
Robotica:page 1 of 22. C© The Author(s) 2019. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution,
and reproduction in any medium, provided the original work is properly cited.
doi:10.1017/S0263574719001619

An Online Trajectory Generator on SE(3)
for Human–Robot Collaboration
Gerold Huber∗ and Dirk Wollherr
Chair of Automatic Control Engineering (LSR), Department of Electrical and Computer
Engineering, Technical University of Munich, Munich, Germany
E-mail: dw@tum.de

(Accepted October 19, 2019)

SUMMARY
With the increasing demand for humans and robots to collaborate in a joint workspace, it is essential
that robots react and adapt instantaneously to unforeseen events to ensure safety. Constraining robot
dynamics directly on SE(3), that is, the group of 3D translation and rotation, is essential to comply
with the emerging Human–Robot Collaboration (HRC) safety standard ISO/TS 15066. We argue
that limiting coordinate-independent magnitudes of physical dynamic quantities at the same time
allows more intuitive constraint definitions. We present the first real-time capable online trajectory
generator that constrains translational and rotational magnitude values of 3D translation and 3D
rotation dynamics in a singularity-free formulation. Simulations as well as experiments on a hardware
platform show the utility in HRC contexts.

KEYWORDS: Trajectory generation; Control of robotic systems; Motion planning; Human–Robot
Collaboration; Human–Robot Interaction; Safety; SE(3); Orientation; Magnus expansion.

1. Introduction
Enabling humans and robots to physically work together on cooperative tasks in close distance is a
very active area of current robotic research. In such HRC scenarios, a trajectory generator must not
only assure human safety but at the same time respect human comfort, in order to increase acceptance
of the robot by human co-workers. The former—safety—asks for a real-time capable trajectory gen-
erator that reacts instantaneously to sensor inputs or a change in constraints. This requires evaluation
of new set points in every embedded low-level iteration cycle at high frequencies. While litera-
ture offers various solutions for online trajectory generators (OTGs) with axis-specific constraints
on different derivative orders, the latter—comfort—favors constraining velocities and accelerations
directly in the most intuitive context for the human, namely, 3D translation as well as 3D rotation
in their geometric sense, that is, vectors with an orthonormal bases. Rather than limiting dynamics
of the coordinate-wise components independently, human presence further suggests restricting end
effector movement dynamics in their absolute values.

Restricting the magnitude of translational velocity is in particular essential for incorporating safety
standards in HRC according to ISO/TS 150661. Although this international standard is still under
development, it serves as a guideline on how safety during collaborative operations must be provided.
Possible methods listed in this standard are safety-rated monitored stop, hand guiding, speed and
separation monitoring as well as power and force-limited collaborative operation. Especially for col-
laboration in close distance, only the latter is an appropriate option. Within this method of operation,
contact events are categorized in quasi-static and transient contact. The former includes clamping or
crushing situations and mainly addresses the robot controller. The latter treats dynamic impact haz-
ards, which can be actively considered in OTGs. Safety is provided by limiting the transferred energy

∗ Corresponding author. E-mail: gerold.huber@tum.de

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574719001619
Downloaded from https://www.cambridge.org/core. Technische Universität München, on 03 Apr 2020 at 12:47:45, subject to the Cambridge Core terms of use, available at

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0263574719001619
https://orcid.org/0000-0002-7711-5434
https://orcid.org/0000-0003-2810-6790
mailto:dw@tum.de
mailto:gerold.huber@tum.de
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574719001619
https://www.cambridge.org/core

2 An online trajectory generator on SE(3) for human–robot collaboration

Table I. Comparison to the state-of-the-art w.r.t. the defined requirements.

Requirement R1 R2 R3 R4 R5

Direct approaches
7 (3)a

3 7 33–12

FIR Filter
7 7 3 7 3

Indirect based13–15

approaches
Sliding Mode

7 7 (3)b 3 3
based16–18

Optimization based
7 3 3 3 719–24

Our approach 3 3 3 3 3

aOnly true for ref. [12].
bOnly true for ref. [18].

during impact, according to different human body regions. Given the effective mass of the two-body
system, one can derive the maximal allowed relative speed between the robot and the human body
region. Detailed calculation guidelines are outlined in.1

Considering these facts, we propose the following requirements for an OTG in HRC contexts:

R1: Translation and rotation dynamic quantities are constrained in their magnitudes.
R2: Rotation dynamics refer to geometric angular quantities.
R3: All degrees of freedom (DOF) are synchronized in their motions.
R4: Constraint-conform trajectories are directly forwarded without delay.
R5: Iteration cycle times below 1ms must be guaranteed.

Fulfilling these requirements is not addressed in current state-of-the-art OTGs.

1.1. Related work
Current OTGs2 are able to make robotic systems robust against infeasible trajectory inputs due to,
for example, step inputs, improper path transitions caused by a potential higher level path planner,
or possible communication delay fluctuations. Online capability also enables instantaneous reac-
tion to sudden unforeseen events.3 However, authors usually either consider trajectory generation
in joint space while moving close to hardware limits to achieve time optimal solutions, or extend
these approaches to end effector movements by treating the translational and rotational DOF as inde-
pendent axes in R

n. Due to the demand for instantaneous reaction to unforeseen events (R5), pure
path planners without temporal information as well as pure path parametrization methods are not
considered in this short review. We classify the relevant OTGs approaches into three major groups:

Direct approaches define a trajectory profile and precompute the whole trajectory to the target
state. Most trajectory generators are based on piecewise polynomials as they can be easily designed
for arbitrarily often differentiable trajectories. Many approaches, however, are restricted to zero
dynamic start and/or end conditions, which entails a constant time delay when feeding the algo-
rithm with already feasible trajectories.4, 5 Kröger et al.3 provided a basic concept for OTGs and also
introduced a classification scheme. Katzschmann et al.6 extended the approach to regard the entire
robot dynamics. Ezair et al.7 proposed an iterative approach, that uses recursive S-curve polynomials
to generate trajectories of arbitrary order with general initial and final conditions. Another iterative
algorithm that considers a sampled input trajectory was proposed by Lange et al.8 and later improved
for fast trajectories in ref. [9]. Their work focuses on path-accurate OTG. These approaches are
designed for application in joint space. Although the joint trajectories could be derived from an anal-
ogous Cartesian trajectory, only constraints in joint space are considered. Kröger expanded the ideas
from3 to straight motions in 3D Euclidean space in [10] by considering orientation in the minimal
representation by Euler angles. However, the derivations of these values do not lead to geometric

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574719001619
Downloaded from https://www.cambridge.org/core. Technische Universität München, on 03 Apr 2020 at 12:47:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574719001619
https://www.cambridge.org/core

An online trajectory generator on SE(3) for human–robot collaboration 3

angular velocities, but are merely of analytic nature as they represent concatenated velocities. This
important difference will be further discussed in Section 5.2.

Rymansaib et al.11 propose the usage of exponential functions rather than polynomials for tra-
jectory generation. This allows consideration of hardware constraints as well as generation of
trajectories with continuous jerk. They show that the exponential trajectory generation results in
higher tracking accuracy than common S-curve velocity methods. Nevertheless, their approach is
also designed for pre-planned point-to-point (PTP) motions with zero target velocities/acceleration,
and therefore suffers from time delays as well, which conflicts with R4. Moreover, none of the above-
mentioned direct methods can fulfill R2. The only to the authors known OTG that does formulate
geometric angular velocity constraints on SO(3), that is, the group of 3D rotations, is an unpublished
work by Lloyd.12 He reduces the 3D problem to two 1D subproblems by transformation to a locally
radial and thus easily solvable coordinate system. Due to that decomposition, however, the approach
does not comply with R1 and further does not allow desired velocity set points, necessary for R4.

Indirect approaches consider the trajectory generation as dynamic control system problem, that
is, a chain of integrators. Filter-based techniques were adopted by Biagiotti et al.13, 14 and Besset
et al.15 The trajectory generators proposed by Besset et al. use finite impulse response (FIR) filters to
generate jerk-limited profiles out of initially acceleration-limited trajectories. While a pregenerated
trajectory is given in advance, it delivers a solution in less than 1 µs and thus is the fastest time
optimal jerk-limited trajectory generator at this time, even for the multidimensional case. Biagiotti
et al.13 use a chain of FIR filters to smoothen trajectories to have continuous derivatives of arbitrary
order. In [14], the strategy is generalized to produce piecewise exponential jerk profiles, to further
reduce machine vibrations. Due to their filtering nature, these approaches again result in time delays
and thus neither satisfy R4. Gerelli et al.16 and Bianco et al.17 proposed a discrete-time filter that
incorporates constraints as sliding surfaces. These inspiring works generate time optimal trajectories
under consideration of bounded velocity, acceleration, and jerk for single-DOF applications. In [18],
Bianco proposes a strategy to synchronize multiple DOF. Besides fulfilling R4, the latter extends the
approach to further comply with R3.

