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Abstract

Anticipating how a traffic situation will evolve in the future is essential for making
reasonable and foresighted decisions as a driver. The aim of this thesis is to develop
a method for interaction-aware and probabilistic behavior prediction of traffic partici-
pants, enabling autonomous vehicles to forecast how surrounding agents are going to act
in order to better plan their own actions. The prediction of an agent’s future behavior
is inherently uncertain and multi-modal, as humans might act differently in the same
or in similar situations. Those actions are generally based on internal intentions (such
as turning right at the next intersection), introducing the need to estimate these latent
variables over time for improving long-term prediction performance. Furthermore, the
behavior of drivers strongly depends on the situational context, i.e., what they observe
in their surroundings such as the road geometry, traffic signs, and other agents. As the
future situational context also depends on what other agents are going to do, a mutual
influence between multiple agents arises. Due to this interdependency of their future
trajectories, there is a combinatorial nature to the problem of predicting the behavior of
multiple interacting agents (e.g., if A will turn left, B will have to brake). Neglecting this
combinatorial aspect potentially results in inconsistent prediction hypotheses–a short-
coming this thesis addresses. When an autonomous vehicle tries to predict the scene for
deriving its own behavior, it should additionally account for its own influence on the
surrounding agents.

In contrast to most existing works that only address a subset of the aforementioned
aspects, this thesis presents an approach that accounts for all of them in combination.
We model the development of a complete traffic situation in a dynamic Bayesian network
(DBN) that represents the context-dependent behavior of all agents in a probabilistic
manner. We find the main reasons for the multi-modality in prediction are given by
the agents’ desired routes and mutual collision avoidance constraints. Thus, we define
two types of discrete driver intentions that are based on the concept of trajectory ho-
motopy, allowing to subdivide the prediction problem into single modes. Conditioning
the agents’ continuous actions on these intentions reduces complexity of the behavior
models, enables the utilization of more efficient inference methods, and allows to infer
the intention probabilities over time. By training a neural network-based behavior model
and embedding it into the DBN, we demonstrate how modern deep learning approaches
can be combined with classical Bayesian inference methods. Our evaluation shows that
the deep learning model is capable of picking up subtleties such as drivers cutting curves
and context-dependent prediction uncertainty which are hard to model by hand, but has
more difficulty with the compounding error problem than our rule-based baseline model.
By including all agents in the state space and iteratively predicting them into the future,
we are able to account for the combinatorial interdependencies between multiple agents.

iii



Abstract

Deriving and predicting all possible combinations of intentions of all agents in a scene can
however quickly become computationally prohibitive for more complex urban scenarios.
Therefore, we investigate how to determine only the most likely combinations and to
predict the corresponding trajectories without the need to estimate the probabilities of
all possible combinations.

Finally, we propose two ego-vehicle motion planning approaches that leverage the
presented prediction approach and enable autonomous vehicles to effectively interact
with other agents. We demonstrate that accounting for how other agents are going to
react to one’s own future behavior allows to drive less conservatively, which is crucial
for the acceptance and success of autonomous vehicles in mixed traffic.
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Zusammenfassung

Um als Verkehrsteilnehmer sinnvolle und vorausschauende Entscheidungen treffen zu
können, ist es unerlässlich, zu antizipieren, wie sich eine Verkehrssituation in der Zukunft
entwickeln wird. Ziel dieser Arbeit ist es, eine Methode zur interaktionsbewussten und
probabilistischen Verhaltensprädiktion von Verkehrsteilnehmern zu entwickeln, welche
es autonomen Fahrzeugen ermöglicht, das Verhalten von Agenten in deren Umgebung
vorherzusagen um damit das eigene Handeln besser planen zu können. Die Vorhersage
des zukünftigen Verhaltens von Verkehrsteilnehmern ist von Natur aus unsicher und
multimodal, da sich Menschen in der gleichen oder in ähnlichen Situationen oft unter-
schiedlich verhalten. Da deren Verhaltensweisen von internen Intentionen abhängen (wie
z. B. an der nächsten Kreuzung rechts abzubiegen), sollten diese latenten Variablen über
der Zeit geschätzt werden um die Langzeit-Prädiktion zu verbessern. Darüber hinaus
ist das Verhalten von Fahrern äußerst situationsabhängig und wird durch das beein-
flusst, was sie in ihrer Umgebung wahrnehmen, wie beispielsweise die Straßengeometrie,
Verkehrsschilder und andere Verkehrsteilnehmer. Da eine in der Zukunft liegende Situa-
tion auch davon abhängt wie sich andere Agenten verhalten werden, kann eine gegenseit-
ige Beeinflussung zwischen mehreren Agenten entstehen. Aufgrund dieser wechselseiti-
gen Abhängigkeit der zukünftigen Trajektorien mehrerer interagierender Agenten besitzt
das Problems der Verhaltensprädiktion kombinatorischen Charakter (z. B. wenn A links
abbiegen wird, muss B bremsen). Diesen kombinatorischen Aspekt zu vernachlässigen
kann zu inkonsistenten Prädiktionshypothesen führen–ein Schwachpunkt, den diese Ar-
beit adressiert. Wenn ein autonomes Fahrzeug versucht die Entwicklung der aktuellen
Szene vorherzusagen um sein eigenes Verhalten planen zu können, sollte es zudem auch
seinen eigenen Einfluss auf die Agenten in seiner Umgebung berücksichtigen.

Im Gegensatz zu den meisten bestehenden Arbeiten, welche nur gewisse der oben
genannten Aspekte adressieren, präsentiert diese Arbeit einen Ansatz der alle Aspekte in
Kombination berücksichtigt. Wir modellieren die Entwicklung einer gesamten Verkehrssi-
tuation in einem dynamischen Bayes’schen Netzwerk (DBN), welches das kontextabhän-
gige Verhalten aller Agenten auf probabilistische Weise repräsentiert. Wir beobachten,
dass die Hauptgründe für die Multimodalität der Prädiktion durch die von den Agen-
ten geplanten Routen und durch Bedingungen der gegenseitigen Kollisionsvermeidung
gegeben sind. Aus diesem Grund definieren wir zwei Arten von diskreten Fahrerinten-
tionen, welche auf dem Konzept der Trajektorien-Homotopie beruhen und es erlauben
das Prädiktionsproblem in einzelne Modi aufzuteilen. Das kontinuierliche Verhalten
der Agenten wird als abhängig von deren Intentionen modelliert. Dadurch reduziert
sich zum einen die Komplexität der Verhaltensmodelle, zum anderen ermöglicht es den
Einsatz effizienterer Inferenzmethoden und die Bestimmung der Intentionswahrschein-
lichkeiten über der Zeit. Wir zeigen wie moderne Deep Learning Methoden mit klassi-
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Zusammenfassung

schen Bayes’schen Inferenzmethoden kombiniert werden können, indem wir ein auf einem
neuronalen Netz basierendes Verhaltensmodell trainieren und in das DBN einbetten.
Aus unserer Evaluation wird ersichtlich, dass das Deep Learning Modell in der Lage ist,
händisch schwer zu modellierende Feinheiten des Fahrverhaltens wie Kurvenschneiden
und kontextabhängige Prädiktionsunsicherheit zu lernen, jedoch mehr Schwierigkeiten
mit sich zeitlich akkumulierenden Fehlern hat als das von uns entwickelte regelbasierte
Verhaltensmodell. Durch die Einbeziehung aller Agenten in den Zustandsraum und
durch deren iterative Prädiktion in die Zukunft sind wir in der Lage, die kombina-
torischen Wechselwirkungen zwischen den einzelnen Agenten zu berücksichtigen. Alle
möglichen Kombinationen von Intentionen aller Agenten in einer Szene zu bestimmen
und zu prädizieren kann jedoch bei komplexeren städtische Szenarien schnell zu Rechen-
zeitproblemen führen. Daher analysieren wir, wie lediglich die wahrscheinlichsten Kom-
binationshypothesen bestimmt und die entsprechenden Trajektorien prädiziert werden
können, ohne die Wahrscheinlichkeiten aller möglichen Kombinationen bestimmen zu
müssen.

Schließlich schlagen wir zwei Ansätze zur Bewegungsplanung von autonomen Fahrzeu-
gen vor, welche den vorgestellten Prädiktionsansatz nutzen um effektiv mit anderen
Agenten zu interagieren. Wir zeigen, dass die Berücksichtigung von möglichen Reaktio-
nen anderer Agenten auf das eigene zukünftige Verhalten es erlaubt, weniger konserva-
tiv zu fahren. Dies ist entscheidend für die Akzeptanz und den Erfolg von autonomen
Fahrzeugen in gemischtem Verkehr mit menschlichen Verkehrsteilnehmern.
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Notation and Symbols

V = {V 1, · · · , V K} set of agents to be predicted
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ε root weighted square error
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(x, y) Cartesian position of an agent
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a acceleration of an agent
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δ steering angle of an agent
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z = [xz, yz, θz, vz]
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Z = [z1, · · · , zK ] measurements of kinematic states of all agents

Q system noise covariance

R measurement noise covariance

w = [wx, wy, wθ, wv] transition noise of rotate-translate kinematics model

Intentions

lH metric route horizon

r route intention of an agent

R = {r1, · · · , r|R|} set of possible route intentions of an agent

R = [r1, · · · , rK ] route intentions of all agents

m maneuver intention of an agent

M = {m1, · · · ,m|M|} set of possible maneuver intentions of an agent

M = [m1, · · · ,mK ] maneuver intentions of all agents
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I = {ι1, · · · , ι|I|} set of possible generalized intentions of an agent

ζ = [ι1, · · · , ιK ] one possible combination of intentions of all agents
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Filtering

S[i] particle representing the scene state

w[i] weight of a particle

P = {〈S[1], w[1]〉, · · · } set of weighted particles representing the belief

U unscented Kalman filter representing one mode of the belief
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P state covariance

χ sigma point
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α, β, κ parameters of an unscented Kalman filter

Motion Planning

V 0 ego-vehicle

V = {V 0, · · · , V K} set of agents including ego-vehicle

F formation, a relative ordering of agents

J cost function

K hard constraints of planning problem

r reward

R reward function

γ discount factor

π policy

b belief

T transition model

O observation model

Q Q-value function
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1 Introduction

Autonomous driving is considered to be one of the key technologies of future mobility.
It has the potential to heavily reduce the number of accidents and the resulting human
injuries and fatalities, as today, about 94 percent of accidents are caused by human driver
error [122]. The shift of responsibility of safely controlling the car from the human driver
to the autonomous vehicle enables people without the ability to drive themselves to use
cars and allows for various activities of the passengers while driving. By more foresighted
driving, more intelligent routing, and more accessible ride-sharing, it furthermore has
the ability to strongly reduce traffic congestion [59].

Although research on self-driving cars has been conducted for decades [118], it is still
considered one of the most complex challenges in the automotive and robotics industry
worldwide. A key component for them to succeed in real, mixed traffic is the assessment
of human behavior, especially the anticipation of their future motion. Without know-
ing what surrounding agents intend to do, it is difficult to drive in a foresighted and
cooperative manner. Thus, the prediction of their motion and the estimation of their
intentions is crucial for the large-scale success of self-driving vehicles.

1.1 Motivation

While autonomous driving has already been pioneered in the 1980s by universities such
as Carnegie Mellon [136] and the Bundeswehr University Munich [155], it is still con-
sidered a challenge to integrate autonomous vehicles into real traffic. A major difficulty
is given by the interaction with human drivers [29]. Autonomous vehicles need to es-
timate the intentions of humans and anticipate their future behavior in order to plan
collision-free trajectories and drive in a foresighted, efficient and cooperative manner. As
intentions cannot be measured directly and humans exhibit individual and highly com-
plex behaviors, predictions will always be afflicted with uncertainty. On the one hand,
different drivers might act differently, and on the other hand, even the same person might
act differently if they encounter similar situations multiple times. Thus, two situations
that are indistinguishable from an observer’s point of view might result in completely
different outcomes. This makes it impossible to tell in advance how the single agents
in a scene are going to act exactly, i.e., to derive one accurate deterministic prediction
that an autonomous vehicle could rely on for its own motion planning. A more favorable
approach is to account for this uncertainty when modeling how a traffic situation is going
to evolve. Generally, this prediction uncertainty is not spread uniformly in the space of
possible predictions, but there might be multiple clusters of high probability and regions
with very low probability. To understand this so-called multi-modality, let us look at the
prediction problem on different levels of abstraction.
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1 Introduction

High-level motion categories allow to subdivide the continuous space of possible pre-
dictions into logical statements such as “turning right”, “changing the lane”, or “stop-
ping at a red light”. As these categories often describe what a driver intents to do,
they are commonly called intentions in the literature. The prediction multi-modality is
mainly caused by these varying high-level driver intentions, which typically depend on
the prevalent traffic rules. For example, it is likely for an agent to drive on either one of
two adjacent lanes, but it is rather unlikely to permanently drive in between two lanes.
Introducing these high-level intentions allows to subdivide the prediction problem and
improves interpretability of the prediction results. Low-level motion hypotheses then fall
into any of these categories and describe the actual motion in a continuous manner, i.e.,
the change of the kinematic states of the agents. The estimation of high-level intentions
can for example be utilized in driver assistance systems (risk assessment, collision warn-
ing, etc.) or by autonomous vehicles for high-level maneuver planning. The prediction
of low-level trajectories allows for example a utilization in continuous motion planning
algorithms to plan collision-free and foresighted trajectories, or to model traffic partici-
pants for microscopic traffic simulation. As driver intentions are generally persistent for
some period of time and the corresponding behavior typically exhibits temporal consis-
tency (e.g., a driver will continuously brake for a couple of seconds to reduce velocity
before making a turn), it is beneficial to not only consider the current observation of the
situation for estimating the intention, but also to consider the history of observations
which characterizes the previous behavior of the agents. It follows that having a good
estimate of the intention of a driver in turn allows for a more accurate prediction of
the future continuous states. The estimation of discrete intentions and the prediction of
continuous future motion are thus highly coupled problems.

Naturally, prediction uncertainty does exist in both of these levels of abstraction: It
is evident that drivers may come to different high-level decisions (e.g., whether to stop
for a traffic light that just turned orange or not), but also exhibit different driving styles
or habits such as being more aggressive or more defensive (e.g., keep more or less dis-
tance to the preceding car). Therefore, one can distinguish between high-level intention
uncertainty (describing the number and likelihood of the different clusters) and low-
level action uncertainty (describing the shape and spread of the single clusters). When
designing a prediction approach, uncertainty can either be neglected (one deterministic
trajectory), be modeled only in the high-level intention (one deterministic trajectory per
intention), only in the low-level prediction (unimodal trajectory distribution) or in both
levels (multi-modal trajectory distribution). A typical prediction approach as depicted
in Fig. 1.1 is to define a set of possible high-level intentions, estimate a probability dis-
tribution over them, and to predict the continuous motion given each of these intentions
using a prototype trajectory or a distribution over trajectories.

Besides modeling the prediction problem probabilistically, one can also utilize the con-
cept of so-called reachability analysis. Reachability analysis does not state how likely a
specific prediction is but rather divides the space of predictions into two subsets, one
that is possible (or reachable) and one that is impossible (or unreachable) given some
constraints. A comparison of these approaches is depicted in Fig. 1.2. Deterministic
approaches neglect uncertainty completely, potentially resulting in over-confident and
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Figure 1.1. Possible prediction hypotheses anticipated by a Google self-driving car. Graphic taken
from [144]. © Google 2015

thus unsafe behavior of the ego-vehicle. Reachability-based (also known as set-based)
approaches, on the other hand, have the advantage of being able to give formal guaran-
tees (usually given some assumptions), but in turn typically result in rather conservative
(or under-confident) behavior. Neither of these approaches exploits the available infor-
mation that allows to infer the probability of different possible prediction hypotheses.
Probabilistic approaches, although not suited for proving formal safety, allow to exploit
the shape of the existing uncertainty in order to realize more interactive, comfortable,
and less conservative behavior, while still being able to account for unlikely but critical
future events.

The prediction approach presented in this thesis falls into the category of probabilistic
approaches that models uncertainty in both a driver’s intentions as well as in their low-
level actions. It is apparent that human drivers accept some risk to be able to drive more
efficiently. Utilizing probabilistic approaches induces a certain risk as well, as they do
not allow for formal verification. In order to still arrive at a behavior that is considered
safe, we argue that one either has to distinguish between a comfort and a safety layer,
where the comfort layer may be based on probabilistic approaches whereas the safety
layer does not, or to investigate other methods for providing safety specifications that
are rather based on statistics than on formal methods.

When defining prediction models, different contextual information which can give im-
portant clues for improving prediction accuracy can be utilized. There are many different
methods to actually derive prediction hypotheses: Simple physics-based prediction ap-
proaches such as constant turn rate and velocity (CTRV) may be sufficient for short term
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Figure 1.2. Different prediction types distinguished by level of abstraction (first row: high-level inten-
tions, second row: low-level states) and consideration of uncertainty: (a) Deterministic
prediction assumes perfect knowledge and neglects uncertainty completely. (b) Reachable
set prediction accounts for anything that could happen (typically given some constraints
such as vehicle dynamics and staying on lanes), without distinguishing different probabili-
ties. (c) Probabilistic prediction models the uncertainty probabilistically. Trajectories are
here shown as particle distributions, but any other type of distributions such as Gaussians
are also possible.

predictions and slowly changing, non-interactive situations and can be found in many of
today’s driver assistance systems. However, as they do not incorporate any information
about the situational context, they quickly come to a limit in complex urban scenarios,
in which the behavior of a driver is dictated by the quickly changing road geometry,
the traffic infrastructure (including road markings, traffic signs, and traffic lights), and
its surrounding agents. Urban environments tend to be less structured than highways,
often containing more options of what drivers might do in the future, such as following
various lanes at intersections including U-turns, turning into driveways or stopping at
the side of the road. Furthermore, they typically contain a higher variety of right of
way rules such as at four-way stops, priority roads, and traffic lights. Partially blocked
lanes due to parked vehicles and the existance of vulnerable road users such as pedestri-
ans and bicyclists further complicate the prediction problem. Complex road topologies
with a mixture of adjacent, crossing, merging and diverging lanes and the corresponding
traffic rules create a stronger need to consider interactions between traffic participants.
As shown in the work unfreezing the robot [141], humans typically engage in so-called
joint collision avoidance in order to navigate in dense environments, resulting in a high
interdependency between the motion of multiple agents.

A typical prediction problem at an intersection is depicted in Fig. 1.3, showing the
different outcomes of a probabilistic prediction depending on whether it is only based
on the history of kinematic states (physics-based), does also include the road geometry
and topology (map-based), or even accounts for interaction between traffic participants
(interaction-aware). Considering these interactions allows for a more realistic prediction,
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Figure 1.3. Probabilistic position prediction utilizing different contextual information. (a) Only the
current kinematic state is used, neglecting information about the road and the presence
of other agents. (b) Additional utilization of the road geometry, resulting in the predicted
trajectories to stay on lanes. (c) Additional modeling of the interaction between both
agents, predicting the black agent to yield to the gray agent.

as the behavior of a driver does not only depend on their intentions and the map, but also
on the existence and the state of surrounding agents. This interaction does not only play
a role at the current point in time, but will also affect the decisions of agents further in
the future. Thus, the prediction of one agent becomes interdependent of the prediction
of another agent. Let’s imagine the black agent in the depicted scene wants to turn left.
Traffic rules demand it to yield to the gray agent. If the gray agent was to go straight,
it will likely drive faster and thus impede the black agent only for a rather short time. If
the gray agent was to turn left however, it had to slow down first, thus making the black
agent having to wait even longer before turning left. The future motion of the black
agent thus highly depends on the future behavior of the gray agent (and potentially
also vice-versa). To be able to account for future mutual influence and to achieve a
consistent predicted scene state (state including all agents), prediction should be done
jointly for all interacting agents, describing how the complete situation evolves over time.
For more complicated situations that contain many potentially interacting agents, there
can be complicated chains of interaction that need to be taken into account. If one
describes each agent’s behavior using discrete high-level intentions, it becomes apparent
that there is a combinatorial complexity of how a situation might evolve, which grows
exponentially with the number of considered agents. This introduces a great difficulty
to interaction-aware motion prediction, still representing a great challenge today [81].

An autonomous vehicle that tries to predict the scene in order to better plan its own
trajectory should not predict the scene in isolation, but should account for its own influ-
ence on the surrounding agents’ behaviors. Traditionally, the prediction of surrounding
traffic participants is determined independently of the ego-vehicle’s future trajectory
and the results are used as an input for the motion planning module that then plans
collision-free trajectories given these predictions [63], [94], [145]. However, as the motion
of the ego-vehicle might influence the motion of surrounding agents and vice-versa, the
problems of prediction and planning are generally highly interdependent. Not account-
ing for this interdependency might result in too conservative behavior that has already
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Figure 1.4. Typical architecture of an autonomous vehicle. Historically, prediction is done before
planning, neglecting the influence of the ego-vehicle on its surrounding agents. This
thesis proposes to include the interactive prediction model into the planning algorithm
to account for possible interdependencies.

shown to strongly reduce acceptance of autonomous cars in mixed traffic [29]. For ex-
ample, if an autonomous vehicle wants to merge onto a lane with dense traffic, there
might not be enough space to merge right away. Without anticipating that other agents
are going to react to an attempt to merge, prediction will show that gap to remain too
small resulting in the ego-vehicle being stuck. When modeling potential reactions to the
ego-vehicle, it can be inferred that squeezing into a narrow gap (which is indeed often
done by human drivers) actually is a feasible option, as other agents might open up a
gap of sufficient size once they realize ego’s intent to merge. To illustrate the specific
role of prediction and planning of an autonomous vehicle, a common software and hard-
ware architecture is depicted in Fig. 1.4, showing the “historic” approach of separated
prediction and planning and the more advanced approach of a coupled prediction and
planning module which is also proposed in this thesis.

1.2 Approach Overview and Research Questions

This thesis presents a probabilistic framework for combined intention estimation and
motion prediction based on the concept of Bayesian inference. Bayesian inference allows
to intuitively model uncertainty of observations as well as of human behavior on both
levels of abstraction, discrete high-level intentions and continuous low-level motion. We
investigate what types of driver intentions explain the multi-modality of the possible
prediction outcomes best and thus allow to effectively subdivide the space of possible
predictions into single modes (i.e., clusters of high probability). We show that introduc-
ing these driver intentions and conditioning the continuous behavior models on them
increases interpretability of the prediction and allows for a more efficient representation
of the predicted belief and thereby for more efficient inference methods.
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Given a specific intention, it is analyzed what the most important parts of the situa-
tional context are that dictate a driver’s actions in typical urban environments, allowing
for a more informed prediction compared to solely physics-based models. Besides the
importance of the static context such as the road geometry or traffic infrastructure, the
influence of interaction between multiple drivers is examined. This thesis tries to answer
the question on how one can account for the combinatorial interaction between traffic
participants in long-term prediction. To this end, we propose to include all agents in
the same state space and to solve the prediction problem by employing an incremental
probabilistic forward simulation of all agents’ behaviors, thus deriving a distribution over
complete scene developments. We define an agent’s behavior at the current time to only
depend on the current situation but not on the upcoming actions of other agents, thus
avoiding cyclic dependencies between agents. During forward simulation, the state of all
agents is updated after each time step such that each agent can base its upcoming action
again on the newest available context. This effectively disaggregates complex long-term
multi-agent interactions into multiple consecutive single-step single-agent actions. As
the behavior models can still be anticipatory (i.e., assuming what others are going to do,
in contrast to being purely reactive), sophisticated interactions can still be represented
by iterating over time.

An important question is how to cope with the combinatorial complexity of interaction-
aware prediction when considering scenes with many agents. This issue is addressed by
providing different methods to prune the number of considered hypotheses allowing to
concentrate computational efforts at high-probability outcomes and thus to provide a
reasonable compromise between complexity and accuracy.

Another crucial part is the utilization of the presented prediction approach by an
autonomous vehicle: How can the ego-vehicle predict a situation while considering the
influence of its own future actions on the surrounding agents, without previously knowing
its own actions? Expressed differently, how to solve the interdependency between the
ego-vehicle’s motion planning and the prediction of surrounding traffic participants? To
this end, this thesis proposes to include both the ego-vehicle and all surrounding agents
in the same state space, allowing to model the interdependencies between all agents. The
actions of the ego-vehicle can then be derived using optimization techniques that account
for potential actions of other agents and thus solve prediction and planning jointly, while
accounting for mutual influence and ensuring the ego-vehicle motion plan to be consistent
with the motion prediction of other agents. Two distinct motion planning algorithms
are presented that utilize an ego-aware prediction, one based on a partially observable
Markov decision process (POMDP) and one based on the concept of cooperative multi-
agent planning.

Altogether, this thesis proposes a probabilistic prediction approach that both estimates
high-level driver intentions and predicts low-level trajectories while accounting for the
current kinematics, available contextual information (such as the road geometry) and
interaction between multiple traffic participants. Furthermore, the presented prediction
approach is utilizable for interactive motion planning algorithms, allowing to account
for the interdependency of planning and prediction.
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1.3 Related Work

In the area of autonomous vehicles, intention estimation and trajectory prediction of traf-
fic participants have been widely studied. Although these problems are highly coupled,
in the existing literature, they are often tackled separately. The first of the following sec-
tions is devoted to literature that solely focuses on the estimation of discrete high-level
intentions, generally falling into the category of classification.

Subsequently, a detailed analysis of different approaches for continuous trajectory pre-
diction is conducted, which generally falls into the category of regression. Some of these
trajectory prediction approaches additionally estimate high-level intentions either im-
plicitly or explicitly in order to improve prediction accuracy and interpretability. These
mixed approaches are also covered in the subsequent sections.

1.3.1 Intention Estimation

Popular methods for estimating driver intentions usually either fall into the category
of discriminative classifiers such as support vector machines (SVMs) [5], [75], random
forests [15], näıve Bayes [117], and neural networks [102], or into the category of proba-
bilistic graphical models such as conditional random fields (CRFs) [139], hidden Markov
models (HMMs) [18], [131], Bayesian networks (BNs) [67], [164], [86], and dynamic
Bayesian networks (DBNs) [45], [80]. For this purpose, the set of possible intentions is
typically predefined by hand and the models are either hand-tuned or learned for these
fixed number of classes. For highway scenarios, this set usually consists of “lane change
left”, “lane change right”, and “keep lane” (e.g., [11], [75]). Given a specific lane, it is
furthermore often distinguished between different longitudinal modes such as “free flow”
or “car following” [143]. A more detailed description has been used by Gindele et al.
[45], where an overtaking maneuver is composed of a series of behaviors: “acceleration
phase”, “sheer out”, “overtake”, and “sheer in”.

For intersection scenarios, the desired route is mostly represented by the predefined
turning directions left, right, and straight (e.g., [86], [131], [67], [80], [101], [139]), thus
restricting application to only a subset of possible intersections. Besides the intention
of a lane change or the desired route, more detailed intentions can be distinguished. A
longitudinal classification whether a vehicle is going to yield at an intersection or not, or
whether it is going to violate or comply with the traffic rules at a red light has already
been investigated (e.g., [5], [6], [15], [67]). Lefèvre et al. [80] determine the set of possible
route alternatives and the respective yield positions online using a map and estimate the
corresponding intentions.

Interactions between traffic participants are often neglected (e.g., [5], [15], [58], [75],
[131]). If the motion of multiple vehicles is interdependent, however, this may result
in inaccurate intention estimates (e.g., if a vehicle approaching an intersection has to
decelerate because of a slow preceding vehicle, without considering interactions, it might
be misleadingly inferred that it intends to turn and slows down for an upcoming cur-
vature). Investigating the so-called freezing robot problem, Trautman and Krause [141]
have shown that agents typically engage in joint collision avoidance and cooperatively
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make room for one another to create feasible trajectories. Therefore, possible future in-
teractions between agents should be taken into account both for estimating the current
intentions as well as for predicting the future trajectories.

Other works on intention estimation have already explicitly modeled interdependen-
cies between agents: Liebner et al. [86] and Klingelschmitt et al. [67] consider the
dependency on the directly preceding vehicle in order to improve the route estimation
at intersections. Promising results have been shown by Phillips et al. [102] using a long
short-term memory (LSTM)-based route classification for intersections, which considers
the states of up to seven surrounding vehicles, therefore respecting possible interactions
implicitly. Although these works do account for interactions between vehicles within
their behavior or classification models, their maneuver representations typically lack the
descriptive power to specify the relative motion of vehicles in detail. When, for ex-
ample, two oncoming vehicles are both planning to leave an intersection on the same
exit, their maneuver representations provide no way to distinguish between who turns
first. Including these relations in the maneuver representation allows for a more detailed
differentiation of high-level maneuvers that might be beneficial for scenarios with close
interaction.

In the area of robot motion planning, more sophisticated maneuver representations
based on the concept of homotopy have already been proposed [13], [17], [19]–[21], [31],
[49], [73]. Maneuvers are defined by clustering paths or trajectories into homotopy
classes, which would also allow to distinguish the aforementioned case in the area of
prediction. Kuderer et al. [73] present a framework to generate homotopically distinct
navigation paths online for a mobile robot navigating hallways with the help of Voronoi
diagrams. By using homotopy classes they avoid sticking to local minima during the
path optimization. Bender et al. [17] propose to distinguish different maneuvers of au-
tonomous vehicles in relation to nearby dynamic obstacles based on homotopy classes,
allowing to determine the best trajectory given any of those classes using local optimiza-
tion techniques. Enumerating all these classes and solving the respective optimization
problems allows to pick the maneuver with lowest cost. Gu et al. [49] automatically dis-
cover tactical maneuver patterns based on sampled trajectories. Using pseudo-homotopy,
they can extract distinct maneuver classes and decide for a suitable maneuver according
to their cost function. All these works focus on ego motion planning and assume other
agents to have known motion profiles such as constant velocity. Thus, these approaches
are not suitable for predicting the maneuvers of other drivers and don’t allow for inter-
active multi-agent environments which account for the fact that vehicles react to each
other and that their decisions may be coupled. Still, for estimating intentions of multiple
interacting agents, a maneuver representation based on homotopy classes being gener-
ated at runtime (given a topological map and the states of surrounding agents) might
be advantageous over a predefined fixed set of intention.

Most of the previous works solely focus on classifying an agent’s future behavior into
discrete classes, but do not predict continuous trajectories which are typically needed
for motion planning algorithms to plan collision-free trajectories. The following sections
present different methods for predicting such continuous trajectories.
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1.3.2 Physics-based Prediction

The most simple trajectory prediction methods are so-called physics-based and do not
consider the situational context (such as the road geometry) or interaction with other
traffic participants, as also described in the survey of Lefèvre et al. [81]. These models
extrapolate the current kinematic state of an agent using some assumptions such as
maintaining a constant velocity or acceleration. Schubert et al. [119] compare different
motion models such as constant turn rate and velocity (CTRV) and constant turn rate
and acceleration (CTRA) which are typically used for vehicle tracking, but, naturally,
can also be utilized for forward simulation to predict trajectories multiple steps into the
future.

Instead of applying such simple assumptions, it is also possible to learn more accurate
models given the history of the kinematic state of an agent. Wiest et al. [154] learn
a non-variational and a variational Gaussian mixture model based on the expectation
maximization (EM) algorithm to predict vehicle states in a probabilistic fashion, only
incorporating the previously observed trajectory snippet of a vehicle. They show that
the variational model achieves promising results in predicting a single vehicle driving
on a curved track, outperforming the non-variational model for predictions of 2 s into
the future. However, especially at intersections and for long prediction horizons, these
context-independent and interaction-unaware models tend to have low predictive perfor-
mance due to the high dependency of the drivers’ actions on the road geometry, traffic
rules and interactions to surrounding vehicles. The trajectories of multiple vehicles in
a traffic scene are often highly interdependent because drivers must avoid collisions,
comply with traffic rules, and thus react to other drivers’ actions.

1.3.3 Reachable Set-based Prediction

Althoff, Koschi, and Magdici [3], [69] calculate the reachable set of future states of an
agent by considering anything from full acceleration to full braking as well as all possible
routes at intersections and arbitrary lane changes, resulting in an over-approximation
of all possible occupancies, as depicted in Fig. 1.5. By considering physical constraints
and assuming that the traffic participants abide by the traffic rules they can reduce the
dimensions of these occupancies, allowing for less conservative predictions.

Predictions based on reachability analysis, as mentioned in Sec. 1.1, have the benefit
of allowing formal verification and thus providing safety guarantees, but do not exploit
additional information that allows to infer the probability of specific future hypotheses
which is beneficial for comfortable and more efficient driving. Thus, these set-based
predictions are generally said to result in rather conservative behavior.

1.3.4 Rule-based Prediction

So-called rule-based or heuristics-based behavior models define a (in most cases deter-
ministic) mapping from situation and potentially a predefined intention of a driver to an
action resulting in a state transition to the subsequent time step. In contrast to solely
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Figure 1.5. Reachable set prediction (given some constraints) at an intersection for a specific future
time interval. Graphic taken from [69]. © IEEE 2017

physics-based models, they do incorporate some additional contextual information such
as the road geometry, traffic rules and the presence of surrounding agents.

The traffic simulator SUMO [71] comes with different rule-based behavior models built
in. It distinguishes between models for car-following, lane-changing, and traversing in-
tersections. The most well-known car-following models are the so-called Krauß-model
[72] and the intelligent driver model (IDM) [142]. Typically, these models come with
tunable parameters such as desired time headway or acceleration and deceleration ability.
They define a deterministic mapping from relative distances and velocities to accelera-
tions. Similarly, the lane-changing and intersection models can also be parameterized,
for example in terms of the maximum lateral acceleration in a curve, the minimum time
gap to other vehicles at overlapping lanes, or the tendency to ignoring the right of way.
Thanks to its simplicity, the IDM is widely applied for driver intention estimation (e.g.,
[86], [166]) and for modeling how others react to specific plans of an autonomous vehicle
(e.g., during forward simulation using Monte Carlo tree search [83]). Although these
simple heuristics-based models are well suited for specific scenarios and controlled traffic
simulation, they tend to be not detailed and realistic enough for accurate prediction of
diverse human driving in real environments.

1.3.5 Planning-based Prediction

Another possibility of incorporating contextual information in the prediction of traf-
fic participants is to model the prediction problem as a planning problem by modeling
drivers as agents optimizing some sort of context-dependent cost function. Such meth-
ods are also called Theory-of-Mind [48, pp. 257 ff.] methods, as one assumes a human
conducts rational actions given some objective.

Generally, any type of motion planning algorithm can be utilized for prediction pur-
poses as well. There is an enormous variety of different planning algorithms, ranging
from physically motivated methods such as potential fields [16] and elastic bands [107]
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over the optimization of hand-designed cost functions to learned cost functions such as
generated by inverse reinforcement learning (IRL). As the subject of motion planning
itself is out of the scope of this thesis, the interested reader is referred to the books by
LaValle [78] and Latombe [77] that cover the fundamentals of motion planning.

Eichhorn et al. [38] model human drivers as optimizers of an optimal control problem
and utilize cost-to-go gradients for different route hypotheses to infer the most likely
route at intersections. Rehder and Kloeden [108] introduce the pedestrian’s destination
as a latent variable in order to convert the prediction problem into a planning prob-
lem. They utilize the unicycle model for the pedestrian’s motion and apply it to both a
forward prediction of the current position and a backward prediction of an assumed des-
tination goal. Discretizing the state space into a grid representation allows for utilizing
convolution for both forward and backward prediction using a convolution filter mask
(representing the motion) and the belief at a specific time step. They show improved
long-term prediction by this goal-directed prediction with goal inference.

When planning approaches are used for prediction, they are often combined with ma-
chine learning techniques, as it is desired to model how humans are actually behaving
and not what the developer of the model might define to be the optimal behavior. Thus,
in a later approach, Rehder et al. [109] propose to first predict multiple goal regions with
an LSTM-based mixture density network and use a planning-based prediction approach
that is based on IRL and a Markov decision process (MDP) that is realized as a convo-
lutional neural network (CNN). Ding and Shen [35] utilize an LSTM for estimating the
predefined driver intentions forward, yield, turn left, turn right in urban environments.
Given the most likely intention, they generate a trajectory using non-linear least squares
optimization given a constructed cost-map that includes contextual information such as
the lane geometry and static and dynamic obstacles. As the optimization procedure
includes multiple interacting vehicles, they iteratively optimize the trajectories of all
agents, always assuming all other agents’ trajectories to be fixed and given by the values
of the previous iteration. They show that their planning-based approach outperforms
two regression methods, one simple least square polynomial method and one recurrent
neural network (RNN) encoder-decoder architecture. Ziebart et al. [159] predict the
motion of pedestrians by assuming people behave like planners and modeling their be-
havior in MDPs. For that purpose, they learn an obstacle-dependent cost function using
maximum entropy IRL [160] and model different possible goal locations. Their approach
generalizes well to unseen environments, as depicted in Fig. 1.6. Similarly, Gonzalez et
al. [46] model each agent in a highway scenario in an MDP and employ maximum en-
tropy IRL to learn the corresponding cost function. Sadigh et al. [115] model human
drivers as agents that optimize a reward function that they also learn with IRL. Nested
optimization based on the numerical optimization method L-BFSG allows to embed the
assumed planning process of surrounding humans into the planning process of the ego-
vehicle. This nested optimization allows for leveraging the effects of the autonomous
vehicle’s behavior on the actions of the other traffic participants.

Ma et al. [89] base the problem of predicting humans in a crowd on game theory,
modeling the intertwined decision making processes of multiple pedestrians as a collabo-
rative multi-player game. They model each pedestrian to take a path based on their own
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Figure 1.6. Planning-based pedestrian prediction by Ziebart et al., showing the generalization ca-
pabilities by comparing original predictions (left) with the prediction after adding an
additional object (right). Graphic taken from [159]. © IEEE 2009

predictions of how other pedestrians will move. Using fictitious play allows to simulate
likely future motion.

1.3.6 Machine Learning-based Prediction

A very popular approach to the problem of trajectory prediction is the utilization of
machine learning methods, ranging from traditional regression models such as linear
regression [104], Gaussian processes (GPs) [7], [140], random forests [44], or shallow
neural networks [138] to more recent deep learning methods [2], [32], [50], [79]. Machine
learning allows for high predictive performance without the need of cumbersome and
error-prone hand-tuning.

