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Abstract For numerous hydrological applications, information on snow water equivalent (SWE) and
snow liquid water content (LWC) are fundamental. In situ data are much needed for the validation of
model and remote sensing products; however, they are often scarce, invasive, expensive, or labor‐intense.
We developed a novel nondestructive approach based on Global Positioning System (GPS) signals to derive
SWE, snow height (HS), and LWC simultaneously using one sensor setup only. We installed two low‐cost
GPS sensors at the high‐alpine site Weissfluhjoch (Switzerland) and processed data for three entire winter
seasons between October 2015 and July 2018. One antenna was mounted on a pole, being permanently
snow‐free; the other one was placed on the ground and hence seasonally covered by snow. While SWE can
be derived by exploiting GPS carrier phases for dry‐snow conditions, the GPS signals are increasingly
delayed and attenuated under wet snow. Therefore, we combined carrier phase and signal strength
information, dielectric models, and simple snow densification approaches to jointly derive SWE, HS, and
LWC. The agreement with the validationmeasurements was very good, even for large values of SWE (>1,000
mm) and HS (> 3 m). Regarding SWE, the agreement (root‐mean‐square error (RMSE); coefficient of
determination (R2)) for dry snow (41 mm; 0.99) was very high and slightly better than for wet snow (73 mm;
0.93). Regarding HS, the agreement was even better and almost equally good for dry (0.13 m; 0.98) and wet
snow (0.14 m; 0.95). The approach presented is suited to establish sensor networks that may improve the
spatial and temporal resolution of snow data in remote areas.

1. Introduction

Snow is an essential climate variable contributing critically to the Earth's climate (World Meteorological
Organization, 2018). Regarding hydrological aspects, snow is particularly important in mountainous
regions, which are considered as the water towers of the adjacent lowlands (Viviroli et al., 2007). To this
end, snow water equivalent (SWE) is the key variable to quantify the amount of snow and predict subse-
quent runoff (Jonas et al., 2009). Water from snowmelt is crucial for water resources management including
fresh water supply, hydropower generation, irrigation, or navigation (Immerzeel et al., 2009; Mankin et al.,
2015; Mauser & Prasch, 2015; Sturm, 2015; Wesemann et al., 2018). In situ snow measurements are funda-
mental for the evaluation and validation of various remote sensing products (e.g., Parajka & Blöschl, 2006;
Takala et al., 2011) and snowpack models that consider, for example, snow accumulation and melting pro-
cesses as well as lateral snow transport (e.g., Bernhardt et al., 2012; Frey & Holzman, 2015; Warscher et al.,
2013; Weber et al., 2016; Vionnet et al., 2012). Moreover, they help improving model parameterizations for
SWE estimation or reconstructions (e.g., Raleigh & Lundquist, 2012).

The snow cover properties SWE, snow height (HS), and snow wetness, mainly expressed as snow liquid
water content (LWC), can be measured at different scales. This includes on the one hand various in situ
and point scale measurements (Kinar & Pomeroy, 2015; Lundberg et al., 2010; Pirazzini et al., 2018), which
may provide continuous data but cannot capture spatial variations. On the other hand, optical and micro-
wave remote sensing applications (Dietz et al., 2012; Hall, 2012; Nagler et al., 2016; Tedesco, 2014) can
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cover larger areas but might lack the desired temporal frequency or pixel resolution. Up to now, all methods
have some limitations, which means that in many regions it is not always possible to determine all relevant
snow cover properties. Hence, developing new and potentially low‐cost measurement methods as well as
establishing networks in mountainous catchments is much needed (Pirazzini et al., 2018; Pomeroy et al.,
2015).

Regarding traditional in situ measurements, snow sampling techniques such as snow pit measurements are
destructive, labor‐intense, possibly error‐prone, and infrequent (e.g., Goodison et al., 1987). Ground‐based
sensors for continuous SWE and HS measurements are still scarce in many regions. Automatic point‐scale
measurements of HS are mainly based on ultrasonic or laser depth sensor techniques (Pirazzini et al.,
2018). Standard SWEmeasurement sensors such as snow pillows or scales are quite large and expensive, dif-
ficult to install, and are prone to measurement errors due to bridging effects within the snowpack
(Beaumont, 1966; Johnson &Marks, 2004). SWEmeasurements based on terrestrial cosmic ray sensors show
promising results (Schattan et al., 2017) but still face problems when the snow depth is large and/or the snow
turns wet (Sigouin & Si, 2016). In situ measurements of LWC are evenmore scarce compared to HS and SWE
measurements. Boyne and Fisk (1987) and Techel and Pielmeier (2011) provide a good overview on in situ
LWC measurements. They are mainly based on hand‐held dielectric devices, which are used in snow pits
(Denoth, 1989; Sihvola & Tiuri, 1986). However, various sources of errors have been shown as their applica-
tion is destructive. Schneebeli et al. (1998) and Avanzi et al. (2014) presented first results of continuous LWC
measurements with time domain reflectometry and capacity probes, respectively. However, they reported
that quantitative interpretation is challenging due to, for example, air pockets that easily form around the
sensors. Nondestructive measurements of wet‐snow or even LWC alongside with the determination of
further snow cover properties were obtained with different radar systems (e.g., Bradford et al., 2009;
Heilig et al., 2015; Lundberg & Thunehed, 2000; Mitterer et al., 2011; Schmid et al., 2014) but are rather
expensive for operational application.

Satellite remote sensing is a good alternative to derive snow cover properties such as SWE, HS, or the onset of
snow melt and has the advantage to provide information on their spatial distribution. However, for many
regions or hydrological applications, such as hydropower production and flood forecasting, the spatial
and/or temporal resolution is still insufficient. Optical remote sensing products often face no‐data problems
due to cloud cover. Active microwave products are prone to radar shadows caused by so‐called layover or
foreshortening effects, which result from relief displacements, especially in mountainous regions.
Combinations of different sensors and techniques, in situ and remote sensing approaches, as employed in
the National Aeronautics and Space Administration SnowEx campaign, seem very promising (Kim et al.,
2017). More recent terrestrial or airborne techniques include, for example, laser scanning (Grünewald
et al., 2010; Prokop, 2008) or digital photogrammetry (Bühler et al., 2016); both techniques provide snow
depth with high spatial resolution. Yet these measurements only provide a snapshot in time and are not
available in all alpine and remote areas. An alternative approach with low‐cost cameras or webcams was pre-
sented by Härer et al. (2018).