Optimization-based approaches rely on numerical solvers. Ardakani et al.19 suggest a real-time
joint trajectory generator based on model predictive control. Their formulation on R

n achieves an
impressive 200 Hz sampling rate for a 6DOF robot kinematic despite the optimization procedure
in every iteration. Dinh et al.20 combine sequential action control25 with indirect optimization. In
numerical optimization frameworks, it is also possible to generate trajectories for hybrid dynamic
systems such as the table tennis robot in Koç et al.21 While solving the individual optimization prob-
lems with sequential quadratic programming requires over 1s computation time, they precompute a
lookup table from a fixed initial posture that can be used online. However, for a more general tra-
jectory generation problem, this approach is infeasible. Gao et al.22 use a rapidly exploring random
graph method, for finding a collision-free trajectory for a quadrotor in complex environments. Note
that formulating the kinematics in R

n, which holds, for example, for joint trajectories as well as
3D translation, results in a linear chain of integrators. Optimization of 3D rotation trajectories on the
other hand result in highly nonlinear and coupled dynamics. Le et al.23 study the time optimal control
problem for SO(3) in a general setting, but only include acceleration constraints. Another algorithm
for trajectory generation directly on SE(3) is proposed by Watterson et al.24 They use semi-definite
programming techniques and also consider obstacles in the environment. Using numerical optimiza-
tion techniques is usually a limiting factor when hard real-time capabilities as the one in R5 are
required, especially when nonlinear constraints and SO(3) dynamics (R1) are introduced. None of
the above-mentioned work was designed for scenarios that impose requirements R1 and R2 while
being real-time capable as required by R5.

Table I gives a concise summary of the referenced approaches w.r.t. the posed requirements.

1.2. Contribution
In this article, we significantly refine our method from ref. [26] with a rigorous treatment of the
problem for 3D orientations in SO(3). We develop an algorithm that directly applies the special
orthogonal rotation matrices. It is further adapted to unit quaternion representation. Special case

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574719001619
Downloaded from https://www.cambridge.org/core. Technische Universität München, on 03 Apr 2020 at 12:47:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574719001619
https://www.cambridge.org/core

4 An online trajectory generator on SE(3) for human–robot collaboration

singularity treatment as well as consideration of multiple goal states are hence not necessary, in
contrast to the often used Euler angle representations.

The main contributions of this work are:

1. This is the first OTG algorithm that allows constraining the norm of translational and rotational
dynamic quantities, essential to comply with safety standards defined in ISO/TS 150661.

2. We introduce the Magnus expansion to OTG treatment. This allows calculating solution to the
differential equations on SO(3) with high accuracy.

1.3. Outline
The remainder of the paper is organized as follows. The problem of a modular OTG under require-
ments R1–R5 is formally formulated in Section 2. In Section 3, the approach is first introduced for the
translational case and then adapted to the rotational DOF. Finally, it is shown how the two portions
can be synchronized w.r.t. time. For a distinct highlighting of the potential of our algorithm in robotic
applications, we outline constraint extensions for HRC scenarios in Section 4 and discuss its perfor-
mance with a comparison w.r.t. to the state-of-the-art OTG algorithms in Section 5. We conclude the
work and outline future directions of development in Section 6.

2. Problem Formulation
Regarding a modular robot architecture of a complex system, a clear distinction between trajec-
tory generation and robot control is of advantage. Therefore, an interface is needed, that guarantees
desired trajectories sent to an arbitrary robot platform stay within defined dynamic constraints.
Especially in close distance HRC scenarios, it is essential for these constraints to be defined in an
intuitive metric, that is, coordinate-independent magnitudes of translational and rotational speed and
acceleration.

Let the end effector pose of a robot be given in SE(3) :=R
3 × SO(3), that consists of a 3D transla-

tional position p ∈R3 and a 3D orientation R ∈ SO(3). The special orthogonal group SO(3) is defined
as SO(3) := {R ∈R3×3|RTR= I3×3, det(R)= 1}, with I3×3 referring to the identity matrix in R

3×3.
The system state vector x at time tk ∈R consists of the full 6D pose, together with translational veloc-
ity v ∈R3 and angular velocity ω ∈R3. It is denoted as the 4-tuple x(tk)= xk := (pk, Rk, vk, ωk).
Applying a constant acceleration tuple �k := (ak, αk) consisting of translational and rotational accel-
eration ak ∈R3 and αk ∈R3, respectively, for a given time span T ∈R, the system state advances
according to

x(tk + T) := f (xk, �k, T), (1)

where f denotes the OTG-dependent state propagation function. Assuming a discrete implementation
of the OTG running at a sample time Ts ∈R, we refer to the state at time tk + iTs with i ∈N+ as xk+i.

Given a desired state xdes and the current system state xk, the OTG must solve the problem

minimize
�k,...,�k+(N−1)

N (2)

subject to the state progression

xi+1 = f (xi, �i, Ts) (3a)

xk+N = xdes (3b)

and subject to the nonlinear user-defined dynamic magnitude constraints

‖vi‖2 ≤ vmax (4a)
‖ai‖2 ≤ amax (4b)
‖ωi‖2 ≤ωmax (4c)
‖αi‖2 ≤ αmax (4d)

for all i ∈ [k, N − 1] time steps. The operator ‖·‖2 denotes the 2-norm and thus the magnitude of the
vectors.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574719001619
Downloaded from https://www.cambridge.org/core. Technische Universität München, on 03 Apr 2020 at 12:47:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574719001619
https://www.cambridge.org/core

An online trajectory generator on SE(3) for human–robot collaboration 5

Note that Le et al.23 solve a similar problem on SE(3) for a reduced set of dynamic constraints.
Their numerical examples show computation times of over 90s for an individual trajectory solution,
and thus demonstrate the complexity of the problem at hand. Considering the core requirement of
every OTG being fast computation, in order to guarantee safety at typical robot sampling frequencies
of 1 kHz, the use of iterative numeric optimization algorithms is not appropriate. Accordingly, we
relax the requirement of absolute time optimality and accept close-to-optimal solutions under real-
time capable iteration cycles ≤1 ms instead.

3. Approach
Considering that the dynamic constraints (4) are related to translational and rotational quantities
separately, we partition the state dynamics (1) into the individual mappings

f (xk, �k, T) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p(tk + T) ← f p(pk, vk, ak, T)

v(tk + T) ← f v(vk, ak, T)

R(tk + T) ← f R(Rk, ωk, αk, T)

ω(tk + T) ← fω(ωk, αk, T)

(5)

according to the state tuple xk =
(

pk, vk, Rk, ω
)
. The translation dynamics are thus given with f p and

f v, whereas the rotation dynamics consist of f R and fω.
Starting from the basic translational problem in Section 3.1, the approach is adapted for the

rotational group SO(3) in Section 3.2. Based on these formulations, the synchronization over all
6 DOF w.r.t. to time is outlined in Section 3.3. The set of conditions listed in (4) from the problem
formulation is extended to additional HRC motivated use cases in Section 4.

3.1. Translation
For 3D translation, the three components can be treated independently if they are defined w.r.t. an
orthonormal basis. The desired behavior for the algorithm is a continuously differentiable position
trajectory. This is achieved by calculating the next state via integration of the limited acceleration.
The discrete system dynamics (3a) for the translational case are three decoupled double integrators,
that is, for a given position p and velocity v at time tk, applying a constant acceleration vector ak for
the time T advances according to the mappings

v(tk + T)= f v(vk, ak, T) := vk + akT (6a)

p(tk + T)= f p(pk, vk, ak, T) := pk + vkT + 1

2
akT2. (6b)

The aim of the algorithm is to compute the acceleration such that the position error ep,k := pdes
k − pk as

well as the velocity error ev,k := vdes
k − vk both converge to zero. The minimum time needed to reach

vdes
k is achieved, if the acceleration vector ak in (6a) exploits the acceleration constraint (4b) and

points in the same direction as the velocity error ev,k, respectively, vdes
k = f v

(
vk, amax

ev,k‖ev,k‖2

, T∗min,tra

)
is solved for

T∗min,tra :=
∥∥ev,k

∥∥
2

amax
. (7)

As the discrete algorithm will run on a fixed sample time Ts, and acceleration is constant in between
iterations, the minimal time needed is in fact the next multiple of Ts, denoted by

Tmin,tra =max

{⌈
T∗min,tra

Ts

⌉
, 1

}
Ts (8)

with operator � · 	 being the ceiling function that rounds up to the next full integer. The maximization
operator in (8) ensures Tmin,tra ≥ Ts. Requiring to reach the desired velocity vdes

k = f v(vk, âk, Tmin,tra)

in the time span Tmin,tra is directly used to define the acceleration vector

âk = ev,k

Tmin,tra
, (9)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574719001619
Downloaded from https://www.cambridge.org/core. Technische Universität München, on 03 Apr 2020 at 12:47:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574719001619
https://www.cambridge.org/core

6 An online trajectory generator on SE(3) for human–robot collaboration

that would result in a synchronous convergence of ev(tk + Tmin,tra)= 0 while respecting the accelera-
tion constraint (4b).