Traditional Machine Learning: Armand et al. [7] learn velocity profiles for stop-
ping at an intersection using GPs with heteroscedastic variance. They include knowledge
about the upcoming intersection, but do not consider surrounding vehicles. Tran et al.
[140] define multiple GPs conditioned on the intentions of a driver (“turn-left”, “turn-
right”, “go-straight”, “stop-and-go”). Using these GPs as transition models of a particle
filter allows them to estimate the intentions and to predict continuous trajectories. As
contextual information, such as the existence of surrounding traffic participants, is not
incorporated, the framework is not suited for multi-agent scenarios.

A two-staged approach for prediction at intersections is employed by Platho et al.
[103], in which they first classify the traffic situation for each vehicle into one of multiple
predefined driving situations (“stopped by red traffic light”, “stopped by leading car”,
“stopped by intersection”, “not influenced”) and then predict the velocity profile using
situation-specific models learned with random forests. As these profiles only depend on
features of the current situation (e.g., states of preceding vehicles), but do not incorporate
the prediction of the surrounding vehicles, future interdependencies are ignored. Another
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Figure 1.7. Dynamic Bayesian Network proposed by Gindele et al. Graphic taken from [44].
© IEEE 2013

two-staged approach to infer intentions and predict trajectories is proposed by Bahram et
al. [11], where highway maneuvers are first estimated based on multi-agent simulations
and then used as input for a continuous trajectory prediction. Thus, both works solve
the two problems of intention estimation and motion prediction separately, but improve
their trajectory prediction by their intention estimates.

Modeling the development of a traffic situation as a stochastic process conditioned on
the agents’ hidden intentions allows to infer these intentions by incorporating measure-
ments and to predict future trajectories by iteratively applying the transition models
(forward simulation). Such Bayesian frameworks handle the problems of intention esti-
mation and motion prediction in a combined way, utilizing the same generative behavior
models. Gindele et al. [44] propose such a method in which they learn context-dependent
action models of traffic participants using random forests that are conditioned on a
driver’s route intention and embed them into the DBN shown in Fig. 1.7. They estimate
the multi-modal, hybrid (both discrete and continuous variables) belief using sequen-
tial Monte Carlo (SMC) inference and predict the future scene development based on a
non-linear transition model. Although they do not explicitly evaluate the route estima-
tion capabilities, they show that their trajectory prediction outperforms a CTRV-based
model in simulated intersection scenarios.

Wheeler et al. [153] present a survey on learned probabilistic driver behavior models
for highways scenarios, comparing different traditional machine learning models includ-
ing random forests, linear Gaussian, Gaussian mixture and Bayesian networks on the
context classes of “free-flow”, “car following” and “lane change”. All these models allow
an interaction-aware forward simulation and an estimation of discrete intentions when
included in a Bayesian framework. However, the authors state that such probabilistic
action models based on traditional supervised learning methods are reaching their limit,
as small inaccuracies of the learned model compound over time during forward simu-
lation, which is known as the so-called compounding error problem: As the output of
the learned policy at one time step influences the environment serving as an input to
the policy in the subsequent time step, any potentially small error accumulates over
time, eventually leading to situations not encountered during training [110]. This result-
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ing covariate-shift in turn typically results in even poorer predictions that can cause a
feedback cycle known as cascading errors [9].

The compounding error problem is generally known in the context of learning from
demonstrations in which an agent tries to learn a policy that resembles expert behavior
and then applies that policy for a longer horizon. However, it does also apply in the case
of prediction when a learned policy model is called iteratively in the process of forward
simulation in order to predict longer trajectories. One major difference in prediction
(compared to a real agent executing actions in an environment), however, is that in
each time step, the initial state from which the prediction is initiated “resets” to the
observation of (or the belief over) the agent’s actual current state. Thus, the negative
impact of the compounding error depends on the horizon of the prediction, not on the
duration of an agent (that uses such a prediction model) acting in an environment.
Many deep learning-based action models do suffer from the same problem in theory,
but are generally more accurate and thus are able to reduce this error significantly.
Another possibility to reduce this problem is to solve the prediction task not using
forward simulation of one-step models, but to predict full trajectories up to a desired
horizon at once, allowing the learning algorithm to account for the deviations multiple
steps into the future within the loss function. Similarly, Asadi et al. [8] have shown
successes in multi-step planning (utilizing the outcome of a sequence of actions) over
one-step planning in the context of reinforcement learning (RL).

Deep Learning: The field of deep learning has revolutionized the area of machine
learning with the availability of large amounts of data and high-end compute. Most
of recent trajectory prediction approaches utilize some sort of deep learning technique,
as performance scales well with the amount of training data used, the need for feature
engineering is reduced, and complex problems can be modeled within a single training
objective.

Already simple deterministic feed-forward models have shown to achieve good results
in the area of trajectory prediction and are able to outperform classical machine learn-
ing methods. Sarkar et al. [116] estimate traffic participants’ paths and predict their
trajectories using a two-staged approach. They segment the road into different clusters
representing motion patterns such as “turning right” based on recorded trajectories. For
the velocity prediction, they propose a feed-forward neural network and compare it to a
modified version of the DBN from [44], both utilizing the extracted clusters. They show
that their deep neural network-based approach reduces prediction error compared to the
DBN which was trained with random forests.

Lenz et al. [82] compare different deep neural network architectures for probabilistic
Markovian action prediction in highway scenarios. As the action models are not condi-
tioned on a driver’s intention such as lane changing or lane keeping, the authors model
the action as a Gaussian mixture distribution to account for future multi-modality. They
find that a fully connected feed-forward network outperforms recurrent architectures on
the domain at hand. Those models can be utilized for an interaction-aware forward sim-
ulation of a whole traffic scene and the authors plan to integrate them in their motion
planning framework in future work.
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Despite the success of feed-forward deep learning models, it is often beneficial to
account for temporal dependencies using recurrent architectures. A major breakthrough
in recurrent neural networks (RNNs) has been achieved by the introduction of the long
short-term memory (LSTM) by Hochreiter and Schmidhuber [55]. The so-called gated
recurrent unit (GRU) proposed by Cho et al. [25] represents a simplification of an LSTM
with fewer parameters and has shown to have benefits on smaller datasets. Pool et al.
[105] propose a GRU-based method to predict the trajectory of a bicyclist based on
road information, the time-to-collision (TTC) with a following vehicle, and whether the
bicyclist is indicating a turn with their arm. Although they are able to predict a Gaussian
position distribution 1 s into the future with good accuracy, the specifics of the scenario
(one bike, one vehicle following, the fixed route options left and straight) are not encoded
in the input features, but are rather learned by heart. Only one intersection is used for
training and evaluation and the input features have been designed in a scenario-specific
way, making it difficult to analyze the generalizability of the approach.

Sequence-to-Sequence Models: A typical drawback of standard deep learning
models is that input and output vectors have to be of fixed size. Sequence-to-sequence
models eliminate this requirement as they consist of an RNN-based encoder-decoder
architecture, where the encoder encodes an input sequence (e.g., a sentence) and the
decoder uses this encoded input and generates an output sequence (e.g., the sentence in
another language). The available input information is compressed into a context vector
of fixed length which is expected to be a good representation of the relevant parts of
the input sequence. Thus, arbitrarily long input and output vectors can be produced.
The fixed length context vector, however, can be a bottleneck especially for very long
sequences, resulting in decreased performance.

Encoding the history of past states of an agent using a recurrent network is a common
way to compress an agent’s past trajectory and extract relevant information from it.
These compressed representations can then be utilized as an input to a corresponding
decoder for the forecasting of future trajectories. Park et al. [98] utilize such an LSTM-
based encoder-decoder model combined with a so-called beam-search to produce a fixed
number of most likely future trajectories. Their sequence-to-sequence model allows to
utilize an arbitrarily long history and to predict up to an arbitrary horizon. Deo et al.
[33] also utilize an LSTM encoder-decoder framework to predict vehicle trajectories on
highways. They first classify six predefined maneuver classes (lane changes left and right
as well as lane keeping, each having two different longitudinal velocity subclasses) with an
LSTM. Secondly, they encode the history of states of an agent in another LSTM and use
both the maneuver encoding and the trajectory encoding as an input for their decoder
to predict the future. The decoder outputs a bivariate Gaussian position distribution
per maneuver for each time step, showing promising results on both NGSIM highway
datasets [26], [53].

Although most works encode and decode temporal sequences (e.g., a trajectory of an
agent), naturally, other types of sequences can be represented. One alternative is to
represent a spatial list of agents as the input sequence and a list of corresponding future
trajectories as the output sequence, thus allowing for an arbitrary number of agents.
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Figure 1.8. Exemplary future prediction (top) and workflow (bottom) of the DESIRE framework.
Graphic taken from [79]. © IEEE 2017

Deep Generative Models: One important aspect of motion prediction is the rep-
resentation of uncertainty. In contrast to learning the parameters of a parametric distri-
bution (e.g., Gaussians as in the previous works), deep generative models such as condi-
tional variational autoencoders (CVAEs) (proposed by Sohn et al. [125]) or generative
adversarial networks (GANs) (proposed by Goodfellow et al. [47]) allow to represent
arbitrary distributions. The idea is that these networks learn a mapping from a simple
parametric input noise distribution to the desired output distribution. This allows to
sample from the output distribution indirectly by sampling from the parametric input
distribution and applying a forward-pass through the network.

Hu et al. [60] utilize a CVAE for predicting multi-modal trajectories while consid-
ering pairwise interaction. The deep learning-based multi-agent trajectory prediction
framework by Lee et al. called DESIRE [79] aims to achieve interaction-awareness, ac-
count for the uncertainty and multi-modality of the future (e.g., induced by different
possible routes) and achieve long-term accuracy–all within one training procedure. The
model consists of multiple modules handling the trajectory sample generation (based
on a CVAE), the trajectory ranking and refinement (based on inverse optimal control
(IOC)) and the scene context fusion (based on a CNN encoding the scene context), as
depicted in Fig. 1.8. The CVAE allows to create samples of multi-agent trajectories,
accounting for the uncertainty and multi-modality. The ranking and refinement module
reduces accumulating error and thus improves long-term prediction. The scene context
fusion allows to incorporate contextual information. They achieve promising results on
the KITTI dataset and the Stanford drone dataset.

Graph Neural Networks: One possibility to represent interdependencies between
multiple interacting agents is given by so-called graph neural networks. A comprehensive
survey on graph neural networks has been conducted by Wu et al. [156]. Diehl et al.
[34] utilize graph neural networks for modeling a traffic scene as a graph of interacting
vehicles. This allows for a flexible and abstract model of interactions. However, it is not
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(a) Input (b) Ground Truth (c) Prediction (d) p(rleft, rstraight)

Figure 1.9. Mänttäri et al. propose to utilize a schematic top-down view of a traffic scene as sole
input to a CVAE for predicting the pose of multiple agents 6 s into the future. The ground
truth and prediction are only shown for a single agent (red) to improve visualization. The
color-coding of the prediction is generated by drawing multiple random samples from the
CVAE. Graphic taken from [90]. © IEEE 2019

trivial to decide which agents will interact in advance, thus, finding relevant connections
in this graph remains an open problem.

Top-Down Image: Utilizing a top-down image of a traffic situation allows to rep-
resent a variable number of agents and arbitrary road layouts with a fixed size input.
Furthermore, the number of agents does not affect the computational complexity and
there is no need to predefine specific types of interaction.

Djuric et al. [36] propose to use a rasterized actor-centric top-down view of a traffic
scene as an input for a CNN-based trajectory prediction. They achieve promising results
for short horizons but run into problems for longer horizons because of the neglected
multi-modality and combinatorial nature of motion prediction. In their follow-up work,
Cui et al. [27] improve on this problem by proposing to predict a fixed number of modes
and utilizing a multi-modal loss function which they call “Multiple-Trajectory Prediction
(MTP)” loss. This MTP loss only penalizes the mismatch of the closest predicted mode
(given some distance function) and forces this mode’s probability to be close to one.
This loss successfully prevents the problem of mode collapse which is typical for multi-
modal predictions with classical loss functions such as the mean squared error loss. A
remaining problem is the choice of the fixed number of modes, which has to be defined
before training. Mänttäri and Folkesson [90] also propose to utilize top-down images
of a traffic scene as an input for a CVAE-based trajectory prediction, as depicted in
Fig. 1.9. Using a CVAE naturally allows to represent arbitrary distributions and thus
to also represent multi-modality. Currently, they do not incorporate any other context
than road boundaries and surrounding agents, but road markings, traffic signs and traffic
lights could potentially be added to the image. The state and trajectory outputs are
discretized according to the limited image size. Although they are showing promising
results, the evaluation uses a stationary top-down view of a single intersection, making
it difficult to analyze generalizability to different road layouts. Similarly, Hoermann et
al. [57] represent the scene as an occupancy grid and use a CNN to predict the scene in
a probabilistic fashion.

Social Pooling: The so-called social pooling as proposed by Alahi et al. [2] for human
trajectory prediction in crowded spaces became a popular method to model interactions
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Figure 1.10. Social pooling proposed by Alahi et al. to account for common sense rules and social
conventions when predicting pedestrians. Separate LSTMs for each agent’s trajectory
are connected to each other through a social pooling layer to share information between
spatially proximal agents. The hidden state hi of an LSTM captures the latent repre-
sentation of the ith person. This representation is shared with neighbors by building a
social hidden-state tensor Hi. Graphic taken from [2]. © IEEE 2016

between nearby agents. Their method is depicted in Fig. 1.10 and consists of one LSTM
per agent encoding its trajectory. All LSTMs are then connected using social pooling
layers in order to share information between spatially proximal agents, allowing to create
relationships between an agent and its close neighborhood. They show promising results
in the area of pedestrian prediction in crowded spaces, but do not account for the inherent
multi-modality of trajectory prediction.

Deo and Trivedi [32] build on this idea and extend their prior work [33] by proposing
to use an LSTM encoder-decoder model that utilizes convolutional social pooling, as de-
picted in Fig. 1.11, for robustly learning interdependencies of vehicle motion in highway
scenarios. Their model uses convolutional connections as opposed to fully connected
layers that more robustly model spatial configurations of interacting agents in a scene.
The LSTM decoder further estimates the probability distribution over six predefined
maneuvers and predicts corresponding trajectories, resulting in a multi-modal predic-
tion. However, they do not account for the interdependency of the future trajectories of
multiple vehicles, neglecting the combinatorial nature of trajectory prediction. Zhao et
al. [158] also utilize both the past trajectories of agents which are encoded into single
LSTMs and a scene context top-down image which allows to capture position-invariant
spatial interactions using convolutional operations. They use an adversarial loss with a
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Figure 1.11. Convolutional social pooling framework proposed by Deo et al. Graphic taken from [32].
© IEEE 2018

Figure 1.12. Social GAN architecture proposed by Gupta et al. Graphic taken from [50].
© IEEE 2018

generator and a discriminator as in GANs in order to model the multi-modal uncertainty
of the prediction.

Gupta et al. [50] propose a pedestrian prediction framework called Social-GAN, com-
bining LSTM-based sequence-to-sequence models, observing motion histories and pre-
dicting future trajectories, with a novel pooling mechanism to aggregate information
across people. They also model the problem as a GAN as depicted in Fig. 1.12. Simi-
larly to [27], they encourage diverse sample generation by defining their loss only on the
“best prediction” (in terms of euclidean distance) of a set of sampled predictions.

Attention Mechanism: So-called attention mechanisms which originally became
famous in the fields of vision and natural language processing [10], [88], [93], [146] allow
to focus on parts of the available input information that currently matters most and
thus improve efficiency drastically. Utilizing this selected focus, they have been shown to
reduce problems that recurrent sequence-to-sequence networks typically encounter with
very long sequences.

Vemula et al. [147] present social attention which relaxes the assumption of social
influence to be only local, i.e., available between spatial neighbors. They learn an atten-
tion model that includes possible influences of all available pedestrians in a crowd and
show that this model outperforms locally constrained social pooling. Similarly, Mes-
saoud et al. [92] tackle the problem of locality in social-pooling. They propose to use
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Figure 1.13. SoPhie framework by Sadeghian et al. Graphic taken from [112]. © IEEE 2019

non-local social pooling to better capture spatial interactions between vehicles on a high-
way using an LSTM encoder-decoder framework. Furthermore, following the attention
mechanism by [146], they mimic human reasoning, focusing attention selectively on a
subset of agents that most influence the targets behavior, considering other agents less.
They show improved performance on multiple highway datasets compared to methods
not utilizing non-local social pooling.

Sadeghian et al. [113] propose to utilize raw top-down images with a visual attentive
recurrent component that learns where to look in a large image of the scene. In [112]
they extend their idea to model social and physical attention mechanisms together with
a GAN-based trajectory generation module. Their framework which they call SoPhie is
depicted in Fig. 1.13.

Imitation Learning: The task of learning from an expert is called imitation learning,
apprenticeship learning, or learning from demonstration [1]. Using expert demonstra-
tions to learn a policy is a well-known approach in the fields of robotics and AI. Besides
training an agent what to do, these techniques can also be employed for prediction pur-
poses. Behavior cloning (BC) treats imitation learning as a supervised learning problem,
fitting a model to a fixed dataset of expert state-action pairs. Many of the previously
presented deep learning approaches fall into the class of BC. A typical problem of such
supervised learning approaches is given by the so-called covariate shift which is a result
of the compounding error: Small inaccuracies compound during simulation, potentially
leading to states that are underrepresented in the training data. This in turn results in
even poorer predictions which might result in invalid or unseen situations (e.g., driving
off-road) [110]. One way to improve on this problem are data augmentation techniques
such as data as demonstrator [148] or dataset aggregation (DAgger) [111] or generally
using a more diverse dataset.

Another approach to imitation learning is to recover a cost function that best explains
the expert’s behavior using inverse reinforcement learning (IRL), typically assuming the
expert follows an optimal policy. This cost function can in turn be used by planning
methods or forward reinforcement learning (RL) to produce corresponding actions (cf.
Sec. 1.3.5). This approach does not suffer from the compounding error and tends to
generalize well to unseen situations. However, IRL also tends to be computationally
expensive.
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The so-called generative adversarial imitation learning (GAIL) proposed by Ho and
Ermon [54] represents a third approach to imitation learning. It is a method for direct
policy optimization without first recovering a cost function. It basically solves IRL fol-
lowed by RL by utilizing an adversarial method similar to GANs that iterates between
a gradient step that updates the discriminator (trying to tell whether sampled trajec-
tories from the learned policy are expert trajectories or not) and a trust region policy
optimization (TRPO) step that updates the policy. Similar to IRL, GAIL-based models
also avoid common pitfalls of BC or supervised methods such as the compounding error.

Kuefler et al. [74] utilize GAIL for learning human policies for highway driving and
extend the concept to the optimization of recurrent policies. An extension of GAIL
to the multi-agent case was proposed by Song et al. [126], as the single agent version
does not consider the responses of other agents during interaction and thus results in
errors in multi-agent scenarios. A special case of this multi-agent GAIL that assumes
all agents are homogenous was introduced by Bhattacharyya et al. [22] in the context
of highway driving. All agents share the same policy and receive rewards from the same
critic. Thus, their approach is called parameter sharing GAIL (PS-GAIL). They show
improved performance compared to the single-agent version. As PS-GAIL averages
out individual differences among different drivers, Si et al. [121] propose an online
adaptation framework of these offline learned models to recover individual differences
for improved prediction. Their approach which they call adaptable generative prediction
networks (AGen) utilizes the recursive least square parameter adaptation algorithm and
outperforms standard homogenous PS-GAIL models in highway driving scenarios.

1.3.7 Motion Planning Accounting for Interrelation with Prediction

Most existing literature treats the problems of prediction and planning separately. Typ-
ically, prediction is solved first without accounting for the influence of the ego-vehicle,
then, the planning module utilizes the determined prediction as a fixed input [63], [94],
[145]. More advanced approaches account for the interrelation of the prediction and
planning problems. As shown by Trautman and Krause [141], considering other agents’
reactions to the ego-vehicle’s planned trajectory helps to circumvent the so-called freez-
ing robot problem and leads to less conservative actions which might be needed in dense
and interactive environments.

Sadigh et al. [115] model human drivers as optimal planners that optimize a cost
function that accounts for the existence of the ego-vehicle and other contextual informa-
tion such as the road geometry. The parameters of this cost function are acquired using
inverse reinforcement learning (IRL) and human demonstrations. They formulate the
problem as a nested optimization problem: the optimization of the ego-vehicle’s trajec-
tory includes an assumed trajectory optimization of the surrounding agents that in turn
depends on the ego-vehicle’s planned trajectory. They show that they can leverage ef-
fects of the ego-vehicle’s actions on the actions of surrounding agents in order to achieve
the robot’s goal more efficiently. However, their approach is conceptually limited to a
single other agent, is computationally expensive due to the nested optimization, and
does not account for uncertainty or multi-modality. Building on their previous work,
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they show in [114] that this effect of the ego-behavior allows to conduct information
gathering actions to better estimate the surrounding drivers’ intentions. Sun et al. [133]
build on the same concept of nested optimization and propose courteous (or coopera-
tive) autonomous cars by adding a cost term that accounts for the costs of other drivers
caused by the ego-vehicle.

Swamy et al. [169] investigate different methods for interaction-aware robot deci-
sion making based on machine learning methods in terms of their sample complexity.
They evaluate two model-based RL approaches (neural network-based prediction and
planning-based prediction) and a model-free RL approach, all accounting for the inter-
dependency of the ego-vehicle and a surrounding agent. Both model-based approaches
are utilized in a nested optimization scheme to plan ego-vehicle trajectories that com-
ply with the corresponding prediction models (as proposed by Sadigh et al. [115]).
They show that the planning-based prediction (so-called Theory-of-Mind), that utilizes
a cost function learned with IRL needs less training data than the neural network-based
prediction learned in a supervised fashion. Additionally, the planning-based prediction
approach does not require closed-loop human-robot interaction data but can be learned
with pre-recorded human-human data. Expectably, both model-based approaches out-
perform a model-free RL approach (which does not explicitly learn to predict) in terms
of sample efficiency by multiple orders of magnitude.

Fisac et al. [40] account for the coupling between the ego-vehicle’s planning and its
predictions of surrounding agents by utilizing game theory. They introduce a novel
online-capable game-theoretic trajectory planning algorithm that hierarchically decom-
poses the underlying dynamic game into a long-horizon strategic game and a short-
horizon tactical game. The long-horizon game relies on simplified dynamics but utilizes
the full information structure, whereas the short-horizon game uses full dynamics but a
simplified information structure. The computed value function of the long-horizon game
serves as a guiding term in the short-horizon trajectory optimization. Due to compu-
tational complexity, they limit their approach to two vehicles, the ego-vehicle and one
other agent.

Lenz et al. [83] utilize Monte Carlo tree search (MCTS) for planning ego-vehicle
trajectories on highways, modeling other agents to follow the intelligent driver model
(IDM). As the IDM depends on the current situation including the ego-vehicle’s state,
they account for the reaction of other agents on possible future ego trajectories, allowing
for interactive maneuvers. Additionally, they account for the costs of surrounding agents
in order to drive in a more cooperative manner. Paxton et al. [100] formulate the
problem as a reinforcement learning problem utilizing neural networks to learn both
low-level control policies as well as task-level option policies. In order to explore future
worlds of a complex and interactive environment, they utilize MCTS over the high-level
options (represented by the learned control policies) with an option selection based on
the learned high-level policy.

Cunningham et al. [28] and Galceran et al. [41] present an interaction-aware and
online-capable decision making framework for autonomous vehicles which they call Multi-
Policy Decision Making. They assume that both the autonomous vehicle and other
agents execute actions from one policy of a set of plausible closed-loop policies and
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decide in each time step for the best available policy for the ego-vehicle. These policies
are engineered based on domain knowledge and represent high-level actions such as
driving along a lane, changing lanes or executing a parking maneuver. As they describe
the behaviors of others in the form of policies that depend on the own agent’s state, they
can account for the ego-vehicle’s influence on its surrounding traffic participants.

A popular method to account for mutual interaction and for prevailing uncertainty is
to model both the ego-vehicle and surrounding vehicles within the same state space of
a partially observable Markov decision processes (POMDPs) [12], [24], [87], [120], [127].
Sezer et al. [120] model an autonomous vehicle’s decision making with a POMDP in
which human drivers have an unknown route (straight or turn), an unknown driving
style (aggressive or compliant), and actions that depend on the ego-vehicle’s position.
They utilize an offline solver and only consider one other vehicle. Brechtel et al. [24]
also include other agents within the state space of their POMDP to account for possible
interaction. They define Markovian action models for predicting the surrounding agents
depending on the ego-vehicle’s state and thus account for mutual interaction. Further-
more, they explicitly model occlusions and are able to decrease the uncertainty about
other vehicles’ positions by executing information gathering actions. They utilize an
offline planner and a scenario-specific learned discretization of the state space. Bai et
al. [12] propose an online-capable POMDP approach that utilizes an equidistant dis-
cretization of the state space in order to reduce complexity. They introduce a fixed set
of predefined hidden driver intentions consisting of routes and driver types. Song et al.
[127] estimate the intentions of other traffic participants with a deterministic HMM, and
utilize these intentions within an online-capable POMDP. As the intentions are assumed
to be deterministic, no intention uncertainty is considered during planning and no infor-
mation gathering actions are performed. Liu et al. [87] model driver intentions based on
predefined routes and discrete driving styles and distinguish between three discrete ac-
celeration values that are chosen based on an interaction-aware and intention-dependent
model.

1.3.8 Discussion

The presented literature gives an impression of the magnitude of different methods for
solving the prediction and intention estimation problems. Unfortunately, there are mul-
tiple reasons why it is difficult to compare the performances of the single approaches
with each other and thereby derive what could be called the state-of-the-art in motion
prediction. One of the biggest problems is the lack of publicly available datasets that are
both detailed enough and diverse enough. This also results in many approaches being
tailored to specific scenarios and thus not being universally applicable. Such a dataset
should contain relevant contextual information as the road geometry, road topology and
traffic infrastructure (e.g., traffic lights, traffic signs, road markings) and contain both
urban and highway environments with multiple interacting agents. Another problem is
the lack of widely adopted, unified evaluation metrics, resulting in many works reporting
different quantities to measure performance. The unavailability of the proposed meth-
ods’ source code often forbids the exact re-implementation of the algorithms and thus

24



1.3 Related Work

complicates a fair comparison. Nevertheless, each of the distinct approaches does have
its specific advantages and disadvantages, and there are some general conclusions that
one can draw:

Solely estimating high-level intentions and not considering how the continuous state
of an agent will change over time allows for a utilization in risk assessment, in assistance
systems (e.g., to warn a human driver of upcoming collisions), or for high-level maneuver
planning of autonomous vehicles. However, high-level intentions alone do not suffice
as an input for continuous motion planning algorithms. The prediction of continuous
trajectories is needed to plan collision-free and foresighted trajectories. Tackling both
problems in a combined fashion has the benefits of improved interpretability, allows to
subdivide the prediction problem into manageable subproblems, and can help to improve
overall prediction performance.

Physics-based prediction approaches neglect the contextual information and thus are
only suited for short-term predictions. Reachable set-based prediction over-approximates
the possible future occupancies of the considered agents and thus allows to give formal
guarantees, but also typically results in conservative or defensive behavior of the ego-
vehicle. Rule-based prediction methods are composed of various hand-tuned heuristics
and belong to the simplest methods that allow to incorporate contextual information,
but generally cannot compete with more advanced approaches in terms of prediction
performance. Planning-based approaches assume humans are rational agents that opti-
mize their actions to achieve some sort of objective. The corresponding cost functions
can incorporate contextual information and can also be learned from data, e.g., using in-
verse reinforcement learning (IRL). Planning-based prediction generalizes well to unseen
environments and does not suffer from compounding error. Thanks to the availability of
high-end compute and huge amounts of data, deep learning methods have the potential
to outperform traditional machine learning methods due to their higher complexity and
hierarchical structure, allowing them to learn high-level features from data in an incre-
mental manner, eliminating the need for feature engineering based on expert knowledge.

It can be distinguished between one-step prediction models that are iteratively applied
to generate full trajectories (forward simulation) and approaches that output complete
trajectories, i.e., multiple time steps at once. Although learning complete trajectories
does not suffer as much from the compounding error problem, such multi-step models–
unlike one-step models–cannot be integrated in sequential decision making frameworks
such as MDPs to account for the interdependencies between the prediction of surround-
ing agents and the ego-vehicle motion planning. It has to be noted that multi-step
models can generally still be employed for interactive ego-vehicle planning, e.g., as done
by Sadigh et al. [115] with nested optimization. However, this is typically significantly
more involved: The prediction has to take a potential ego-vehicle plan as input and is
called iteratively during the interactive ego-vehicle planning process. This is computa-
tionally expensive and requires a prediction that is specifically designed for this purpose.
Existing literature that predicts complete trajectories typically does not account for the
future motion of an ego-vehicle and thus can only be utilized for the “historic system
architecture” of prediction first, then planning (cf. Fig. 1.4).
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Table 1.1
Trajectory Prediction Literature Review

Approach Method Environment C I U M S

Schubert et al. [119] physics-based road X X
Wiest et al. [154] physics-based, ML road X X
Althoff and Magdici [3] reachable-set highway, urban X (X)

1
(X)

1
X

Koschi and Althoff [69] reachable-set highway, urban X (X)
1

(X)
1

X
Treiber et al. [142] rule-based car following X X X
von Eichhorn et al. [38] planning urban X X
Redher and Kloeden [108] planning, ML pedestrian X X X X
Rehder et al. [109] planning, DL pedestrian X X X X
Ding and Shen [35] planning, DL urban X X
Ziebart et al. [159] planning, IRL pedestrian X X X X
Gonzalez et al. [46] planning, IRL highway X (X)

2
X X X

Sadigh et al. [115] planning, IRL highway, urban X X
Ma et al. [89] planning, DL, IRL pedestrian X (X)

2
X X X

Armand et al. [7] ML (GP) intersection X X X
Tran et al. [140] ML (GP) intersections X X X X
Platho et al. [103] ML (BN, RF) intersections X (X)

3

Bahram et al. [11] ML (BN), planning highway X (X)
2

X X
Gindele et al. [44] ML (DBN, RF) intersections X X X X X
Wheeler et al. [153] ML (BN, GM, RM) highway X X X X X
Sarkar et al. [116] DL (FC) intersections X X X
Lenz et al. [82] DL (FC, LSTM) highway X X X X X
Pool et al. [105] DL (GRU) bicyclist X (X)

3
X X

Park et al. [98] DL (seq2seq) highway X (X)
3

X X
Deo and Trivedi [33] DL (seq2seq) highway X (X)

3
X X

Hu et al. [60] DL (CVAE) urban X (X)
7

X X
Lee et al. [79] DL (CVAE) urban X (X)

6
X X

Diehl et al. [34] DL (graph NN) highway X (X)
4

X
Djuric et al. [36] DL (top-down image) urban X (X)

3
X

Cui et al. [27] DL (top-down image) urban X (X)
3

X X
Mänttäri and Folkesson [90] DL (top-down image) intersection X X X X
Hoermann et al. [57] DL (top-down image) urban X (X)

5
X X

Alahi et al. [2] DL (social pooling) pedestrian X (X)
3

X X
Deo and Trivedi [32] DL (social pooling) highway X (X)

3
X X

Zhao et al. [158] DL (social pooling) highway, ped. X (X)
3

X X
Gupta et al. [50] DL (social pooling) pedestrian X X X X
Vemula et al. [147] DL (attention) pedestrian X X X X
Messaoud et al. [92] DL (attention) highway X (X)

3
X

Sadeghian et al. [112] DL (attention) pedestrian X X X X
Kuefler et al. [74] DL (GAIL) highway X X X X X
Bhattacharyya et al.[22] DL (GAIL) highway X X X X X
Si et al. [121] DL (GAIL) highway X X X
This thesis rule-based / DL urban X X X X X

Legend: Context-dependency, Interaction-awareness, Uncertainty, Multi-modality, Single-step model

1) not a distribution but reachable-set

2) not combinatorial: features depend on complete distribution / possible occupancy of other agents

3) not combinatorial: prediction based on features of current time only

4) not combinatorial: no uncertainty considered

5) not combinatorial: occupancy distribution predicted

6) non-interactive sample generation, interaction-aware ranking and refinement

7) interaction only between vehicle pairs
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1.4 Problem Statement

By analyzing the large number of available publications, a conclusion can be drawn
about important attributes that the prediction method of an autonomous vehicle should
have: A full-fledged prediction approach should consider relevant contextual informa-
tion, be universally applicable (i.e., not tailored to a specific situation), account for the
interaction between multiple agents, model the uncertainty of human behavior, model
the multi-modality of possible future trajectories, and be utilizable for interactive ego-
vehicle motion planning. These characteristics can generally be achieved by a variety
of different methods, no matter whether they are rule-based, planning-based, machine
learning-based, or a combination thereof. An overview of which of the aforementioned
criteria are met by the literature reviewed in this chapter can be found in Tab. 1.1.

1.4 Problem Statement

A traffic scene S consists of a set of K agents V = {V 1, · · ·, V K}, with K ∈ N, in an
environment which is fully described by a given map. This map consists of a road
network with topological, geometric and infrastructure information (yield lines, traffic
signs, traffic lights, etc.) as well as the prevailing traffic rules. The state of traffic lights
which is considered to be part of the map is updated in each time step. We assume
discrete time steps, a continuous state space, and a continuous action space. At time step
t, the set of agents V is represented by their kinematic states Xt = [x1

t , · · ·,xKt ]>, their
route intentions Rt = [r1

t , · · ·, rKt ]>, and their maneuver intentions Mt = [m1
t , · · ·,mK

t ]>.
The kinematic state xit = [xit, y

i
t, θ

i
t, v

i
t]
> of agent V i consists of the Cartesian position, the

heading or yaw-angle, and the velocity in driving direction. Each agent is approximated
with a bounding box of rectangular shape, for which the position (x, y) defines the front
center. The scene is projected to the xy-plane in order to simplify the problem. The
agents’ lengths and widths are considered to be given deterministically by the most
recent measurement and, for the sake of brevity, are not included within xi. The route
intention rit defines a path through the road network the agent desires to follow. It
is given by a sequence of lane segments that are topologically connected according to
the map and thus can for example represent the exit an agent desires to take at an
intersection or whether it is going to change from one lane to another. The maneuver
intention mi

t defines the desired order relative to other agents in cases of intersecting
or merging routes where the agents’ lanes overlap (see Sec. 2.4 for detailed definitions).
Other types of maneuvers such as overtaking are not explicitly considered within this
work.

At each time step, each agent executes an action ait that depends on its intentions,
the map and the kinematic states of all agents, transforming the current kinematic state
xit to a new state xit+1. The actions of all agents are denoted as A = [a1

t , · · · ,aKt ]>.
The complete dynamic part of a scene is thus described by St = [Xt, Rt,Mt, At]

>. At
each time step, a noisy measurement Zt = [z1

t , · · ·, zKt ]> with zit = [xiz,t, y
i
z,t, θ

i
z,t, v

i
z,t]
>

containing information about the kinematic states of all agents is received, which is
distributed according to the measurement distribution p(Zt|Xt). The number of agents,
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1 Introduction

Figure 1.14. Typical situation with two interacting vehicles at an unsignalized intersection. Agent 0
(blue) has multiple high-level options: it can either turn left, right, or go straight and it
can either merge or cross before or after agent 1 (green). The circles in the trajectories
represent discrete time steps with ∆T = 0.2 s, the numbers show the probabilities of the
respective combinations of intentions (e.g., agent 1 goes straight and agent 2 turns left
before agent 1).

possible routes and maneuvers is arbitrary and may change over time: agents may appear
or disappear and their possible routes and maneuvers need to be adapted accordingly.

The objective of this work is twofold: one part is to estimate the route intentions R and
maneuver intentions M of all agents at the current time, mathematically p(Rt,Mt|Z0:t),
the other part is to predict the future kinematic states X up to an arbitrary temporal
horizon T with step size ∆T , mathematically p(Xt:t+T |Z0:t), as exemplarily depicted in
Fig. 1.14.

1.5 Contributions

This thesis proposes a trajectory prediction and intention estimation approach for au-
tonomous vehicles that considers relevant contextual information, is universally applica-
ble (not tailored to a specific situation), accounts for the interaction between multiple
agents, models the uncertainty of measurement and human behavior, models the multi-
modality of possible future trajectories, and is utilizable for interactive ego-vehicle mo-
tion planning. The focus of the presented approach is on vehicles that drive guided by
lanes such as cars, trucks, motorbikes, and potentially cyclists. The main contributions
of this thesis are:

• Proposing a hierarchical decision making process of an agent, based on two
types of discrete high-level intentions and a continuous low-level action. The in-
tentions are based on the road topology, physical constraints, traffic rules and the
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1.5 Contributions

concept of trajectory homotopy and allow for a subdivision of the space of possible
predictions into interpretable, logical statements. They are automatically gener-
ated at runtime given the current situation, removing the need to predefine a fixed
set of intentions. An arbitrary number of intentions and arbitrary road layouts
can be represented.

• Presenting a combined approach for driver intention estimation and inter-
action-aware trajectory prediction by modeling the interdependent behavior
of multiple agents (based on the aforementioned decision making process) in a
dynamic Bayesian network (DBN) that represents the evolution of the complete
scene as a stochastic process. Intentions are estimated and trajectories are pre-
dicted using the same generative model. Cyclic dependencies between agents are
dissolved by allowing independent actions for small time steps. Complete combina-
torial scene developments including an arbitrary number of interacting agents are
generated using incremental forward simulation up to arbitrarily long prediction
horizons (thus also applicable as traffic simulator). It is accounted for uncertainty
in measurements and human behavior, including the multi-modality of future tra-
jectories.

• Proposing a context-dependent and probabilistic rule-based behavior model
for urban environments, describing how humans act given a specific high-level
intention and the current situation. In contrast to common existing rule-based
models such as the intelligent driver model (IDM) that are typically only suited
for a very specific type of scenario such as car-following, our model is able to cope
with the complexity of urban scenarios by accounting for the influence of the road
geometry, the traffic infrastructure, the prevailing traffic rules, and the interactions
with surrounding agents. Furthermore, it is able to account for the uncertainty in
human behavior.