In the last decade, several approaches based on L‐band Global Navigation Satellite (GNSS) signals were
developed to derive snow cover properties. GNSS encompasses several satellite systems like the U.S.
Global Navigation Satellite System (Global Positioning System [GPS]), the European Galileo system, the
Russian GLONASS system, and the Chinese Beidou system. The majority of these approaches employ reflec-
tometry techniques by using permanently installed, mainly high‐end geodetic antennas. They derive HS by
exploiting signals that were reflected at the air‐snow interface (Larson et al., 2009). Gutmann et al. (2012)
evaluated this technique successfully for an entire winter season. Boniface et al. (2015) and Larson (2016)
used networks of geodetic stations to derive HS around the stations at numerous locations in the western
U.S. Botteron et al. (2013); Cardellach et al. (2011) and Jin et al. (2014) give an overview on several GNSS
reflectometry approaches. Even though obstacles might influence the measurements, Vey et al. (2016)
reported that this techniquemight also be applicable for urban areas. Completely different GNSS approaches
were shown by Stepanek and Claypool (1997) and Schleppe and Lachapelle (2008), who observed the signal
reception and tracking performance of low‐cost GPS receivers under a snow avalanche deposit. Koch et al.
(2014) used GPS signal strength attenuation of buried antennas to continuously and nondestructively derive
LWC. Steiner et al. (2018) theoretically and practically investigated the behavior of GPS signals of submerged
antennas. By exploiting the GNSS carrier phases using low‐cost sensors, Henkel et al. (2018) derived SWE for
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dry‐snow conditions. Steiner et al. (2018) confirmed the applicability applying a similar approach but using
geodetic sensors and calculated daily SWE values for an entire winter season applying different ambiguity
resolution strategies and using widelane combinations. SWE values were represented fairly well; however,
no distinction between dry‐ and wet‐snow conditions was made. This might lead to potential overestima-
tions or underestimations depending on LWC. With the above mentioned GNSS‐based approaches, mainly
one snow cover property was determined at a time.

Our aim is therefore to derive with one single measurement setup the snow cover properties SWE, HS,
and snow LWC. To this end, we will combine our previous analyses based on GPS L1‐band carrier
phases and signal strengths. In Koch et al. (2014), we used GPS signal attenuation to derive LWC
and in Henkel et al. (2018), we derived SWE based on GPS carrier phase measurements expressing
the time delay in snow. For the first method, however, HS was still needed as an external input to
derive bulk volumetric LWC, and for the second approach, we were able to derive SWE reliably only
for dry‐snow conditions. In Schmid et al. (2015), we combined GPS signal attenuation with L‐band tra-
vel time information in snow recorded with an upward‐looking ground‐penetrating radar. The good
results of this sensor combination, using information on time delay and signal attenuation, encouraged
us to develop a similar approach by solely using GPS signals, as already had been suggested by Koch
(2017) and Henkel et al. (2017).

2. Study Site and GPS Sensor Setup
2.1. Study Site and Accompanying Data

The study was performed at the high‐alpine site Weissfluhjoch (46°49′47″N, 9°48′34″E, 2,536 m above sea
level), near Davos in Switzerland. The flat study site is operated by the WSL Institute for Snow and
Avalanche Research SLF and is snow‐covered during almost two thirds of the entire year. The site is well
equipped with numerous sensors recording continuously meteorological and snow cover properties
(Marty & Meister, 2012). It has power supply and internet access. As various reference measurements are
available for validation, it is an ideal location for testing and developing new snow measurement sensors.

An overview of the locations of the applied sensors and manual measurements is given in Figure 1. For the
validation of the GPS‐derived snow cover properties, we used continuously measured SWE and offset‐
corrected data from a snow pillow and a snow scale by setting the recordings to zero in autumn. HS was
recorded continuously with two ultrasonic sensors (Ultrasonic 1 and 2) and was measured manually once
a day at approximately 8 a.m. at a snow stake. Moreover, we used air and snow surface temperature data,
which were recorded at the location of Ultrasonic 2, as well as data from a 5‐m2 snow lysimeter, measuring
the meltwater discharge at the bottom of the snowpack. Furthermore, we used information from snow pit
measurements (Marty, 2017), taken weekly or biweekly, which were performed according to Fierz et al.
(2009). The snow profiles were dug along three profile lines. From the snow profiles, we used bulk SWE,
HS, and snow density. Snow density was determined by weighing snow samples of known volumes. The
snow pit SWE data are denoted as Manual 1. As snow density is spatially less variable than SWE or HS
(Jonas et al., 2009), we multiplied the snow pit density with the snow depth recorded at the snow stake to
obtain additional bulk SWE values (Manual 2). The snow stake recordings were denoted as Manual 3 and
HS measured in the snow pits as Manual 4. All sensors as well as the snow profile lines and the snow stake
are located close by with distances of 5 to 25 m between each other (Schmid et al., 2015).