Applying âk to the position integration mapping f p and imposing to reach the desired velocity

pdes
k = f p

(
pk, vgoal

k , âk, Tmin,tra

)
in Tmin,tra defines the goal velocity

vgoal
k := ep,k

Tmin,tra
− âk

Tmin,tra

2
. (10)

If this velocity is matched, the position error ep converges to zero together with the velocity error ev

for T→ Tmin,tra. Advancing vgoal
k for a single iteration leads to

vgoal
k+1 := f v

(
vgoal

k , âk, Ts

)
= ep,k

Tmin,tra
+ âk

(
Ts − Tmin,tra

2

) (11)

and is used as the goal velocity at time tk+1.
The second phase of the algorithm handles given constraints by defining two sets of saturation

factors Sv ⊂R
+ and Sa ⊂R

+ for velocity and acceleration, respectively.
Constraints on the trajectory generator output are incorporated by multiplication with the most

restrictive element of the corresponding saturation factor set. The translational speed constraint (4a),
for example, is met by the set definition

Sv := {1, μv} with μv := vmax∥∥∥vgoal
k+1

∥∥∥
2

. (12)

Note that all factors in the set are normalized and saturation requires the factor 1 to be part of the
set.1 For the goal velocity vgoal

k+1, this factorization is applied with

vsat
k+1 := vgoal

k+1 min{Sv}, (13)

where superscript (·)sat denotes a saturated value.
The necessary acceleration vector to reach velocity constraint conform vsat

k+1 is found by solving

vsat
k+1 = f v(vk, agoal

k , Ts) for the goal acceleration

agoal
k := vsat

k+1 − vk

Ts
. (14)

Eventually, a constraint-conform acceleration vector satisfying ‖ak‖2 ≤ amax is found with

asat
k := agoal

k min{Sa} (15)

using the set definition

Sa := {1, μa} with μa := amax∥∥∥agoal
k

∥∥∥
2

(16)

analogously to the velocity saturation (12).
The output of the trajectory generator at hand is ultimately found by advancing the current state

xk for a sample period

vk+1 = f v(vk, asat
k , Ts)

pk+1 = f p(pk, vk, asat
k , Ts).

(17)

Note that the saturation steps for constraint handling do not conflict with the desired continuous
differentiability of the pose trajectories, as velocity and position values are obtained by integration of

1A discussion on how to derive saturation factors is given in Section 4.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574719001619
Downloaded from https://www.cambridge.org/core. Technische Universität München, on 03 Apr 2020 at 12:47:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574719001619
https://www.cambridge.org/core

An online trajectory generator on SE(3) for human–robot collaboration 7

Fig. 1. Progression of the OTG with initial state p(0)= 0, v(0)= 0 and final state pdes = 0.2, vdes = 0 at
Ts = 0.05.
The progress is given for six time instances tk = {0, 0.2, 0.3, 0.5, 0.6, 0.8}. Algorithm: (1) find Tmin, the time needed to reach final
velocity vdes (dashed red line in velocity plot) (2) fit position profile that reaches final position pdes in Tmin (dashed red line in
position plot) (3) find vgoal

k+1 of corresponding position profile (green mark in velocity plot) (4) after incorporating constraints, apply
corresponding acceleration for Ts (not shown).

(6) under constant acceleration asat
k until the next iteration cycle. Figure 1 illustrates the mechanism

of the approach for a PTP motion. A concise implementation including all necessary steps is outlined
in Algorithm 1.

In Section 4, additional saturation factors relevant in HRC scenarios are developed. They are
integrated by adding elements to the sets defined in (12) and (16).

Algorithm 1: OTG on R
3 with magnitude constraints

Input : current state (pk, vk), desired state (pdes
k , vdes

k),
constraints (vmax, amax), sampling time Ts

Output: next state (pk+1, vk+1)
/* ===== find new goal velocity ===== */

1 Tmin,tra←max
{⌈‖vdes

k −vk‖2
amax

⌉
, 1
}

Ts ; // discretized minimum Time (7)

2 vgoal
k+1← pdes

k −pk

Tmin,tra
+ vdes

k −vk

Tmin,tra

(
Ts − Tmin,tra

2

)
; // goal velocity (11)

3 Sv← collectVelocitySaturationFactors(vgoal
k+1,vmax) ;

4 vsat
k+1← vgoal

k+1 min{Sv} ; // saturated goal velocity (13)
/* ===== find goal acceleration ===== */

5 agoal
k ← vsat

k+1−vk

Ts
; // goal acceleration (14)

6 Sa← collectAccelerationSaturationFactors(agoal
k+1,amax) ;

7 asat
k ← agoal

k+1 min{Sa} ; // saturated goal acceleration (15)
/* ===== advance current state (6) ===== */

8 vk+1← f v(vk, asat
k , Ts) ;

9 pk+1← f p(pk, vk, asat
k , Ts) ;

3.2. Rotation
In the rotational treatment of the OTG lies the main contribution of this work. Many different rep-
resentation forms are known to represent 3D rotations on the special orthogonal group SO(3). In

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574719001619
Downloaded from https://www.cambridge.org/core. Technische Universität München, on 03 Apr 2020 at 12:47:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574719001619
https://www.cambridge.org/core

8 An online trajectory generator on SE(3) for human–robot collaboration

our preliminary work,26 we used Euler angles as they form a minimal description unlike axis angle,
quaternions, or rotation matrix representation. This allowed a straightforward analogy between the
translational and the rotational treatment. However, the well-known gimbal-lock singularities of this
representation form require special treatment. Furthermore, there always exist two sets of angles to
describe the same orientation. Exploiting this dual representation allows finding shorter paths in case
of PTP motions.

Because angular velocity ω and acceleration α are both defined in R
3 and thus are geometrically

decoupled, the algorithm of the translational case can, to the most extend, directly be adapted for the
rotational case, with the exception of f p defined in (10) that incorporates the temporal evolution of the
position vector. While position p ∈R3 allows elementary integration of the individual components,
the same does not hold for the orientation.

Let R ∈ SO(3) be a rotation matrix that describes the rotation of a orthonormal basis from a fixed
inertial frame to the body-fixed frame. The angular velocity ω ∈R3 describes the angular velocity
between the inertial frame and the body-fixed frame w.r.t. the inertial frame. To constrain the angular
speed ‖ω‖2 in the same fashion as the translational case, we start from the relation between the
rotation matrix R and angular velocity ω. It is given by the vector cross product

Ṙ=ω×R (18)

and can be expressed in matrix form

Ṙ=
⎡
⎣ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤
⎦

︸ ︷︷ ︸
=:[ω]×

R (19)

where [·]× :R3→ so(3) denotes the skew operator. Note that [ω]× is also called the SO(3)-
associated Lie algebra so3. We also use the inverse operator [·]∨ : so(3)→R

3 that recovers the vector
components of a skew symmetric matrix and define it as[

[ω]×
]
∨ :=ω where ω ∈R3, [ω]× ∈ so3. (20)

While (19) suggests an exponential integration of the form

R(t+ T)= exp

⎛
⎝ t+T∫

t

[ω(τ)]× dτ

⎞
⎠R(t), (21)

this only leads to correct orientations in the case of a fixed rotation axis ω/‖ω‖2, due to the definition
of the matrix exponential as a power series and the noncommutativity of the elements in SO(3). This
leads to various iterative integration schemes, where the axis is assumed to be fixed only for a single
small time step Ts. See ref. [27] for a detailed derivation and comparison of different schemes.

If (21) is solved for small time steps T , the error that comes from noncommutativity of SO(3)
is negligible and thus often used for iterative schemes with small sampling times Ts. However, the
crucial step of finding the new goal velocity vgoal

k+1 from (11) is accomplished by solving the time
integration over a time span of Tmin,tra, which cannot be assumed to be small.