• Proposing deep learning-based behavior models for urban environments that,
besides learning the context-dependent behavior of traffic participants, are also able
to learn the context-dependent uncertainty in a driver’s actions. Furthermore, the
models are able to pick up subtleties in driver behavior which are difficult to model
by hand such as drivers cutting curves. By embedding this deep neural network into
the aforementioned DBN, we demonstrate how modern deep learning approaches
can be combined with classical Bayesian inference and planning-based approaches.

• Presenting a sequential Monte Carlo (SMC)-based and a multiple model unscented
Kalman filter (MM-UKF)-based inference method for the aforementioned DBN,
demonstrating the trade-offs between flexibility, accuracy and runtime.

• Introducing interactive ego-vehicle planning methods that embed the pre-
sented prediction model, allowing to account for the interdependency of ego-vehicle
motion planning and the prediction of surrounding agents. The presented ap-
proaches enable an autonomous vehicle to leverage the effects of its own actions
on the behavior of other agents and thus to drive in a less conservative manner.
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1 Introduction

1.6 Outline

The remainder of this thesis is divided into six chapters, which are briefly described in
the following.

Chapter 2 – Combined Intention Estimation and Trajectory Prediction: In this chapter,
the main framework of the thesis is presented, formulating the Bayesian model used
for both intention estimation and trajectory prediction. Different high-level intentions
are introduced and included in the decision making process of an agent, allowing to
explicitly represent the main multi-modalities of the predicted belief. Furthermore, this
chapter addresses the interdependencies of the prediction of multiple interacting agents
by breaking up the cyclic dependencies between agents: We utilize incremental forward
simulation of small time steps for which actions of multiple agents can be assumed
independent. Mutual influence is still represented by anticipatory behavior models and
by updating the scene state after each forward simulation step.

Chapter 3 – Behavior Models: This chapter takes a detailed look at the relevant situa-
tional context (e.g., road geometry, traffic signs, etc.) and how that context in combina-
tion with a high-level intention influences the continuous action of a driver. Two distinct
behavior models are introduced, one rule-based model that is defined using expert knowl-
edge, and one machine learning-based model that employs different deep neural network
architectures. Both models can easily be plugged into the DBN from Chapter 2, thus
completing the prediction framework.

Chapter 4 – Inference Methods: In this chapter, two inference methods for solving the re-
cursive Bayesian estimation and prediction problem defined in Chapter 2 are presented.
The first method is based on sequential Monte Carlo (SMC) and thus can represent
arbitrary distributions and non-linear system dynamics, but comes with high computa-
tional complexity. The second method is based on a multiple model unscented Kalman
filter (MM-UKF) which uses a Gaussian approximation of the belief while still being
able to represent the non-linear system dynamics by utilizing a smaller number of de-
liberately chosen sample points (so-called sigma points). Lastly, the chapter analyzes
the combinatorial complexity of the problem domain and proposes a method to find
a reasonable compromise between runtime and accuracy by only considering the most
likely hypotheses without the need of tracking all possible combinations.

Chapter 5 – Interrelated Ego Motion Planning and Prediction of Surrounding Agents:
This chapter closes the loop of prediction and planning, proposing different methods to
handle the interdependency of ego-vehicle motion planning and estimation and prediction
of other agents. It shows how the ego-vehicle can account for its own influence on the
future actions of other agents and thus to drive less conservatively. The first proposed
method is based on a partially observable Markov decision process (POMDP) whereas
the second one is based on cooperative multi-agent planning.
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1.6 Outline

Chapter 6 – Experiments: This chapter first explains the experiment setup and then
evaluates the proposed prediction framework and the interaction-aware planning meth-
ods. The importance of the situational context and of accounting for interdependencies
is analyzed utilizing the rule-based behavior model having full access to all extracted
features and comparing it to a physics-based and a map-based baseline model. Fur-
thermore, the deep learning-based model is evaluated and compared to the rule-based
baseline, showing its capability of picking up subtle driver behavior while having prob-
lems with the compounding error for longer prediction horizons. We also demonstrate
both inference methods and analyze how much runtime we can gain using the Gaussian
assumption of the MM-UKF method compared to the SMC method. Furthermore, it
is shown how the complexity reduction method significantly reduces tracking runtime
and allows to derive the most likely hypotheses used for prediction to be able to focus
computational efforts on high likelihood outcomes.

Chapter 7 – Discussion: In this chapter, the general approach of the thesis is discussed
while referring to the results of the evaluation. We analyze the assumptions made, the
advantages and disadvantages of the proposed methods, and state potential improve-
ments. The main conclusions are drawn and ideas for future work are proposed.
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2 Combined Intention Estimation and
Trajectory Prediction

As the problems of driver intention estimation and trajectory prediction are highly cou-
pled and only reflect different abstractions of a driver’s decision making process, this
thesis proposes to solve them in a combined manner instead of having two completely
distinct models or approaches. In this work, the development of a traffic situation is
modeled as a stochastic process consisting of multiple interacting agents. Each agent
can execute actions at every time step, thus transforming its own state over time. The
actions of an agent are modeled to be dependent on internal intentions and the current
context of the traffic scene including road infrastructure (traffic signs, traffic lights, etc.),
road geometry, road topology, traffic rules, and other agents. Updating the belief over
the current situation using incoming measurements allows to infer hidden variables such
as the agents’ intentions. Iteratively applying the probabilistic transition models of all
agents results in a probabilistic and interaction-aware multi-agent trajectory prediction.
This chapter presents the overall prediction framework of this thesis. We address how
the complete traffic situation is modeled jointly in the same state space, how the decision
making process of a single agent is constructed, and how we handle the interdependencies
between multiple agents. This chapter is based on the author’s previous publications
[166] and [167].

2.1 Modeling the Development of a Traffic Situation in a
Dynamic Bayesian Network

We describe the development of a traffic situation as a Markov process consisting of mul-
tiple interacting agents. Modeling this process in a dynamic Bayesian network (DBN)
allows to explicitly specify relations between agents, define causal as well as temporal
dependencies, and handle the uncertainty of measurements and human behavior. Fur-
thermore, DBNs allow the definition of domain specific hierarchies within the decision
making process of human drivers and the modeling of interdependencies between mul-
tiple agents. Dynamic Bayesian networks are directed, acyclic graphical models that
define how random variables of a causal process relate with each other over the different
steps of a sequence. For a temporal sequence that follows the Markov assumption, a
DBN is given by a two-time-slice Bayesian network, such that the arcs within one slice
represent “instantaneous” correlation between variables and the inter-slice arcs the tem-
poral dependencies [95]. DBNs are a generalization of hidden Markov models (HMMs)
by allowing an arbitrary number of continuous and discrete random variables (instead of
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2 Combined Intention Estimation and Trajectory Prediction

a single discrete random variable) and a generalization of Kalman filters by not restrict-
ing the process to be unimodal linear-Gaussian. Thus, DBNs have a greater “expressive
power” [95]. They are well suited for modeling time-series, as time flows forward and
dependencies can thus be modeled with directed arcs. Therefore, inference can be done
sequentially for one time step after the other, meaning that it falls into the category of
recursive Bayesian estimation. For further information about DBNs, we refer to [30].

Consider a set of K agents V = {V 1, · · · , V K} represented in a DBN as depicted in
Fig. 2.1, showing the dependencies of the random variables of all agents. Each agent is
represented by a bounding box with a kinematic state x = [x, y, θ, v]> consisting of the
Cartesian position (x, y) located at the front center of the rectangle, its heading θ, and its
longitudinal velocity v. For the sake of brevity, the length and width of the agents are not
included in the state, but are assumed to be given deterministically with the most recent
measurement. As the slopes in the map used for evaluation are only minor, all agents in
a scene and the corresponding map are projected to the 2D plane of (x, y), neglecting dif-
ferences in height in order to simplify the problem. The decision making process of each
agent is composed of three hierarchical layers: the route intention r, i.e., the path defined
on the basis of lanes the agent desires to follow, the maneuver intention m, i.e., whether
it is going to pass a conflict area at an intersection before or after another agent, and the
continuous action a (see Sec. 2.4 for detailed definitions). Furthermore, measurements
z that depend on the kinematic state of the agent can be received in each time step.
One time slice of the DBN thus consists of the dynamic states X = [x1, · · · ,xK ], the
route intentions R = [r1, · · · , rK ], the maneuver intentions M = [m1, · · · ,mK ], the ac-
tions A = [a1, · · · ,aK ], and potential measurements Z = [z1, · · · , zK ] of all agents. The
upper case symbols represent the vectorized concatenation of the single agent variables
denoted in lower case letters. The complete scene state is denoted as S = [X,R,M,A].

The continuous action of each agent is conditioned on its route and maneuver inten-
tions, the states of all agents, and on the current environment given by the map. The
map is considered to be given deterministically and is not depicted in Fig. 2.1 for im-
proved visualization. It contains both topological and geometric information, the traffic
infrastructure (stop lines, traffic signs, traffic lights, etc.), and the traffic rules. It is
updated (e.g., the states of traffic lights) according to an environment model in each
time step, but is considered to be constant during prediction. The random variables of
route intentions, maneuver intentions, and actions depend on this map.

Given the kinematic states of all agents, first the set of possible routes and maneuvers
is determined according to the road topology and geometry. Each agent’s continuous
action is then derived using context-dependent behavior models given its route and
maneuver intentions. These actions together with a corresponding motion model allow
to predict the belief of the DBN one time step into the future. Alternatingly predicting
this belief one time step ahead and then updating it with observations of the agents’
poses and velocities enables the drivers’ intentions and states to be inferred (so-called
filtering). As DBNs are generative models, i.e., they can generate values of any of their
random variables given their parents, it is also possible to iteratively predict the current
belief multiple steps into the future (so-called probabilistic forward simulation) applying
the same prediction model as within the filtering process. By starting this forward
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Figure 2.1. DBN showing the interdependencies between agents. Random variables are drawn as
circles, causal and temporal dependencies as solid and dashed arrows, respectively. The
random variables r, m, and a also depend on the map, which is not shown in order to
improve visualization. Previously published in [166]. © IEEE 2018

simulation from the estimated belief of the current state, the predicted trajectories are
weighted according to the probability estimates of the drivers’ intentions. As the forward
simulation is done one time step at a time for all agents in the state space, it is possible
to respect the current and future interdependencies between all agents.

In order to use this recursive Bayesian estimation scheme, the conditional probability
distributions of all variables given their parents have to be defined. For the sake of
brevity, the superscript (·)i denoting the single agent is omitted in the following (e.g.,
x instead of xi; capital letters such as X still denote the set of all agents). The follow-
ing conditional probability distributions are introduced and explained in detail in the
remainder of this chapter:

p(x0) = fx0 , t = 0

p(zt|xt) = fz0 = fz, t = 0, 1, . . .

p(r0|x0,map) = fr0 , t = 0

p(m0|X0, r0,map) = fm0 , t = 0

p(at|Xt, rt,mt,map) = fa0 = fa, t = 0, 1, · · ·
p(xt|xt−1,at−1) = fx, t = 1, 2, . . .

p(rt|rt−1,xt,map) = fr, t = 1, 2, . . .

p(mt|mt−1, Xt, rt,map) = fm, t = 1, 2, . . .
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The functions with subscript (·)0 are initialization functions and only apply for the time
step of first detection of an object, the functions without subscript for all subsequent time
steps. Although an agent might be added to the state space on later time steps (t > 0),
the initialization functions are still denoted here with t = 0 for improved readability.

In order to account for changing situations, the network structure is adapted online
(creating and deleting agents as well as route and maneuver hypotheses). Thus, it can be
applied to varying situations with an arbitrary number of agents, intention hypotheses
and different road layouts. Object-oriented DBNs are employed and parameters between
multiple agents are shared.

2.2 Interdependencies Between Multiple Agents

The trajectories of multiple agents in a scene are generally interdependent. By including
all agents within the same state space, it is possible to express interdependencies, account
for interaction, and thus the combinatorial aspect of motion prediction in multi-agent
environments. For that reason, this thesis proposes to formulate the decision making
processes of all agents in a single DBN.

A model that predicts all agents in a combined manner multiple time steps into the
future at once while accounting for these interdependencies is hard to formulate. An-
other possibility is to dissolve the interdependencies between agents by predicting them
independently for a single time step: As can be seen in Fig. 2.1, the action of each agent
at a specific time step is modeled to be independent of the actions or intentions of the
other agents of the same time step given their kinematic states and its own intentions.
Thus, cyclic dependencies between agents are avoided and one prediction step from t to
t+ 1 of an agent can be executed independently of the prediction steps of other agents.
For small time steps, this is a mild assumption, as one can assume that drivers don’t
know the future actions of other drivers when deciding for their own actions. In addi-
tion to the action models being able to react to the current context, they can also be
anticipatory, i.e., make implicit predictions on what is going to happen and consider
this for deriving what a good interaction strategy might be. Thus, even the current
action might already take into account what other agents are likely going to do (but
not what the forward simulation will actually predict them to do, as the actions of the
different agents are derived independently). How such action models can be defined is
addressed in Chapter 3, where we present one rule-based and one deep learning-based
model. The rule-based model is anticipatory in the sense that it assumes likely behavior
of others (e.g., time of arrival at lane merge position) and the deep learning-based model
is implicitly anticipatory as it is based on how humans anticipate how a scene evolves
in order to decide on their own actions. After each time step, the state of the complete
situation is updated with all agents’ actions such that for the decision making process
of the subsequent time step, the context is up-to-date again and all agents observe how
other agents actually have behaved (given the predicted forward simulation). By itera-
tively predicting all agents from one time step to another, it is possible to account for
interaction gradually: As the current context depends on other agents’ past actions,
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Figure 2.2. Possible combinations of routes [r1
left, r

2
right] and [r1

right, r
2
right] at a roundabout: Although

V 2 is currently not influenced by V 1, it has to slow down in the future if V 1 stays inside
the roundabout, but can go faster in case V 1 leaves the roundabout. This influence has to
be taken into account for the trajectory prediction using forward simulation. Previously
published in [166]. © IEEE 2018

an interdependency between their trajectories emerges over time, as shown in Fig. 2.2.
Thus, when simulating the scene forward, long term interactions can be represented.

2.3 Measurement Model

High-level cuboid objects are used as measurements for the DBN. These measurements
contain the kinematic states and the widths and lengths of the objects. The dimensions of
the agents are considered to be given deterministically with the most recent measurement
and are not included in the state or measurement vectors for the sake of brevity. Object
detection and tracking given low-level sensor measurements is handled by a separate
algorithm and is considered to be given within this work. Hence, low-level sensor specifics
are abstracted and a variety of different sensor types (such as lidar, radar, or camera)
and tracking methods can be used in combination with this framework.

The measurement zt = [xz,t, yz,t, θz,t, vz,t]
> is distributed according to

p(zt|xt) = fz = N (ẑt,Rt) (2.1)

with ẑt = xt and Rt = diag(σ2
xz , σ

2
yz , σ

2
θz
, σ2

vz). Thus, the kinematic state x is measured
with zero-mean Gaussian noise. For the initial time step of an agent (after it has been
detected for the first time), no prior information about its kinematic state is assumed.
This is achieved by an infinite variance of its kinematic state and an arbitrary mean
(here 0):

p(x0) = fx0 = N (0,diag(∞,∞,∞,∞)) (2.2)

Given the first measurement z0, the initial belief over the kinematic state is then given
with Bayes’ rule as

p(x0|z0) =
p(z0|x0)p(x0)

p(z0)
= N (z0,R0). (2.3)
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Figure 2.3. Breadth-first search for possible routes of length lH on the lane topology graph in a
breadth-first manner. In this example, the route intention can be any of the three different
paths through the intersection. Previously published in [166]. © IEEE 2018

2.4 Decision Making Process of an Agent

Incorporating high-level driver intentions into the decision making process of an agent
allows to subdivide the space of possible predictions and to improve interpretability. The
main cause for multi-modality in prediction in urban environments is given by the differ-
ent possible decisions at intersections such as turning left or right or merging before or
after another agent and by discrete lanes which agents desire to follow. Conditioning the
prediction on such intentions allows to use simpler action models and approximate the
predicted belief (given an intention) by a unimodal distribution. Unimodal distributions
have the advantage that they can be approximated more easily by closed-form distri-
butions such as Gaussians which allow more efficient calculations compared to general
purpose particle distributions.

All agents are modeled to follow a decision making process that consists of three
hierarchical layers: the route intention r, the maneuver intention m, and the continuous
action a. Each layer is conditioned on the layers of higher abstractions, such that the
maneuver depends on the route and the action depends on the route and the maneuver.
The action, in combination with a kinematics model, allows to transform the agent’s
current kinematic state to the subsequent time step. The uncertainty over possible
future motion is thus divided into a high-level discrete intention uncertainty, and a
low-level action uncertainty given a specific intention. The dependency graph of these
random variables of the DBN is depicted in Fig. 2.1.

2.4.1 Route Intention

The route intention r ∈ R defines the first layer of an agent’s decision making process and
serves as a path that guides its behavior. It is represented by a sequence of topologically
connected lane segments. In every time step, the set of possible routes R of an agent is
determined given its pose and the topological map. We use breadth-first search on the
lane graph starting from the current lane matching to find all possible hypotheses up to
the metric horizon lH as exemplarily depicted in Fig. 2.3. As each route has a different
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geometry and may imply different traffic rules and relations to other agents, the route
directly influences a driver’s actions. In this thesis, the route of an agent mainly serves
two purposes: Firstly, it allows to define and extract relevant features along an agent’s
planned path such as the upcoming road curvature or longitudinal distances to stop lines,
utilized by the agent’s action model (see Chapter 3). Secondly, the routes of multiple
agents allow to build relationships between agents on complex road layouts. Two routes
can be related with one another by dividing them into parts that either merge, diverge,
cross, are identical, or have no relevant relation at all. Different road junction types such
as roundabouts, intersections or highway entrances can thus be broken down into these
types of relations, allowing for a better generalization of the action models. Typical
features that describe the relations between agents consist of distances to merging or
crossing areas of their routes and corresponding right of way rules.

Initially, the desired route r0 is distributed given the set of possible routes R0 =
{r0,1, · · · , r0,|R0|} according to a prior distribution. In this work, a uniform prior

p(r0|x0,map) = fr0 = U{R0} (2.4)

or in different notation

p(r0,i|x0,map) = |R0|−1, ∀r0,i ∈ R0 (2.5)

is assumed, but any other prior could be employed, in order to incorporate traffic statis-
tics (such as it being more likely to stay on the main road, etc.).

Due to the fact that the route is only considered up to a specific horizon, in each new
time step, a (potentially slightly) different set of possible routes may be determined. A
binary matching function sr(rt, rt−1) : Rt ×Rt−1 −→ {0, 1} is used to determine which
of the routes rt,j ∈ Rt of the current time step are possible successors of a previous
route hypothesis rt−1,k (i.e., imply the same decisions at each topological split) and
which are not. This allows to define the set of successor route hypotheses of a specific
route hypothesis rt−1,k as

Rt,succ(rt−1,k) = {rt,j | ∀rt,j ∈ Rt : sr(rt,j , rt−1,k) = 1}. (2.6)

If there are multiple candidates (|Rt,succ(rt−1,k)| > 1), e.g., in case of the route horizon
lH reaching a topological split, again, the probabilities are distributed uniformly among
them:

p(rt|rt−1 = rt−1,k,xt,map) = fr = U{Rt,succ(rt−1,k)}, (2.7)

or in different notation

p(rt,j |rt−1 = rt−1,k,xt,map) =

{
|Rt,succ(rt−1,k)|−1, for rt,j ∈ Rt,succ(rt−1,k)

0, for rt,j /∈ Rt,succ(rt−1,k)

. (2.8)

If there is no matching candidate (|Rt,succ(rt−1)| = 0), the agent has not followed the
assumed route intention and this hypothesis is deleted. It is possible to include a (gener-
ally low) probability for switching the route to a non-matching candidate, corresponding
to a driver changing their mind.
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(a) Possible conflict areas from V 1’s perspec-
tive for going straight, resulting from the
three route hypotheses of V 2. The actual
route of V 2 is unknown to V 1.
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(b) Four possible maneuvers for V 1 turning
left, representing the sequence of agents
passing the conflict areas.

Figure 2.4. Conflict areas depicted in yellow and corresponding possible maneuvers. Previously pub-
lished in [166]. © IEEE 2018

The set of possible routes is queried at runtime given a digital map, such that the
intentions do not need to be predefined. As an input for the action model, each route
intention is described distinctively from other possible routes with a variety of continuous
features (such as the course of the centerline, the road curvature, longitudinal distances
to traffic lights, etc.) rather than using one discrete value for, e.g., turning left. This
enables the handling of an arbitrary and varying number of hypotheses, thus allowing
for arbitrary road layouts.

2.4.2 Maneuver Intention

The maneuver intention m ∈ Mr forms the second layer of the decision making pro-
cess and describes the desired sequence in which agents are going to merge or cross
at intersections. A maneuver is always defined given a specific route of the respective
agent. Different routes may implicate the possibility of different maneuvers (e.g., for
some routes, there might not be any conflicts whereas for another there might be mul-
tiple ones). For the definition of maneuvers, we introduce the notion of conflict areas:
Given two agents on two routes, their conflict area is defined by the area at which both
routes intersect, i.e., the area in which their lanes overlap. It is assumed that agents do
not know which routes other agents are going to follow, thus, all possible conflict areas
are considered (see Fig. 2.4(a)).

In order to avoid collisions at conflict areas, agents have to schedule their passing se-
quence. A maneuver of agent V i states for all pairs 〈V i, V j〉 that have a potential conflict
(i.e., at least one route hypothesis of agent V j has a conflict with V i’s intended route),
whether V i will pass their conflict area first (V i≺V j) or not (V i�V j). This definition is
based on the concept of pseudo-homotopy of trajectories. Our evaluation data suggests
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2.4 Decision Making Process of an Agent

that vehicles that have right of way are typically only insignificantly influenced by other
vehicles approaching the intersection. Thus, we only consider different maneuvers for
vehicles that do not have right of way.

The set of possible maneuversMr can be derived given the agent’s route r, the map,
and the kinematic states of all agents X. An example can be seen in Fig. 2.4(b). For the
sake of brevity, the subscript (·)r referring to the corresponding route is omitted for the
remainder of this section. The desired maneuver m0 is initially distributed according to
a prior distribution among the set of possible maneuvers M0 = {m0,1, · · · ,m0,|M0|}. In
this work, a uniform prior

p(m0|X0, r0,map) = fm0 = U{M0} (2.9)

or in different notation

p(m0,i|X0, r0,map) = |M0|−1, ∀m0,i ∈M0 (2.10)

is assumed, but it is possible to learn the prior from data, considering quantities such
as time gaps at the conflict areas. As situations change over time, the set of possible
maneuvers may change as well (e.g., when a new agent is detected or when an existing
agent has traversed a conflict area). Hence, for future time steps, a binary matching
function sm(mt,mt−1) :Mt ×Mt−1 −→ {0, 1} determines which of the new maneuvers
mt,j ∈ Mt of the current time step are possible successors of a previous maneuver
hypothesis mt−1,k (i.e., there are no contradictory passing sequences):

Mt,succ(mt−1,k) = {mt,j | ∀mt,j ∈Mt : sm(mt,j ,mt−1,k) = 1} (2.11)

If there are multiple matching candidates (e.g., a new agent is detected which can either
merge or cross before or after the predicted agent), again, the maneuver is sampled
uniformly across candidates:

p(mt|mt−1 = mt−1,k, Xt, rt,map) = fm = U{Mt,succ(mt−1,k)}, (2.12)

or in different notation

p(mt,j |mt−1 = mt−1,k, Xt, rt,map)

=

{
|Mt,succ(mt−1,k)|−1, for mt,j ∈Mt,succ(mt−1,k)

0, for mt,j /∈Mt,succ(mt−1,k)

. (2.13)

In order to allow for changing maneuver intentions, a small probability of switching to
non-matching candidate hypotheses can be added. If there is no matching candidate,
the maneuver intention became impossible, such that this hypothesis is removed.

2.4.3 Action

The action model forms the third layer of an agent’s decision making process and states
how an agent acts given its intentions and the current situation. The action a thus
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2 Combined Intention Estimation and Trajectory Prediction

depends on the agent’s intended route and maneuver, the kinematic states of all agents,
and the map: p(ai|X, ri,mi,map). It should be noted that these actions are not control
inputs to the system, but are modeled as random variables that are to be estimated,
as they belong to the human controlled agents that are to be predicted. If, however,
the ego-vehicle is included in the state space, the ego-vehicle’s action would serve as a
control input, opening up the possibility of interaction-aware motion planning within
the belief state of the DBN (see Chapter 5).

Within this dissertation, two different types of action models are proposed: a rule-
based (or heuristics-based) action model that outputs a distribution over acceleration a
and yaw-rate θ̇ (a = [a, θ̇]>) (see Sec. 3.1), and a neural network-based action model that
outputs a distribution over acceleration a and steering angle δ (a = [a, δ]>) (see Sec. 3.2).
The rule-based model is coupled with a rotate first, then translate kinematics model,
whereas the neural network-based model is coupled with a kinematic bicycle model. For
the combination of an action and a kinematics model, the term behavior model is used,
as it tells how an agent behaves given a specific situation and its intentions. Many
different behavior models can be incorporated in the proposed framework. In order not
to go beyond the scope of this chapter, the proposed rule-based and deep learning-based
models are presented in Chapter 3.
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The term behavior model is widely used within the motion prediction literature. In this
thesis, a behavior model describes how an agent acts given a specific situation and its
route and maneuver intentions and how its state changes over time given this action.
Thus, such a behavior model comprises an action model p(ait|Xt, r

i
t,m

i
t,map) and a

kinematics model p(xit+1|xit,ait). The action model forms the third layer of an agent’s
decision making process. It is the most complex, as it has to model the subtleties of
human driving in a continuous manner.

Human drivers have individual and complex behavior characteristics which describe
how they act in a specific situation. Driver behavior models are essential for many appli-
cations in the field of autonomous driving, ranging from microscopic traffic simulation,
trajectory prediction and intention estimation, to interactive and cooperative motion
planning. The need for detail and accuracy typically varies depending on the purpose of
application. Models used for traffic flow analysis, for example, tend to be less detailed,
as individual driver behavior patterns do not matter as much, whereas models used
for estimating driver intentions, or for predicting how humans react to an autonomous
vehicle, should be able to capture human behavior patterns in more detail. Although
existing simple approaches such as the intelligent driver model (IDM) [142] are well
suited for high-level traffic flow modeling or deterministic trajectory prediction in car
following scenarios, they are neither capable of capturing the complex decision making
process of human drivers in more diverse scenarios, nor of representing the uncertainty
of the potential future behavior.

This chapter presents two different behavior models, one rule-based (or heuristics-
based) action model coupled with a rotate-translate kinematics model, and a deep
learning-based action model coupled with a kinematic bicycle model. The rule-based
model serves as a baseline and implements anticipatory and reactive behavior and is
able to represent basic driving principles in urban scenarios such as keeping distance to
preceding agents, slowing down before curves, stopping for red lights, or merging into
gaps. The deep learning-based model is trained on complex simulation agents and on
real human driving data and is able to pick up more fine-grain subtleties such as drivers
cutting curves and context-dependent variance, which are difficult to model by hand.
These models allow the integration into various kinds of state-of-the-art algorithms such
as forward simulation-based motion planning algorithms (e.g., Monte Carlo tree search
(MCTS) [83], partially observable Markov decision processes (POMDPs) [162]), or inten-
tion estimation and trajectory prediction algorithms (e.g., dynamic Bayesian networks
(DBNs) such as the one presented in Chapter 2). As the models we present in this
chapter are intended to be integrated into sampling-based algorithms, the input to the
models is deterministic (a sample of the belief), whereas the output is a probability
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distribution over actions, from which one can again draw samples, if desired. Stepwise
forward simulation of these models for the different possible route and maneuver in-
tentions of all agents allows for multi-modal and interaction-aware scene predictions at
arbitrary road layouts. This chapter is based on the author’s previous publications [166]
and [168].

3.1 Rule-based Behavior Model

Rule-based or heuristics-based behavior models are models that capture how humans act
based on traffic rules, traffic statistics, and domain knowledge. As they are designed and
parameterized by domain experts, they typically have fewer parameters than data-driven
models and are thus not able to capture the subtleties of human behavior as detailed. A
big advantage of rule-based models is, however, that they remain interpretable, are quick
to implement, don’t need lots of data, and usually generalize better to unseen scenarios.

3.1.1 Approach

In contrast to existing rule-based behavior models, this section proposes a model that
can handle multiple influences such as speed limits, traffic lights, preceding agents, road
curvature, or conflicts at intersections in a combined manner, allowing the utilization for
prediction in urban scenarios. The model is conditioned on both the driver’s route and
maneuver intentions, subdividing the prediction problem and reducing design complex-
ity. Furthermore, the proposed model considers the uncertainty in human behavior and
thus defines a probabilistic mapping from a driver’s intentions and the current situation
to a distribution over actions.

The proposed rule-based behavior model comprises a set of influence-based acceler-
ation submodels, each determining a range of reasonable accelerations given a specific
influence (such as the road curvature). Besides applying the IDM for keeping appro-
priate distances to preceding vehicles, new heuristics-based models for stopping at stop
signs and red traffic lights, slowing down before curvatures, and approaching gaps at
intersections are proposed. These additional components successfully extend the usage
of rule-based models to complex urban scenarios. In comparison to deep learning-based
models, this model remains interpretable and extendable by additional influences and
generalizes well to unseen situations. The action of each agent given the rule-based
action model is defined as a = [a, θ̇]> with the longitudinal acceleration a and the yaw
rate θ̇.

3.1.2 Rotate-Translate Kinematics Model

The motion of an agent is described by a point mass model which couples x and y
via the heading θ. This model first rotates the agent according to the yaw-rate and
then translates it along its new orientation according to the longitudinal velocity and
acceleration. Gaussian noise is added to both the rotation and the translation parts,
resulting in the typical “banana-shaped” uncertainty. The transition of the kinematic

44



3.1 Rule-based Behavior Model

Table 3.1
Influences, Features, and Action Ranges for agent V i. Previously published in [166]

Influence Features Action Range

vehicle dynamics - [amin
vd , amax

vd ]

speed limit dvlim , vlim, vi [−∞, amax
IDM]

preceding agent V p dp, vp, vi [−∞, amax
IDM]

red traffic light dtl, v
i [−∞, amax

tl ]

stop sign dstop, vi [−∞, amax
stop]

road curvature dρ, ρ, vi [−∞, amax
curve]

conflicting agent V c χi,c, dcentry, dcexit, v
c, [amin

conf , a
max
conf ]

diyield, dientry, diexit, v
i

state given an action is described by the probability distribution p(xt+1|xt,at) with the
new state given as

xt+1 =


xt+1

yt+1

θt+1

vt+1

=


xt + vt∆T cos(θt+1) + 1

2at∆T
2 cos(θt+1) + wx

yt + vt∆T sin(θt+1) + 1
2at∆T

2 sin(θt+1) + wy
θt + θ̇t∆T + wθ
vt + at∆T + wv

 , (3.1)

with the transition noise w = [wx, wy, wθ, wv]
> ∼ N (0,Q) and Q = diag(σ2

x, σ
2
y , σ

2
θ , σ

2
v).

Although this model is simplistic, it is argued that it is sufficient for prediction purposes.

3.1.3 Action Model

The action a = [a, θ̇] of an agent depends on its route and maneuver intentions, the kine-
matic states of all agents, and the map. It forms the third layer of the decision making
process. The acceleration model is a non-linear mapping from features to a Gaussian
distribution p(a|r,m,X,map) = N (µa, σ

2
a), where µa is a function of (r,m,X,map) and

σa is constant. The set of features is derived given the current scene and the agent’s in-
tentions and describes the current context in the agent’s perspective. In order to narrow
down the large number of dependencies, a set of submodels is defined, each handling
one so-called influence. Each influence consists of a subset of the available features and
constrains the acceleration to a range [amin, amax] that is plausible (e.g., not leading to
collisions or violations of traffic rules) given that specific influence. These ranges can
either have a lower bound (dictating a minimum acceleration), an upper bound (dictat-
ing a maximum acceleration) or both. Tab. 3.1 shows the influences considered within
this work for agent V i with their corresponding features and action ranges. These in-
fluences represent the context on which an agent’s actions are based on and are derived
deterministically given the variables of the DBN.

The influence vehicle dynamics restricts the range of possible accelerations to the con-
stant range [amin

vd , amax
vd ] and reflects the maximum breaking and acceleration capabilities

of a vehicle. Speed limits are defined by a set of pairs of speed limit vlim and distance
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along the route dvlim
where they become effective. A preceding agent V p is described by

its relative distance dp and its velocity vp. For the currently active speed limit (dvlim
≤ 0)

and the directly preceding agent, the IDM presented by Treiber et al. [142] is employed,
dictating a maximum reasonable acceleration

amax
IDM = ad

1−
(
vi

vlim

)δ
−

dd+viTd+ vi(vi−vp)

2
√
|adbd|

dp


2 (3.2)

depending on the agent’s velocity vi, the speed limit vlim, the preceding agent’s velocity
vp and relative distance dp. If there is no preceding agent, the distance dp is set to
infinity, resulting in the agent’s velocity converging to the prevailing speed limit. The
parameters minimum spacing dd, desired time headway Td, comfortable acceleration ad,
braking deceleration bd, and acceleration exponent δ have to be specified. The influences
red traffic light and stop sign are also handled using the IDM formula from Eq. (3.2) by
setting vp = 0 and dp to the corresponding distance.

As the IDM was primarily designed for highway scenarios, it does neither consider
the curvature of the road nor the existence of merging or intersecting lanes. Thus, we
define the following models allowing for a prediction in urban scenarios: The model
for the influence curvature is based on a desired maximum lateral acceleration amax

lat

that implies a maximum velocity vρ =
√
ρamax

lat at a given curve radius ρ. Given these
constraints, we want to determine the maximum acceleration of V i for the current time
step such that these constraints will not be violated. This maximum acceleration for
one time step ∆T that still allows to reach the velocity vρ at the corresponding distance
dρ with a comfortable braking deceleration bd is then given by

ã := amax
vρ,dρ =

−2vi + ∆Tbd +
√

4vi∆Tbd + ∆T 2b2d − 8bddρ + 4v2
ρ

2∆T
, (3.3)

which can be determined as follows: First, we assume a constant acceleration phase
starting from the current velocity vi with acceleration ã (which we want to determine)
for one time step ∆T . Then, we assume a constant deceleration phase starting from
the resulting velocity v1 with the comfortable braking deceleration bd (which is the
maximum we want to allow) for the time period of ∆T2, such that the agent exactly
reaches the desired velocity vρ at distance dρ. This leads to the least constraining
acceleration upper bound which still allows to fulfill the constraints. With the know
variables (vi, bd, dρ, vρ,∆T ) and the following equations, it is possible to derive this
maximum possible acceleration ã that the agent can perform:

t

v

vivρ

v1

∆T ∆T2

ã bd

d1

dρ

v1 = vi + ã∆T

vρ = v1 + bd∆T2

d1 = vi∆T + 1
2
ã∆T 2

dρ = d1 + v1∆T2 + 1
2
bd∆T2

2
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p(a)

µa

2σa

amin
confamin

vd amax
curv amax

conf amax
vd amax

IDM

a

Figure 3.1. Example of possible upper and lower bounds of the acceleration submodels of the single
influences, used to define the overall acceleration probability distribution. Previously
published in [166] © IEEE 2018.

This is calculated for all curvature distance pairs along the route and the smallest allowed
acceleration is used as an upper bound, as it is the most constraining one. This results
in a foresighted curvature approach. Upcoming speed limits can also be approached in
a foresighted way by utilizing the same formula from Eq. (3.3).

The conflict model is based on conflict areas at overlapping lanes where vehicles have
to coordinate a specific sequence of passing. A conflict of agent V i with another agent
V c is described by the right of way χi,c, the agents’ velocities, their distances to entering
and exiting the conflict area dentry and dexit, and their distances to potential yield lines
dyield. If agent V i has right of way, we assume that it is not influenced by the other
agent ([amin

conf , a
max
conf ] = [−∞,∞]). If agent V i has to yield, it acts according to its desired

maneuver mi: Each agent that is going to pass before V i introduces an upper bound of
acceleration (amax

conf), each agent that is going to pass after V i introduces a lower bound
(amin

conf). These accelerations are determined such that a minimum time gap between the
two passing vehicles at the overlapping areas is ensured, assuming V i predicts the other
agent V c to drive with constant velocity.

The ranges of feasible accelerations of the single influences are combined as shown in
Fig. 3.1 to the overall range

amax = min{amax
vd , amax

IDM, a
max
tl , amax

stop, a
max
curve, a

max
conf}, (3.4)

amin = max{amin
vd , amin

conf}. (3.5)

Our measurement data suggests that drivers tend to minimize driving time while not
exceeding the plausible acceleration range. Thus, accelerations are sampled from the
distribution p(a|r,m,X,map) = N (µa, σ

2
a), with a mean close to the lowest maximum

bound: µa = amax − σa (see Fig. 3.1).