Our study covers the three snow‐covered seasons 2015‐2016, 2016‐2017, and 2017‐2018. To ease comparison
with the manual snow pit and snow stake measurements, we needed validation data at a daily resolution.
Hence, we referred all validation measurements to 8 a.m., when the manual measurements usually took
place. For the continuous SWE, HS, and temperature measurements, we used the corresponding measured
values at 8 a.m. For the meltwater outflow at the lysimeter we calculated a 24‐hr average between 8 p.m. of
the previous day and 8 p.m. of the actual day. Due to a recording failure, data of the snow pillow, snow scale,
and snow lysimeter were lacking between 3 and 17 February 2017. Also, no data were available for the snow
scale from 30 May 2017 until the end of this season due to a sensor failure. Otherwise, the SWE validation
data are complete for the entire three snow‐covered seasons. Regarding the continuous HS data,
Ultrasonic 2 and snow stakemeasurements are complete for all three seasons; Ultrasonic 1 data are available
for 2015‐2016 and 2017‐2018. The snow surface temperature was recorded since 18 March 2016.
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2.2. GPS Data and Sensor Setup

The sensor setup is composed of two static GPS antennas. One antenna (GPS1) was mounted on the top of a
pole, and the other one (GPS2) was placed on the ground. Figure 2a gives a schematic overview including the
exemplary pathways of one GPS satellite at a specific elevation angle during one observation time step.
Figure 2b shows the approximately 5‐m high poles and racks, which were used at the test site
Weissfluhjoch and the locations of GPS1 and GPS2. During the snow‐covered season, GPS2 was covered with
snow such that the received GPS signals were influenced by travelling through the snowpack, whereas GPS1
was permanently above the snow cover since the maximum HS at Weissfluhjoch did not exceed 5 m. This
setup is similar to the ones previously described (Henkel et al., 2018; Koch et al., 2014). The GPS sensors were
installed on 10 October 2015, and the data are still recorded. GPS raw data were recorded for the three entire
snow‐covered seasons corresponding to the three winter seasons of 2015‐2016, 2016‐2017, and 2017‐2018.
The data set is complete, except for 2 days (21 and 22 June 2016) when data are missing due to a power fail-
ure. The GPS data were processed for time windows of 24 hr to allow a daily resolution of the GPS‐derived
bulk snow cover properties, as an average over this time window, as this temporal resolution often is used for
hydrological studies. The corresponding time step of the daily average was set to 8 a.m. to conform to the
manual snow measurements. For this reason, we started the snow processing of the 24‐hr time window at
8 p.m. for each day and stopped it at 8 p.m. at the following day.

We used two low‐cost u‐blox LEA‐6T GPS receivers, which were connected to a small single board PC
including a data logger. The receivers were connected via 5‐m coax cables with commercially available,
active low‐cost u‐blox patch antennas (type: ANM‐MS‐0) with 29‐dB gain. The receiver of GPS1 was
stored in a small box on the pole. The receiver of GPS2 and the PC were stored in a weather‐proofed
box on the ground of the study site next to the pole. The PC was connected to the energy and internet
supply in the sheltered hut (see Figure 1). On the ground we protected all cables to avoid animal bites
during summer time. The size of the antennas is small, approximately 3.5 cm × 3.5 cm; they were each
additionally fixed on a 5‐cm × 5‐cm ground plane. This setup minimizes the reception of reflections from

Figure 1. Overview of the study site Weissfluhjoch (WFJ) above Davos (Switzerland) showing the locations of the
various sensors including GPS1 and GPS2, the manual snow depth observation at the stake, and the area of the three
snow profile lines for manual snow pits at. Internet and energy supply were provided at the sheltered hut. The elevation
contour lines are given in meters.
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below, which is especially relevant for the upper antenna. We tried to keep the surface area small to avoid
snow accumulation on top of the upper antenna GPS1. In fact, the upper antenna was snow‐free most of
the time as confirmed by webcam observations. After a snowfall, a few millimeters might have
accumulated on top of the GPS1 antenna, but the wind removed the snow quickly, so that we could
reasonably neglect potential snow accumulation on the upper antenna. In general, the study site
Weissfluhjoch is ideal for GPS signal reception in mountainous regions. The GPS satellite coverage is
very high due to almost unobscured sky visibility above 10° elevation in the southern directions and
slightly above approximately 15 to 20° elevation in all other directions (Steiner, Meindl, Fierz, &
Geiger, 2018). For this reason and because signals from very low elevation angles are quite weak and
prone to multipath effects, which means that the reception of a specific GPS signals is influenced by
multiple signal paths due to reflections on the Earth's surface, we applied a 15° elevation mask for all
azimuth directions. Consequently, we eliminated the GPS pseudorange and carrier phase
measurements from any satellite below this mask.

Theoretically, all GNSS signals, including signals from GPS, Galileo, Glonass, and Beidou, could be used
for this approach. However, to be able to apply a low‐cost sensor system with well‐known simple patch
antennas and standard positioning chips, we used the freely available GPS L1‐band signals at 1.57542
GHz. The wavelengths of the GPS signals are in comparison to the size of snow grains significantly smal-
ler with approximately 1 mm (Fierz et al., 2009). The effect of a potential interaction of snow microstruc-
ture and surface roughness with GPS signals was neglected in this study but will be subject of further
studies. Moreover, as we cannot discriminate internal snow layers, we assume the entire snowpack as
one single layer with bulk properties as shown schematically in Figure 2a. In addition, we neglect poten-
tial pseudorange multipath effects as we use carrier phase measurements for the SWE determination,
which are by orders of magnitude less influenced by multipath effects than pseudorange measurements.
For the derivation of signal strength attenuation, this neglection is also applicable as mentioned in Koch
et al. (2014). For the combined derivation of SWE, HS, and LWC, we used carrier phase and signal
strength information from each visible GPS satellite above the 15‐degree mask for each time step of

Figure 2. (a) Schematic Global Positioning System (GPS) setup for the derivation of snow cover properties including
the baseline between the ground and pole antenna. Exemplarily, the signal paths of one GPS satellite to the two
antennas are shown. The paths can be assumed to be parallel since the distance between both ground antennas is much
smaller than the distance to the satellite. (b) Locations of the GPS1‐ and GPS2 antennas at the test site Weissfluhjoch.
The photo was taken at a date with a snow height of approximately 2 m above GPS2.
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observation. The term signal strength was set equal to the recorded carrier‐to‐noise power density ratio
C/N0 within this study. The GPS data were tracked at a temporal resolution of 1 s, and we made use
of the signals from all available 32 GPS satellites, which passed over the test site for several hours each
sidereal day. If one of the 32 GPS satellites was temporarily flagged unhealthy, we excluded the data of
the respective GPS satellite in our calculations. After applying the elevation mask, it was possible to
use up to 10 satellites for processing in parallel for each time step.