The chosen approach in this work is the use of the Magnus expansion as originally proposed in ref.
[28]. This method provides an analytical framework for finding the solution of linear, time-variant
matrix differential equations such as (19).

3.2.1. Magnus expansion. Opposed to the iterative integration methods mentioned above, the
Magnus expansion gives an exact solution, important for longer time ranges. The reason that (21)
is not correct for the general rotational case lies in the noncommutativity of matrices [ω]×. The
nonvanishing portion of the commutation is denoted as the commutator

[A, B] := AB− BA, A ∈ g, B ∈ g (22)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574719001619
Downloaded from https://www.cambridge.org/core. Technische Universität München, on 03 Apr 2020 at 12:47:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574719001619
https://www.cambridge.org/core

An online trajectory generator on SE(3) for human–robot collaboration 9

and naturally arises in Lie structures such as the Lie algebra g. Magnus’ treatment is given in a more
general problem; however, our explanation refers to a real-valued time-variant matrix differential
equation of the form (19).

Magnus’ proposal is to find a solution for (19) in the form of a true matrix exponential

R(t+ T)= exp
(
[�(t, T)]×

)
R(t) (23)

with a series expansion

[�(t, T)]× :=
∞∑

i=1

[�i(t, T)]× (24)

that is referred to as Magnus expansion. It is an infinite power series, however as pointed out in
ref. [29], it is usually sufficiently accurate for applications to truncate the series after the first three
terms which are given as

[�1(t, T)]× :=
t+T∫
t

[ω(t1)]× dt1 (25)

[�2(t, T)]× := 1

2

t+T∫
t

⎡
⎣[ω(t1)]× ,

t1∫
t

[ω(t2)]× dt2

⎤
⎦ dt1 (26)

[�3(t, T)]× := 1

6

t+T∫
t

⎡
⎣[ω(t1)]× ,

t1∫
t

⎡
⎣[ω(t2)]× ,

t2∫
t

[ω(t3)]× dt3

⎤
⎦ dt2

⎤
⎦ dt1 (27)

+ 1

6

t+T∫
t

⎡
⎣
⎡
⎣[ω(t1)]× ,

t1∫
t

[ω(t2)]× dt2

⎤
⎦ ,

t2∫
t

[ω(t3)]× dt3

⎤
⎦ dt1. (28)

Note that all brackets used refer to the commutator defined in (22). For an explicit solution of the
fourth-order term as well as a recursive scheme to calculate Magnus expansion terms of arbitrary
order, we refer to ref. [29].

The first three terms of the Magnus expansion (24) can be calculated explicitly for our system (19)
and read

�1(t, T) :=ω(t)T + αk
T2

2
(29)

�2(t, T) := [αk]× ωk
T3

12
(30)

�3(t, T) := [αk]× [αk]× ωk
T5

240
. (31)

The operator [·]× again denotes the skew symmetric matrix operator defined in (19). The Magnus
expansion can thus be calculates as

�(T) :=�1(T)+�2(T)+�3(T) (32a)

=M(α, T)ωk + αk
T2

2
(32b)

with

M(α, T) := I3×3t+ [αk]×
T3

12
+ [αk]× [αk]×

T5

240
(33)

where I3×3 is the identity matrix.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574719001619
Downloaded from https://www.cambridge.org/core. Technische Universität München, on 03 Apr 2020 at 12:47:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574719001619
https://www.cambridge.org/core

10 An online trajectory generator on SE(3) for human–robot collaboration

3.2.2. OTG for SO(3) using rotation matrices. The system dynamics of the rotational portion can
now be stated as

ω(tk + T)= fω(ωk, αk, T) :=ωk + αkT (34a)

R(tk + T)= f R(Rk, ωk, αk, T) := exp

([
M(αk, T)ωk + αk

T2

2

]
×

)
Rk (34b)

where we see that unlike in the translation mapping f p, the orientation mapping f R is nonlinear and
strongly coupled.

Analog to the algorithm for translation, the minimum time needed to drive the rotational velocity
error eω,k :=ωdes

k −ωk to zero is

T∗min,rot :=
∥∥eω,k

∥∥
2

αmax
. (35)

Discretizing the value w.r.t. the given sampling time Ts reads

Tmin,rot :=max

{⌈
T∗min,rot

Ts

⌉
, 1

}
Ts. (36)

The corresponding angular acceleration is

α̂k := eω,k

Tmin,rot
(37)

and is analog to vgoal
k from (10) used to find the new goal velocity ω

goal
k by solving

pdes
k = f R(Rk, ωk, α̂k, Tmin,rot) for

ω
goal
k :=M(α̂k, Tmin,rot)

−1

([
log(RdesRT

k)
]
∨ − α̂k

T2
min,rot

2

)
, (38)

which in comparison to our treatment with Euler angle representation in ref. [26] is completely
singularity-free and unambiguous. The proof that M is invertible for any t �= 0 is provided in the
appendix.

The goal velocity for the next time step is again found by advancing the previous equation for a
single iteration

ω
goal
k+1 := fω(ω

goal
k , α̂k, Ts) (39)

=M(α̂k, Tmin,rot)
−1

([
log(RdesRT

k)
]
∨ − α̂k

T2
min,rot

2

)
+ α̂kTs. (40)

The constraints (4c) and (4d) are again incorporated by defining saturation factor sets Sω ⊂R
+

and Sα ⊂R
+ for the angular velocity and acceleration, respectively. The saturated rotation velocity

is thus found by

ωsat
k+1 :=ω

goal
k+1 min{Sω}, (41)

using the factorization set definition

Sω := {1, μω} with μω := ωmax∥∥∥ωgoal
k+1

∥∥∥
2

. (42)

This again leads to the find goal acceleration

α
goal
k := ωsat

k+1 −ωk

Ts
. (43)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574719001619
Downloaded from https://www.cambridge.org/core. Technische Universität München, on 03 Apr 2020 at 12:47:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574719001619
https://www.cambridge.org/core

An online trajectory generator on SE(3) for human–robot collaboration 11

Similarly, defining the acceleration saturation set

Sα := {1, μα} with μα := αmax∥∥∥αgoal
k

∥∥∥
2

(44)

and applying it to the goal acceleration

αsat
k := α

goal
k min{Sα} (45)

results in the saturated angular acceleration αsat
k . This acceleration vector is eventually applied to the

SO(3) system dynamics (34), to advance the current orientation states

ωk+1 = fω(ωk, αsat
k , Ts)

Rk+1 = f R(Rk, ωk, αsat
k , Ts)

(46)

which concludes the algorithm using rotation matrices.

3.2.3. OTG for SO(3) using unit quaternions. The above algorithm can be straightforward translated
to unit quaternion representation of SO(3). This reduces computation time, as discussed in Section 5.
Let Q ∈H describe the 3D orientation as a unit quaternion, that is, ‖Q‖2 = 1. If we consider a
quaternion Q := (Qw,Qv) consisting of a scalar part Qw and a vector part Qv, the angular velocity
ω can be expressed as a pure quaternion (0, ω), that is, with zero scalar part. We introduce the
mappings

[ω]Q := (0, ω) R
3→H (47)

[(0, ω)]Q−1 :=ω H →R
3 (48)

to specify notation. With this notation, the differential equation relating time derivatives of Q with
the angular velocity ω reads

Q̇(t)= 1

2
[ω(t)]Q Q(t). (49)

Magnus’ idea to solve the differential equation results in solving (49) in the form

Q(t+ T)= exp

(
1

2
[�(t, T)]Q

)
Q(t). (50)

Note that unlike in the Matrix version of Magnus’ proposal from (23), � does not occur with the skew
symmetric matrix operator [·]×. The Magnus expansion of � and its approximation (32), however,
remain the same.

