for t, steps after
a mode switch.

Remark 3.3. In this section, the use of an adaptive-Q) algorithm is investigated for switching
linear systems. Naturally, the scheme can also be employed when a multi-controller is used
for a single plant. In this case, J has only one element .J, and the different controllers are
obtained in an appropriate realization by switching in Q, as derived in [80]. A main reason for
using a multi-controller is the possibility to design several controllers for different operating
conditions a priori (offline), and switch between them (online) in order to obtain a better
overall performance [80, 137, 82, 220]. In this view, the adaptive-QQ methodology allows to
fine-tune such a controller online in order to enhance the performance further. <

3.2.4 Numerical Example

We illustrate the technique described in the previous section with an academic example and
highlight the achievable performance improvement.
Consider the following switching plant with one unstable and one stable mode, using a
sampling time of Ty = 0.1s:
~ —0.3z+1 ~ 0.4

GG = T amerone o ¥ T Goosre o8 (3:24)

The input is disturbed by an unknown additional signal d which cannot be measured. The
characteristics of the reference signal y.¢ is also unknown in advance. Furthermore, the
output signal yp € R of the actual switching plant C:*o(t) is measured under additional white
measurement noise Ypoise, - €., the measured output y is the control error ¥ = yp — Yret + Ynoise-

46



3.2 Direct Adaptive-Q Control for Switching Linear Systems

Let the exogenous signals of the generalized plant G be defined as

R 529
Yref u

With (3.25), the switching adaptive-@) design (3.17)—(3.23) can be used. We proceed
according to procedure 3.1:

1. For a minimal realization of the augmented plant, the LMIs (2.24) can be solved using,
e.g., [141, 67]. We obtain the matrices Pr = diag(1.743,5.089,2.583) and

31.156 —0.123

—51.899
P, =] —0.123 11.222  —10.312
—51.899 —10.312  108.792

Solving (2.27) yields the following feedback and estimation gains assuring switching
quadratic stability:

~0.35007 —0.15007 —1.9411 —0.5566
F, = [-03962| , Fy—=|—06000] , Ly=| —19754 |, Ly=| —2.1645
0.1312 0.4250 —0.5320 —0.6439

Next, a set Q = {Q1, @2} corresponding to a set K of desired controllers could be

designed as switching stable realizations according to [27, Procedure 3.1]. In this
example however, we simply use

0.8 0 0 |1 0.02 0 0

1

0 04 0 |1 0 —-04 0 |1

Q1 = 0 0 00511 @2 = 0 0 041 |’ (3.26)
0.5 02 0750 -2 2 3|

chosen such that the eigenvalues correspond roughly to the absolute values of the

observer dynamics (A; + L;C,) and (As + LyCs). Moreover, @); and ()2 share a
common quadratic Lyapunov function characterized by

27778 0 0
P, = 0 11905 0
0 0 1.0989

4. The initial value of the adjustable parameters are

1(0) =Cq1=[05 0.2 0.75],
2(0) =Cqa=1[-2 2 3.

1 [

The plant is subject to frequent switching, noisy measurement and a severe input distur-
. — 1 0
bance, as depicted in Fig. 3.6. We used R, =

0 0.01 1 to calculate the cost indices (3.16)
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in all simulations presented in this section. The results of the simulation study are shown in
Fig. 3.6 — 3.9 and are summarized in Tab. 3.2.

For a fair assessment of the performance enhancement, we begin with a set of constant,
well-tuned @Q-parameters. Using the controllers given by (3.26) reduces the cost already
considerably, compared to the stabilizing baseline controller (2.26)-(2.27) (c¢f. Tab. 3.2).
The performance of this controller is shown by the orange line in Fig. 3.7. It is evident
that the controller yields a good tracking behavior as long as the disturbances are not
severe. However, the additive input disturbance from 50s on corrupts the performance
particularly when the first, 7. e. unstable, mode is active. On the other hand, the blue line
in Fig. 3.7 shows the performance of the adaptive scheme which quickly compensates for
the varying disturbance and recovers good tracking behavior in both modes. We used a
switching adaptive-Q) controller with state reset in (3.21) after each switch characterized by

the parameters
p=2-107° py = 0.01, € = 10, ky = 30. (3.27)

The corresponding evolution of the parameters =; used in the output equation of the Q-filters
are shown in Fig. 3.8.

As pointed out in Sec. 3.2.3, the adaptation may have a deteriorating effect on the control
performance in face of the switching transients. Indeed, setting ¢, = 0 leads to a higher overall
cost index in our example, as shown in Fig. 3.9. Stability is not compromised by this effect
but the benefits of the adaptation in the continuous phases may be outweighed by the loss due
to the reinforcement of the transients after switching. This effect can be effectively countered
by the modification (3.23), i. e., for ty, = 30 we could use high submodel update rates p; and
{2 to achieve fast convergence to the reference signal despite switching and disturbances.

3.3 Conclusion

In the review of the stabilizing controllers parameterization in Chapter 2, it was shown that
the parameterization approach to assure stability when switching or interpolating controllers
has already received some attention theoretically. However, there is yet a lack of dissemination
to a wider range of application domains and we have therefore formulated requirements from
a practitioner’s point of view in Sec. 3.1. Consequently, a relatively simple architecture was
proposed tailored on the state feedback case. The resulting parameterization is simple to
implement and features a transparent interpretation. Moreover, the novel scheme is using the
terminal connections of the controller, which makes it suitable for implementation on actual
robotic systems. Its utility was demonstrated by the variable impedance control problem.

Table 3.2: Simulation results of adaptive-() approaches for switching control

Algorithm Final Cost (3.16)
Quadratically stabilizing controller J (Q1 = Q2 = 0) 362
Control with constant @1, Q2 from (3.26) 9.51
Switching adaptive-(@) according to (3.27), ty, =0 4.56
Switching adaptive-Q according to (3.27), ty, = 30 3.63
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Figure 3.6: The switching signal o, the reference signal y..f, the input disturbance d and the

additional noise ¥,0isc at the output of the plant used during the simulation.
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Output tracking behavior of the closed-loop system for a frequency-swept reference
signal 1.t. The orange line shows the achievable performance using the ()-parameters
from (3.26). The blue line indicates the plant output under switching adaptive-Q

control with parameters according to (3.27) and with ¢y, = 30 in (3.23).
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Figure 3.8: Time evolution of the parameters E; of the two modes of the switching control
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Figure 3.9: Time evolution of the cost index C, for different simulation runs.

Finally, guidelines were provided for the selection of a more advanced scheme where necessary.
A topic of future research is the online adaptation of the plug-in systems in the spirit of
adaptive-@Q) control. Luo et al. recently propose in [142] an integrated process monitoring and
control technique, allowing for online optimization by an adaptive-() scheme in a Youla-like
parameterization that is based on the terminal connections of PID controllers. Therefore, the
method of [142] is applicable to industrial control systems where the pre-designed controllers
cannot be modified. Thus, adding online adaptation capabilities to the state feedback based
parameterization proposed in this chapter could lead to a number of interesting industrial
applications including robot manipulator control.

In Sec. 3.2, the classic adaptive-() methodology is extended to a class of hybrid systems
operating under uncertain or unknown external disturbances. While the classic adaptive-Q)
method was mainly limited to the augmentation of robustly controlled linear plants, this
section shows how it can be employed in controllers for switching plants: remarkably, perfor-
mance enhancement of existing controllers realized according to [80, 27] can be achieved by
online adjustment of the Q)-parameters that are already in place in order to build a specific
switching quadratically stabilizing controller. More sophisticated update laws could be used
instead of the gradient descent algorithm (3.19), see for instance [75]. One limitation of the
method is the occurrence of the switching transients, although their effect can be reduced us-
ing (3.23). Opposed to the nonadaptive case, where reset maps [220, 79, 198] can be used to
optimally counteract the effect of the transients, it is not straightforward to extend that ap-
proach to the switching adaptive-Q) scheme as investigated in [145]. This is because the opti-
mal reset maps are calculated offline and rely on models of the closed loop. The parameters
of the filters, however, are adapted online and these issues remain to be solved in future work.
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A Parameterization of Robustly Stabilizing
Controllers for Robot Manipulators

In the previous chapter, the parameterization of stabilizing controllers was investigated in the
context of adaptive control methods based on local modes, assuming that an accurate model
of the controlled process is available. In this chapter, we will focus on the parameterization
in the context of robotics. Uncertainty in the plant description, arising inherently from
approximate inverse dynamics (AID) control approaches, will be considered using the dual
parameterization of plants stabilized by a given controller. Our goal is to shape a set of
controllers designed for robust control of robot manipulators, such that numerous advanced
design methods are applicable for enhancement of the manipulator controller in the robust
stability framework of the double-Youla parameterization.

First, a generalized plant description of the rigid-body robot manipulator under AID
control is derived. An important aspect is that the sources of uncertainty are kept separated
throughout. This is in contrast to the most well-known robust robot control approaches,
which lump all neglected dynamics in a single coupled and nonlinear term. Next, the loop
uncertainty occurring within the interplay of neglected manipulator dynamics and the gains of
the outer-loop controller is quantified. This problem is approached by means of a dual Youla
parameterization that has not yet been exploited in this context of robot manipulator control.
The main result of the chapter is the combined primary and dual Youla parameterization
for robust control of rigid-body manipulators, 7. e., a double-Youla parameterization for
manipulator control. The result applies to a wide range of approximate inverse dynamics
configurations, a two-degree-of-freedom (feedforward/feedback) controller design, and can
be used in conjunction with numerous methods for the design of the @)-parameter. The
derivation contains several novel theoretical results beyond the scope of robotics. In particular,
an explicit state-space realization of the dual Youla parameter is derived for a non-dynamic
uncertainty operator, given an arbitrary linear stabilizing controller and a strictly proper
plant.

In order to make the method accessible to practitioners, the very common case is considered
of applying a PD state feedback as baseline outer-loop controller. Thereby, the framework
specializes to a double-Youla parameterization based on a static central controller. The
uncertainty measurement of the dual parameterization is discussed by study of a standard
planar elbow manipulator tracking control example. The entire rigorous robust stability
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4 A Parameterization of Robustly Stabilizing Controllers for Robot Manipulators

framework proposed in this chapter is finally illustrated with a six DoF manipulator in a
challenging varying payload situation.

This chapter was published mostly in [60] and the remainder is structured as follows. We
first introduce the motivation in Sec. 4.1 before we review the most relevant robust AID
control methods in more detail in Sec. 4.2. The precise problem settings tackled in this
chapter are introduced in Sec. 4.3. We then reformulate the uncertainty bounds into a
generalized plant description in Sec. 4.4, before deriving in Sec. 4.5 a dual Youla measure
of closed-loop uncertainty in the robot manipulator control loop. This leads to the main
result given in Sec. 4.6, a general double-Youla parameterization for robot manipulators under
approximate inverse dynamics control; the specialization using a static nominal controller
is then reported in Sec. 4.7. The design steps are summarized in Sec. 4.8. In Sec. 4.9, the
results are exemplified and thoroughly discussed by means of a planar elbow manipulator
and a PUMA P560 robot model with six degrees of freedom (DoF). After a discussion of
current limitations of the proposed method in Sec. 4.10, the chapter concludes with Sec. 4.11.
The mathematical proofs and some technical details are provided in Appendix B.

4.1 Introduction

4.1.1 Motivation

Operating conditions of robot manipulators change over time, impairing the control perfor-
mance— for example, by wear, varying load, etc. In order to adapt the controller to such
situations, a variety of data-driven methods has been proposed in the literature, including
adaptive and learning control [215, 210, 219, 132]. In practice, however, very simple feedback
controllers and model-based architectures are prevalent.

On the one hand, if the complete dynamic model is available, feedback linearization can be
applied. On the other hand, simple, completely model free controllers are ubiquitous, most
prominently the popular proportional-derivative (PD) controller. Both may be interpreted
as two extremes on the spectrum of approximate inverse dynamics (AID) controllers: ideal
linearization is theoretically achieved if the model is perfect; if, on the contrary there simply
is no dynamical model in the controller, only the PD action of the outer loop remains. In this
chapter, we consider the following question: given a robot manipulator under AID control,
how and how much can the outer-loop controller be modified during operation without
compromising stability? Answering this question ultimately allows to use for online control
performance enhancement methods that are otherwise hard to employ in a strict robust
stability framework, e. g., black-box optimization or reinforcement learning.

It is intuitively clear that the worse the controller is informed about the dynamic charac-
teristics of the controlled robot, the harder it will be to provide stability guarantees when
the controller is modified during operation. This situation is depicted in Fig. 4.1 and moti-
vates this chapter: we provide a method to quantify this trade-off. We then characterize a
set of robustly stabilizing controllers Kg, i. e., all controllers contained in g stabilize the
uncertain nonlinear inner loop resulting from a particular AID situation. Interestingly, not
only the model accuracy but also the nominal outer-loop controller K influence the amount
of apparent uncertainty in the loop. Only comparatively recently, Bascetta and Rocco [13]

52



4.1 Introduction
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Figure 4.1: The goal of this chapter is to parameterize a set of robustly stabilizing feedback
controllers for rigid-body robot manipulators. To this end, a general AID controller
is considered in the inner loop that may range from a perfect inverse dynamics model
to none at all. An outer-loop feedback controller K be given that stabilizes the
loop but may not yet yield satisfactory performance. Therefore, in general, one can
augment K by some stable parameter ) € Q C RH_. However, if the dynamic
model of in the inner AID loop is imperfect, only a subset Q C RH  is admissible to
preserve the stability of the overall loop. In this chapter, the set O and the controller
parameterization K (()) are characterized such that various advanced design methods
can be used for robust controller performance enhancement.

reformulate the robust control of rigid manipulators to account for this issue, after it had
not been considered by the most common robust robot control methods (see [215, 210, 219,
132]). The new framework proposed in this chapter provides a unified perspective and con-
stitutes a tool to explore freedom in controller (re-)tuning, given a simplified model of the
robot manipulator and a nominal outer-loop controller K.

Central to our method is a @-parameterization of stabilizing controllers and the dual S-para-
meterization of plants stabilized by a controller as reviewed in Sec. 2.1 and in Sec. 2.2.1. The
primary parameterization was already applied to the robust linear design of robot controllers
around 30 years ago [218], known in robotics as the stable factorization approach [218, 246].
Our interest in extending this approach is due to the beneficial stability and robustness
properties obtained by a ()-parameterization: such a parameterization is very helpful to
leverage machine learning also in a feedback configuration, that is, in closed loop and on
hardware. Inherently, the question is raised of how much feedback controller modification is
admissible, given the effect of neglected uncertainties in the closed-loop system. The dual
Youla parameter S is needed in order to answer this question and there is yet a gap in the
literature how to utilize the dual parameterization [160] for the control of robot manipulators.

4.1.2 Control of Rigid-Body Robot Manipulators

Manipulator Dynamics and Tracking control. We consider a rigid-body robot manipulator
with n links, described by the standard Euler-Lagrange model [219, 210, 215]

M (q)d+n(q.q) =T + Taist (4.1)
n(q,q)=C(q,9)q+ f(q) +g(a),
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Figure 4.2: Perturbed double integrator structure resulting from approximate inverse dynamics
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where g € R" is the vector of generalized coordinates (representing joint positions), 7 € R” is
the input vector of generalized force (torque), M (q) € R"*"™, M(q) > 0 is the inertia matrix,
and n € R™ is a vector that summarizes the vector of Coriolis and centrifugal terms C(q, q)q €
R™, the friction terms f(q) € R", and the gravitational terms g(q) € R". It is assumed that
the input disturbance 7g;; is a Lebesgue measurable function. The state of the system is de-
noted = col(g, q). Given a desired path in joint space qq € C?, qq, dd, qa € Loo(R4,R™), the
tracking error is formed as e = col(ey, e3) = col(gq — @, qa — ¢). The measurement available

for feedback is assumed as ¢ = g + w1, ¢ = q + w2, where w represents measurement uncer-
tainty. The goal of tracking control is to find a controller generating 7 such that e vanishes.

Approximate Inverse Dynamics Control. The parameters of (4.1) are in practice not
known exactly. The approximate or realistic inverse dynamics control [219, 210] therefore
attempts to cancel the nonlinearities of (4.1) by feedback linearization based on the measured

A

quantities and an available model of the the dynamic parameters, denoted by (-):

A

T=M(qu+n(q,q),  where 7(q.q)

~

Cla,q)a+f@+a@.  (43)

The available model parameters may have been obtained by estimations (e. g., due to unknown
load) or approximations (unknown dynamic model, simplified models, etc.). The error
quantities are denoted using (- ) as

— ~

M(q,q) = M(q) — M(q), (4.4a)
The dynamics given by application of the control law (4.3) to the system (4.1) is referred to
as inner loop, and the vector u € R" is the new control input that is to be determined by an
outer loop. Clearly, if M = 0, n =0, (4.3) achieves a perfect feedback linearization and the
minimum-phase nonlinear robot equations (4.1) are turned into a set of double integrators.

Thus, a common choice to stabilize the resulting system is a linear state feedback with positive
definite gain matrices Kp, Kp € R™" Kp, Kp > 0 in the outer-loop. The control law

u = [Kp KD] (S (45)

then effectively acts as a PD controller.

54



4.1 Introduction

In the realistic situation, however, the control law (4.3) inserted into (4.1) yields the
following perturbed double integrator:

g=(I+Ay)u+1, where (4.6)
Ay =M(q)'M(q,q) = M(q)'M(q) — I,
¥ =M(q) ' n(q,q,9,4) + M(q) " Tas.

As depicted in Fig. 4.2, the double integrator is perturbed by a multiplicative input uncertainty
operator Ay; caused by an inaccurate inertia matrix estimate M, and an inverse additive
disturbance term 1. Robust approximate inverse dynamics controller design thus amounts to
selecting u in the outer loop that rejects the inverse additive disturbance 1), subject to being
robust w.r.t. the multiplicative input uncertainty Ay; caused by the inaccurate inertia model.
Hence, in what follows, controller design refers to the outer loop controller generating w.

Manipulator Norm Bounds. The following properties are routinely assumed for the system
(4.1)—(4.2), and the interested reader is referred to [132, 215, 210] for the details and in-depth
interpretation of these assumptions.

Assumption 4.1 (Manipulator dynamic bounds [132, 210]). When the robot arm (4.1)
is revolute, there exist known positive constants M, M, Cy, Fy,, and g, such that, for all
(t,q,q) € R x R* x R", the matrices M(q), C(q, q) and the vectors f(q) and g(q) satisfy
the following inequalities:

0 < M < |[M(q)™| < M, < oo, (4.92)
1C(q. )l < Cullgll, F@I < Fullall,  [lg(@)] < gu- (4.9b)

The workspace of the manipulator is bounded ||g||z.. < ¢max; hence, the inertia matrix M (q)
is invertible for all g. Finally, ||q||z.. < Umax holds due to the power limitation. o

As in [218], let the reference and disturbance signals fulfill the following.

Assumption 4.2 (Ezogenous signal bounds).
1. The input disturbance is bounded from above by a known constant Cgi; such that
| Taist || 200 < Claist < 0.
2. The measurement noise fulfills ||w;||.., < W; for some known constants W; < oco.
3. The reference trajectory satisfies ||qal|z.. £ Qq. o

Moreover, the accuracy of the dynamical model is assumed to fulfill the following properties.

Assumption 4.3 (Model approzimation).
1. There exists a constant o > 0 such that for all g € R"

1AM = [[M(q)"'M(q) - I|| < o (4.10)

For our analysis, it is not necessarily required that a < 1 as in [218, 13]. It will be
shown, however, that robust performance enhancement is feasible in the framework
only if o < 1.
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2. There exists a function ® : R — R such that Yz, & € R*: ||7(q,q,q,q)| < ® (||z])).
Here, the bound is taken as

© (Jlzf]) = ao + aa ||, (4.11)

A detailed exposition how to obtain a suitable ® and constants ag,a; € R is given in
Appendix C.1. o

4.2 Review of Robust Approximate Inverse Dynamics Con-
trol

Before robust AID controllers are characterized via the double-Youla parameterization, a
brief overview of the related work is given. The robust control of robot manipulators has
been subject to research for decades and a wealth of methods has been developed [215, 210,
219, 132], based on a multitude of underlying approaches, e. g., linear multivariable, passivity-
based, sliding mode[l, 199]. Therefore, only selected work is reviewed paradigmatically by
ascending dynamic model demand.

Static and model free. It has long been known that a high-gain PD controller applied
directly to the nonlinear rigid-body system robustly yields uniform ultimate boundedness
of the tracking error [44, 183]. Design methods for gain selection are nonetheless being
investigated today [113] and a high-gain PD controller can be suitable even for fast dynamic
manipulation tasks [203].

Based on crude approximation. Even if not based on inverse dynamics, robust manipulator
control methods typically employ a nominal inertia model, e. g., using a disturbance observer
[200] or model-free time delay control [98]. That is, only the most dominant part of the
manipulator dynamics is approximated and the rest treated as an uncertain disturbance
input [211, 87, 116]. Taking only a diagonal estimate of the inertia matrix, the problem is
handled as a linear decoupled system subject to the disturbances induced by neglected cross-
coupling terms. This way, it is always possible to achieve o < 1 in (4.10). In the authors’
experience [57], this approach constitutes a viable trade-off to build a parameterization-based
robustly stable learning control system that noticeably exploits domain knowledge without
a detailed dynamical model of the robot manipulator at hand.

Nonlinear model-based. Taking a nonlinear dynamical model of the robot manipulator
allows to accomplish a better approximate feedback linearization. Nonetheless, the model
(4.6) is always imprecise to a certain extent, i.e., (4.7) and (4.8) do not vanish. Classic
robust manipulator control methods [215, 210, 219, 132] therefore design the outer-loop
controller to ensure robust stability of the overall loop. Recent research also considers
performance or optimality criteria, e. g., Ho, optimality [114], time-domain bounds [112], or
orbital stabilization around the desired trajectory [175].
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4.2 Review of Robust Approzimate Inverse Dynamics Control

Most relevant for the developments in this thesis are the classic linear multi-variable design
[218] and the Lyapunov-based robust manipulator control designs [13] reviewed in more detail
next.

4.2.1 The Linear Multi-Variable Approach

A double-Youla parameterization allows to consider perturbations of both the controller and
the plant models. The early robust manipulator control methods, in contrast, only exploit the
characterization of all stabilizing compensators for the linear unperturbed model. Spong and
Vidyasagar [218] were able to show that one can always find a linear control law stabilizing
the nonlinear loop resulting from approximate inverse dynamics if the dynamic model of the
robot satisfies Assumptions 4.3-4.1 and o < 1 in (4.10). To this end, consider the control

u=qq+v, (4.12)

where the additional term v is supposed to increase the robustness against the uncertainties
due to the approximate controller (4.3). Inserting (4.12) and (4.3) into (4.1), the resulting
error dynamics read

é:lgﬂeJr[ﬂ (m+v), (4.13)

where the vector 7 is induced by the uncertainty resulting from the approximate model in
the closed loop:

n=Ay(Ggq+v)+ M n+1). (4.14)

Hence, 1(4q, q, ¢, V) is a nonlinear term that cannot simply be rejected as if it were an external
disturbance. Instead, under the assumptions (4.10) and (4.11) with a < 1, it is shown in
[218] that for some constants b and 0 the bound ||n||z... < (661 + af3)||M|lze.. + b holds,
where ||-||z,.. denotes the truncated L, norm [48]. Then if (5 + afs) < 1, the control v,
the tracking error e, and the uncertainty 1 are bounded. A sequence of Youla parameters
Q@ is thus designed such that 5; — 0 and g3 — 1 for £ — co. The resulting robust controller
K}, is finally given from (2.6) and is generally a high-gain dynamic compensator.

4.2.2 Lyapunov-Based

Another popular approach to design a robust control input u for (4.3) is based on Lyapunov’s
second method [215, 210, 219, 132]. It is usually assumed that a PD controller with feedfor-
ward acceleration compensation and an additional input term v is employed in the outer loop,

u=qq+ Kp(ga —q)+ Kp (gqa — q) +v, (4.15)

which results in the error system

e= l—gfp _;(_D}enL [ﬂ (m+v). (4.16)
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Similar to (4.13)-(4.14), the uncertainty in the closed loop is lumped in a single term n and
one needs to select an appropriate control Lyapunov function to design v so as to suppress
the destabilizing effects of . For the details and assumptions underlying the classic approach,
the reader is referred to the literature [219], [210, Chap. 6.5.3],[132, Chap. 5.2].

4.2.3 Drawbacks of Established Approaches

The robot control methods based on the approaches of Sec. 4.2.1 and 4.2.2 have a number
of drawbacks in common. First, all of the AID uncertainty is lumped in a single quantity 7.
However, it is clear from (4.6) that an inaccurate inertia model results in multiplicative input
uncertainty whereas the neglected manipulator nonlinearities induce the inverse additive
disturbance 1. Therefore, the structure of (4.6) is dismissed when the analysis starts with a
single term 7. Second, an outer-loop PD controller is commonly [132, 219, 215, 210] applied
to stabilize (4.6) prior to the robustness analysis. Therefore, in all subsequent developments
one has to work with an error system (4.16) where the gains Kp, Kp of the controller occur
in the dynamic matrix A.

These aspects entail unfavorable consequences. The additional input v must be carefully
constructed to suppress the internal nonlinear disturbance m and it remains prohibitive, in
general, to adapt v on-the-fly by data-driven methods. Furthermore, in order to design v,
a scalar bound |||l < p(||e]|) is required, which in the classic robust manipulator control
[132, 219, 215, 210] depends on the gains ||[Kp, Kp]|| of the nominal PD controller. Thus, as
pointed out in [1, 13], higher gains in the controller require stronger robustifying inputs v to
correct for seemingly higher uncertainty. In contrast, the practitioner’s approach of using a
high-gain PD controller is widely known to work robustly in practice. For the Lyapunov-based
design, this discrepancy has been resolved by Bascetta and Rocco in the revised design [13].
These works will be compared to the novel parameterization in Sec. 4.9.3.

4.3 Problem Formulation

In order to circumvent the drawbacks summarized in Sec. 4.2.3, we keep the uncertainty
separated throughout instead of lumping the effects of (4.7)—(4.8) into a single additive term.
As a sideline, we derive bounds on the perturbations to (4.6) before any outer-loop controller
comes into place. In order to eventually keep the influence of the outer-loop controller
transparent as well, we describe the uncertainty by means of the dual Youla parameter.
Therefore, in the framework proposed next, by construction the uncertainty due to AID
remains clearly distinguishable from the gains of the outer-loop controller.

It is unfortunately not obvious to find in the literature [132, 219, 215, 210, 127, 255] a
suitable generalized plant [269, 217] description for AID, as most methods work with error
dynamics (4.13) or (4.15). Therefore, the first problem we tackle is how the standard robotic
bounds (4.10)—(4.11) translate into a generalized setup (Fig. 4.3) without lumping the effects
of (4.7)—(4.8) into a single additive term.
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4.4 Generalized Plant Formulation of Uncertainty Bounds
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Figure 4.3: Generalized plant setup with uncertainty A in open loop

Problem 4.1 (Generalized plant formulation of approzimate inverse dynamics). Given the
system (4.1) and the control law (4.3) with Ass. 4.1-4.3 fulfilled, reformulate the approximate
inverse dynamics (4.6) and the corresponding bounds as a system

ZA = GzAwAwA + GzAww + GzAuu
G:qz = Guuwa + Guw + Guu (4.17)
Yy = GywAwA + Gywwa

such that the uncertainty (4.7) and (4.8) acting on the nominal double integrator § = w is
described by a linear fractional transformation as shown in Fig. 4.3. That is, the uncertainty
is captured by an unknown norm-bounded A operating on the signals za to yield the input
perturbation wa,

wa(t) = Alz(t), t) za(t), where 36Vt: |Az(t), )] < 6. (4.18)

In the next step, we analyze how these bounds affect the closed-loop system when the nominal
outer-loop controller is applied.

Problem 4.2 (Dual Youla bound of uncertainty under approximate inverse dynamics). Given
the system (4.17)—(4.18) and a nominal outer-loop stabilizing controller Ky, characterize by

means of a dual Youla bound ||S||e < 75 the worst-case dynamic perturbation in closed-loop
w.r.t. the nominal controlled plant ¢ = u. o

Once Problem 4.2 is solved, the solution to the following problem is immediate.
Problem 4.3 (Double-Youla for robust approximate inverse dynamics). For a given robot

under approximate inverse dynamics as in Probs. 4.1 and 4.2, characterize in terms of the
parameter set Q a subset of robustly stabilizing controllers Kr C K(Q). o

4.4 Generalized Plant Formulation of Uncertainty Bounds

4.4.1 Reformulation of AID Uncertainty to G — A Structure

We first tackle Prob. 4.1 to obtain an uncertainty formulation in the form of the generalized
plant depicted in Fig. 4.3. For convenience, let us restate (4.6) in the form

q=u+wy + Wy, (4.19)
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where external disturbances wgiss = M ~1(q)Taist, and the vector of internal model uncer-

tainty wl = w) 4 w¥ is summing up both inertia-induced uncertainty wY and signal
uncertainty 'wz:
w) £ Au(g,q)u, wi £ M~(q) (44,4, 9)-

Subsequently, the dependency on joint positions and velocities is dropped for brevity in nota-
tion. With Ass. 4.2 the summand wg;s is bounded by ||waist|| 2., < MuCaist and depending
neither on state nor on control; wg; is therefore considered as external disturbance input.
Note that by (4.10)-(4.11), both w) and also wY are non-dynamic, time-varying nonlinear
uncertainties; it is therefore possible to use a norm-bounded uncertainty description (4.18),

where the upper bound on the induced matrix norm [|A| = II%&)D;O””AZ ZAA(S?'” < ¢ is satisfied for
za(t

all times t [177, Sec. 2.3.1]. This corresponds to the maximum amplification over all input
directions zx and is key to solving Problem 4.1.

Theorem 4.1 (Structured uncertainty under approximate inverse dynamics). Un-
der the conditions of Problem 4.1, the perturbed double integrator system (4.6) can be con-
servatively reformulated as a G-A structure depicted in Fig. 4.4, where wa = col(w!, wﬁ),
za 2 col(u, 2%, q,q), 25 =1 and A(t) € Da with the perturbation set

D= {A = [ AOM AO 12 Ay € Rnxn,A\y € Rnx(2n+1)7 HAMH < awm, ||A\yH < Oéq;}. (420)
4

The bounds ay and avy are scalars given by (B.3).

Proof: The derivation is given in Appendix B.1. [ |

By adopting the uncertainty structure (4.20), the separation of the two uncertainty sources
is preserved because the summation of u, w) and wﬁ in (4.19) is captured by the signal
interconnection in the generalized plant G as depicted in Fig. 4.4. Therefore, this structure
is carried into the dual Youla operator in the sequel.

Remark 4.1 (Uncertainty separation). In order to obtain such a description, one could also
work with w8 = AUz, instead of collecting the terms w}!, w¥ of (4.19) separately in the
vector wa. Then, however, the result is unstructured with an overly conservative bound on
the uncertainty matrix A. <

4.4.2 Example: State-Space Realization of Generalized Plant Configu-
ration for Tracking Control

This section only serves to demonstrate the specific form of the realization for a tracking
control configuration and is included for completeness.
Let the state-space description of (4.17) be given as

All ‘ Bll BlQ B13

G:| Cu|Du Dz D (4.21)
Ca1 | D21 Doy Doy
Csi |Dsi D3y 0
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Figure 4.4: Generalized plant interconnection of a robot manipulator under approximate inverse
dynamics control with uncertainties “pulled out” [269]. This figure only depicts the
perturbed double integrator system and the uncertainty, i.e., the G-A structure
suitable for subsequent analyses. The precise configuration of the control and
performance channels y, z depends on the manipulator control goal at hand, e. g.,
tracking or impedance control. A tracking control example is given in Sec. 4.9 with
the corresponding state-space realization in Sec. 4.4.2.

with (Aj1, Biy3) and (Aq;, Cs;) stabilizable and detectable pairs, respectively.