3. Theory: Influences of Snow on GPS Signals
3.1. Dielectric Properties of Dry and Wet Snow

Each material has specific dielectric properties, which depend on the frequency of the incident electromag-
netic waves. The response of a dielectric material to an applied electromagnetic field is not instantaneous
and leads, if not in vacuum, to a phase difference and amplitude decline (Woodhouse, 2005). The dielectric
permittivity of a certain medium like snow is defined as the product of the vacuum permittivity ε0 and the
relative dielectric permittivity ε. The latter is medium‐specific and is considered complex

ε ¼ ε′ þ iε′′ (1)

The real part ε′ is related to the stored energy; the imaginary part ε′′ is related to the loss of energy within a
medium and is also called dielectric loss factor (Ulaby et al., 2014). GPS L1‐band signals are electromagnetic
waves, which are broadcast in the L‐band microwave domain at a carrier frequency of 1.57542 GHz with a
wavelength of approximately 19 cm. In the microwave range the interactions between the electromagnetic
waves and a certain material are expressed as dipolar processes describing the rotation and vibration of polar
molecules. As long as GPS signals travel through space and atmosphere, they are less affected compared to
the attenuation effects, which occur as soon as they come upon the Earth's surface or travel through media
like snow. Depending on the dielectric properties of snow, the GPS signals are affected by signal attenuation,
time delay, and reflection and refraction (Woodhouse, 2005).

Dry snow is a mixture of air and ice, whereas wet snow is a three‐phase mixture composed of air, ice,
and liquid water. Comparing the influences of dry and wet snow, the latter significantly affects the sig-
nals due to the presence of liquid water. Water has, compared to the other components, very prominent
dielectric properties. As the dielectric properties of dry and wet snow are composed of the dielectric
properties of air, ice, and water, it is obvious that the dielectric properties of wet snow are markedly
different of those of dry snow. The permittivity of dry and wet snow might be either estimated empiri-
cally (e.g., Denoth, 1989; Sihvola & Tiuri, 1986) or by three‐phase mixing models (e.g., Lundberg &
Thunehed, 2000; Roth et al., 1990). Most dielectric snow models are valid for a LWC up to 8% by
volume (Bradford et al., 2009), being also the maximum range, or even lower, which is usually observed
in an alpine seasonal snowpack (Heilig et al., 2015). In the microwave L‐band domain, the real part of
dry snow is approximately 1.7 (Schmid et al., 2014), which might, however, slightly vary depending on
the density of the snowpack (Tiuri et al., 1984). The imaginary part of dry snow can be neglected as the
imaginary parts of air and ice are both approximately 0. Regarding wet snow, the real part ranges
between 1.7 and 4.0, depending on the LWC (0‐8%) and the applied dielectric model (Koch et al.,
2014). In contrast to dry snow, the imaginary part of wet snow cannot be neglected and ranges between
0 and 0.3 for a LWC up to 8% (Tiuri et al., 1984). Following Schmid et al. (2015), we applied the dielec-
tric three‐phase mixing model after Roth et al. (1990) defining the real part of the complex permittivity

of snow ε′s as

ε
0
s ¼ 0:01 LWC

ffiffiffiffiffi
ε0w

q
þ ρs;d

ρi

ffiffiffiffi
ε0i

q
þ 1−

ρs;d
ρi

−0:01 LWC
ffiffiffiffi
ε0a

q 2

(2)

with the real parts of the permittivity of air ε′a, ice ε
′

i, and water ε
′

w as listed in Table S1 in the supporting infor-
mation, the density of ice ρi=917 kg/m

3 and an assumption for the dry snow density ρs,d=357 kg/m
3, which

is an estimate of the average maximum dry snow density at the study site Weissfluhjoch (Schmid et al.,
2015). The frequency‐dependent imaginary part of snow was calculated with the semiempirical equation
after Tiuri et al. (1984) by
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ε′′s ¼ f
109Hz

1:0×10−3 LWCþ 8:0×10−5 LWC2
� �

ε′′w (3)

with the imaginary part of water ε′′w as listed in Table S1 and the GPS L1‐band frequency f=1.57542 GHz.
LWC is given in percent per volume.

3.2. Signal Propagation in Snow

The dielectric properties of snow have a direct influence on GPS signal propagation, encompassing signal
speed, refraction, reflection, and attenuation. In particular, as soon as liquid water is present, the change
in signal propagation in snow is pronounced. The main effects are summarized in the following: for more
details on the calculation of GPS signal attenuation, reflection, and refraction as well as signal power losses
related to snow, we refer the reader to Koch et al. (2014) and Steiner, Meindl, and Geiger (2018).

The phase velocity of electromagnetic waves, being the speed of signals, can be derived after Maxwell's equa-
tions. For a low‐loss dielectric material such as snow, the phase velocity vs within the nonmagnetic material
snow can be simplified (Bradford et al., 2009) to

vs ¼ c0ffiffiffiffi
ε0s

p (4)

where c0 is the speed of light in vacuum. If the signals travel through another medium than vacuum or air,
the signal speed decreases, which is expressed as propagation time delay. Inserting Eq. (2) in Eq. (4), the
speed of signals in snow vs can be calculated. The speed of L‐band microwaves travelling through dry snow
is approximately 2.3 × 108 m/s after Schmid et al. (2014). Regarding wet snow, the propagation delay
increases markedly as the signal speed decreases depending on the LWC.