The mapping that advance the current quaternion in time, hence is

Q(t+ T)= f q(Qk, ωk, αk, T) := exp

(
1

2

[
M(αk, T)ωk + αk

T2

2

]
Q

)
Q(t). (51)

The definition of M in (33) as well as velocity progression (34a) are unchanged. Therefore, the only
adjusted equations for the algorithm outlined in Section 3.2 are the definition of ω

goal
k (38) w.r.t.

quaternions

ω
goal
k = 2M(α̂k, Tmin,rot)

−1

([
log(QdesQ−1

k)
]
Q−1 − αk

T2
min,rot

2

)
(52)

and consequently,

ω
goal
k+1 = 2M(α̂k, Tmin,rot)

−1

([
log(QdesQ−1

k)
]
Q−1 − α̂k

T2
min,rot

2

)
+ α̂kTs. (53)

The algorithm for OTG on rotations using quaternions is listed in Algorithm 2.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574719001619
Downloaded from https://www.cambridge.org/core. Technische Universität München, on 03 Apr 2020 at 12:47:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574719001619
https://www.cambridge.org/core

12 An online trajectory generator on SE(3) for human–robot collaboration

Algorithm 2: OTG on SO(3) with magnitude constraints using quaternions

Input : current state (Qk, ωk), desired state (Qdes
k , ωdes

k),
constraints (ωmax, αmax), sampling time Ts

Output: Qk+1, ωk+1

/* ===== find new goal velocity ===== */

1 Tmin,rot←max
{⌈‖ωdes

k −ωk‖2
αmax

⌉
, 1
}

Ts ; // discretized minimum Time (36)

2 α̂k← ωdes
k −ωk

Tmin,rot
; // corresponding acceleration (37)

3 M← I3×3Tmin,rot +
[
α̂k
]
×

T3
min,rot

12 +
[
α̂k
]
×
[
α̂k
]
×

T5
min,rot

240 ; // Magnus Series (33)

4 ω
goal
k+1← 2M−1

([
log(QdesQ−1

k)
]
Q−1 − α̂k

T2
min,rot

2

)
+ α̂kTs ; // goal velocity (53)

5 Sω← collectVelocitySaturationFactors(ω
goal
k+1,ωmax) ;

6 ωsat
k+1←ω

goal
k+1 min{Sω} ; // saturate goal velocity

/* ===== find goal acceleration ===== */

7 α
goal
k ← ωsat

k+1−ωk

Ts
; // goal acceleration (43)

8 Sα← collectVelocitySaturationFactors(α
goal
k ,αmax) ;

9 αsat
k ← α

goal
k min{Sα} ; // saturate goal acceleration (45)

/* ===== advance current state (34a) and (51) ===== */

10 ωk+1← fω(ωk, αsat
k , Ts) ;

11 Qk+1← fα(Qk, ωk, αsat
k , Ts) ;

3.3. Synchronization of translation and rotation
While Tmin,tra and Tmin,rot from (7) and (36) assure time synchronization within the translational and
rotational DOF, respectively, the two groups are not yet synchronized with each other. Complete
synchronization of the whole 6D movement can be achieved by coupling the translation and rotation
at two distinct places in the algorithm. First, the more restrictive minimum time

Tmin :=max
(
Tmin,tra, Tmin,rot

)
(54)

is used for finding both acceleration vectors ak and αk in (9) and (37). Second, the saturation of the
goal velocities are matched by combining their saturation factor sets (12) and (42) as

Sv← Sv ∪ Sω (55a)
Sω← Sv ∪ Sω (55b)

An example of this synchronization is shown in Fig. 2.

4. Extensions for HRC Scenarios
While the presented algorithm considers a free 6D motion of, for example, the tool center point (TCP)
of a robot, it does not depend on any specific robot kinematic. In the following section, we present
some interesting constraint extensions particularly relevant in HRC context. The examples highlight
the flexibility of our approach and demonstrate the straightforward integration for additional require-
ments by adding appropriate factors to the saturation sets S . The factors are found via a three-step
process:

Step 1 formulate a scalar inequality condition, for example,

‖v‖2 ≤ vmax

Step 2 derive the normalization factor μ that yields equality to 1, for example,

‖v‖2 μ= 1 where μ= vmax

‖v‖2

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574719001619
Downloaded from https://www.cambridge.org/core. Technische Universität München, on 03 Apr 2020 at 12:47:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574719001619
https://www.cambridge.org/core

An online trajectory generator on SE(3) for human–robot collaboration 13

0

m
ra

d

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1
1.5

2 4 6 8 10

x
y
z

α
β
γ

0 2 4 6 8 10

||v ||2 in m/s

||ω ||2 in rad/s
||α ||2 in rad/s2

|| a ||2 in m/s2

0 2 4 6 8 101 3 5 7 9

0 2 4 6 8 101 3 5
t in s

7 9

Fig. 2. Time synchronization of translation and rotation.
Dashed lines are set points and solid lines are the actual values. At t= 6 s, the jump in desired rotation causes an adjustment of the
deceleration phase of the translation trajectories in order to synchronize the movements. Note that absolute speed and acceleration
are plotted as magnitude values.

Step 3 add the factor to the corresponding saturation factor set, for example,

Sv← Sv ∪ {μ}
Note that in the following, all constraints refer to the variables at the next discrete-time instance

k+ 1. Therefore, we suppress the discrete-time index k+ 1 in the remainder of this section for bet-
ter readability. Further, Sections 4.2–4.4 require that translation and rotation are synchronized as
outlined in Section 3.3.

4.1. Direction-specific constraints
In robot applications, it is often very useful to constrain different directions of movement inde-
pendently. While the OTGs mentioned in the related work of Section 1.1 offer the possibility to
constrain certain axes of the underlying inertial coordinate system directly, our framework can be
easily extended to the more general case of incorporating constraints in arbitrary directions. Possible
scenarios in HRC that require these type of constraints, are, for example, the dynamic limitation of
robot movements toward the human or obstacles. The requirement of constraining the velocity vtra

along a given direction vector rdir ∈R3 is formulated as

vT
tra

rdir

‖rdir‖2
≤ vmax,r, (56)

where the vtra is projected onto the direction vector rdir. The necessary saturation factor that complies
with this constraint is given as

μdir := vmax,r ‖rdir‖2

vT
trardir

(57)

and adding it to the velocity saturation set

Sv← Sv ∪ {μdir} (58)

incorporates this constraint in (13) of the algorithm. Note that this strategy does not only allow
constraining orthogonal axes, but several arbitrary directions.

4.2. Combining translation and rotation constraints
Whenever humans work in close proximity with robots, robot constraints should be defined as intu-
itive as possible. Besides constraining linear and angular velocity separately as done in Section 3, we
outline a strategy to combine the two into a single intuitive constraint.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574719001619
Downloaded from https://www.cambridge.org/core. Technische Universität München, on 03 Apr 2020 at 12:47:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574719001619
https://www.cambridge.org/core

14 An online trajectory generator on SE(3) for human–robot collaboration

(b)(a)

Fig. 3. Illustration of (a) total velocity of, for example, the robot wrist at a fixed vector r and (b) projection of
the angular velocity ω to identify the fastest point rf within a user-defined safety sphere of radius r.

Constraining Total Velocity of Specific Points. Instead of constraining the angular speed ‖ω‖2 ≤ωmax

of the TCP directly, it is sometimes more intuitive to constrain the total linear velocity

‖vtot(r)‖2 := ‖vtra + vrot(r)‖2 ≤ vmax (59)

of a given vector r ∈R3, relative to the TCP. The translational and rotational velocities at the TCP is
denoted as vtra := v and vrot :=ω× r resp. This can be a specific point on the geometric robot-object
compound that is fixed to the TCP, for example, the robots wrist as illustrated in Fig. 3(a). Note that
all variables in (59) are given in a world-fixed inertial frame I. In case a specific point is given w.r.t.
the end effector coordinate system E, it needs to be transformed, that is,

Ir=RIE Er, (60)

where RIE rotates the vector from E to the inertial frame I. Let θ denote the angle between ω and r.
The fact that the magnitude

‖vrot(r)‖2 = ‖ω× r‖2 = ‖ω‖2 ‖r‖2 sin(θ) (61)

is linear in ω allows us to saturate ‖vtot‖2 ≤ vmax by calculating a common factor

μtot(r) := vmax

‖vtot(r)‖2
(62)

and adding it to the factorization set

Sv← Sv ∪ {μtot} (63)

If n multiple points are to be considered, for example, to outline a convex polytope around the
TCP, multiple factors μtot,i for i= [1, n] can be calculated and added to the factorization sets in the
same fashion. Note that for the TCP itself, r is zero by definition and thus vtot = vtra, which is already
considered in the basic algorithm (13).
Constraining Total Velocity within Safety Sphere. Instead of defining specific points around the TCP,
it also possible to define a safety sphere S := {x ∈R3 : ‖x‖2 ≤ r} with radius r around the TCP. It is
then desired that no point within the sphere is allowed to exceed the speed limit vmax. This extends
the before mentioned strategy to first identifying the fastest point rf within the sphere.

To maximize (61), r must (a) lie on the sphere surface, that is, have length r and (b) be perpendic-
ular to the rotation vector ω. Further, to maximize vtot, the vector r has to be chosen such that (c) the
cross product ω× r lies in the plane spanned by ω and vtra, and (d) the angle between vtra and vrot is
below 90◦. See Fig. 3(b) for an illustration.

