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Choline-related-inherited metabolic diseases—A mini review
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Abstract
In humans, the important water soluble, vitamin-like nutrient choline, is taken up

with the diet or recycled in the liver. Deficiencies of choline have only been

reported in experimental situations or total parenteral nutrition. Currently, no

recommended dietary allowances are published; only an adequate daily intake is

defined. Choline is involved in three main physiological processes: structural integ-

rity and lipid-derived signaling for cell membranes, cholinergic neurotransmission,

and methylation. Choline is gaining increasing public attention due to studies

reporting a relation of low choline levels to subclinical organ dysfunction (nonalco-

holic fatty liver or muscle damage), stunting, and neural tube defects. Furthermore,

positive effects on memory and a lowering of cardiovascular risks and inflamma-

tory markers have been proposed. On the other hand, dietary choline has been asso-

ciated with increased atherosclerosis in mice. This mini review will provide a

summary of the biochemical pathways, in which choline is involved and their

respective inborn errors of metabolism (caused by mutations in SLC5A7, CHAT,

SLC44A1, CHKB, PCYT1A, CEPT1, CAD; DHODH, UMPS, FMO3, DMGDH,

and GNMT). The broad phenotypic spectrum ranging from malodor, intellectual

disability, to epilepsy, anemia, or congenital myasthenic syndrome is presented,

highlighting the central role of choline within human metabolism.
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1 | INTRODUCTION

The important water soluble, vitamin-like nutrient choline (N,N,
N-trimethylethanolammonium), contains a quaternary ammo-
nium group determining the cationic nature of the substance. It
is the hydrophilic head group of the phospholipid lecithin (phos-
phatidylcholine [PC]). Humans take up choline with the diet
(eg, beef liver, egg yolk, and cruciferous vegetables) or synthe-
size it in the liver and redistribute it from kidney, lung, and
intestine.1 As de novo synthesis is possible, though complicated,

it is not a vitamin in the strictest sense. Deficiencies of choline
have not been reported in the general population, but have only
been observed in experimental situations and in total parenteral
nutrition.2–5 Currently, no recommended dietary allowances are
published by the European Food Safety Authority (EFSA), only
an adequate daily intake is defined (eg, infants 180 mg/day and
adults 400 mg/day) (EFSA Journal 2011;9[4]:2056 [23 pp.].).
No cases of choline intoxication have been reported to date.

Choline is involved in three main physiological pro-
cesses: structural integrity and lipid-derived signaling for
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cell membranes, cholinergic neurotransmission, and methyl-
ation (as a major source for methyl groups via its metabolite
trimethylglycine, Figure 1). Choline is recently gaining
increasing public attention. This is based on observations
that 77% of healthy men and 80% of postmenopausal women
were shown to have low choline and subclinical organ dys-
function (eg, nonalcoholic fatty liver disease and muscle
damage), which were resolved after 3 weeks of a choline
rich diet.6 Furthermore, low choline has been related to neu-
ral tube defects in infants, even when the mother supplemen-
ted folate,7 and to stunting.8 Many other (small) studies
speculate on further positive effects for some of the main
adult health problems such as a positive effect on memory, a
lowering effect on plasma homocysteine thereby lowering
cardiovascular risks, lowering of inflammatory markers,

decreased breast cancer risk, etc. (for overview: Reference
9). On the other hand, a choline- or carnitine-rich diet
resulted in increased formation of trimethylamine N-oxide
(TMAO) by gut bacteria in a mouse study and was associ-
ated with increased atherosclerosis.10

When considering the requirements for choline and
methionine, one needs to take into account the close interre-
lationships with other methyl donors. Choline, methionine,
and folate metabolism interact at the point that homocysteine
is converted to methionine (Figure 1).

This mini review will provide a summary of the bio-
chemical pathways in which choline is involved and their
respective inborn errors of metabolism, highlighting the cen-
tral role of choline in human metabolism without going into
details for the disorder mentioned (Figure 1, Table 1). The
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FIGURE 1 Choline-related pathways. ALDH7A1, aldehyde dehydrogenase; BHMT, betaine-homocysteine methyltransferase; CAD,
carbamoyl phosphate synthetase/aspartate transcarbamoylase/dihydroorotase; CDP, cytidine diphosphate; C/EPT1, choline/ethanolamine
phosphotransferase 1; CHAT, choline acetyltransferase; CHDH, choline dehydrogenase; CHKA, choline kinase alpha; CHKB, choline kinase beta;
CHPT1, choline phosphotransferase 1; CHT1, high-affinity choline transporter; CTL1, choline transporter-like protein 1; DHODH, dihydroorotate
dehydrogenase; DMGDH, dimethylglycine dehydrogenase; FMO3, flavin-containing monooxygenases; GNMT, glycine N-methyltransferase;
OCTs, organic cation transporters; PCYT1A, choline-phosphate cytidyltransferase A; PEMT, phosphatidylethanolamine N-methyltransferase; PISD,
phosphatidylserine decarboxylase; PTDSS1, phosphatidylserine synthase 1; SLC, solute carrier; UMPS, uridine monophosphate synthase
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methylation-related disorders will only be mentioned with
regards to the catabolism of choline, the classical methyla-
tion disorders will not be discussed.