GPS signals arrive at the Earth's surface at oblique angles. At medium boundaries like the air‐snow interface,
GPS signals are partly reflected and refracted following Snell's law. The angle of incidence in air θa, which is
the elevation angle of a GPS satellite at a certain time step, and the corresponding angle of refraction in snow
θs, which depends on the dielectric properties of snow, are related to the refraction coefficients of air na and
snow ns and the signal speeds in air va≅ c0 and in snow vs by

na
ns

¼ sinθs
sinθa

¼ vs
va

(5)

The refraction index is defined as the square‐root of the relative dielectric permittivity, which depends on the
LWC in snow. The refractive angle of air is 1 and is approximately 1.3 for dry snow. Regarding wet snow, the
refractive index depends largely on LWC and reaches approximately 2 at 8% LWC. Depending on the refrac-
tive index, the geometrical path length ds in snow is related to a theoretical not refracted path length da given
in meters in air by

ds ¼ da
cosθs

(6)

The refraction angle and the path length change as well as the considered area of the investigated medium
change depending on the wetness of the medium. This was exemplarily shown for different soil moisture
values in Koch et al. (2016). As the angle of refraction decreases with increasing LWC, the geometrical path
length of the GPS signals in snow decreases as well. The incident, reflected, and transmitted signals follow
the Fresnel equations of reflection and transmission and the law of conservation of power (Woodhouse,
2005). Themean reflected power Pr consists of a real and an imaginary part of the complex circular reflection
coefficients with co‐ and cross‐polarized components (Steiner, Meindl, & Geiger, 2018). These components
are used to describe the linear horizontal and vertical reflection coefficients, rh and rv, which are related to
the complex permittivity of snow as well as the incident and refracted angles in snow. The detailed calcula-
tion of the reflection angles, coefficients, and the reflected power is described in Koch et al. (2014) and
Steiner, Meindl, and Geiger (2018). Hence, the reflected power Pr is given by
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Pr ¼ r2h þ r2v
2

(7)

By travelling through a medium like snow, the GPS signal power decreases, which is described as signal
attenuation. The power Pt, which is incidentally transmitted into snow, declines to the attenuated power
Pa after passing through the snowpack for a certain path length ds by following the exponential Beer‐
Lambert law (Ulaby et al., 2014)

Pa ¼ Pt exp −κdsð Þ (8)

The attenuation coefficient κ for the GPS L1‐band frequency f is defined as

κ ¼
ffiffiffiffiffiffiffiffiffiffi
μ0
ε′sε0

r
ε′′s ε02πf (9)

with μ0 being the vacuum permeability and ε0 the vacuum permittivity. Equation (9) is valid for ε′′/ε′ < 0.1,
which is the case for both, dry and wet snow (Ulaby et al., 2014; Woodhouse, 2005). The attenuation in dry
snow is almost negligible, as also the imaginary part of dry snow is negligible, whereas the attenuation in wet
snow increases with increasing LWC. The penetration depth is the reciprocal of the attenuation coefficient
and is defined as the depth at which the signal power decreases to 1/e (~37%) of its incident value (Ulaby
et al., 2014). For dry snow, the penetration depth reaches hundreds of meters but is reduced markedly for
wet snow to the (sub)meter level (Mätzler, 2002). It is still possible to track GPS signals below wet snow con-
tinuously. However, the likelihood for signal interruptions increases for large values of SWE combined with
high values of LWC.

4. Determination of Snow Cover Properties
4.1. Snow Water Equivalent

The derivation of SWE is based on themodel for differential GPS carrier phase measurements as described in
Henkel et al. (2018). It corresponds to the model used for real‐time kinematic (RTK) positioning with an
additional term for the snow‐induced time delay. As the GPS pseudorange measurements are too noisy
for SWE derivation, we only use GPS carrier phase measurements φ, which we took as an output of the recei-
ver's raw data protocol. To eliminate receiver and satellite clock offsets, phase biases, and to mitigate atmo-
spheric errors, the carrier phase measurements were combined in double differences (DDs) for the not co‐
located antenna pair {1, 2} of GPS1 and GPS2 (see Figure 2) and any satellite k and common reference satellite
l as

λ φkl
12 ¼ λ φk

1−φ
k
2

� �
− φl

1−φ
l
2

� �

¼ e!kl
b
!

12 þ ckl12 þ λNkl
12 þ

λ
2
ΔNkl

12 þ
c0
vs
mklSWEþ λ Δφkl

MP;12 þ ϵkl12

(10)

with the wavelength λ, the baseline vector b
!

12 between GPS1 and GPS2, which is multiplied by the satellite‐
satellite difference of the normalized line‐of‐sight vectors e!kl

, the synchronization correction ckl12, the integer
ambiguities Nkl

12 due to the periodicity of the carrier phases, the half‐cycle slip 1=2 ΔNkl
12, the snow‐related

term c0/vs m
kl SWE, including the speed of light in vacuum c0 and in snow vs, the differential mapping func-

tion mkl and SWE, the phase multipath Δφkl
MP;12, and the phase noise ϵkl12. Besides the snow‐related term, all

other variables are part of standard RTK positioning algorithms, described, for example, in Talbot (1993),
Teunissen (1995a, 1995b), Henkel and Cárdenas (2014), and Henkel et al. (2016).

The baseline vector b
!

12 was derived for snow‐free conditions using RTK positioning, which is, however,

using both GPS carrier phase measurements φkl
12 and GPS pseudorange measurements ρkl12 . The baseline

determination has to be very accurate, as, for example, an error of 2.5 cm would already cause an error in
SWE of 50 mm (Henkel et al., 2018). Consequently, the anchoring to the ground of the mast for the upper
antenna has to be stable to prevent tilting and sinking. Thus, an RTK fixed solution is definitely required.

Knowing b
!

12 from the snow‐free reference and considering the synchronization correction ckl12 , it is

10.1029/2018WR024431Water Resources Research

KOCH ET AL. 4472



possible to jointly estimate SWE and the carrier phase ambiguities (Henkel et al., 2018) with an integer least
squares estimator (Teunissen, 1995b). The errors of the phase multipath and the phase noise are unknown
but in combination typically less than 2 cm. The fixed carrier phase integer ambiguities and the baseline are
subtracted from the DD carrier phase measurements. The obtained terms are called carrier phase residuals.
They depend on the snow‐related term, the phase noise and multipath. Without snow cover, the residuals
would be close to zero, showing only the effects of phase multipath and the phase noise.