In this section, the entries of the matrix are derived for the case of a two-degree-of-freedom
(feedforward /feedback) tracking control design (Fig. 4.4 specialized according to Remark 4.8
and Remark 4.9). In this case, (4.21) is determined from

OHITL Onon OTL n On On
Anzl ],anl ],Bm:[ X(nt1) ],BFH, (4.22)

0,0, In In 0n><(5n+1) In In
I, O
O n ! " I,
Cll — [0( +1);2 ]7 021 - 0n><2n 7C31 = [0 2 ‘|a (423)
n n In On 3Inx2n
OnX(Gn—i—l) I
Dy = 0¢nt1)x2n, D12 = |1 Oixen |, D1z = lo " ], (4.24)
0 (n+1)xn
nx(6n+1)
On _In On n T
D21 = 03n><2n7 D22 = [ ><10 X ]7 D23 = [Or—zr?Iv;raO;” ; (425)
2nx (6n+1)
02n><1 02n><3n IQn 02n><n
D1 = Og00m, Dyy = . 4.26
s e % l03nx1 I, 03, (4.26)

Remark 4.2 (Obtaining numeric values defining the plant interconnection). In this section,
for demonstration and reference, the system (4.21) is given explicitly by (4.22)—(4.26) for
a tracking control example. In a practical implementation, however, it is inconvenient and
error-prone to establish the matrices by hand. Instead, one may use a computer program to
implement the interconnection visually and then obtain the matrices of (4.21), subsequently
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4 A Parameterization of Robustly Stabilizing Controllers for Robot Manipulators

required to calculate the controller, numerically. For example, in MATLAB/Simulink, the
matrices can be obtained by (pseudo-)linearizing the plant model using 1inmod and subse-
quent partitioning of the matrix according to the I/O dimensions. <

4.5 Dual Youla Description of Closed-Loop Uncertainty

We now calculate a realization of the uncertain dual Youla parameter S when the nominal
controller Ky is applied to stabilize the uncertain plant F, (G, A). Recall that in (2.17)-(2.18)
all systems stabilized by K, are parameterized as G. Consequently, if G,,(A) = F, (G, A)
is robustly stabilized by Ky, i. e., G, (A) € G for all A € Dy, then equivalently there exists
an uncertain S € Sx € §. Key to our approach is the following explicit connection of the
open-loop uncertainty description in terms of A and in terms of the S obtained in closed-
loop with K, applied [160, Th. 3.4], [161]:

Gpu(S) = Gpu(Dd) & S(A) =TaaA(I —TanA) " Tage = Fu(Ta,A). (4.27)

In (4.27), Ta refers to the mapping from the inputs col(wa, s8) to the outputs col(za,r). In
operator notation, TA is expressed as

TA _ TA,ll TA,IQ _ GzAwA + GZAuUOMOGywA GzAuMO (4 28)
Taor Tape MoGyu 0 '
Remark 4.3. As Niemann points out in [160], “[...] S depends only on the uncertain block A

and the coprime factors.” For the purpose of this thesis, however, we would like to emphasize
the fact that (4.27) and (4.28) also depend on the interconnection used in the generalized
plant (4.17). This is an important feature of our method: in contrast to the robust control
approaches summarized in Sec. 4.2, by the derivation in Sec. 4.4.1, we keep the inertia-
induced uncertainty wX' completely separated from the nonlinear inputs 'wﬁ, thus reducing
the conservatism of the resulting S. <

With the generalized plant of Fig. 4.4 and the bounded perturbation set D from (4.20), we
obtain the following result.

Theorem 4.2 (Realization of dual Youla uncertainty set). Consider the system (4.1)
with the approximate inverse dynamics controller (4.3) such that Ass. 4.1-4.3 are fulfilled.
According to Sec. 4.4.1, the resulting system dynamics is conservatively covered by the
linear, stabilizable and detectable plant (4.17) with a state-space realization (4.21) and the
uncertainty structure (4.20). Let a nominal linear controller

wofaiz]

4.2
C. | Dy (4.29)

be applied to the outer loop, with the pairs (Ak, Bk) stabilizable and (Ag, Ck) detectable.
Let the state feedback gains F and Fx be designed such that Ay + Bi3Fg and Ak + Bg Fk
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are stable. Then, the set of uncertain dual Youla operators is given by

Ag | Bg
Sa = 1{S(A): VA € Da b, 4.30
A{<)lCSDS] A} (430)
where
[Bi3DxCs + Ay B13Ck Asis Ag 14
w _|  BxCy Aqx  BkDyAC  Agy
S 0 0 A BC,, + BD3Fg
i 0 0 0 B3F; + Ay,
I Bs 1
B. _ |BxDuADDi
S - BD13 i
L B;
Cs :[031 —Fx D3 AC D31ADCH+D31ADD13FG}a (4.31)

Ds = D3 ADD;j,
Ag i3 = B AC + BlBDKDSlAév
Ags1y = B1ADCy, + ByADD3Fq
+ Bi3Dx D3 ADChy + B13Dx D3 ADD 3 F,
Agoy = Bx D3 ADCy, + Bx D3 ADD; F,
Bs i = B, ADD; + BISDKD?)IADDB;
and the expressions for A, B, C, D are given by the realization (B.7).

Proof: The proof is given in Appendix B.2. [ |

From the realization (4.31), it becomes apparent that S is much more involved than
the diagonal uncertainty structure of A. Hence, standard robustness tools [12] such as
p-analysis [266] or worst-case gain assessment [170] cannot be directly applied. In order to
solve Prob. 4.2, it is nonetheless required to find an estimate 45 of the worst-case gain

s 2 sup 15| o - (4.32)
SeSA

To this end, we propose to adopt a randomized approach [236] allowing for the following
probabilistic worst-case assessment.

Proposition 4.1 (Probabilistic dual Youla uncertainty bound). Assign with p € (0, 1),
0 € (0,1) the desired probability level such that P(||S(A)|lw < As) > p, VA € Dx holds with
probability 1 — §. The corresponding gain bound Ag is obtained by the empirical maximum

N . Inl/é ..
Js = max ||Si |0, using ng > mlm iid samples from D .
i=1,..., ng

Proof: Direct from the definition of probabilistic worst-case performance assessment using
a randomized algorithm [236]. |

A procedure to obtain A5 correspondingly is summarized in Algorithm 4.1.
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4 A Parameterization of Robustly Stabilizing Controllers for Robot Manipulators

Remark 4.4 (Realization of dual Youla parameter for norm-bounded memoryless uncertainty).
The state-space realization for the dual Youla parameter S according to (4.31) is a fairly gen-
eral result by itself: it covers, under the usual assumptions for double-Youla parameterizations,
the linear generalized plant interconnection of the form (4.21) subject to non-dynamic (memo-
ryless) norm-bounded uncertainty A, while allowing for any linear central controller Ky in the
()-parameterization. Thus, the result extends [160] in that, due to the symbolic derivation, the
realization of S given in (4.31) is explicit in the state-space matrices and hence suitable for nu-
meric computation of the H,,-norm. By contrast, in our simulation study reported in Sec. 4.9,
a direct computation by (4.27) quickly becomes inaccurate: the numeric inversion of systems
easily yields badly conditioned matrices, and a straightforward implementation of S by for-
mula (4.27) using MATLAB state-space objects ss yields ||S]|s = oo although S is stable. <

4.6 Characterization of Robustly Stabilizing Controllers:
Double-Youla Parameterization

With S according to (4.27) and (4.31), respectively, the control loop can now be described as
shown in Fig. 4.5. The loop T'(S) is stabilized but uncertain and the controller is determined
by some @ € Q. Writing out the matrix transfer operator 7., (S5, Q) = F; (T(5), Q) from
references w to outputs z, one obtains

Tow(S,Q) = T11(S) + T12(9)Q (I — Tho(9)Q) ™" Tu1(S).

The following sufficient condition is established to ensure the overall stability of the scheme.

Algorithm 4.1 Calculation of worst-case gain estimate As

Input: p,d — desired probability levels
am, ay — norm bounds (B.3)
G — realization (4.21) of G, e. g., according to Sec. 4.4.2
K, — realization of nominal controller
F — stabilizing state feedback for plant
Fx — stabilizing state feedback for controller

1 ng <+ Kln%/ln%ﬂ

2 fori=1,2,3,...,ns do

3 AM <« draw sample uniformly over B5*"(aw)

4 AY + draw sample uniformly over By " (ay)
5 Si < S (blkdiag(AM, AY)) by (4.31)

6 end for

7 fs ¢ max 1S:]| o

.....
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4.6 Robustly Stabilizing Controllers: Double-Youla Parameterization

T(S) [

A

g Q

Figure 4.5: Double-Youla parameterization under external inputs with the pre-stabilized uncertain
closed loop T'(S) and controller parameterization via )

Lemma 4.1 (Double Youla under exogenous disturbance and plant uncertainty).
Under the previous assumptions, for all A € Da there exists correspondingly an S € Sa.
Denote by Q the set of finite-gain stable, admissible parameters ) € Q. Referring to Fig. 4.5,
T, (S, Q) is robustly stable if both

(i) Ko robustly stabilizes the uncertain plant F, (G, A), i.e.,

-1

7 |0
0 € RH, (4.33)

—F. (G, A) I

0
VAE'DAZ K()

(ii) the loop (@, S) is stable and VQ € Q,VS € Sa:  ||Qlo]|S]|00 < 1.

Proof: The proof is provided in Appendix B.3. [ ]

By the condition (ii), it is immediate to characterize a set of controller parameters Q
that preserves robust stability and is suitable for a wide range of performance enhancement
methods.

Theorem 4.3 (Set of robust approximate inverse dynamics controllers). Under the

assumptions of Thm. 4.2, let the worst-case gain (4.32) be estimated by s EN vs. If Ag is finite,
Ky is robustly stabilizing. A subset of all robustly stabilizing controllers is then given by

K — {K<Q>: (2.5) (2:6) and Q]| < 1/%} (4.34)

and every controller K € Ky stabilizes the nonlinear system (4.6)—(4.8).

Proof: According to Thm. 4.1, the uncertain nonlinear dynamics (4.6)—(4.8) are conserva-
tively covered by the uncertainty structure D from (4.20). As by Thm. 4.2, DA corresponds
to Sa when the nominal controller K is applied. With Prop. 4.1, Ag is the worst-case gain
over all Sa by letting p — 1,0 — 0. The result is then a direct consequence of Lemma 4.1. ®

On the one hand, the first condition (i) of Lemma 4.1, 7. e., robust stability of the uncertain
loop with only the nominal controller applied, may seem quite restrictive. On the other hand,
the stability of the (@, S) loop is ensured by a small-gain argument; thus, it also guarantees
internal stability when () is a nonlinear or time-varying stable operator with an appropriately
defined stability notion [48]. Hence, due to the double-Youla parameterization, a variety
of advanced methods can be used for manipulator control design in the proposed rigorous
robust stability framework, as motivated in Fig. 4.1.
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Remark 4.5 (Model complexity trade-off). Thm. 4.3 provides a way to quantify the trade-
off between the accuracy of the available manipulator model and the amount of controller
enhancement permissible without sacrificing robust stability of the system: a very imprecise
robot model will yield large vs and consequently Kr — {Kop} as Q@ — 0. As for the other
extreme, a perfect model allows for a true feedback linearization; hence S = 0, and by g — 0
Thm. 4.3 recovers the set of all controllers that stabilize a double integrator. <

Remark 4.6 (Robust stability under nominal control). If the nominal controller K, does
not stabilize the system under all perturbations A € Da, then 5 = 00, 7. e., there is some
unstable S(A). In such cases, it may via @ still be possible to adaptively stabilize the (@, S)
loop of the double-Youla parameterization [234]. We do not pursue such approaches further
but restrict attention to a more robust setting: here, stabilization under all perturbations
A € Dp by means of all controllers (4.34) is the asset allowing for straightforward online
performance enhancement. <

4.7 Special Case: Static Nominal Control

In this section, we specialize the main result to the very commonly used controller of the
PD-type (4.5) or (4.15) as initial controller K. To this end, under the previous assumptions,
a (Q-parameterization can be constructed as follows.

Proposition 4.2 (Central J for static nominal control). A realization of the central
system J in order to build a ()-parameterization around a static controller for the system
(4.22) is

Ay + B Fo | 0 By
J: FG - DgCgl DO 1 ; wJ(O) =0. (435)
—031 I 0

Proof. The system (4.35) is a straightforward specialization of Prop. 2.5 to the case of a
strictly proper plant. O

A block diagram of (4.35) is depicted in Fig. 4.6.

Remark 4.7 (Components of control input). Comparing to Sec. 4.2, the overall control signal
corresponds exactly to the standard ansatz for the outer loop (4.15) but the additional signal
du is generated differently from the “robust-control term” [13] v; precisely, model-based in
the Q-parameterization generated from (4.35). <
Note that the central system J inherits with (4.35) a separation structure that is very useful
for implementation on hardware: the two-port system (4.35) is given directly by the static
nominal controller Dy, and some dynamic augmentation to generate the signal r.

Next, the influence of the stabilizing gain Fy is discussed. Recall that this matrix is
a design parameter, introduced to construct a coprime factorization (A.21). Referring to
the realization of S in Corollary 4.1, from the block-triangular structure of Ag it is clear
that the stability of S is determined by the block matrices on the diagonal. The block
Ag 11 = Ay + Bi3D(C3; is the nominal closed-loop transfer function matrix, consisting of
the (unperturbed) double integrator system and the PD controller Dy. The second block A
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Figure 4.6: Central system J to generate a ()-parameterization, based on a static nominal
controller Ky £ D,. Note that the augmentation simplifies further by choosing
F; = DyCs3,. In this case, du, = 0 and consequently ©w = u,om + S.

depends on the perturbation A and the controller Dy, but not on F. Hence, the importance
of using a robust controller in the central system cannot be relaxed by design of F. Finally
A1 + Bi3F( is the dynamic matrix of the coprime factor My, which is a stability matrix by
requirement (see Thm. 4.2). It is known that S can be interpreted as a frequency-shaped
difference between the actual plant G(A) and the nominal plant G in the bandwidth of the
nominal operating frequencies [234, Sec. 2.7, Rem. 6]. Therefore, we advocate to choose

FG = D(]Cgl (436)

in order to obtain Ay; + BisFg = Ay, + B13DyCj3,. Referring to Fig. 4.6, note that by this
choice the central system J is further simplified: in this case, the filtered output s is directly
passed to the controlled system, as

(4.35) with Fo=DC31
U= Upom + OU, + S = Unom + S.

In this case, only the filtered output s is added to the control input and the proposed
framework becomes particularly simple to implement on a robotic platform: opposed to
the standard Youla parameterization [269], no observer-based central controller is required.
Instead, robot manipulators that are already driven by a PD controller can be augmented to
generate the parameterization. The uncertainty quantification in the closed loop becomes
nonetheless feasible as expressed by As.

In order to quantify the uncertainty in the closed loop by A4g, an expression for the corre-
sponding dual Youla parameter is derived as well.
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Corollary 4.1. The realization of the uncertain dual Youla parameter S(A) describing the
approximate inverse dynamics effect (4.17),(4.20) controlled by (4.35) is given by

A+ Bi3DoCsi Agia As s Bs 11
_ 0 A  BC,+BDyF;| BDij
5 0 0 A + BisFg Bi; ’ (4.37)
Cs D; AC Cs3 D31 ADD:3
where

Ag 1o = B, AC + B13D0D31Aéa
Ag 3 = B, ,ADC,, + ByADD;F; + B13DyD3;ADC,, + Bi3DyD3; ADD,; F,
Bg i, = B\ ADD;3 + B;3DyD3 ADD;s3,
Csi3 = D3 ADCy, + D31ADD13FG,
A=A, + By AD'Cy, + B AD 'Dy3DyCs, + Bi3DyCs, + BCyy + BD 3Dy C,
B=-B,AD'-B, C=-D'C,—-D"'D3DC;, D=D"
B =B;3sDyD3;AD™', D=1- DA — D3DyDs A.

[

Proof: The derivation is analogous to the full case of Theorem 4.2, replacing the coprime
factors with those for a static controller from (2.16). Alternatively, the given realization of
S can be obtained from (4.31) by appropriately removing obsolete rows and columns for
undefined Ak, Bk and Ck, and taking Dk = D. [ ]

4.8 Summary of the Design Steps

The steps to employ the proposed robust robot manipulator control framework in practice
are summarized as follows.

Design a static nominal controller Ky with the goal of ensuring robust stability to the
uncertain system, given an underlying approximate inverse dynamics controller.
Determine, e. g., by simulation or experiment, an estimate of the norm bounds of
Ass. 4.1 and 4.2 for the robot manipulator at hand and the bounds (4.10) and (4.11)
that characterize the accuracy of the inverse dynamics controller.

Calculate by (B.3) the bounds ay and ay, corresponding to inertia respectively non-
linear signal uncertainty.

Obtain by Alg. 4.1 an estimate 4g of the worst-case dual Youla operator norm.

Add the dynamic augmentation to build the central system (4.35) shown in Fig. 4.6.
Then, improve the performance by adding @), designed by any suitable method, subject

to |Qllec <1/9s.

Steps @ and @ are standard, whereas steps @@ exploit the novel parameterization based
on the double-Youla approach.

O @ © ©
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4.9 Illustrative Numeric Study

4.9 lllustrative Numeric Study

First, let us discuss the implications of the main result by the familiar planar elbow manipula-
tor example. Next, the practical utilization of the proposed framework is illustrated by means
of a robotic manipulator with 6 rotational degrees of freedom under varying payload. We will
finally compare the novel robust stability framework to the existing ones and outline how a va-
riety of control design methods can be used in the control approach put forward in this article.

4.9.1 Discussion of Worst-Case Dual Youla Uncertainty Measure

The dual Youla characterization according to Prop. 4.1 of our main result provides a new
perspective to uncertainty quantification in AID manipulator control.

Example setup. As in the reference book [132], we use a planar elbow manipulator with
two rotational degrees of freedom (DoF) to illustrate the control scheme and discuss our
results. The dynamical model is given in Appendix C.2. A preliminary analysis yields the
following numeric values of the bounds (4.9) for this manipulator:

M, =3.765, F,=3, C,=1289, g¢,=13.44. (4.38)

In order to analyze the interplay of the available model knowledge and the outer-loop
controller w.r.t. the uncertainty S(A), the most commonly used controllers of type (4.3) are
summarized in Tab. 4.1; the abbreviations PFL, AID, SID, DS, GC, and NID correspondingly
refer to the inner-loop controllers in the following. The parameters used in the simulation
study and the achievable uncertainty bounds are given in more detail in Tab. C.1.

Remark 4.8 (Two-degree-of-freedom control). We employ a two-degree-of-freedom control
scheme in the sequel, 7. e., the feedforward and feedback gains can be tuned independently. By
selecting y = col(q, q, qq, 4a, 4a) instead of y = col(e, &, §q), the following developments hold
for the general class of two-degree-of-freedom controllers. We use the state-space realization

Table 4.1: Common cases of control laws employed in the inner approximate inverse dynamics
loop (4.3), with the values of the uncertainty bounds according to Thm. 4.1. This
table is an overview excerpt from Tab. C.1; the dynamic models are provided in

Appendix C.2.
Inner Controller Bounds
Type Abbreviation aMm Qg
Perfect feedback linearization PFL 0 0
Approximate inverse dynamics AID 0.2523 9.092
Simplified inverse dynamics SID 0.6457 59.37
Diagonal scaling DS 0.6457 77.99
Gravity compensation GC 2.765  59.37
No inverse dynamics NID 2.765 77.99
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as given by (4.22)—(4.26) in Sec. 4.4.2, corresponding to a tracking control configuration of
Fig. 4.4. <

In order to keep the following discussion simple, we restrict most of our attention to the
specialization of the main result from Sec. 4.7. The central controller is based on static
Uy = Koy with

Ky: Dy = [—Kp, —Kd,Kp,Kd,Kﬁ} , (4.39)

and the Q)-parameterization is generated from (4.35). Consequently, S is calculated according
to Corollary 4.1 unless stated otherwise. The stabilizing gains F, Fk are design parameters
in the construction of the stabilizing factorization (A.21) of the plant and controllers and
affect vs. In this section, no Fy is needed because of the static nominal controller, and unless
stated differently, Fi is calculated by (4.36). Note that, by construction, S is a dynamical
operator mapping s € R™ to r € R™; hence, in this example with two joints and n, = 10
measurements according to Remark 4.8, S is a 10 x 2 uncertain system. With g from (4.32)
describing the worst-case uncertainty in the closed-loop system given a specific outer loop
controller, the following qualitative properties should be captured:

o Larger model uncertainty (i. e., larger values of ayy, ag) should result in larger 7s.

« Robust and high-gain nominal controllers should lead to lower 7s.

o Feedforward control action should not increase uncertainty s of the feedback loop.
By inspection of (4.31), all these aspects influence the expression for S(A), therefore each will
be discussed separately. In order to obtain 4g, the procedure from Tab. 4.1 is used with the
confidence level set to p = 99.99% and § = 10~*, corresponding to ng > 92099 samples over
the uncertainty set Da for each calculation of 5. Subsequently, in order to uniformly sample
over norm-bounded real matrices, the toolbox [240] is used, implementing suitable methods
described in detail in [236]. A single evaluation of 45 with 10° samples takes approximately
20 min on a current desktop computer (3.9 GHz, 32 GB RAM) using MATLAB R2017a.

Remark 4.9 (Signal uncertainty for revolute manipulators). The example manipulator con-
sists only of revolute joints, thus a constant bound on the gravity error can be assumed.
In other words, it is known ezactly that ||n|| does not depend on joint positions and conse-
quently, the uncertainty on nonlinearities can be taken as a matrix Ag € R+, <

Influence of AID parameters. We first investigate how the accuracy of the approximate
model influences the worst-case gain vs. To this end, for now assume that the outer-loop

controller is a PD feedback controller for critical damping in the nominal loop, 7. e., it is
defined by (4.39) with

K, = diag(K,, K,), Kq = diag(Ky, K4), where K, = 10°, K4 = 63.3, and Kg = 0.(4.40)

First, consider the PFL case of Tab. 4.1, i.e., ay = ay = 0. Clearly, in this case
there is no uncertainty as the underlying feedback linearization uses a perfect model of
the manipulator dynamics. The uncertainty set consequently degenerates to Da = {0} and
from (4.31) immediately S = 0 follows. As expected from Remark 4.5, the nominal decoupled
double integrators describe the resulting loop perfectly.
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(a) Evaluation of 45 using a fine discretization over the range of 0 < apy < 1.1 and
ay = 0. A logarithmic scaling is used on the y-axis in order to visualize the
change of 4g in the order of magnitudes for apy < 0.85, up to instability of S
occuring rapidly for ap > 0.85.
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(b) Evaluation of the influence of ag with apy = 0. A logarithmic scaling is used
on the y-axis for enhanced visibility.

Figure 4.7: Influence of accuracy of inertia and nonlinearities’ bounds on 4s. Unstable S are
marked by x in the graphs only for visibility; by definition, v = oo if S is not stable.

In the robust control approaches reviewed in Sec. 4.2, the accuracy of the inertia model
plays a crucial role as measured by the value of « from (4.10): both [218] and [13] need o < 1
as a prerequisite. We therefore begin by investigating the influence of aj; on the worst-case
gain s while ag = 0. The calculations were carried out over a fine grid on 0 < ayy < 1.1.
The results are shown in Fig. 4.7a. The uncertainty characterized by the worst-case ||S(A)||
is very low for 0 < ay < 0.7. We can then observe a rapid increase for 0.7 < ayr < 0.85
and 45 = 00, 7. e., unstable S, for values greater than ay; ~ 0.85. In other words, robust
stability of the inner AID loop using the PD controller with the gains (4.40) is lost for inertia
uncertainty greater in norm than 0.85, given that n = 0.

Similarly, the influence of the norm of the neglected nonlinearities nn can be evaluated. To
this end, we have calculated 45 over a grid of 0 < ay < 110 with ay; = 0. As depicted
in Fig. 4.7b, for low values of 0 < ay < 50, 45 stays small with a sudden increase up to
instability of S for ay > 63. Comparing to Tab. 4.1, we find that for the gains (4.40), robust
stability cannot be concluded for the inner-loop controller types NID, GC, DS and SID, while
viable robustness is obtained under the AID law.

We also performed a parameter sweep calculation over a grid of both ay and g as shown in
Fig. 4.8. Tt can be observed that there is a relatively clear boundary between model accuracy
that allows for robust controller enhancement, and too inaccurate modeling which results in
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Figure 4.8: Evaluation of worst-case ||S||« over a grid of both agy and aym, where unstable S
are marked by x. There is a relatively clear boundary between overall acceptable
worst-case model uncertainty and a non-robust nominal control loop with the gains
(4.40) in the outer-loop. The depicted inner-loop controllers AID, SID, and DS
are according to Tab. C.1. Here, only the AID allows for robustly stable controller
enhancement by some parameter Q).

4s = o0o. Note that these values are depending on the controller gains and were obtained
using the controller (4.40). Figs. 4.7 — 4.8 demonstrate how the main result allows to quantify
the worst-case uncertainty set under a given approximate inverse dynamics situation.

Influence of nominal outer-loop controller Ky,— Central feedback gains. A high-gain
PD controller is working robustly in practice to control the rigid manipulator [183]. It is also
clear from (4.31) that the P- and D-gains of the nominal controller influence the uncertainty
expressed by the dual Youla parameter. Hence, we calculated the values of 45 over a grid
of P/D combinations for the central gain (4.39). As shown in Fig. 4.9, the evaluation was
performed over a dense grid with values of 0 < K, < 5-10%* and 0 < K4 < 10*. Three different
parameter sweeps were performed, with the uncertainty levels ay; and ay set corresponding to
the inner-loop controllers AID, SID and DS from Tab. 4.1. In accordance to intuition, one can
observe that the uncertainty in the closed loop decreases with increasing gains and increasing
model accuracy. Further, a minimum D-gain of approximately K4 > 10 is needed in order
to conclude robust stability although the model employed in the AID controller is relatively
good. Note that even if the model had been perfect, some K4 > 0 would have been required
as lead compensation for the double integrator plant. In accordance to the literature [183],
large PD gains are required for robustification in case of limited model knowledge.

Influence of nominal outer-loop controller K;— Feedforward term. The previous analysis
only considered a controller feeding back position and velocity errors. Here, the effect of
adding feedforward terms is examined, 7. e., Kg # 0 in (4.39). In the robust robot controllers
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Figure 4.9

given the three inner-loop controllers AID, SID, and DS according to Tab. C.1.
Configurations where s is not finite are marked by x for visibility. The GC and NID

controllers yield unstable S everywhere on the depicted grid and are hence excluded

O,VKd, Kp > 0.

from the graph. The PFL case is also not depicted as As
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4 A Parameterization of Robustly Stabilizing Controllers for Robot Manipulators

of [218, 13, 210], the outer-loop controller (4.12) and (4.15) includes a summand ¢q. In
the ideal case then, ¢ = [[ qqdt?> = qq even without feedback. In the methods reviewed
in Sec. 4.2, the robust control term v also depends on the maximum norm ||gq||z,, of the
desired trajectory acceleration. In the framework put forward in this article, on the contrary,
the uncertainty measure S does not change when the feedforward gains are included in (4.39)
by some Kg # 0. This may seem counter-intuitive, but is a simple consequence of the
clear structure obtained by the generalized plant: due to the Q-parameterization, subsequent
controller design is based on an internal model of the plant; hence, the structure is carried into
all controllers parameterized by @, c¢f. Remark 4.3. More formally, a two-degree-of-freedom
controller can be thought of as a single controller K = [Ky, Kp,] in feedback connection with

i
an augmented plant {O, GT} [231, p. 32f]. Hence, all two-degree-of-freedom controllers
stabilizing G are obtained [231, p. 49f, p. 53] as all one-degree-of-freedom controllers for

-
[0, GT] . Consequently, the plant in feedforward control channels is known ezactly: it is
a zero operator. The control w cannot affect feedforward signals. Naturally, the associated

. . . . . .. S S,
uncertainty with this plant is zero, as are the corresponding entries in S = [ Sfbl = [ (1)% ]
ff

Indeed, in our example system with the measurements according to Remark 4.8, calculating
the uncertain operator S(A) confirms that its realization always has the form

As(A) | Bs(A)
S Iy4 0456

06>< 10

O10x2

There is accordingly no uncertainty associated with the last six components of y, i.e.,
q4, 494, qq- It is a clear advantage of the proposed parameterization that the loop uncertainty
measure s can be made independent from quantities such as qq, gq by the two-degree-of-
freedom design according to Remark 4.8. Note that Fig. 4.9 is obtained irrespectively of Ky
because [|S||oc = || S ||co-

4.9.2 lllustrative Example: Double-Youla Parameterization Control of a
6 DoF Robot Model with Varying Payload

With the previous example, only the novel dual Youla perspective on AID uncertainty was
discussed. In this section, the utilization of the complete double-Youla parameterization
is illustrated by means of a multi-DoF robot system under varying payload. To this end,
we consider a PUMA P560 manipulator with 6 DoF, the dynamic model being publicly
available from [42]. The task is to track a fast reference trajectory for each joint while the
payload m,, applied in 10 cm distance to the end-effector is uncertain within m, € [0.5, 1.5]kg.
The trajectory is chosen to cross areas of the state-space where nonlinearities and inertial
interactions are strong, precisely we use qq(t) = qo; + @i7g Sin(27 f; 1), where a; = 90, ay =
45,a3 = 22.5,a4 = 55,a5 = 50,a¢ = 133 and f; = 0.2, fo = 04, f3 = 1,f, = 0.5, f; =
0.25, f¢ = 0.2. Let us walk through steps @—@ of our approach as summarized in Sec. 4.7.
@ For the nominal control design, an inverse dynamics controller is used in the inner

loop based on the robot model for my, = 1.0kg. Given the varying payload, this
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controller can only achieve an approximate feedback linearization. Therefore, an outer-
loop controller K is designed to robustify the loop. We use the proportional gains
K, = 900 and derivative gains K4 = 2\/?10 = 60 in each joint.

(2) Next, one needs to obtain numeric values for the bounds (4.10), (4.11) and (4.9a). By
a simulation as in [191], we find

a = 0.3438 (worst-case with m, = 0.5), «ap = 5.4028, «; =4.3689, M, = 5.7032.

@ While the previous bounds are only due to the manipulator and uncertain feedback
linearization, we now construct the novel generalized plant setup proposed in Thm. 4.1.
Just as in the previous example, we use the two-degree-of-freedom design structure
given in Sec. 4.4.2. Now, the uncertainties are conceptually pulled out as shown in
Fig. 4.4. To keep the conservatism reasonable, some characteristics of the manipulator
are considered. In particular:

« All 6 DoF of the P560 are rotational (c¢f. Remark 4.9).
e The Coriolis and centripetal effects of the P560 are to a very large extent deter-
mined from ¢y, ¢s, ¢3.
 Friction is independent of payload, hence compensated by the inverse dynamics
controller.
Accordingly, the uncertainty structure (4.20) is described by matrices Ay € R%*¢ and
Ay € R¥>*GH) | From the values obtained in step @, we have as of (B.3) the associated
norm bounds ay; = 0.3438 and oy = 39.627.

(4) Next, the realization of the uncertain dual Youla operator (4.37) is calculated. We
then assign the probability levels p = 99.9% and ¢ = 10~* to employ Algorithm 1 from
Tab. 4.1, using 10* samples. The worst estimate is 45 = 0.1137.

@ The detailed uncertainty quantification of the dual Youla parameter S by @—@ is
worthwhile once the @)-parameterization is used to enhance performance. That is, the
nominal PD controller is firstly augmented as shown in Fig. 4.6. According to Theo-
rem 4.3, the parameterization now allows to search over robustly stabilizing controllers
simply by choosing a stable (possibly time-varying) finite-gain Lo stable parameter sys-
tem (). By the value of 45 = 0.1137, robust stability is assured if ||Q]|s < 1/4s =~ 8.8.

As discussed in Chap. 2, there is a multitude of design methods for the parameter () and
the reader is referred to the literature, e. g., [269, 51, 28, 23, 80, 59, 231]. A specific learning
approach will be considered in Chap. 8 of this thesis. In general, the less restricted ||Q||
needs to be, the more design freedom there is for any such method.

Let us briefly illustrate this trade-off. To this end, some controllers () are “designed” by
randomly sampling stable dynamic systems of maximum order 10. We run 20 times 50 non-
linear simulations of the closed loop over T'= 10, each time increasing the allowed thresh-
old of the loop norm ||@Q|| - 45 in a logarithmic range of 0.05,0.1,0.25,0.75, ..., 500, 103, 10%.
In order to account for the uncertain load, a random value 0.5 < m, < 1.5 is assigned to
the payload in each simulation run. The initial state is qo = [0, 7/4, —7/2,0,0,0,015¢] . A
discrete-time formulation of the controller is used for implementation. The sampling time is
constant with ¢, = 5ms and the solutions are obtained by a 3rd order Runge-Kutta method
(Bogacki-Shampine). To keep the comparison irrespective of feedforward control, only a feed-
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performance of the central PD controller K(Q = 0). Unstable simulations are
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(b) Performance of 552 randomly sampled controller augmentations, of which 452
fulfill @ : K(Q) € Kr (left side of the vertical dashed line). The best such
controller improves the tracking performance by 11% w. r. t. the nominal design
(Q = 0) indicated by the horizontal dashed line.