The yaw rate of an agent is distributed according to the Gaussian p(θ̇|r,x, a,map) =
N (µθ̇, σ

2
θ̇
), with constant variance σθ̇ and a mean µθ̇ which is calculated based on simple

heuristics such that it keeps the agent close to the center of its desired lane. Given
the already calculated acceleration a, the distance the agent will travel in one time
step is given by d∆T = v∆T + 1

2a∆T 2. The desired position the agent should reach
is then calculated as the point on the centerline that is d∆T further along the lane as
the projection of the agent’s current position onto the centerline. The mean yaw-rate
is then calculated such that the agent’s new orientation points to this desired position
and the agent ends up in the close proximity of the centerline. Although this model is
rather simplistic, it allows the agent to follow its desired lane given a reasonably small
time step (in this thesis: ∆T = 0.2 s).
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Figure 3.2. Learned probabilistic and interaction-aware driver behavior model based on a deep neural
network, iteratively applied to generate possible scene predictions (colors indicate predic-
tion horizon of up to 7 s). The green vehicle yields for the hypotheses of turning left and
going straight, but is allowed to drive on for turning right. The variance in the driver’s
actions highly depends on the situation, which can be seen in a higher lateral uncertainty
for turning maneuvers. Previously published in [168]. © IEEE 2019

3.2 Deep Learning-based Behavior Model

Designing behavior models by hand is cumbersome and inaccurate, especially in urban
environments, with their high variety of situations and the corresponding diversity in
human behavior. In order to reduce the design complexity, one generally has to make
assumptions which may be violated by real traffic participants. For example, many
rule-based driver behavior models follow the concept of driving as fast as possible while
accounting for the speed limit and ensuring reasonable safety distances, such that each
agent will be able to avoid speeding and collisions with other agents. This is a strong
assumption which does not always hold in real traffic, as many drivers do not maintain
necessary safety distances or do violate speed limits from time to time. Rule-based
models often consist of multiple interdependent parameters that are hard to tune by
hand. Despite this perceived complexity, they are still typically not able to distinguish
minor subtleties in human behavior such as how exactly drivers cut curves nor to account
for the fact that the variance of human behavior is highly situation-dependent.

Learning how humans act from recorded scenarios is a promising way to overcome
these problems and to achieve high accuracy models that are capable of representing
subtle nuances of driver behavior. However, predicting complete trajectories at once
is challenging, as one needs to account for multiple hypotheses and long-term interac-
tions between multiple agents. Thus, this section proposes to learn a driver’s one-step
behavior model from data to be integrated into the previously presented DBN, allow-
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ing to probabilistically predict interaction-aware multi-agent trajectories, as depicted in
Fig. 3.2: the learned model captures the context-dependent variance of a driver’s actions
and accounts for the mutual influence of the different agents.

3.2.1 Approach

In contrast, to the presented related work in Chapter 1, this section proposes to learn
probabilistic Markovian action models for urban environments with deep neural networks
that are conditioned on a driver’s route intention (such as turning left or right) and the
situational context. Learning to predict only one time step ahead given a specific route
reduces learning complexity, such that simpler and faster models are obtained. This
enables the integration into sampling-based algorithms for interactive motion planning
(such as MCTS) or trajectory prediction and intention estimation (e.g., using particle
filtering), which commonly still rely on simplistic hand-tuned models. Deep learning of
behavior models thus allows for a combination of machine learning with planning-based
and Bayesian algorithms. As the models might be called thousands of times per time
step, the focus is on simple and fast models that are still able to accurately capture the
variety that is present in urban scenarios.

3.2.2 Kinematic Bicycle Model

Instead of directly learning a state transition model, the kinematics of the agents are
restricted to a kinematic bicycle model [68], such that the neural network only learns a
two dimensional action distribution comprising acceleration a and steering angle δ. This
reduces learning complexity and enforces the nonholonomic vehicle constraints. The
kinematic state transition is defined deterministically given these actions as

ẋcog =


ẋcog

ẏcog

θ̇
v̇

=


vcos(θ + β)
vsin(θ + β)
v
lr

sin(β)

at

 , (3.6)

with β = arctan
(

lr
lf+lr

tan(δ)
)

. The parameters lf and lr define the distances from center

of gravity (xcog, ycog) to the front and rear axis respectively, as depicted in Fig. 3.3.
They are determined experimentally by minimizing the motion reconstruction error (see
Sec. 3.2.3.1). The position of the front center of the vehicle (x, y) is determined with the
respective transformations. In between two discrete time steps, it is assumed that the
acceleration and the steering angle are kept constant.

3.2.3 Action Model

The action a = [a, δ]> is modeled to be normally distributed given a specific route
intention ri and the current situational context given by (X,map) as

p(ai|ri, X,map) = N
([
µa
µδ

]
,

[
σ2
a 0

0 σ2
δ

])
, (3.7)
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cog

Figure 3.3. Kinematic bicycle model. Graphic taken and adapted from [68]. © IEEE 2015

whereas the agent’s kinematics are given by the kinematic bicycle model defined above.
Given the uncertainty about the different possible route intentions and the uncertainty of
the kinematic states, the overall predicted belief will still be multi-modal. The variance
in driver behavior strongly depends on the situation. Thus, not only the mean of the
actions are learned, but also the context-dependent or so-called heteroscedastic variance,
which is difficult to model by hand. A validation plot depicting the learned mean and
variance and the corresponding ground truth trajectory can be seen in Fig. 3.4, showing
the strong context-dependency of the variance.

In contrast to the rule-based model, this deep learning-based model does not depend
on a maneuver intention. The reason for that is, that it is hard to obtain ground truth
data for a maneuver intention, as it is likely that a driver changes its intended maneuver
over time. The route intention, however, is assumed to be constant, i.e., drivers do not
continually redecide on whether to turn left or right. This allows to automatically label
the ground truth route intention for all time steps after having observed which route an
agent actually followed. This thesis argues that this assumption is mild for the route
intention, but might be problematic for other types of intentions such as the maneuver
intention. Leaving out the explicit modeling of maneuver intentions still allows to predict
either merging (and crossing) before or after other agents, but that decision is handled by
the neural network rather than being predefined by the maneuver hypothesis on which
the rule-based model is conditioned on. The maneuver is thus learned implicitly and is
given by the predicted trajectory as a result of the forward simulation of the learned
actions. Conditioning the neural network on the maneuver intention without knowing
the ground truth could be achieved with so-called learning from incomplete data with
methods such as expectation maximization (EM). For more information, the interested
reader is referred to [42], [43].

The conditioning on a driver’s route intention mainly serves two purposes: Firstly,
it reduces the neural network’s prediction task complexity by eliminating the need to
predict for multiple route hypotheses in a joint manner and thus to cope with the multi-
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Figure 3.4. Heteroscedastic variance in human driver behavior: depicted is a validation plot of a
learned model with mean and variance (green) and one trajectory of the validation dataset
(blue). It can be seen that the variance of the learned actions strongly depends on the
situation. Previously published in [168]. © IEEE 2019

modality induced by different route options. Furthermore, the fact that the number of
possible routes is varying over time (depending on the road topology) makes it difficult
to model all routes together with a neural network of fixed input and output size. In our
case, the DBN identifies the various different route intentions first and then conditions
the neural network on a specific intention to query the respective action distribution. The
second purpose of conditioning on the route intention is that it allows to define relevant
features along the planned path, such as the upcoming road curvature or longitudinal
distances to stop lines, and to build simplified relationships between agents on complex
road layouts. This enables the use of simple input and output representations, such
as in our case a list of route-conditioned input features (see also Sec. 3.2.3.2) and the
parameters of a Gaussian distribution as output. The integration of the neural network-
based action model into the DBN presented in Chapter 2 is depicted in Fig. 3.5.

In order to be able to train a deep neural network-based action model, the ground
truth actions (so-called targets) and corresponding input features have to be derived
from recorded scenes and a suitable loss function has to be defined, which is explained
in the following sections.

3.2.3.1 Target Generation

To determine the targets of the learning task, i.e., the “ground truth” actions of the
agents, we first need to define the inverse of the kinematics bicycle model, which allows
the calculation of the acceleration and steering angle given two consecutive kinematic
states xt and xt+1. Given a sequence of states, the targets can then be determined. As
the system of equations for the inverse model is over-determined, the components of x
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Figure 3.5. Embedding of neural network action model (right) into DBN (left), exemplarily depicted
for one agent. The action of an agent depends on its route intention, the states of the
surrounding agents, and the map, which are used to determine the input features of the
neural network. The output of the network is a Gaussian action distribution comprising
acceleration a and steering angle δ. Previously published in [168]. © IEEE 2019

and y are ignored and it is relied on v and θ to generate the targets:

at =
vt+1 − vt

∆T
(3.8)

δt = sgn

(
∆θ

v̄

)
arctan

 lf + lr√
( v̄

∆θ )2 − l2r

 , (3.9)

with v̄ = vt+vt+1

2 being the mean velocity between two time steps. The steering angle
is considered to be zero if an agent stands still or the term under the square root is
negative. Before calculating the targets, the data sequences are resampled to ∆T = 0.2 s
by linearly interpolating the kinematic states and features. To reduce the negative im-
pact of observation noise during the target generation, the velocity and yaw angle are
smoothed with moving median and moving mean (both with window size 1 s) before
applying the inverse motion model (see first plot of Fig. 3.6 for a comparison of recon-
structed acceleration with filtered and unfiltered velocity). To analyze the accuracy of
the motion model, recorded trajectories can be reconstructed (using the initial kinematic
state, the actions and the forward motion model) and compared to the original trajecto-
ries. Furthermore, this reconstruction allows to derive the vehicle model parameters lf
and lr by searching for the minimum reconstruction error of a sample trajectory using
exhaustive search. A typical example of the original data and the reconstructed states
can be seen in the second plot of Fig. 3.6.

For the learning procedure, the smoothed trajectories (and corresponding targets) and
the actually driven routes are assumed to be ground truth, thus learning can be done
with complete data without the need to utilize methods for incomplete data such as EM.
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Figure 3.6. First plot: determination of acceleration using inverse motion model with unfiltered (blue)
and filtered (green) velocity and yaw-angle (real data). The filter applies a moving me-
dian and a moving mean with window sizes 1 s. Second plot: corresponding motion
reconstruction (green) and original motion (blue). As the reconstruction with unfiltered
velocity and yaw-angle does not differ noticeably from the filtered one, it is not depicted.
Previously published in [168]. © IEEE 2019

3.2.3.2 Feature Generation

The input features of the neural network summarize the current situational context
including the geometry of the road, the traffic rules, the road infrastructure, and the
most relevant surrounding agents, enabling to learn the situation-dependent behavior of
human drivers. Most of these features are conditioned on a specific route intention of an
agent. The route intention itself is however not an input feature to the neural network,
but rather it is used to derive a set of features that uniquely represents the specific
route. These route-conditioned features describe for example the shape of the route
(e.g., upcoming curvature and lane width), longitudinal distances to things like traffic
lights, stoplines or the preceding agent, and the prevailing traffic rules such as the speed
limit. The route of an agent furthermore enables to set it into relation to other agents
and their respective possible future routes, allowing to define features such as distances
to common conflict areas where their routes overlap (e.g., merge or cross) and which
agent has right of way. The route intention is thus encoded by a multitude of continuous
and discrete features, rather than given by a single discrete option such as “turn right”.
When embedding this neural network into our DBN from Chapter 2, it is possible to
handle arbitrary road layouts with a different number of possible route options, as the
neural network is only queried conditioned on a single route at a time, allowing to always
determine the same set of input features for deriving the action distribution.

In our training data (see Sec. 6.3), we found that the directly preceding agent and
the closest conflicting agent are the two most influencing agents. In order to reduce
complexity, only these two surrounding agents are included within the feature set used
for our experiments. Considering more and potentially even a varying number of agents

53



3 Behavior Models

Table 3.2
Features of Deep Learning-based Models. Previously published in [168]. © IEEE 2019

Predicted Vehicle

velocity of predicted vehicle V i vi

lateral position in lane dlat,0

Route

curvature values ahead at distances [c0, c5, · · · , cH ]
reasonable acc given curvature ahead acurve

relative angle to point on centerline at distances [φ0, φ1, · · · , φ15]
relative angle to direction of centerline γ0

width of lane w0

Traffic Rules

speed limit vlim

distance to next traffic light dtl

next traffic light state stl

distance to next stop line dstop

distance to next yield line dyield

distance to next intersection dint

whether always right of way at next intersection χalways

Interaction

velocity of preceding agent V p vp

distance to preceding agent V p dp

velocity of closest conflicting agent V c vc

distance V c to conflict area (entry) dcentry

distance V c to conflict area (exit) dcexit

distance V i to conflict area (entry) dientry

distance V i to conflict area (exit) diexit

right of way for conflict χi,c

should be part of future research. A complete list of used features can be seen in
Tab. 3.2. Different combinations of features are tried during evaluation to determine
their importance (see Sec. 6.3).

There are two features that are not self-explanatory, thus they are shortly explained:
The so-called reasonable acceleration given the upcoming curvature acurve is a pre-
computed feature based on domain knowledge. It is intended to subsume the set of
upcoming curvature values and is calculated according to a desired maximum lateral
acceleration. Given this lateral acceleration, we determine the maximum acceleration
for one time step that still allows the agent to brake in time. This heuristic is also used
in the rule-based model for predicting how agents are slowing down depending on the
upcoming curvature (see Sec. 3.1 for more details). The boolean feature χalways specifies
whether an agent does always have right of way on its route at the next intersection (no
matter if other agents are present or not, nor what routes they are going to take). This
feature was added, as agents on priority lanes tend to not slow down before intersections
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at all, whereas agents that might have to yield slow down even in case there are no other
agents around.

As the model is conditioned on the driver’s intended route, this intention has to be
known during training in order to set the features accordingly. It is assumed that the
route intentions are constant, i.e., that drivers do not change their minds about the
routes they desire to follow. This allows to automatically label the route intention in
the training data after observing which routes were actually taken. All tracks of agents
that were lost before they have completely traversed an intersection are disregarded from
training.

3.2.3.3 Loss Function

To be able to integrate the action model into various sampling-based algorithms, it
is supposed to learn a mapping from a deterministic set of features to a probability
distribution over actions. For the sake of problem simplification, the covariance between
acceleration and steering angle is assumed to be zero.

The loss function given the predicted Gaussian with mean µ = [µa, µδ]
> and covariance

matrix Σ = diag(σ2
a, σ

2
δ ) and the targets t = [at, δt]> is set to the negative log likelihood

of the targets given the predicted Gaussian distribution. First, the likelihood is given
by the probability density function of the multivariate Gaussian

fN = (2π)−
k
2 |Σ|− 1

2 exp

(
−1

2
(t− µ)>Σ−1(t− µ)

)
(3.10)

with k = 2 being the dimensionality of the distribution and |Σ| being the determinant
of the covariance matrix. The negative log likelihood can then be derived to

−log(fN ) = −
[
log((2π)−

k
2 ) + log(|Σ|− 1

2 )− 1

2
(t− µ)>Σ−1(t− µ)

]
= log((2π)

k
2 ) + log(

√
|Σ|) +

1

2
(t− µ)>Σ−1(t− µ) (3.11)

As the first term is constant and constant terms do not matter within a loss function,
the actual loss is reduced to

lNLL(µ,Σ, t) = log(
√
|Σ|) +

1

2
(t− µ)>Σ−1(t− µ). (3.12)

The outputs of the neural network corresponding to the variances of the action are
transformed with an exponential function before calculating the loss to guarantee positive
values (i.e., the actual outputs of the network are log(σ2

a) and log(σ2
δ ), respectively). This

loss enables to learn both the mean and variance in a single training procedure.
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In this thesis, two different inference method are proposed and compared in regards of
their accuracy and runtime in the context of driver intention estimation and probabilis-
tic trajectory prediction using the previously presented DBN from Chapter 2. Inference
in a DBN generally falls into the category of recursive Bayesian estimation. Given a
stochastic process that contains both hidden as well as observable random variables,
recursive Bayesian estimation is the process of inferring the probability distributions of
the hidden variables recursively over time. The estimates are derived using Bayesian
statistics given an initial belief, an assumed transition model, an assumed measurement
model, and measurements of the observable quantities. There are various different pos-
sibilities to solve a recursive Bayesian estimation problem, depending on the type of
distribution and the transition and measurement models. A detailed overview of dif-
ferent possible inference algorithms for specific variants of DBNs has been presented
by Murphy [95]. In the special case of discrete-only hidden variables or when transition
and observation models are conjugate (e.g., linear-Gaussian), exact inference is generally
possible. However, for non-linear DBNs with hybrid state space (i.e., the state consists
of both discrete and continuous hidden variables), such as presented within this work,
approximate inference becomes necessary.

In the remainder of this section, a sequential Monte Carlo (SMC)-based method and a
multiple model unscented Kalman filter (MM-UKF)-based method are presented. This
chapter is based on the author’s previous publications [166] and [167].

4.1 Fundamentals

4.1.1 Probability Theory

To be able to derive the inference methods for the presented DBN, first some funda-
mentals of probability theory are revisited, namely Bayes’ rule, the theorem of total
probability and the Markov assumption. Note that the variable names of this and the
subsequent section are chosen to be in line with prevalent literature and do not corre-
spond to the variables used throughout the rest of this thesis. Given the definition of
conditional probability

p(x|y) =
p(x, y)

p(y)
, (4.1)
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it is possible to derive Bayes’ rule, which relates a conditional probability p(x|y) to its
inverse p(y|x), as

p(x|y) =
p(y|x)p(x)

p(y)
, (4.2)

with p(y) > 0. In robotics or machine learning, p(x) is typically denoted as the prior
probability distribution, y as the data, and p(x|y) as the posterior probability distribu-
tion. It is possible to condition Bayes’ rule on another random variable as follows:

p(x|y, z) =
p(y|x, z)p(x|z)

p(y|z) . (4.3)

The theorem of total probability also follows from the definition of conditional proba-
bility and is given for the continuous case by

p(x) =

∫
p(x|y)p(y)dy. (4.4)

For the discrete case, one sums over all the possible values of y instead of integrating
over them.

The state of a stochastic process xt is denoted complete (complete state assumption),
if no variables prior to xt may influence the stochastic evolution of future states (unless
this dependence is mediated through the state xt). If the state is complete, the process
follows the Markov property, i.e., the subsequent state xt+1 is conditionally independent
of previous states xt−i ∀i ∈ N+ given the current state xt, or formally

p(xt+1|x0:t) = p(xt+1|xt). (4.5)

Furthermore, if a state xt is complete, measurements zt are independent of all other
quantities given that state, i.e., they only depend on the state of the current time, and
not on any previous states or measurements [137, p. 21]:

p(zt|x0:t, z0:t−1) = p(zt|xt). (4.6)

4.1.2 Recursive Bayesian Estimation

Assume a stochastic process that satisfies the complete state assumption and thus the
Markov property and consists of a hidden state xt and an observable quantity zt as
depicted in Fig. 4.1. Although the true state is not fully observable, the observable
quantity depends on the true state, defined by an observation model zt = h(xt), such
that one can reason about the true state of the process. In recursive Bayesian estimation,
one is generally interested in the belief over the true state xt given all observations
received over time z0:t, mathematically speaking bel(xt) := p(xt|z0:t). Using Bayes’ rule,
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Figure 4.1. Recursive Bayesian estimation with filtering and forward simulation. State transition
model depicted as dashed arcs, measurement model depicted as solid arcs.

the Markov assumption and the law of total probability, it follows that

bel(xt) := p(xt|z0:t)
Bayes

=
p(zt|xt, z0:t−1) p(xt|z0:t−1)

p(zt|z0:t−1)

= η p(zt|xt, z0:t−1) p(xt|z0:t−1)

complete state/Markov
= η p(zt|xt) p(xt|z0:t−1)

total probability
= η p(zt|xt)

∫
p(xt|xt−1, z0:t−1) p(xt−1|z0:t−1)dxt−1

complete state/Markov
= η p(zt|xt)

∫
p(xt|xt−1) p(xt−1|z0:t−1)dxt−1

= η p(zt|xt)
∫
p(xt|xt−1) bel(xt−1)dxt−1 (4.7)

with η being a normalization constant that is independent of x0:t. Instead of calculating
the belief of the complete trajectory at once, the belief of the state is calculated sequen-
tially using a predict and update cycle starting with an initial belief bel(x0) = p(x0).
Each prediction step only uses the previous belief bel(xt−1) and the transition model
p(xt|xt−1) to calculate the predicted belief

bel(xt) := p(xt|z0:t−1) =

∫
p(xt|xt−1) bel(xt−1)dxt−1. (4.8)

Each measurement update uses this predicted belief, the current measurement zt, and
the measurement model p(zt|xt) to generate the updated belief

bel(xt) = η p(zt|xt) bel(xt) = η p(zt|xt) p(xt|z0:t−1), (4.9)

This allows for a low computational cost per time step and enables online filtering
algorithms.

Besides the process of filtering, mathematically p(xt|z0:t), it is possible to use the
given models for prediction, mathematically p(xt+T |z0:t) with T being the prediction
horizon. Having defined the transition model p(xt+1|xt), it is possible to extrapolate the
current belief p(xt) into the future by iteratively applying the transition model without
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incorporating any new measurements. This process is known as forward simulation and
allows to probabilistically predict the trajectory of the complete process for an arbitrary
number of steps, as depicted in Fig. 4.1.

4.2 Sequential Monte Carlo

The presented DBN describes a hybrid, non-linear system with a multi-modal, non-
Gaussian belief. Sequential Monte Carlo (SMC) methods are capable of representing
arbitrary probability distributions and can handle highly non-linear system dynamics,
which make them suitable for any type of DBN. They represent the belief over the
state by a large number of (potentially weighted) deterministic state instances, so-called
samples or particles. Areas of high probability contain more samples (or samples with
larger weights) than areas of low probability. Major advantages of sample-based inference
methods are, that there is no need for differentiation of the transition models and that
one does not have to define the conditional probability distributions analytically, but
only as a function that samples from the desired distribution. This allows to embed
libraries and functions that expect deterministic input and may not be differentiable
(such as for example a lane matching module).

SMC has already been successfully applied for DBN inference in the context of be-
havior prediction, e.g., by Gindele et al. [44]. In this thesis, a standard sequential
importance resample (SIR) particle filter, also known as the bootstrap filter, with low-
variance resampling is utilized.

4.2.1 Approach

Initially, a set of N weighted particles

P0 = {〈S[1]
0 , w

[1]
0 〉, · · · , 〈S

[N ]
0 , w

[N ]
0 〉} (4.10)

is sampled according to the initial measurement Z0 and the map, with S[n] = [X [n], R[n],
M [n], A[n]] representing the complete scene with K agents:

S
[n]
0 ∼ p(X0, R0,M0, A0|Z0,map) (4.11)

= p(X0|Z0) p(R0|X0,map) p(M0|R0, X0,map) p(A0|R0,M0, X0,map) (4.12)

= p(x1
0|z1

0) · · · p(xK0 |zK0 )

p(r1
0|x1

0,map) · · · p(rK0 |xK0 ,map)

p(m1
0|r1

0, X0,map) · · · p(mK
0 |rK0 , X0,map)

p(a1
0|r1

0,m
1
0, X0,map) · · · p(rK0 |rK0 ,mK

0 , X0,map) (4.13)
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Figure 4.2. Exemplary initial sample generation (1-4), motion prediction (5), and particle weighting
(size of particles represents weight) (6), shown for a single agent. Distributions are de-
picted simplified as being one dimensional. One particle represents the complete state
space, i.e., kinematic states, routes, maneuvers, and actions of all agents in the scene.
Previously published in [166]. © IEEE 2018

The corresponding weights are set to w
[n]
0 = N−1. For subsequent time steps, each

particle is predicted according to the transition probability:

S
[n]
t+1 ∼ p(St+1|S[n]

t ,map) (4.14)

= p(Xt|X [n]
t−1, A

[n]
t−1) p(Rt|R[n]

t−1, X
[n]
t ,map) p(Mt|M [n]

t−1, R
[n]
t , X

[n]
t ,map)

p(At|R[n]
t ,M

[n]
t , X

[n]
t ,map) (4.15)

= p(x1
t |x1,[n]

t−1 , a
1,[n]
t−1 ) · · · p(xKt |xK,[n]

t−1 , a
K,[n]
t−1 )

p(r1
t |r1,[n]

t−1 , x
1,[n]
t ,map) · · · p(rKt |rK,[n]

t−1 , x
K,[n]
t ,map)

p(m1
t |m1,[n]

t−1 , r
1,[n]
t , X

[n]
t ,map) · · · p(mK

t |mK,[n]
t−1 , r

K,[n]
t , X

[n]
t ,map)

p(a1
t |r1,[n]

t ,m
1,[n]
t , X

[n]
t ,map) · · · p(aKt |rK,[n]

t ,m
K,[n]
t , X

[n]
t ,map). (4.16)

Due to the conditional independencies between the nodes, the sampling procedure can
be done sequentially, node by node. This sequential procedure of the SMC inference
method is exemplarily depicted for the initial sample generation in Fig. 4.2. Steps 1-4
represent Eq. (4.11). As soon as a new measurement is available, the state is predicted
to the new time step (step 5) and the particle weights get updated according to the
measurement likelihood (step 6):

w̃
[n]
t = p(Zt|X [n]

t ) w
[n]
t−1 (4.17)

= p(z1
t |x1,[n]

t ) · · · p(zKt |xK,[n]
t ) w

[n]
t−1 (4.18)

and normalized

w
[n]
t =

w̃
[n]
t∑N

m=1 w̃
[m]
t

. (4.19)
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state

state

Figure 4.3. Problems of sample degeneracy and sample impoverishment in SMC methods: Top row
shows weighted particles (weight illustrated with diameter) with most particles having
negligible weight as they represent the state poorly. Bottom row shows the set of particles
after resampling with a great loss of diversity, as only two samples have been reproduced
(depicted slightly displaced for improved visualization). Graphic taken and adapted from
[84].

Over the course of tracking, at some point most particles will inevitably end up
with small weights because they represent the state poorly and only few will have non-
negligible weight. This so-called sample degeneracy is caused by inaccurate models and
prediction uncertainty. In order to concentrate the particles in areas of high likelihood
and don’t waste computational power for very unlikely particles, one can employ what
is called importance resampling. The idea of resampling is, that new particles are drawn
with replacement from the existing set of particles according to their weights. Thus,
particles with high weights are more likely to be drawn than particles with low weights,
reducing the sample degeneracy. After resampling, the weights of all N particles are
reset to w[n] = N−1 in order to not introduce bias to the distribution. The resampling,
however, induces loss of sample diversity, and should only be done when necessary to
avoid the problem of sample impoverishment, meaning most of the particles represent
exactly the same values, as depicted in Fig. 4.3. A detailed analysis of these problems
can be found in [84].

In this thesis, low variance resampling [137, p. 110] is utilized, whenever the effective
sample size ESS is lower than N/2, as proposed by [37]:

ESS =
1∑N

n=1(w
[n]
t )2

< N/2. (4.20)

The particle filter algorithm is given in Algorithm 1 and the method of low variance
resampling in Algorithm 2 and Fig. 4.4.

To save computational resources, first, only the kinematic state Xt is sampled ac-
cording to p(Xt|Xt−1, At−1) instead of sampling the complete state space according to
Eq. (4.14). After the measurement update and (potential) resampling, the remaining
variables of the state space Rt, Mt, and At are sampled according to Eq. (4.14). This
is possible as the measurement likelihood is independent of the routes, maneuvers, and
actions given the kinematic states and restricts the computation of routes, maneuvers
and actions to particles that have survived the resampling.
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Figure 4.4. Principle of low variance resampling procedure. Graphic taken and adapted from [137,
p. 111].

Algorithm 1 Particle Filter (adapted from [137, p. 98])

Input Pt−1 = {〈S[1]
t−1, w

[1]
t−1〉, · · · , 〈S

[N ]
t−1, w

[N ]
t−1〉} . set of particles at time t− 1

Output Pt = {〈S[1]
t , w

[1]
t 〉, · · · , 〈S

[N ]
t , w

[N ]
t 〉} . set of particles at time t

1: procedure ParticleFilter
2: Pt = P̃t = ∅
3: for n = 1 to N do . predict and update

4: sample S
[n]
t ∼ p(St|S

[n]
t−1,map)

5: w
[n]
t = p(Zt|S[n]

t ) · w[n]
t−1

6: P̃t = P̃t ∪ 〈S[n]
t , w

[n]
t 〉

7: if resampling desired then
8: for n = 1 to N do . resampling (optional)
9: draw m with probability ∝ wmt

10: Pt = Pt ∪ 〈S[m]
t , 1

N 〉
11: else
12: Pt = P̃t

Algorithm 2 Low Variance Resampling (adapted from [137, p. 110])

Input P̃t
Output Pt

1: procedure Resample
2: Pt = ∅
3: sample r ∼ U(0;N−1) . draw random number between 0 and N−1

4: c = w
[1]
t

5: m = 1
6: for n = 1 to N do
7: U = r + (n− 1) ·N−1

8: while U > c do
9: m = m+ 1

10: c = c+ w
[m]
t

11: Pt = Pt ∪ 〈S[m]
t , 1

N 〉
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The probability of a set of intentions (Rt,Mt) is determined by the proportion of the
sum of the weights of the respective particles to the sum of the weights of all available
particles after the measurement update of a given time step

p(Rt,Mt) =

∑
j∈J w

[j]
t∑N

n=1w
[n]
t

, J :={j | R[j]
t =Rt,M

[j]
t =Mt}. (4.21)

The intention of a single agent can be derived through marginalization of the belief.
For the prediction into the future, steps 1-5 can be repeated without incorporating new
measurements, predicting one time step at a time. This forward simulation can be exe-
cuted until an arbitrary desired prediction horizon T resulting in the predicted particle
distribution Pt+T . This prediction incorporates the already determined probabilities of
the different intention hypotheses and accounts for the interaction between all agents in
the state space.

Depending on the prediction requirements, this forward simulation does not necessar-
ily have to be done for each particle, but can also be done for only a subset of particles
in order to reduce complexity. One way to choose this subset is to create one particle
per route and maneuver combination (R,M) of all agents and set its kinematic state
to the mean kinematic state given this set of intentions. This allows to keep the high-
level intention uncertainty and the multi-modality of the prediction distribution while
neglecting the low-level action uncertainty. For this purpose, for each available combi-
nation (R,M) within the set of particles P, the mean kinematic state is calculated and
one multi-agent trajectory is generated and weighted with the corresponding probabil-
ity p(R,M). Due to the interdependencies of multiple agents’ future trajectories and
the strong impact of the intentions on the future behavior, the combinatorial aspect
of the high-level intentions should not be neglected within the prediction of the scene
development.

4.3 Multiple Model Unscented Kalman Filter

To account for non-linear system dynamics and hybrid state spaces, SMC methods are
often the inference method of choice. They come with the advantage of being able to
represent arbitrary distributions (hybrid, non-Gaussian, multi-modal) and being appli-
cable to highly non-linear systems. However, in state estimation problems with high
uncertainty in the belief, e.g., as a result of unknown intentions, varying human behav-
ior, and noisy measurements, they typically suffer from either high complexity or low
accuracy, depending on the number of samples used. Many particles may be needed to
approximate the belief appropriately and to reduce the variance caused by randomness in
the sampling process. Furthermore, they suffer from the problems of sample degeneracy
and sample impoverishment.

Another way of representing a multi-modal belief is by defining distinct modes of
high probability and approximate each mode by a closed-form distribution such as a
Gaussian. The main reasons for the multi-modality of the future development of a traffic
situation are the different possible high-level intentions of all agents, i.e., their desired
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Figure 4.5. Estimated belief represented by a mixture of Gaussians (depicted as ellipses in vehicle
color) and corresponding sigma points (depicted as green dots) and interaction-aware tra-
jectory prediction (depicted as lines in vehicle color) for the different possible intentions.
Previously published in [167]. © IEEE 2018

routes and maneuvers. In order to circumvent the aforementioned disadvantages of
SMC, this section presents a multiple model unscented Kalman filter (MM-UKF)-based
inference method, which approximates the belief with a mixture of Gaussians. For each
combination of high-level intentions, one mixture component is created. This method
aims to reduce complexity, while still keeping the benefits of sample-based evaluation of
complex, non-linear, and non-continuous transition models.

In contrast to the extended Kalman filter (EKF) which linearizes the transition func-
tions using the first-order Taylor approximation, the unscented Kalman filter (UKF)
does not require the differentiation of transition models, making it simpler and more
widely applicable [95]. The UKF directly uses the non-linear transition and measure-
ment functions, but approximates the Gaussian belief by a set of deterministically chosen
samples. These so-called sigma points are then transformed using the non-linear func-
tions and a new predicted or corrected Gaussian is calculated based on the transformed
point estimates. The transition models proposed in this thesis include non-differentiable
parts such as lane-matching, which forbids the use of EKFs. Furthermore, UKFs have
often been shown to be superior to EKFs, especially in estimating the variance of the
Gaussian belief [4], [62], [150]. Andersen et al. [4] compared EKFs, UKFs, and SMC
methods, highlighting the benefits of UKF-based inference. Bitzer [23] conducted an
in-depth analysis of UKF and SMC, demonstrating that the advantages and disadvan-
tages of both inference methods in terms of complexity and accuracy depend on the
dimensionality of the state space and the problem at hand. UKFs come with similar
advantages as SMC methods, as they are also using samples of the belief to evaluate
the transition models. A typical scenario is depicted in Fig. 4.5, showing the Gaussian
mixture distribution and the corresponding sigma points.
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Figure 4.6. Example of how different modes may result in different clusters of the continuous state
(here shown as Gaussians of the positions) at a future time step, due to the interdepen-
dencies between agents. The routes are abbreviated as straight, left, and right. Previously
published in [167]. © IEEE 2018

4.3.1 Approach

The existence of different route and maneuver hypotheses generally leads to multi-
modality in the predicted trajectory distribution. As agents interact with each other
and therefore their trajectories become interdependent, the discrete intentions of one
agent may also lead to multi-modality in the prediction of another agent. Fig. 4.6
depicts a typical motion prediction situation illustrating this combinatorial aspect: de-
pending on the intended route and maneuver of agent V A, agent V B may completely
change its future behavior and vice-versa, resulting in different high probability clusters
of their continuous states. For example, when V A turns left, V B has to wait longer at
the intersection before it can turn left than when V A would have driven straight.

As unscented Kalman filters can only represent unimodal and continuous distribu-
tions (multivariate Gaussians), but the presented DBN has a hybrid state space with
a (potentially) multi-modal belief, this section proposes to use multiple models, repre-
senting the discrete variables by the different modes of the MM-UKF. To account for
interdependencies between multiple agents, all agents are included in the state space
of the DBN. Thus, the discrete route and maneuver intentions of all agents have to be
considered in a combinatorial manner: each of the possible combinations of intentions of
all agents (R,M) is represented by one mode, whereas the continuous states (X,A) are
represented by one multivariate Gaussian given each mode. Thus, the overall belief is
represented by a mixture of Gaussians, where each mode forms one mixture component.

4.3.1.1 Multiple Models

Given the route and maneuver of each agent, the evaluation data of this thesis suggests
that the belief can reasonably be approximated by a single multivariate Gaussian. Thus,
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Figure 4.7. MM-UKF inference exemplarily shown for a single vehicle with three different modes:
(r1,m1), (r2,m2), (r2,m3). Distributions are depicted simplified as being one dimensional.
One UKF represents the complete state space, i.e., kinematic states, routes, maneuvers,
and actions of all agents in the scene. To account for the non-additive process noise
induced by the uncertain actions, the sigma points (depicted as little crosses) are gener-
ated using an augmented state that includes x and a (see action distribution after step
4). The steps of the algorithm are marked from 1 to 6. Previously published in [167].
© IEEE 2018

one UKF represents one possible combination of route and maneuver intentions of all
agents. The number of possible combinations defines the number of modes and is given
by the multiplication of the number of intentions of the single agents

|C| =
K∏
i=1

∑
r∈Ri

∑
m∈Mi

r

1, (4.22)

with C being the set of all possible combinations of intentions of all agents. Hence, the
belief of the DBN is tracked using a set of |C| weighted UKFs

U = {〈U1, p(U1)〉, · · · , 〈U |C|, p(U |C|)〉}. (4.23)

Each UKF U j represents the complete scene S = [X,R,M,A] including all agents and
has attached the corresponding mode probability p(U j).

The general prediction and update cycle of the MM-UKF is exemplarily depicted in
Fig. 4.7: Initially, a multivariate Gaussian distribution of the kinematic state X0 is
derived from the first measurement Z0 according to p(X|Z) (step 1). Then, for each
agent, the set of possible routes R0 and the set of possible maneuvers M0|r for each
possible route r ∈ R0 is determined given the agent’s own state, the map, and all other
agents’ states (step 2-3). For each possible combination of (Rj0,M

j
0 ) of all agents, one

UKF U j0 is created and initialized to the corresponding Rj0 and M j
0 and the Gaussian

distribution Xj
0 = X0. Furthermore, it is assigned with the mode probability

p(Rj0,M
j
0 ) = p(U j0 ) = p(Rj0|Xj

0 ,map) p(M j
0 |Rj0, Xj

0 ,map), (4.24)
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which depends on the route and maneuver priors, which are assumed to be uniformly
distributed in this thesis.

For each UKF, the continuous part of the belief U jt (which is assumed to be Gaussian)
is temporarily represented by sigma points and predicted to U jt+1|t (step 4-5). The pre-
dicted sigma points are used to determine the predicted Gaussian which is then updated
with the measurement to U jt+1 (step 6). This procedure of the predict and update cycle
of a single UKF is explained in more detail in the next section. The probability of each
mode is updated according to the measurement likelihood L(Xj

t+1|t|Zt+1):

p(U jt+1) =
p(U jt )L(Xj

t+1|t|Zt+1)∑|C|
l=1 p(U

l
t)L(X l

t+1|t|Zt+1)
. (4.25)

The Gaussian mixture that represents all modes, i.e., possible combinations of routes and
maneuvers of all agents, is then given by the set of UKFs and corresponding probabilities.
In case the number of possible combinations is too high to be computationally feasible
for real time application, it is possible to only select a subset of modes in the beginning
based on their prior probabilities and replace modes of low likelihood with new modes
over time. This concept is similar to the resampling process of the SMC method, but
it corresponds to a sampling without replacement, as one UKF already contains the
information about the uncertainty (i.e., there is no benefit in tracking the same mode
multiple times).

As new agents appear (i.e., they are represented for the first time in a new measure-
ment) or new routes or maneuvers emerge due to the route horizon reaching a route
split or a new conflict area, the existing modes are duplicated accordingly in order to
represent the new agents or the new possible intentions, and the probabilities are split
uniformly. When routes or maneuvers become impossible or when agents disappear, the
corresponding modes of the MM-UKF are removed or merged. In addition, unlikely
modes can be disregarded to decrease runtime complexity (however, this option was dis-
abled within the evaluation chapter of this dissertation to ensure a fair comparison with
the SMC-based inference). As the number of modes may change over time, the proposed
inference method belongs to the type multiple model with variable structure [85]. For
the evaluation of the MM-UKF, the intentions of a driver are modeled as constant over
time, i.e., the probability of switching of the current mode is assumed to be zero. To
allow for a possibility of mode switches, an interacting multiple model filter could be
applied as described in [14, pp. 24-29].