Thus, the fastest point rf ∈ S is given as

rf :=

⎧⎪⎪⎨
⎪⎪⎩
− ω× vtra

‖ω× vtra‖2
r for ω× vtra �= 0

ω× rp∥∥ω× rp

∥∥
2

r else
(64)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574719001619
Downloaded from https://www.cambridge.org/core. Technische Universität München, on 03 Apr 2020 at 12:47:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574719001619
https://www.cambridge.org/core

An online trajectory generator on SE(3) for human–robot collaboration 15

unsynced synced

t in s

safety sphere

0 5 10 15

xdes in m

υmax, ωmax

amax, αmax

x in m

0

0

0.5

1

0
0.5

1

0

0.5

1

1.5

5 10 15

0 5 10 15

βdes in rad
β in rad

||vtra ||2 in m/s

|| atra ||2 in m/s2

||vtot ||2 in m/s
||ω ||2 in rad/s

||α ||2 in rad/s2

Fig. 4. Combination of translational and angular velocity constraints, by defining a safety sphere of radius
r= 1m around the TCP.
For demonstration purposes, the PTP set points are chosen in single-axes directions x and rotation around y by an angle β for
translation and rotation, respectively. Three different modes are shown, applying norm constraints vmax =ωmax = 1. The first
motion 1 –5 s is without synchronization. The second motion 5 –10 s is time-synchronized according to Section 3.3, and the third
motion 11 –15 s is time-synchronized while additionally applying the safety sphere constraint from Section 4.2. Note that the
change in the slope of ‖vtot‖2 at 10.3 s stems from the deceleration of vtra to cruising speed. Both phases of the movement last 0.7 s
and are dictated by amax during deceleration.

where rp ∈ {x ∈R3\{0} | 〈ω, x〉 = 0} is an arbitrary vector perpendicular to ω. Its total speed is

‖vtot(rf)‖2 = ‖vtra +ω× rf‖2 (65)

which leads to the saturation factor

μsphere := vmax

‖vtot(rf)‖2
. (66)

Figure 4 shows the effect of this safety sphere constraint, if added to the set

Sv← Sv ∪ {μsphere} (67)

and applied in the algorithm.

4.3. Robot joint constraints
While the presented OTG algorithm can be directly used to generate 6D trajectories of, for exam-
ple, the robot end effector, joint velocity limits were not yet considered, as they depend on the
robot-specific kinematic structure as well as the inverse kinematics solver in use. Because kinematic
relations are usually highly nonlinear due to rotary joints, the inverse kinematic solvers often make
use of the linear relation

ż= J(q)q̇ (68)

between task space velocities, for example, ż= [v̇T , ω̇T
]T ∈R6 and joint velocities q̇ ∈Rn, via the

Jacobian J= ∂ ż
∂ q̇ . If the expression q̇= IK(ż) of the inverse kinematics solver in use is known, the

joint velocity limits can directly be considered in the algorithm. For demonstration purposes we
assume that a damped pseudo-inverse solver of the form

q̇= IK(ż) := JT
(
JJT + α2In×n

)−1︸ ︷︷ ︸
=:J†

ż (69)

is used. The identity matrix In×n together with the parameter α introduces a damping effect on the
inverse kinematics solution. This avoids singularity issues and is discussed in detail in ref. [30]. The
individual constraints on the n joint velocities

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574719001619
Downloaded from https://www.cambridge.org/core. Technische Universität München, on 03 Apr 2020 at 12:47:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574719001619
https://www.cambridge.org/core

16 An online trajectory generator on SE(3) for human–robot collaboration

−q̇i,lim ≤ q̇i ≤ q̇i,lim with i= [1, n], (70)

can concisely be written as

‖Lq̇‖∞ ≤ 1, (71)

with the diagonal limit matrix L= diag
(
q̇1,lim, . . . , q̇n,lim

)−1
. It contains reciprocal values of the

joint-specific velocity limits of all n joints in the serial robot kinematics. The linearity of the velocity
mapping (68) again admits a scaling factor

μq̇ := ‖Lq̇‖−1
∞ (72a)

= ∥∥L J†ż︸︷︷︸
IK(ż)

∥∥−1
∞ , (72b)

such that factorizing the joint velocities q̇ is equivalent to factorizing the task space velocities

μq̇ż=μq̇J(q)q̇ (73)

directly. Thus, adding μq̇ to the saturation factor set

Sv← Sv ∪ {μq̇} (74)

constrains the joint velocities accordingly.
Note, that constraining the joint acceleration q̈ in the same manner is not possible, because the

kinematic relation for accelerations

z̈= J̇q̇+ Jq̈ (75a)

= J̇J†ż+ Jq̈ (75b)

couples task space velocity ż and acceleration z̈. Thus, a linear relation such as (73), that elevates the
joint constraint factor to task space, is not given.

4.4. Constraining movement of the whole robot kinematic
In a serial kinematic robot as usually used in a HRC context, the most important movement to con-
strain is the movement of the end effector or TCP. However, there might be other points on the robot
structure that reach even higher velocities. Thus, it is necessary to not only constrain the TCP move-
ment itself, but extend the given speed constrain to every point in the robot kinematic structure in
task space. Only then can official safety standards, for example, ISO/TS 150661 be satisfied. Given a
conventional rigid link structure consisting of joint axes only orthogonal or parallel to the links, such
as illustrated in Fig. 3(a), it is sufficient to check the set of axes intersecting points I of the kinematic
for

‖vi‖2 ≤vmax ∀i ∈ I. (76)

The velocities vi are calculated by

‖vi‖2 :=
∥∥Ji(qi)q̇i

∥∥
2 (77)

using the corresponding Jacobian matrices Ji with the reduced joint velocity vectors q̇. In the illus-
trated 7DOF kinematic, these are I = {shoulder, elbow, wrist, TCP}. Every constraint leads to a
saturation factor

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574719001619
Downloaded from https://www.cambridge.org/core. Technische Universität München, on 03 Apr 2020 at 12:47:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574719001619
https://www.cambridge.org/core

An online trajectory generator on SE(3) for human–robot collaboration 17

Fig. 5. Hardware Experiment: distance-sensitive vmax(dHR) with σ = dmin
3 .

Dashed lines are set points, dash-dotted lines result from a constant vmax, and solid lines from vmax(dHR) as defined in (80). The
OTG clearly slows down whenever the distance becomes smaller dmin = 20 cm and uses the user-defined constraint vmax otherwise.

μkin,i := vmax

‖vi‖2
∀i ∈ I (78)

that as part of the sets

Sv← Sv ∪ {μkin,i} (79)

slows down the end effector velocity in the OTG whenever necessary.
Note that in the discussed conventional serial 7DOF, this method is only relevant for constraining

the elbow movement. The translational shoulder velocity is always zero and can thus be omitted.
Further the TCP being the general point of interest is by definition already constrained in the basic
algorithm. The wrist can be considered independently of the kinematic structure in use, following
the method in Section 4.2.

4.5. OTG-independent constraints
Considering time-variant velocity constraints opens up interesting application scenarios too. It allows
for integrating OTG-independent metrics to be considered in the OTG algorithm. An exemplary
use case in HRC is a distance-sensitive velocity limitation. In terms of safety issues in HRC, the
maximal allowed robot velocity in the proposed OTG is made dependent on the Euclidean distance
dHR between human and robot using, for example, a Gaussian-shaped weighting term

vmax(dHR) :=
⎧⎨
⎩exp

(
− (dHR − dmin)

2

2σA
2

)
v∗max, for dHR ≤ dmin

v∗max, else
(80)

with the shaping factor σA. A shaping factor of dmin
3 , for example, scales the velocity to <1% for

dHR→ 0. Figure 5 shows the comparison between a fixed vmax and the distance-sensitive implemen-
tation (80) for the case when the robot crosses 10 cm above the human hand. In this example, it is
further demonstrated how the OTG copes with measurement noise of the human position.

5. Discussion
In this Section, we will discuss the performance of the proposed algorithm in terms of transient
behavior. We further give a runtime comparison to the state-of-the-art.

5.1. Transient behavior
Figure 6 shows the response of the approach to several step inputs and time-invariant constraints.
Note that for such inputs, the algorithm results in a time optimal bang-bang behavior in acceleration.
The user constraints (4a) and (4b) are fulfilled at all times, while (7)–(9) assures time synchronization.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574719001619
Downloaded from https://www.cambridge.org/core. Technische Universität München, on 03 Apr 2020 at 12:47:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574719001619
https://www.cambridge.org/core

18 An online trajectory generator on SE(3) for human–robot collaboration

Fig. 6. Trajectory generation for translation with hanging transition.
Dashed lines are set points/constraints and solid lines are the actual time-synchronized values. The spikes in acceleration result
from the transition phase due to time discretization. The change in set point at t= 5 s causes an adjustment in the direction of the
acceleration vector, while its full magnitude amax = 1.5 m/s2 is still exploited.