Figure 4.10: Tracking errors of a P560 with uncertain payload and 1000 randomly sampled filters
(). The simulation confirms that all controllers K(Q) € Kg robustly stabilize the
nonlinear loop. Conservatism is discernible in that some K(Q) ¢ Kr also yield
improved performance.

back controller augmentation is used in this example, i. e., Qg = Ogx1s in all simulations.
The result of these simulations is summarized in Fig. 4.10, depicting the f5-norm of the 6-
dimensional error signals. Controllers on the left side of the vertical dashed line in Fig. 4.10a
are within the set g from (4.34). It can be observed that none of the controllers in Kg leads
to a significant increase in the error norm. Leaving the set of admissible robust controllers,
the error norms rapidly increase up to practically useless control behavior and instability of
the simulated loops starting from approximately [|Q||« > 20/4s. Compared to @ = 0, 46 of
the 548 controllers K ¢ Kg yield better performance; however, 211 controllers K ¢ g lead
to instability. This study shows how the parameterization of Theorem 4.3 is indeed useful:
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it allows to search exclusively over robustly stabilizing controllers. Robust performance can
subsequently be obtained by suitable design of @) subject to ||@Q||. < 1/4s. Approximately
half of the LTT systems () actually improve the performance of the overall control system in
this study, albeit being only randomly sampled. This is depicted in Fig. 4.10b, which shows
a magnification of the area marked by the rectangle in the lower left corner of Fig. 4.10a.

4.9.3 Comparison to Related Work

Single primary vs. double-Youla parameterization. The robust control of Sec. 4.2.1 derived
in the classic frequency domain Youla parameterization always yields a high-gain dynamic
compensator [218]. Here, the parameterization is in a state-space description and it can
be based on both dynamic and static central K,. Moreover, the conventional approach is
lumping all uncertainties in a single term (4.14) of internal feedback disturbances i that must
be suppressed. In contrast, the structure (4.20) proposed in this chapter more accurately
reflects that of AID uncertainty (4.6)—(4.8).

It may be less evident that the purpose of the parameterizations is quite different. In
the method of [218], the central controller does not ensure robust stability; robustness is
obtained by careful design of @ (“The choice of [Q] is not easy to see” [218]). As the primary
Youla parameterization only yields stabilizing controllers for the unperturbed plant, 7. e.,
the nominal double integrator, in [218] the design of the filter system () must ensure that
the internal disturbance 7 is suppressed and not destabilizing. In this chapter, we do not
report another robustification tool but rather characterize a whole set of robustly stabilizing
AID controllers (4.34) such that the control performance can be enhanced online (¢f. Fig. 4.1
and Remark 4.6). Such enhancement is possible using time-varying or switching schemes,
including adaptive [234, 126], learning [57], model predictive [237], hybrid [80], and gain
scheduling [221, 23] approaches. Most of these references only focus on the design aspect of
the system @, i. e., design for a nominal model within the set of stabilizing controllers. By
the contributions in this chapter, such a design can be systematically tightened to the subset
of robustly stabilizing controllers for robot manipulators. Finally, the traditional approach
dictates the design of the system () and is therefore limited to robust trajectory tracking
control. The double-Youla framework reported here, in general, does not make this restriction
because all derivations refer to the generalized plant (4.17).

Comparison to Lyapunov-based designs. By the revised robust control design, Bascetta
and Rocco [13] essentially undo the step in the Lyapunov-based designs (Sec. 4.2.2) of
lumping the closed-loop uncertainty into a single term 7 in (4.16). Their method consists of
two steps: first, the nominal PD controller is designed to ensure global asymptotic stability
of the error system under perturbation with any admissible matrix ||Ay| < a. Second,
the asymptotic performance under the influence of the neglected terms m is recovered by
an additional feedback term v = f(e) obtained via a quadratic Lyapunov function. Our
requirement of (4.33) that robust stability is ensured by the nominal controller is therefore
similar to the first step of [13]. While the methodological approach is quite different, the
additional input du in our method corresponds to the term v in [13] as emphasized in
Remark 4.7. The parameterization of Thm. 4.3 thus constitutes a viable alternative to the
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Lyapunov-based methods. The general drawback of a factorization approach is that only
uniform ultimate boundedness is ensured as long as the linear bound (4.11) holds. In turn,
the double-Youla parameterization brings some advantages. First, the Lyapunov approaches
to robust manipulator control typically result in high frequency additional control signals v.
Here, in contrast, the characteristics of du depend exclusively on the design of (). For
example, the controllers of Sec. 4.9.2 generate smooth signals because @ is LTI. Second, [13]
only deals with robust tracking control. The novel double-Youla parameterization, however,
is derived for a generalized plant structure (4.17) and an arbitrary LTI controller K. It
therefore complements the Lyapunov-based approaches in terms of versatility, as (4.17) allows
to represent via z many more control objectives in the design step of Q.

Recent approaches. Let us finally recapitulate the distinctive features of the presented
double-Youla approach compared to recent literature on robust manipulator control. The
conservatism is determined by the accuracy of the model bounds and nominal outer-loop
compensator gains. Helwa et al. [76] consequently propose a learning-based adjustment of the
uncertainty bounds in the Lyapunov-based robust design. Nonetheless, the robustification
term is a switching signal of potentially high frequency and the overall design is tailored
towards tracking control; one could then also work with a robust-adaptive scheme, e. g., [73].
Also the work of Kim et al. [112] is related, in that the L; robustness bounds therein are as well
derived by consideration of a generalized plant interconnection. However, [112] starts from
the error system (4.16) and the disturbance signal is only split into exogenous and internal
components. The uncertainty structure used in [112] hence does not distinguish between
inertia and signal uncertainty, resulting in conservative design, cf. Remark 4.1. In all these
works, the analysis is conducted regardless of the nominal outer-loop PD controller that has
considerable influence on robustness. The dual Youla measure of uncertainty proposed in
this chapter, in turn, provides a general approach to systematically quantify this influence.

4.10 Limitations

In this section, the current limitations of the framework presented in this chapter are discussed.

Non-robust initial controller. In order to obtain 45 < oo, by condition (i) of Lemma 4.1
the nominal controller Ky needs to stabilize the system under all perturbations A € Dx.
As revealed by the study of the example system above, with a static initial controller, the
uncertain model cannot be robustly stabilized when low gains are employed or when the
dynamic model is too inaccurate. This is in line with known results on robust manipulator
control theory. On the other hand, it may well be possible to robustify a control loop in
the double-Youla parameterization by the addition of @, even adaptively [234]. With such
a design approach, in turn, the resulting (dynamic) controller K (@) could be used as the
initial controller, just as in [218]. The corresponding worst-case uncertainty assessment is
then feasible by the general solution of Thm. 4.2 for a dynamic central controller. In this
case, however, there does not seem to be a clear advantage over starting, for example, with
an H..-method for the design of the nominal controller.
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Precautions in practical implementations. When applied to real systems, further precau-
tionary measures should be taken in order to avoid damage to the robot or the environment.
With the control system being robustly internally stable, no signal grows unbounded in the
closed-loop system (uniform ultimate boundedness of the tracking error). This should nei-
ther be confused with Lyapunov stability nor asymptotic performance. Taking the linear
error bound (4.11) further restricts us to semi-global stability, . e., it is only valid as long
as the quadratic error norm is over-bounded. While theoretically not necessary, in practical
implementations the feedforward gain of Qg should also be carefully bounded to ensure that
the robot is never driven out of its admissible workspace.

Conservatism of the method. Robust control introduces conservatism by definition. In
our method, several assumptions underpinning our approach introduce such conservatism:
the over-bounding of the nonlinear parts by means of a norm-bounded matrix, the linear
bound employed in the function ®, and finally the small-gain theorem to establish stability
under controller perturbations. In the simulation study above, this conservatism is visible in
Fig. 4.10a. The simulation of the actual nonlinear loop may still result in acceptable error
norms even for controllers K (Q) € Kg.

4.11 Conclusion

In this chapter, a double-Youla parameterization for robust control of rigid body manipula-
tors has been proposed, with the dual parameterization being the key tool to quantify the
uncertainty of the control loop. The overall contribution is the construction of a subset of
robustly stabilizing controllers for approximate inverse dynamics manipulator control prob-
lems. Using a static nominal controller, the theory specializes to a handy structure suitable
for practical implementations. The proposed methodology constitutes a control strategy that
allows to apply numerous advanced design methods for enhancement of inverse dynamics
based feedback controllers in a strict robust stability framework. While the design of the sys-
tem @) € Q for performance improvement is not within the scope of this chapter, learning
will be explored in Chap. 6 as one such way to enhance the performance. By the proposed
framework, however, the admissible set Q can be systematically tightened to contain only
robustly stabilizing controllers for robot manipulators.

The main limitation of the proposed approach is the conservatism introduced by over-
approximating the nonlinear error dynamics using an uncertain matrix w.r.t. the linear
nominal double integrator model. In principle, one could adapt certain measures to reduce
conservativeness during the later controller design stage. For example, it is common to use
some pre- and post- filtration of ) such that the worst case loop gain is approximately constant
over frequency, aiming to construct a less conservative controller, as for example in [237]. One
might even aim to build less restrictive controllers by allowing for temporary (unstable) finite
growth as long as it is guaranteed that the loop will again be a strong enough contraction
at a later time instant [243]. However, such ideas are clearly not in the spirit of guaranteed
robust stability put forward in this thesis, aiming for applicability to real-world robots.

As emphasized earlier, the parameterization generally entails controllers based on the in-
ternal model principle. Clearly, also the disturbance observer compensation designs are a spe-
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cific implementation of the internal model principle [111]. Just as the linear robust internal-
loop compensator structure from [111] has been generalized to the nonlinear setting [114],
a nonlinear flavor of our method might be developed in future work: with suitable exten-
sions [4], one could take advantage of the available manipulator model directly in terms of a
parameterization. It may also be feasible to develop a dual Youla uncertainty characteriza-
tion for the robust manipulator control with a disturbance observer based inner loop compen-
sation [200]. Another open research direction is to include the analysis of flexible robots [140]
in the framework.
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Automated Continuous Online Least-Squares
Policy Iteration for Robot Control

In the previous part of this thesis, the parameterization of stabilizing controllers was ex-
amined as a tool to establish robust adaptive algorithms for robotics. By design, these pa-
rameterizations are model-based. However, for many robotic tasks, detailed mathematical
modeling is hard or time-consuming, which makes reinforcement learning (RL) an attractive
alternative to model-based control design. In this second part, model-free RL algorithms are
examined from the perspective of robotics (Chap. 5) and w.r.t. the interplay with the pre-
viously shown parameterizations (Chap. 6). Generally in parts IT and III of the thesis, the
methods are developed in the discrete-time setting throughout.

In this chapter, novel RL algorithms are reported that belong to the class of least-squares
policy iteration (LSPI) algorithms. The development of these algorithms was initially moti-
vated by taking the designated deployment in the framework of stabilizing parameterizations
into account. Moreover, the specific needs arising from the robotics problem domain back-
ground are considered. These new results therefore contribute towards the important goal
of powerful online learning robot control. Parts of this chapter have been published in [61].

The remainder of this chapter is organized as follows. First we recall the basics of RL in
Sec. 5.1 before outlining in detail the need for an online, continuous and automatic LSPI
algorithm in Sec. 5.2. The general related work is reviewed in Sec. 5.3, leading to a summary
of the contributions of this chapter in Sec. 5.4, before the main ideas of specifically LSPI and
its kernel variant LSPI are recalled in Sec. 5.5. On the way to the main result, in Sec. 5.6 a
novel kernel-based online LSPI algorithm is proposed. The main contribution is then given
in Sec. 5.7, an online LSPI algorithm with automatic tuning capability that is applicable to
continuous action space domains. Our simulation studies reported in Sec. 5.8 evaluate the
new methods, highlighting their advantages over the baseline algorithms and discussing their
performance for a wide range of algorithmic parameters. The chapter is concluded in Sec. 5.9.

5.1 Introduction to Reinforcement Learning

In this section, the basic concepts of RL are introduced as required for the developments
later in this thesis. Interacting with the environment in trial-and-error fashion is the core
idea of RL methods [228], allowing to infer desired behavior. While RL constitutes a general
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framework to learn sophisticated behaviors in a multitude of disciplines, robotic tasks are
often closely related to optimal or adaptive control problems. In this context, some RL
methods can be conceived of as direct adaptive optimal control [227]. Some contributions in
the field of adaptive dynamic programming are also relevant, particularly if it is important to
keep a continuous-time formulation, see for example [249] and the references therein. Given
the large body of literature, the interested reader is referred to the standard reference [228]
for the perspective of Al, to [249] for a more control-oriented point of view, and to [34]
for an elaborate discussion on RL in continuous state- and action domains as typical for
many control systems. For robot control, iterative discrete-time RL algorithms are more
frequently used, see [115] for a comprehensive overview. Selected examples include tracking
performance improvement of robot manipulators [174, 57], aerial transportation with drones
[172], control of autonomous vehicles [250, 245], marine vehicle navigation [242], pendulum
systems [259, 45], human-robot cooperative manipulation [171], apprenticeship learning [154]
and information exchange in cooperative multi-agent systems [238].

Overview. In this thesis, we adopt an artificial intelligence convention to RL because it is
the approach predominantly taken in robotics. This section is to only provide a very brief
overview of the central concepts, starting from the theory of multi-stage decision processes
over a MDP [21, 182]. We adopt the following definition.

Definition 5.1 (Markov Decision Process [34, Ch. 2.2]). A Markov decision process (MDP)
is defined by the 5-tuple (&, o, P, r,~) with the state space &, the action space &/, the
transition function P¢ : & x & — &, the reward function r : & X & +— R returning a cost
index R, that describes the immediate benefit of applying action a; € & in state s, € &, and

the scalar discount factor 0 < v < 1. o

The goal of solving an MDP refers to choosing actions such that the future accumulated
discounted reward is optimized:

maximize G, = Ry 1 + YRy o+ ... = ZWiRt+i+1- (5.1)
i=0

If the dynamics of an MDP are known, 7. e., the transition functions P¢ and the reward
functions are known, the optimal policy can be found via planning algorithms, most promi-
nently dynamic programming (DP) [15, 182, 21]. The goal of maximizing the return for ev-
ery possible state leads to the central idea of value- (or critic-)based methods: constructing
a ranking of all possible states s € & of the MDP with the purpose of finding the optimal
action a} in each step t that is expected to lead to the highest ranked successor state s’. To

this end, the state value function V., : S8 — R,

vw<st) = Eﬂ' [Z rtht—&-l

t=0

st] , (5.2)

describes the expected return when starting in state s; and navigating through the MDP
according to a policy m : & — &. It is important to note that such a representation can
only be created with respect to a policy that determines the state transitions; hence, the
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subscript 7. Solving an MDP refers to finding an optimal policy 7* that maximizes the
expected return in all states, 7* = argmax_ V. (s), Vs € &; such 7+ always exists [182].

Usage of the state value function V,(s), however, requires knowledge about the transition
probabilities of the MDP to evaluate possible successor states. Contrary to that, Reinforce-
ment learning operates on a trial-and-error basis and does not rely on information about the
MDP dynamics. The reward function r is usually designed to represent the control/decision
objective. However, depending on the context, this function may also be unknown in RL. A
typical example for this case is when a human teacher provides in each step with R, a sub-
jective ranking of performance to a robotic system.

If action a; is chosen, let P?(s¢y1|st, a;) be the (unknown) probability that the system
transitions to state s;;1, 7. e., the transition function corresponds to the system dynamics.
The value function can be extended to account as well for the value of taking a specific action
a;, defining the state-action value function Q : & X o — R as

Q 7r<st7 at) = ]EW[Gt | Sy, at]. (53)

The Q-function assigns each state-action pair the expected sum of rewards when starting
from state s;, taking action a;, and henceforth following the policy 7.

As the policy m determines both V.. and Q,, the optimal value functions V*(s) and Q*(s, a)
are

V*(s) = max V.(s), Q*(s,a) = max Q (s, a). (5.4)

The state-action space is henceforth denoted S £ & x o, and a state-action value func-
tion @ : S — R entails a (greedy) policy via the policy improvement

m(s) = argaergax Q(s, a). (5.5)

5.2 Motivation

Two main classes of RL algorithms are the value-based approaches and the value function
free methods, e. g., policy search. On the one hand, policy based RL is predominant in
robotic applications due to several factors [46]: a policy search algorithm works with an
explicitly pre-structured parametric policy and iteratively improves the policy by locally
optimizing directly in the space of parameters. Therefore, suitable policy representations
allow to reduce the learning problem from the potentially high-dimensional state-action
space to a lower-dimensional optimization problem in parameter space, greatly simplifying
the learning problem in practice [225]. Moreover, the demand for continuous and possibly
multidimensional action spaces is more naturally covered in policy based algorithms. On the
other hand, a value function based method constructs a ranking over the state and action
sets w.r.t. the expected long-term reward, thereby implicitly encoding a globally optimal
policy. This approach, however, entails properties that become particularly problematic for
robot control [46]. Function approximators [65] must be employed to represent the value
of a given state/action combination in the oftentimes large state-action space of robotic
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systems. Accordingly, the computational complexity easily becomes intractable due to the
curse of dimensionality. A particularly recurring research question is therefore how the
action space in continuous domains can be smoothly approximated, e. g., by discretization
and subsequent symbolic post-processing [3] or heuristically by expert knowledge and fuzzy
representations [86.

Despite their drawbacks, value function based algorithms are preferred in some robotic ap-
plications in order to avoid the limitations of policy search, see [115, Tab. 1]. In particular,
one needs to construct suitable policy parameterizations and find good initial policy param-
eters for local optimization in policy search. A class of popular value function algorithms
is based on least-squares policy iteration (LSPI) [128]. Extensions to approximation-based
LSPI are studied in detail in [34], and an online least-squares policy iteration (OLSPI) al-
gorithm is derived in [33]. These algorithms iteratively evaluate and improve the control
policy, are sample-efficient, and have comparatively good convergence properties due to the
least-squares techniques for policy evaluation. For example, [172, 245, 171, 238, 250, 242] all
employ some form of LSPI.

It is currently, however, rather tedious to apply LSPI algorithms to practical robotic
problems. First of all, there often is a demand not only for a continuous state but also a
continuous action space representation. Therefore, it is necessary to employ a value function
approximation (VFA) method and the achievable performance depends considerably on an
appropriate representation for the system at hand. Next, operating online means that data
cannot be collected in advance but has to be obtained incrementally, requiring fast enough
processing cycle times and manageable memory complexity. Finally, it is crucial to employ
well-tuned algorithmic parameters in order to obtain a performant learning system. For
example, Anderlini et al. [5] report unexpected behavior of LSPI in the control of a wave
energy converter model, presumably due the radial basis function approximation. In robotics,
this issue can become even more tedious, particularly when tuning the algorithmic parameters
is costly in experimental setups where merely collecting suitable data can be hard, e. g., in
closed-loop feedback systems.

Summary. To leverage the potential of LSPI in robotics, algorithms are needed that operate
online, over continuous state and action spaces, and automatically handle the VFA. Such an
algorithm is proposed in this chapter.

5.3 Related Work

Given the wealth of literature on general RL, attention is given specifically to LSPI class
algorithms employing function approximators to represent the value function. A more exten-
sive treatment of approximation-based RL can be found in [34]. If for example deterministic
dynamics can be exploited, fuzzy techniques [34, Ch. 4] offer a viable alternative to encode
prior expert domain knowledge in the value function. An introduction to RL with linear
function approximators in particular is provided in [65]. In general, however, feature or ba-
sis function (BF) selection and correspondingly “a memory management scheme for LSPI’s
data [...] is non-trivial” [65, Ch. 4.5, p. 437]. Adaptively growing kernel representations [204]
offer a promising way to deal with this problem: the very same issue of BF selection with
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memory management arises in kernel adaptive filtering [139], and a multitude of sparsifica-
tion schemes have recently been developed in the signal processing community. The general
VFA problem is pervasive in high-dimensional RL; hence, we focus on reviewing kernel-based
RL methods. For a broader perspective, the interested reader is referred to the discussion in
[228, Ch. 8], [34, Ch. 3.6], [65, Ch. 3], and the references therein.

Kernel methods [204] have in common that a sparsified set of features is used to represent
a high-dimensional, implicit feature space only by means of the raw data transformed by the
kernel. With the versatility of Gaussian processes [186], kernel methods are also becoming
successful more and more in the fields of RL and in robotics. Several methods exploit such a
representation to model the dynamics, e. g., [45, 179, 247]. These approaches are not reviewed
in more detail as they pursue an indirect, 7. e., model-based, approach. Several value-based
model-free RL methods with non-parametric value function modeling have been developed,
as reviewed next. The paper [169] by Ormoneit and Sen is an early contribution showing that
the distribution of the estimate may be conceived of as a Gaussian process. Jung and Polani
[100] further develop kernel least-squares policy evaluation (KLSPE), a kernelized online
policy evaluation scheme and demonstrate their results on a high-dimensional benchmark
system; however, a discrete set of pre-defined actions is used. Xu etal. [260] later develop
kernel-based least-squares policy iteration (KLSPI), a flavor of LSPI where data is selected
according to an approximate linear dependency (ALD) criterion and the value function is
represented by means of a kernel expansion. Closely related papers are [97] and [262], which
employ direct recursive versions of KLSTD respectively KLSPI. These algorithms, however,
are not optimized for online usage and are only applicable to discrete state sets. Recently,
Cui etal. [43] demonstrate that so-called kernel dynamic policy programming (KDPP) is
applicable to high-dimensional robotic systems and the authors also compare to the KLSPI

Table 5.1: Overview of model-free value-based RL algorithms with kernel VFA capability, with
LSPI and OLSPI included for comparison. The symbols \/ (/) and X correspond

[T

to “yes”, “partially”, and “no".

Approach Online Continuous Feature selection Admissible Kernel Init.ial
- - ] - - system trick policy
Reference Algorithm State Action Automatic Sparsification dimensionality required
[128] LSPI X v X X - low X X
[33] OLSPI v v X X - low X X
OLSPI
(34] with cont. v v v X - low X X
action
[260] KLSPI X v X v ALD mid v v
Online .
262) L prspr ) ) X v ALD mid v X
[97] KRLSTD X ) X v Laplacian low v v
[43] KDPP X v X v ALD high v X
[61] OKLSPI v v X v Coherence mid v X
[61] AOLSPI v v v v Coherence mid vy X
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algorithm; nonetheless, [43] uses ALD for the dictionary sparsification step as well and also
KDPP is only applicable with a discrete action set. These approaches have the common
advantage that the features are generated in data-driven fashion but the VFA is still in linear
form. A comparison of these value-based model-free algorithms is summarized in Tab. 5.1.
As can be seen, the current kernel-trick based approaches lack the capability of continuous
action space representation.

A unifying view of kernel-based RL w.r.t. other regularization schemes is given by Taylor
and Parr [235]. Another related algorithm is called kernel-based dual heuristic programming
(KDHP) [258], whose applicability to hardware was shown in [259] using inverted pendulum
systems. Its online mechanism, however, is to run RL over simulated data and then use
the final policy on the robotic system, which contradicts our requirements outlined above.
Xu etal. [261] compare a batch KLSPI algorithm for unmanned ground vehicle control with
an online actor-critic based on KDHP. Along the same lines is the more recent [88], using
a kernelized RL algorithm for longitudinal control of autonomous land vehicles, operating
with batch samples and ALD sparsification as well. Wang et al. [250] in turn approach the
problem of cruise control of an autonomous vehicle by tuning the parameters of a proportional-
integral controller online according to a policy learned with KLSPI. In their approach, the
data samples are also collected in advance and the policy is obtained by running the batch
algorithm offline.

Pioneering work to analyze the convergence of KLSPI type algorithms for large-scale or
continuous state-space MDPs is reported by Ma and Powell in [144]. A rigorous analysis on
solving MDPs more generally by policy iteration with kernel representations is now provided
by Farahmand et al. [52].

5.4 Contribution

The main contribution of this chapter is to show how the OLSPI algorithm with a polyno-
mial basis for continuous action representation [34] can be endowed with a kernel-inspired au-
tomatic feature selection method of low computational complexity. Hence, we obtain an au-
tomatic OLSPI (AOLSPI) algorithm that preserves the analizability properties of the LSPI
class, yet can be applied in fashion similar to direct adaptive optimal control. Implementing
our algorithm requires only a relatively small amount of modifications starting from OLSPI;
nonetheless, some critical tuning parameters of the VFA are removed. Hence, practitioners
will benefit by easier deployment to actual systems.

In deriving the novel algorithm, we have several side contributions. (1) We start by
adding capabilities to the KLSPI from [260] to work online in the above sense, . e., under
incremental data collection and reduced processing burden. Opposed to [97, 262], we discuss
the role of the sparsification scheme to save computational time, based on advances in the
field of kernel adaptive filtering. We then (2) obtain a modification of OLSPI’s standard
temporal difference (TD) update rule, which also allows for a kernel-inspired approach to
distribute basis functions for the continuous state and action VFA, without actually applying
the kernel trick to OLSPI. To benefit from enhanced information processing nonetheless, (3)
the similarity measure of the sparsification process is used to extrapolate learned information
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to new dictionary elements. Hence, (4) the convergence of the novel algorithm is shown to
be eventually similar to that of a well-tuned OLSPI with a fixed set of BFs.

5.5 Review of State-of-the-Art LSPI

5.5.1 Least-Squares Policy Iteration

LSPI and temporal difference (TD) learning. Policy iteration (PI) is one particular
method to learn Q*. PI tackles the learning problem by starting with some randomly chosen
policy and improving it iteratively until convergence to the optimal one. To this end, two
steps are alternating. The first is policy evaluation, which refers to computing the state-
action value function Q. (s, a) of the current policy. This estimate is then used in the second
step, the policy improvement done via (5.5). The policy evaluation step requires to solve the
Bellman equation [15] of the MDP

Q,(st,at) = Ex[Rey1 + vQr(Stt1, A1) | St ). (5.6)

In continuous spaces & or & that typically occur in physical systems, it is in general
not possible to solve the policy evaluation step exactly. In this case, the state-action value
function Q(s, a) is commonly approximated as Q(s,a) by means of a linear approximation
architecture [34, 65]. To this end, a set F = {gzﬁi(s, a): S — R Vi=1,... ,N¢,} of features
is selected, which consists of IV, state and action dependent BEs ¢(-, ). The approximated
value Q for a given state-action tuple (s, a) is then computed as a weighted sum of the BFs

Q(s,a) = Z‘f@(; a)d; = ¢p(s,a)" 6. (5.7)

Solving (5.6) approximately by minimizing the approximation error in a least squares sense
results in the LSPI algorithm. In its original form [128], this algorithm is offline, i.e., it
requires a batch of transition data samples of interactions with the environment. Busoniu et al.
[34] present a variant that processes interactions with the environment on the fly, therefore
called OLSPI. Both algorithms build a matrix A and a vector A from subsequent interactions
in order to solve the projected Bellman equation by TD learning according to

A A+ ¢(s,a) (B(s,a) —7o(s, 7(s))) ",
A A+ (s, a)r.

LSPI rebuilds these matrices in every iteration from scratch, whereas OLSPI continues to

update A and A as long as it interacts with the environment.

Continuous action domains. In order to use OLSPI over scalar continuous action domains,
orthogonal polynomials such as Chebyshev polynomials of the first kind ¥, : [-1,1] — [—1, 1]
of degree j, 0 < j < M, are used to construct an extended feature vector ¢(s,a) € R(M+INo
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as

¢s(s)Vo(a) ¢1(s)
¢(s,a) = ; , where ¢s(s) = o (5.10)
@s(s)Va(a) én,(s)

The benefit of working with the extended feature vector (5.10) is that the approximation over
the action space of is kept separated from that over the state space &. In (5.10), without
loss of generality, the action space & is scaled to exploit the orthogonality of the Chebyshev
polynomials over the set & = [—1,1], with the elements denoted @ € &. Thus the policy
improvement step (5.5) becomes tractable: computing (5.7) for the current state s results in
a polynomial expression over a

U(a) =cya +---+cata (5.11)

which is exactly representable by the coeflicients ¢; and it remains to compute arg max;, ; ¥(a)
to find the greedy step (5.5) efficiently. Further details on OLSPI with Chebyshev polynomial
approximation are skipped for brevity and the reader is referred to the literature [34, Ch. 5.3,
p. 170ff, and Ch. 5.5, p.177].

Remark 5.1 (Scalar action space). A widespread restriction when applying LSPT algorithms
is currently that the action space & C R is scalar in order to keep (5.5) tractable. If
the problem at hand requires a vector-valued continuous action space, one can run several
instances of OLSPI in parallel. <

5.5.2 Kernel-Based Policy lteration

A version of LSPI which exploits the kernel trick [204] to approximate the state-action value
function Q(s, a) is presented in [260]. Similar to the linear approximation architecture, the
@ function is approximated via a weighted sum of kernel functions, i. e.,

Nk
Q(s,a) = ki(s,a)l; = k(s,a)" 0
=1

with ki<57 a) = KJ((S, a), (si,ai)) s
k(s,a) = [ki(s,a),... ky,(s,a)]" . (5.12)
The function k(x,x) : 4 x S — R denotes the positive definite symmetric kernel function

inducing a reproducing kernel Hilbert space (RKHS), i. e., the feature space H with inner
product (-, - )3 such that

k(x,x") = (P(x), D(X) )n. (5.13)

Denote by x = (s,a) a vector collecting state-action tuples. The mapping @ : SF +— H is
the feature map which is implicitly defined by the kernel. The set D = {(s;, a;) € S«,i =
1,..., Nk} is a dictionary of N = |D| collected state-action tuples. Roughly speaking, this
set contains a finite number of points representative for the space spanned by & x &/. The main
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steps of the KLSPI algorithm are briefly summarized: based on the dictionary, the training
data is iterated over in order to recursively solve the projected Bellman equation, leading to
an improved policy. Then, the learning agent interacts greedily with its environment and
produces new data samples. New samples are added to the dictionary only on per-need basis
and the whole process is repeated until some convergence criterion is fulfilled. The advantage
of the KLSPI algorithm is two-fold: first, the approximation of the Q function is computed
in the RKHS; second, the set D of representative samples is created in automated fashion.
In [260], this is done via ALD analysis applied to the dictionary state-action tuples (s, a):
if a new tuple can be reasonably well represented by a linear combination of the Nk tuples
already contained in the dictionary, its addition to the dictionary is not considered justified.
Formally, the approximation error is calculated by

§=ky — k] K 'k, (5.14)

with K € RV<xNe k. c RV and k,, € R defined by the Mercer kernel x, the training
data D, and the query input x' = (s’,a’) as

Ki; = "f(xz‘;xj)7 Vx;,x; € D (5.15)
kv = k(x;,x'), Vx;, €D (5.16)
ke = K(x', X). (5.17)

Given a threshold dy, the ALD criterion states that x” is already sufficiently well represented
by the dictionary if § < dy. Accordingly, x’ is added to D if § > dy. For learning, a TD-like
update similar to (5.8) and (5.9) is used, employing the vector of kernels k(s, a) in place of
the feature vector ¢(s, a):

A+ A+ k(s,a) (k(s,a) — vk(s', 7(s)) ", (5.18)
A A+ k(s,a)r. (5.19)

5.5.3 Problem Statement

In the notation above, it is clear that the core learning mechanism is quite similar in the
LSPI, OLSPI, and KLSPI algorithms. With these well-established algorithms in mind, we
are now in position to emphasize which parts of the algorithms allow for modifications in
order to deploy LSPI more easily to actual robotic systems.

Xu etal. [260] state that their KLSPI can be used to optimize an existing policy online.
This policy, however, is required to feature some level of performance. Due to this initial
performance guarantee, the need for additional exploration is avoided. In spite of these
assets, the KLSPI algorithms alternates between two main steps: data collection, 7. e., greedy
interaction with the environment, and subsequent policy improvement. Data is thus processed
in batches. Moreover, it is difficult to identify the required performance level of the initial
policy. Note that this notion of online mechanism contrasts the requirements that typically
occur in robotics outlined above.
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Problem 5.1 (KLSPI for online learning). Development of an online version of KLSPI, 1. e.,
data should be processed once it becomes available while the per-iteration time must not
increase significantly during run-time. o

The OLSPI algorithm from [34], in turn, is capable of online processing and continuous
action space representations. Yet it should be clear that the choice of features ¢; is crucial
to obtain good performance in any LSPI algorithm; as pointed out in [65, Ch. 4.5, p. 436],
“[...] the choice of the representation can often play a much more significant role in the
final performance of the solver than the choice of the algorithm.” From a practitioner’s point
of view, this issue is ubiquitous when having to select basis functions in order to apply
approximation-based RL algorithms to robotics, a tuning process that can be tedious. This
process should therefore be automated.