4.3.1.2 Single Model UKF

Generally, a UKF determines a deterministically chosen set of sigma points that capture
the mean and covariance of the original distribution and propagates them through the
non-linear transition functions of the prediction and update steps. Then, a new Gaussian
distribution is fitted to the resulting transformed points. As in the case of this thesis the
measurement is Gaussian and the measurement function is linear, sigma points are only
utilized for the prediction step to be able to capture the non-linear system dynamics,
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Figure 4.8. Estimated belief and annotations for the Gaussians of the last posterior, the current
prior and current posterior as well as the sigma points used for the prediction step. The
posterior of the last time step and the prior of the current time step are drawn at lower
height to improve visualization. Previously published in [167]. © IEEE 2018

whereas the measurement update is equivalent to the one of a standard Kalman filter.
This procedure is depicted in Fig. 4.8 and will be explained in the remainder of this
section. For the sake of brevity, the superscript (·)j denoting the respective mode is
omitted within this section as the steps are identical for any mode of the MM-UKF.

Typically, a set of 2L + 1 sigma points is chosen, with L being the dimensionality of
the state, such that one sigma point is placed at the mean of the Gaussian state and
the others are symmetrically spread around it to capture the variance. If the system
is affected by non-additive process noise, the mean estimate of the kinematic state x̂
and the covariance P of the Gaussian have to be augmented by one dimension per non-
additive noise term resulting in x̂aug and Paug, such that it can be accounted for by
the sigma points. Additive noise, on the other hand, can simply be added to the fitted
Gaussian after the transformation. Thus, for additive noise, the state and covariance do
not have to be augmented further.

In this work, for each agent, the augmentation accounts for the non-additive pro-
cess noise terms given by the uncertain actions of each agent. The augmented state
and covariance thus comprise the kinematic state x and the action a, resulting in
x̂iaug = [x̂i

>
µia]> and P i

aug = diag(P i,Σa). where µa is the mean and Σa the covari-

ance of the function p(a|X̂, r,m,map) which is defined by the used behavior model
(see Chapter 3). The overall augmented distribution consisting of all K agents is
thus given by a Gaussian with mean X̂aug = [x̂1

aug, · · · , x̂Kaug]> and covariance Paug =

diag(P 1
aug, · · · ,PK

aug).

Various types of action models can be applied with this UKF. As both models we
present in Chapter 3 consist of a two-dimensional action vector, the following equations
assume an augmented state of size 4 + 2. For K agents, the state thus has a size of
L = K(4 + 2), resulting in a total of 2L+ 1 = 12K + 1 sigma points being created. The
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sigma points are given by

χ0
t = X̂aug,t (4.26)

χit = X̂aug,t +

(√
(L+ λ)Paug,t

)
i

, i = 1, . . . , L (4.27)

χit = X̂aug,t −
(√

(L+ λ)Paug,t

)
i

, i = L+ 1, . . . , 2L, (4.28)

with
(√

(L+ λ)Paug,t,

)
i

being the ith column of the matrix square root of (L+ λ)Paug,t.
After their creation, each sigma point χit is propagated through the transition function
of the kinematic state which is defined by the behavior model (step 5 of Fig. 4.7). The
resulting sigma points χit+1|t are then used to derive the predicted Gaussian with mean
and covariance

X̂t+1|t =

2L∑
i=0

W i
sχ

i
t+1|t (4.29)

Pt+1|t = Q+
2L∑
i=0

W i
c [χ

i
t+1|t − X̂t+1|t][χ

i
t+1|t − X̂t+1|t]

> (4.30)

with the state and covariance weights

W 0
s =

λ

L+ λ
, W 0

c = W 0
s + (1− α2 + β),

W i
s = W i

c =
1

2(L+ λ)
, i = 1, . . . , 2L (4.31)

and λ = α2κ− L. As the measurement noise is Gaussian and the measurement function
is linear, the measurement step is performed according to the standard Kalman filter
(step 6), correcting the mean and covariance of the belief without the need of utilizing
sigma points. The measurement update further allows the determination of the mea-
surement likelihood L(Xj

t+1|t|Zt+1) of the specific mode, which is used to update the
mode’s probability.

The choice of how far to spread sigma points away from the mean is extensively
discussed by Bitzer [23]. The author recommends the selection of sigma points that are
not too close to the mean because otherwise, nonlinear effects away from the mean are
not accounted for, although this may be required by the actual spread of the distribution.
In this thesis, best results could be achieved when choosing what the author refers to as
the Gauss set which corresponds to the parameters being set to α = 1, β = 0, κ = 3.

The forward simulation of the MM-UKF is handled similarly to the one of the SMC
method. For each UKF and thus for each mode, one multi-agent trajectory is generated
and weighted with the corresponding probability p(U jt ).
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4.4 Combinatorial Complexity

The trajectory prediction of multiple interacting agents, each having multiple hypotheses
(or intentions), is combinatorial by nature. Specifying which agents are going to interact
with each other in the near future and which aren’t is cumbersome and error-prone, as
there are often chains of dependencies that are hard to foresee. Thus, it is impractical
to divide the set of agents into non-interacting subsets. Including all agents in one DBN
(as proposed previously) allows to model all potential interactions and predict the scene
in a combinatorial manner. However, the number of possible intention combinations
|C| in this full combinatorial model grows exponentially with the number of considered
agents. It is given by the multiplication of the number of single agent intentions for all
K agents:

|C| =
K∏
i=1

∑
r∈Ri

∑
Mi

r

1. (4.32)

For the special case of each agent having the same number of possible routes |R| and
the same number of possible maneuvers |M| given each route, mathematically

|R| = |Ri|, |M| = |Mi
r| ∀i ∈ [1,K],∀r ∈ Ri, (4.33)

this can be simplified as

|C| = (|R||M|)K . (4.34)

In complex and crowded traffic situations, the enumeration and the tracking of all these
combinations quickly becomes computationally infeasible. Explicitly considering all of
these combinations thus often limits estimation and prediction algorithms to either non-
real-time applications or to scenarios with only few agents having few distinct hypotheses.
Furthermore, subsequent software modules such as ego-vehicle behavior generation might
also be unable to cope with all possible combinations. Thus, reasonable pruning is of
high importance.

4.4.1 Pruning in Full-Combinatorial DBN

As the number of hypotheses that can be tracked in real-time is limited, it can be
necessary to only consider a subset of all combinations in complex situations. One way
of choosing this subset is by initially picking hypotheses based on their prior probabilities,
whereas all other combinations are neglected at first. However, for a high number of
possible combinations (and insufficient number of tracked hypotheses), the probability
that the correct combination has also been picked only based on prior information can
be rather low, as demonstrated with the following exemplary calculation:

Assume a complex traffic situation with ten agents, each having three different routes
and two maneuvers given each route, such that each agent has six distinct high-level
intentions in total. The total number of possible combinations is |C| = 610 ≈ 6 ·107. The
maximum number of tracked hypotheses in parallel to still meet the runtime require-
ments depends on the complexity of the inference method (e.g., SMC, MM-UKF), the

71



4 Inference Methods

used transition models (e.g., rule-based, neural network-based), the desired prediction
horizon and the number of agents to be predicted. If we assume about 1000 hypotheses
can be tracked in parallel, the probability of initially also picking the correct hypothesis
(considering a uniform prior) is only 0.001654%. Therefore, replacing unlikely combina-
tions with more likely hypotheses is key to successful long-term tracking and estimation.
Over the course of tracking, hypotheses that became less likely can gradually be replaced
with new, so far untracked ones. Such a pruning method can be employed by the pre-
viously presented full-combinatorial DBN for both the SMC method (within the initial
particle sampling and resampling steps) and the MM-UKF method (within the initial
mode selection and replacing of modes steps), allowing it to handle more complex urban
scenarios despite runtime limitations.

One downside of this method, however, is that one does not know which of the un-
tracked hypotheses is the most likely given the past observations, as they have not been
tracked yet and their posterior probabilities have not been estimated. Thus, the re-
placement of unlikely hypotheses with untracked ones can only be done based on prior
probabilities or at random. Therefore, it stands to reason that determining relevant
combinations in a more informed manner without the need of tracking all possible com-
binations is needed.

4.4.2 Interacting Single-Agent DBNs

As the actions of the single agents are modeled to be conditionally independent, each
agent can be predicted on its own for one time step given the current kinematic states
of all other agents. This allows to divide the filtering problem into multiple interacting
single-agent estimators that share statistics about their agents’ current kinematic states.
For each agent, one DBN tracks only the belief of this single agent while incorporating
information about the pose and velocity of all other agents needed to determine the
respective interaction-aware actions. After each time step, these shared statistics are
updated according to the respective single-agent DBNs’ updated state. Thus, instead
of estimating the intentions in a combined manner (e.g., V i turns right while V j turns
left), the intention probabilities of the single agents are determined individually (e.g., V i

turns right independently of what other agents are going to do). This allows to greatly
reduce tracking complexity while still accounting for possible interactions between any
of the considered agents.

The following sections shows how based on the estimated single-agent probabilities, the
most relevant combinations of the multi-agent setting can be determined in an informed
way without the need of explicitly deriving and tracking all possible combinations. These
multi-agent combinations can then be simulated forward to generate the most likely
interaction-aware probabilistic scene developments in a combinatorial fashion again.

4.4.2.1 Filtering with Interacting Single-Agent DBNs

For each agent, one DBN is created which estimates the agent’s kinematic state and
intentions over time. In order to account for possible interaction when determining the
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action of an agent, the kinematic states of the other agents have to be provided to
this DBN. In each time step, each single-agent filter thus broadcasts a statistic about
its agent’s pose and velocity to the other filters. This statistic consists of the mean
kinematic state given the most likely route and maneuver of the agent. As the route and
maneuver are the strongest causes for multi-modality, the belief over the kinematic state
given a specific route and maneuver intention stays mostly unimodal. Thus, the mean
given a route and maneuver is actually a representative statistic, in contrast to, e.g.,
the mean over all possible routes and maneuvers, which for example might be located in
between two lanes.

It has to be noted, that these statistics do not incorporate the prevailing uncertainty
in the kinematic states of the other agents, which is in fact neglected within the filtering
stage. However, as the kinematic states can be measured with low noise and is filtered
over time, their uncertainty is rather small compared to the intention and action uncer-
tainty. The main uncertainty in the filtered state (at the current time step) is in fact
given by the agents’ intentions, as intentions cannot be measured directly but are esti-
mated indirectly given uncertain behavior models and measurements of the kinematic
state. For the one-step predictions needed for filtering, the intentions of other agents are
modeled to be irrelevant given their kinematic states (cf. Fig. 2.1).

Within the single-agent DBNs, the correlation between the intentions of multiple
agents is not determined. For the measurement update, the correlation between the
states of multiple agents is ignored as well. Although using this statistic is a strong
simplification, the evaluation indicates that it still results in a reasonable approximation
of the full combinatorial solution.

After each prediction step, the kinematic states and the intention probabilities are
updated for each agent according to the new measurement. This allows to continuously
track all single-agent hypotheses with linear complexity and determine the most likely
single-agent intentions (regardless of the intentions of all other agents). The number of
hypotheses to be tracked using the single-agent DBNs (again, given the same number of
possible routes and maneuvers for all agents) is given by

|C| =
K∑
i=1

∑
r∈Ri

∑
m∈Mi

r

1 = |R||M|K, (4.35)

which is linear in the number of considered agents compared to the exponential com-
plexity of the full combinatorial tracking. An illustration of the tracking complexities of
the full-combinatorial filter and the single-agent filter is shown in Fig. 4.9.

4.4.2.2 Forward Simulation of Most Likely Combinations

As the actions of multiple agents might become interdependent for prediction horizons
of more than one time step, the forward simulation still has to be executed in a combi-
natorial fashion: The intentions of an agent will affect its future kinematic states and in
turn may also affect the future actions of other agents (as they depend on the kinematic
states of all agents). Thus, all agents’ intentions need to be considered during forward
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(a) Full combinatorial: (|R||M|)K combinations. (b) Single-agent: |R||M|K combinations.

Figure 4.9. Tracking complexities of the full-combinatorial and the single-agent models for the special
case of each of the K agents having the same number of |R| routes and |M|maneuvers per
route (here K = |R| = |M| = 2). For subfigure (b), the most likely single agent intentions
are marked with circles.

simulation and a recombination of the single-agent filters is necessary. The number of
possible combinations to be predicted is still the same as within the full combinatorial
DBN (|C| = (|R||M|)K), which might be too many to allow for real time application.
But using the single-agent intention probabilities, it is possible to draw conclusions about
the likelihood of the combinations, allowing for an informed selection (opposed to a ran-
dom one or solely based on priors). A subset of all possible combinations can be chosen
to reduce computational costs without the need to explicitly track all hypotheses. As the
correlation between intentions has been neglected within the single-agent filtering stage,
the recombination is done assuming independence of the intentions of different agents.
Evidently, this implies that the recombination probabilities do not necessarily coincide
with the actual combination probabilities (if tracked in a full-combinatorial fashion).

For the sake of clarity, the different types of intentions of an agent are subsumed
within the generalized intention ι of an agent. It specifies all intention types of interest
in a combined manner, such as route and maneuver intentions in this work. For ex-
ample, if there are two possible routes and two maneuvers for the first route and only
one maneuver for the second route, then there are three different generalized intention
possibilities ι1 = (r1,m1), ι2 = (r1,m2), ι3 = (r2,m1). Each agent V i has an unknown
intention ιi which is part of the set of possible distinct intentions Ii = {ιi1, . . . , ιi|Ii|}.
The estimated probability of an intention ιij is denoted as p(ιij). For each agent, the

probability distribution over all intentions is given by p(ιi) = [p(ιi1), . . . , p(ιi|Ii|)]
>.

A combination ζj ∈ C of intentions of agents [V 1, . . . , V K ] describes a vector of gener-
alized intentions of all agents ζj = [ι1

ζ1
j
, . . . , ιK

ζKj
], with the indices ζij ∈ {1, . . . , |Ii|}. The

estimated probability of such a combination is given by

p(ζj) = p(ι1ζ1
j
)p(ι2ζ2

j
) · · · p(ιK

ζKj
), (4.36)

assuming independence between the intentions of different agents. An example of the
recombination of the most likely hypotheses based on the estimated single-agent proba-
bilities used for the forward simulation is illustrated in Fig. 4.10.

For improved readability, the following algorithm only uses the respective indices of
the generalized intentions ζj = [ζ1

j , . . . , ζ
K
j ] to uniquely identify a combination, with
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agents
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Figure 4.10. Forward simulation of n (here n = 4) most likely combinations for two agents with
single-agent intention probabilities p(ι1) = [0.4, 0.3, 0.2, 0.1] for the left agent and p(ι2) =
[0.3, 0.1, 0.5, 0.1] for the right agent (intentions ordered from left to right). The resulting
most likely combinations are given by ζ1 = [ι11, ι

2
3], ζ2 = [ι12, ι

2
3], ζ3 = [ι11, ι

2
1], and

ζ4 = [ι13, ι
2
3].

Table 4.1
Single-Agent Intention Probabilities and Corresponding Most Likely Combinations

(a) Single-Agent Probabilities

V 1 V 2 V 3 V 4

p(ι1) 0.7 0.6 0.4 0.5
p(ι2) 0.2 0.3 0.3 0.2
p(ι3) 0.1 0.1 0.3 0.2
p(ι4) - 0.1 - 0.1

(b) Most Likely Combinations

Combination Probability

ζ1 = [1, 1, 1, 1] p(ζ1) = 0.0672
ζ2 = [1, 1, 2, 1] p(ζ2) = 0.0504
ζ3 = [1, 1, 3, 1] p(ζ3) = 0.0504
ζ4 = [1, 2, 1, 1] p(ζ4) = 0.0420
...

...
ζ144 = [3, 4, 3, 4] p(ζ144) = 0.0003

each index representing the intention of the respective agent V i. In order to determine
the n most likely combinations, a graph search in the space of possible combinations (or
intention indices) C is applied. For this purpose, in a first step, the intentions of the single
agents are sorted by descending probability. The combination of highest probability is
directly given by ζ1 = [1, · · · , 1]. Given a specific combination, a child relation is defined
by having exactly the same indices except for a single index that is incremented by one
(e.g., [2, 1, 3, 2] is a child of [2, 1, 3, 1]). The function children(ζ) determines the set of
all possible children of ζ, which form a valid combination of intentions (no index is out
of range). As the intentions of the single agents are sorted by descending probability, a
child cannot have higher probability than its parent:

∀ζchild ∈ children(ζ) : p(ζchild) ≤ p(ζ) (4.37)

Thus, in order to find the best descendant of any combination, it is sufficient to only check
its direct children. This allows to find the n most likely combinations without the need
to calculate the probabilities of all possible combinations (which on its own, although a
simple calculation, might already fail to meet runtime requirements). An example of this
procedure is depicted in Tab. 4.1 with the sorted single-agent intention probabilities and
the resulting most likely combinations. The corresponding search algorithm to determine
the n most likely combinations can be found in Algorithm 3.
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The main advantages of the single-agent intention estimation and the presented re-
combination of hypotheses are as follows: The filtering complexity is reduced from expo-
nential to linear in the number of considered agents. The number of considered intention
combinations for forward simulation can be adjusted according to runtime requirements,
while neglecting the other, less likely hypotheses. This subset of combinations is selected
in each time step in an informed manner based on the estimated single-agent intention
probabilities (instead of selecting at random or solely based on priors), without the need
to track all of them explicitly. This furthermore implies that instead of pruning possible
combinations irrevocably from the beginning or over the course of tracking, pruning is
done in each time step, allowing to reconsider combinations that became more likely
again.

Algorithm 3 Determine n most likely combinations

Input n, pI1 , . . . , pIK
Output Cn = [ζ1, . . . , ζn],
with p(ζa) ≥ p(ζb) ≥ p(ζc), ∀a < b ≤ n, a, b, n ∈ N+, ζc 6∈ Cn

1: procedure GetNMostLikelyCombinations
2: ζ1 ← [1, 1, . . . , 1] . initialize search with best combination
3: Cn ← [ζ1]
4: openset← children(ζ1)
5: i← 1
6: while i < n do
7: if openset 6= ∅ then
8: pbest ← 0
9: for ζ ∈ openset do . find best combination in openset

10: if p(ζ) > pbest then
11: ζbest ← ζ
12: pbest ← p(ζ)

13: Cn ← [Cn, ζbest] . add combination and adjust openset
14: openset← openset \ ζbest

15: openset← openset ∪ children(ζbest) . no duplicates, as is a set
16: i← i+ 1
17: else . no combination left
18: break . early stop, less than n combinations
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5 Interrelated Ego Motion Planning and
Prediction of Surrounding Agents

For an autonomous vehicle to drive in a foresighted and cooperative manner, it is ben-
eficial to incorporate the intended motion of surrounding agents within its own motion
planning. However, as intentions cannot be measured directly and the future motion of
surrounding agents often highly depends on the future motion of the ego-vehicle, this
incorporation has proven challenging. Traditionally, the problems of planning and pre-
diction are handled separately, such that the prediction is assumed to be independent
of the ego-motion and is provided to the motion planning algorithm as a fixed input.
Especially in situations where decisions of traffic participants are highly coupled, the
assumption of independent motion becomes invalid. This motion interdependency of
the ego-vehicle and surrounding vehicles yields specific challenges, as it is not possible
to separate the problems of prediction and planning anymore.

The previously presented estimation and prediction framework is able to both infer
hidden intentions of traffic participants and to predict their trajectories in an interaction-
aware manner. However, a justifiable question remains: how can this prediction and es-
timation approach be used to plan interactive ego-vehicle trajectories by an autonomous
vehicle? This chapter presents two frameworks for combined ego-vehicle motion planning
and prediction of surrounding traffic participants that account for interaction between all
agents using such a Bayesian estimation framework. We include all agents including the
ego-vehicle within the state space to account for possible interaction and the influence
the ego-vehicle’s actions have on the surrounding agents. Both approaches utilize a con-
tinuous state space, are online-capable (i.e., do not need to pre-compute scenario-specific
information) and can handle an arbitrary number of agents and an arbitrary road layout.
Furthermore, they consider uncertainty in measurement and human behavior including
the prevailing multi-modality given by the drivers’ intentions.

The first approach formulates the problem as a partially observable Markov decision
process (POMDP), in which the ego-vehicle is taking actions sequentially to optimize a
reward function and the surrounding agents are predicted sequentially utilizing a DBN
as presented in Chapter 2 with behavior models such as the ones from Chapter 3. Incor-
porating the DBN within the POMDP allows to solve the interrelated problems of ego-
motion planning and the prediction of others in a combined way by utilizing incremental
forward simulation, while accounting for interaction between all agents. POMDPs nat-
urally allow to handle uncertainties in both measurements as well as in the intentions
and behavior of other agents. We employ a point-based solver based on the upper con-
fidence bound (UCB) algorithm, which effectively transforms the problem into a Monte
Carlo tree search, allowing arbitrary belief distributions. To achieve real-time capabil-
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ity, we discretize the action space into discrete accelerations and employ a path-velocity
decomposition based on the lane geometry. Lateral accelerations are optionally added
for allowing lane changes. One major advantage of the POMDP approach is that it
accounts for potential future observations during planning. In the forward simulation
phase (or planning phase), the algorithm knows that observations will be coming in at
certain points and that those observations will yield information about the state of other
agents, allowing additional branching depending on what observation might be received.
For example, at the current time, we might not know whether another agent is going to
turn left or go straight at the next intersection, but we know that in 5 s we will have
observations that allow us to infer the correct route with high probability. This allows
the ego-vehicle to drive less conservatively.

In the second approach, we formulate the problem as a cooperative multi-agent plan-
ning problem that is divided into a high-level plan (a multi-agent maneuver or collective
maneuver based on homotopy classes) and a low-level plan (a multi-agent trajectory)
given a specific homotopy class. The prediction problem is thus transformed into a plan-
ning problem, assuming other agents try to optimize a specific cost function and choose
their actions accordingly. This effectively circumvents the compounding error problem
which can strongly affect machine learning-based single-step models. A Bayesian multi-
ple model filter (similar to the DBN from Chapter 2) is used to estimate the intention
probabilities of the other agents utilizing the derived trajectories as transition models
(opposed to using the one-step behavior models from Chapter 3). The ego-vehicle can
then either comply with the most likely maneuver, or try to convince other agents of a
more beneficial maneuver (e.g., with lower overall costs). In contrast to the POMDP,
this method allows us to optimize in a continuous and two dimensional action space and
thus results in smoother trajectories that can already be executed using model predic-
tive control (MPC). Another major difference is that the multi-agent planning approach
explicitly enumerates the possible homotopy classes and retrieves optimal trajectories
for all of them, whereas the POMDP tries to find the best option implicitly by only opti-
mizing accelerations, not caring about suboptimal options. This makes the multi-agent
planning approach more explicit by providing intention probabilities and costs for all
homotopy options, allowing to select suboptimal maneuvers (given the cost function) to
support other agents’ suboptimal choices (given our intention estimation). One simplifi-
cation is given by how this approach deals with uncertainty: Given a specific homotopy
class, the low-level uncertainty is neglected during the trajectory optimization and only
the mean state is utilized. Gaussian noise is then added to the state to account for
inaccuracies in prediction. This allows for an efficient optimization considering deter-
ministic actions and allows for a computationally cheap Kalman-filter-based intention
estimation, but comes at the cost of less realistic uncertainty estimates. Another differ-
ence is that it assumes cooperation of other agents, as their behavior models are based
on the optimization of a joint cost function. On the one hand, this allows for more
interactive scenarios (e.g., creating lateral space on one’s lane for letting other agents
pass more easily), but also represents a strong assumption which is not always true. A
major downside is that the multi-agent planning approach does not reason about future
observations.
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Thus, both approaches come with their advantages and disadvantages. Given future
advances in computational power, some of the advantages of the multi-agent planning
approach (e.g., continuous action space, longer planning horizon) could also be achieved
with the POMDP approach. Furthermore, by adding cost-terms for making other agents
deviate from their intentions, one could account for deciding for “suboptimal” maneuvers
(w.r.t. the original reward function) to support other agents’ decisions.

Interaction-aware and cooperative motion planning for autonomous vehicles is an enor-
mous open field of research. As the main focus of this thesis is the prediction of sur-
rounding traffic participants, this chapter mainly intends to show how the presented
prediction approach (and similar approaches) can be utilized for ego-vehicle planning,
but does not go into much detail regarding trajectory and behavior planning algorithms
in general. This chapter is based on the author’s previous publications [161]–[163],
[165]. The interested reader is referred to these publications for further information
about interaction-aware motion planning for autonomous vehicles.

5.1 Partially Observable Markov Decision Process

Let’s consider the ego-vehicle, denoted as V 0, to be part of the state space consisting of
all vehicles in a scene V = {V 0, · · · , V K}. At each time step t, the ego-vehicle has to
choose an action a0

t ∈ A0 that transforms its current state x0
t to the subsequent time

step x0
t+1 and for which it receives a reward r0

t+1. To improve readability, the superscript
(·)0 for the action and reward of the ego-vehicle are omitted for the rest of this section.
Broadly speaking, the goal of the ego-vehicle is to optimize its actions in order to receive
high rewards.

We propose two distinct discrete action spaces. The first one employs a path velocity
decomposition and allows for different discrete longitudinal accelerations on the pre-
selected route of the ego-vehicle, resulting in a lane following agent. The second one
additionally allows for discrete lateral velocities in order to enable the ego-vehicle to
conduct lane changes and lateral merges.

In contrast to the other agents, there is no uncertainty in the route intention of the ego-
vehicle and the maneuver is given implicitly by the planned actions that are the result
of the optimization. Thus, the state of the scene is given by S̃ = [X,R,M �0, A�0] ∈ S̃,
with M �0, A�0 denoting the maneuvers and actions of all agents but the ego-vehicle and
X,R the kinematic states and routes of all agents including the ego-vehicle. The map
is assumed to be given deterministically and is not included within the scene state
for improved visualization. As the state of the scene is not fully observable, the ego-
vehicle tracks a belief distribution bt over all possible states at time t, starting with the
initial belief b0. The observations Z ∈ Z and the corresponding observation probability
O(S̃, Z) := p(Z|S̃) = p(Z|X) are analogous to the ones of the DBN in Chapter 2, but
additionally include the ego-vehicle.

The transition probability T (S̃t+1, S̃t,at,map) := p(S̃t+1|S̃t,at,map) defines how the
complete scene state changes over time given the action of the ego-vehicle. The previously
proposed DBN can be utilized to track and predict the scene state by adding the ego-
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S̃ S̃
x0, r0

x1, r1, m1, a1

xK , rK ,mK ,aK

at ∼ π(b(S̃t))

Ego-Vehicle

Transition Model

Other Agents

Transition Model

x0, r0

rt+1

x1, r1, m1, a1

xK , rK ,mK ,aK

...
...

time step t time step t + 1

Figure 5.1. Schematic view of POMDP with integrated DBN. The DBN state space is extended by
the ego-vehicle such that the transition models of the surrounding agents take the ego-
vehicle into account. The action of the ego-vehicle is determined by the POMDP policy
π that depends on the complete state space. The reward is determined by a function of
old state, new state and chosen action.

vehicle to the state space and adding a transition model that depends on the chosen
action as depicted in Fig. 5.1. The reward the ego-vehicle receives for action at is
defined as a function of the old state, the chosen action, the resulting new state and the
map as rt+1 = R(S̃t+1, S̃t,at,map). In order to set a higher importance on short-term
rewards compared to rewards that are in the distant future, typically a so-called discount
factor γ ∈ [0, 1] is utilized.

The POMDP is defined completely by the tuple 〈S̃,A, T ,Z,O,R, b0, γ〉. The so-
called policy π in a POMDP describes how an agent acts and is a mapping from belief
state to action, π : b 7→ a. The objective of the ego-vehicle is to maximize its expected
cumulative discounted future reward by choosing actions (a0,a1,a2, ...) according to the
optimal policy

π∗ := arg max
π

E

[ ∞∑
τ=0

γτ R(S̃τ+1, S̃τ , π(bτ ),map)|b0, π
]

(5.1)

Typical reward functions consist of terms that punish collisions, traffic law violations,
and account for smoothness and efficiency (e.g., by punishing accelerations and jerk). As
the belief transition function includes the prediction models of the surrounding agents,
which each depends on the states of all agents including the ego-vehicle, the resulting
policy of the autonomous vehicle accounts for the interdependency of all agents in the
scene and thus also for its own influence on the actions of others.

5.1.1 Solution Method

There is a big variety of possible solution methods for POMDPs. As autonomous driving
requires decision making in real time, typically, approximative methods are employed.
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0 s 1 s time
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a = π(b0) = arg max Q̂(b0,a)

b1 = τ(b0,a, Z)

route r1route r2

sample action a according to UCB

sample new state S ′ ∼ T (S̃ ′, S̃,a,map)

sample observation Z ∼ O(Z, S ′)

cluster belief samples within
observation space

Figure 5.2. Exemplary approximation of the belief tree of scene from Fig. 5.3 using Monte Carlo
sampling of episodes starting at the current belief. The route of the other agent is
uncertain and influences the transitions and possible observations. Previously published
in [162]. © IEEE 2018

As proposed in our previous work [162], one method that is well suited for the afore-
mentioned POMDP is the so-called adaptive belief tree (ABT) [76]. With ABT, the
current belief state is represented by a set of particles of possible state instances. The
optimal solution is approximated by sampling potential future episodes according to an
action-choosing regime and the given transition probabilities, allowing to determine the
corresponding rewards. After sampling many episodes, it is possible to evaluate which
trajectories are most likely to result in high rewards, given the probabilistic models of
the surrounding agents. Utilizing such a point-based solver effectively transforms the
problem into a Monte Carlo tree search (MCTS) problem and allows for a seamless in-
tegration of the previously presented sampling-based prediction models. The sampled
episodes span a belief tree and are used to approximate the Q-value function Q(b,a) that
represents the expected return of a specific action a in a specific belief state b followed
by actions of the optimal policy and thus describes how good a specific action is given
a belief.

Such a belief tree is exemplarily depicted in Fig. 5.2 with the corresponding scene in
Fig. 5.3. The ego-vehicle has an uncertain belief over the route intention of the other
vehicle, thus it needs to be able to handle both hypotheses. Modeling this problem as a
POMDP allows to account for the fact that the ego-vehicle will get further observations
in the future, enabling it to drive in a less conservative manner. The forward simulation
is executed similarly to the one presented in Chapter 2, but additionally includes the
ego-vehicle that chooses its actions during the forward simulation according to the UCB
algorithm for trees. Furthermore, possible future observations are taken into account.
Similar beliefs are clustered within the observation space as depicted in Fig. 5.2.

Creating the search tree by sampling actions according to the UCB algorithm allows
to trade off between exploration and exploitation within the forward simulation stage
and together with efficient rollout policies, it is possible to get a grip on the exploding
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r1

r2 ego-vehicle

Figure 5.3. Exemplary scene with the ego-vehicle driving straight over the intersection, having an
uncertain belief of the other agent’s route. Previously published in [162]. © IEEE 2018

search tree. Initially, the actions are sampled according to a uniform distribution of
all actions that have not been sampled yet, denoted as A′. After each action has been
sampled at least once, a trade-off between how good an action has performed so far
(determined by the approximated Q-function Q̂(b,a)) versus how often an action has
been tried already (H(b,a)) compared to the number of total episodes starting from that
belief (Hb) determines which action to choose next. Altogether, the actions are sampled
according to

a =

∼ U(A′) , if A′ 6= ∅
arg max
a∈A

(
Q̂(b,a) + c

√
log(|Hb|)
|H(b,a)|

)
, otherwise.

(5.2)

The parameter c allows to put focus on either exploration or exploitation. Given enough
runtime, UCB asserts convergence to the optimal Q-function. In order to cope with
the exploding width of the search tree, so-called rollout policies can be employed that
choose actions according to some heuristic. In our previous work [162], we proposed
to combine the Monte Carlo sampling with a rollout policy that combines a three-
step A∗ rollout followed by a constant velocity rollout. Choosing well suited rollout
policies or learning value functions from data are active fields of research and can help
improve convergence time drastically. The more episodes are sampled, the better the
approximated Q-values get. Thus, ABT is an anytime algorithm, allowing for real time
application. When the ego-vehicle has to choose an action to be actually executed, it
picks this action greedily according to the approximated Q-value function Q̂(b,a) to
maximize its expected cumulative discounted future reward:

π(b) := arg max
a∈A

Q̂(b,a) (5.3)

In each new time step, the belief is updated with an actual measurement using simple
rejection sampling: unlikely particles are rejected whereas likely particles are kept. Thus,
the belief is tracked over time in an unweighted particle filter fashion. The belief transi-
tion from one time step to another given an observation Z and an executed action a is
denoted as b′ = τ(b,a, Z). This tracking allows to preserve already determined branches
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Figure 5.4. Approximated optimal policy visualized by the velocity profile (shown in blue) along the
route of the ego-vehicle. The magnitude of the longitudinal velocity corresponds to the
z-axis of the plotted trajectories. The policy branches in cases in which different possible
future observations lead to different optimal actions. Grahic taken from [61].

of the belief tree containing possible future episodes and corresponding approximated
Q-values.

A visualization of the resulting policy is depicted in Fig. 5.4, showing the optimal
actions depending on the possible future observations. It can be seen that the policy
is not limited to a specific maneuver or homotopy class, but may choose a different
maneuver for different observations.

As this solution method is sample-based, it comes with similar benefits as the pre-
viously presented SMC inference for the DBN. The reward function does not need to
be differentiable and arbitrary distributions and non-linear transition functions can be
represented. However, this sample-based nature also comes with the drawback that the
approach cannot be considered to be completely safe. Thus, in order to deploy it in
real traffic, we argue that one should add additional safety mechanisms that check for
unlikely but critical outcomes that might have been missed during random sampling.

5.2 Multi-Agent Planning

This section proposes another approach for handling the interrelated problems of ego-
vehicle motion planning and the prediction of surrounding agents in a combined fashion.
In contrast to the previously presented POMDP which utilizes one-step prediction mod-
els (such as the ones presented in Chapter 3), this method is based on multi-agent
planning and thus utilizes a planning-based prediction. Planning-based prediction of
human behavior assumes actions to be rational and being the result of optimizing a cost
function.
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Figure 5.5. Two situations where the black and white vehicles’ motions are highly coupled. Multi-
agent trajectories are shown for two collective maneuver hypotheses (blue and green).
Both vehicles should intend to follow the same maneuver for collisions and misunder-
standings to be avoided. Previously published in [165]. © IEEE 2017

In situations with very close interaction between agents, drivers tend to drive coopera-
tively and make space for one another, for example when merging in dense traffic or when
overtaking with oncoming traffic. As exemplarily shown in Fig. 5.5 for two interacting
agents, without anticipating the future behavior of the other driver, one can hardly de-
cide for one of the two options. However, the own decision may influence the decision
of the other driver as well. Modeling the behavior of multiple agents as a combined
optimization problem with a shared cost function allows to represent such cooperative
behavior and enables to include domain knowledge such as by defining constraints for
collision avoidance and shaping the cost function according to typical behavior patterns.

As one cannot assume that humans will always decide for the actions with the lowest
costs (according to the assumed cost function), we propose to plan multiple multi-agent
trajectories that represent different local minima of the cost function and thus represent
different possible outcomes of a scene. In order to derive these local minima, the space of
possible solutions is subdivided into high-level multi-agent actions which we call collective
maneuvers and which are based on the concept of trajectory homotopy. For each possible
maneuver, one potential cooperative multi-agent trajectory is planned that should reflect
common human behavior. To account for the corresponding homotopy constraints given
by the derived maneuvers, the optimization problem is formulated using mixed-integer
quadratic programming (MIQP). The resulting trajectories then serve as maneuver-
dependent prediction models for all vehicles in a scene and thus allow for a comparison
of abstract maneuver classes with observations of the actual motion of the surrounding
agents. By utilizing a Bayesian filter similar to the DBN presented before, it is possible
to estimate a probability distribution over these hypotheses given the observations of
the behavior of the surrounding traffic participants. This distribution serves as a basis
for the decision making of the autonomous vehicle: the ego-vehicle is able to either act
according to the most likely hypothesis and thus to support the intentions of others or
to try to convince them of the optimal maneuver that has the lowest costs for all agents
(even if it might not be the most likely one).

Exactly as in the previously presented POMDP approach, both the ego-vehicle as
well as all surrounding vehicles are represented within the state space. Thus, when
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Figure 5.6. Maneuver estimation and decision making framework. Dashed arcs represent temporal
dependencies whereas solid arcs represent causal dependencies. The variables are defined
in the corresponding sections. Previously published in [165]. © IEEE 2017

solving the multi-agent planning problem, both tasks, prediction and motion planning,
are solved at once. Thereby, the interdependency of prediction and planning is overcome,
resulting in a cooperatively driving autonomous vehicle. Note that directly utilizing the
trajectory of the joint optimization to control the ego-vehicle should not be considered
safe, as it assumes others will behave cooperatively. We argue that one would have to
add additional safety mechanisms that take potential uncooperative behaviors of others
into account in order to deploy such an approach in real traffic. Fig. 5.6 provides an
overview of the maneuver estimation and planning framework. The single components
are explained in detail within the remaining sections.

5.2.1 Maneuver Determination

The multi-agent planning problem is approached by first defining the collective maneu-
vers on a multi-agent scale, describing the relative motion of multiple vehicles in a scene
on a high level of abstraction. As the interrelation of decisions often arises from geo-
metric collision avoidance constraints, the maneuver definition is based on the concept
of trajectory homotopy.