In case of trajectory following where the input trajectory fulfills the inequality constraints (4), the
algorithm degenerates to

pk+1 = pdes
k (81a)

Qk+1 =Qdes
k . (81b)

once the desired state is reached.
Thus, in our algorithm, no explicit switching between different strategies is necessary. This means

that the algorithm uses axes-synchronized acceleration bang-bang control in cases of constraint vio-
lating goal trajectories, no matter if they result from discontinuous set point trajectories or merely
from, for example, infeasible velocities. This reduces the error in position and velocity offset and
eventually feeds through the target points whenever possible. An example of this behavior is shown
in Fig. 7.

5.2. Analytic versus Geometric Angular velocity constraints
Current OTG algorithms mentioned in literature do either not provide synchronization treatment of
the multidimensional case, or treat all DOF as independent axes for trajectory generation. Directly
applying joint-related approaches to Euler angles for representing SO(3)typically are prone to so-
called gimbal-lock singularities. As analyzed in Section 3.2, instead of directly regarding constraints
for the time derivatives of the Euler angles, we transfer the problem from this analytical subsequent
velocity vector to the geometric angular velocities ω. Note that these two velocity vectors differ
clearly in their physical interpretation. The time derivative of Euler angles describes consecutive
angular velocities according to the given Euler sequence, whereas ω contains simultaneous angular
velocity around the base vectors at a given time instance. Constraining these two vectors directly
results obviously in different trajectories for a general case. In Fig. 8, we demonstrate the divergence
of the generated trajectories for some extreme cases. The closer the configuration gets to the singular-
ity, the larger the discrepancy between Euler angle velocities and actual geometric angular velocities.
The differences can be seen in velocity as well as acceleration level. We argue that constraining the
angular velocity ω in its magnitude gives raise to more intuitive trajectories than constraining the
successive Euler angle velocities.

5.3. Runtime analysis
As mentioned in the introduction, optimization-based approaches especially when considering the
required nonlinear magnitude constraints as well as dynamics on SO(3) typically fail to deliver results

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574719001619
Downloaded from https://www.cambridge.org/core. Technische Universität München, on 03 Apr 2020 at 12:47:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574719001619
https://www.cambridge.org/core

An online trajectory generator on SE(3) for human–robot collaboration 19

Fig. 7. Time synchronous transition between acceleration-bounded input trajectories and step inputs for a
sample rate of 0.1 s.
The discontinuous desired profile consists of three distinct segments. An initial ramp with offset (0 –3 s) followed by a constant
(3 –6 s) and a sine with distinct frequencies (6 –10 s). State discrepancies at time t= 0 s that usually result in an error state of the
robot can be avoided. After the transition phase, the error for translation and rotation (bottom plot) converge to direct feedthrough
of the desired trajectory as discussed in (81).

Fig. 8. Comparison of our algorithm on SO(3) to the Reflexxes Motion Library, parametrizing Euler angles, in
terms of magnitude velocity and acceleration.
Note that in the given Euler angle sequence X(α)→ Y(β)→ Z(γ), the gimbal-lock singularity is reached at β = π/2≈ 1.57 rad.
Dashed lines are desired values/constraints, solid lines reflect our approach, and dash-dotted lines result from the Reflexxes Motion
Library. While α and γ accelerate in the same direction at t= 4 s reaching almost double the constrained acceleration limit,
constraining the Euler angle derivatives is overrestrictive at t= 7 s due to the opposite movement directions.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574719001619
Downloaded from https://www.cambridge.org/core. Technische Universität München, on 03 Apr 2020 at 12:47:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574719001619
https://www.cambridge.org/core

20 An online trajectory generator on SE(3) for human–robot collaboration

Table II. Runtime comparison for full 6D OTG.

Algorithm Reflexxes Our approach
Representation Euler angles10 Euler angles26 Rotation matrix Unit quaternion

Iteration time 13.3 µs 8.3 µs 7.6 µs 5.1 µs

within common 1ms iteration cycles. Therefore, they cannot be considered for the problem at hand.
Representing approaches that adapt methods in R

6 using Euler angle parametrization, we compare
our algorithm with the available Reflexxes Motion Library31 that is based on the work of Kröger.10

For a fair comparison, the freely available Type II version (unbound jerk) is used. The algorithm was
compared in terms of runtime with the OTG of the available Reflexxes Motion Library. Both algo-
rithms were analyzed using the Simulink 8.9 Profiler evaluating 106 iterations on a single 3.7 GHz
CPU. The resulting computational effort is listed in Table II. Although the implementation and com-
pilation of our algorithm are not explicitly optimized for runtime, the computation time spent per
iteration is below the Reflexxes Motion library for all three representations of 3D orientation in
SO(3). This makes the proposed algorithm suitable as an OTG or an intermediate layer between a
optional higher level trajectory planner, that may run on a slower sample rate, and the robot controller.
This increases robustness without large additional computational load.

6. Conclusion
In this work, a new approach for an OTG was introduced. According to the classification by Kröger
et al.32 our method describes an online trajectory generator OTG of type II (i.e., bounded veloc-
ity and acceleration, unbounded jerk, allowing position and velocity targets) in variant B (that is
time-variant constraints). It is directed—but not limited—to be used in HRC scenarios, where assur-
ing human comfort and guaranteeing safety are prioritized over time optimality. While offering the
typical advantages of OTG, such as increasing robustness against infeasible input trajectories (e.g.,
PTP step trajectories) and instantaneous reaction capabilities to unknown events, it offers intuitive
definition of dynamic constraints. That is, constraining the magnitude of velocity and acceleration
vectors of 3D translation as well as 3D rotation. This way the coordinate system-independent dynam-
ics of the end effector, which can also be interpreted as kinetic energies on velocity level, are directly
constrained. Further, rotations are constrained in their true geometric angular velocity, rather than
purely analytical values such as direct derivation of Euler angles. Accurate time integration of the
orientation differential equations is achieved by the means of the Magnus expansion.

This is the first real-time capable OTG algorithm to allow such constraints, while directly gener-
ating 3D translation and rotation trajectories on SE(3) in a singularity-free formulation. It was also
outlined how the set of constraints can be extended to limit the velocity of the full robot structure
in joint as well as 3D Euclidean space. Considering time variance of these constraints opens up
many possibilities to connect other metrics such as human–robot distance. Our work introduces an
algorithm that provides the advantages of an indirect approach, that is, fast computation cycles and
instantaneous reaction to unforeseen inputs. At the same time, it also allows seamless transitions to
directly forward trajectories that already satisfy dynamic constraints. These transitions do not require
an explicit switching or blending between different strategies, but directly result from the algorithm
itself measures to the OTG, as shown in experimental evaluation. The beauty of our algorithm lies
clearly in its simplicity and its reduced and intuitive definition of the constraints, especially in terms
of orientation. The verification of increasing acceptance by constraining magnitudes is still to be
validated in user case studies. Suggestions for future development are the extension jerk limitation,
which is of importance especially in industrial contexts. This requires a new step in the algorithm in
which the correct acceleration profile has to be found before calculating the minimum time left.

Acknowledgment
The research leading to these results has received funding from the Horizon 2020 research and
innovation program under grant agreement No. 820742 of the project “HR-Recycler—Hybrid
Human-Robot RECYcling plant for electriCal and eLEctRonic equipment.”

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574719001619
Downloaded from https://www.cambridge.org/core. Technische Universität München, on 03 Apr 2020 at 12:47:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574719001619
https://www.cambridge.org/core

An online trajectory generator on SE(3) for human–robot collaboration 21

References
1. ISO/TS 15066:2016, “Robots and robotic devices – collaborative robots,” International Organization for

Standardization, Geneva, CH (2016).
2. W. K. Chung, L.-C. Fu and T. Kröger, “Trajectory Generation and Planning,” In: Springer Handbook of

Robotics (B. Siciliano and O. Khatib, eds.), 2nd ed. (Springer, Cham, 2016) ch. 8.9.
3. T. Kröger and F. M. Wahl, “Online trajectory generation: Basic concepts for instantaneous reactions to

unforeseen events,” IEEE Trans. Robot. 26(1), 94–111 (2010).
4. X. Broquere, D. Sidobre and I. Herrera-Aguilar, “Soft Motion Trajectory Planner for Service Manipulator

Robot,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Nice, France
(2008).

5. R. Haschke, E. Weitnauer and H. Ritter, “On-Line Planning of Time-Optimal, Jerk-Limited Trajectories,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Nice, France (2008).