Problem 5.2 (OLSPI with automatic VFA). Derivation of an OLSPI algorithm that is
applicable to continuous state-action spaces and automatically selects suitable features in
order to reduce hand-tuning of the VFA, or to obtain a good starting point for subsequent
fine-tuning of OLSPI. o

5.6 Online Kernel Least-Squares Policy lteration

The kernel-based RL approaches reviewed in Sec. 5.5 select data points based on ALD analysis.
A first recursive version of KLSPI is presented in [262], however, considering only a discrete
state space, using expensive ALD sparsification as well, and it lacks a convergence analysis.
A first step is therefore to adopt a more efficient sparsification rule.

5.6.1 Sparsification Rule

A direct implementation of the ALD criterion (5.14) requires the inversion of a Gram matrix
K € RV<*Nx which results in a basic complexity of O(Ng) [186]. Clearly, the per-iteration
time will increase significantly with the growing dictionary; hence, the matrix inversion should
be avoided. One alternative approach is to directly propagate the inverse matrix by recursive
updates, similar as done in [100, 262]. However, the complexity is still O(NZ) in this case;
moreover, learning the inverse results in increased sensitivity w.r.t. the numeric initialization
parameters. Recently, other sparsification methods are becoming more mature and well-
understood, see e. g. [85]. We therefore propose to adopt another sparsification procedure
that inherently is of only linear complexity: the coherence criterion introduced in [189].

The coherence pu of a dictionary D is defined as

L= max K (xi, X;)|

1 SZ?%|D| \//i(xiv xi)ﬁ(xja xj)

Y

therefore p is large if the dictionary contains points x; and x; that are very similar in H as
measured by (5.13). The decision rule whether to include a new sample x’ into the dictionary
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or not is to restrict the coherence of the dictionary below a threshold 0 < py <1, i.e., if

. !/
max [r(xi, X)) < po, (5.20)

XD \//i(xi,xi)/i(x’,x’)

then x’ can be added to D. In the following, it is assumed that a unit-norm kernel function
is employed, . e., a kernel that fulfills ||k(x,-)||x = 1, Vx € &&. The most well-known kernel
with this property is the Gaussian kernel

1
k(i X;) = exp (Hxi —xju2> (5.21)

and in this case (5.20) reduces to

max |k (xi,X)| < po- (5.22)
Hence, the complexity of the sparsification rule is reduced to O(Nk) evaluations of the kernel
function and a simple element-wise comparison.

Remark 5.2 (Babel criterion). Instead of the maximum similarity of the datapoints (7. e.,
the coherence) as a decision criterion, the cumulative coherence (Babel criterion) is sometimes
considered for sparsification, see [85] for a comparison. In this case, a new data point is
included in the dictionary if

> k(% %)] < fio.

x; €D
Although of linear complexity as well, for the purpose of online RL, this sparsification is not
as suitable as the maximum coherence-based diversity measure. The rationale behind will
be clarified by means of the simulation study reported in Sec. 5.8. <

5.6.2 Online Dictionary Expansion

Rebuilding the matrices A and X in the TD update (5.18) and (5.19) from scratch after
each interaction is the second shortcoming of KLSPI w.r.t. efficient online data processing.
This problem can be circumvented as follows: recall that A is a sum of outer products of
the two vectors u = k(s,a) and v = (k(s,a) — vk(s',7(s'))). Adding a new feature x to the
dictionary D means to add one dimension u,; to v and v, to v. The resulting outer
product @®' becomes

T
. u uv UV,
av' = [0, V] = e (5.23)
) + T
Un+1 Up41V Up4+1Un+1

Thus, only one row and column is added while the other entries remain unaffected. This
observation is key to retain the previous values of A and A during the subsequent rank-1
update. To this end, A and X need to be enlarged, e. g., by adding an extra diagonal entry
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Anew € R to A and an extra entry Ao € R to A as

A < blkdiag(A, Apew) = B AO ] A AT Aew] (5.24)
From (5.18) we then have
A + blkdiag(A, Apew) + [ uv' W 1 —~ (5.25)
LR Bnew U1V Upi1Unia )
A O uwv' 0 0O O 0 UV 11
B lo 01 * [ 0 0] * lo Anew‘| * [UnHUT Up41Vnt1 | (5'26)
() (%)

Conceptually, the resulting TD update (5.25) can be conceived of as the decomposition (5.26):
it corresponds to a TD step (%) as if the dictionary had not been modified, and the additional
part (xx) is a TD step for the new point starting from A,c,. Obviously, the values of A and
A computed during prior iterations remain unchanged and therefore can be re-used directly
after the dictionary is expanded. Further, it is always possible to choose A, = 0 and
Anew = 0; however, a better method to obtain A, and A, is proposed later in Sec. 5.7.1.

With these measures, we obtain the OKLSPT algorithm in Tab. 5.2. The algorithm contains
basic building blocks of both the KLSPI and OKLSPI algorithms. Lines 1-4 initialize the
algorithm and the control loop is set up in line 5. In line 6, either a random exploratory or
the exploitative action is chosen via the standard e-greedy mechanism. Line 7 describes the
interaction with the environment, i. e., the application of action a; and the measurement of
the successor state s;;1 and corresponding reward r; ;. The lines 8-9 constitute the coherence
sparsification criterion, and if needed the dictionary expansion is done in lines 10-11. The
remaining lines 13-19 constitute the standard kernelized TD update. For the practitioner, it
is emphasized that the policy improvement step in line 17 is of conceptual nature only: it
suffices to perform the calculation in line 6 when choosing an exploitative action.

5.7 Automated Online Least-Squares Policy Iteration

Albeit online capability, the proposed OKLSPI algorithm only works with discrete action
sets, a shortcoming of major concern for application on robotic devices. Recall from (5.10)
that the OLSPI algorithm handles continuous action spaces by incorporating Chebyshev
polynomials of the first kind into an extended feature vector ¢(s,a). However, an analogous
extension of the kernel-based LSPI algorithm is not yet known because the similarity of
the features in the RKHS is computed implicitly using the kernel trick. In principle, one
could analogously construct a kernel for continuous &< by composition with a suitable
orthogonal polynomial kernel [173]. Nonetheless, the policy improvement step (5.5) could
not be solved exactly anymore by means of a polynomial (5.11) because this would require
to explicitly consider the feature map @ of (5.13). This is, however, contrary to the key idea
of kernel methods that one does not need to know an explicit form of the feature map but
only implicitly define it via (5.13). Therefore, we propose to rather combine the automated
feature selection of the kernel-based approach with the OLSPI algorithm, which allows to
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Table 5.2: Online kernel least-squares policy iteration with coherence sparsification and efficient

dictionary expansion.

Algorithm 5.1 Online KLSPI (OKLSPI)

1

o~ W N

[=))

10
11
12
13
14
15
16
17

18
19
20

Input: (-, -) — unit-norm (Mercer) kernel function
0 < v < 1 — discount factor
0 < pg < 1 — coherence threshold
{0 < & < 1}2, — exploration schedule
Ky € N — policy improvement interval
Xo = (Sg, ap) — initial state/action tuple
D+ (SO7 ao)
A0, 1+ 0
s; < initial state sq
fort=0,1,2,3,... do
uniform random action in & if rand([0,1]) < ¢,
A 7(sy) else
apply a;, measure s; 1, r;11
= max ({]1 (x;, (s0,30))| : x; € DY)
if 1 < pp then
D+ DU (s, a;)

A < blkdiag(A, Apew); A+ [AT, Anew] " With Apew and Apey according to (5.34)

end if
A < A+ K(st, ar) (k(st, a) — vk(st41, 7T(5t+1)))T
A=A+ k(st, at)l’t+1
if t =(l+ 1)Ky then
0 «— A\

T = argmax Zlﬂ 0;x((s;, a;), (s,a))
acd

[+ 1+1
end if
end for
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use continuous space approximations. To this end, we automate the approximation over the
state space by means of kernels but continue to construct the action space approximation
using orthogonal polynomials. The resulting algorithm is termed automated online least-
squares policy iteration (AOLSPI) and provides a solution to Prob. 5.2.

First, we need to build a dictionary over the state space & only, with an appropriate
sparsification rule. To this end, we may simply adopt the previous approach, i. e., a dictionary
Ds with sparsification criterion (5.22). We can now replace the basis function vector ¢s(s)
in the extended feature construction (5.10) by a vector kg(s)

ks(s) = [ki(s), ..., kng(s)]", ki(s) = k(s,s;), s; € Dg C S, (5.27)

with a unit norm kernel function x(-,-) and the number of dictionary elements Ng = |Ds|.
The corresponding feature vector ¢ is now given by

A~

$(s.a) = [kI ()Ts(a), ..., kI ()Tu(a)] . (5.28)

Next, the key question is how the growing dictionary can be handled in OLSPI. As evident
from (5.28), the feature vector ¢(s,a) now consists of stacked state-dependent vectors of BFs
ks(s), which are multiplied with Chebyshev polynomials of increasing, but maximum order
M. Consequently, a new element in the dictionary Dg leads to an increase of the feature
vector size by M + 1 elements. Therefore, the adjustment of matrix A and vector A after a
dictionary update needs to be carried out differently than in the case of OKLSPI.

Consider how the corresponding TD update A(A) of matrix A is now calculated using (5.8):

A(A) = d(s,a) (b(s,a) — 7(s, 7(s)))

s,a) —y
ks(5)Wo(a) | [ ks(s)Wo(a) — vhs(s)Wo(n(s) |

ks(S)"I’M(a) ks(s)Wa(a) — V'ks(S’)‘IfM(W(S’))

By examining the element of the first row and first column of A(A) exemplarily, it can be
observed that A(A) consists of blocks, each containing a sum of outer products of the state
dependent BFs vector. For example, the first block yields

A(A) ) = ks(s)ks (s)Wo(a)” — vks(s)ks (s')Po(a) Po(r(s)).

Similarly, the other blocks differ only by the values of the Chebyshev polynomials that are
multiplied to the two outer products ks(s)kd (s) and ks(s)kq (s'). At this point, the reasoning
about outer products of growing vectors (5.23) applies, 7. e., the resulting matrix of the outer
product of the vector of state-dependent BFs needs to be expanded by an extra row and an
extra column. Note that this applies to all of the blocks in A(A). By analogous derivation
for the TD update of A it is immediate that adding an element at every (Ng + 1) index is
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required. Formally, we obtain the expansion

Ay |- Aprams
A1 = : : , (5.29)

Aoy |- [ At (v, m41)

where each block is enlarged as

A (G,5) = blkdiag(At (4,5)» At,new (4,5) ),
Ay = ks(s)kg (s) i1 (a)V;_1(a) — vks(s)kg (') W;_1(a)¥;_1(n(s))), (5.30)

and the block-partitioned vector update

Ai(1)
At—i—l (1) )\t,new(l)
ALl (M+1) At (M+1)
| “\tnew (M+1) ]
with

Again, Aspew(ij) = 0 and A pew @) = 0 are always possible choices and a preferred way to
initialize the new entries is given in the next section.

The resulting automated online least-squares policy iteration (AOLSPI) algorithm is sum-
marized in Tab. 5.3. Compared to the OLSPI algorithm reviewed in Sec. 5.5.1, only the lines
8-12 have to be added. It is therefore straightforward to enhance existing OLSPI implemen-
tations in order to realize the automatic VFA capability. Note that, as opposed to OKLSPI,
the kernel activation in lines 8-10 only depends on the system state s, whereas the depen-
dency of the extended feature vector (Aﬁ on the action a is captured via the Chebyshev basis
as in OLSPI. Therefore, the implementation of policy improvement remains tractable by
means of the polynomial (5.11).

5.7.1 Similarity-Based Information Extrapolation in TD Update

Next, we examine how the online algorithms presented above process information after the
dictionary expansion step. In a single TD update step, the algorithms in this chapter spread
information over multiple elements of A and A, based on the similarity of the dictionary
points w.r. t. the current and successor states, see (5.18) and (5.19) with (5.12), respectively
(5.30) and (5.32) with (5.27). This mechanism is essential for learning, but partly disabled in
the case of AOLSPI and OKLSPI: a new BF that is added to the dictionary some time after
the learning process had started lacks the information that had been spread in the previous
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Table 5.3: OLSPI with automatic basis function selection (AOLSPI). Bold line numbers indicate
key differences w. r.t. OLSPI from [34].

Algorithm 5.2 Automated OLSPI (AOLSPI)

1 Input: s(-,-) — unit-norm kernel function
M € N — small integer number, highest degree of Chebyshev polynomials
0 <~ <1 — discount factor
0 < pp < 1 — coherence threshold
{0 < et < 1}2, — exploration schedule
Ky € N — policy improvement interval
Xo = (S0, ap) — initial state/action tuple
2 DS < Sg
3 AN+ 0
4
5

s; < initial state sq
fort=0,1,2,3,... do

uniform random action in o/ if rand([0,1]) < &
6 Ay <

7(sy) else
7 apply a;, measure s; 1, r;11
8 p = max ({|x (s;,s)| : s; € Ds})
9 if 1 <y then
10 Ds <+ Ds U (sy)
11 A, X < expansion according to (5.29)—(5.32)
12 end if

13 A~ A+ é(st, ay) (&(Sm ay) — vé(stﬂ, W(Stﬂ)))T
14 A=A+ (Aﬁ(sm ag)res

15 if t = (l+ 1)Ky then

16 0« AN

17 T =argmax @' (s;,a,)0
acd

18 [+—1+1

19 end if

20 end for
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A
Xo ~ = (5.33) =
X3 | = @ ‘ \
X4 =
= e

Figure 5.1: Visualization of the proposed similarity-based information extrapolation (5.33) for
the TD update of A: according to (5.19), in each iteration, every entry of the vector
A receives a certain amount of the reward r determined by the kernel activation.
Therefore, A accumulates the rewards corresponding to each element x € D C 8.
When the dictionary is expanded by a new element x;, Anew Can in consequence
approximately be initialized with a weighted average of the collected rewards of the
most similar dictionary points. Note that similarity is considered in the feature space
‘H: in the depicted example, x; and x4 contribute most.

interactions with the environment. Taking A,., = 0 and A, = 0 assumes that there is not
yet any information about the corresponding part of the state space— after all, it is a new
point in the dictionary. By the subsequent interactions of the system with its environment,
the information gap of the new BF will be closed asymptotically.

The dependency of the TD step on the similarity of the current and next states w.r.t. the
dictionary elements implies, however, that regions of matrix A and vector A which correspond
to similar BFs should also have similar values in A and A. Hence, the similarity to the existing
grid points as measured by the kernel function can be used to extrapolate entries of A and
A to a new dictionary element. This idea is visualized in Fig. 5.1. While in this section, the
formulas are derived to perform an approximative initialization, the numerical example in
a later section will demonstrate its utility. Since the structure of A and A is dependent on
the algorithm, the corresponding extrapolation rules are different and the OKLSPI-specific
extrapolation is introduced first and then ported to AOLSPI.

OKLSPI. For the derivation of the basic extrapolation rule, let us revisit the TD update
rule of A given in (5.19), which is repeated here for the reader’s convenience:

A< A+ Ek(s,a)r.

Observe that the elements of A are updated by a fraction of the received reward r as determined
by the similarity of the current sample (s, a) with the elements of the dictionary. Grid points
similar to each other will thus feature approximately the same values \;. Thus, we can safely
assume that the true value of A\, of a new BF should be of same magnitude as the values
of A corresponding to dictionary points the new BF. The value of the new element .,
can therefore be obtained by extrapolation of the existing elements of A weighted by the
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corresponding similarity, 7. e.,

Z|D| kl(s a))\l

. 5.33
S (533)

new

Extrapolating new elements of A is not as straightforward. Let us write out the TD update
rule of A from (5.18) in expanded form:

A < A+ EK(s,a)k(s,a)" — yk(s,a)k(s,7(s)".

The TD update of A consists of a subtraction of two outer products k(s,a)k(s,a)’ and
k(s,a)k(s',m(s'))". Recall that the coherence-based sparsification rule entails that the ele-
ments of the dictionary are dissimilar to a certain extent. Consequently, the first outer prod-
uct mainly updates elements on the diagonal of A. If the samples (s, a) and (s’, 7 (s)) differ,
the second outer product mainly affects off-diagonal elements. To extrapolate these elements,
knowledge about the policy’s previous evolution would be required. In summary, we can as-
sume that the update of the on-diagonal elements still mainly depends on the kernel vector
k(s,a). Hence, an initialization for the new diagonal element A, of the expanded matrix is
obtained by a weighted average over the other diagonal elements as

- P k(s a) Ay
Pl ky(s,a)

The strength of the extrapolation can be varied by actively restricting the number of consid-
ered grid points to a set D C D, yielding

new -

Z‘D‘ kl(S a)A” Z‘D| k?l(S a)/\l

Anew - ) new -
S ks, a) SIP (s, a)

(5.34)

The set D can be taken, for example, by ranking the similarity to the new BF and selecting
only a percentage p. < 1 of most similar points. We call this approach trust radius in the
following. The complete dictionary D = D is used for p. = 1; for D = (§ in turn, the
conservative initialization of the new elements with zero A,., = 0 and A, = 0 is recovered.

AOLSPI. For the AOLSPI algorithm of Tab. 5.3, we adopt the extrapolation method of
OKLSPI. It is essentially the same mechanism, yet applied separately to the segments of
A and X. When enlarging the vector A as (5.31), the newly added entry Ayy1new (i) in every
segment Ay i1 (), = 1...M + 1 is an average of the other elements of the ith block segment
of A, weighted by the similarity of the corresponding BF grid point to the grid point of the
new BF, 7. e.,

Z ( ) )(z)
ZP' ki(s)

The values of A are extrapolated again in a more conservative way by considering only the
block elements on the diagonal. Within these blocks A1 (), the Chebyshev polynomials are

)\t+1,new (i) — (535)
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equal. Hence, the two outer products are scaled by the same value and (5.30) simplifies to

Ay = ks(s)kg (5) W7 (a) — ysks(s)ks () i(n(s))) Ti(a).

Now as in the case of OKLSPI, within the corresponding block, the first outer product
ks(s)kd (s) updates mainly on-diagonal elements. The other outer product ks(s)kd (s') fur-
ther updates on-diagonal elements if s and s’ are similar; otherwise, off-diagonal elements are
updated depending on the policy 7. The interpolation is therefore again restricted to the diag-
onal elements of the related block and the initialization of the new element is correspondingly

(5.36)

The number of used grid points can be selected according to a trust radius approach as
in (5.34).

5.8 Discussion and Simulation Studies

Due to the limitations of value-based RL algorithms discussed in Sec. 5.2, policy search
algorithms may be a more suitable choice for example in high-dimensional robotic learning
control problems. If, however, an LSPI approach is appropriate for the control problem at
hand, the algorithms proposed in this chapter constitute an online value-based approach
capable of efficient, automatic VFA. Therefore, the task of having to explicitly distribute
basis functions in a multidimensional space is avoided. While it is not expected that the
presented online algorithms generally outperform their hand-tuned counterparts, a similar
level of performance should be attained as by OLSPI in a well-tuned setting. In order to
exemplify the two novel algorithms and evaluate their performance, we consider two standard
LSPI benchmark scenarios and compare the results to those obtained with the established
LSPI algorithms using well-tuned parameters.

5.8.1 Convergence Analysis

In this section, we briefly comment on the convergence of the novel algorithms. Recall that
AOLSPI automates the process of selecting basis functions for OLSPI; further it is clear that
the VFA plays a crucial role in the performance of OLSPI.

Remark 5.3 (Performance guarantees of online LSPI). Unfortunately, even the asymptotic
properties of OLSPI with a fixed set of BFs are not yet completely understood, cf. [36,
Ch. 3.6.1, p. 97]. The basic reason behind is that the policy improvement step in OLSPI is
taken according to only an approximation of the value function. In consequence, the policy
evaluation error may become large and the performance assertions of the basic LSPI [128]
do not necessarily carry over to the online case [33]. <
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Concerning the approximation architecture, however, Ma and Powell are able to show in
[143] and [180] that under certain conditions, approximate policy iteration with Chebyshev
polynomials converges in the mean. Thus, our effort is to show that the modifications intro-
duced in this chapter do at least preserve the convergence properties of the prior algorithms.
First, observe that, as proven by [189, Prop. 2|, the size of the feature vector ¢ converges to
a fixed size at some time T', namely when the state space is completely covered with BFs as
governed by the sparsification procedure and the fixed threshold . Henceforth, in all sub-
sequent samples t > T, AOLSPI reduces to OLSPI as will be shown next. In the first place,
the samples collected during 0 < ¢ < T only contributed partly to the TD update (5.8) and
(5.9) of A and A. This is because the associated BFs had not been part of the dictionary
yet, hence the corresponding entries could not be updated. However, after convergence of
the dictionary, 7. e., considering ¢ > T', the feature vector basis is now fixed. We may hence
think of the incomplete updates during 0 < 7" as some corrupted feature vectors ¢, affecting
A and A. In the limit, the learning mechanism described by (5.8) and (5.9) becomes

A = lim 7Z¢C S;, q; ¢c(sza z) ’yqﬁc(s;vﬂ-(s;)))—r

N-ooo N
N -0
Z (si,2:) (B(si, ;) — v(s], m(s))))
=T+
)\_z\}ﬂoﬁzcﬁ Si,a;)r + hm —Z;l(ﬁ S;,a;)r;
-0

The limit in the first summand in both expressions exists and approaches zero as N — 0o
because the sum of bounded matrices is bounded. By substitution of ¢ = T'+1 with ¢ = 0 and
reformulation, the remaining solution in the limit approaches that of the OLSPI algorithm

1
A" = lim N ggb(si, a)) (p(si,a;) — v(s), 7m(s))))
* : 1 al * *\—1y*
A= J&E)HOONZQZ,)(S»L‘,E]Z')Q, 0" = (A ) A"

In principle, (sub-)optimality of 8* could be established according to [128, Th 7.1], i. e., the
error norm of the performance of the policies w.r.t. the optimal performance is in the limit
bounded by some constant, subject to the restrictions of Remark 5.3 concerning online LSPI.

In summary, it is shown that the limit convergence behavior is independent of the specific
dictionary sparsification method as long as |D] is finite, and that further the dictionary expan-
sion and data extrapolation scheme introduced above do not void the general performance
behavior of OLSPI. On the contrary, our simulation studies reported in the next section sug-
gest that the speed of convergence may be considerably improved using AOLSPI and the
scheme from Sec. 5.7.1. Analogously to the previous line of argumentation, the convergence
of the OKLSPI algorithm could be analyzed given the technical assumptions in [144, 180].
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5.8.2 Complexity Analysis and Optimized Implementation

Let us briefly argue that the additional computational complexity w.r.t. OLSPI induced by
our modifications is linear in the number of dictionary elements n = |D|, i. e., an additional
O(n) operations must be performed to implement either of the online kernel least-squares
policy iteration (OKLSPI) or AOLSPI algorithms. Consider OLSPI as starting point, as
it is the underlying online algorithm in both cases. For the AOLSPI algorithm, the only
additional operations are those of lines 8-12 in Tab. 5.3. Note that kg(s;) must be computed
to obtain ¢@(s,a) of (5.28) one way or the other. Summarizing the remaining elementary
scalar operations, we have an additional computational complexity of O(n) operations. A
similar line of reasoning is applicable to OKLSPI: in terms of complexity, we can think
of Tab. 5.2 as an instance of OLSPI with a discrete action space. Again, counting the
remaining operations to grow the dictionary corresponding to lines 8-12 in Tab. 5.2, the
added complexity is O(n). For implementation, an optimized version of the basic LSTD-Q
algorithm is given in [128, Fig. 6], analogously for KLSTD in [97], that avoids the O(n?)
inversion of A by means of the matrix-inversion lemma. Our algorithms are amenable to
such an approach as well: recall that the dictionary expansion and information extrapolation
steps exploit the prevailing diagonal entries in the matrix structure. Therefore, similar steps
could be applied when propagating the inverse matrix. Our simulation studies indicate,
however, that the performance of the resulting algorithm is much more sensitive w.r.t. the
numeric initialization parameter needed to avoid an ill-posed system. We therefore refrain
from discussing the details here and suffice it to say that the approximations concerning the
block matrix structure with single block diagonal elements remain unaffected by learning the
inverse matrix directly. Thus, an optimized implementation of AOLSPI or OKLSPI based on
Sherman-Morrison is feasible in principle, albeit at the cost of a more sensitive parameter set.

5.8.3 Car-on-the-Hill Benchmark

We will first illustrate how the OKLSPT algorithm of Tab. 5.2 indeed solves Prob. 5.1. In other
words, it is demonstrated that the online dictionary expansion and sparsification measures
proposed in Sec. 5.6 and Sec. 5.7.1 are adequate. To this end, let us consider the car on
the hill problem, a standard benchmark in approximate RL that can be found in [34] and
the references therein. In this task, a point mass (the car) should climb a hill by applying a
horizontal force; however, the force is not strong enough to climb the hill directly. Therefore,
the car needs to swing back and forth first in order to pump energy in the system. Normalizing
quantities to their base SI units, the hill is modeled as a function H(p), where p € [—1,1]
denotes the horizontal position of the car:
p’+p, ifp<0,
H(p) = \/11—5]02 otherwise.

With the discrete control input u € {—4,4}, g = 9.81 the gravitational constant, and
p € [—3, 3] the velocity of the car, the continuous-time dynamics are given by [34, p. 160]

oy AHp)  ,dH(p) &*H(p)
1+(dH<p>)2< T TP Tap ap )
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With the reward function

-1, ifp<—lor|p >3
. ifp>1land|p| <3

0, otherwise ,

the cost landscape as well as optimal Q-functions are discontinuous and therefore hard to
approximate as shown in [34, Ch. 4.5.4]. The experiments reported next were conducted
with MATLAB R2018a, using the ode45 solver for numeric integration and a sample time of
T, = 0.1s for discretization.

Let us first give an intuition how the sparsification criterion affects the dictionary growth
and the computation times. In order to compare the behavior of OKLSPI with coherence
sparsification according to Sec. 5.6.1 to that of ALD sparsification, we also implemented
Alg. 5.1 with lines 8-9 replaced by the ALD criterion given from (5.14)-(5.17). Next, a
simple parameter sweep over 99 learning runs with OKLSPI is conducted for the threshold
parameters dy of ALD chosen in a logarithmic scale between [107°,10'], respectively jo of
coherence chosen linearly in the interval [0.01, 0.99]. The parameters of the OKLSPI algorithm
are set according to Tab. 5.4 unless stated differently. Each simulation run consists of 75
trials and during each trial of 2, the algorithm is granted 2/0.1 = 20 interactions with the
system before being reset to a random admissible initial state. Being an online algorithm,
it is essential to use sufficient exploration during the data generation and we simply use the
e-greedy mechanism. Thereby, the exploration probability in time step ¢ is governed by

T, -t
€y = max <5<1 — 075t),5min>, (537)

where ¢,,,x = 2s is the duration of a single learning trial. We use a Gaussian kernel function

ki(x) = exp (—;(x — %) 7 (x — xz)> . (5.38)

In order to evaluate the influence of the sparsification criterion on the execution times of
the algorithm, we used a straightforward implementation to approximately measure the
calculation times tq.. for each trial. The experiment was done on a Linux machine with an
Intel processor set to a constant CPU frequency of 1.8 GHz. The results of this experiment
are shown in Fig. 5.2.

Figure 5.2a shows how the dictionary size |D| grows with increasing trials; the depicted
runs were obtained by choosing values of dy and pg such that the amount of kernel functions
in the dictionary is in the same order of magnitude for both sparsification methods. It can
be seen that the execution times increase notably when ALD is used, particularly if the
dictionary size is in the magnitude of hundreds. The outliers in the plot are presumably due
to the imprecise method of measuring teye.. In order to show the trend more clearly, Fig. 5.2b
depicts the plot of tigia = 22-721 texec OVer the average dictionary sizes D= % ZZi1|Di| for all
the 99 runs. The measured results are consistent with the theoretical discussion in Sec. 5.6.1
concerning the complexity of the sparsification criteria. These results illustrate that the per-
iteration time remains reasonable using the proposed OKLSPI algorithm with coherence
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+ OKLSPI with coherence

" 9® 4 5 OKLSPIwith ALD o o
- »
3 =
. 75
trials D] + OKLSPI with Coherence ~ © OKLSPI with ALD
(a) Execution times texec for 75 trials of OKLSPI.  (b) Total execution times tioa per trial over the
The depicted runs were obtained (from left average number of dictionary elements created
to right) for dp € [0.99,0.1,1072,1074,1077] during the 99 runs with different sparsification
(ALD) and po € [0.1,0.75,0.9,0.95,0.97] (co- thresholds.
herence).

Figure 5.2: Comparison of the execution times of OKLSPI in the car on the hill problem. It can be
seen that the times increase with increasing dictionary size |D| and that the increase
is much stronger when using ALD sparsification. Therefore, the coherence criterion
is more suitable for online reinforcement learning control with automatic VFA.

sparsification and K, high enough (for the fully optimistic case K, = 1, the algorithm
performs more expensive policy improvement steps in each iteration).

In order to investigate the performance of the proposed OKLSPI algorithm, the following
procedure is used. The algorithm is evaluated over Ngy, = 90 independent runs, where each
run consists of 75 trials each starting from a random initial state and given ., /ts = 20
interactions with the system for learning. To assess the quality of the policy over time, after
each trial, the average return is calculated obtained when following the current policy without
exploration for three initial states Sy = {[—0.8,0]",[—0.4,0]7,[0,0]"}, i. e.,

1 |°S)0| Ntest

G= A S R (5.39)

i=1 j=1

The second and third initial states do not allow to drive the car up the hill just by applying
the maximum input but require the policy to swing back and forth.

Table 5.4: OKLSPI parameter settings for the car on the hill problem

Parameter Value
discount factor v 0.97
exploration factor ¢ 0.95
minimum exploration €, 0.05
number of BF ¢ dynamic
kernel function x (5.38)
RBF variance ¥ diag(0.1,0.2,0.1)
update interval Ky 5)
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OKLSPI, with (30) OKLSPI, no extrapolation

1.25

Q

0.75
0.5
0.25
0 1 1 ]
25 50 75

Subsequent trials (2s each)

Figure 5.3: Performance of OKLSPI in the car on the hill problem with 1o = 0.9, corresponding
to an average dictionary size of |D| ~ 240. The figure depicts the mean score
G according to (5.39) over the 90 runs (thick lines) and the corresponding 95%
confidence intervals (shaded areas). The TD update information extrapolation after
insertion of a new dictionary element is according to Sec. 5.7.1 with the trust radius

pe = L.

A plot of a representative learning curve is shown in Fig. 5.3 for py = 0.9 and similar
plots are obtained for a wide range of the sparsification parameter . The utility of the TD
extrapolation scheme according to (5.34) becomes evident as well, although its effect varies
with the number of useful similar dictionary elements, 7. e., it depends on py. This example
demonstrates how straightforward it is to implement and tune the algorithm, opposed to
alternative value-based approaches that require more tedious tuning of the approximation
architecture such as fuzzy Q-iteration, cf. [34, Ch. 4.5.4].

5.8.4 Automated Feature Construction for the Inverted Pendulum Prob-
lem

The second example system is the inverted pendulum with the parameters also taken from [34].
In order to balance the pendulum in the upright position, it is essential to use a continuous
action-space representation; otherwise, undesired chattering around the unstable equilibrium
will occur. Therefore, AOLSPI will be mainly compared to the relevant baseline algorithm
OLSPI in this example. The pendulum system consists of a DC-motor with a pole attached
and the goal is to steer the pole into the upright position and balance it there. The dynamics
are governed by

KK ) | (5.40)

= i (mgl sin(a) — bav — Ed + ik
where « describes the current angle of the pole, & the angular velocity, and ¢ its angular
acceleration. The values of the constants J,m, g,l,b, K, and R are set identically as in [34].
The upright position is defined by o = 0. For the simulation study, we employed a 4th order
Runge-Kutta solver and a model discretization with sampling time 75 = 0.005s. The variable
u € &, denotes the input torque of the DC motor and is restricted to the continuous interval
o, =[—-3Nm,3Nm]. The state s = [o,&]" of the inverted pendulum consists of the angle
a € [—m, 7| and the angular velocity ¢, which is bounded by |&] < qumax, Qmax = 157 rads™!.
In the following, the physical units are omitted for brevity and the quantities are given in SI
unless stated differently. The state-space of the system is given by &, = [—m, 7] x [=157, 157].
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The reward function is chosen as R,(s,a) = —s'diag(5,0.1)s — a’a and punishes angular
deviations from the upright position, high angular velocities, and large control inputs.