However, with snow cover on top of GPS2, the carrier phase residuals are mainly dependent on the respec-
tive GPS satellite elevation angle and increase in height with an increase in SWE. An example of DD carrier
phase residuals largely influenced by snow is presented in Henkel et al. (2018) and additionally shown in
Figure S1 in the supporting information. The raw DD carrier phase residuals follow an arc‐formed shape
in the presence of snow, but as they are affected by phase noise and multipath, the raw residuals show no
smooth line. We additionally fitted the residuals with fixed residual arcs derived from a least‐square estima-
tion of the raw residuals to eliminate these deviations. For details on the specific modeling of the fixing of
initial integer ambiguities, the initialization of the ambiguities of newly tracked satellites, the re‐adjustment
of ambiguities, the determination of fixed phase residuals, and calculated fitted fixed arcs, we refer to the
detailed description in Henkel et al. (2018).

Regarding the snow‐related term in Eq. (10), the speed of the GPS signals in snow and the mapping function
have to be known. The mapping function is defined as the ratio between the slant delay of each GPS signal
through the snowpack, and it depends on the elevation of the refracted signal recorded at the GPS receiver
below the snowpack. Therefore, the GPS satellite elevation angles have to be converted to refracted angles to
be conform with the geometrical path length in snow. For dry snow, vs,d and the refraction index ns,d, which
are both closely related to its dielectric properties, are assumed to be similar in comparison to the rather large
differences in wet snow (Schmid et al., 2014; Tiuri et al., 1984). We applied vs,d = 2.3 × 108 m/s after Schmid
et al. (2014) and assumed ns,d = 1.3 for dry snow. For wet snow, however, it is not possible to just rely on
carrier phase measurements. As shown in Koch et al. (2014), LWC can be derived by combining signal
strength information and HS. The refractive index and the speed of the GPS signals for wet snow largely
depend on LWC, which is related to the real and imaginary part of the complex permittivity of snow as
shown in Eq. (2) and (3). Combining Eq. 2 with Eq. (4), the signal speed in wet snow is expressed as

vs ¼ c0

0:01 LWC
ffiffiffiffiffi
ε′w

p þ ρs;d
ρi

ffiffiffiffi
ε′i

q
þ 1−

ρs;d
ρi
−0:01 LWC

� � ffiffiffiffi
ε′a

p (11)

The refractive index of wet snow ns,w is retrievable by using Eq. (5) to correctly calculate the geometrical
path length in snow and is a necessary input for the mapping function mkl.

4.2. Liquid Water Content in Snow

During the snow‐covered period, the snow‐influenced normalized GPS signal strength Pm,s was continu-
ously measured at GPS2. The determination of a normalized signal strength was carried out after Koch
et al. (2014) and Schmid et al. (2015). The recorded signal strengths depend mainly on the elevation angle
of each GPS satellite passing by, as presented, for example, in Lighari et al. (2017). Considering low‐cost
GPS antennas, the recorded signal strengths depend also on the azimuth angle, as the antenna sensitivity
pattern is likely to be azimuth angle‐dependent. Moreover, the peak field strength of each GPS satellite
might vary slightly due to the satellite series, aging, or other characteristics (Hofmann‐Wellenhof et al.,
2007). The snow‐influenced signal strength values Pm,s were recorded for each satellite at a specific elevation
and azimuth angle for each time step. For the LWC derivation, these values were then related to a snow‐free
reference signal strength Pm,ref, which was also recorded at GPS2. The reference values were stored in a
three‐dimensional matrix suggested in Koch et al., 2014 with 15 elevation classes in 5‐degree steps between
15 and 90°, and 16 azimuth classes in 22.5‐degree classes for all azimuth directions for each of the 32
GPS satellites.

Following the GPS signal strength loss model of Koch et al. (2014), the known signal strengths of Pm,s and
Pm,ref can be related to the transmitted Pt and the attenuated signal strength Pa or the reflected Pr and atte-
nuated signal strength Pa, by
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Pm;s ¼ Pt−Pa ¼ Pm;ref−Pr−Pa (12)

Regarding dry snow, the signal strength losses are small. As shown in section 3.2 the attenuation is almost
negligible for dry snow and the losses are mainly attributed to reflection. Therefore, the signal strengths
recorded beneath dry snow stays more or less constant, even if the amount of snow changes. For wet snow,
however, the signal strength losses increase significantly with signal attenuation. As the complex permittiv-
ity of snow is related to Pt, Pa and Pr, they can be described with the dielectric models (Eq. (2) and (3)).
Although the complex permittivity of wet snow is unknown, LWC can finally be obtained with a root‐finding
function considering all equations described in section 3 for attenuation, reflection, and refraction, provided
HS is known. For further details we refer to Koch et al. (2014). Figure S2a in the supporting information
demonstrates the exponential impact of LWC on the signal strength applying Eq. (12). However, information
on HS is still missing, which is needed to describe the bulk LWC as a volumetric measure.

4.3. Snow Height

In general, HS and SWE are related by the density ρs of snow by

HS ¼ SWE
ρs

(13)

However, it is not straightforward to correctly estimate ρs for the conversion of SWE to HS or vice versa.
Jonas et al. (2009), McCreight et al. (2014), and Sturm et al. (2010) presented estimation approaches for bulk
snow density based on seasonality, snow depth, site elevation, and location. Bormann et al. (2013) described
the dominant climatological drivers for snow densification rates. Physically based snowpack models often
apply even more complex parametrizations including several variables such as air temperature, relative
humidity, and wind speed to derive the initial snow density. Subsequently, densification depends on settling
and snowmetamorphism (e.g., Lehning et al., 2002; Vionnet et al., 2012). For this study, however, we restrict
ourselves to GPS data and site‐specific information from former studies (e.g., Heilig et al., 2015; Mitterer
et al., 2011; Schmid et al., 2014) to be independent of other measurements such as air temperature. By doing
so, we are aware that some physical processes affecting densification are not adequately captured, which
may lead to errors in our HS estimates. These deviations might occur in particular during rain‐on‐snow
events or periods of warm weather, especially at lower elevations, which we will investigate in more detail
in the future. The parameterization of snow densification at high‐alpine sites is assumed to be more straight-
forward. Moreover, regarding SWE and snow density over a given area, the former is likely to considerably
vary in space, whereas the latter is less affected by spatial variability (Jonas et al., 2009). This means that
errors in snow density have in general a smaller effect on the calculation of HS than errors in SWE.