This section proposes this collective maneuver representation and it shows how a set
of possible maneuvers can be derived given a traffic scenario including multiple agents
and the respective map with lane topology information.
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5.2.1.1 Multi-Agent System

Assume a set of vehicles V = {V 0, · · · , V K} including the ego-vehicle V 0 is consid-
ered within the multi-agent system. The state of vehicle V i ∈ V is given by xi =
[si, vis, d

i, vid]
> ∈ R4, consisting of the longitudinal and lateral Frenét-coordinates [152]

si and di of the vehicle’s center-position and the corresponding velocities vis/d. To sim-
plify the problem, changes in orientation, e.g., during lane changes, are neglected. The
area occupied by this agent is approximated by a bounding box of length li and width
wi oriented along the tangent of the road’s centerline: A(si, di, li, wi) := Ai ⊂ R2. Fur-
thermore, the area occupied by static obstacles is denoted as O ⊂ R2. The multi-agent
configuration is defined as

X = [x0, · · · ,xK ]> ∈ X ⊂ R4N (5.4)

within the collision-free configuration space

X = {X | ∀i, j ∈ {0, · · · ,K}, i 6= j :

(Ai ∩O = ∅) ∧ (Ai ∩ Aj = ∅)}. (5.5)

We define a multi-agent-trajectory to be a mapping from time span to configuration
space: γ : [0, T ]→ X .

Formation: To describe the relative order of the different agents within a multi-
agent configuration X in an abstract way, we define the so-called formation F (X). Any
formation F holds high-level information about the two dimensional relative position
of objects along their lanes in longitudinal and lateral direction, neglecting the exact
distances and lengths, only specifying a discrete relative ordering. This allows for a
compact description of the maneuver relevant aspects of the current scene.

For every street section without intersections which can only contain multiple adjacent
lanes (we denote those as regular sections), a local Frenét coordinate system is defined.
The two dimensional positions of all vehicles on this regular section are first projected
onto the longitudinal dimension. All vehicles are sorted in a list in ascending order
according to their longitudinal position s of their reference point, storing the sequence
of vehicles along the section. Although in reality, vehicles might overlap, it is not stored
in the formation as it is not needed for the determination of the possible maneuvers.
That means that, longitudinally, a vehicle can only be either in front or in the back of
another vehicle. This longitudinal list is then extended to a second dimension using the
discrete lane matching information. Therefore, in the formation representation, a vehicle
can laterally only be on either the same lane or on any of the adjacent lanes to the left
or to the right compared to another vehicle. An example of a scene and the resulting
formation can be seen in Fig. 5.7(a). Generally, each cell within a formation is at most
occupied by one vehicle. Furthermore, two vehicles cannot be on the same longitudinal
column, i.e., laterally adjacent cells of an occupied cell are always unoccupied.

Using map data, it is possible to extract the different regular sections and how they
are connected at intersections. The formations of the single sections are derived inde-
pendently and then linked using intersection cells (see Fig. 5.7(b)). If two lanes of an
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(b) Formations of multiple sections are connected using intersection cells.

Figure 5.7. Derivation of the formation F (x) of a given configuration x. Previously published in
[165]. © IEEE 2017

intersection overlap, they share at least one common cell. If a vehicle is currently driving
on an intersection, the formation will relocate the vehicle to the connecting lane of the
subsequent regular section and queue it behind all other vehicles. Hence, intersection
slots are never occupied in this formation representation, they only show how regular
sections are connected and allow to set agents of different regular sections into relation.

5.2.1.2 Homotopy Classes

In the field of topology, two functions are said to be homotopic (or to be in the same
homotopy class), if it is possible to continuously deform one into the other [21]. For that,
let us first define a deformation variable λ ∈ [0, 1]. Then, mathematically speaking, two
functions g1, g2 : Q→ R are said to be homotopic, if and only if a continuous homotopy
H : Q× [0, 1]→ R exists, such that

H(q, λ = 0) = g1(q) ∧ H(q, λ = 1) = g2(q) ∀q ∈ Q. (5.6)

The deformation variable λ thus describes “how close” the deformed function is to g1

and g2.

In addition, for two functions g1 and g2 that share an identical mapping for a given
subspace of the input space Q̃ ⊂ Q, i.e.,

g1(q̃) = g2(q̃) ∀q̃ ∈ Q̃, (5.7)
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Figure 5.8. Single-agent path homotopy: All paths of same color are homotopic relative to the start
and end position areas (gray circles). Previously published in [165]. © IEEE 2017

it is possible to define a homotopy relative to this subspace. A homotopy relative to
a subspace forces the mapping of all elements of this subspace to be fixed during the
complete continuous deformation process. Mathematically speaking, the functions g1

and g2 are called homotopic relative to the subspace Q̃ ⊂ Q, if they are homotopic and

H(q̃, λ) = g1(q̃) = g2(q̃) ∀q̃ ∈ Q̃ ∧ ∀λ ∈ [0, 1]. (5.8)

Single-Agent Path Homotopy: The mathematical concept of homotopy is often
utilized for analyzing paths in the field of robot motion planning. In this case, path
homotopies are usually defined relative to the paths’ start and end positions [19], [73].
Typically, the start position is known (given by the robot’s current position) and it is
desired to distinguish different end positions (e.g., goal regions) and whether obstacles
are passed on the left or right side. To allow for inaccuracy in planning, this condition of
exact start and end positions is often relaxed such that they only need to be in specific
areas. This is illustrated in Fig. 5.8, where the white vehicle has a rough start position
(gray circle on the left) and a desired goal area (gray circle on the right), and has to
pass a static obstacle (black vehicle) on the way. Homotopically, it now has two options,
either to pass that object on the left side or on the right side. While keeping the start
and end positions in these fixed areas, there is no possibility to continuously deform a
path that passes on the left (blue) to a path that passes on the right (green) without
having a collision. Without keeping the start and end positions fixed, this would however
be possible, and hence, no distinction between passing the obstacle on the left or right
side could be made.

Multi-Agent Trajectory Homotopy: As we are not only interested in the paths
the agents in a scene are going to take, but in their future trajectories, i.e., how their
state is going to change over time, we extend the concept of path homotopy to the area of
trajectories by adding the dimension of time, similarly to [20] and [49]. Furthermore, we
introduce the following assumptions for structured environments: First, the constraint of
keeping start and end states at fixed positions or within fixed areas is relaxed to keeping
them within fixed formations. Secondly, road boundaries and the temporal planning
horizon are interpreted as obstacles of infinite size, as shown in Fig. 5.9, such that it is
not possible for a trajectory to run outside the road boundaries or beyond the planning
horizon.

For two multi-agent trajectories to be homotopic, the trajectories of all vehicles need
to allow a continuous transformation without colliding with obstacles or each other.
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Figure 5.9. Multi-agent trajectory homotopy: Two non-homotopic multi-agent trajectories of the
scene of the left part of Fig. 5.5 are shown. On the left, the blue agent passes the
black agent first, then the green agent, on the right the other way around. Considering
road boundaries and planning horizon to be obstacles of infinite size, different homotopy
classes can be defined relative to the start and end formation. Previously published in
[165]. © IEEE 2017

Two mulit-agent trajectories γ0, γ1 : [0, T ]→ X with the same start and end formation
F (γ0(0)) = F (γ1(0)) := F0 and F (γ0(T )) = F (γ1(T )) := FT are said to be homotopic
relative to {F0, FT }, if there exists a continuous homotopy H : [0, T ]× [0, 1]→ X , such
that

H(t, 0) = γ0(t) ∧ H(t, 1) = γ1(t) ∀t ∈ [0, T ] (5.9)

and

F (H(0, λ)) = F0 ∧ F (H(T, λ)) = FT ∀λ ∈ [0, 1]. (5.10)

In addition to the lateral sides agents pass each other, trajectory homotopy also con-
siders temporal aspects: Consider the scenario in Fig. 5.9 with a laterally bounded street
such that at most two vehicles can be next to each other. Given the start and end forma-
tion, both the blue agent and the green agent have to pass the black static obstacle. As
there is only space for one other vehicle next to the black obstacle, different sequences in
which it is passed can be distinguished. As it is impossible to continuously transform the
trajectories of the left part of Fig. 5.9 (blue agent passes first) to those of the right part
(green agent passes first) without having a collision, they belong to different trajectory
homotopy classes.

Pseudo Multi-Agent Trajectory Homotopy: The definition of multi-agent tra-
jectory homotopy above allows to distinguish different maneuvers in many situations,
but it also has some caveats. Except for the start and end formations, the definition
above is solely based on the continuous multi-agent configuration including the areas of
obstacles and agents, but it does not account for high-level information such as lanes.
Consider the same scenario depicted in Fig. 5.9, but now assume that geometrically,
there is enough space for all three vehicles to be on the same longitudinal position (even
though there are only two lanes). With multi-agent trajectory homotopy, it is then not
possible to distinguish these two maneuvers anymore, as it is possible to continuously
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deform one into the other without a collision. The same is true for three or more adja-
cent lanes. However, as drivers tend to drive on lanes, typically there is still a discrete
decision of a driver to either overtake before or after the oncoming vehicle. Thus, we
want to be able to distinguish these maneuvers, even though they are homotopically
indistinguishable in case the lanes are wide enough.

Therefore, we propose what we call a pseudo-homotopy, which is based on discrete
formations and combines the advantages of homotopy and additional domain knowledge,
explicitly considering the existance of lanes. Such a pseudo-homotopy comprises both
spatial and temporal relations and represents a high-level description of the relative
motion of multiple vehicles in a comprehensible way that can be used to distinguish
various different maneuvers. Each pseudo-homotopy defines constraints that are utilized
for the trajectory planning, which will be explained later in this chapter. First, if two
longitudinally adjacent vehicles pass each other, the side on which they do is of interest.
This is denoted as a pairwise lateral relation and can be derived by the discrete lane
matchings. Secondly, in many situations the temporal order in which vehicles pass a
specific area is also of importance. These areas which we call critical areas imply that
they need to be passed sequentially by multiple agents, which might either be on an
intersection where lanes overlap, or on a regular section in case there is a conflict on a
lane such as in the overtake example above. This temporal order is denoted as sequence
of passing of that critical area.

A maneuver Mi ∈ M is given by a series of consecutive formations from F0 to FT i,
including all pairwise lateral relations and all sequences of passing of the existing critical
areas, and represents one pseudo trajectory homotopy class. The next section explains
how these pseudo-homotopy classes are extracted from a given scene.

5.2.1.3 Formation Tree

As this thesis focuses on the uncertain prediction of human drivers, not only is the one
optimal homotopy class (or maneuver) of interest, but all possible reasonable classes that
human drivers might choose. To determine the set of possible maneuvers in every time
step, first the current formation F0 of a given scene is identified using the positions of all
considered vehicles and the available map data. By building a tree of formations with
root node F0 which is expanded iteratively by selecting possible actions for all agents,
different possible formation sequences can be found. Each such formation sequence
[F0, · · · , FT i] defines one possible future relative motion of all vehicles, i.e., a high-level
abstraction of their future trajectories.

Expansion: The stepwise relative motion between agents is described on high ab-
straction level using a set of discrete formation actions AF = {along, aleft, aright} from
which vehicles can choose from. The actions do not represent continuous motion, but
changes in the relative order. A vehicle-action-pair (V, a) ∈ V ×AF transforms one for-
mation into another. The vehicle that is in the longitudinal sequence of vehicles next in
driving direction, independently of the lane, is denoted as the vehicle ahead. The lateral
actions aleft and aright represent lane changes whereas the longitudinal action along can
represent two things: passing the vehicle ahead, resulting in a switch of their longitudinal
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Figure 5.10. Formation tree expansion to identify reasonable maneuvers. Previously published in
[165]. © IEEE 2017

order, or passing an intersection and queuing into the connecting lane on the subsequent
regular section. Intersection cells only serve as a connection between regular cells and
are never occupied within a formation.

For any vehicle-action-pair (V, a) ∈ V×AF and a given formation Fi, a new formation
F ′i is derived. Fig. 5.10(a) shows an example of how the formation changes for the
different possible vehicle-action-pairs given the initial situation from the same overtaking
scenario as before. Different vehicle-action pairs can in fact result in the same new
formation, as the same relative motion between two vehicles can be achieved by actions
of either of both vehicles. For example, in the initial formation of Fig. 5.10(a), (V B, along)
results in the same new formation as (V C, along), as this just expresses that both vehicles
pass each other. Through exhaustive expansion by checking all possible actions of all
vehicles, the tree can be built up gradually.

Pruning: The following pruning conditions remove some of the possible actions dur-
ing the tree building process, allowing to exclude the occurrence of loops, multiple iden-
tical transformations, and unfeasible or unlikely behavior:

• pc1: Passing on same lane: Trying to pass the vehicle ahead if it is on the same
lane. We do not allow to call a longitudinal action in case the vehicle ahead is not
on an adjacent lane.

• pc2: Unsuitable lane change: Changing to the same lane as the vehicle ahead
is currently driving on, if the vehicle ahead is oncoming, as this is considered
unreasonable. Furthermore, we forbid to perform a lateral action to a non existing
lane, e.g., if the vehicle is already on the rightmost lane, action aright is not allowed.
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• pc3: Reverse lateral action: Changing to a lane the vehicle has already previously
driven on within this maneuver, without having passed another vehicle. This is
considered unreasonable behavior, as there was no effect in doing this lane change
back and forth.

• pc4: Re-overtaking : Two vehicles passing each other that have previously passed
each other within this maneuver. This is considered unreasonable behavior.

• pc5: Existing new formation: A new formation that already exists having the same
parent formation. Removing these helps to avoid loops and duplicated formation
sequences.

These heuristics do not consider reasonable vehicle dynamics as a prerequisite yet. Con-
sidering vehicle dynamics could help in removing impossible or unlikely maneuvers and
thus further reduce complexity.

Final formation: A sequence of consecutive formations is only considered to be
a valid maneuver if its final formation meets the final formation conditions, basically
meaning that the scenario has been “resolved” by the agents:

• fc1: All vehicles with different driving directions have passed each other.

• fc2: All vehicles are on a lane with correct driving direction.

The expansion process is continued even on possible final formations until no new for-
mations can be found anymore. A graphical representation of a maneuver search tree
including the possible final formations is shown in Fig. 5.10(b). For the situation over-
taking with oncoming traffic (see left part of Fig. 5.5), three distinct maneuvers are
extracted: M1 represents that V A does not overtake but follows V B, M2 represents that
V A overtakes before the oncoming vehicle V C, and M3 states that V A overtakes after
the oncoming vehicle V C.

Deriving Spatial and Temporal Constraints: The formation sequences resulting
from the exhaustive search given the initial formation describe the different possible
developments of the scene. It is possible that multiple distinct formation sequences in
the tree are similar in a way no distinction is desired. This happens when some actions
in the formation sequence are not temporally dependent, i.e., it does not matter for the
pseudo-homotopy class which action happens first. As an example, consider two vehicles
V A and V B crossing an intersection using lanes that do not overlap (i.e., using different
intersection cells). Then the temporal order in which they cross that intersection is not
of importance, as they are not using the same critical area and are thus allowed to pass
the intersection simultaneously. Therefore, trajectories of both options (V A crossing
first and V B crossing first) can be continuously transformed into one another without a
collision, meaning they belong to the same pseudo-homotopy class. Similarly, temporally
independent actions can also happen on roads without intersections: Consider a vehicle
V A overtaking its preceding vehicle V B while an oncoming vehicle V D is overtaking
another oncoming vehicle V C. The order in which these two overtake actions happen is
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an oncoming agent in order to represent the same pseudo-homotopy class.

Figure 5.11. Possible formation sequence of a scene with four vehicles, two on each of the two on-
coming lanes, and the resulting temporal action dependency graph.

not of interest, as both option can be continuously transformed into the other without
a collision and thus belong to the same pseudo-homotopy class.

In order to unite formation sequences that represent the same pseudo-homotopy class,
let us look at the actual spatio-temporal constraints they imply. For that, each action in
the formation sequence (the transition from one formation to another) is first annotated
with the involved entities: Lateral actions only include the agent performing the action,
whereas longitudinal actions additionally include the entity that is being passed during
this action (either another agent or an intersection cell). Then, each action is temporally
dependent on other actions which contain at least one identical entity. Actions that do
not have any agent or intersection cell in common do not define a temporal relation, even
though they occur at different steps in the formation sequence. This information allows
to build a temporal action dependency graph given a formation sequence, as exemplarily
depicted in Fig. 5.11 for the above mentioned scene with the two overtaking actions. The
temporal constraints for the trajectory optimization are defined by this action depen-
dency graph, whereas the spatial constraints are directly given by the pairwise relations
between two vehicles passing each other.

In case multiple formation sequences result in the same action dependency graph,
they represent the same pseudo-homotopy class and are thus united to only represent
one maneuver. Each maneuver then defines a set of spatio-temporal constraints which
are utilized for the trajectory planning as explained in the next section.
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5.2.2 Trajectory Planning

Given any of the derived high-level maneuvers, we desire to know how typical low-
level behavior on trajectory level looks like and how the ego-vehicle can be controlled
correspondingly. Thus, we generate a multi-agent sample trajectory for every maneuver,
by formulating an optimization problem that aims to minimize a collective cost function
while satisfying the hard constraints given by the specific maneuver class. Similar to
[106], mixed-integer quadratic programming (MIQP) with logical constraints is used to
enforce specific maneuvers. Assuming this trajectory reflects common driver behavior
for that maneuver, it is possible to infer the probability distribution over the possible
maneuvers by comparing the sample trajectories to the observed motion, which will be
explained in the subsequent section.

5.2.2.1 Kinematics Model

The kinematics model of each vehicle is represented by a double integrator assuming
the longitudinal and lateral acceleration ai = [ais, a

i
d]
> of vehicle V i can be controlled

directly:

xt+1 =


st+1

vs,t+1

dt+1

vd,t+1

 =


1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1



st
vs,t
dt
vd,t

+


0.5∆t2 0

∆t 0
0 0.5∆t2

0 ∆t

(as,tad,t

)
(5.11)

For such a separated motion model, the side slip angle β = arctan(vd/vs) can be limited
to allow the trajectories to be followed by non-holonomic vehicles [96].

The multi-agent trajectory is defined with the initial state of all agents X0 and the
sequence of their control inputs A(t) = [a0(t), · · · ,aK(t)]> with t ∈ {0, · · · , T − 1}. The
motion of the single vehicles are interdependent, as their control inputs are coupled
through the multi-agent optimization which accounts for the mutual influence between
vehicles. Although this motion model is simplistic, we argue that it is sufficient for
prediction purposes and that the trajectory to actually control the ego-vehicle can be
smoothed in a post-processing step.

5.2.2.2 Hard Constraints

We define a couple of hard constraints for the trajectory optimization problem that
allow to limit the solution space of the continuous trajectories to reasonable values
and to enforce a specific homotopy class of a maneuver. At first, to ensure reasonable
vehicle dynamics independently of the maneuver, the state and control variables of all
vehicles are bounded. Furthermore, vehicles are constrained to stay within the road
boundaries. These maneuver-independent constraints are denoted as K. To enforce that
the planned trajectory lies within the range of a given maneuver Mi, i.e., restricting the
planning space to a specific pseudo-homotopy class, maneuver-dependent constraints
KMi are formulated. As explained in Sec. 5.2.1, maneuvers distinguish between spatial
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conditions (i.e., on which side two vehicles pass each other) and temporal conditions
(i.e., in which order vehicles pass a critical area), which are explained in the following.

Spatial Collision Avoidance: Consider any pair of two vehicles V A and V B within a
multi-agent environment, approximated by rectangles with length l and width w oriented
along the centerline of a two-lane road. The spatial collision avoidance constraints of
V A and V B, i.e., interdicting any overlapping of their shapes, but not stating whether
they pass each other or if they do on which side, are given by:

(sA ≤ sB − l) ∨ (sA ≥ sB + l)

∨(dA ≤ dB − w) ∨ (dA ≥ dB + w) (5.12)

Additional safety distances can easily be incorporated by adding or subtracting the
desired margins respectively.

Constraints of this nature are called logical constraints, as they combine linear con-
straints using logical operators. By using the so-called Big-M-method [123] [97, p. 473],
we reformulate those logical constraints into a set of linear inequality constraints. There-
fore, we introduce an application-specific big number Mbig, allowing for single conditions
of these logical constraints to be rendered inactive by the addition or subtraction of Mbig

depending on the value of a binary variable δi. This binary variable states whether the
condition is active (δi = 1) or not (δi = 0). For each of the four single linear con-
straints above, we introduce one binary variable. Then, the logical disjunction of the
single binary variables is equivalent to at least one of the corresponding conditions to be
active:

sA ≤ sB − l + (1− δ1)Mbig (5.13)

sA ≥ sB + l − (1− δ2)Mbig (5.14)

dA ≤ dB − w + (1− δ3)Mbig (5.15)

dA ≥ dB + w − (1− δ4)Mbig (5.16)

δ1 + δ2 + δ3 + δ4 ≥ 1 (5.17)

This effectively transforms the logical constraint into a set of linear constraints and thus
the optimization problem into a mixed-integer problem. We need to ensure that Mbig

is big enough such that for δ = 0 the respective linear constraint will always be fulfilled
given the search space of the optimization problem. The pairwise lateral relations (i.e.,
whether two agents pass on the left or on the right) specified by a maneuver can now
be enforced using these spatial conditions by setting the corresponding binary variable
(either δ3 or δ4) to 0.

Temporal Collision Avoidance: Now let’s consider the overtaking scenario from
before again (see Fig. 5.9) with the three vehicles V A, V B, V C. In addition to the
conditions for the pairwise lateral relations, a desired temporal sequence of passing (e.g.,
V A before V C) can be enforced by the logical condition

(sC ≤ sB)⇒ (sA > sB). (5.18)
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This can be reformulated in Big-M notation as

sC > sB − δkMbig (5.19)

sA > sB − (1− δk)Mbig, (5.20)

only using a single binary variable to describe this implicative condition (or logical con-
sequence). Thus, only one additional binary optimization variable is needed to enforce
the desired sequence for the scenario with the three interacting vehicles.

Separation of Longitudinal and Lateral Optimization: To reduce the number
of needed binary variables and hence reduce complexity, the problem is divided into two
subproblems: Instead of optimizing the longitudinal and lateral control inputs jointly, we
first optimize the longitudinal ones given the desired homotopy class and then optimize
the lateral ones given the homotopy class and the results of the longitudinal components
of the trajectory. In the field of single-agent planning, separating the longitudinal and
lateral components of a trajectory has already been suggested by Gutjahr et al. [52]. In
our case, the longitudinal optimization ensures the correct sequences of passing, whereas
the lateral optimization ensures the correct pairwise lateral relations. By first solving
the longitudinal optimization, its results can be used as an input for the lateral part.
Hence, for the lateral optimization, the longitudinal positions of all vehicles are known
in advance. This allows for the spatial collision avoidance constraints to be expressed
without the need of binary variables, as it is known apriori in which time step which
condition must hold. For the aforementioned overtaking scene, the number of binary
variables is thus reduced from ten per time step (three per pairwise lateral relation and
one for the sequence of passing) to one per time step (specifying the sequence of passing).
Furthermore, as the values of the binary variables are known for t = 0, motion is only
allowed within driving direction, and re-overtaking is forbidden, the binary variables
describing the sequences of passing can change their value at most once during one
maneuver. Hence the number of possible combinations per binary variable reduces from
2T to (T + 1).

The longitudinal constraints to enforce a desired sequence of passing are adapted by
the typical length needed for a lane change α and a sufficient safety distance β. These
distances are illustrated exemplarily in Fig. 5.12 for the maneuver M2 where V A passes
before V C (recall the possible maneuvers for the overtaking with oncoming traffic scenario
from Fig. 5.10(b)). The longitudinal constraints Eq. (5.19) and Eq. (5.20) of M2 change
accordingly:

sC > sB + lB/2 + α+ lA + β + lC/2− δ1M
big (5.21)

sA > sB + lB/2 + α+ lA/2− (1− δ1)Mbig (5.22)

The constraints of M3 (V A passes after V C) are defined analogously, the ones for M1

(V A follows V B and does not pass at all) only contain a safety distance between V A and
V B, as no critical area exists. For intersection scenarios, the longitudinal constraints are
defined relative to the overlapping areas.

The state and the control inputs as well as the optimization constraints, the cost func-
tion and its weights can be divided into a longitudinal and a lateral part, which are from
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Figure 5.12. Longitudinal constraints for maneuver M2 to enforce a desired sequence of passing. On
the left, Eq. (5.21) is active (δ1 = 0) and V C is not allowed to enter the green area. As
soon as V A has overtaken V B, this restriction is removed and Eq. (5.22) is activated
(δ1 = 1). Previously published in [165]. © IEEE 2017

now on denoted by subscript (·)s and (·)d, respectively. The above defined maneuver-
dependent constraints of a given maneuver Mi are denoted as KMi,s and KMi,d for the
longitudinal and lateral aspects, respectively. The maneuver-independent constraints
(e.g., vehicle dynamics, road boundaries) are denoted as Ks and Kd.

5.2.2.3 Cost Function

For the trajectories to reflect common human behavior, a quadratic cost function is
chosen that penalizes acceleration, lateral velocity, as well as the deviation from the
desired longitudinal velocity vdes and the deviation from the centerline of the current
lane at dcenter. Thus, we define a reference state xiref = [siref, v

i
des, d

i
center, 0]> with the

deviation of state and reference state denoted as ∆xi = xi − xiref. As we do not want
to define a specific desired longitudinal position for each time step but rather specify a
reference velocity, we set the weight of siref to zero, thus making this variable irrelevant.

The collective cost function of the multi-agent optimization problem is defined quadratic
w.r.t. the control inputs as well as the deviation of state and reference state of all agents,
divided in the longitudinal and lateral part

J = Js + Jd =

K∑
i=0

J is +

K∑
i=0

J id, (5.23)

with the components of a single vehicle V i

J is =

T∑
t=1

(∆xis,t)
>Qi

s∆x
i
s,t +

T−1∑
t=0

ais,tRsa
i
s,t, (5.24)

J id =

T∑
t=1

(∆xid,t)
>Qi

d∆x
i
d,t +

T−1∑
t=0

aid,tRda
i
d,t. (5.25)

By taking the costs of all vehicles into account, drivers are assumed to behave cooper-
atively. As we want to penalize deviation from the reference state stronger in case an
agent has right of way compared to agents that have to yield, we define a right of way
dependent weight ω = 1 + ψχ, with χ = 1 in case an agent has the right of way and
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χ = 0 otherwise. ψ ∈ R+ is a factor stating how strong drivers weigh these traffic rules.
For example, in our evaluation, we set ψ = 1 to penalize it double if an agent with
precedence has to deviate from its state. This encourages traffic rule compliance in a
soft manner, still allowing drivers to slightly deviate if necessary. The state weighting
matrices Qi

s = diag(0, ω) and Qi
d = diag(ω, ω/2) and the control input weights Ris = ω

and Rid = ω/2 are then chosen according to domain knowledge.

The longitudinal optimization for maneuver Mi can be formulated as

[A∗s,Mi
, δ∗]> = arg min

[As,δ]>
Js subject to Ks ∪ KMi,s, (5.26)

resulting in the optimal longitudinal costs J∗Mi,s
. After determining A∗s,Mi

, the quadratic
program for the lateral optimization can be defined only using linear inequality con-
straints as

A∗d,Mi
= arg min

Ad

Jd subject to Kd ∪ KMi,d, (5.27)

resulting in the optimal lateral costs J∗Mi,d
. Note that only the hard constraints depend

on the specific maneuver Mi, whereas the cost function is maneuver-independent. The
overall optimal costs of Mi are determined by the sum of the optimal costs of both the
longitudinal and lateral component:

J∗Mi
= J∗Mi,s + J∗Mi,d

(5.28)

For a visualization of the trajectory planning, see Fig. 6.23 in Sec. 6.6.2.

5.2.3 Maneuver Estimation

Given the set of possible maneuvers (or pseudo-homotopy classes) and the corresponding
reference trajectories derived using the previously defined optimization routine, we now
desire to estimate the maneuver intention probabilities, i.e., how likely it is that each of
these maneuvers is going to happen. The multi-agent system is assumed to follow exactly
one maneuver at a given time step. Even though different agents might intend to follow
conflicting maneuvers at some points, typically they will converge to the same maneuver
to avoid collisions. In case of two vehicles intending to follow two different maneuvers,
our estimation will show both maneuvers as possible, but with decreased probability.
We model a maneuver to be able to switch between time steps, which satisfies the fact
that drivers continuously re-evaluate situations and may change their intentions. Thus,
the motion of vehicles is modeled as a stochastic process that consists of |M| different
models, exactly one being active per time step. Following [80], the maneuver switching
probability is set to µ = 0.1 and distributes uniformly among all other maneuvers.

The prediction task is to estimate the active model from which the drivers choose
their actions. This is achieved with an interacting multiple model (IMM) Kalman filter.
The prediction steps of maneuver Mi are performed according to the controls A∗Mi

of
the optimal multi-agent trajectory. Through Bayesian statistics, the posterior mode
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probabilities pM = [pM1 , · · · , pM|M| ]> are obtained in every time step given the predicted

states, the measurement of the positions Z = [s0
z, d

0
z, · · · , sKz , dKz ]>, the last posterior and

the switching probabilities. Initially, a uniform prior is assumed. For information about
how the single distributions are determined, the reader is referred to [14, pp. 24-29].

Although drivers may deviate from the optimal trajectory of their intended maneuver
used for prediction (as the cost function does not model human behavior perfectly), it
is still possible to estimate the maneuver correctly, as long as the deviation is smaller
compared to the optimal trajectories of the other maneuvers.

5.2.4 Decision Making

To close the loop of the prediction and planning framework (see Fig. 5.6), a simple
decision making layer is applied, that can either decide for the most likely maneuver
according to pM, or for the cost-optimal maneuver. For instance, if the situation is not
yet critical as the next upcoming critical area is still far away, the ego-vehicle can still
aim for the cost-optimal maneuver and try to convince other drivers. However, if the
vehicles are closer to a critical area and the estimated distribution has a strong indication
for the intended maneuver of others, the ego-vehicle can decide to accommodate. Given
the chosen maneuver, the ego-vehicle is then controlled according to the accelerations
(a0)∗ of the optimal trajectory of that maneuver.

Note that this simplistic decision making strategy should not be considered safe, as
one cannot assume that others will behave cooperatively all the time. We argue that
one would have to add additional safety mechanisms that take potential uncooperative
behaviors of others into account.
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6 Experiments

This chapter presents different experiments demonstrating the general purpose of the
presented DBN for intention estimation and trajectory prediction and highlights the
benefits of accounting for context-dependency and interaction-awareness. The upsides
and downsides of the alternative behavior models (rule-based and deep learning-based)
and inference methods (SMC and MM-UKF) are investigated. Furthermore, we compare
the interacting single-agent DBN variant to the full-combinatorial variant and highlight
its runtime improvements. Lastly, it is evaluated how the presented prediction approach
can be utilized for interactive ego-vehicle motion planning for autonomous vehicles us-
ing the presented multi-agent planning scheme and the POMDP formalism with the
sampling-based tree search solution method. The reported runtimes in this chapter are
based on an Intel Core i7-5820K CPU @ 3.30GHz with non-optimized C++ code, if not
specified otherwise. This chapter is based on the author’s previous publications [162],
[165]–[168].

6.1 Environment Model

The input to the presented approaches is given by an environment model which consists
of a topological map and all agents in a scene. The map, as depicted in Fig. 6.1,
contains the lane topology (how lanes are connected), geometric information (such as
road curvatures and lane widths), road infrastructure (traffic lights, traffic signs, lane
markings, etc.) as well as the prevailing traffic rules such as the right of way. It is
used to determine the possible routes, conflict areas and features for the action models
and is based on the OpenDRIVE [149] format. The agents are represented with their
dimensions, poses, and velocities and are either simulated using a proprietary simulator,

Figure 6.1. Environment model showing a digital map and simulated agents (black rectangles).
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Figure 6.2. Autonomous test vehicle used to record data of surrounding traffic participants and the
ego-vehicle. The vehicle is equipped with GPS/INS-based localization, as well as lidar-
and radar-based object detection. © BMW Group

or are recorded with a measurement vehicle in real traffic. The proprietary simulator is
using the driver model presented in [56] to control its agents.

Desirably, this environment model should be ideal, meaning no occlusions were limiting
our field of view, all relevant agents were detected without uncertainty, and the map was
containing all information necessary for predicting the scene. However, due to theoretical
and practical limitations, this is generally not the case in the real world and thus there
always will be inaccuracies in the environment model. This section explains how the
data used in this evaluation is recorded and gives an overview of the limitations this
data comes with.

Real driving data is recorded with an autonomous test vehicle (see Fig. 6.2) with
GPS/INS-based localization and dynamic occupancy grid-based object tracking [128]–
[130] using multiple lidar and radar sensors. These sensors allow for a localization of the
measurement vehicle relative to a given map and for the detection and tracking of static
and dynamic obstacles in its surroundings. This measurement vehicle is a BMW 7 series
equipped with both a variety of different sensors as well as electronically controllable
actuators. The data used for evaluation and the training of the behavior models was
however recorded with a human test driver (with disabled autonomous driving mode)
to ensure realistic human-human interactions.

There are multiple aspects that contribute to the recorded data not being ideal in the
sense described above. First, the surrounding objects in the scene are only detected in
the vicinity of the ego-vehicle, due to lidar and radar range limitations of about 200 m.
In addition, occlusions may limit the field of view, resulting in missing detections of
traffic participants that are either behind static obstacles such as buildings (e.g., at in-
tersections) or behind other dynamic objects such as cars or trucks. Another important
aspect is the inherent noise in sensor measurements. The sensors used for localization of
the ego-vehicle as well as the ambient environment sensors used to detect other traffic
participants are afflicted with noise. This results in an imperfect state estimation of
the available agents. However, as we are utilizing data from both lidar and radar, it
can be argued that the distance and velocity estimation of objects is rather accurate
(e.g., compared to when using cameras), whereas there is a higher difficulty in clas-
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6.2 Rule-based Behavior Models

sifying the type of an object (e.g., distinguishing a car from a truck). Future work
could benefit from additionally fusing camera data, allowing to utilize more fine-grain
object features. In addition to the noise of the raw sensor readings, the software used
to detect and track objects comes with limitations. Generally, there is a compromise
between detecting agents early and keeping a low false positive rate, i.e., not falsely
detecting an object when there is none. Additionally, it is difficult to estimate the di-
mensions of objects, as only a part of their surface is reached by the lidar and radar
beams (typical L-shape detections). For more details about the utilized detection and
tracking module, we refer to [128]–[130]. To reflect these inaccuracies at least to some
degree also in simulation, instead of directly using the ground truth simulation state of
the agents, we disturb the observations with zero mean Gaussian noise with variances
[σ2
xsim

, σ2
ysim

, σ2
θsim

, σ2
vsim

] = [0.01 m, 0.01 m, 0.0001, 0.01 m/s]. Another aspect is that the
map cannot be seen as a perfect ground truth, as it was generated with a mapping ve-
hicle that was also using sensors to map its environment. These sensors come with the
same limitations as mentioned above, thus the map is not perfectly accurate either. In
addition to low level position inaccuracies, there might be lanes that are not properly
extracted, such as driveways or entrances to parking lots.

The presented approach in this thesis does not explicitly model map inaccuracies,
the highly complex measurement uncertainty in the agents’ states, nor the possibility of
undetected agents due to occlusions. However, the received measurements are assumed
to be afflicted with strong zero mean Gaussian noise (see Tab. 6.1), allowing the DBN
to cope with bad observations of different sorts and additionally to reduce the problem
of sample impoverishment [51]. Although this is a strong simplification, results show
that this assumption works well in practice. Explicitly handling missing features such
as non-extracted lanes or undetected agents is left for future work.

6.2 Rule-based Behavior Models

In order to assess the necessity of interaction-aware prediction, the presented rule-based
behavior model is compared to simpler, non-interactive and physics-based models in
simulated and real driving scenarios that contain multiple interacting agents. For this
analysis, the SMC-based inference method is used in order to prevent the approximation
error of the MM-UKF Gaussian assumption to interfere. To reduce sample impover-
ishment due to resampling, a small number of particles is directly sampled from the
current measurement distribution with probability 0.001. The computation time of one
time step of a scene with three vehicles, each having three route options, is approxi-
mately 0.3 s on the above mentioned hardware. The evaluation parameters defined in
Chapter 2 and Chapter 3 can be seen in Tab. 6.1. The IDM model parameters as well
as the noise terms were tuned by hand using different urban scenarios that are not part
of the evaluation.
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Table 6.1
Evaluation Parameters of Dynamic Bayesian Network. Adapted from [166].

General IDM Noise

step size ∆T 0.2 s desired distance dd 2 m σ2
x/y 0.5 m

particles N 1000 desired time headway Td 0.1 s σ2
θ 0.05

route horizon lH 30 m comfortable acceleration ad 0.7 m/s2 σ2
v 1.5 m/s

comfortable braking bd −0.5 m/s2 σ2
a 1.5 m/s2

acceleration exponent δ 4 σ2
θ̇

0.05/s
max. lateral acceleration amax

lat 2 m/s2 σ2
xz/yz

15 m

σ2
θz 3.14
σ2
vz 15 m/s

6.2.1 Intention Estimation

The imprecision of the route (and analogously maneuver) estimate p(ri) = [p(ri1), · · · ,
p(ri|Ri|)] of agent V i is measured using the Kullback-Leibler divergence (KLD)

DKL(p(riGT)‖p(ri)) =

|Ri|∑
j=1

p(riGT,j) log
p(riGT,j)

p(rij)
(6.1)

from estimate to the ground truth distribution p(riGT) = [p(riGT,1), · · · , p(ri
GT,|Ri|)], with

p(riGT,j) =

{
1 if V i follows rij
0 else

. (6.2)

The intention estimation of the presented rule-based model from Chapter 3, here
called interactive model, and a solely map-based model are evaluated. The map-based
model uses all of the features given by the map but ignores surrounding vehicles and,
therefore, is interaction-unaware. Thus, agents are predicted as if there were no other
vehicles around. In order to highlight the differences between both models, we specifically
identify scenarios with a high potential for interaction between agents. We evaluate
situations in which multiple vehicles cross an intersection, and hence, contain strong
interdependencies between vehicles. Though intersection crossings might be statistically
rare when looking at the overall number of time steps on intersections versus on other
parts of the road, these situations tend to be most critical and therefore require explicit
evaluation. The intention estimation is evaluated in detail for multiple scenes:

Scene 1 - Yielding vehicle (depicted in Fig. 6.3(a)): In this simulated scene, V 1 has
right of way and goes straight, whereas V 0 has to yield and wants to turn left. To
improve readability, at first it is assumed that V 0 is actually yielding and therefore only
has one possible maneuver (V 1≺V 0), but multiple possible routes whose probabilities we
want to estimate. While V 0’s routes for going straight and turning left demand yielding,
the route for turning right is free and does not imply any waiting for other traffic. As
V 0 waits for V 1 (t=10−18 s), it is inferred by the interactive model that turning right is
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6.2 Rule-based Behavior Models

unlikely (as waiting would not be necessary) and turning left and going straight is equally
likely (as both routes are blocked and thus imply a similar deceleration). As soon as V 1

has left the conflict area, V 0 accelerates again and starts turning, whereby the left route
is inferred correctly. The map-based model, however, infers incorrectly that V 0 wants to
turn right (t=13 s), as this route has the highest curvature and thus implies the lowest
velocity, matching the actual behavior best. For t>13 s, as V 0 even becomes too slow for
turning right, none of the map-based models can explain the actual behavior anymore.
Thus, only the particles sampled newly from the measurement survive, resulting in a
random oscillation and a momentary improvement of the KLD.