In order to quantify the quality of a policy, we use the following metric: for a finite set of
initial states &y, the average G, of the total undiscounted sum of rewards obtained from all
initial states of &) when using the current policy for Nyt = 50 time steps is calculated, i. e.,

1 ‘cg)(] | Ntest

=5 S 3 R, (5.41)

i=1 j=1

e

Note that this score function does not discount the rewards. The reward obtained when the
pendulum is already swung up and needs to be balanced in the upright position is considered
equally important during evaluation as the actual bang-bang like swing-up. Consequently,
the effect of a discrete action set is not hidden from the performance score as it could occur
with a discounted reward. As the initial state set & C Sp, we distribute 35 states over &, as

Sy = {—m, —g, 0, g, 7w} x {=10m, =37, —m,0, 7, 3w, 107 }.

The parameters of each algorithm evaluated in the simulation study are given in Tab. 5.5.
To assess the performance of the algorithms, we evaluate N, = 90 independent runs per
algorithm. Each run consists of 300 trials of 0.75s of interaction, ¢. e., the system is reset to
a random start state after Nia = 150 interactions. The exploration in time step ¢ is again
governed by (5.37), where e, = 0.05 and ¢, = 0.75s is the duration of a single learning
trial.

In order to compare the AOLSPI with its hand-tuned counterpart, let us consider the
number and placement of the Gaussian BFs over the state-space &,. With the coherence
threshold o = 0.5, the AOLSPI algorithm creates dictionaries with |D| = 121.43 elements
on average; the distribution of the dictionary size over the 90 independent runs is depicted
in Fig. 5.4. In order to compare the performance to that of OLSPI, we henceforth set the
number of BFs to N, = 121 and cover the state-space with a regular grid. The resulting
placement of the BFs is shown in Fig. 5.5. It can be observed that the automated kernel
function selection by AOLSPI results in a less evenly distributed grid. However, the distance
between each of the BF's is approximately similar when selected according to the coherence-
based update rule (5.22). We also report our findings with the Babel criterion, ¢f. Remark 5.2.

Table 5.5: Parameters used in the inverted pendulum study

Parameter OLSPI OKLSPI AOLSPI
discount factor ~y 0.99 0.99 0.99
exploration factor ¢ 0.95 0.95 0.95
number of BFs ¢ 11 x 11 dynamic dynamic
RBF variance X diag(0.2,50) diag(0.2,50,0.1) diag(0.2,50)
coherence threshold u - 0.5 0.5
update interval Ky 5 5 5
degree Chebyshev M 2 - 2
action space of oy, [—3,0,3] oy,
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Figure 5.4: Distribution of the size of the dictionary built by AOLSPI
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Figure 5.5: Placement of the BFs over the state-space &,. The grid had to be set manually for
OLSPI (yellow crosses), whereas the AOLSPI VFA bases were obtained automatically.
Note that the typical inverted pendulum traces become visible using the Babel
criterion (red triangles), whereas coherence sparsification (blue circles) leads to a
good approximation throughout the state-space.

This sparsification rule is less suitable for online RL. Intuitively, this is because the BFs
are not well spread over the state space. As can be seen in Fig. 5.5, rather many BFs are
instead created along a particular trajectory until the threshold is reached; none can be added
afterwards. Hence, the generalization capability of the value function Q suffers severely. This
effect will not occur if 7) the data is supplied in random order to the learning algorithm or )
a suitable forgetting factor is included in the dictionary handling. In the design of OKLSPI
and AOLSPI, neither is the case.

Next, the performance of the AOLSPT algorithm is investigated. Figure 5.6 shows the mean
score of the 90 independent runs for both the well-tuned OLSPI and the AOLSPI algorithms.
On the one hand, with OLSPI it occurs easily that the performance is far worse than depicted;
it is not obvious how to select the BF grid parameters appropriately beforehand. On the
other hand, note that the placement as shown in Fig. 5.5 and overall necessary number of
BF is obtained automatically by AOLSPI. Performance does not suffer from this online BF
selection mechanism if the information spreading mechanism from Sec. 5.7.1 is employed. It
is also confirmed that the initialization of new matrix/vector entries without extrapolation
from previous iterations requires a much higher number of trials until convergence; in our
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Figure 5.6: Performance comparison of OLSPI and AOLSPI. The figure depicts the mean
score according to (5.41) over the 90 runs (thick lines) and the corresponding 95%
confidence intervals (shaded areas). The TD update information extrapolation after
insertion of a new dictionary element is according to Sec. 5.7.1.
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Figure 5.7: Effect of the trust radius on AOLSPI learning performance. The graph depicts the
quality of the policy in the subsequent trials computed according to (5.41). A clear
improvement in convergence is apparent for approximately p. > 0.5, /. e., the 50%
most similar features are used for information extrapolation according to (5.35)-
(5.36).

simulation, AOLSPI without extrapolation does not even reach the same performance level
within the given 300 trials.

The simulation results shown in Fig. 5.6 further underline the benefit of using a contin-
uous action space representation for the pendulum problem. Note that the performance is
measured according to (5.41), i. e., undesired chattering of the pendulum around the unsta-
ble equilibrium is notably penalized. Hence, although the OKLSPI algorithm fully uses the
kernel trick, it fails to reach a similar level of performance as the other algorithms which em-
ploy the continuous action space approximation based on Chebyshev polynomials.

We now examine the influence of the extrapolation from Sec. 5.7.1 closer w.r.t. the
performance of AOLSPI. In order to assess the influence, we performed additional runs with
AOLSPI and the trust radius varying between only a little (p, = 0.1), a medium amount
(pe = 0.5), and nearly full (p. = 0.9) extrapolation. The results are shown in Fig. 5.7. All
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Figure 5.8: As no ground truth is available to reflect the online situation, this graph shows
an a posteriori comparison of estimated diagonal entries of A5, and estimated
entries of Ay50 w.r.t. their true values. Although this comparison cannot accurately
reflect the situation during the online algorithmic execution, it is apparent that the
corresponding values will be predicted correctly to a certain extent.

existing BFs may be used to build D in this particular simulation study. This is expected
due to the Gaussian kernel (5.38) and the spread according to Tab. 5.5, which yields low
correlations quickly for distant BFs. If, depending on the parameters, the information is not
well spread during the dictionary update, it may nonetheless be useful to set p, < 1.

5.8.5 Additional Discussion of the Similarity-Based Extrapolation

With the simulation results reported above, the utility of the proposed TD information
update rule is already evident. Let us nonetheless discuss in closer detail how (5.35) and
(5.36) predict useful values for the initialization after the dictionary expansion, hence allowing
for more efficient TD updates. Unfortunately, a quantitative evaluation of the extrapolation
is not feasible because there is no accessible ground truth for yet incompleted dictionaries.
Instead, we exemplarily examine the estimation of Ay new (i) and A1 new (i) i an a posteriori
analysis. To this end, we consider one of the matrices explicitly. Let us take Ay59 and b5
at the end (¢ = 150) of run 1, trial 1. Given M = 2 and Ng = |D| = 121 at the end of this
trial, we have A5 € R393%303 and Aj50 € R3%3. The (diagonal) values of A5y and Ays are
now one after another set to zero and estimated according to (5.35) and (5.36), based on the
remaining (diagonal) values of Aj50 and Aq59. The result is illustrated in Fig. 5.8. It can be
seen that the similarity weighting interpolation approach can reflect the trend of the elements
of A and A, although the peaks may be missed. As expected, the estimates are rather
conservative because (5.35) and (5.36) essentially compute locally weighted means, . e., the
relevant neighborhood is determined by the variance of the BFs functions. Hence, in order
to capture either highly varying or very smooth relations in A and A, one would be forced
to tune the variances. At this point, one would not reduce the burden of parameter tuning
by means of this approach. However, as shown by Fig. 5.7, it is sufficient to add a rough
prediction to improve the convergence speed. In summary, the diagonal similarity-weighting
extrapolation (5.35) and (5.36) constitutes a simple yet efficient method to accelerate the
online learning process in the face of dynamic dictionary growth.
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5.9 Conclusion

In this chapter, we have investigated the well-known least-squares policy iteration algorithms
KLSPI and OLSPI in view of their applicability to intelligent real-time automation, e. g.,
robotic control problems. The KLSPI algorithm is reformulated for incremental data col-
lection, yielding the proposed OKLSPI for online usage. To this end, we adopt an efficient
sparsification scheme from kernel adaptive filtering and derive a recursive dictionary expan-
sion scheme with corresponding parameter update rule. The OLSPI can be endowed with
an automatic basis function selection method by a similar course of action, effectively reduc-
ing the amount of required hand-tuning. The resulting AOLSPI algorithm is applicable to
continuous state-action domains as well. A similarity-based temporal difference information
extrapolation scheme recovers the learning performance of the basic algorithms and we show
that the convergence properties remain unaffected by our modifications. The utility of the
novel algorithms is finally demonstrated by means an illustrative simulation study.

The proposed algorithms constitute within the value function based approaches a further
step towards the important goal of powerful online learning robot control. While the novel
AOLSPI algorithm allows for continuous action space representations, this is not yet the case
for OKLSPI, leaving room for future work. Moreover, automating the selection of the kernel
hyper-parameters remains an important yet in general challenging research question.
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Reinforcement Learning and Model-Based
Controller Parameterizations: a Synergistic
Perspective

The previous chapter analyzed and extended LSPI, a specific class of RL algorithms, with a
focus on applicability in robotics applications. In this chapter, we will examine the general
interplay of RL with the ()-parameterization of stabilizing controllers. In other words, we will
consider a control strategy mixing the ideas behind learning-¢) control with a RL mechanism
used for performance enhancement. The corresponding control scheme will be referred to as
Reinforcement Learning-Q) Control in the following.

This chapter is structured as follows. First, we introduce a categorization of RL algorithms
and disambiguate the terminology w.r.t. control. Next, we consider different architectures
of the plug-in filter () in conjunction with a RL algorithm and discuss their properties from
stability and learning point of views. Then, modifications are proposed to enforce a gain
bound over value-based RL agents such that robust stability can be established in double-
Youla fashion. Finally, the effect of pre-structuring the control loop with a -parameteriza-
tion setup is considered from the RL perspective. The chapter concludes by summarizing
the Reinforcement Learning-() control framework and by providing recommendations for an
effective interplay between both model-free learning and the model-based controller parame-
terization. The student work [205] partly contributed to this chapter.

6.1 Reinforcement Learning of the Performance Enhance-
ment Filter

In this section, we discuss control architectures mixing the parameterization of stabilizing
controllers with RL to implement the learning mechanism in the controller. It will be shown
that the applicability of RL within the ()-parameterization differs depending on the class of
RL algorithm.
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6.1.1 Categorization of RL Algorithms

First, the three dominant types of RL algorithms are listed, commonly distinguished according
to their core functional principle.

Value-based RL: algorithms of this type aim to find optimal policies indirectly via the
value function. A policy 7* that maximizes the return can then be inferred from the
optimal state-action value function Q* by

7 (a; | s¢) = argmax Q*(s;, ay). (6.1)
ared

A typical well-known algorithm of this kind is Q-learning [252].

Policy-based RL: these methods do not rely on value functions but rather parameterize
the policy 7(0) directly, subsequently aiming to learn optimal parameters *. One of
the earliest approaches of this kind is the REINFORCE algorithm [254].

Actor-critic RL: the third class of algorithms aims to combine the advantages of both
value- and policy-based RL, see e. g. [229]. The general idea of these algorithms is to
learn a value function, the critic, which is used to enhance the optimization process in
the policy-based methods, i. e., the actor.

In addition, the following terms are needed to classify RL algorithms w.r.t. usage in a Q-

parameterization.
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o Offline or online: offline algorithms operate on some set of previously collected data,

whereas interacting with the environment and on-the-fly learning from the data so
obtained refers to online learning.

Model-based or model-free: these terms are ambiguously used depending on the back-
ground. In the control literature as well as in this thesis, model-based refers to control
designs upon or including dynamic process or disturbance models that were constructed
in advance. From this perspective, all RL algorithms are model-free because an a pri-
ori mathematical model of the environment is not provided to the agent. Contrary to
that, in the RL community, model-free algorithms learn straightly via a value function,
whereas model-based RL refers to algorithms that during learning build a model of the
decision process from the data; subsequently, planning methods such as DP can be
used to infer the policy.

Critic-only, actor-only, policy search: Value-based RL and policy-based RL algorithms
are also referred to as critic-only and actor-only, respectively. RL methods that directly
learn a parameterized policy (actor-only), are called policy search algorithms.

FEpisodic learning: in an episodic setting [228, Ch. 3], the system is controlled with
a fixed policy for a certain amount of time T, yielding a so-called roll-out, i.e., a
state/action trajectory and a sequence of rewards {Ro,Ry,...,Rr}. After observing
the roll-out, the policy is updated and the learning process iterates with a state reset.
This form of RL is closely related to black-box optimization (BBO) [225], specifically
when the parameters of the policy have to be updated and only the sum of rewards
obtained along the trajectory is available for optimization at the end of an episode.



6.1 Reinforcement Learning of the Performance Enhancement Filter

Naturally, many more criteria can be considered to categorize algorithms, e. g., in terms
of approximations used, on- or off-policy learning, (sub-)optimality, convergence behavior,
computational complexity, exploration mechanism, and so on. The interested reader is
referred to [115, 46] for relevant surveys in this area.

Remark 6.1 (Terminological ambiguities). RL terminology originating from artificial intel-
ligence may be different from the notions familiar in automatic control. In this thesis, we
always refer to the control-relevant terms unless stated differently. In Tab. 6.1, the relevant
shared terms are contrasted in order to clarify their relationship. For example, the notions of
model-based and model-free are differing between RL and control where indirect and direct [11]
more closely reflect the corresponding underlying approach. Therefore, distinct typography
is used throughout the thesis to disambiguate RL quantities from the signals occurring in the
model-based Q-parameterization. It is moreover emphasized that learning-Q (cf. Sec. 2.4)
control is fundamentally different from the renowned RL algorithm Q-learning [252]. <

6.1.2 Two-Degree-of-Freedom Classification of RL Algorithms

While it is standard to distinguish algorithms according to the categories above, for usage
in a two-degree-of-freedom @)-parameterization (Fig. 2.3b) it is vital to classify algorithms
w.r.t. feedforward and feedback control. This aspect is rarely explicitly considered in the
literature, not even in the review of Bugoniu etal. [35] dedicated to specifically cover RL
from the viewpoint of the control engineer.

In fact, the specific application in a feedback or feedforward control setting dictates the
classes of RL that are suitable.

o Feedback control: for learning feedback controllers, critic-only and actor-critic methods
are a natural choice. Thereby, a MDP formulation (Def. 5.1) is the basis for a value-
based approach of ranking states or state/action pairs. When employing critic-only and
actor-critic methods in feedback control, the underlying problem is (often implicitly)
considered to match the MDP formalism. The reward function may then correspond to

Table 6.1: Comparison of terminologies, contrasting usage in RL (respectively Al) and control
communities

RL (AI) Automatic Control
environment controlled (generalized) plant G
transition function P& system dynamics f

agent controller

state s measured output y, possibly coincides with state x
state space & set of possible outputs Y

action a control input u

action space & set of admissible control inputs U
policy 7 control law K

reward r performance index, (negative) cost
model-based indirect, data-driven

model-free direct

stability convergence
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the performance ranking of the policy in terms of control error which directly depends
on the system state and the actions chosen by the agent.

o Feedforward control: in contrast, the MDP formulation is ill-suited to cover feedforward
learning control problems [205]. As emphasized in Remark 2.2, feedforward elements
constitute manipulated inputs ug from independent, exogenous inputs w. However, it is
usually not meaningful to rank independent signals in order to determine rewards; more
severely, the transition function P?: & x & +— & is degenerate because none of the
actions taken can influence the transitions of the exogenous signal. Critic approaches
are therefore prohibitive when the goal is to learn feedforward control. Concerning
actor-only methods, the situation is different. Instead of gathering rewards after each
state transition, actor-only methods are mostly applied in episodic fashion. As pointed
out above, these algorithms are closely related to optimization and do not rely on the
MDP framework to model the environment.

Given this background next we will consider RL in the Q-parameterization.

6.1.3 Architectures for RL in a ()-parameterization: Different Levels of
Integration

We discuss four basic different variants how RL can be restricted to yield only stable control
loops by means of a parameterization of stabilizing controllers, as well as their feedforward
counterparts. These options are visualized in Fig. 6.1. The level of integration and decisive
power granted to the RL agent is ascending from [1] to [4] in the following architectures.

For now, it is assumed that the ()-parameterization contains an ideal model of the plant
under control, 7. e., S = 0 and the parameterization is according to Prop. 2.1.

Learning how to switch between a set of controllers Q = {Q1,...,Qn,}. Logic-
based switching among a family of candidate controllers constitutes a popular framework
to implement adaptive controllers, an approach termed supervisory control in the switching
systems literature [82]. A discrete decision logic thereby dictates for each time instance
which of the ¢ € Z pre-designed controllers is plugged into the loop. Consequently, one could
attempt to learn such a supervisor, i. e., the decision making component of the adaptation
mechanism, by means of RL. In other words, the discrete, finite action space is & = Z and
the policy 7 corresponds to the switching signal o. Opposed to adaptive control designs that
ensure, for example, some dwell-time constraint [137], the RL agent could choose another
controller in every time instant. Therefore, for the purpose of switching controllers by means
of RL, it is a principled advantage to use a Q-parameterization: as discussed in Sec. 2.3,
stability under arbitrary switching between linear controllers can be ensured provided an
appropriate state-space realization [80] in the parameterization of stabilizing controllers is
used, cf. Sec. 3.1.5. Thus, opposed to methods such as [176, 56], the actions of the RL agent
cannot lead to switching-induced instability of the feedback loop.

Interpolation of a set of controllers O. Next, recall from Sec. 2.3 that the stability

conditions for arbitrarily fast switching systems are identical to those of certain interpolated
systems; see also Prop. A.5 in Appendix A.2. Despite this close relation from the controls

116



6.1 Reinforcement Learning of the Performance Enhancement Filter

Figure 6.1: Conceptual architectures of learning feedback control in the ()-parameterization by

RL. The parameterization is constructed as spelled out in part | of the thesis, yield-
ing a pre-stabilized loop T" and a “plug-in" filter (). The learning agent aims to
maximize the return, usually (but not necessarily) defined using the performance sig-
nals z. Sorting from left to right is according to ascending authority/expressiveness
granted to the RL agent.
Learning to switch between a set of controllers. The policy 7 dictates the piece-
wise continuous switching signal o. Stable interpolation of some pre-designed
controllers. The policy returns a vector-valued continuous interpolation signal .
Learning a parameterized ()-filter. The policy determines the active parameter
vector 6. Replacement of Q-filter by a (value-based) RL agent. The policy di-
rectly returns the control input s. Feedforward variants of these architectures.

perspective, for the RL architecture, it makes an important difference if controllers should be
switched as in [1] or interpolated: denote by A the set of admissible interpolation signals o
from (3.5). Consequently, the policy to be learned is a mapping 7 : R"™ +— A and, opposed
to [1], a RL algorithm over continuous action spaces is required.

Remark 6.2 (Prior control designs). It is clear that a set Q of controllers is needed in
and (2] prior to learning the policy. Therefore, these approaches are advantageous particu-
larly if the goal is to learn how to choose or interpolate from some specifically designed con-
trollers. This scenario is particularly relevant to robotics control, for example, the variable
impedance control problem from Sec. 3.1.1. For a variable impedance task, hard-coding or
pre-programming of appropriate stiffness schedules is tedious in practice, making learning
an attractive approach [32, 121]. Nonetheless, it is important that the controllers @ recover
basic high or low impedance behavior when plugged in the loop. For other control settings,
candidate controllers can be naturally designed by optimization-based methods directly in
the parameterization, [28, Ch. 15]. <

Remark 6.3 (Low-level multi-controller mizing). Architecture [2] refers to the case when
the action chosen by the RL agent directly dictates the interpolation signal a. This is in
contrast to designs such as [126] that implement a low-level multi-controller to generate finely-
tuned signals from some candidate controllers pre-selected by a supervisory module. That
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is, the design of a low-level mixer as in [126] constitutes a way to reduce the algorithmic
requirements of the RL agent in architecture [2] into those of [1]. <

Learning a parameterized policy Q(#). While [1] and [2] employ a set of pre-designed
controllers Q, it is also common to parameterize the filter () with an adaptively varying
parameter vector @ € P, where P is a set of admissible parameters. Consequently, with the
adaptation carried out by RL, the policy determines 7 : R™ +— P. Care must be taken to
ensure that (@) implements a stable filter VO € P, just as in (2.29) in Sec. 2.4 of the classic
adaptive-Q) method. For example, one approach is to form a RITZ approximation [28, Ch. 15].
To this end, let Q(0) € Q C RH_,, where Q is a subspace of all stabilizing controllers spanned
by a collection of pre-designed stable filters; in discrete-time, the simplest choice is a set of
time-delays [28, Ch. 16.4.1], resulting in a finite impulse response (FIR) filter structure with
mutable parameters. In the context of RL in the Q-parameterization, such an approach was
taken in [190] and in the laboratory case study reported in Chap. 8.

[4] Replacement of plug-in filter by a (value-based) RL policy. Algorithms of the value-
based RL approach encode policies via (6.1) implicitly in the Q-function. Therefore, imple-
menting this approach as a controller in the )-parameterization of stabilizing controllers cor-
responds to having the Q-filter replaced by such a policy. In contrast to the widespread, stan-
dard approach of learning a policy that directly maps measurements y to inputs u, stability
of the agent is then sufficient to retain stability of the closed loop. However, the signal r
cannot be taken as a state in a critic-only learning approach; this issue will be discussed in
greater detail in the next section.

5] Learning feedforward control action. Recall from the structure of Fig. 2.3b that the
parameterization of two-degree-of-freedom controllers can be constructed by augmenting the
feedback ()-parameterization with a feedforward filter Qg that generates an additive signal sg
from exogenous inputs w. Hence, replacing r with w in architectures [1] to [4] in principle
yield analogous feedforward variants, which we collectively refer to as [5].

6.1.4 Controller Parameterizations from the RL Point of View

In this section, the architectures of Fig. 6.1 are discussed from a RL perspective.

Affine parameterization and the role of the signal r. A key feature of the Q)-parame-
terization is that the closed-loop (2.12) is affine in the parameter system @, . e., T, (Q) =
Ti1 + T1oQT5;. Consequently, controllers can be efficiently designed by convex optimization
over the parameter () for many standard control objectives [28]. It seems natural that this
property of the parameterization is also beneficial for an RL approach to learning control.
For example, Roberts et al. [190] argue that “the convexity of many common cost functions
in the YP [...] can result in the convexity of the value function learning must descend [...].

118



6.1 Reinforcement Learning of the Performance Enhancement Filter

RL environment

RL policy

_ 7"-RI.J('Zara,LU)

Y VYV

RL agent with ()-parameterized policy 73q

Figure 6.2: The ()-parameterization can be considered as a specific actor structure (grey box)
from the RL point of view.

However, this advantage is not preserved in all architectures presented above. As empha-
sized in Remark 2.1, T5, = 0 holds in the parameterization. In consequence, the signal r is
essentially feedforward from the perspective of the learning agent because modification of @)
does not affect its input 7. Hence, the restrictions of Sec. 6.1.2 concerning applicable algo-
rithmic classes of RL apply. For implementation in architectures [4] and [5], critic-only agents
using r or w as state are therefore neither suitable to replace the feedback filter ) nor to
learn a feedforward controller Q. This insight suggests that an episodic actor-only approach
as in [190, 57] may be the most effective way to exploit the convexity in ) in the context of
RL which holds as long as there is no significant model uncertainty (S — 0).

Classification of ()-parameterization for RL. We also discuss what effect a (Q-parameteriza-
tion of the controller has w.r.t. the policy representation and categorization of architectures
to [5] in terms of overall RL category from Sec. 6.1.1.

A basic property of actor-only and actor-critic methods is that policies are parameterized
in order to facilitate the learning process, resulting effectively in a restriction to a promising
subspace of all possible policies. The two-degree-of-freedom (@-parameterization shown in
Fig. 2.3b contains the central system .J with the nominal controller K included, possibly
a nominal stable feedforward controller Ky, and the free filter systems () and Qg serving
as parameters. Any kind of RL policy (7. e., actor-only, actor-critic and critic-only) might
be employed to realize the policy 7y, that plays the role of the Q-filter. Nonetheless, the
resulting policy 7;q, obtained from the feedback interconnection of nominal controller with
the filter, defines a policy parameterization (actor). Hence, the overall approach constitutes
an actor-only or actor-critic method [205], depending on the class of RL methods chosen
for mgy. This is depicted in Fig. 6.2.
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6.2 Robust Stability: RL with a Gain Bound

In the previous section, different architectures to integrate RL with the ()-parameterization
were considered under ideal conditions, 7. e., the parameterization is based on a precise model
of the plant dynamics. In practice, however, inaccuracies of the model result in a double-
Youla parameterization as reviewed in Sec. 2.2. In consequence, additional requirements have
to be imposed on the RL agent.

In the following, let us assume that the (robust) initial controller K stabilizes the plant
and results in bounded uncertainty of the dual parameter ||S|« < 7s such that the actual
plant dynamics is contained in G(Gy, Ky, 7s) according to (2.21). Then, with S # 0 the closed
loop (2.22) is not affine in ) anymore. Moreover, stability of the policy is not sufficient to
ensure stability of the closed-loop when S # 0. According to Prop. 2.8, a gain bound

ImRL] 0 < 7 =75 (6.2)

must be imposed on the policy implemented by a RL agent. Note that ||7gy || refers to the
induced ¢y gain of the policy .

For actor-only or actor-critic policies corresponding to architecture [3], the specific structure
of the policy parameterization must be considered in order to impose ||7rr||c0 < 7q. To this
end, the admissible parameter set P must be computed and subsequently 8 € P enforced
during the learning process. For example, these limits could represent the weights of a
feedforward neural network. How to systematically determine such parameter bounds depends
on the policy structure and is beyond the scope of this thesis. Possible approaches include,
for example, the gradient projection method to limit the admissible set in stochastic gradient
descent based methods as in [205], or limiting the weights of a neural network by nested
sector nonlinearity analyses as in NLg-Theory [230].

Here, we restrict attention to architecture [4] and critic-only methods that infer actions from
the value function Q. In the following analysis, for simplicity, we only consider the standard
case of scalar actions that are inferred from (6.1). One way to impose (6.2) in this case is to
restrict the admissible action set according to the desired maximal gain [205] as follows.

Theorem 6.1 (Gain-Bounded Critic-Only). Let 7q € R denote the maximum permis-
sible gain of a critic-only RL policy 7 : & — of characterized via (6.1) by a memoryless
state-action value function Q ; : & x & +— R. Then, the modified inference formula

7Tboumied(st) = argmax Q(St7 at) (6-3)

ared
lat|<vqllstll

yields a restricted policy Thounded : & — & such that
H7Tb0undedHoo S 7Q (64)

Proof. Finite-gain {5-stability of the policy with ¢5-gain vq holds for ||a||s, < vql|s|le,- This
bound can be sufficiently achieved by limiting the induced matrix norm |[a;|| < vql|s¢|| in all
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time steps ¢,

00 1/2 00 1/2 00 1/2
HaH@:(ZHatH?) g(zmustn)?) =m(z\|st||2) _olislles (65)

— 00

which is particularly simple here as the value function Q constitutes a time-varying, mem-
oryless function. Hence, with scalar &/ C R, determining outputs a; according to (6.3),
lla]] < vqllst]| and consequently (6.5) hold Va; € o/, s, € §. O

The critic policy from Theorem 6.1 may, however, still not yet be useful in the interplay
with the (Q-parameterization in architecture [4] from Fig. 6.1. As discussed in Sec. 6.1.4 this
is because the signal r does not usually represent a state appropriate in an MDP modeling
framework. Nonetheless, r is suitable to infer the restriction of admissible actions such the
gain bound holds, while actually learning over a different signal such as the performance
quantities.

Corollary 6.1 (Critic-Only for Reinforcement Learning-Q). Let 7q € R{ denote
the maximum permissible gain of a critic-only RL policy s; = m(r, 2;) employed as in
architecture [4], 4. e., considering s, = col(ry, z;) as state of the critic generating actions
a; £ 5,. Then an admissible inference formula is given by

(T, z¢) = argmax Q((7, 2¢), St)- (6.6)
[st|<yqllrll O

In other words, both the signals r and z are used to implement a critic-only architecture that
preserves robust stability of the closed feedback loop in the double-Youla parameterization. In
practice, it is sufficient to implement any critic-only algorithm learning over the performance
signals z only, while restricting the filtered input s according to (6.6). For example, the
AOLSPI algorithm from Chap. 5 can be straightforwardly adapted for usage in this parame-
terization by replacing the policy exploitation in line 17 of the algorithm in Tab. 5.3 by (6.6).

6.3 Summary of the Reinforcement Learning-() Framework

In this section, the proposed Reinforcement Learning-Q)Q Control strategy is reviewed by
summarizing the high-level steps in the workflow from setting up the parameterization to
performance enhancement via RL over the parameter Q).

Workflow. The steps to create a learning controller in the framework proposed in this thesis
are depicted in Fig. 6.3.

At first, the learning task should be analyzed to understand if it is necessary to learn in
feedback. Otherwise, the problem will be simpler to deal with by using a fixed feedback
controller and learning only the required feedforward signals, for example using DMPs [93].
Next, the model-based description of the system dynamics is formulated in a generalized
plant setting. The resulting GG is then used to design the nominal controller Ky which will
subsequently be part of the central system J of the parameterization. If G is modeled
accurately, 7. e., there is no uncertainty in the closed loop resulting in v5 = 0, it is sufficient
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Reinforcement Learning-Q Control

Analysis of learning control
setting and task

feedback learning? sufficient to learn feedforward control ‘O use Reinforcement Learning
without Q-Parameterization

including domain knowledge —» Generalized plant G

v

[ Design of initial controller ]4—

A

[ Analysis of plant dynamics,

stabilizing? — Initial controller K

[ Choice of parameterization ] — Generator system .J

v

Analysis of closed-loop
uncertainty using dual Youla

—{ Measure of uncertainty s
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stabilizing?
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algorithm > BRI
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[Design of the reward function]<—
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Figure 6.3: Abstracted workflow of the proposed Reinforcement Learning-() control strategy.
Rounded boxes outline the main activities for the design of a learning controller in
the framework. The gray boxes on the right symbolize the assets resulting from the
corresponding design steps.
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to take Ky stabilizing. Otherwise Ky should be designed to yield robust stability to the
nominal loop in order to ensure that 75 < oo holds. This bound is subsequently needed to
restrict the set of admissible parameters Q accordingly.

Depending on the task at hand, one of the architectures Fig. 6.1 can be chosen for imple-
mentation; these variants were discussed previously in Sec. 6.1.3. Oftentimes, the decisive
question will be if the learning control scheme should be able to choose among pre-designed
controllers. In this case, [1] and [2] are suitable. Otherwise, are more attractive; for ex-
ample, one may aim to keep effort in the manual control design process low. Architecture
then only requires to set up the parameterization itself and provide a basic structure for the
search over stabilizing controllers. Such an approach will be pursued in the case study of
Chap. 8, learning feedforward elements [5] as well. As discussed in Sec. 6.1.2, the choice of
architecture eventually also determines which classes of RL methods are applicable.

Finally, as in all RL based control schemes, the rewards must be designed to represent the
desired learning control objective.

Recommendations. To set up the parameterization, in general, one could aim to exploit
as much prior information as possible, including uncertainty structure or characteristics,
disturbance models, as well as frequency weighting filters. No trade-off of optimality with
stability is required if the dynamic plant model is accurately known (S = 0). Otherwise, the
set of admissible parameters Q and correspondingly the solution space in the decision problem
solved by the RL agent has to be constrained to leverage the robust stability assertions of
a double parameterization. In practice, it may nonetheless be sufficient to construct the
nominal model pragmatically, for example by approximate modeling of the most dominant
dynamic effects. Such an approach will be taken in the case study in Chap. 8. As discussed
in Chap. 4 for the case of robotic manipulators, not only the accuracy of the nominal model
but also the nominal controller K influence the uncertainty in the closed-loop measure of
the dual Youla parameter. This degree of freedom will be used in the case study of Chap. 7
to create a parameterization for a robot with very imprecisely known dynamics.