For this approach, the calculation of HS includes separate assumptions for dry‐ and wet‐snow conditions. In
case of dry‐snow, HS is calculated based on a time‐dependent snow densification approach considering
changes in SWE over all former time steps as shown in section 5.3.2, whereas in case of wet‐snow, HS is cal-
culated iteratively from SWE and LWC including also information of the previous time step as described in
section 5.3.3. In the following, we shortly describe how HS is calculated under dry‐ as well as wet‐
snow conditions.

Regarding a wet snowpack, snow layers become increasingly less distinct with ongoing wetting than they
were under dry‐snow conditions as wet snow metamorphism tends to make the snowpack more uniform.
Therefore, we applied a bulk density approach, which was already applied by Schmid et al. (2015). We cal-
culated HS from SWE and the wet snow density ρs,w

HS ¼ SWE
ρs;w

¼ SWE
ρs;d;max þ a LWC ρw

(14)

where ρs,w is approximated by ρs,d,max=357 kg/m
3, the density of water ρw=1,000 kg/m

3, and LWC and the
factor a=3.08. The values used for a and ρs,d,max were derived in former studies conducted at the study site
Weissfluhjoch; the factor a had been introduced to counteract the underestimation of snow density resulting
from the assumption that ρs,d,max stays constant throughout the melt season (Schmid et al., 2014). To elim-
inate errors at times with large values of LWC, the maximum wet‐snow density ρs,w was limited to 600
kg/m3.
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Under dry snow conditions, we consider a time‐dependent densification of the snowpack. A dry snowpack
typically consists of multiple snow layers with potentially different snow densities due to different age since
deposition. We assume that the density of a bulk dry snowpack follows in general a nonlinear evolution.
López‐Moreno et al. (2009) suggested an exponential behavior of bulk snowpack densification, which we fol-
low in principle, but for each layer separately. In our dry snow densification model, we assume for each con-
sidered time window j (e.g., one day) that newly added SWE, represented as ΔSWEj, is added on top of the
snowpack. For time windows with no precipitation, ΔSWEj is set to zero. As we start our measurements for
each winter season in autumn during the snow‐free period, we assume that SWE of the time step before the
first measurement, which corresponds to SWE(0), is 0 mm. Per definition, ΔSWEj is the difference between
the SWE derived on time window j and the SWE derived on the previous time window (j − 1), i.e.

ΔSWEj ¼ SWE jð Þ−SWE j−1ð Þ (15)

As the densification for each ΔSWEj is considered separately, the density of a certain time step ρs,j(n), which
was added in time window j, and regarded at time step n is calculated by

ρs;j nð Þ ¼ ρs;new þ ρs;d;max−ρs;new
� �

1−e− n−jð Þ=τ
� �

(16)

The density of a newly addedΔSWE is set to be ρs,new = 100 kg/m3. This value can be assumed as the average
density of freshly fallen dry snow in high‐alpine regions, which is also used in several other model
approaches (e.g., Lehning et al., 2002; López‐Moreno et al., 2009; Schmid et al., 2014). In the course of time,
the dry snow density exponentially approaches ρs,d,max = 357 kg/m3, being the average maximum dry snow
density at the high‐alpine study site Weissfluhjoch (Schmid et al., 2015). After n = 30 days, this value is
reached with a deviation of 1% with τ = 6, in case the time window is one day, and which was derived from
HS and SWE recordings at the study site over several years. Figure S2b in the supporting information gives
an example for the snow densification within an overall time span of 30 days. The density calculation is only
defined for n ≥ j. The thickness Dj(n) corresponding to ΔSWEj of time window j on time step n is

Dj nð Þ ¼
SWEj

ρs;j nð Þ ;n≥ j

0 ; n< j:

8<
: (17)

The total thickness of the snowpack corresponds to HS and is the summed up for time step n

HS nð Þ ¼ ∑n
j¼1Dj nð Þ ¼ ∑n

j¼1
SWE jð Þ−SWE j−1ð Þ

ρs;new þ ρs;d;max−ρs;new
� �

1−e− n−jð Þ=τð Þ (18)

5. Processing Steps for Dry and Wet Snow
5.1. Processing Structure

The GPS signal processing is split into the determination of a snow‐free reference and the calculation of
snow cover properties for snow‐covered periods (see Figure 3a).

5.2. Processing of Snow‐Free Reference

We derived the baseline vector b
!

12 with RTK positioning of GPS pseudorange and carrier phase measure-
ments, and the signal strength reference Pm,ref during snow‐free and clear sky conditions in autumn. As
the coverage period of all 32 GPS satellite passing over the study site takes one sidereal day (~23 hr 56
min), we used reference data sets of full days with a raw data resolution of 1 s. To eliminate potential random
atmospheric effects, we averaged six reference data sets with two corresponding data sets stemming from
autumn dates in 2015, 2016, and 2017, before the three snow‐covered seasons started. The differences in
the baseline and the signal strength reference are negligible for the selected reference days. For the GPS

setup at Weissfluhjoch, the baseline vector b
!

12 pointing from GPS1 to GPS2, given in the ENU (East‐
North‐Up) coordinate frame was
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b
!

12 ¼
−1:781 m

−3:961 m

−4:992 m

0
B@

1
CA

The processed distance between GPS1 and GPS2 was determined to be 6.617 mwith mm‐accuracy. The base-
line did not change during the entire study period. For the snow‐free signal strength reference Pm,ref, we
derived elevation‐, azimuth‐ and GPS satellite‐dependent classes during the entire reference time period.
In addition, we calculated the average normalized signal strength over all classes for the snow‐free reference
period, which was 47.6 dB‐Hz at GPS2.