2 | UPTAKE OF CHOLINE INTO THE
CELL AND FURTHER TRANSPORT
INTO THE MITOCHONDRIA

Choline is taken up from the blood and transported via the
plasma membrane by CHT1/SLC5A7, OCTs/SLC22A1-3,
and CTLs/SLC44A1-5. SLC44A1, a member of the choline-
like transporter family, widely expressed in human tissues,
is detected in both plasma and mitochondrial membranes
and facilitates the choline uptake into the mitochondria,
where the oxidation of choline to betaine takes place.11

3 | CHOLINE AS PRECURSOR FOR
DE NOVO NEUROTRANSMITTER
BIOSYNTHESIS

Cholinergic neurons take up choline for acetylcholine syn-
thesis by the high-affinity choline transporter (CHT1,
encoded by SLC5A7). Biallelic variants in SLC5A7 underlie
congenital myasthenic syndrome 20 (MIM #617143) charac-
terized by muscular hypotonia and weakness, ptosis, poor
sucking, and swallowing and prominent episodic apnea with
a neonatal onset.12 Severity can vary, and acetylcholine
esterase inhibitors show good results in some patients. Inter-
estingly, heterozygous variants in the same gene lead to dis-
tal hereditary motor neuronopathy type VIIa (HMN7A,
MIM#158580) with progressive distal muscle wasting and
weakness affecting the upper and lower limbs from the sec-
ond decade onwards. Additionally, the tenth cranial nerve is
involved, which leads to vocal cord paresis.13 For both
defects, no studies on treatment with choline have been
published.

The biosynthesis of acetylcholine from choline is per-
formed by choline acetyltransferase (CHAT, CHAT). Bialle-
lic variants in this gene underlie congenital myasthenic
syndrome 6 (MIM #254210).14 The clinical signs are com-
parable to congenital myasthenic syndrome 20, and most
patients respond to treatment with acetylcholine esterase
inhibitors.15

4 | CHOLINE AS PRECURSOR FOR
DE NOVO PHOSPHOLIPID
BIOSYNTHESIS

Eugene Kennedy first identified the pathways predominant
for de novo synthesis of PC (cytidine diphosphate [CDP]-
choline pathway) and phosphatidylethanolamine (CDP-

ethanolamine pathway) in mammals.16 Choline transporter-
like protein 1 (CTL1, SLC44A1) is believed to be the main
choline transporter for the Kennedy pathway. SLC44A1
deficiency has been related to choline deficiency and mem-
brane alterations in skin fibroblasts of a single patient with
postural orthostatic tachycardia syndrome (no genetic data
presented).17

Choline kinase alpha (CHKA, CHKA) and beta (CHKB,
CHKB) phosphorylate choline. Deficiency of CHKB (auto-
somal recessive mutations in CHKB) was first described in a
natural occurring mouse model showing a muscular dystro-
phy with a unique mitochondrial morphology in muscle
fibres.18 Subsequently, the same phenotype was reported in
humans.19 Single-nucleotide polymorphisms in the CHKB
locus have been associated with susceptibility to narcolepsy
with cataplexy.20 No human phenotype has been associated
to defective CHKA to date.

In the next step, phosphocholine is activated by the addi-
tion of cytidine triphosphate (CTP) and CDP is formed. This
is the key rate-limiting step performed by choline-phosphate
cytidyltransferase A (PCYT1A, PCYT1A), which is ubiqui-
tously expressed, and by choline-phosphate cytidyltransfer-
ase B (PCYTB) expressed in selected tissues. Biallelic
variants in PCYT1A have been associated with cone-rod dys-
trophy, either isolated or in combination with spondylometa-
physeal dysplasia (MIM#123695).21,22 Additionally,
congenital lipodystrophy, fatty liver, severe insulin resis-
tance, and diabetes were seen in two patients, providing evi-
dence for an additional and essential role of PCYT1A-
generated PC in the normal function of white adipose tissue
and insulin action.23 The final step from CDP choline to PC
is performed by choline phosphotransferase 1 (CHPT1) or
choline/ethanolamine phosphotransferase 1 (CEPT1,
CEPT1). The latter has a dual specificity and also serves in
the CDP-ethanolamine biosynthesis, the second half of the
Kennedy pathway. Recently, one pedigree with biallelic var-
iants in CEPT1 has been described with a complex neuro-
logical phenotype with hereditary spastic paraparesis,
developmental delay, intellectual disability, dysarthria, reti-
nal pigmentary abnormalities, and cone-rod dystrophy.24