From the learning side, the characteristic challenges of RL remain unaffected, e. g., scala-
bility, interpretability, computational times, approximation architecture, and design of the
reward function to achieve desired behavior. Nonetheless, as already pointed out in [190], the
performance of the learning algorithms generally depends on the controller parameterization.
For the ideal case of no model mismatch (S = 0), convex cost functions can be constructed
due to the actor structure Fig. 6.2 based on the @)-parameterization. Correspondingly, RL
algorithms that operate episodically are a natural choice for performance enhancement in
the proposed Reinforcement Learning-@) scheme. While Cor. 6.1 provides a basic condition
to enforce the required gain bounds over a critic-only agent when S # 0, in practice actor-
only or actor-critic algorithms nonetheless seem to be more suited for use in Reinforcement
Learning-() control. This is due to several reasons. First, the specific behavior during learn-
ing with a critic-only algorithm is hard to assess and interpret because one can only examine
the learned state-action value function Q.. This is feasible only for low-dimensional state-
action spaces. Second, the dimensionality of » and s may be prohibitive for critic-only ap-
proaches from a computational point of view, particularly in multiple-input multiple-output
(MIMO) control settings. Third, including feedforward action to employ a two-degree-of-
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freedom control learning agent may yield higher performance and one should refrain from
employing critic-only methods to learn feedforward actions due to the reasons discussed in
Sec. 6.1.2. Therefore, policy search and actor-critic methods are the preferred classes of algo-
rithms in Reinforcement Learning-() control. The downside of these algorithms is that one
must carefully design the actor parameterization and appropriately restrict the search space
over the Q)-parameters when there is significant S # 0.

6.4 Conclusion

In this chapter, a control strategy was introduced that mixes the ()-parameterization, a
classic tool from robust control, with RL. Referring to the goal of the original learning-¢)
control method (cf. Sec. 2.4) of generalizing performance enhancement from one trajectory
to another, the method considered here was dubbed Reinforcement Learning-QQ Control.
Contrary to standard RL, the approach allows to effectively handle stability in the closed
feedback control loop by incorporating prior dynamical model knowledge. Consequently, the
(Q-parameterization can be conceived of as a structured way to create specific actor policies
based on prior information. While the effort to construct the parameterization may be
considerably higher compared to using some plain RL, it is an effective tool to leverage RL in
control-critical scenarios. For instance, if the plant is unstable and must always be stabilized
or if one cannot tolerate instability on hardware. Using RL as a performance enhancement
mechanism, the method can be applied in scenarios where adaptive-() control approaches
are hardly applicable. This is the case, for instance, if the parameter search space is badly
structured, disturbance models are hard to obtain, or if no model of the cost function is
available (e. g., subjective ranking of performance by a human teacher).

Many more opportunities arise from taking a mixed perspective of the parameterization
and RL and open questions remain to be explored in future research. In particular, it would
be valuable to explore how an ideally generic fallback solution could look like in order to set
up the initial controller of the parameterization when uncertainty cannot be estimated or
when it is hard to obtain a suitably good initial model. Working with controllers that are
robust against normalized coprime factor uncertainty [148] might be a promising approach
in this direction. Moreover, concerning RL, our analysis of the general interplay with the
parameterization has revealed that particularly the actor-critic class of algorithms will be
most promising for further research in the framework. We conjecture that algorithms based
on deep NNs, such as Proximal Policy Optimization (PPO) [209] or Asynchronous Advantage
Actor Critic (A3C) [151], may provide better performance enhancement capabilities for a
wider range of applications. However, the open and very challenging task is then to impose
suitable restrictions over the corresponding actors so as to enforce the required norm bounds
without deteriorating the learning capabilities of the algorithms.
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Laboratory Case Studies






Active Variable Impedance Control with the
Parameterization of Stabilizing Controllers

In parts I and II of this thesis, methods were developed from a theoretical point of view
to leverage machine learning for robotics based on stabilizing controller parameterizations.
This third part serves to illustrate the methods by means of practical examples. To this end,
proof-of-concept experimental studies were conducted in the laboratories. These examples
showcase implementations of the proposed control strategy on real-world mechatronic devices.
Therefore, this part not only provides experimental evidence of the efficacy of the proposed
methods but also details our experience concerning an effective implementation on robotic
hardware.

The first case study shows that scheme of Sec. 3.1 allows to leverage the benefits of a
(Q-parameterization on commercially available robotic hardware and to implement active
variable impedance behavior. While the general behavior of the control scheme was already
discussed in the simulation of Sec. 3.1.8, the following aspects about the implementation on
hardware are illustrated.

o Although the dynamics of the underlying robotic control system is not known exactly
due to the black-box architecture of the commercial controller, an approximate model
of the resulting closed-loop dynamics is suitable to set up an internal model required
for the parameterization. To this end, the nominal gains constitute a design degree of
freedom to decrease uncertainty in the parameterization, while still allowing to recover
via the additional input the desired control modes computed from the Q)-parameters.

e This approach to implement the parameterization is enabled due to the separation
structure of the control scheme shown in Fig. 4.6, rendering feasible the upgrade of a
pre-implemented controller to a Q)-parameterization.

o We provide experimental evidence that the proposed control architecture indeed results
in stable behavior under interpolation conditions that lead to instability when naively
implemented.

The study is structured as follows. We begin in Sec. 7.1 with a brief description of the control
interface provided by the experimental platform and the problem setting considered in this
chapter. The insights how to implement the parameterization are then provided in detail in
Sec. 7.2 and the parameters to recover the desired controllers are derived in Sec. 7.3. The
chapter concludes with a discussion of the experiment in Sec. 7.4 and with an outlook to

127



7 Active Variable Impedance Control with the Parameterization of Stabilizing Controllers

future promising work in Sec. 7.5. The student works [165, 194] partly contributed to the
results presented in this chapter.

7.1 Experimental Setup and Problem Setting

Robotic platform. The robot platform that was used to conduct the experiments is a KUKA
LWR IV+ [26] controlled via the fast research interface (FRI) [207] in command mode; more
details concerning the laboratory setup are summarized in Appendix C.3.

The starting point to augment the robot with the parameterizations of Sec. 3.1 respectively
Sec. 4.7 is the built-in joint-specific impedance control mode. The torque commanded to the
controlled manipulator is then approximately described by [26]

Temd = dlag(kj) (qdes - qmsr) + D(dj) + TFRI + fdynamics(q> qa q) (71)

Thus, a virtual spring in joint space is realized by the built-in controller, characterized by
the stiffness vector k; € R” and the error between desired position gqes € R” and measured
position gus € R7. The symbol D(d;) denotes a damping term that cannot be modified by
the user other than by setting some nominal normalized damping parameter d; € R”, and
Saynamics(@, 4, q) denotes some internal compensation term. Moreover, the interface allows
to add a custom torque Trrr € R to the commanded torques of each joint. The resulting
block description is shown in Fig. 7.2a.

Instability in simple variable impedance control. Note that all accessible quantities of (7.1)
can be changed in each time step ¢ using the FRI interface, allowing effectively to implement a
variable impedance behavior in fashion of simple gain-scheduling by varying the gains k; and
d;. Analogous to (3.2), such an approach constitutes interpolated feedback and is therefore
vulnerable to instabilities arising from hidden coupling, just as it was shown in Fig. 3.2
of the simulation study of Sec. 3.1.8. For the case of constant desired inertia, Kronander
and Billard [123] provide conditions to verify global uniform (asymptotic) stability for given
symmetric, positive definite and continuously differentiable stiffness Kp(¢) and damping
K (t) profiles. Restricting attention to one dimension and constant damping Kp(t) = Kpp,

mq(t) + Kpoq(t) + Kp(t)q(t) =0,

asymptotic stability can be verified by checking if there exists an a > 0 such that for all
t >0 [123, Ex. 1]

KD70 > am, Kp(t) < 20{Kp(t) (72)

Hence, for constant damping, the rate of stiffness change admissible without instability is
upper bounded by the current stiffness.

This condition was investigated experimentally [194]. The initial position gy of the robot
was brought to a horizontal pose with maximum reach as shown in Fig. 7.1a. The 1D
interpolation experiment was conducted on joint A3 in the depicted position, leading to a
horizontal oscillation while keeping all other joints fixed with maximum stiffness and damping
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control gains. For interpolation of stiffness of A3, a sinusoidal signal
kas(t) = Kp(t) = 80 + 50sin(27 fp - t) (7.3)

was used directly as input to the FRI block (7.1), varying stiffness values between 30 and
130 with frequency fp as depicted in Fig. 7.1c. The damping was kept low with a constant
coefficient of dxyz = 0.1 and the reference trajectory for all joints is the constant horizontal
pose qaes(t) = qo = [0 180 —90 0 0 90 0] " throughout. A push on the robot is emulated
by applying the 0.5s long impulse with amplitude 7r; = 5 shown in Fig. 7.1b to the
superimposed torque of joint A3. Due to this disturbance, a position error between g3 and
A3 des €xists, leading to new commanded torques according to (7.1).

For fp < 3 Hz, the resulting oscillation is damped and converges to the depicted position
of 0 deg. However, for larger frequencies fp 2 3 Hz, the magnitude of the oscillation increases.
The corresponding trajectory obtained from the experiment with fp = 3Hz is shown in
Fig. 7.1d.
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(d) Joint motion recorded for fp = 3 Hz.

Figure 7.1: A stiffness profile that violates the condition (7.2) leads to unstable behavior on the
hardware when implemented by direct gain scheduling in the control law (7.1).

While it is experimentally confirmed that instability due to hidden coupling can occur on
the KUKA LWR IV+, in this case study, we consider how to avoid this issue by means of
the ()-parameterization.

Problem 7.1. Implement a joint-specific variable impedance control scheme on a KUKA
LWR IV+ based on a Q-parameterization of stabilizing controllers to allow for arbitrary
stable interpolation according to Def. 3.1. o
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7 Active Variable Impedance Control with the Parameterization of Stabilizing Controllers

7.2 Choice of Parameterization and Internal Model

The first step in the construction of a ()-parameterization is to determine a model of the plant
dynamics and the selection of the specific realization of the parameterization. To this end,
the standard approach of employing a model of the open-loop plant dynamics is investigated.

7.2.1 Issues of the Model of the Inner Controlled Loop

As spelled out in Chap. 4, a linear model based on the perturbed double integrator model is
suitable to construct the parameterization and characterize admissible ()-parameters, taking
the inner controlled manipulator loop as relevant plant dynamics. The control law (7.1)
suggests that some form of AID control law is implemented in the joint-specific impedance
mode of the robot. However, neither the precise dynamical model of the robot is publicly
known nor which quality of approximative inverse dynamics control is eventually realized by
the internal controller of the robot:

« Setting k; and d; to the lowest admissible values and using gges = @ms: results in

Temd ~ TFRI + fdynamics(qv Q7 q) (74)

With 7eg; = 0, the robot works effectively in gravity compensation as verified experi-
mentally [165].

o Referring to (4.6), ideally, the behavior of the robot would with k; — 0 and d; — 0 in
the FRI controller (7.1) result in Ay — 0 and p — 0, allowing to realize the outer-loop
input u determining the effective impedance via 7er; = u. However, both seemingly
natural assumptions do not result in a good feedback linearization [165], i. e., neither
Trrr = ¥ nor Trr; = M (q)u . Consequently, Ay # 0 and v # 0 substantially affect
the control performance when working with (7.4).

o It is unspecified how the effective gain D(d;) is determined from the normalized damping
parameter d; € R.

o High values of the superimposed torques 7gr; are effectively limited to a maximum
value and the commanded torque T.,q is actually realized by another nested control
loop of higher sampling frequency.

In summary, the superimposed torque quantity 7pr; constitutes an interface with only limited
control over the effective torque used in the KUKA LWR IV+ when realized via the FRI
interface as (7.4); hence, the model ¢ = u corresponding to an ideally feedback linearized
system does not constitute a reasonably accurate nominal model to build the @-parameteri-
zation in order to determine the control signal for Tg;.

7.2.2 Closed-Loop Modeling

Due to the reasons above, it is not effective trying to circumvent the built-in PD gains of the
FRI with the approach of (7.4) in order to set up a standard parameterization. The double
integrator plant model obtained from Fig. 7.2b for k; — 0 and d; — 0 does not reasonably
reflect the behavior of the robot hardware (Fig. 7.2a). However, what if these gains were
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Figure 7.2: The model assumed to describe the relevant closed-loop behavior of the KUKA
LWR IV+ robot axes when used in FRI mode 30
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Figure 7.3: Comparison of the simulation of the dynamic model shown in Fig. 7.2b to measure-
ments on the KUKA LWR IV+, for low and medium gains. For the lower gains, de-
picted on the left side, the joint trajectory of the simulated model clearly deviates
from the measurements. Using higher gains as depicted on the right side leads to a
better fit between the simulated and measured trajectories.

not turned off but considered as nominal controller when building the parameterization? In
this case, (7.1) should make the manipulator behave like a double integrator under PD state
feedback; otherwise, the control law (7.1) would not accomplish its purpose of realizing a
joint-impedance controller with stiffness and damping characteristics mutable via k; and d;.
In other words, we assume that the model depicted in Fig. 7.2b reflects the behavior of the
manipulator Fig. 7.2a more accurately if the gains are active, i. e., kj /4 0 and d; /4 0.

In order to check this assumption, an experiment using joint A3 (cf. Fig. 7.1a) was con-
ducted [194], using low and medium internal control gains, as well as the superimposed
torque feature. The reference trajectory gasdes is chosen as a trapezoidal motion with am-
plitude of 15deg around the reference angle of —90 deg and a period time of 5s. In the first
setting, the internal gains were set to kas = 20, da3 = 0.1 with the superimposed torque Tegr;
chosen as sinusoidal wave of amplitude 2 and frequency 0.5 Hz. In the second setting, we
used kaz = 300, dp3 = 0.3 with the superimposed torque sine of amplitude 50 and frequency
0.5 Hz. The model of the loop according to Fig. 7.2b was simulated with the same inputs,
assuming v = 1prr and Kp = kas and Kp = 2dasv/kas.
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7 Active Variable Impedance Control with the Parameterization of Stabilizing Controllers

The results of this experiment are shown in Fig. 7.3. As can be seen, the trajectories
resulting from the experiment (ga3) and the simulation (gsy,) show much less deviation with
the higher gains in (7.1), hence yielding more accuracy to the model. Taking a closed-loop
approach therefore allows to construct a ()-parameterization on this robot although the built-
in compensation is not precisely known, given that the parameterization allows to be built
on top of the internal controller of the robot as exposed by the interface (7.1).

7.2.3 Implementation of the Central System

Plant model. In the previous section, the model for controller design shown in Fig. 7.2b was
derived, while in the hardware experiment, the nominal controller is implemented directly
by the interface of the robot depicted in Fig. 7.2a. Therefore, this discrepancy must be
considered in the calculation of the )-parameterization. To this end, we consider which plant
resulted from Fig. 7.2b if the nominal control were implemented by the central system of
the Q-parameterization. This gives rise to the generalized plant model of Fig. 7.2c and the
nominal controller Dk ¢ = [-Kp, —Kp, Kp, Kp].

In the case study, it is essential to compute and implement the parameterization in discrete
time for deployment to hardware. Taking the maximal frequency admissible by the FRI
which is 1kHz, the sampling rate is Ty = 1 ms. Restricting attention to control of a single
joint A3 of the robot as in the previous section, the model of the controlled channel is

1 0.001|5-1077 ]
0 1 | 0001
1 0 0
Gy 0 1 0 (7.5)
0 0 0
0 0 0 |

In this experiment, the nominal feedback gains are set in the FRI interface as kj3 = 150,
da = 0.2, which is modeled by the nominal static feedback. Restricting attention to joint A3,
the model of the controlled channel is

Dy =] —150.0 —4.8990 150.0 4.8990 ] (7.6)

for (7.5). Correspondingly, the closed-loop behavior of the robot is described by the feedback
interconnection (Gy,, Dk ), resulting in

[0.9999 0.0009976 | 5- 1077 ]
—0.15 0.9951 0.001
1
Gcl,nom : 0 0 c 7?}[00 (77)

0 1 0
0 0 0
0 0 0
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Using the parameterization of Prop. 4.2 with (4.36) yields Fg = [-150 — 4.8990] and the
design of the central system

£0.9999 0.0009976 | 0 0 0 0 5-107 7
~0.15  0.9951 0 0 0 0 0.001
0 0 —150.0 —4.8090 150.0 4.8990 1
Jio| -1 0 1 0 0 0 0 (7.8)
0 ~1 0 1 0 0 0
0 0 0 0 1 0 0
L0 0 0 0 0 1 0 |

Note that the dynamic model in J, simulating the controlled loop, precisely corresponds to
the dynamics of the manipulator controlled by the pre-built compensation of the FRI mode 30,
described by (7.7); this is due to the special coprime factorization chosen by Fg = Dk (Cs
as discussed in Sec. 4.7.

Separation of the nominal controller. Note that the system (7.8) is only the design model
used in the computations of the ()-parameters later. In the actual hardware implementation,
the nominal static feedback is realized by the built-in controller of the FRI. Thus, due the
structure of J, the controller of the FRI can be separated from the central system as shown
in Fig. 4.6. The augmentation to construct the parameterization is then given by the system

£0.9999 0.0009976 |0 0 0 0 5-1077 ]
~0.15 09951 |0 0 0 O 0.001
0 0 0000 1
Jog © | —1 0 1000 0 (7.9)
0 -1 o100 ©
0 0 0010 0
L0 0 0001 0 |

Anti-windup compensation. In principle, at this point the parameterization would be ready
to augment the controller in order to generate via () commands 7rgr; that suitably modify
the impedance characteristics of the manipulator. In practice, however, the limitations of
the values of 7er; impose a non-negligible saturation of the superimposed torque. Therefore,
we added an anti-windup scheme to the central system. Due to the pre-compensation, the
controlled plant is stable and a model of the closed loop is obtained as shown in the previous
section. Therefore, the full dynamic anti-windup scheme by Turner and Postlethwaite [241]
can be utilized.
According to [241], the LMI

—Qaw —L,y 0 QawC; + LiyD;, QawA+ LB,

* —QUAW I UAwD2T2 UAWBQT

* * —paw T 0 0 <0, (7.10)
* * * —1I 0

* * * * —Qaw
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is solved, where A, By, Cy and D5, denote the state-space model of the plant dynamics, and
the matrices Qaw > 0, Uaw = diag (p1, . - ., im), Law € R™™ and the scalar paw > 0 are
determined from the LMIL. If it is solvable, a gain matrix Faw is given by Faw = LawQaw
and the anti-windup compensator is obtained from

A+ ByFay | Bo
OAW full Frw 0o |. (7.11)
Cy + Dy Fyry | Doy

Note that the closed-loop (pre-stabilized) model constitutes the relevant plant dynamics for
anti-windup synthesis in this case study, 7. e., A, By, Cy and Dy, are taken from (7.7). Using
convex optimization [67], the LMI (7.10) is solved which results in the compensator

[ 0.9999  0.0003221 | 51077 T
—-0.1159 —0.3557 | 0.001
34.08 —1351.0 0
0

Oaw : (7.12)

o O O
o o O O

1
0
0

Overall structure of parameterization. The structure of the overall parameterized control
system is depicted in Fig. 7.4. It consists of the robot controlled via the FRI which implements
the nominal gains as well as the interface to superimpose the control signal w which is in
turn determined from the augmentation system (7.9) with anti-windup compensation (7.12).
The model for the signal limitation of 7pg; is chosen as 7prr a3 = 95 in order to accommodate
for the saturation which experimentally occurred from |7pgysatas| 2 100.

7.3 Realization of Variable Impedance Filters

After having constructed a suitable parameterization based on an internal model of the closed
loop, a Q-filter is designed to realize the desired impedance behaviors. To this end, the desired
stiffness profile (7.3) and damping da3 = 0.1 is reformulated as a convex combination of the
feedback gains Dy ; = [—130.0 —2.280 130.0 2.280], Dk 2 = [—30.00 —1.095 30.00 1.0954]
that represent the stiffness for ka3 = 130 and ka3 = 30, respectively. The corresponding
1 + sin(27 - 3t)
1 —sin(27 - 3t)
recovery of the stiffness/damping characteristics in the design points are given from (B.12).
Following similar steps as in Sec. B.4 and noting that (7.5) is strictly proper, a state-space
formula to realize the filters is obtained from (B.12) as

interpolation signal is given by a(t) = 0.5 [ ] . The dynamic filters to achieve

Qi :

A + By Dk ;C, ‘ B, (Dx — Dx )
(Dxo—Dxi)C>| Dxi—Dxo |
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Figure 7
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.4: Structure to implement the central system of a ()-parameterization effectively on a

KUKA LWR IV+. The numerical values used in the experiment on joint A3 are given

by (7.9) and (7.12), with the limit in the saturation block set to 95 and ka3 = 150,
das = 0.2.

which reduces for the case of state feedback with Cy = I to (3.10). Numerically, for the
considered joint this results in

thp,l :

thp,Z :

[0.99994 0.0009989 | —0.00001 —0.0000013093 0.00001 0.0000013093
—-0.13  0.99772 —0.02 —0.0026186 0.02 0.0026186 ],
| —20.0 —2.6186 ‘ 20.0 2.6186 —20.0 —2.6186
[10.99998 0.00099945 | —0.00006 —0.0000019018 0.00006 0.0000019018
—0.03 0.99891 —0.12 —0.0038035 0.12 0.0038035 ]
| —120.0 —3.8035 ‘ 120.0 3.8035 —120.0 —3.8035

These systems do not share a CQLF. Using the transformation of Sec. 3.1.5, we obtain

Q1 :

0.99992  0.011381 | —0.0021684 —0.00028392 0.0021684 0.00028392
—0.011406  0.99774 —0.30178 —0.039513 0.30178 0.039513

Y

Q2 :

—0.1163  —0.17337 ‘ 20.0 2.6186 —20.0 —2.6186

0.99995  0.0054699 | —0.023873 —0.00075668 0.023873 0.00075668
—0.005475  0.99894 —2.6247 —0.083193 2.6247 0.083193

—1.0012  —0.16753 ‘ 120.0 3.8035 —120.0 —3.8035

which share Pg = I as Lyapunov matrix.

In the experiments, we used the LQN architecture (3.11), for implementation of Q (&) to
interpolate Q1 and s.
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7.4 Results and Discussion

7.4.1 Experimental Results

The variable impedance behavior obtained [194] from the novel feedback interpolation scheme
using the specific Q-parameterization is depicted in Fig. 7.5.

In Fig. 7.5a, the time evolution of the signal r is shown. Naturally, only the error signals
concerning position and velocity of the joint corresponding to ry and ry excite the parameter
system (). There is no uncertainty associated with feedforward signals gqes and ¢qes; hence,
the corresponding entries r3 and r4 are zero. Figures 7.5b and 7.5¢ show the resulting output
of the interpolated @)-parameter which is becoming the additional torque input 7eg;. Note
that, apart from the impulse to simulate a push on the joint, the control input u is equal to s
which is due to the coprime factors chosen with (7.8). The trajectory of the joint position
is shown in Fig. 7.5d. While the system movement exhibits some transient oscillations, the
joint eventually returns to the desired position. The small oscillation remaining from 6 s on is
resulting from the model uncertainty inherited from the black-box character of the controlled
robot interface which is only inaccurately modeled by (7.7).

7.4.2 Discussion

The case study presented in this chapter illustrates the superior performance achievable using
a (Q-parameterization compared to ad-hoc gain scheduling on the robotic platform. While
the experiment confirmed the conditions derived in [123] for stability in the ad-hoc gain
scheduling approach, the method based on the parameterization presented in this thesis does
not impose such restrictions on admissible interpolation signals. Therefore, for learning of
variable impedance control skills as in [32], the method constitutes an ideal starting point
because the stability problem is separated from the learning problem for the desired task.

The following remarks are in order concerning different aspects of the approach.

Choice of parameterization and model. The results of this case study could not be
obtained with the standard observer-based interpretation of the ()-parameterization depicted
in Fig. 2.2. This is because the basic PD behavior of the FRI controller interface of the
KUKA LWR IV+ robot cannot be circumvented without deteriorating model quality as
discussed above. The parameterization of Sec. 3.1 respectively Sec. 4.7 builds on the terminal
connections (cf. requirement R2 in Sec. 3.1.2) and is therefore implementable on the robot.
The key idea here is that usage of a model of the closed internal loop in the parameterization
actually yields better accuracy; this property in turn can be exploited because the proposed
parameterization admits a separation of the nominal controller from the central system.
Therefore, the built-in controller of the robotic system did not have to be sidestepped but
rather can be used as starting point. While this is the key advantage of the proposed
parameterization on this robotic system in comparison to the observer-based ()-parameter-
ization, also the comments of Sec. 3.1.7 are applicable. Apart from that, the experiment
confirms our theoretical findings of Chap. 4 that the gains of the nominal robot controller
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(c) The superimposed torque 7ggy, consisting of the simulated push as in Fig. 7.1b (rectangular
impulse from 1s to 1.5s) and the added torque u generated by the parameterization.
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Figure 7.5: The implementation of the specific ()-parameterization over the FRI of the KUKA

LWR IV+ robot provides experimental evidence for the results of the simulation
of Fig. 3.3 shown in the theoretical illustrative study in Sec. 3.1.8.
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7 Active Variable Impedance Control with the Parameterization of Stabilizing Controllers

substantially affect the closed-loop uncertainty and therefore constitute a valuable degree of
freedom for the design of robot controllers with the parameterization approach.

Choice of numeric parameters. The desired impedance was chosen lightly damped
(das = 0.1) in order to make the system exhibit instability under ad-hoc gain scheduling. For
this reason, the initial gain used in the parameterization (7.6) could only be set to slightly
higher damping because the gains of the controller parameters )7 and )5 for recovery of the
basic impedance behaviors are becoming high otherwise, leading to a less robust overall sys-
tem as discussed in Sec. 3.1.9. Clearly this case study has pushed at the boundary of system
stability and in a practical robotic application, higher damping should be employed. Numer-
ically, the poles are very close to 1 and it is emphasized again that it is crucial to compute
the generator system J as well as the parameters (); with the state-space models obtained
from symbolical simplification of the formulae involving the coprime factors. In our experi-
ence, attempting to compute the systems numerically directly from (2.8) and (B.12) leads
to very badly conditioned matrices, prohibiting successful deployment to the physical sys-
tem. Moreover, it is noted that a quasi-continuous approach, 7. e., computing the controllers
in the continuous-time domain and subsequent discretization, in our experience does not de-
liver the desired performance on hardware. It is crucial to work upfront in the discrete-time
domain for deployment of the control structure to digitally controlled systems.

Experimental limitations on the hardware system. While feasibility of the method was
shown only on a single rotational joint in this chapter, additional experiments with the
control structure were conducted which controlled up to five joints on hardware using the
proposed parameterization [194]. The first five joints of the kinematic chain of the KUKA
LWR IV+ were controlled successfully with the scheme. The remaining two joints A5 and
A6 were subject to hardware limitations; 7. e., on the robot (Fig. C.1) used during the
experiments, the friction compensation in the last two joints was too ineffective to allow
even for the closed-loop modeling approach of Sec. 7.2.2. Other than that, the number
of dynamical states and correspondingly the computational complexity resulting from the
control structure for more than five joints limited the admissible sampling rate. With five
joints or less, the maximal possible sampling frequency of 1kHz could be used. Operating
more joints with this frequency and the control structure, our setup ran into violations of the
real-time requirements. However, this issue can be simply mitigated by choosing a slower
control rate, admissible due to the discrete-time domain computation of the numerical values
of the parameterization. Our experiments indeed confirmed that the control scheme works
also effectively when operating the FRI with only 500 Hz.

7.5 Conclusion

The problem of learning variable impedance control robot skills poses challenges from both
control as well as learning point of views. The methods developed in this thesis contribute
to this challenging field using an approach based on the parameterization of stabilizing
controllers. Thereby, the control problem is structured such that it becomes admissible to
learn gain schedules in straightforward fashion. While the method was developed theoretically
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7.5 Conclusion

in Chap. 3.1, the case study presented in this chapter demonstrates that the methods can be
implemented on commercially relevant robotic hardware and that the experimental results
confirm the theoretical advantages of the approach.

In this case study, attention was restricted to illustrate the stability properties, using
a fixed reference position. The problem of learning variable impedance skills, however, in
general requires to learn both motion and impedance characteristics of a robotic task. This
is particularly challenging when motion is represented as a dynamical system, e. g., using
DMPs as in [32] or a GMM as in [107]. The nested control loops resulting in this case are
depicted in Fig. 7.6a, where the impedance controller constitutes the inner controller with the
dynamical system acting as feedback motion planning (FMP) wrapped around. As pointed
out in [105], stability is hard to analyze in this setup due to the mutual coupling of the nested
loops and variable gains.

While [105] proposes to avoid this setup completely by unifying FMP and impedance
control into a single system to be learned [108], the novel architecture based on the Q-
parameterization to implement variable impedance offers an alternative approach to deal
with this problem. To this end, the key idea is to learn the dynamical system representing
only the motion with established methods such as [32, 107] first and subsequently consider
this system as part of the controlled plant. Consequently, due to the ()-parameterization,
the dynamical model and interconnection structure used for FMP automatically becomes an
internal model of the (impedance) controller. Due to the versatility of the Q-parameteriza-
tion in the generalized plant setting, stability could then be guaranteed using the controller
realization and interpolation scheme analogously as shown above as long as the FMP systems
are (quadratically) stable. This approach is illustrated in Fig. 7.6b.

First steps in this direction were worked out in greater detail in [194], using a DMP as the
dynamical system to generate the motion, an H., approach [114] to design the impedance
controller, and a @)-parameterization to implement the stability-preserving interpolation
scheme on the KUKA LWR IV+ as discussed above. While the results of [194] are promising
and the robot felt very intuitive during interaction, research towards a rigorous evaluation
of the performance of the approach should be conducted in more extensive human-robot
interaction studies. To this end, future work should also investigate how to realize variable
impedance in task-space using the proposed scheme. Moreover, the extension to GMM
dynamical feedback motion generators is a topic for future research, e. g., exploiting LPV
parameterizations such as [185].
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(a) A widely adopted approach in robotics is to build the feedback motion planning block around the
impedance control loop. This setup is vulnerable to instability because stability analyses conducted
separately for the control loops are usually not sufficient to ensure stability of the overall system.
While in practice, the setup often works well enough when impedances are fixed, clearly, implementing
variable impedance control laws in the inner loop increases the danger of instability. See [105, 108]
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(b) Implementing the variable impedance control architecture similarly as done in this case study allows
to interpolate the impedance characteristics via (), mitigating instabilities occurring otherwise due
to hidden coupling effects (orange dashed box). Just as it is standard to add, for example, an
integrator to the plant in order to model the stationary accuracy requirement, the dynamical systems
representing the feedback motion planning may be considered as part of the plant under control as
well (blue dashed box). Then, the )-parameterization contains an internal model of the dynamics
driving the robot manipulator, effectively circumventing mutual interference between FMP and

variable impedance feedback control.

Figure 7.6: Sketch of a realization scheme for stable and decoupled variable impedance robot
skills, using dynamical systems based feedback motion planning and the proposed

novel controller parameterization approach.

140



8

Tracking Control Performance Enhancement

The previous chapter discussed how the novel parameterization for interpolated feedback
control can be implemented and leveraged for variable impedance control on a commercial
robotic platform. The second case study is oriented towards the classic goal of achieving high-
precision trajectory tracking by means of episodic learning from trajectories. In this chapter,
elements of all three technical areas considered in this thesis are employed to safely enhance
the performance of the tracking controller with machine learning directly on hardware. These
contributions were published previously in [57].
This case study illustrates the following aspects of the proposed approach.

e In order to implement controllers in terms of their ()-parameter, an internal model of
the plant is needed in order to set up the parameterization. It was theoretically shown
in Chap. 4 that a crude model can be sufficient in robotic manipulator control practice
to create and use a Q)-parameterization. This study serves to exemplify how a suitable
model can be constructed based on limited prior knowledge without much modeling
effort. It is demonstrated that the nominal model need not be accurate as long as the
control loop is being internally stabilized by the initial controller.

o The parameterization was developed to extend a simple PD controller on joint level.
Therefore, this study is representative for a control architecture frequently occurring
in practice. As discussed in Sec. 4.9.1, the higher the gain of the nominal controller,
the less accurate the dynamic process model required.

e In order to avoid obfuscation of the interplay of embedded RL in a @)-parameteriza-
tion in the overall control strategy, we use a general-purpose, simple to implement,
episodic learning approach in this study. In each episode, a trajectory is run with
a fixed set of parameters; subsequently, the parameters are updated according to an
observed numerical reward and the process iterates with the next episode. Such an
approach to RL can be conceived of as black-box optimization [225]. Therefore, a black-
box optimization algorithm is used as a straightforward way to implement the learning
mechanism.

o Due to the beneficial stability properties of the ()-parameterization, the overall archi-
tecture allows to employ reinforcement learning on hardware from the start. This is in
sharp contrast to the so-called mental rehearsal approaches [115, Sec. 6.1] to robot RL
that run learning in simulation until convergence and only apply the final controller to
hardware. The manipulator used in the experiment is shown in Fig. C.2.
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8 Tracking Control Performance Enhancement

The outline of this chapter is as follows. In Sec. 8.1, the problem of tracking control perfor-
mance using RL and the @Q)-parameterization is stated. The design of the components of the
learning control scheme are then presented in Sec. 8.2 before the overall architecture is dis-
cussed in Sec. 8.3. Then, in Sec. 8.4 the simulation study is explained before the results are
in Sec. 8.5 compared to the data experimentally obtained on the hardware platform.