Scene 2 - Preceding vehicle (depicted in Fig. 6.3(b)): In this real driving scene, V 0

follows V 1 which is approaching an intersection. As V 1 has to yield and therefore starts
to decelerate, V 0 decelerates as well in order to keep the desired headway distance to
V 1. All three possible routes of V 0 are blocked by the preceding vehicle, hence, it is not
possible to infer the route until the preceding agent has passed the intersection (t=17 s).
A uniform distribution is the desired result, as all three routes imply the same behavior,
which is correctly inferred by the interactive method. The map-based method incorrectly
determines that V 0 wants to turn right (t=10 s), as it is slowing down (actually caused
by the preceding vehicle and not by the high curvature of the route that turns right).
For t>10 s, none of the map-based models can explain the observations anymore, also
resulting in a random oscillation.

Scene 3 - Preceding vehicle (depicted in Fig. 6.3(c)): In this simulated scene, V 0 again
follows V 1 approaching an intersection. As V 1 this time wants to turn right and thus
slows down, it again forces V 0 to also decelerate. A uniform distribution is thus the
desired estimate again, as the behavior for all three possible routes is dominated by the
preceding agent. Only the interactive model is able to infer the influence of the preceding
agent, whereas the map-based model assumes V 0 wants to turn as well.

Scene 4 - Maneuver distinction (depicted in Fig. 6.4): The combined maneuver and
route estimation is analyzed in a scene that is similar to scene 1, but which is modified
such that V 0 is crossing before the other agent that has right of way. The interactive
model with maneuver distinction is compared to the interactive model without maneuver
distinction (which assumes V 0 will yield): At t=0 s, all routes are equally likely, but as
V 0 does not decelerate strongly (t=2−10 s), the probability to yield decreases, whereas
the probability to either turn right (no conflict) or merge or cross before V 1 increases.
As V 0 slows down to respect the upcoming curvature (t=9−11 s), the straight route
becomes unlikely. Finally (t=12−20 s), as the velocity is still too high for turning right
(because the high curvature would require driving slower), it is correctly inferred that
V 0 will turn left and merge before V 1. Without the distinction of the two possible
maneuvers, assuming V 0 is going to yield, it is incorrectly inferred that V 0 wants to
turn right (as this lane has no conflict), resulting in a higher estimation and trajectory
prediction error (see the following section).
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ṽ

=
v
/
(5

0
k
m
/
h
).

P
re

v
io

u
sl

y
p
u
b
li
sh

ed
in

[1
6
6
].

©
IE

E
E

2
0
1
8

106



6.2 Rule-based Behavior Models

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1
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Figure 6.4. Route and maneuver estimation of agent V 0 in scene 4, comparing interaction-

aware model with and without maneuver distinction. Previously published in [166].
© IEEE 2018

6.2.2 Trajectory Prediction

For each possible combination of routes and maneuvers of all agents, one forward sim-
ulation resulting in a multi-agent trajectory is executed. Each forward simulation is
initialized to the mean kinematic state of the given mode. The accuracy of the trajec-
tory prediction of all agents at time t for the future time step (t+T ) is quantified using
the position components (denoted by superscript (x,y)) of the root weighted square error

between predicted mean position X̂
(x,y)
t+T |t,Rt,Mt

and measurement Z
(x,y)
t+T

ε
(x,y)
t+T |t =

√∑
Rt,Mt

p(Rt,Mt)
∥∥∥X̂(x,y)

t+T |t,Rt,Mt
− Z(x,y)

t+T

∥∥∥2
, (6.3)

and the corresponding measurement likelihood

L(x,y)
t+T |t =

∑
Rt,Mt

p(Rt,Mt) p(Z
(x,y)
t+T |X̂

(x,y)
t+T |t,Rt,Mt

). (6.4)

For evaluating the prediction of a single agent on its own, one can replace the capital
letter variables with the ones representing the respective agent, i.e., r, m, x and z. The
errors and likelihoods depending on the prediction horizon T are calculated and averaged
over the complete scene (from t = 0 until t = tmax)

ε̄(x,y)(T ) =
1

1 + tmax

tmax∑
t=0

ε
(x,y)
t+T |t and L̄(x,y)(T ) =

1

1 + tmax

tmax∑
t=0

L(x,y)
t+T |t. (6.5)

A visualization of the trajectory prediction can be seen in Fig. 6.5, showing the view of
the front facing camera of the measurement vehicle together with the detected objects
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Figure 6.5. Camera view of measurement vehicle with detected objects and predicted trajectories
while yielding to oncoming traffic in order to turn left into a parking lot. Previously
published in [166]. © IEEE 2018
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Figure 6.6. Prediction error and likelihood in five different driving scenarios. Previously published in
[166]. © IEEE 2018

and corresponding predicted trajectories. As the ego-vehicle is driven by a human, its
trajectory is also predicted by including it within the DBN’s state space.

The interactive model is compared to the map-based model and a constant turn rate
and velocity (CTRV) model [119], which serves as a simple baseline algorithm. It is
independent of both the map and surrounding vehicles and is thus context-unaware.
The error of the trajectory prediction of V 0 for scenes 1 to 3 are depicted in the right
most column of Fig. 6.3. The CTRV model performs worse in scene 1, as V 0 changes
its velocity and orientation more intensely. For the map-based model, the first scene is
also more challenging, as V 0 stops for a long time, which cannot be explained by the
model at all. Its high route estimation error negatively affects its prediction accuracy.
The interactive model outperforms the other two approaches in all three scenes.

In order to compare the three different models in a more quantitative manner, five
different real driving scenes have been recorded on a test track and on real roads. These
scenes altogether consist of 15 vehicles, two four-way intersections, two T-junctions, and
a roundabout. The statistical results showing the mean prediction error and measure-
ment likelihood over all scenes and vehicles are depicted in Fig. 6.6. It can be seen
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Figure 6.7. Probabilistic forward simulation using the deep learning-based behavior model (linear
feed-forward). It can be seen how the model picks up subtleties such as sheering out to
the opposite direction before a turn.

that the interaction-aware model outperforms both CTRV and map-based models. Al-
though the differences between the interactive and the map-based model might seem
rather small, it has to be noted that the time steps in which traffic participants actu-
ally interact with each other (i.e., the behavior of an agent is significantly influenced by
the existence of the other agent) do not predominate. As shown in Fig. 6.3, however,
in scenes where the behaviors of drivers are highly interdependent, interaction-aware
prediction becomes essential. A video of the approach using the interactive rule-based
model in exemplary scenes can be found at https://mediatum.ub.tum.de/1449806.

6.3 Deep Learning-based Behavior Models

This section evaluates the capabilities of the deep learning-based behavior models as
presented in Sec. 3.2 and compares different model architectures with each other and
to the rule-based model from Sec. 3.1. Fig. 6.7 exemplarily depicts the probabilistic
forward simulation using a linear feed-forward network and shows how the model is able
to learn that agents typically sheer out to the opposite direction before an upcoming
curve. The evaluation comprises the trajectory prediction errors, the importance of
the single features, and a qualitative result on the route intention estimation, which is
obtained by embedding the learned model into the DBN for inference. First, the different
model architectures and the used training data are specified.
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Table 6.2
Hyperparameters of Neural Network Action Models. Previously published in [168].

©IEEE 2019

Parameter Linear LSTM GRU Lenz

activation function ReLU – – ELU
number of layers 4 2 2 5
neurons per layer 274 274 274 400
dropout probability 0.06 0.2 0.3 0.5
batchnorm momentum 0.3 – – –
batchnorm eps 1e-5 – – –

6.3.1 Models and Hyperparamters

The following types of neural networks are compared to show how they are suited for
the task of one-step motion prediction: Linear fully connected (Linear), long short-
term memory (LSTM), gated recurrent unit (GRU), and the architecture presented by
Lenz et al. [82] which is also a fully connected linear model, and which was originally
introduced as a driver behavior model for highway scenarios. Each layer of the linear
models consists of a fully connected layer followed by batch-norm (not present in the
Lenz model), activation function, and dropout. The last layer of each of the network
types is a fully connected linear layer that outputs the action distribution parameters
µa, µδ, σ

2
a, σ

2
δ . The outputs for the variances are transformed by an exponential function

before calculation of the loss to ensure positive values.

The best found hyperparameters for the presented models as well as the parameters
used by Lenz et al. are presented in Tab. 6.2. We use the deep learning framework
PyTorch [99] for model definition, for training, and for inference. Furthermore, the
Adam optimizer [65] is used with a learning rate of 0.001, running average coefficients
β1 = 0.9 and β2 = 0.999, term added for numerical stability eps = 1e-8, no weight
decay, no gradient clipping, and without AMSGrad. The batch size is set to 1024 and
the sequence length for the recurrent architectures is chosen to 3 s with a sampling rate
of 0.2 s.

6.3.2 Training and Validation Data

For training and validating our neural network-based behavior models on real data, we
recorded 40 minutes of urban scenarios including both roundabouts and unsignalized
intersections with our autonomous test vehicle. This dataset is denoted as Dreal and is
split into 30 minutes for training and 10 minutes for validation.

As the real driving data is very limited and not as diverse (e.g., does not contain
traffic lights), additional recorded simulations from our proprietary traffic simulator are
utilized as well. This dataset, denoted as Dsim, consists of 0.465 hours of naturalistic
driving data including 40 agents randomly traversing a different, and more diverse urban
environment. It includes traversing signalized as well as unsignalized intersections (both
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Previously published in [168]. © IEEE 2019

T-junction and 4-way junctions) and some lane changes on multi-lane intersections. This
results in 18.6 hours of data, split into 10 hours for training and 8.6 hours for validation.

As the training and validation split is defined by a given time step in the whole dataset,
no partial data from any validation trajectory is represented within the training dataset.
The data is resampled to a step size of ∆T = 0.2 s, which is used for target reconstruction
(using the inverse bicycle model), for the training procedure, and for inference and the
iterative forward simulation. Both features and targets are normalized to zero mean and
unit variance according to the training dataset. The training data for the non-recurrent
networks is shuffled across all available data samples and for the recurrent networks, a
sequence length of 3 s is used.

6.3.3 Comparison of Model Architectures

The different model architectures are compared using the simulation dataset Dsim, as it
contains more diverse scenes (e.g., including traffic lights or lane changes, not present
in the real driving dataset), thus allowing for a better comparison. In order to prevent
overfitting, so-called early-stopping is applied, such that the model that has performed
best on the validation dataset over the complete training procedure is saved and used
for evaluation.

The validation and training losses of the different models are depicted in the upper
part of Fig. 6.8. It can be seen that the linear model trains the fastest and achieves the
lowest overall loss (lNLL = −4.02, see also Tab. 6.3). The lower part of Fig. 6.8 shows the
corresponding position prediction errors ε̄(x,y) on the validation dataset depending on
the prediction horizon T . For that purpose, the models haven been applied iteratively
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Table 6.3
Runtimes τ [s], Losses lNLL and Position Prediction Errors ε̄(x,y) [m] for Different

Network Architectures using validation set of Dataset Dsim. Previously published in
[168]. © IEEE 2019

Method τ lNLL ε̄(0.2 s) ε̄(1 s) ε̄(5 s) ε̄(10 s) ε̄(20 s)

Rule-Based 2.2e-6 – 0.093 0.469 3.959 11.28 33.48
Linear 7.1e-7 -4.02 0.028 0.243 3.237 10.75 37.95
LSTM 6.8e-7 -3.26 0.027 0.272 4.414 16.40 60.02
GRU 6.4e-7 -3.05 0.033 0.346 5.326 20.25 67.96
Lenz et al. 6.3e-7 -3.40 0.029 0.235 3.393 13.07 54.11

with step size ∆T = 0.2 s to predict up to the full prediction horizon. For short term
predictions of up to around 2 s, all of the learned models outperform the rule-based
model. Low one-step prediction errors are especially important for inference in a DBN.
For long-term predictions (for more than around 5 s), the linear model achieves the best
results among all neural network models. However, for very long horizons exceeding 15 s,
the rule-based model becomes more accurate than any of the learned models. This can
be explained by the prediction error that compounds over time, for which the learned
models cannot counteract. If this error is too high, the features determined during
forward simulation are not represented within the training data anymore. This problem
is commonly known in machine learning as compounding error problem. In supervised
learning, it is typically assumed that the training and testing data are independent and
identically distributed (i.i.d.). For an iterative forward simulation, this is not true, as
the future inputs to the model are influenced by the learned policy itself. The same
problem exists in imitation learning (IL), as the learned policy also influences the future
states upon which the policy has to act [110]. Ross and Bagnell [110] also show that this
leads to compounding errors and a regret bound that grows quadratically with prediction
time. This error could be reduced either with a training distribution of more variety,
or with techniques such as data as demonstrator [148]. Another possibility is to switch
from supervised model learning to IL approaches such as inverse reinforcement learning
(IRL) or generative adversarial imitation learning (GAIL). The rule-based system, on
the contrary, is designed by hand to be attracted by the lane center, such that a vehicle
will always stay close to the centerline.

The runtime τ of any of the learned models (averaged over a batch of 1000 samples) is
less than a third of the one of the rule-based model (see Tab. 6.3). This is foremost the
case due to efficient batch processing, allowing for fast execution when multiple samples
can be processed independently (such as in particle filtering within our DBN).

A qualitative result on the real data Dreal can be seen in Fig. 6.9, comparing the
forward simulation of the rule-based model to the learned linear model. It can be seen
that the learned model is able to pick up subtleties such as cutting curves and curvature
dependent lateral uncertainty. The linear neural network model also outperforms the
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(a) rule-based (b) linear network

Figure 6.9. Qualitative comparison of rule-based and learned linear model on real driving data. The
learned model is able to reproduce subtleties such as cutting curves and different lateral
uncertainties for curved and straight roads. Previously published in [168]. © IEEE 2019
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Figure 6.10. Position prediction errors on validation data of the real driving dataset with different
zoom factors. Previously published in [168]. © IEEE 2019

rule-based model, as shown in Fig. 6.10. However, it has to be noted that this dataset
is quite small and does not contain as diverse situations as the simulated one.

6.3.4 Feature Importance

To determine the importance of the single features, the linear network is trained on Dsim

starting with using only a single feature and iteratively adding features which result in
the highest reduction of validation loss. For that, we train the neural network multiple
times from scratch, always adding one feature to the current list of most relevant features
and analyze the resulting validation losses. Thus, redundant features can be pruned
and the complexity of the model reduced. The five most important features and the
corresponding validation losses by adding each of these features are:

[vi] [vi, φ15] [vi, φ15, dinters.] [vi, φ15, dinters., φ7] [vi, φ15, dinters., φ7, c70] all

lNLL -0.714 -2.093 -2.779 -3.249 -3.346 -4.016
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It can be seen that the velocity of the predicted vehicle vi together with important map
information that describe the upcoming route represent the most important features.
The angles φ15 and φ7 hold information about how to steer the vehicle in the near future.
The distance to the next intersection dinters. and the upcoming curvature c70 tell the
agent when it needs to reduce its speed. Similar to the rule-based model, the interaction
features (e.g., distances to other vehicles) have a statistically lower impact. Nevertheless,
they are important in situations with strong interaction which are, however, statistically
rare. See Sec. 3.2.3.2 for a list and description of the utilized features.

6.3.5 Route Intention Estimation

By conditioning the action on a driver’s route intention, one can query the neural network
for the action distribution for each of the different route hypothesis and then compare
them with the observations of the actual motion to estimate the route probabilities. We
achieve this by integrating the learned model into the DBN from Chapter 2. A qualitative
comparison of route estimation and the corresponding Kullback-Leibler divergence DKL

to the ground truth is shown in Fig. 6.11. The learned model achieves a lower divergence
and is able to tell the correct route faster than the rule-based model.

An interesting disadvantage of conditioning the model on a driver’s route intention
is depicted in Fig. 6.12: When enumerating all possible routes and running a forward
simulation for each of the conditioned models, there might exist route candidates that
are so unlikely that they have never (or only very rarely) been followed in the training
data. Thus, their features may result in unreasonable actions during inference, as the
network has never seen any similar values during training. To put it another way, the
network only learns what actions are reasonable given a route, but not which routes are
reasonable given a situation. Thus, if we query for unreasonable routes, the network
is likely to produce unreasonable actions. In the depicted scenario, agents V 1024 and
V 1039 are predicted to run a red light given the unlikely route hypotheses of doing a
lane change this close to the intersection (which has not happened during training). As
an improvement, one could additionally learn the route priors and prune very unlikely
hypotheses before forward simulation.
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Figure 6.11. Qualitative comparison of route estimation of the green agent V 0 wanting to turn left,
with rule-based (left plot) and learned linear neural network (right plot) action models
and corresponding KLD to ground truth. Previously published in [168]. © IEEE 2019

Figure 6.12. A disadvantage of conditioning a machine learning model on a driver’s route inten-
tion: Routes that are so unlikely that they are not present in training data may result
in unreasonable actions, such as red light violations. Previously published in [168].
© IEEE 2019
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Figure 6.13. Comparison of KLD of MM-UKF and SMC with different number of samples over mul-
tiple scenes (15 agents in total). Performances meet at around 50000 samples, with
corresponding runtimes of τSMC = 7.9 s and τMM−UKF = 0.57 s. Previously published in
[167]. © IEEE 2018

6.4 Comparison of Inference Methods

To highlight the differences of SMC-based and MM-UKF-based inference, their route
and maneuver intention estimates are compared in simulation and real world scenarios.
As SMC inference converges to the optimal estimate for N → ∞, the result of each
estimator is compared to the mean estimate over ten runs of SMC with a high number
of samples (N = 105), which is abbreviated as BE for best estimator. The imprecision
of each estimator is thus measured using the Kullback-Leibler divergence between the
estimate and the best estimator’s estimate, instead of comparing to the ground truth
distribution. This allows to evaluate estimation capabilities in isolation, without an
interference of the model imprecisions. Generally, it is often the case that even a perfect
estimator is not able to infer the ground truth, either due to imperfect behavior models
or because the different models might result in (close to) identical one-step prediction
hypotheses. On the other hand, a bad estimator might accidentally result in a probability
distribution that is closer to the ground truth. The Kullback-Leiber divergence is thus
defined as in Eq. (6.1), but with the ground truth distribution being replaced by the
best estimator’s distribution p(riBE).

A statistical evaluation of the mean Kullback-Leibler divergence D̄KL of all agents’
route intentions over six different scenes (real and simulated) with 15 vehicles in total is
depicted in Fig. 6.13. On average, the MM-UKF outperforms SMC with up toN = 50000
particles, while having a maximum runtime per time step of τ = 0.57 s compared to
τ = 7.9 s of SMC. As the estimation results are strongly dependent on the scenario,
three different scenes are evaluated in more detail in Fig. 6.14. For all scenes, it can
be seen that the SMC inference method can result in high variances in the estimates
depending on the number of samples. The more samples are used, the less variance
the estimation results have, as the randomness in the sampling process is averaged out.
However, while the variance decreases, the inference runtime increases with the number
of samples. On the other hand, as MM-UKF chooses its sigma points deterministically,
multiple runs of the same scene always result in the same estimates. Thus, MM-UKF
inference does not show any variance. It can be seen that it achieves similar results to
SMC with about N = 105 samples while having a significantly decreased runtime. The
corresponding KLD plots for the three scenarios can be seen in Fig. 6.15.
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(a) Scene 1 (real data): The MM-UKF has a maximum runtime τ = 0.061 s, which is comparable to
SMC with N = 600, but performs as good as SMC with N = 50000.
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(b) Scene 2 (real data): The MM-UKF has a maximum runtime τ = 0.020 s, which is comparable to
SMC with N = 300, but performs even better than SMC with N = 100000.
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(c) Scene 3 (simulated data): The MM-UKF has a maximum runtime τ = 0.037 s, which is comparable
to SMC with N = 200, but performs as good as SMC with N = 40000.

Figure 6.15. KLD over time and mean KLD over number of SMC samples for scenarios from Fig. 6.14.
Dashed lines represent MM-UKF, solid lines SMC with intensity showing the number of
samples (100, 200, 500, 1000, 5000, 10000, 50000, 100000; the darker, the more samples).
Previously published in [167]. © IEEE 2018

The first scene consists of three vehicles with human drivers approaching an intersec-
tion. The blue vehicle stops to yield to the green vehicle. As the blue vehicle would
not have to yield in case it wanted to turn right (as this route does not overlap with
the green vehicle’s possible routes), it can be inferred that it either wants to turn left
or go straight ahead (t ≈ 8 s). As soon as the green vehicle has crossed the intersection,
the blue vehicle starts to drive again and goes straight (t ≈ 9 s). The MM-UKF has a
maximum runtime comparable to SMC with N = 600 samples, but outperforms SMC
with up to N = 50000. In the second scene which is also based on real data, the blue
vehicle is driving behind the green vehicle, which approaches the intersection. As the
green vehicle slows down before turning left, the blue vehicle also slows down to maintain
the desired headway distance, irrespective of its desired route (t ≈ 20 s). As soon as the
green vehicle has left the intersection, the blue vehicle accelerates again and continues
straight (t ≈ 30 s). The runtime of MM-UKF is similar to SMC with N = 300, but it
performs even better than SMC with N = 105. The third scene shows how maneuvers
and routes are estimated simultaneously. Initially, all three routes of the simulated blue
vehicle have equal probability. As it only slows down slightly because of the upcoming
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(a) SMC, low longitudinal noise (b) SMC, high longitudinal noise

(c) MM-UKF, low longitudinal noise (d) MM-UKF, high longitudinal noise

Figure 6.16. Comparison of forward simulation based on SMC (first row) and MM-UKF (second row)
depending on longitudinal noise. For high road curvatures and high longitudinal uncer-
tainty, the Gaussian approximation of the UKF is not a good approximation anymore,
resulting in sigma points being outside of lanes and thus an overestimated variance.

curvature, but does not stop in order to yield to the green vehicle, it is inferred that
neither going straight, nor yielding is likely. As soon as it starts turning, it is correctly
inferred that it is turning left and merges before the green vehicle.

Although SMC is naturally able to achieve higher accuracy as it does not make any
(wrong) assumptions about the distribution, this usually comes at the cost of a higher
runtime. In all of the evaluated examples, MM-UKF outperformed SMC in terms of ac-
curacy per runtime. However, it has to be noted that the number of needed sigma points
and thus the runtime of MM-UKF is dependent on the number of modes and vehicles
in a scene. The results indicate that the presented MM-UKF-based inference provides
a reasonable compromise between accuracy and runtime. Furthermore, they show that
given the discrete intentions of all agents, the state can reasonably be approximated by
a single multivariate Gaussian. MM-UKF achieves lower variance and higher accuracy
compared to SMC inference with a similar runtime.

A comparison of the forward simulation-based trajectory prediction is depicted in
Fig. 6.16. It can be seen that the approximation quality highly depends on the modeled
transition noise. For reasonably low longitudinal noise or shorter prediction horizons, the
Gaussian approximation is reasonable (cf. left part of figure). However, for longer hori-
zons, high transition noise, and high road curvatures, the Gaussians may approximate
the curved road badly, at some point even resulting in the sigma points being located
outside of lanes (cf. right part of figure). This may lead to exploding variances as a result
of the highly non-linear behavior models. However, it was found that with reasonable
scaling of the transition noise, forward simulation of up to around 10 s still approximates
the belief similar to the one of SMC. One way to counteract the problematic of bad ap-
proximation in high curvatures could be to utilize lane-centered coordinates such as the
Frenet-Serret formulation (e.g., as in [152]), instead of the Cartesian representation.
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6.5 Interacting Single-Agent DBNs

In this section, we evaluate the interacting single-agent DBNs as proposed in Sec. 4.4
and compare them to the full-combinatorial DBN. Dividing the problem into interacting
single-agent models serves the purpose of reducing complexity and making it possible to
handle more complex scenarios with a high number of possible combinations of intentions
of all agents. This section utilizes the MM-UKF-based inference method. In contrast to
the previously reported runtimes, the runtimes reported in this section are based on an
Intel Core i7-8550U CPU @ 1.80GHz.

The route estimation capabilities of both DBN types are shown for a scene with
four vehicles traversing an intersection in Fig. 6.17. To enable a comparison between
both types, the route combination probabilities p(R) of the full-combinatorial DBN are
marginalized to retrieve the route probabilities p(r) for all single agents, and the single
agents’ route probabilities p(r) of the interacting single-agent DBNs are combined to
retrieve the route combination probabilities p(R). It can be seen that the estimated
probabilities (both p(r) and p(R)) do only differ slightly while the runtime of filtering
with the interacting single-agent DBNs is about ten times lower. As there are three
routes each (neglecting different maneuvers for readability, assuming all agents obey the
right of way), the single-agent DBNs only have to track |R|K = 3 ·4 = 12 combinations,
whereas the full-combinatorial one has to track |R|K = 34 = 81 combinations. The more
complex the scenario, the higher the runtime improvement will be, as the complexity
only scales linearly with the number of agents, compared to the exponential growth in
the full-combinatorial version.

Although the single-agent DBNs do not track all possible combinations of high-level
intentions, for the trajectory prediction (i.e., the forward simulation of the DBN) various
different multi-agent combinations are generated to account for possible future interac-
tion. The probabilities of these intention combinations are calculated based on the esti-
mated probabilities of the single agents’ intentions, such that the most likely hypotheses
can be utilized for prediction.

For assessing how good such a multi-modal prediction is, we introduce a metric which
we call the likelihood miss rate given some likelihood threshold Lthreshold. As the name
suggests, this metric reports the relative number of times where the prediction model has
a likelihood given the observed future which falls below the defined threshold. This met-
ric is specifically suited for analyzing multi-hypotheses predictions, as it shows whether
the true future was in the vicinity of any of the given prediction hypotheses. Other
typical metrics like the mean likelihood or the mean RMSE over a statistical evaluation
of a large number of agents can yield unintuitive results for multi-modal predictions.
The following exemplary calculation showcases this undesired effect:

Let’s consider a single agent traversing the same intersectionN times, always randomly
picking one of the three available routes [left, right, straight], i.e., p(r) = [1

3 ,
1
3 ,

1
3 ]. Given

are three prediction models A, B, C, where A always predicts p(r|model=A) = [1, 0, 0],
B always predicts p(r|model=B) = [1

2 ,
1
2 , 0], and C always predicts p(r|model=C) =

[1
3 ,

1
3 ,

1
3 ]. For each intersection crossing n, we denote the actual route being taken as

rn ∈ {[1, 0, 0], [0, 1, 0], [0, 0, 1]} in a one-hot encoding which is sampled according to the
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Figure 6.17. Route probabilities of full-combinatorial and of interacting single-agent DBNs for the
depicted scene (actual routes are visualized in the scene at the top with the colored
lines). It can be seen that the probability estimates do not differ noticeably while the
maximum runtime per time step of the filtering stage τfiltering is about ten times lower
for the single-agent filter than for the full-combinatorial one.
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uniformly distributed probability p(r). The routes that have not been taken are defined
using a one-cold encoding as ¬rn ∈ {[0, 1, 1], [1, 0, 1], [1, 1, 0]}. For simplicity, let us
assume that in case the route prediction is correct, the likelihood for the continuous
state prediction will constantly be Lcorrect and in case the route prediction was wrong,
the likelihood will constantly be Lwrong. The mean likelihood given a model can then
be calculated as

L̄model =
1

N

N∑
n=1

r>n · p(r|model)Lcorrect + ¬r>n · p(r|model)Lwrong. (6.6)

Although model C is optimal in our example and model A and B are not representing
the multi-modality appropriately, for a large number of N and given exemplary values
of Lcorrect = 1 and Lwrong = 0, the likelihoods of all prediction models average out at
the same value of 1

3 :

L̄A = lim
N→∞

1

N

N∑
n=1

r>n · [1, 0, 0] =
1

3
(6.7)

L̄B = lim
N→∞

1

N

N∑
n=1

r>n ·
[

1

2
,
1

2
, 0

]
=

1

3
(6.8)

L̄C = lim
N→∞

1

N

N∑
n=1

r>n ·
[

1

3
,
1

3
,
1

3

]
=

1

3
(6.9)

On the contrary, the likelihood miss rate

L-miss-ratemodel =

∑N
n=1 1miss

N
, with 1miss :=

{
1, if Lmodel < Lthreshold

0, if Lmodel ≥ Lthreshold

(6.10)

does not result in the same value for all prediction models but, depending on the thresh-
old, gives more informative results. As it is hard to say what a good threshold is in
general, one can plot the likelihood miss rate over a range of thresholds for a better
analysis.

For the scene from Fig. 6.17, the mean likelihoods as well as the likelihood miss rates
are depicted in Fig. 6.18 for the full-combinatorial and the single-agent DBNs, utilizing
all available 81 hypotheses. As expected, both the likelihoods and the likelihood miss
rates are similar for both approaches (with the full-combinatorial performing slightly
better), as the route combination probability estimates are also similar and the forward
simulation of both models are identical given the same route combination probabilities.
Intuitively, if the likelihood threshold is set too high (e.g., Lthreshold = 1), none of the
models achieve any hits anymore.

In case it is computationally prohibitive to actually simulate all combinations forward,
it is possible to only predict a subset of these hypotheses. One way to choose this
subset is to utilize the most likely hypotheses in order not to waste computational power
on low probability outcomes. Other things like the criticality of a hypothesis or how
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Figure 6.18. Comparison of likelihood and likelihood miss rate for full-combinatorial DBN and in-
teracting single-agent DBNs using all available 81 hypotheses for the scene in Fig. 6.17.
The 2D plot of the likelihood miss rate has a threshold of Lthreshold = 10−7. It can be
seen that both models achieve very similar results.
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Figure 6.19. Comparison of likelihood miss rates of different hypotheses of the single-agent DBNs
for the scene in Fig. 6.17 with Lthreshold = 10−7. Solid lines represent only predicting a
single hypotheses, ranging from the 15th-best hypothesis ζ15 to the best hypothesis ζ1.
Dashed lines represent predicting the n best hypotheses ζ1:n together, with n ranging
from 2 to 15 (note that some of those lines are overlapping as they achieve identical
likelihood miss rates). The blue dash-dotted line depicts the case when using all 81
hypotheses, the orange dotted line depicts the full-combinatorial DBN also with 81
hypotheses.

much a hypothesis might influence the autonomous vehicle’s future behavior can of
course be very relevant selection criteria as well, but are left as future work. Given
the assumptions from Sec. 4.4 of the single-agent DBNs, it is possible to determine the
n most likely hypotheses ζ1:n = [ζ1, · · · , ζn] without the need to track all |C| possible
hypotheses, which might be prohibitive in complex situations. Fig. 6.19 depicts the
likelihood miss rates when predicting different hypotheses forward, ranging from the
15th-most-likely hypothesis ζ15 over the most-likely hypothesis ζ1 to the combination of
the best n hypotheses ζ1:n weighted with their estimated probabilities. It can be seen
that the hypotheses that have been estimated to have higher probability also perform
better in the forward simulation. Furthermore, it can be seen that combining multiple
hypotheses can further decrease the miss rate, as it allows to represent multi-modal
distributions.
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6.5 Interacting Single-Agent DBNs

To analyze this effect in a more quantitative manner, we simulate a scene with multiple
agents being spawned randomly around a four way intersection and picking their routes
at random. This scene consists of 32 agents crossing the intersection. Fig. 6.20 depicts
the average likelihood miss rate and the average likelihood depending on the number of
hypotheses being considered during forward simulation (always using the n most likely
hypotheses). It can be seen that more hypotheses in the forward simulation result in
less misses of a given likelihood threshold.

Using the interacting single-agent DBNs, an important reduction of tracking com-
plexity can be achieved while maintaining reasonably good intention estimates. The
number of hypotheses to be considered during forward simulation can easily be adjusted
according to runtime requirements, allowing to only predict the most-likely intention
combinations without the need to enumerate and track the probabilities of all different
hypotheses.
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Figure 6.20. Likelihood miss rate and likelihood depending on the prediction horizon for scene with
multiple agents randomly traversing an intersection, averaged over all agents and time
steps. As the complexity of the scene is too high to do inference in the full-combinatorial
DBN, only the combinations created from the single-agent DBNs are shown.
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6.6 Interactive Motion Planning

6.6 Interactive Motion Planning

This section aims to show the benefits of the presented prediction approach for inter-
action-aware motion planning algorithms. As the task of ego-vehicle motion planning is
not the focus of this thesis, the interested reader is referred to the following publications
for a more detailed evaluation [161]–[163], [165].

6.6.1 Partially Observable Markov Decision Process

A major advantage of POMDPs is that they can deal with uncertainties and can find
an optimal policy given that it is not known exactly what is going to happen in the
future. One part of this uncertainty is the unknown intention of other agents and their
unknown future behavior. The presented DBN allows to determine estimates about
these quantities which can be utilized by the POMDP.

An example scenario that shows the POMDP’s planning routine at an intersection
is shown in Fig. 6.21. Vehicle V 2 has two route options, it can either turn right (thus
not conflicting with the ego-vehicle) or go straight (such that the ego-vehicle has to
yield). Ego wants to turn left and also has to account for vehicle V 1 that has right of
way. In the hypothetical case of ego knowing that V 2 will turn right (green trajectory in
Fig. 6.21(d)), it can merge before V 1 and does not have to slow down. In the hypothetical
case of ego knowing that V 2 will go straight, it has to yield and needs to slow down and
let both vehicles pass (red trajectory). If we assume a uniform distribution (50 % right,
50 % straight) which is constant over time, ego also has to slow down and yield to both
vehicles as well (black trajectory), as it cannot risk a potential collision. In the case of the
POMDP as presented in Chapter 5 (blue trajectory), the existence of future observations
is explicitly modeled, allowing for less conservative behavior. Continuously updating our
belief with new measurements and furthermore knowing that the estimates about the
other agents’ intentions will improve over time enables the ego-vehicle to postpone the
decision on whether to stop or not and keep both options available. As soon as it is
confident enough of V 2’s route, it decides that it does not have to yield and that it can
still merge before V 1. One important aspect is that solely knowing that one will get
additional observations in the future can help finding a better policy, even though one
does not know what the observations will be.

The POMDP is solved using the Toolkit for approximating and Adapting POMDP
solutions In Real time (TAPIR) [66], which is a C++ implementation of the Adaptive
Belief Tree (ABT) [76] algorithm. The planning horizon is 8 s with a corresponding
step size of 1 s. Further results of utilizing POMDPs to solve the problem of interactive
motion planning for autonomous vehicles (including merging in dense traffic and handling
occlusions) can be found in our previous publications [161]–[163].
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Figure 6.21. Evaluation of a T-junction scenario with the ego-vehicle V 0 wanting to turn left but
potentially having to yield to two vehicles. V 2’s route is not known to ego, but it can be
estimated over time. The POMDP solver keeps both options, yielding and not yielding,
open until it is confident enough about V 2’s route. In the end, V 2 is turning right and
ego can merge before V 1. Previously published in [162]. © IEEE 2018
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Figure 6.22. Two scenarios which are evaluated. The left image shows the overtaking with oncoming
traffic scenario with three possible maneuvers: M1 represents V A staying behind V B

(green). M2 represents V A overtaking before V C (blue). M3 represents V A overtaking
after V C (identical to green trajectory in the beginning and then V A overtaking after
V C having fully passed). The right image shows two vehicles merging at an intersection.
M4 represents V D merging first (blue) and M5 represents V D merging second (green).
Previously published in [165]. © IEEE 2017

6.6.2 Multi-Agent Planning

Regarding our prediction and planning approach that is based on cooperative multi-agent
planning, we want to evaluate whether the Bayesian multiple model filter can outper-
form two other typical estimation methods that are commonly used in planning-based
prediction: cost-based estimation and cost-gradient-based estimation. The cost-based
estimation uses the softmax function to map the different planning costs of the optimal
trajectories of each maneuver J∗Mi,t

to a probability distribution (such that low costs
result in high probability). The cost-gradient-based estimation uses the difference of
planning costs of two subsequent time steps ∆J∗Mi,t

= J∗Mi,t
− J∗Mi,t−1 and maps this

change of costs to a probability distribution (high decrease in costs result in high prob-
ability). Such a cost-gradient-based estimation has already been utilized in the context
of autonomous vehicles in [38].

The following results are based on another closed-loop simulator in which the de-
sired maneuvers of the non-ego-vehicles can be set a priori. All vehicles are controlled
with model predictive control (MPC) according to the optimal trajectories of the given
maneuver. Gaussian noise is added to the transition model and measurements. For an-
alyzing the closed-loop estimation capabilities, the ego-vehicle is simply controlled with
the optimal trajectory of the most likely maneuver (according to the selected estimation
method).

The two scenarios from Fig. 6.22, overtaking with oncoming traffic and merging at
an intersection, are statistically evaluated. For the overtaking scenario, we assume V C

to be the ego-vehicle, V A to be predicted and V B having constant velocity. Three
possible maneuvers have been identified, M1 (V A not overtaking but following V B),
M2 (V A overtaking before the oncoming ego-vehicle), and M3 (V A overtaking after the
oncoming ego-vehicle). For the merging scenario, VE is assumed to be the ego-vehicle
whereas VD is to be predicted. Two maneuvers are distinguished: M4 (VD merges
before ego) and M5 (VD merges after ego). All parameters used for the evaluation are
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Table 6.4
Evaluation Parameters of Multi-Agent Planning. Adapted from [165].