5 | CHOLINE DE NOVO SYNTHESIS

Although complicated, choline can be synthesized de novo
from PC as a secondary pathway. Phosphatidylserine
synthase (PTDSS) 1 as well as 2 catalyzes the conversion of
PC to Phosphatidyl serine (PS), thereby releasing choline.
Additionally, 30% of choline in the liver is generated via
phosphatidylethanolamine N-methyltransferase. In mice,
PTDSS1 and PTDSS2 can compensate for each other,25,26

but simultaneous disruption of both genes is lethal, implying
that PTDSS is absolutely required for viability.25 Dominant
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heterozygous mutations in PTDSS1, leading to a gain in
enzyme function, have been associated to a syndrome of
sclerosing bone dysplasia, intellectual disability and distinct
craniofacial, dental, cutaneous (cutis laxa) and distal-limb
anomalies (Lenz-Majewski syndrome [MIM #151050]).27

6 | THE ROLE OF CHOLINE IN DE
NOVO PYRIMIDINE METABOLISM

CTP is one of the end products of de novo pyrimidine syn-
thesis and is a central component of the Kennedy pathway
when converted to CDP and subsequently to CDP choline.
Biallelic variants in the multienzyme complex CAD (carba-
moyl phosphate synthetase 2, aspartate transcarbamylase,
and dihydroorotase, CAD, MIM #616457) have recently
been reported to lead to a progressive early infantile epileptic
encephalopathy with dyserythropoietic anemia and tetrapar-
esis. Anemia is a well-known feature of another defect in the
same pathway (uridine monophosphate synthase [UMPS]
deficiency, UMPS, MIM #258900) and can be explained by
the decreased red cell membrane stability due to lack of
pyrimidines. One could speculate that the epileptic encepha-
lopathy and other central nervous system findings are related
to defective phospholipid biosynthesis.28 Importantly, uri-
dine treatment leads to immediate cessation of seizures and
regaining of lost skills. One could wonder if additional cho-
line supplementation would also be beneficial for defects in
de novo pyrimidine synthesis. Uridine supplementation was
reported nonbeneficial in a dihydroorotate dehydrogenase
(DHODH) defect (MIM #263750).29

7 | THE ROLE OF CHOLINE AS
METHYL DONOR

The oxidation of choline is irreversible, and formation of tri-
methylglycine (betaine) is performed in two steps by choline
dehydrogenase (CHDH, no MIM entry) and aldehyde dehy-
drogenase (ALDH7A1, also known as antiquitin, ALDH7A).
The latter is also an alpha-aminoadipic semialdehyde dehy-
drogenase in the pipecolic acid pathway of lysine catabolism
and leads to pyridoxine-dependent epilepsy when deficient
(MIM #266100).30 No deficiency of CHDH in humans has
been reported to date. It is worth mentioning that two other
disorders in the context of this article as the three enzymes—
and their corresponding deficiencies—involved in the conver-
sion of homocysteine to methionine, are not often mentioned
in the context of methylation disorders. Betaine-homocysteine
methyltransferase (BHMT, MIM *602888) catalyzes the first
step, here no corresponding human disorder is known.
Dimethylglycine dehydrogenase (DGMDH) converts
dimethylglycine into sarcosine. Deficiency has been reported

in a single case: an adult with abnormal body odor resembling
fish and elevated serum creatine kinase as well as muscle fati-
gability (MIM #605850).31,32 While the malodor is seen in
another defect related to choline (as detailed below), one can-
not exclude that the other signs may be attributable to another
disorder. How excessive dimethylglycine leads to fish odor is
not described by the authors. Conversion of sarcosine to gly-
cine is performed by glycine N-methyltransferase (GNMT).
Deficiency has been described in four patients (MIM
#606664) with hepatomegaly and elevated transaminases and
seems to be less severe than a knock out mouse model also
showing hepatic glycogen storage, hypercholesterinemia,
hypoglycemia, and low white blood cell count.33–36

8 | THE ROLE OF CHOLINE IN
MALODOR

Gut microbiota specifically processes choline, PC, carnitine,
and other dietary nutrients to produce trimethylamine
(TMA). TMA is absorbed in the gut and converted in the
liver to TMA N-oxide (TMAO) by hepatic flavin-containing
monooxygenases (eg, FMO3). Autosomal recessive variants
in FMO3 (MIM #602079) were shown to underlie trimethy-
laminuria or fish odor syndrome.37 Affected individuals suf-
fer from a strong, fishy body odor as the excess TMA is
released in the person's sweat, urine, reproductive fluids, and
breath. There are no other organic signs, but from a psycho-
social perspective the condition can be devastating for
affected individuals, attempted suicides have been
reported.38,39

9 | CONCLUDING REMARKS

Choline is a central metabolite in human metabolism. Given
its good bioavaibility after oral intake, more research is
needed to identify the good effects on human health but also
potential harmful side effects.
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