8.1 System Description and Problem Statement

We consider a robot manipulator described by the standard rigid-body model (4.1)-(4.2),
repeated here for convenience,

M(q)qg+n(q,q) =, (8.1)

where g € R" is the joint displacement vector, 7 € R” is the torque input vector, M € R™*"
is the symmetric, positive definite inertia matrix, and the vector n(q, q) summarizes other
terms such as the Coriolis, centrifugal, gravity and friction forces.

Problem 8.1. Consider a robot manipulator (8.1) and an initial controller K, designed to
achieve robust stability of the robot control loop. Augment the controller to a Q)-parame-
terization of stabilizing controllers and enhance the closed-loop performance safely using a
reinforcement learning algorithm, generalizing improvement to other trajectories. o

8.2 Design of Parameterization, Filter System and Learning
Approach

Robot dynamics nominal model. 1In order to derive a linear stabilizing controller, the inertia
matrix M (q) is split into a constant diagonal matrix M, = diag(7m) and the remaining part
which depends on the joint coordinates:

M(q) = M, + AM(q).

The approximate mean values of the moments of inertia related to each joint are collected in
the vector m, and the effect of the cross-coupling due to the components of AM (q) can be
absorbed into n(g, q). Thus, the dynamics (8.1) can be written separately for each joint as

miG(t) = 1;(t) —ni(t), Vi=1,...,n,
i. e., a joint can be considered as a double integrator with unknown input disturbance terms

ni(t) = ni(q, q). Defining the position/velocity state x; = [¢;,¢;] " and taking as input u; = 7;,
a state-space description for each joint is accordingly given as

2i(t) = <8 é) zi(t) + <3> w(t) + (_E) ni(t). (8.2)
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Considering the nonlinearities n;(t) as uncertainties and ensuring robust stability of the
resulting closed loop, several decentralized, robust robot control strategies [211, 62, 87] rely
on this model.

Generalized plant interconnection for tracking control. In order to construct the coprime
factors (2.3) of the plant, the robot joint space dynamics description (8.2) is used, where
the unknown terms n,(t) are considered as disturbance inputs acting on the nominal, linear
model of the i-th joint. Considering the aim of motion control to track a desired trajectory qq,
for each joint we arrive at the generalized plant setup shown in Fig. 8.1, assuming output
measurements and performance signals corresponding to both position and velocity errors.
As the controller is digitally implemented, we directly proceed in the discrete time domain
with a constant sampling time 7. Discretizing the model (8.2) of each joint and parallel
grouping yields the matrices of the generalized plant (A.4) for the complete n-link robot;
relevant for subsequent feedback controller design are the matrices
-
>’ (8.3)

[0 I

) ) ) 7”‘

Note that the plant is strictly proper, as there is no direct feedthrough from the control
input torque to the measurements. Furthermore, (A, Bs) and (A, C3) are stabilizable and
detectable pairs, respectively.

1 T, T

0 1
Cy = —I,x2,, Dy =0.

T
A—T. l ] . By= blkdiag([o, Ls

my

Central system. In order to set up the Q)-parameterization, we use the scheme based on a
static feedback in order to build upon a simple PD controller Dy o, 4. e., the central system J
is constructed according to Prop. 4.2. In discrete time, we have from (4.35)

CCJ(f"Fl) = (A+B2F)$J(t)+B28(t), CUJ,():O
J: u(t) = (F — DgoCs)x;(t) + Dxoy(t) + s(t), (8.4)
r(t) = — Coxy(t) +y(t).
Selection of ()-filter system. The next design choice is how the system @ € RH_ is

parameterized. Here, a filter is used which stores Np, past values of the signal » € R?", and
allows for subsequent weighting of this information depending on some signal v € ¥V C R":

sp(t) = E1(v(t))r(t) + Ex(v(t))r(t — 1)+ ... + Enpi1(v(t)) r(t — Np).
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8 Tracking Control Performance Enhancement

In other words, the system (@) is representing a FIR-like filter with varying coefficients. A
feedforward control signal can also be included in the setup of @,

(1]

Sff(t) =

s = sm+ s¢ = [Qn fo][

g1(v(t) w(t) + ...+ B g (V1) w(t — Ny),
s] (8.5)

wl

In the resulting two-degree-of-freedom control scheme, the feedback and feedforward charac-
teristics can be tuned independently, while preserving the stability characteristics of Thm. 2.1.
Hence, we are in the convenient situation that v may contain time, reference signals or
even states without stability concern as long as the coefficients are finite. The signal v
is henceforth called query signal over the query space V. Thus, in general the filter co-
efficient functions 5; : R™ — B (m), i =1,...,Ng, + 1, and Eg,; : R™ — Bl " (m),
t=1,..., Ng+ 1 may encode information about time-varying or even systematic nonlin-
earities, where By.x(m) denotes the set of matrices of appropriate size with elementwise
m-bounded entries. Depending on the layout of the filter coefficient matrices Z, cross-coupling
between variables could be introduced. However, in order to keep the presentation simple, in
this study, we use a diagonal layout, 7. e., position and velocity errors will be fed back only
to the corresponding joint. For the feedforward path, one channel per controlled joint will
be used.

Consequently, it remains to represent and learn n, = n (2(Ng, + 1) + (Ng + 1)) functions to
determine the coeflicients in the block-diagonal FIR structure, denoted & € R™ subsequently.
The coefficients depend on the query signal, 7. e., we have

€= [60:). &W0), .. 6, (1)) (5.6
over the query space V, which is a hyperbox
VY = [min(v), max(vy)] X -+ X [min(v,, ), max(v,,)] .
In the following, each parameter function ;, ¢ = 1,...,n,, is represented as a linearly

parameterized approximator given a vector ¢; of ny, basis functions which are multiplied by
the weights 6;

&i(v(t)) = isﬁi,j('/(t))em = ¢/ (v(1)) 0. (8.7)

In order to allow for local spreading of the information during learning, a set of radial basis
functions (RBFs) is distributed on the query space V, i. e.,

1
019010 = x =55 00) = ) () )| 55)
J
with «; € V representing the center point and 032» > () the variance of each of the RBFs.

In summary, with this setup, a parameter weight vector 8 € R" " is characterizing the
dynamic plug-in controller Q).

144



8.8 Discussion of the QOuverall Architecture
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Figure 8.2: Overview of the control scheme employed in this case study: function approximation
and RL techniques are combined with a ()-parameterization around a static controller
and idealized robot dynamics, to build a stability-by-design learning architecture
suitable for hardware implementation.

Learning nonlinear filter coefficients. For learning high precision motion control, a stan-
dard quadratic cost function is employed in this study, given by

T

C =Y z(t) R.z(t), (8.9)

t=0

where T' € N denotes the number of time steps and R, > 0 is a suitable symmetric positive
definite weighting matrix.

8.3 Discussion of the Overall Architecture

Combining the previous sections, we now discuss the overall control scheme graphically
depicted in Fig. 8.2.

Effect of model simplification. An essential premise for applicability of the method is that
the nominal controller Dk ( is robustly stabilizing, otherwise the ()-parameterization built
on the idealized robot dynamics will not be effective. Recall from Remark 2.1 that in an
ideal Q-parameterization, the gain from s to r is zero; this cannot fully be expected here due
to the inherent model mismatch given the nonlinear robot dynamics (8.1) and the idealized
model (8.2) that serves as baseline for the parameterization. The neglected model mismatch
causing a non-ideal gain from s to r can be quantified by the norm of a dual Youla operator S
as discussed in Chap. 4. Such analyses were already exemplified in detail in Sec. 4.9. For the
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8 Tracking Control Performance Enhancement

purpose of this case study, suffice to say, using a high gain linear PD controller yields robust
stability to the nonlinear rigid body system as discussed in Sec. 4.9.1. As long as this is the
case for the robot at hand, the parameterization is expected to work well in practice, which
is confirmed by our experimental study reported in Sec. 8.5.

Type of plug-in filter (). First, consider the case () = 0, i. e., no plug-in filter is active;
consequently, s = 0,0u = 0 and in this case simply the original controller K is recovered,
the nominal PD controller.

Including a feedback Qg, # 0 allows to generate the additional control signal du to enhance
performance where the PD controller cannot perform well, e. g., due to friction or nonlinear-
ities. Note that the filter coefficients E may well be varying with time or state; therefore,
nonlinear disturbance effects can be suppressed without compromising the stability of the
loop. This would not be the case if one were to add such a filter directly in parallel to the
initial PD controller; it is a consequence due to the Q-parameterization.

Finally, with a stable feedforward Qg # 0, the scheme may behave like a learning version
of a “PD with feedforward compensation” controller oftentimes employed in robotics.

Learning and function approximation. The performance enhancement achievable by the
plug-in compensation scheme naturally depends on the function approximation employed in
the @ filter. While theoretically, the query signal v could contain any signal of interest, in
practice one has to carefully select the query space V), as the number of RBFs is exponential in
dimV. In our simulation study, a typical choice is the desired trajectory v = qq. In order to
keep the dimensionality low, another approach is to maintain the decentralized architecture
of the PD controller also in the function approximation, 7. e., for each parameter function,
a separate query space V; could be used corresponding only to the desired state of each
joint e =1,...,n.

The amount of grid points = is a compromise between good approximation accuracy and
convergence speed during learning. Analogously, the widths o; of the RBFs determine the
rate of decay around the grid points. Thus, they should be chosen such that both learning
of local information as well as generalization of the learned coefficients to new trajectories is
possible. Per dimension of the grid (8.7), we equally distribute n, RBFs with the width o;
set to half of the grid spacing in order to achieve smooth spreading over the space V.

In the next section, we clarify the general methodology proposed in this section by means of
an example robotic system.

8.4 Evaluation in Simulation

Consider the two DoF horizontal planar elbow manipulator consisting of two revolute joint
links, shown in Fig. C.2 and the corresponding model Fig. 8.3. The robot is mounted in a
horizontal plane and the parameters of this manipulator are given in Tab. C.2.

In order to conduct a simulation study, a nonlinear model in the form (8.1) of the robot
manipulator is used instead of the real robot hardware. The model was obtained by adaptive
system identification [72] and captures effects such as position-dependent cross-coupling,
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8.4 Fvaluation in Simulation
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Figure 8.3: Coordinate system of the simulation and hardware experiments, top view. The initial
joint position in all rollouts is (0,7/2). The solid blue ‘8" is the trajectory qq; used
for learning; the orange trajectory gqo will be used to show how the learned Q-filter
generalizes the performance to unseen trajectories.

Coriolis and centrifugal forces. The inertia matrix M (q) and the vector n(q, q) of such a
manipulator are

M(q) = mi1 + M11COS Gy Mg + M2 COS Qo
moy + Thgl COS @2 Mmoo ’

n(q.q) = —n11G5 Sin ga — N12Gige sin o + fr1da
’ n91G} sin gz + faago '

The numeric values of the robot model are given by (C.4) in Appendix C.4.

The task is to track an ‘8-shaped path 4 times per roll-out, each taking a duration of
tperioa = 10s. The path is shown in Fig. 8.3. The performance of the nominal high-gain PD
controller is shown in Fig. 8.4, showing deficiencies in the regions with high nonlinearities.

We proceed to build the @)-parameterization as described in Sec. 8.2. First, to obtain
the idealized system dynamics, the mean values of the joint-specific inertia are obtained by
neglecting the cosine and off-diagonal terms in the inertia matrix, yielding my, = my; = 0.442
and 7y = may = 0.222. Next, the state feedback gain F' appearing in (8.4) that determines
the specific coprime factors (2.16) is designed by solving the discrete-time algebraic Riccati
equation (DARE) [21]

P=A"(P-PBy(B/PB,+R)'B,P)A+Q,
yielding a suitable
F=—-(B,PB,+ R)'B, PA. (8.11)
Using

Q = diag(1000,1,1000,1), R =10"*" I,
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Figure 8.4: Top graph: the desired trajectory for both joints. Middle and bottom graphs: the
corresponding tracking errors for both joints with the initial high-gain PD controller in
simulation (orange, dashed) and measured in the hardware experiment (blue, solid).

one obtains

o [-272 1170 0
10 0 2453 —85.10]

which was used in the following experiments. For practical implementation, we also added a
saturation to the system .J of Fig. 4.6 in order to model the actuator limits.

We now bring in a operator () constructed as in (8.5), with a block-diagonal structure so
that the decentralized architecture of the PD controller is kept by feeding back only entries
of r corresponding to the respective joint, 7. e.,

O, = Qe1@p1 0 0

0 0 Qp2@p2|
Taking w = [qq, qa, qd]T, also a feedforward compensation part involving the desired acceler-
ation is added as

fo _ [01x4 QC,I 0 ] .

O1xa 0 Qcpe

Each channel is represented as a sixth order FIR filter in the feedback and a simple gain
on the feedforward path, i.e., Ny, = 6 and Ng = 0, respectively. This choice is motivated
on the one hand from a practical point of view: the feedforward trajectory is designed to
be smooth, contrary to the noisy feedback signal r. Therefore, a higher order filter reduces
hardware wear by generating a smoother additional control input du. On the other hand,
from a theoretical point of view, higher order FIR filters in () yield a RITZ approximation to
cover the space of stabilizing controllers, cf. [28].
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8.5 Experimental Validation
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Figure 8.5: Cost evolution of the simulation and hardware experiment (finished after 50 rollouts).

Consequently, we learn a parameter function vector £ with n, =2-(2-7+ 1) = 30 compo-
nents to improve the tracking behavior. As query signal we select the desired velocity of joint 1
and the position of joint 2, v = [da.1, ga2), because these two quantities have the strongest ef-
fect on the neglected terms in (8.10). Finally, a compromise between performance and learning
rate for n, = 3 RBFs per dimension is reasonable— using more RBFs could be done to achieve
higher accuracy; however, the resulting slower convergence rate may become impractical on
hardware. Summarizing, we have n$~np = 270 entries in the weight vector 6 to be learned.

We used the state-of-the-art black-box optimization algorithm ROCK* [91] in order to
learn the parameters @ of the plug-in filter. All parameters were left unchanged w.r.t. their
default values [90], apart from the initial covariance matrices of the weights 6. We used
Yy = 5 - Lop(ng+1)x2ny for the feedback and Xg = 5- 1072. L, (Ngt1)x2ny for the feedforward
weights, respectively. Thus, the learning algorithm employs higher values on the feedback
gain than on the feedforward channel; note that the magnitude of the input values is much
higher on the feedforward path (desired acceleration) than of the residuals in the feedback
path. In order to judge the performance of a single roll-out, i. e., tracking 4 periods of the
‘8’ track, (8.9) is evaluated with T = tyei0a/Ts and R, = diag(4,0, 1,0), corresponding to a
squared weighted f-norm of the tracking error. In simulation, 200 roll-outs were performed,
starting from ) = 0. By optimizing the FIR parameter function weights, the tracking error
is gradually reduced as shown in Fig. 8.5. The typical landscape of a learned FIR parameter
function is visualized in Fig. 8.6.

8.5 Experimental Validation

We implemented the method to control the robot shown in Fig. C.2, running compiled code
on a real-time capable Linux kernel. While direct online adaptation of the PD gains often
results in undesired trajectories after some roll-outs (7. e., the first joint violates its angular
limits imposed by hardware wiring), the proposed methodology did not yield any unstable
trajectory roll-out throughout the hardware experiment.

The residual signal r generated from the parameterization while running one roll-out is
shown in Fig. 8.7. It can be seen that the signal interconnection of Fig. 4.6 yields an estimate
of the position and velocity errors which is nearly independent of the additional signal s # 0.
Thus, the experiment confirms the explanations of Sec. 8.3 that the ()-parameterization is
appropriate, resulting in a small S although the model (8.3) is imprecise. This is achievable
due to the nominal diagonal inertia matrix model in combination with the high gain and
robustness of the nominal controller, ¢f. Sec. 4.9.1 for a detailed discussion of this matter.

149



8 Tracking Control Performance Enhancement

20

Figure 8.6: Landscape of a typical FIR filter coefficient function. Depicted is the coefficient
function &g 1 on the first feedforward channel after 50 rollouts. The orange crosses
show the centers ~; of the RBFs on the space V.

Figure 8.7: Evolution of 7 over the time of one roll-out, measured on hardware. Blue, solid:
first roll-out, i.e., s = 0,6u = 0. Orange, dashed: last roll-out, s # 0,du # 0. The
residual signal is hardly affected by the additional input s, indicating that the Q-
parameterization works with S — 0.

The additional control signal du recorded during roll-out 50 and the corresponding tracking
error are reported in Fig. 8.8. As indicated by the evolution of the cost over the rollouts shown
in Fig. 8.5, the tracking errors could be reduced compared to the initial roll-out. Though
the experiment finished on the robot after 50 rollouts, the simulation study suggests that the
error could be further reduced by running more iterations (Fig. 8.5).

In a last experiment, we tested the capability of the learned filter to improve other trajec-
tories. Thus, the filter which was obtained by episodic learning with the wider trajectory
(gq1 in Fig. 8.3) was used while running a more narrow figure in a faster pace (qq2 in Fig. 8.3,
with 5 periods per roll-out) and in reverse direction. The results are summarized in Tab. 8.1.
It can be seen that the performance is also enhanced for this test trajectory compared to the
initial controller. This is due to the filter parameterization with coefficient functions that
depend with v = [q1, gaz2] on the desired states of the system.
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Figure 8.8: Top graph: tracking behavior of joint 1 (blue) and joint 2 (orange) in the hardware
experiment after 50 rollouts (solid) compared to initial error (dashed). Bottom graph:
the corresponding additive signal du generated by the parameterization constructed
as in Fig. 4.6.

8.6 Conclusion

In this case study, the reinforcement learning-¢) control method was exemplified by means of
a robotic tracking control experiment: the episodic black-box optimization of functional pa-
rameters in a two-degree-of-freedom ()-parameterization of stabilizing controllers constitutes
an instance of the architectures [3] and [5] of Fig. 6.1 presented in Sec. 6.1.3. The experiment
was conducted both in simulation and on hardware and demonstrates the stability of the
closed loop during each roll-out as well as throughout all rollouts. This is due to the fact
that the controller parameterization used in the actor-only learning approach constitutes, as
depicted in Fig. 6.2, a specific actor structure tailored to the robot based on the domain
model of nominal dynamics for each joint depicted in Fig. 8.1.

Table 8.1: Generalization capability of learned Q-filter. The results are from the hardware
experiment, ) = 0 is the initial controller and () with 6y, denotes the augmented
controller using the best parameters obtained after 50 rollouts. The filter was learned
using only trajectory qq1, but the corresponding controller also improves the tracking
behavior on other trajectories.

Trajectory Cost (8.9)  Cost (8.9)
(Fig. 8.3) Q=0 Q with 0,
Wide ‘8’ qq; 6.33 4.59
Narrow ‘8" qqs 1.89 1.08
Narrow ‘8 qq2, reverse dir. 1.89 1.11
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Conclusion and Future Directions

The aim of this thesis has been to investigate the parameterization of stabilizing controllers for
the purpose of machine learning control, robotic feedback control, and finally the combination
of both. Model-free, purely data-driven general reinforcement learning approaches do not
ensure stability during the learning process in closed feedback loops yet. Therefore, this
thesis has explores model-based results of control theory to suitably structure the search space
for safe learning of feedback controllers, effectively incorporating prior domain knowledge.
Particularly the control of robot manipulators has been deeply investigated as a field with
a substantial amount of such domain knowledge. The significance of the contributions lies
in the provision of a deterministic framework tailored for stability while allowing to employ
machine learning online in the closed feedback loop. Feasibility was demonstrated not only
in simulation but also in laboratory case studies involving physical robotic hardware.

9.1 Concluding Remarks

Part T is focused on model-based stabilizing controller parameterizations with particular
attention to robotics. After reviewing in Chap. 2 the most common state-space interpretation
in the form of an observer-based structure, a lesser-known realization is discussed that builds
upon a static state feedback nominal controller. Next, in Chap. 3 it is shown that such a
parameterization is advantageous for implementation in robotic manipulator control use cases,
where interpretability and recovery of PD-like controllers are central requirements, e. g., for
learning active variable impedance skills. We therefore presented a novel architecture that is
simpler than previous structures but allows for arbitrary controller interpolation. Previous
state-of-the-art robotics methods, in contrast, need to constrain admissible interpolations to
ensure stability. Next, in the spirit of locally linear control, we investigated how adaptive-Q)
extends to switching systems, exploring the synergy between adaptation and hybrid control
that exists due to the parameterization. In Chap. 4, a new robot manipulator control
framework was presented that assures stability to the loop in spite of online modifications of
the feedback controller, allowing for a variety of offline and online learning control methods.
Two distinct features of the approach are crucial. First, a clear separation of the types of
uncertainty is carried throughout the method and second, the dual Youla operator is leveraged
for the purpose of robotic manipulator control. Hence, we derived a new uncertainty measure
to quantify the effect of approximations in the inverse dynamics in the interplay with the
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outer-loop controller. The resulting double-Youla parameterization for manipulator control
confirmed intuition that the search space for learning over the @)-parameter is the more
restricted the less accurate the model and the more uncertain the nominal loop is. The
framework is applicable to a wide range of approximate inverse dynamics configurations, two-
degree-of-freedom (feedforward /feedback) controller design, and numerous methods for the
design of the Q)-parameter with the admissible set Q systematically tightened to contain only
robustly stabilizing controllers for robot manipulators.

In part II of the thesis, the realm of model-based control was intermittently left in Chap. 5
to develop a least-squares policy iteration algorithm that operates online, over continuous
state and action spaces, with automatic handling of the value function approximation. The
motivation to contribute progress to this class of algorithms was primarily fueled by the over-
arching aim of the thesis in mind of combining reinforcement learning with both robotics as
well as the parameterization approach. Therefore, the general interplay of RL algorithms
with the model-based parameterization is spelled out in the subsequent Chap. 6. Clearly dis-
tinguishing controller architecture including feedforward/feedback signals, classes of algorith-
mic approach to RL, and amount of uncertainty in the prior dynamical process model ulti-
mately guides our way to construct the overall combination effectively. We propose to name
the approach Reinforcement Learning-(Q)Q Control. It may be interpreted as a specific actor-
only or actor-critic method for the purpose of granting stability to RL in a feedback loop
based on domain knowledge in the form of prior dynamical models of process and controllers.

Part III finally presents laboratory case studies to demonstrate the suitability of the ap-
proach for deployment and effectiveness on physical robotic platforms. The problem consid-
ered in Chap. 7 is to implement active variable impedance control without the need of inter-
polation restrictions. Our experiments reveal that the danger of instability due to neglected
hidden coupling may indeed occur on hardware, an issue mostly neglected by state-of-the-art
robotic learning literature. Using the custom-tailored parameterizations derived in part I of
the thesis, we were able to implement stable interpolation upon the fast research interface on
a KUKA LWR IV+. The control method therefore allows to overcome a significant challenge
in the design of learning algorithms for variable impedance skills. Precisely, the need to re-
strict the stiffness schedules in order to ensure stable execution of the skill in the reproduction
phase on the robot is overcome. The experiments on this platform also confirmed the theoret-
ical findings earlier in the thesis. Higher nominal gains tend to robustify the closed loop and
alleviate the need of accurate dynamical robot models for implementation of the parameteri-
zation, such that the approach could eventually be implemented on a black-box kind of robot.
Chapter 8 finally presents a case study to exemplify the overall method. A parameterization
is obtained upon intentionally simple-minded but nevertheless useful domain modeling of the
robot manipulator dynamics. Performance was enhanced by episodic learning from rollouts
conducted directly on hardware. The experiment confirms the efficacy of the framework in
terms of ensuring stability while allowing to generalize learned performance enhancement to
other trajectories, which is the ultimate goal of any such robotic learning method.

To sum up, our approach bridges techniques and perspectives from both classical feedback
control theory with current machine learning techniques. The robustness of the nominal
controller is a prerequisite for successful employment of the methods on the specific robot
manipulators used in the laboratory studies. The methods developed in this thesis might
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therefore be considered as a learning control framework in spirit similar to the philosophy of
combined robust and adaptive control. For example, Lavretsky and Wise “[...] have found
that it is not robust versus adaptive but rather a combination of both controllers that works
best, in the sense of maintaining closed-loop stability, enforcing robustness to uncertainties,
and delivering the desired performance [...].” [129, p. 4]

9.2 Recommendations for Future Research

The topic investigated in this thesis is strongly interdisciplinary and establishes a basis for
exciting extensions towards each of the adjacent research areas. Both the fields of stable
machine learning control as well as of robotic learning control are open for plenty more
contributions stemming from the stabilizing parameterizations approach. While detailed
pointers towards possible future work are given in the corresponding chapters, further research
directions are listed below.

Controller parameterization. Particularly the double parameterizations over polytopic
LPV dynamics are very promising in the context of machine learning and robotics. Firstly, a
large number of regression algorithms construct locally linear models [224] and secondly, LPV
systems can be used to model the nonlinear robot dynamics. Apart from that, recent results
reported in emerging systems level synthesis [9] allow to assess the performance degradation
of a robust controller due to uncertainties and to treat the input-output transfer matrices of
the closed loop directly as design parameters [63]. This might alleviate the need of an initial
stabilizing controller and therefore seems very exciting to explore with machine learning.

Parameterizations and robotics. The parameterizations developed in this thesis constitute
a promising way to realize variable impedance feedback motion planning skills and further
research is required starting from the approach outlined in Sec. 7.5. In addition, future work
should explore how knowledge of the dynamic manipulator model can serve to construct a
nonlinear parameterization with suitable extensions [4].

Learning of closed-loop uncertainty. In this thesis, uncertainty is considered via the dual
parameter S estimated from prior process knowledge. Future research could aim to learn
about the closed-loop uncertainty statistics in order to refine the admissible controller set
iteratively, in spirit similar to the windsurfer approach to adaptive control [130]. Extensions
towards using spatially refined local dynamic models and uncertainty information, supplied
by machine learning algorithms, is a very promising open direction.

Learning-() with adaptive kernel identification. In our laboratory case study of Chap. 8,
the achievable performance enhancement was limited with a fixed set of basis functions
combined with episodic learning. Meshfree function approximation techniques combined
with online learning in the parameterization would constitute a more flexible architecture.
Beyond that, adaptive kernel learning methods [139] are a very exciting way to implement
the Q-filter. It should be possible to leverage the learning and generalization capabilities of
these powerful signal processing algorithms in the parameterization; 4. e., given some history
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9 Conclusion and Future Directions

of state, estimation residual and performance quantity we can predict from previous filtered
values a suitable next input to improve the control performance. A number of challenging
research questions need to be answered. How to select the algorithmic hyper parameters,
including the update rates, the initial signal values and the time embedding necessary for
the control problem at hand? Is it required to design special kernels [178] to generalize
performance to unseen trajectories and encode stability in the filter? How to ensure for
robust stability in the uncertain loop a gain bound over kernel adaptive filters?
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Appendices






A

Background on Dynamical Systems and Coprime
Factorization

This appendix summarizes some basic necessary backgrounds on dynamical systems, stability
concepts, and coprime factorizations which are used throughout the monograph, based mainly
on the textbooks [231, 269, 217]; for more complete treatments, see additionally e. g. [103,
10, 81]. While the notation is to some extent similar to that employed in [231], we mostly
adopt the convention of [269] to draw the flow of signals in system diagrams from right
to left in order to account for consistency with the corresponding matrix manipulations.
Moreover, in the formulae that apply to both the continuous- and discrete-time domains,
the symbol § represents the derivative operator dz(t) = $(t) in continuous-time and the
one-step shift operator dx(t) = x(t + 1) in the discrete-time setting. Accordingly, stability
of a matrix A refers to a Hurwitz matrix A with strictly negative real part of all eigenvalues,
i. e., Re(\;) < 0, = eig(A) in continuous time, or a Schur matrix A with strictly negative
spectral radius p(A) < 1 in the discrete-time case, respectively. For the sake of readability,
dependencies on time ¢ € T are omitted whenever both time (in)variance and the applicable
time set 7T are implicitly clear from the context.

A.1 Dynamical Systems

Many physical systems can be represented by a nonlinear state-space model of the form

dx = f(x,u), x(0)=x,

where the state vector is denoted x € R", the initial state &y € R", the measured signals
are y € R™, and u € R™ denotes the control inputs. In physical systems, the nonlinear
vector functions f : R"™™ — R™ and g : R"™™ — R™ are often smooth and continuously
differentiable.

Linearizing about a nominal value or trajectory or if the system (A.1) is linear, one has
the form

dx = Ax + Bu, z(0)= =,

A2
y = Cx + Du, (8.2)
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where the matrix A € R™*" is referred to as state matriz, B € R"*™ is the input matriz,
C € R™*" is the (measured) output matriz, and D € R™*™ is called feedthrough matriz.
Depending on the context, these matrices may be constant or varying with time, yielding a
linear time-invariant (LTI) or a linear time-varying (LTV) system, respectively.

To model the effect of a system in some environment it is operated in, it is useful to gener-
alize the model further by introducing the vector of exogenous inputs w € R™ (containing
e. g. reference signals, disturbances, noise), and a performance quantity z € R™ that is used
to assess the performance of the system. The resulting plant model of a system G maps the
generalized input col(w, u) to the generalized output col(z,y), 7. e., in operator notation

z G G w
— zZw zZu . A.
b-Le Gl =
This setup is henceforth also referred to as generalized plant, where a state model is corre-

spondingly given as

dx = Az + Biw + Byu, x(0) = x,
G z = Cla: + Dllw -+ Dlg’u, (A4)
Yy = CQCB + D21’UJ + DQQ’U,.

Analogously, the shorthand notation

A| B B
G : Cl D11 D12 (AS)
C2 D21 D22

is used to describe a state-space realization of a system G.

Remark A.1 (Subscript convention in generalized plant realization and transfer operators).
In this thesis, the following convention is used. For transfer operators, subscripts indicate
the quantities the operator is acting on, e. g., G, for the mapping from control input u to
measured outputs y; for state-space realizations, the subscripts are numbers that denote the
indices of the subblock of the corresponding matrix, e. g., By for the controlled input matrix
above. <

Remark A.2 (Obtaining a transfer function matriz from the generalized plant state-space

model). It occurs often that the nominal plant model, 7. e., the matrix transfer function for a

linear system model, corresponds to the mapping between G, in the generalized plant (A.4).

A 32 ]

Cy | Dy |
Next, let us assume that there are no unstable modes in the system that are not controllable

using the available control inputs, or not observable from the selected measured variables, or

both.

In this case, a realization of G, is obtained from (A.4) as G, : [ <

Assumption A.1 (Stabilizability, Detectability). Unless stated differently, in this thesis, it
is assumed that the system is output feedback stabilizable, 7. e., (A, By) and (A, Cs) are
stabilizable and detectable pairs, respectively. Consequently, 3F € R™*" and 4L € R™*"
such that A + By F and A + LC, are stable. o
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In practice, lack of stabilizability or detectability of a system indicates that more actuators
respectively sensors may be needed or that a different set of quantities should be measured.

Polytopic and switched linear systems. Some classes of nonlinear systems are particularly
relevant in this thesis. Consider the linear parameter-varying (LPV) system [212] described
by the state-space equations

Cro { bz = A(0)x + B(0)u, x(0) = x,,

y=C(0)x+ D(0)u (A4.6)

where 6 : T — RM= is an (unknown time-varying) bounded and piecewise continuous
function with a finite number of discontinuities in any finite interval whose values 6(t) belong
to some set P C R¥=r. Analogously to (A.5), the shorthand notation

A(0) | B(6) ]
C(0) | D(6)

GLPV : (A?)

is meant to refer to the system (A.6).

A(6) B(6)
C(6) D(6)

A, B;
combination of Ny matrices l C. D, 1 =1,..., Ngys. Then for any 8 € P there exists

; > 0 with ZNSYS «; = 1 such that

lA(O) B(O)] %QI[A B}

Suppose that for 8 € P, any matrix [ ] can be written as the convex

C, D

In this case, the system is referred to as polytopic LPV system [29, 202], i. e

A(on) | Bay) A(aw,.) | Blan,,)
Clar) | Dle) }, C(an,,.) | D(an,.) ]} (A.8)

G polytopic COHV{ [

Switched systems are a class of hybrid systems, characterized by a number of continuous
dynamics switching at (isolated) discrete events [137]. A switched system is modeled as

bz = fi(z(t),ut), ieT=1{12 . Ny} (A.9)

where Z denotes a finite index set of Ny discrete modes of the family of dynamics f;. In other
words, the dynamics of the system can switch as governed by a switching signal o : 7 +— 7
and the index ¢ = o(t) is called active mode at time instant t. In the case where f; is linear for
all i € Z, the system (A.9) is called switched linear system. Such a system may be seen as a
special case in the LPV framework, taking a polytopic system (A.8) dependent on the scalar
parameter § = o(t). Thus, in each time instant, the dynamics of the system are determined
only by one of the vertices of the polytope, corresponding to the active mode.
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A.2 Stability Concepts

The following notions of stability are used in this monograph.