Planning and Estimation Noise

planning horizon T 14 s σ2
s 1 m2

step size ∆T 1 s σ2
d 0.1 m2/s2

long. acceleration range as [−9, 5] m/s2 σ2
vs 0.25 m2

lat. acceleration range ad [−2, 2] m/s2 σ2
vd 0.01 m2/s2

long. velocity rance vs [0, 20] m/s σ2
sz 5 m2

lat. velocity range vd [−5, 5] m/s σ2
dz 5 m2

desired velocity vdes 10 m/s
car length l 5 m
car width w 1.75 m
lane change length α 2.5 m
safety distance β 30 m
right of way weight ψ 1
maneuver switching probability µ 0.1

chosen by domain knowledge and are shown in Tab. 6.4 (see Sec. 5.2 for definitions).
To reflect different situations, the initial conditions consisting of desired velocities and
initial positions of all vehicles are altered iteratively. Each run consists of 14 seconds
and is repeated five times with the same initial conditions but different random seeds
for each possible maneuver intention. The execution of one time step of the overtaking
scenario including maneuver determination (C++), multi-agent trajectory planning and
IMM update (MATLAB) takes approximately 0.26 s on an Intel Core i7-4910MQ with
2.9 GHz without code optimization or parallelization.

The trajectory planning results are exemplarily depicted for the overtaking scenario in
Fig. 6.23, showing the cost-optimal trajectories for each maneuver and the corresponding
hard constraints. Within this example, V B is considered to be static (e.g., a parked car).
For maneuver M2 where the blue agent is overtaking the parked car before ego has passed
it, the optimal trajectory for ego creates a little more lateral space for the oncoming
car by driving further to the side, thus supporting the other agent’s decision and being
cooperative. Fig. 6.24 depicts the corresponding IMM maneuver probabilities depending
on the tracking time steps with the maneuver intention set to M1 (V A following V B).
Although maneuver M1 and M3 have similar optimal trajectories in the beginning, they
can still be distinguished after about three time steps. Maneuver M2 results in V A

accelerating already in the very beginning, making it easier to distinguish from the
other two maneuvers. The confusion matrices given in Tab. 6.5 show a quantitative
comparison of the actual maneuver and the estimates of the different estimators for
time steps t1:14 for the cost-based estimator and t2:14 for the other estimators (as they
need at least two time steps for estimation). The results show for both overtaking
(left part) and merging (right part) that only relying on the costs often yields wrong
maneuver estimates, as the simulated vehicles randomly decide for a maneuver which is
not necessarily the one with lowest costs. However, the costs of the intended maneuver
tend to get smaller the longer the predicted vehicles follow their intentions, slightly
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Figure 6.23. Overtaking scenario with oncoming traffic: Multi-agent trajectories for all maneuvers
inM. The colors of the trajectories (lines) and the hard constraints (areas) correspond
to the vehicles’ colors. The hard constraints constrain the trajectories due to the road
boundaries and other vehicles: the trajectories are not allowed to be inside the areas of
same color. Previously published in [165]. © IEEE 2017

improving the accuracy over time. One advantage of the cost-based estimation is the
instant assessment without being dependent on the availability of any history, i.e., it
does not have to wait for the second time step for its initial classification. Also, the
cost-based classifier could potentially perform better in non-simulated traffic, as humans
might choose their maneuver more often according to its expected cost and not purely
at random as in our simulation. The cost-gradient estimator achieves better results in
our environment and faster convergence, as it uses two consecutive measurements and
therefore is able to analyze the actual behavior between two time steps instead of only
utilizing a single frame of the situation. Thus, even if the agent chooses a high-cost
maneuver, by following the respective trajectory, the cost-gradient for that maneuver
might still be the highest. However, the cost-gradient completely neglects the absolute
costs, sporadically resulting in even worse accuracies. In our experiment, the IMM
estimator, using all available past measurements and focusing on the actual trajectory
similarities between observations and prediction instead of solely relying on the costs,
outperforms the cost-based as well as the cost-gradient-based classification.
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Figure 6.24. IMM maneuver probabilities for the overtaking scenario with maneuver intention M1

(V C follows V B). The mean values of all runs with different initializations are drawn as
lines with white boarders. Previously published in [165]. © IEEE 2017

Table 6.5
Confusion Matrices for Estimators based on J∗M, ∆J∗M and pM for overtaking scenario

(left) and merging scenario (right). Previously published in [165]. © IEEE 2017

Actual based on J∗M Acc Actual based on J∗M Acc

M1 M2 M3 M4 M5

M1 746 811 3393 0.15 M4 11112 5763 0.66
M2 312 3833 805 0.77 M5 5660 11215 0.66
M3 693 836 3421 0.69 0.66

0.54

Actual based on ∆J∗M Acc Actual based on ∆J∗M Acc

M1 M2 M3 M4 M5

M1 505 517 3598 0.11 M4 13690 2060 0.87
M2 19 4458 143 0.96 M5 2352 13398 0.85
M3 546 526 3548 0.77 0.86

0.61

Actual based on pM Acc Actual based on pM Acc

M1 M2 M3 M4 M5

M1 3476 60 1084 0.75 M4 15060 690 0.96
M2 20 4539 61 0.98 M5 530 15220 0.97
M3 825 84 3711 0.80 0.96

0.85
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7 Discussion

Self-driving cars are considered to be a game-changing technology for future mobility.
They are expected to drastically reduce the number of accidents and thus human injuries
and fatalities, improve traffic flow and efficiency, and to allow passengers to be productive
while traveling. Furthermore, they open up possibilities of efficient and affordable ride-
hailing and car-sharing services, reducing the need for privately owned cars.

A major difficulty of self-driving cars is to achieve behavior that is safe while not being
over-cautious [29]. One component of achieving this behavior is the anticipation of the
motion of surrounding agents. Accounting for what other agents intend to do within
the ego-vehicle motion planning allows to drive in a cooperative and foresighted manner.
Modeling the influence of the ego-vehicle’s future motion on surrounding agents enables
to drive less conservatively, allowing for interactive maneuvers such as merging into
narrow gaps. The prediction of multiple interacting agents is combinatorial in nature,
highly depends on the situational context, and is inherently uncertain and multi-modal,
thus still representing a great challenge today [81].

7.1 Conclusion

This thesis has presented a context-dependent, interaction-aware and probabilistic pre-
diction framework that is able to estimate high-level driver intentions and to predict
complete scene developments considering the interdependencies between multiple agents’
trajectories. The set of possible intentions is generated during runtime given a topolog-
ical map and the current belief state, removing the need to predefine a discrete set of
classes and allowing for arbitrary road layouts. The proposed approach is capable of
dealing with an arbitrary number of agents, with the uncertainty in measurements and
human behavior, and with the inherent multi-modality of possible future trajectories.
Additionally, we presented two interactive ego-vehicle motion planning algorithms for
autonomous vehicles that build on this prediction framework and account for the inter-
relation of ego-vehicle planning and the prediction of surrounding agents, resulting in
more interactive and less conservative behavior.

Combined Estimation and Prediction: The decision making processes of multiple
interacting agents in a scene are modeled in a dynamic Bayesian network (DBN). By
including all agents within the state space, it can be accounted for interactions between
multiple agents. As this DBN is a generative models, it allows to both infer the hidden
intentions of drivers with recursive Bayesian estimation and to predict how a traffic
scene will evolve in a probabilistic manner using forward simulation of the current belief.
Intention estimation and trajectory prediction are very related problems, as they both
describe how an agent is going to act in the future, but on different levels of abstraction.
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7 Discussion

We handled these problems in a combined way by defining a single generative model,
in contrast to having two distinct models as commonly done in existing literature. This
ensures consistency of the results of both levels of abstraction and reduces design effort
as only one model is needed. An improvement in the state prediction model does not
only benefit the trajectory prediction, but also directly benefits the intention estimation
capabilities. Fine-tuning of the parameters of this model by hand is considerably less
cumbersome than the ones of a discriminative classifier, as the forward simulation can be
easily compared to the ground truth trajectories. Another advantage of this Bayesian
estimation framework is that the kinematic states of all agents are filtered in a more
informed way by utilizing more sophisticated prediction models compared to classical
tracking methods that only rely on physics-based state prediction.

High-Level Intentions: We introduced high level intentions into the decision mak-
ing process of an agent to subdivide the tracking and prediction problem into multiple
subproblems. Conditioning the behavior model on these intentions reduces modeling
complexity and improves interpretability. Furthermore, it enables to estimate these
intentions which might in turn be needed within subsequent software modules of an au-
tonomous vehicle such as planning algorithms for making high-level maneuver decisions.
In this work, we introduced two types of high-level intentions, the route intention (i.e.,
the path an agent desires to follow) and the maneuver intention given a specific route
(i.e., whether an agent wants to pass a conflict area before or after other agents).

Our evaluation has shown that the presented framework is able to estimate these
intentions even in interactive scenarios in which non-interactive models do result in
wrong findings. By implicitly reasoning about what might influence an agent’s behavior
depending on its intention, it can come up with conclusions such as that the deceleration
before an intersection might be rather due to a slow preceding agent and not due to an
upcoming turn (resulting in a uniform route distribution, as all options are equally
likely), or that when stopped at an intersection it is unlikely for an agent to follow a
route for which it would not even have to yield.

Route Intention: In contrast to many existing works, the different possible route
intentions have not been predefined by hand (such as “turn right”, “turn left”, and
“go straight”), but are determined at runtime according to a topological map. Thus,
arbitrary road networks and an arbitrary number of route hypotheses can be represented.
We conditioned the action of an agent on its route intention, allowing to extract relevant
features more easily such as the upcoming curvature of that route or the prevailing
traffic rules. The action thus does not depend on a single discrete label of the route
such as “turn left”, but on the characteristics that describe the route by a multitude
of continuous and discrete features. We utilized the same set of features for each route,
resulting in a fixed number of inputs to the action model. This enables the use of various
fixed input size learning models such as typical neural network architectures. For each
possible route, the action model can then be queried, allowing for an arbitrary number
of hypotheses. The evaluation of this thesis has shown that the route intention is one
of the main causes of multi-modality of the future trajectory of an agent. Estimating
the route intention thus allows to draw important conclusions about what modes of the
prediction are more or less likely and thereby improve overall prediction.
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An assumption that has been made by conditioning the behavior model only on the
characteristics of a single route is the disregard of the existence of other possible routes
and their respective appearances, or mathematically speaking p(a|ri,R) = p(a|ri), ri ∈
R. If the sole existence of other routes did influence an agent’s actions, the input would
not be of fixed size anymore. A possibility to improve on this assumption of independence
of other routes is to use a behavior model that is able to handle variable input sizes, such
as recurrent [91] or recursive models [124], or utilizing fixed input sized featuremaps such
as top-down images. So-called sequence-to-sequence models [135] could even be used to
directly learn the actions of all possible routes as they allow for a variable input and
variable output size.

Maneuver Intention: The second high-level intention introduced within this thesis
is the so-called maneuver intention, which describes the sequence in which agents are
going to pass an upcoming conflict area. This maneuver definition follows the concept of
trajectory homotopy and that agents engage in mutual collision avoidance. It is able to
distinguish both spatial as well as temporal aspects. The set of possible maneuvers of an
agent given a specific route hypothesis is determined at runtime depending on the exis-
tence of other agents and the topological map. Thus, an arbitrary number of maneuver
hypotheses can be generated. The maneuver intention represents another strong cause
for multi-modality, as drivers may change their underlying actions drastically depending
on their maneuver decisions. Thus, the maneuver estimation also yields interesting in-
sights on the decision making process of an agent and thereby in the prediction of their
continuous motion.

Inference Methods: This thesis proposed two different inference methods for the
aforementioned DBN, a sequential Monte Carlo (SMC)-based and a multiple model
unscented Kalman filter (MM-UKF)-based method. Given a specific combination of
route and maneuver intentions of all agents, the evaluation of this thesis has shown that
the belief and predictions of the kinematic states stay mostly unimodal, such that they
can reasonably be approximated by a single multivariate Gaussian. This enabled us to
utilize the proposed MM-UKF-based inference method, where each mode represents a
combination of route and maneuver intentions of all agents. Compared to the baseline
SMC method that does not come with a Gaussian assumption, the MM-UKF method
enhances inference efficiency drastically: Our evaluation has shown that it has a generally
lower runtime than SMC with comparable accuracy or achieves improved accuracy given
a similar runtime.

The computational efficiency is especially pronounced when the belief has high uncer-
tainty, as SMC requires many particles to represent a widespread distribution. Especially
when the measurement noise is low compared to the system noise, many particles end up
being eliminated during resampling because of their low probability. This amplifies the
typical problems of sample degeneracy and impoverishment. One possible improvement
could be to sample from a more informed proposal distribution that takes into account
the already received measurement, as suggested in [137, p. 262].

The comparison of multiple runs with different SMC random initialization highlighted
the high variance in the estimation results, which is naturally not the case for MM-
UKF. MM-UKF ensures reproducible results allowing for an easier validation of the
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overall framework. However, SMC has the advantage that the number of samples can be
adjusted according to runtime requirements, whereas the number of sigma points for the
MM-UKF is defined by the situation. Furthermore, discrete variables and non-additive
noise terms can be added straightforwardly for SMC, whereas for MM-UKF the modes
need to account for each discrete variable and the state of the sigma points needs to be
augmented for each non-additive noise term, making SMC more flexible.

Both proposed inference methods are able to represent the multi-modal and hybrid
belief state and thus are well suited for the problem domain of behavior prediction.
Another significant benefit of these inference methods lies in their sample-based nature:
The samples can be populated through highly non-linear transition functions while no
derivatives have to be calculated. The employed non-differentiable models in this work
(such as the lane-matching model) forbid the usage of inference methods that rely on
derivatives of the transition models such as the extended Kalman filter (EKF).

Rule-Based Behavior Model: In this thesis, we proposed two distinct action mod-
els that represent a probabilistic mapping from a feature-based representation of a traffic
scene from the point of view of a driver to a distribution over their continuous actions:
one rule-based and one deep learning-based model. Both models take the available infor-
mation from a digital map (topology, geometry, traffic infrastructure, and traffic rules)
as well as the dependency on surrounding agents into account. Our proposed rule-based
model partly builds on the established intelligent driver model (IDM) used for highway
car-following, but in contrast is suitable for complex urban environments and able to
account for uncertainty in human behavior. We have achieved this by introducing new
submodels for curvature approach, intersection crossing, and stopping at red lights or
stop signs, allowing to predict on various road layouts and account for typical influences
in urban environments. It is based on the assumptions that agents tend (with some
uncertainty) to drive as fast as possible within the speed limits while remaining safety
distances to other agents and that they tend to drive close to the center of the lane. The
interaction-awareness is modeled as mutual dependencies between multiple agents: Us-
ing small time steps of independent actions allows to break down these interdependencies
and to predict the action of each agent for one time step without knowing the actions
of others. This is a small assumption, as one can argue that human drivers also do not
know what other drivers are going to do with complete certainty. Thus, the presented
behavior models only depend on the current context and not on the prediction of others,
but still act in an anticipatory way (i.e., make implicit predictions on how the scene is
likely going to evolve, e.g., by assuming constant velocity of others).

The hand-tuned model was successfully employed for long-term motion prediction and
the estimation of both route and maneuver intentions of multiple interacting agents in
simulation and in real world scenarios. The evaluation in this work has shown that the
map-dependency as well as the interaction-awareness are very important aspects, allow-
ing the rule-based model to outperform simpler interaction-unaware or solely physics-
based models. An interesting aspect is that despite this importance, statistically, this
context-dependency might seem to be of minor relevance: Most of the time, predicting
using only physics-based models such as CTRV results in satisfactory performance, as
drivers tend to change their behavior slowly enough. However, in situations that re-
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quire a fast change of behavior, such as on curvy roads or at intersections, physics-based
models come to a limit. Furthermore, with physics-based models, intentions cannot be
estimated (as they do not depend on a driver’s intention). A similar statement can be
made for interaction-awareness: Although in many situations, predicting an agent on its
own while neglecting the existence of other agents may perform adequately, there exists a
variety of situations in which a high interdependency between agents is present, resulting
in interaction-unaware models to fail drastically. As it is hard to foresee when a situ-
ation might become interactive, forward simulation should be done in a combinatorial
and interaction-aware fashion.

As we added Gaussian noise to the actions (and potentially also to the states) to
account for behavior uncertainty, the resulting trajectories of the rule-based model follow
a somewhat “zigzag motion”. More consistent trajectories could be achieved by sampling
from uncertain behavior model parameters that represent the driving style (such as
comfortable breaking deceleration or desired time gaps) and not having any uncertainty
in a driver’s actions given these parameters. These parameters could in turn also be
estimated as part of the DBN during the runtime.

Deep Learning-Based Behavior Model: The deep learning-based action models
embedded into the presented DBN have shown how novel deep learning approaches can
be combined with classical Bayesian estimation approaches and expert knowledge. Con-
ditioning the model on the route intention, which is the main cause of multi-modality
in predictions, reduces learning complexity and allows to handle a variable number of
hypotheses while still having a fixed input size model. With the presented network
architectures, we were able to learn lane following, distance keeping, yielding to other
traffic participants at intersections, stopping at red lights as well as to even capture
subtleties such as cutting curves. By also learning the variance in a driver’s actions, we
accounted for the context-dependent magnitude of uncertainty in the transition model,
which better captures the reality of human driving and which is difficult to model by
hand. Sampling from this learned distribution also resulted in more consistent trajec-
tories compared to the “zig-zag motion” of the rule-based model. Due to the simplicity
of the models (2-4 layers), they come with low runtimes, enabling their application
to sampling-based frameworks such as Monte Carlo tree search (MCTS) or sequential
Monte Carlo (SMC). The evaluation in this thesis has shown that the proposed deep
learning models can outperform the hand-tuned rule-based model, especially performing
better for short prediction horizons of up to around 10 s. As a result of the signifi-
cant decrease of the one-step prediction error, the intention estimation quality improved
considerably. Having models with higher accuracy in turn reduces the need for a high
number of particles.

Achieving thorough generalization with deep learning-based prediction models is still
a great challenge. In supervised learning, it is typically assumed that the training and
testing data are independent and identically distributed (i.i.d.). For an iterative forward
simulation, this is however not the case, as the future inputs to the model are influenced
by the learned policy itself. Long-term predictions can cause the compounding error
to grow beyond a point at which the input features are too different from the training
distribution and thus result in poor predictions. This could be diminished with more di-
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verse training data and with data augmentation techniques such as data as demonstrator
[148] and dataset aggregation (DAgger) [111], allowing the models to learn to approach
the ground truth trajectories again after slight deviation. A more fundamental alter-
native, as explained in [110] in the context of imitation learning, is the use of inverse
reinforcement learning or general adversarial imitation learning instead of supervised
learning.

A related challenge can be found in the prediction conditioned on very unlikely route
hypotheses: as the model was trained with data from another distribution in which
this hypothesis never or only very rarely occurred, the forward simulation may result in
unreasonable behavior (as shown in Fig. 6.12). Two possibilities to improve this are to
either increase the diversity and the amount of training data such that it is accounted
for such outliers, or to introduce learned priors that allow to pre-prune very unlikely
hypotheses before they are even tracked or predicted.

A requirement for learning the behavior model in a supervised fashion is the avail-
ability of ground truth data, including both the actions to be predicted as well as the
intentions on which the model is conditioned on. We assumed a driver does not change
its route intention and thus were able to automatically label it after having observed a
trajectory that completely traversed an intersection. It is apparent that this is a mild
assumption, as drivers decide for a route mostly based on their navigation goal which
is typically not influenced by the situational context. However, this is not the case for
the intended maneuver, which an agent might change in the course of getting closer to
an intersection. This makes it difficult to determine the actual ground truth labels, as
it would require a survey of humans disclosing their intentions while driving, which is
impractical. Instead, this thesis has shown that the maneuver intentions can be learned
implicitly within the action model, such that the maneuvers are represented by the tra-
jectories generated from the learned actions. Thus, the deep learning-based behavior
model is not conditioned on an explicit maneuver intention but decides on the maneu-
ver implicitly on its own. Conditioning on uncertain intentions during training requires
so-called learning from incomplete data which could be achieved with the expectation
maximization (EM) algorithm [42], [43].

Combinatorial Complexity: The prediction of multiple interacting agents under
consideration of uncertainty is combinatorial in nature. As agents may not only interact
with each other at the current point in time, but also at any point in the future, the
predictions of all agents potentially become interdependent. The combinatorial com-
plexity is thus inherent to the problem of interaction-aware prediction and the number
of possible combinations grows exponentially with the number of agents. Existing liter-
ature often either neglects this interaction altogether or introduces strong assumptions,
resulting in lower complexities on the one hand, but also in potentially inaccurate predic-
tions on the other hand. In cases with close interaction between traffic participants, the
results of this thesis have shown that their interdependencies should not be neglected.

In this thesis, we proposed a full combinatorial solution method that allows to track
and predict all possible combinations of route and maneuver intentions of all agents.
However, if the number of combinations is too large to be computationally feasible, the
question on which combinations to neglect has to be answered. Limiting the number of
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particles in the SMC-based inference method represents one possibility to limit computa-
tion time, effectively pruning hypotheses based on their likelihood. Analogously, pruning
by likelihood can also be achieved with the MM-UKF inference method. However, if the
number of possible combinations is too large to even be tracked for a short period, there
remain untracked hypotheses for which the likelihoods cannot be estimated. Thus, new
combinations to replace unlikely already tracked ones have to be selected at random or
solely based on priors.

To this end, we presented so-called interacting single-agent DBNs as another possibil-
ity to get this complexity under control. They track each of the agents in a scene on its
own utilizing statistics about the other agents’ poses, resulting in a tracking complex-
ity reduction from exponential to linear in the number of considered agents. Using the
estimated single agent intention probabilities, the most likely combinations (assuming in-
dependence of intentions) can then be determined in order to focus computational efforts
on the most promising hypotheses for the combinatorial forward simulation. Our results
have shown that the single-agent filters come with heavily reduced runtime while main-
taining tracking capabilities comparable to the ones of the full-combinatorial method
and thus represent a reasonable approximation. Further, we have shown that picking
the most likely hypotheses based on this assumption improves prediction accuracy com-
pared to selecting hypotheses that have lower probability estimates.

Interactive Ego-Vehicle Motion Planning: Considering interaction is not only
important for the prediction of other agents, but also for interactive ego-vehicle motion
planning. Although the prediction of surrounding agents and the planning of the ego
motion are highly coupled problems (prediction influences planning and vice versa), these
problems are often tackled separately in existing literature. A very common approach
is to solve prediction first (neglecting the influence of the ego-vehicle) and then utilizing
this prediction as an input for the motion planning algorithm to plan trajectories around
these fixed predictions to avoid collisions [63], [94], [145]. Although this may work in
less interactive scenarios, other scenarios like merging in dense traffic require to model
the influence of the ego-vehicle on other agents in order to be successful. Not modeling
this influence typically results in too conservative behavior, as can be seen in recent
complaints of residents about too conservative self-driving cars at intersections [29]. To
this end, we proposed two methods to solve these interdependent prediction and planning
problems in a coupled manner, utilizing the presented Bayesian prediction framework.

In the first method, we formulated the problem as a partially observable Markov de-
cision process (POMDP) that includes the presented DBN as part of the state space.
Utilizing a point-based solver transformed the problem into a Monte Carlo tree search
(MCTS) problem, allowing for an efficient search within the solution space. Multiple
episodes are simulated forward in order to evaluate the expected costs of possible ego-
vehicle trajectories according to the corresponding likely reactions of the surrounding
agents, taking the ego-vehicle’s influence on its surrounding agents into account. Rea-
soning about future observations allows to anticipate knowledge that will be gained in
the future, thus allowing to drive less conservatively. Because of the coarse action dis-
cretization, this method should be combined with a continuous trajectory optimization
that smoothes the optimized action sequence. However, with the expected increase in
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computational power in the future, continuous action spaces, smaller step sizes, and
longer planning horizons will become feasible. Although the complexity of solving the
POMDP for complex situations can be very high, the anytime capability of the point-
based solver allows to still handle scenarios with many agents and find reasonable but
potentially suboptimal solutions.

The second method utilizes cooperative multi-agent planning for predicting other
agents and deriving ego-vehicle trajectories. We defined so-called collective maneuvers
for the multi-agent case, describing the relative motion of all considered agents including
the ego-vehicle (in contrast to the other parts of this thesis where a maneuver represents
pairwise relations from a single agent’s perspective). For all possible maneuvers, multi-
agent trajectories based on mixed-integer quadratic programming (MIQP) are generated.
The planned trajectories of the surrounding agents represent their predictions and are
used as transition models for the Bayesian maneuver estimation. The ego-vehicle can be
controlled with the corresponding trajectories of the most likely maneuver, thus ensuring
consistency of planning and prediction. By defining a global cost function that is com-
posed of cost-terms for all vehicles, this method generally assumes cooperative behavior
of others. Nevertheless, our evaluation has shown that due to the Bayesian estimation,
we were still able to detect when agents decide for a suboptimal maneuver, enabling
the ego-vehicle to act accordingly. In contrast to the POMDP approach, this method
explicitly analyzes all available homotopy classes and tries to estimate which option is
intended by other traffic participants. Thus it allows to also decide for suboptimal ma-
neuvers (according to the cost function) in case other agents seem to follow a suboptimal
option and we want to accommodate. For complex situations, reasonable pre-pruning
becomes necessary, as the number of possible homotopy classes grows exponentially with
the number of agents and thus enumerating all of them becomes infeasible. To further
improve the approach, recovering a cost function which describes real human behavior
more accurately could be achieved by utilizing inverse reinforcement learning (IRL) in
the future.

Our results have shown that both of these methods allow for dense and interactive
scenarios to be succeeded by an autonomous vehicle in a less conservative way, as it
is accounted for the influence of the ego-vehicle on the actions of surrounding agents.
Future work should investigate how safety specifications can be determined for these
approaches, either based on statistical evaluation or by adding an additional safety layer
that allows for formal verification.

7.2 Future Research Directions

The prediction of human drivers’ motion and the estimation of their intentions as well as
how to include this knowledge within the motion planning of an autonomous vehicle are
still part of active research. This thesis cannot fully cover all aspects of these topics and
thus we present some interesting open points in the following that should be investigated
in the future. Besides the already mentioned assumptions and possible improvements
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of the presented approach in the previous section, there are also more general research
directions that are worth looking into.

Anomaly Detection: An important aspect of conditioning an agent’s behavior on its
intentions is the necessity of completeness of hypotheses: If the actual route or maneuver
an agent desires to follow is not represented within the set of possible intentions, no
meaningful estimation and prediction will be possible. For example, at an intersection we
might ask the question “Will the agent go straight or will it turn left?”, when it actually
is going to make a U-turn, but we were not able to detect that this possibility even
existed. This might happen if the topological map is outdated (e.g., due to construction
zones) or not detailed enough (e.g., missing driveways) or if a misdetection of another
agent occurs, resulting in only a subset of possible intentions being extracted. Another
issue lies in the possibility of wrong features for the action model being extracted, e.g.,
due to the misdetection of a traffic light’s state. As it is not possible to guarantee
that all intentions can always be determined and all features are extracted correctly, a
prediction and estimation framework should be able to handle such cases. One possibility
to deal with this problem is to introduce an anomaly detection of an agent’s behavior
(e.g., based on the measurement likelihoods of all existing hypotheses) and a fallback
prediction model that might be solely physics-based. When an agent does not behave
as expected given the existing models, the fallback model is activated and used for the
forward simulation.

Another benefit of such a fallback solution is the actual case of abnormal behavior of
a driver: If the used models (despite correct hypotheses and features) do not describe
the actual behavior of a driver well, a physics-based model might still yield sufficient
predictions. A similar difficulty can be found in areas where no lanes are present such
as on parking lots, in which a physics-based fallback solution could also be employed.

As proposed by Fisac et al. [39], it is also possible to reason about the confidence
of the prediction model at runtime and to increase model uncertainty when the model
performs poorly.

Occlusions: Another major direction is the field of occlusions: In contrast to standard
measurement noise or misdetections, it is possible to be aware of occluded areas and thus
know that it is impossible to get detections within this area. Therefore, occlusions can
be handled differently than other missing detections due to sensor fault. Most existing
literature, including this thesis, does not explicitly model occlusions and assumes that
all objects can be detected. Explicit modeling of the existence probability of objects
in occluded areas could improve both prediction as well as ego-vehicle planning. It is
even possible to infer the existence of objects given the behavior of other agents that
might have a different field of view [132]. How occlusions can be modeled within the
ego-vehicle motion planning using POMDPs can be found in our work [161].

Prior Distributions: In this work, we have set the priors over the possible intentions
according to a simple uniform distribution. Although promising results could already
be achieved, having more informed priors will further improve prediction and estimation
quality. One way of achieving this is to utilize simple heuristics such as it being more
likely to drive straight than to turn, or that it is more likely to merge in a gap that can
be reached without strong acceleration or deceleration. Another possibility is to derive
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the priors based on real driving data. The route prior could for example be learned
given features such as lane types, turn directions, vehicle types, and velocities or simply
be queried from a lookup table given a specific intersection id which is based on traffic
statistics. The maneuver priors could for example be learned based on features such as
distances to the conflict areas, velocities and road information such as curvature and
traffic rules.

Pruning of Hypotheses: The number of possible combinations for predicting a
traffic scene in a full-combinatorial fashion (in order to account for possible future in-
teraction) grows exponentially with the number of considered agents. Thus, pruning
becomes unavoidable for more complex scenes. In this thesis, we proposed to get a
grip on this combinatorial explosion by pruning according to probability. This allows to
account for the most likely future trajectories while enabling real time performance.

However, it is up for debate whether the probability alone is a sufficient measure for
neglecting possible future trajectories. It stands to reason that events of low likelihood
but high impact should also be considered, as over the course of the high number of
miles driven, these events might actually occur. Thus, we suggest to extend the presented
framework in the future to additionally estimate the impact of the considered hypotheses
on the future behavior of the ego-vehicle. Appropriate utility functions that assess a
hypothesis’ relevance and criticality could then be taken into consideration for pruning,
instead of solely relying on the estimated probabilities.

Evaluation Metrics: The evaluation of a prediction algorithm is not as straight-
forward as it may seem at first. One problem lies in the multi-modality of prediction,
potentially rendering typical metrics like the root mean square error (RMSE) or the
likelihood to be counterintuitive, as even a perfect model might result in lower scores as
obviously false models. To this end, we proposed an additional metric, the so-called like-
lihood miss rate, that measures how often the prediction has a likelihood below a certain
threshold given the corresponding observed trajectory, i.e., the trajectory is “too far out-
side” of any significant mode of the prediction distribution, or informally speaking, has
not been predicted correctly. Standardized and adequate metrics should be developed
further and adopted widely in order to improve comparability between different works.

If a prediction approach is to be utilized by an autonomous agent, its predictive
performance should ultimately be assessed in a closed-loop setting as well. Due to the
potentially different actions of an autonomous vehicle (compared to human drivers) and
the corresponding reactions of surrounding agents, one might end up in new situations
that have not been observed before. When the prediction model is trained with human-
only data but tested on data that includes an autonomous agent, the i.i.d. assumption of
training and testing distributions is violated. This so-called covariate shift might result
in poor prediction performance. In an extreme case, the motion planning algorithm
might even exploit an insufficiently trained predictor to achieve low costs in planning
that are based on false predictions and thus result in unsafe behavior. Although open-
loop metrics allow for a first assessment and a comparison between different prediction
approaches, evaluating how an autonomous vehicle acts given a predictive model is an
important aspect that should be investigated in the future.
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Evaluation Data: Another crucial component of evaluation is the existence of high
quality traffic datasets that contain important contextual information such as the road
geometry, road topology, lane markings, traffic infrastructure, and the states of sur-
rounding agents. Unfortunately, there have been very few public datasets, that typically
do not contain urban scenarios, sufficient road and infrastructure information, already
detected and tracked objects or scenarios with extensive interaction between traffic par-
ticipants. The so-called NGSIM highway datasets [26], [53] are among the most popular
datasets in the prediction literature. Recently, as autonomous driving gains more re-
search focus and interest of large companies, new datasets have become available such
as the highD dataset [70], the INTERACTION dataset [157] and the datasets by Lyft
[64] and Waymo [134], [151]. Thus, we can expect that future work will be based on
publicly available datasets more frequently, resulting in more comparable research.

On top of that, we want to highlight the potential benefits of creating a public predic-
tion challenge (as often done in the field of computer vision) that includes diverse and
interactive scenarios in both urban and highway environments and utilizes standardized
and adequate evaluation metrics. This would allow authors to benchmark and compare
their approaches more fairly and thus be a great contribution to the motion prediction
community.
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M. Thuy, M. Goebl, F. v. Hundelshausen, O. Pink, C. Frese, and C. Stiller, “Team
AnnieWAY’s autonomous system for the 2007 DARPA urban challenge,” Journal
of Field Robotics, vol. 25, no. 9, pp. 615–639, 2008.

[64] R. Kesten, M. Usman, J. Houston, T. Pandya, K. Nadhamuni, A. Ferreira, M.
Yuan, B. Low, A. Jain, P. Ondruska, S. Omari, S. Shah, A. Kulkarni, A. Kazakova,
C. Tao, L. Platinsky, W. Jiang, and V. Shet. Lyft Level 5 AV Dataset, [Online].
Available: https://level5.lyft.com/dataset/ (visited on 07/23/2020).

[65] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv:
1412.6980, 2014.

149

https://level5.lyft.com/dataset/


[66] D. Klimenko, J. Song, and H. Kurniawati, “TAPIR: A software toolkit for ap-
proximating and adapting POMDP solutions online,” in Australasian Conference
on Robotics and Automation, vol. 24, 2014.

[67] S. Klingelschmitt, M. Platho, H.-M. Gross, V. Willert, and J. Eggert, “Combining
behavior and situation information for reliably estimating multiple intentions,”
in Intelligent Vehicles Symposium (IV), IEEE, 2014, pp. 388–393.

[68] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, “Kinematic and dynamic
vehicle models for autonomous driving control design,” in Intelligent Vehicles
Symposium (IV), IEEE, 2015, pp. 1094–1099.

[69] M. Koschi and M. Althoff, “SPOT: A tool for set-based prediction of traffic
participants,” in Intelligent Vehicles Symposium (IV), IEEE, 2017, pp. 1686–
1693.

[70] R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein, “The highD dataset: A drone
dataset of naturalistic vehicle trajectories on german highways for validation of
highly automated driving systems,” in International Conference on Intelligent
Transportation Systems (ITSC), IEEE, 2018, pp. 2118–2125.

[71] D. Krajzewicz, “Traffic simulation with SUMO – simulation of urban mobility,”
in Fundamentals of Traffic Simulation, Springer, 2010, pp. 269–293.

[72] S. Krauß, P. Wagner, and C. Gawron, “Metastable states in a microscopic model
of traffic flow,” Physical Review E, vol. 55, no. 5, p. 5597, 1997.

[73] M. Kuderer, C. Sprunk, H. Kretzschmar, and W. Burgard, “Online generation of
homotopically distinct navigation paths,” in International Conference on Robotics
and Automation (ICRA), IEEE, 2014, pp. 6462–6467.

[74] A. Kuefler, J. Morton, T. Wheeler, and M. Kochenderfer, “Imitating driver be-
havior with generative adversarial networks,” arXiv:1701.06699, 2017.

[75] P. Kumar, M. Perrollaz, S. Lefevre, and C. Laugier, “Learning-based approach
for online lane change intention prediction,” in Intelligent Vehicles Symposium
(IV), IEEE, 2013, pp. 797–802.

[76] H. Kurniawati and V. Yadav, “An online POMDP solver for uncertainty plan-
ning in dynamic environment,” in International Symposium of Robotics Research,
Springer, 2013, pp. 611–629.

[77] J.-C. Latombe, Robot Motion Planning. Springer Science & Business Media, 2012,
vol. 124.

[78] S. M. LaValle, Planning Algorithms. Cambridge University Press, 2006.

[79] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. S. Torr, and M. Chandraker,
“DESIRE: Distant future prediction in dynamic scenes with interacting agents,”
in Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2017,
pp. 2165–2174.

150



Literature
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M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chin-
tala, “PyTorch: An imperative style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems (NeurIPS), 2019, pp. 8024–
8035.

[100] C. Paxton, V. Raman, G. D. Hager, and M. Kobilarov, “Combining neural net-
works and tree search for task and motion planning in challenging environments,”
in International Conference on Intelligent Robots and Systems (IROS), IEEE,
2017, pp. 6059–6066.

[101] D. Petrich, T. Dang, G. Breuel, and C. Stiller, “Assessing map-based maneuver
hypotheses using probabilistic methods and evidence theory,” in International
Conference on Intelligent Transportation Systems (ITSC), IEEE, 2014, pp. 995–
1002.

[102] D. J. Phillips, T. A. Wheeler, and M. J. Kochenderfer, “Generalizable intention
prediction of human drivers at intersections,” in Intelligent Vehicles Symposium
(IV), IEEE, 2017, pp. 1665–1670.

[103] M. Platho, H.-M. Gros, and J. Eggert, “Predicting velocity profiles of road users
at intersections using configurations,” in Intelligent Vehicles Symposium (IV),
IEEE, 2013, pp. 945–951.

[104] M. Platho, H.-M. Gross, and J. Eggert, “Learning driving situations and behav-
ior models from data,” in International Conference on Intelligent Transportation
Systems (ITSC), IEEE, 2013, pp. 276–281.

[105] E. A. I. Pool, J. F. P. Kooij, and D. M. Gavrila, “Context-based cyclist path
prediction using recurrent neural networks,” in Intelligent Vehicles Symposium
(IV), IEEE, 2019, pp. 824–830.

152



Literature
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[165] J. Schulz, K. Hirsenkorn, J. Löchner, M. Werling, and D. Burschka, “Estimation
of collective maneuvers through cooperative multi-agent planning,” in Intelligent
Vehicles Symposium (IV), IEEE, 2017, pp. 624–631.
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