6. R. Katzschmann, T. Kroger, T. Asfour and O. Khatib, “Towards Online Trajectory Generation Considering
Robot Dynamics and Torque Limits,” IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Tokyo, Japan (2013).

7. B. Ezair, T. Tassa and Z. Shiller, “Planning high order trajectories with general initial and final conditions
and asymmetric bounds,” Int. J. Robot. Res. 33(6), 898–916 (2014).

8. F. Lange and A. Albu-Schäffer, “Path-accurate online trajectory generation for jerk-limited industrial
robots,” IEEE Robot. Auto. Lett. 1(1), 82–89 (2016).

9. F. Lange and A. Albu-Schäffer, “Iterative path-accurate trajectory generation for fast sensor-based motion
of robot arms,” Adv. Robot. 30(21), 1380–1394 (2016).

10. T. Kröger, “Online trajectory generation: Straight-line trajectories,” IEEE Trans. Robot. 27(5), 1010–1016
(2011).

11. Z. Rymansaib, P. Iravani and M. N. Sahinkaya, “Exponential Trajectory Generation for Point to
Point Motions,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM),
Wollongong, NSW (2013).

12. J. E. Lloyd, “Trajectory Generation Implemented as a Non-linear Filter,” Technical Report (Department of
Computer Science, University of British Columbia, Vancouver, B.C., Canada, 1998).

13. L. Biagiotti and C. Melchiorri, “FIR filters for online trajectory planning with time-and frequency-domain
specifications,” IFAC Control Eng. Pract. 20(12), 1385–1399 (2012).

14. L. Biagiotti, C. Melchiorri, and L. Moriello, “Optimal trajectories for vibration reduction based on
exponential filters,” IEEE Trans. Control Syst. Tech. 24(2), 609–622 (2016).

15. P. Besset, R. Bearee and O. Gibaru, “FIR Filter-Based Online Jerk-Controlled Trajectory Generation,”
IEEE International Conference on Industrial Technology (ICIT), Taipei (2016).

16. O. Gerelli and C. G. L. Bianco, “A Discrete-time Filter for the On-Line Generation of Trajectories with
Bounded Velocity, Acceleration, and Jerk,” IEEE International Conference on Robotics and Automation
(ICRA), Anchorage, Alaska (2010).

17. C. G. L. Bianco and F. Ghilardelli, “A discrete-time filter for the generation of signals with asymmetric
and variable bounds on velocity, acceleration, and jerk,” IEEE Trans. Indust. Electron. 61(8), 4115–4125
(2014).

18. C. G. L. Bianco, “An efficient algorithm for the real-time generation of synchronous reference signals,”
IEEE Trans. Indust. Electron. 64(6), 4621–4630 (2017).

19. M. M. G. Ardakani, B. Olofsson, A. Robertsson and R. Johansson, “Real-Time Trajectory Generation
Using Model Predictive Control,” IEEE International Conference on Automation Science and Engineering
(CASE), Gothenburg, Sweden (2015).

20. K. H. Dinh, P. Weiler, M. Leibold and D. Wollherr, “Fast and Close to Optimal Trajectory Generation
for Articulated Robots in Reaching Motions,” IEEE International Conference on Advanced Intelligent
Mechatronics (AIM), Munich, Germany (2017).

21. O. Koç, G. Maeda and J. Peters, “Online optimal trajectory generation for robot table tennis,” Robot. Auto.
Syst. 105, 121–137 (2018).

22. F. Gao, Y. Lin and S. Shen, “Gradient-Based Online Safe Trajectory Generation for Quadrotor Flight in
Complex Environments,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Vancouver, Canada (2017).

23. T. Lee, M. Leok and N. H. McClamroch, “Time Optimal Attitude Control for a Rigid Body,” IEEE
American Control Conference (ACC), Seattle, Washington (2008).

24. M. Watterson, T. Smith and V. Kumar, “Smooth Trajectory Generation on SE(3) for a Free Flying Space
Robot,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea
(2016).

25. A. R. Ansari and T. D. Murphey, “Sequential action control: Closed-form optimal control for nonlinear and
nonsmooth systems,” IEEE Trans. Robot. 32(5), 1196–1214 (2016).

26. G. Huber, V. Gabler and D. Wollherr, “An Online Trajectory Generator on SE(3) with Magnitude
Constraints,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver,
Canada (2017).

27. M. Boyle, “The integration of angular velocity,” Adv. Appl. Clifford Alg. 27(3), 2345–2374 (2017).
28. W. Magnus, “On the exponential solution of differential equations for a linear operator,” Commun. Pure

Appl. Math. 7(4), 649–673 (1954).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574719001619
Downloaded from https://www.cambridge.org/core. Technische Universität München, on 03 Apr 2020 at 12:47:45, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574719001619
https://www.cambridge.org/core

22 An online trajectory generator on SE(3) for human–robot collaboration

29. S. Blanes, F. Casas, J. Oteo and J. Ros, “The magnus expansion and some of its applications,” Phys. Rep.
470(5–6), 151–238 (2009).

30. S. R. Buss, “Introduction to inverse kinematics with jacobian transpose, pseudoinverse and damped least
squares methods,” IEEE J. Robot. Auto. 17(1–19), 16 (2004).

31. Reflexxes GmbH. The reflexxes motion libraries, type II. http://www.reflexxes.ws (accessed February 12,
2016).

32. T. Kröger, “On-Line Trajectory Generation in Robotic Systems,” In: Springer Tracts in Advanced Robotics
(B. Siciliano and O. Khatib, eds.) (Springer-Verlag, Berlin, Heidelberg, 2010) pp. 38–40.

33. R. M. Murray, Z. Li and S. Sastry, A Mathematical Introduction to Robotics Manipulation (CRC Press,
Boca Raton, Florida, 1994).

A. Appendix

A.1. Implementation remarks
A.1.1. Matrix logarithm. Although the exponential map, and thus the logarithmic map, are defined
with as an infinite series

exp(R) :=
∞∑

n=0

Rn

n! (A1)

in the case of R ∈ so3 such as [ω]× there is a closed-form solution

exp([ω]×) := I + sin(‖ω‖2)
[ω]×
‖ω‖2

+ (1− cos (‖ω‖2))

(
[ω]×
‖ω‖2

)2

(A2)

known as Rodrigues’ rotation formula.33

A.1.2. Quaternion logarithm. Using quaternions for describing rotations in SO(3) always results in
unit quaternions, that is, ‖Q‖2 = 1. If a unit quaternion Q ∈H is considered to have a scalar and a
vector part Q= (Qw,Qv) similar to the closed-form matrix expression above, the logarithm for a
pure quaternion, that is, with zero scalar part, admits the concise closed-form solution

exp(Q) :=
(

cos(‖Qv‖2 ,Qv sin

(‖Qv‖2

‖Qv‖2

))
(A3)

and the logarithm of a unit quaternion, that is, ‖Q‖2 = 1, the logarithm simplifies to

log(Q) :=
(

0,
φ

sin(φ)Qv

)
with φ = arctan 2(‖Qv‖2 ,Qw) (A4)

A.2. Proof that M(α, t) in (33) has full rank
Proof. The symbolic calculation of the eigenvalues of M(α, t) leads to

eig(M(α, t))=
⎡
⎢⎣ t

t− ‖α‖2
2

t5

240 + j ‖α‖2
t3

12

t− ‖α‖2
2

t5

240 − j ‖α‖2
t3

12

⎤
⎥⎦ (A5)

which is guaranteed to be of full rank, as long as t �= 0. The two contradicting conditions α for rank
deficiency are

‖α‖2
2

t5

240
= t (A6)

‖α‖2
t3

12
= 0. (A7)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574719001619
Downloaded from https://www.cambridge.org/core. Technische Universität München, on 03 Apr 2020 at 12:47:45, subject to the Cambridge Core terms of use, available at

http://www.reflexxes.ws
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574719001619
https://www.cambridge.org/core

	An Online Trajectory Generator on SE(3) for Human–Robot Collaboration
	Introduction
	Related work
	Contribution
	Outline

	Problem Formulation
	Approach
	Translation
	Rotation
	Synchronization of translation and rotation

	Extensions for HRC Scenarios
	Direction-specific constraints
	Combining translation and rotation constraints
	Robot joint constraints
	Constraining movement of the whole robot kinematic
	OTG-independent constraints

	Discussion
	Transient behavior
	Analytic versus Geometric Angular velocity constraints
	Runtime analysis

	Conclusion
	Appendix
	Implementation remarks
	Proof that M(,t) in (33) has full rank