Definition A.1 (BIBO stability [231, p. 30]). A system is called BIBO stable if any bounded
input w yields a bounded output y. o
This is a special case for p = oo of the more general notion of finite-gain £ stability defined
next.

Definition A.2 (Finite-gain L stability [103, Def. 5.1]). A mapping G : L, — L, is finite-
gain L-stable if there exist scalars v > 0 and S > 0 such that

lylle < llullz+ 6 (A.10)

for all inputs w € £,, and corresponding output signals y € £,. The smallest number v > 0
such that (A.10) is satisfied for the system G is called £, gain of the system. o
For p = 2, one obtains for 7 the £y gain of the system, corresponding to the root mean
square (RMS) energy gain of the system; if the system is linear, the Lo gain is equivalent to
the value of the Ho, norm [103, Th. 5.4]. Using the ¢, signal norms over sequences, analogous
definitions exist for the discrete-time case.
Next, consider the feedback interconnection of G' and K depicted in Fig. A.la.

Definition A.3 (Well-posed feedback system [269, Ch. 5.2]). The feedback system (G, K) is
well-posed if all closed-loop transfer matrices are well-defined and proper. The interconnection
in Fig. A.la is well-posed iff I — K (0c0)G(o0) is invertible, or equivalently, I — G(00)K (o)
I —K(o0)
—G(00) I
Most stability results using the parameterization of stabilizing controllers refer to the
notion of internal stability as defined next.

is invertible or is invertible. o

Definition A.4 (Internal stability [217, Def. 4.4], [231, p. 81]). A system is internally stable
if there are no hidden unstable modes in any of its components and any bounded input at
any place in the closed-loop system results in bounded-output signals everywhere within the
loop. o

Proposition A.1 (Internal stability condition [231, Th. 2.3.1]). The feedback loop of
Fig. A.la is internally stable iff

I —-K
-G 1

[ (I-KG)™" K({I-GK)™"
GUI-KG™" (I-GK)™"

1_ € RH, (A.11)
] € RH (A.12)

If either holds, (G, K) is a stabilizing pair.

This proposition can be readily applied to the general feedback interconnection of Fig. A.1b.
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(a) Basic feedback loop for internal stability analysis (b) Closed-loop system with exogenous signals

Figure A.1: Basic plant/controller interconnections

Proposition A.2 (Internal stability condition for LFT setup [231, Th. 2.3.2]). The
feedback loop of Fig. A.1b is internally stable iff

;o _[oo077”
0 K € RH . (A.13)
e I

Note that G is a partitioned operator here as in (A.3).

If two stable systems are interconnected by feedback, the small-gain theorem [48] is useful
to establish stability.

Proposition A.3 (Small-gain [103, Ch. 5.4]). Let G; and G, be finite-gain £ stable
systems with induced system gains 7; and ;. Assume that the feedback system is well-defined,
i. €., there are by (w1,y;) and (ug,y2) given corresponding input/output pairs for G; and
(G5, respectively. Then, the feedback interconnection formed by e; = u; — yo, €2 = y; + us
is finite-gain L stable if 71 - 75 < 1.

If the operators (G; and G4 are linear, the following alternative formulation is often more
useful and sets the foundation for many robust stability tests.

Proposition A.4 (Small-gain, alternative formulation [269, Th. 9.1]). Suppose
G1 € RH,, and let v > 0. The feedback loop is internally stable VGy € RH_ : [|Gallco < %

iff ||G1|lo < 7, or equivalently, VG € RH @ ||G2lleo < % iff ||G1lloo < 7.

Remark A.3. Note that Prop. A.3 gives a sufficient condition, whereas Prop. A.4 represents
a necessary and sufficient condition. If Gy were fixed with |Gz |e < %, the small-gain theorem

would usually be very conservative. However, as Prop. A.4 refers to all Gy with ||Gs|s < %,
the condition is also necessary. <
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Next, consider the switched linear system
ox = Ag(t):IZ (A.14)

and recall that stability of each of the matrices A;,..., Ay, is not sufficient to conclude
stability of the overall system. For example, switching among two individually asymptotically
stable systems can lead to an unstable switched system [137, Ch. 2]. In the study of switching
systems, one usually distinguishes between the conditions to guarantee stability for arbitrary
switching signals and conditions to constrain switching such that asymptotic stability of the
switched system is obtained [137]. In this monograph, attention is restricted to the case of
arbitrary switching signals. Consequently, it is necessary that all subsystems are stable, i. e.,
for any fixed value o(t) = i, the system dx = A;x is stable. Moreover, the system (A.14) is
called switching stable if it is asymptotically stable for any switching signal o.

Similarly to switching, also interpolation of stable systems may lead to instability [212],
for example in a polytopic system such as

dx =Alt)x, A(t) € COHV{Al, . ,ANSYS}. (A.15)

However, a sufficient condition to ensure stability of (A.14) and (A.15) is the existence of
a quadratic function V(z) = ' Pz, P = 0 that decreases along every nonzero trajectory of
the system. If such a matrix P exists, then the systems (A.15) and (A.14) are said to be
quadratically stable and V' is called common quadratic Lyapunov function (CQLF). Note that
quadratic stability is a special class of exponential stability, which in turn implies asymptotic
stability [103].

Proposition A.5 (LMI conditions for CQLF [29, 138]). Consider a family of n X n sys-
tem matrices Ay, ..., Ay,,. There exists a positive definite symmetric matrix P >~ 0, P €
R™" characterizing a CQLF V(x) = " Pz for the system (A.14) under arbitrary switching
and for the polytopic system (A.15) iff the following linear matrix inequalities hold simulta-
neously

(continuous-time) PA; + A/ P <0, Vi=1,..., Ny (A.16a)
(discrete-time) A/ PA; — P <0, Vi=1,..., Ny (A.16D)

Some remarks concerning this compact summary are in order. First, note that quadratic
stability is a restrictive property in that there exist switching linear plants that are asymp-
totically stable under arbitrary switching yet do not admit a CQLF, as shown for exam-
ple in [137, Ch. 2.1.5] and [29, p. 73f]. However, the conditions (A.16) are conclusive to
quadratic stability for both (A.14) and (A.15). Precisely, Lin and Antsaklis show “that the
asymptotic stability problem for switched linear systems with arbitrary switching is equiva-
lent to the robust asymptotic stability problem for polytopic uncertain linear time-variant
systems [...]"” [138] in both continuous and discrete time. Note that the stability of the
polytopic LPV system (A.8) is determined from dynamics (A.15) with the vertex matrices
Al = A(), ..., An,,, = A(an,,). Therefore, confining to quadratic stability, the classes
of arbitrarily switching linear systems and polytopic linear parameter-varying systems can
be considered interchangeably in this thesis from a stability point of view.
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Finally, a technical result is needed that establishes quadratic stability for system dynamics
characterized by a block triangular form of quadratically stable matrices.

Lemma A.1 (Quadratic stability for block triangular form). For all 6 € P, let Ag1;
and Ag o denote two quadratically stable matrices, each sharing a CQLF as defined in
Prop. A.5 and let Ag 12 denote a bounded matrix of appropriate size. Then the block matrix
[ Ao Ao o

is quadratically stable.
0 AH,QQ] d Y

Proof. The lemma was presented in continuous-time in [24, Lemma A.1], based on a stricter
version first presented in [256, Lemma 2|, and in discrete-time in [17, Lemma 2]. ]

A.3 Coprime Factorizations

For the derivation of stabilizing controller parameterizations, the mathematical framework
of coprime factor descriptions are employed. For a comprehensive overview and detailed
mathematical treatment of the factorization approach, the reader is referred to [246]. The
following definitions are summarized from [269, 231].

Definition A.5 (Right coprime over RH., [269, Def. 5.3]). Two matrices M, N € RH, are
right coprime over RH_, if they have the same number of columns and if the left inverse of

i. e., there exist matrices X,, Y, € RH_ such that

[oop)

the matrix [j\]\ﬂ exists in RH

X, Y] H\ﬂ — X,M+Y,N =1. (A.17)

o

Definition A.6 (Left coprime over RH, [269, Def. 5.3]). Two matrices M, N € RH__ are
left coprime over RH. if they have the same number of rows and if the right inverse of the
matrix [M N exists in RH, i. e., there exist matrices X, Y] € RH, such that

(oo}

(M N Kﬂ =MX, +NY;=1I. (A.18)

o
Equations of the form (A.17) are called BEZOUT identity' in this thesis. A more intuitive
view on coprimeness of a factorization over RH__ is that, given the two factors are coprime,
unstable pole/zero cancellations are excluded in the fractional representation of the transfer
function defined as follows.

! As pointed out in [246], this naming is due to T. Kailath, while Kucera [125] coined the term DIOPHANTINE
equation, and Vidyasagar [246] prefers to call it ARYABHATTA ’s identity. Given this historical perspective
found in [246, Preface], we adopt the convention predominant in the English literature, referring to it as
Bezout identity.
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Definition A.7 (Coprime factorizations of G [269, Ch. 5.4]). Let G be a proper real-rational
matrix. A right-coprime factorization of G is a factorization G = NM~! where N and M
are right-coprime over RH._, a left-coprime factorization in turn is given by G = M~'N
such that N and M are left-coprime over RH.. If there exists a left-coprime factorization,
a right-coprime factorization, and X, Y;, Xj,Y) € RH_, such that

X, Y M -1 |I0
eally w- ) 9
the matrix G is said to have a double coprime factorization. o

The utility of using coprime factorizations is due to the following connection with internal
stability.

Proposition A.6 (Internal stability of the feedback loop via coprime factoriza-
tion [269, Lemma 5.10]). Consider the feedback loop of Fig. A.1a and let G = NM~! =
MINand K = UV~! = V=10 be any right and left coprime factorizations of G and K with
N,M,N,M,U,V,U,Ve RH... Then, the following conditions are equivalent:

1. The feedback system is internally stable.
MUl
2. [ ] € RH...

Note that conditions 1-5 can equivalently be expressed by the following double Bezout
equation.

Proposition A.7 (Double Bezout equation [231, Lem. 2.4.1]). Under the conditions
of Prop. A.6, (G, K) is a stabilizing pair iff

[—?@UH%(H:[%%H—‘%?Q]}:H?] (A.20)

In summary, the coprime factorization approach entails some advantages, three of which
are particularly relevant for this thesis.

1. Due to Prop. A.6, it is relatively easy to impose the requirement of internal stability
just by employing matrices over RH_, exclusively.

2. The methodology is applicable to both continuous- and discrete-time systems.

3. Coprime factors over RH_ can conveniently be constructed in state space, allowing
to work with efficient symbolic and/or numeric procedures. These realizations are
summarized next.
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A.3 Coprime Factorizations

State-space realizations. A set of coprime factors that satisfy (2.3)—(2.4) can be obtained
directly in state space by the formulae? given in [231, 234].

In order to obtain state-space realizations of the coprime factorizations of G from (A.5)

Ax | B
and an arbitrary stabilizing linear dynamical controller Ky = CK DK , construct state
K K

feedback gain matrices F' and Fi such that A + By F and Ak + By Fi are stable. Define
Y £ (I - DKDQQ)il and Z = (I — D22DK)71. Coprime factors can then be obtained by

A+ B,F 0 B, 0

lMD U“] : 0  Ax+BiFic | 0 B (A.21a)
No Vo F Cxk+DxFx | I Dx |

| Cy+ Dy F Fy Dy, T

[ A+B,YDiC, B,YCk —-B,Y B,Y Dy
[ Vo _5701 | BkZC, Ax+BxZDywCx|—-BxZDyy ByZ (A.21b)
—No Mo F-YDyC, -YCxk Y -YDg

i ZC, —(Fx—ZDyCk) —ZDyy, Z

2The formulas provided in [231, p. 40] are not entirely correct in the case when the controller is not
strictly proper (Dk # 0), as one can verify by checking the double Bezout identity (2.4). It is required to
add unary minus signs to the feedthrough matrix as in (A.21b), yielding the state-space realizations (A.21)
also documented in the literature [234] and corresponding to the special case when the plant is strictly proper
reported in [96].
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Proofs

The following auxiliary results are introduced.

-
Lemma B.1. Let v; € R™ v, € R™2, ... v, € R" and definev = |v|,v,,... ,v,ﬂ . Then,
o1
| 2||
I’Umll
Proof: See the proof of Lemma 2.10 in [269, p. 31]. [ |

Lemma B.2. Let ay,a2, € R and hq, hy € R", then

w1 |

Proof: Follows with straightforward algebraic manipulations from the definition of the
induced vector 2-norm. [ |

(B.1)

I
e[|

B.1 Proof of Theorem 4.1

Proof: The state- and control- dependent nonlinear terms of wy in (4.19) are collected
separately in a vector wa = col(wX, w A) We then have

”wﬂ“:ng |AMUHM 'H|AMwun]

M~ 7l M |||l
where the last inequality is due to the submultiplicative property of compatible induced
matrix norms. Inserting the bounds (4.11) and (4.9a) yields

| A ]|
Myag + Myoq||2|| |||

lwall <
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B Proofs

At this point, one cannot simply treat the constant part of ®(||x||) as if it were a bounded addi-
tive disturbance weyx, such that ||wey || < My, similarly as it could be done with the external
disturbances wgqis;. Here, such a step would void conservatism because ||col(||ul|, a+||x])|| £
llcol(||wl, [|£|)|| + @ in general. In order to proceed nonetheless, introduce a fictitious per-
turbation signal z§ £ 1 = ||z%|| to rewrite the sum M,an + Mo ||z|| as a dot product

[ Al

[N

NS | . .
e e ]

By application of Lemma B.2, we have

Al lu Jul

Jwall < Al = [”AM” 0 ] Al
=1 1o, Myol-|| a 0 l[Muoo, Maar]|l | ||| @
q q

Due to the submultiplicative property of induced matrix norms, and by invoking Lemma B.1,
the bound becomes

Jul f

1Ay 0 A oy 0 A
w < < . , B.2
lwall <1 0™ iduc0, Maanl) alllIZ1 0 oo |la (B2)

q q

where the abbreviations
4.10

on 2 Al 2 o, ay 2 ||[Myar, Myai]| (B.3)

are introduced. Denote by za £ col(u, 24, q, ) the vector of signals exciting uncertainty.
Thus, by the inequality (B.2), a conservative gain bound such that ||wal|z., < ||Azallz., is
given by

|A|| < ||diag(an, )| = max(ay, ag). (B.4)

To obtain the gain bound (B.4), note that the spatial norm in the definition of the £.,-norm
can be any vector p-norm [103]; here, p = 2. Finally, in (B.4), A € R**G"+1) is any real
matrix of appropriate size and norm. From their definitions, however, it is known that wX' (u)
and wﬁ(q, q) are decoupled. It follows that the relevant uncertain matrices can be restricted
to a set D of block diagonal matrices with separate norm bounds

A 0
Dp = {A = [ OM A\p ]I AM € Rnxn7A\I] & Rnx(2n+1)’ ||AM|| < aw, ||A\p|| < Oég/}.
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B.2 Proof of Theorem 4.2

B.2 Proof of Theorem 4.2

Proof: Begin by checking that (Aj;, Bi3) is stabilizable and (A1, C3;) detectable, which
can be easily verified, for example, the generalized plant given by (4.22)—(4.26). Further,
D33 = 0, i. e., there is no direct feedthrough in the control channel of plant. Then, for the
general controller (4.29), a coprime factorization can be obtained directly in state-space by
adopting the formulae (A.21) with Z =Y = I, yielding

Ay + B3 Fg 0 B;; 0
lMO UO] _ 0 Ag + BxFx 0 Bg (B.5)
NoVo |~ Fq Cx + D Fx I D ’ .
B o
[ Ay + B13DxCs Bi3Cyy | —Bi; BizDx
[ f/g _~UO‘| ) By C3; Ax 0 By (B.6)
—No My | Fo — DxCs —Cx I —-Dg '
I Cs, —Fx 0o I

Next, an expression for T from (4.28) has to be calculated, which is repeated here for
convenience:

TA,ll TA,lZ _ GzAwA +~GzAuUOM0GywA GzAuMO
Taor Thaso MyG 0 '

Let us also explicitly state the following systems determined from (4.22) as

All Bll All Bll All Bl3
GZ wa ’ G NS ) Gz u* .
o [ Cll Dll s |: 031 D31 ° |: Cll D13 ]

The steps to obtain a compact expression of Thx1; are to insert the coprime factors U
and M from (B.6) and algebraic simplification, subsequent application of a state similarity
transformation such that & = Tx with

I I 0 O O0 0O

0O 0 0 I 0O0O

0O -1 0 0 I 0O

T=| 0 0 I 0 000
I 0 O 0O O0O0O

0O 0 0 -1 01O

. —-I 0 0 O O O I |

and removal of 4 uncontrollable and 1 unobservable modes. A realization is finally obtained as

A+ B13DkC5 By3Chy | BisDg D3y + By
TA,11 : Bk Cs, A Bk D3,
D3 DxC5 + Chy Dy3Ck ‘ D3 D D3, + Dy,
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B Proofs

By analogous steps, for Ta 12 and Ta 21 one obtains

Te o A+ BysFg ‘ B3
A2 "
D3 Fc + Ci ‘ D
and
A + Bi3DxCs By3Cyy | BisDgDs, + By
Thor : B,,C3 Ay By D3, ;
Cs —Fx ‘ D3,

where one uncontrollable and one unobservable mode were removed, respectively. Conse-
quently, assuming A £ A as a non-dynamic matrix and defining

D 21— DA — D;3DxD3 A,

a realization for (I — TA’HA)_l is

Q i
O

([ — TA,llA)_li

where
v A Ap
4= [Am s, 1 ’
Ay, = B;3DCs + B yAD™'Cy, + B yAD ' D3DxCs, + B;3Dx D3 AD™'Cyy
+ Bi3Dx D3 i AD ' D13DCsy + Ay,
Ay = B13Cx +B11AD'Dy3Cx + By3Dx D31 AD'Dy;3Ck,
A, = BxCs, + BxD3;AD™'Cy, + By D5 AD ' D3 D Cs,,
Ay = Ag + -B~KD31AD71D13CK7 .
B_ anApl - B13DI§D31AD1]
—BxD3; AD! ’
C = [—D_lcn — D™'D3DkC3, — D_1D13CK} )
D=D"1

Finally, plugging the above realizations of Ta 12, (I — TA,HA)_l and T 91 into (4.27) and a
number of straightforward but tedious simplifications yield the result (4.31). [ |

B.3 Proof of Lemma 4.1

Proof: In order to obtain a robustly stable loop, the stability condition on (Q,S) from
Prop. 2.8 is not sufficient yet because it only refers to the controlled channel; in Fig. 4.5,
however, the pre-stabilized, yet uncertain loop T'(.S) is subject to exogenous inputs w. Hence,
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B.4 Proof of Theorem 3.1

to ensure robust closed-loop internal stability, it is required that the pair ([8 g] ,T(S ))

be stable [231, p. 80] for all allowed perturbations. To this end, it is sufficient to show [231,
p. 32] that T11(S5), T12(5), 151(S) € RH,, as S € RH, and (Q, T52(S)) = (Q, S) should be a
stabilizing loop by construction. Denoting with P(S) the transfer matrix between col(w, u)
and col(z,y) for the plant determined by S, the uncertain operator 7'(S) is given by [231,
p. 79|

| Tu(S) The(S) | | Pul(S) + Pio(S)UM(S)Par(S)  Pia(S)M(S)

By the first condition (i), consider that (4.33) is necessary and sufficient for the stability
of the nominal uncertain loop. Then, for all A € Dj, there exists a stable dual Youla
operator S € RH, whose coprime factors satisfy M(S), M(S) € RH,, by construction and
consequently S C RH,. Using (4.27) to calculate S, by the factorization, the plant under
control P(S) in (B.8) is precisely that of the uncertain plant F, (G, A) from the controller’s
point of view. Thus, with (4.33) also Py1(S), P12(S), P21 (S) € RH,, and consequently T'(S) €
RH ,VA € Da. Alternatively, the requirement (i) could also be proved by coprimeness of
the factors involved [237, App. B]. The requirement (ii) follows directly from the small-gain
condition of Prop. 2.8: S is an uncertain stable time-varying operator and the only assumption
about the plug-in controller @) is that |Q||s < 7q for some finite 7q. The small-gain theorem
is therefore necessary [269, Th. 9.1] to ensure that all S € Sa are stabilized by all @ € Q. &

B.4 Proof of Theorem 3.1

Proof: The steps in the derivation are similar to the gain scheduling literature exploiting
the general Youla parameterization [185]. Consider coprime factorizations of the nominal
plant Gy = Mo_l]% = NoMy", respectively of the nominal controller K, = ‘70_1(70 = UVt
such that the double Bezout identity (2.4) holds, which is repeated here for convenience:

Vo =Uol[MyUs| [My Uy |[ Vo =Ups] [T 0 (B.9)

—No Mo || No Vo| | No Vo[|—-No My | |O I} '
According to Prop. 2.1, all internally stabilizing controllers for G, can be written in terms
of a parameter system () € RH_, in a right stable fractional form as

K(Q) = (Up + MoQ)(Vo + No@) ™. (B.10)

In the controlled channel of (3.3), all states are measurable without direct feedthrough,
i.e., Gy, : 0x = Az + Byu, y = x. Therefore, by Cy = I and D, = 0 and for static state
feedback u = Dy ; x, the state-space realizations of the general coprime factorization (A.21)
specialize to

A+B.,F | B, 0 . A+ B,Dy; | —B, B,Dx
MU, F2 I;) Vi —Uil 17 p 12) - 12 1; . (B.11)
NZ' ‘/; . Ky |» _Nz Mz . - K,i — LK . .
I 0 I I 0 I
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B Proofs

The parameterized controller (B.10) can be reformulated as lower fr?ctiqnall transformation
K = Fy (J, Q) with the central system from (2.8), yielding J = [U‘O/‘iol —“//glNJ . Employing
the realizations of the coprime factors from (B.11) and reducing tooa minifnal realization, the
central system (3.7) is obtained. In order to calculate the set Q corresponding to IC, both
the nominal controller K as well as controllers K; € IC are expressed by means of coprime
factors (B.11). Thus, coprime factorizations are constructed for all the plant/controller
interconnection pairs. One may then work with the coprime factors in order to consider the
differences between the loops. The @); corresponding to controller K;, given a factorization
of the central controller Kj, can be calculated by Q; = (=Uy + VoI;)(My — NoK;) ™" [231,
Ch. 8.3]. One can use

Qi = UVy — Villy = Vi (K; — Ko) Vq (B.12)

from [161, Th.1] alternatively. Plugging in the factors (B.11), the state-space construction
of parameters ; follows as (3.10) after removal of one unobservable state. Recovery of
the local controllers can now be shown by interconnecting (3.7) with (3.10). Removing
5 uncontrollable and 1 unobservable states, it follows indeed F; (J, Q);) = K. Stability under
arbitrary interpolation, however, is not yet ensured by (3.7) and (3.10). To see this, consider
the closed loop Fy (G, Fy (J,Q)) that can be reduced to dynamics with state matrix

A+ B,Dg 0 0 0
A — 0 A + B2F BQCQ(Q) BQDQ(a)
T 0 0 Ag(@)  Bgla) |
0 0 0 A+ ByDx

where Ag(a), Bg(ar), Cq(ar), Dg(ax) define the realization of the plug-in filter Q(a). Given
the block-diagonal respectively block-triangular structure of A, and invoking Lem. A.1 three
times, there exists a CQLF if there exists one for each sub-block on the diagonal. Hence, (3.9)
is enforced for Aq, the matrices A + BsDy and A + By F are stable by construction. As
pointed out in [80], there is always a transformation to realize Q such that a CQLF (3.8)
exists. |

B.5 Proof of Theorem 3.2

Proof: Connecting the controller to the switching plant results in the closed-loop dynamics

x(t+1) Aa(t) + By oy oty Boow)=o) (t) Bs o) Fo 1) (1)

ot +1)| = 0 Aqot) BaqotCo0() zq(t)]

£~C(t + 1) 0 0 Ao(t) + Lg(t)Cg,o(t) ﬁ:(t)
(B.13)

where &(t) = &(t) — () denotes the state estimation error. Given the solvability of (2.24),
the blocks A, )+ B2 o1) For) and Agy) + Lo Co0(r) are quadratically stable with a common
quadratic Lyapunov matrix each. Furthermore, the elements Aq .« also share a common
quadratic Lyapunov function by construction (3.18). Thus, since (B.13) is in upper block-
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B.5 Proof of Theorem 3.2

triangular form the overall closed loop system is switching stable as long as all Z;(¢) are
bounded. [ |
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Details on Robot Manipulators

C.1 Detailed Derivation of Manipulator Norm Bounds

Details how the bounding function ®(||«||) in (4.11) is obtained for a specific manipulator are
usually omitted in the literature and some authors assume a constant, 7. e., very conservative,
bound [210]. It is also common [13] to use the bound quadratic in ||| to account for the
velocity cross-product terms. In this appendix, the technicalities how to obtain a bound of
the form (4.11) are spelled out. This should help the reader by clarifying the meaning of the
single components of the uncertainty in the derivation given in Appendix B.1. For details on
the computational procedures to obtain numeric values, the interested reader is additionally
referred to [191, 69].

First, let us write out the neglected nonlinearities (4.4b) as a sum of their components
n = nc + Ny + N, and recall the available overestimates from Assumptions 4.1 and 4.2. In
order to obtain a bound on Coriolis/centrifugal mismatch

A

let the worst-case ||C'—C/|| be described by some @.||q||, @ € R (e. g. obtained by simulation),
then by the triangle inequality

el < acllgll- gl + acllallllwsl < acllgl® + acllwsllllall + acllqlllws]| + acllws|*.
Using Ass. 4.1 and Ass. 4.2, we obtain!

7]l < (Gc(Vmax + Wa) + a.Wa)|lq]| + aCWQQ .
——

Y

A
al,c =QQ,c
Assuming viscous and dynamic? friction terms,

ne = F.q+ Fi(q) — Foq — Fa(q)

LGiven the realistic assumption on bounded workspace and bounded velocities, one can introduce
o ||z||? < agl|x||, g = AaUmax at the expense of some conservatism [127, Ch. 17].

2Here, dynamic friction refers to the naming convention in robotics, but it is assumed to be non-dynamic
in the sense that there is no memory (state) in the friction model.
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C' Details on Robot Manipulators

and by ||Fvq + Fa(q)|| < atv]|@|| + arq as used in [132, Ch. 3.3],
[l < ary [lgll + ae Ws + ara,
~~ —_—
éCVl,f éOé()’f

where again it was assumed that the worst-case difference can be described by some ag,.
Similarly, the gravity error is bounded by |7, < [|§(@) — g(q)|| = @g = apy, in case of only
revolute joints, or by some ||7,|| < av4/|q]] + o in case of prismatic joints. Hence, in sum
the bound is given by

7] < argllgll + (are + are) gl + (0 + aos + o) -
Using (B.1), one obtains a bound of the form (4.11) by

72| < |long, a1 + gl l|2|| + coe + o + aog - (C.1)

aq ap

C.2 Models of Chapter 4

Vertical planar elbow manipulator example. For the description and detailed physical
parameters of the particular manipulator, the reader is referred to [203]. Normalizing w.r. t.
SI units, the resulting model is given by

[ 0.162cos(g) + 0.655 0.0809 cos(qs) + 0.142

M = 10.0809 cos(q,) + 0.142 0.356 ’ (C.2a)
~ [-0.0809¢, sin(g2) —0.0809sin(g2)(d1 + da)

¢ = | 0.0809¢, sin(qz) 0 ’ (C.2b)
_ [3.60cos(q1 + g2) + 9.35 cos(q1)

g = I 3.60 cos(q1 + q2) ’ (C.2¢)

f = blkdiag(3.00,3.00) q. (C.2d)

To simulate an inaccurate AID control example, a modified dynamical model is used:

<[ 0.17cos(g2) +0.702  0.0852cos(gz) + 0.178

M = 10,0852 cos(qy) + 0.178 0.437 ! (C.32)
& [—0.0852¢ssin(qa) —0.0852sin(qs)(d1 + da)

C= | 0.0852¢; sin(g) 0 ’ (C.3b)
. [4.07cos(q1 + g2) + 8.87 cos(q1)
9= I 4.07 cos(q1 + q2) ’ (C.3c)
f = blkdiag(4.50,4.50) q. (C.3d)
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C.2 Models of Chapter 4

Table C.1: Common cases of control laws employed in the inner approximate inverse dynamics
loop (4.3) and illustrative numeric parameters used in the simulation study, with the
values of the uncertainty bounds according to Thm. 4.1.

Inner Controller Inertia Model  Nonlinearities Bounds
Type Abbr. am Qw
Perfect feedback  ppr ppom (02)  E&=C, F=f g=g 0 0
linearization
Approximate Ay Nf from (C.3) €, F, g from (C.3) 0.2523  9.092
inverse dynamics
Stmplified gy 4iag(0.655,0.356) ¢ =0, F=0, g=g 06457 59.37
inverse dynamics
Diagonal scaling DS diag(0.655,0.356) C'=0, f=0, §g=0 0.6457 77.99
Gravity ‘ GC I é =0, f = 0, g =g 2.765 59.37
compensation
No invt_erse NID I C=0 f=0 g=0 2.765 77.99
dynamics
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C' Details on Robot Manipulators

Figure C.1: The KUKA LWR IV+ robot manipulator used in the control experiments with
variable impedance implementation exploiting a suitably realized ()-parameteriza-
tion approach.

C.3 Experimental Setup of Chapter 7

KUKA LWR IV+. For an overview of the robotic system, the reader is referred to [26]. The
manipulator shown in Fig. C.1 is connected to a control box, supplied by the manufacturer,
which provides a communication interface based on the UDP protocol— the so-called fast
research interface (FRI) [207]. Thereby, a soft real-time capable control interface is provided
working with a fixed rate of data exchange at 1kHz. At the other side, a standard personal
computer is used running a real-time capable Linux operating system with a PREEMPT _RT
patched kernel. The control algorithms were implemented in MATLAB/Simulink and trans-
lated into executable code by means of code generation.

The FRI does not provide measured joint velocities ¢ Therefore, the joint velocities
are estimated [132, p. 226] from the measured joint positions gns by calculating a discrete
approximate derivative and low-pass filtering with a Butterworth filter of second order with
a cut-off frequency of 10rads™!. The widespread quasi-continuous approach of modeling the
plant /controller in continuous-time and subsequent implicit discretization by means of the
solver resulted in useless control behavior on the experimental hardware: it is crucial to work
with a discrete-time formulation of the ()-parameterization in the robotic hardware exper-
iments, utilizing discretized plant models and the discrete-time equations in the controller
design.

The limits of the signal that can be superimposed on the commanded torque before going
into saturation were identified experimentally as

TFRIsat = 175 175 100 100 100 35 35]7.
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C.4 Ezxperimental Setup of Chapter 8

Figure C.2: The two DoF robot manipulator used in the hardware experiment of Chap. 8.

C.4 Experimental Setup of Chapter 8

Horizontal planar elbow manipulator. The parameters of the robot manipulator with two
rotational degrees of freedom are provided in Tab. C.2. The values are normalized w.r.t. SI
units unless stated differently. The dynamic behavior of the robot manipulator model was
simulated using

| 0.0286 cos(gz) +0.442  0.0143 cos(gz2) + 0.00880

M = [0.0143 c0s(gs) + 0.00880 0.223 ’ (C.da)
_ [-0.0140sin(g9) 2 — 0.0290 sin(g2)d1 g2 + 0.002604; (C.b)
N 0.014047 sin(qo) + 0.002604s ' '

In the hardware experimental setup depicted in Fig. C.2, Maxon motors were used in each
joint with incremental encoders on the motor shaft for position measurement as well as
Harmonic Drive gears with ratio 1:100. The motors were driven by a current source in pulse
width modulation mode, amplifying a voltage supplied by a D/A pin on a Sensoray 626
multifunction analog/digital I/O PCI board. The interested reader is referred to [74] for
more details of this manipulator.

Table C.2: Parameters of the example robot manipulator and the nominal PD controller.

Physical Parameter Value Controller Parameter Value
Length of link 1 0.3m T 1ms
Length of link 2 0.2m P-gain diag(500, 500)
Angular range |¢| /2 D-gain diag(22.4,22.4)
Angular range |gs| 7T
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