5.3. Processing Chains for Dry and Wet Snow

The raw GPS data input for the processing of time periods influenced by snow encompassed GPS carrier
phase measurements and signal strength information and was 1 s. The raw data were processed for data sets
of a time window of 24 hr to derive daily averages of SWE, HS, and LWC. The output included besides SWE
and HS for dry snow also information on the snow density, and besides SWE, HS, and LWC for wet snow,
additionally the density of wet snow and the speed of the signals in wet snow.

5.4. Dry/Wet Snow Decision

As a first step, the snow was classified based on signal strength information and Pm,ref as either wet or dry
(Figure 3a). For each time window, the class‐dependent normalized signal strength Pm,s was calculated as

Figure 3. (a) Overview of the data input and processing structure of a snow‐free reference determination and the
determination of the snow cover properties for dry and wet snow. The numerical suffix 1 corresponds to data recorded
at GPS1, and 2 to GPS2. (b) Overview of retrieval steps for the determination of snow water equivalent (SWE) and snow
height (HS) for dry‐snow conditions, and (c) SWE, HS, and liquid water content (LWC) for wet‐snow conditions. Legend
for c is shown in b.
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described in section 4.2. Regarding all dry snow periods, the average normalized signal strength was 47.0 dB‐
Hz with a standard deviation of 0.6 dB‐Hz. In average, it indicates a signal strength loss of approximately 0.6
dB‐Hz compared to the snow‐free reference. This decay confirms the findings of Koch et al. (2014) for pre-
vious years. However, as soon as the snow turns wet, the signal strength decreases exponentially, depending
on the amount of snow and the LWC. Allowing a certain buffer, we set the dry/wet snow decision threshold
to a signal strength loss of 1.2 dB‐Hz. Related to the average signal strength for the snow‐free reference per-
iods, the threshold for the dry/wet snow decision was therefore at 46.4 dB‐Hz. For signal strength values
above this threshold, the snow was defined as dry and below this threshold as wet. As C/N0 is a highly sen-
sitive indicator, it is sufficient to rely on a few minutes of signal strength data to decide whether the entire
data set should be further processed as ‘dry’ or ‘wet’ snow. However, as we consider entire 24‐hr data sets,
it is potentially possible that the wetting of snow occurs later in the data set. Therefore, we preprocessed
the raw data for each 24‐hr data set to derive normalized signal strength values of each 24‐hr time window.
Compared to the signal strength reference and applying the signal strength threshold, we defined for each
24‐hr data set, if in the following processing step the snow should be considered as either dry or wet (see
Figures 3b and 3c).

5.5. Processing of Dry Snow

The processing of dry snow is solely based on carrier phases as input and the assumption that the speed of
signals in dry snow vs,d is constant. The two processing steps to derive SWE and HS are straightforward
applying the carrier phase model for the SWE derivation (Eq. (10)) and the dry snow densificationmodel sol-
ving for HS (Eq. (18)). The HS function relies on the evolution of each layer of the snowpack, using all pre-
vious SWE values from each past day as an input. In case HS is calculated incorrectly on a given day, it has no
impact on the following day as it is not an input variable. Figure 3b shows the two processing steps we
applied for dry snow. SWE, HS and the bulk snow density ρs,d were stored as data outputs for each
time window.

5.6. Processing of Wet Snow

For the wet snow retrieval, both signal strength and carrier phase measurements are needed as data inputs.
The processing chain to derive SWE, HS, and LWC is more complex than for dry snow including two sequen-
tial iterative steps (see Figure 3c). The first part is similar to the processing in case of dry snow by applying
the carrier phase model for the SWE derivation (Eq. (10)). As shown, the speed of signals in wet snow is not
constant and depends on LWC, which was however not yet retrieved for the current time window.
Therefore, we use the signal speed derived in the previous time step for the current time window as a first
estimate. Even if it is not the correct signal speed for the current day, we can reasonably neglect this for
the first estimate. The same assumption was made for the snow density to derive a first estimate of HS apply-
ing Eq. (13). In case of the first occurrence of wet snow after a dry snow period, the calculated dry snow den-
sity of the previous time period was used instead of ρs,w. With this first HS estimate and the GPS signal
strength data of the current day, we derive LWC by using Eq. (12). As the signal strength is the dominant
input variable for the LWC derivation, we can reasonably neglect the effect that the first HS estimate might
be slightly biased in the direction of the previous day. As a next step, we recalculate HS applying Eq. (14) and
in parallel also the signal speed in wet snow for the current day with Eq. (11). With this update, SWE, LWC,
HS, and ρs,w, vs,w can be retrieved in a further processing round for the current time window. As further
iterative rounds would only show a negligible change (less than 1%) in the derived snow cover properties,
we restrict ourselves to only two iterations.

5.7. Transition Between Dry and Wet Snow

A high‐alpine seasonal snowpack usually becomes wet at the beginning of spring due to increasing air tem-
perature and solar radiation. Within our processing chain, this transition is covered. For the first time win-
dow representing wet snow, we start our first SWE and HS estimate with the signal speed of dry snow, which
is then updated in the sequential iterative approach in the second processing round as shown above for the
wet snow processing chain. Of course, a transition from wet to dry snow can occasionally occur. However,
once the snowpack is completely wet, in a thick snowpack the water will rarely completely refreeze again
and will also not completely drain as the so‐called irreducible water content remains (Mitterer et al.,
2011). For a shallow snowpack, however, the liquid water might refreeze again, leading to a decrease in
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signal strength attenuation within the bulk snowpack, which is likely to occur at the beginning of a winter
season in high alpine regions, but also during the entire season for sites at lower elevations.

6. Results and Discussion

The bulk snow cover properties SWE, HS, and LWC were derived continuously throughout the entire three
winter seasons 2015‐2016, 2016‐2017, and 2017‐2018 by applying the above proposed approach relying on
GPS signal attenuation and time delay. In this section, we present and discuss the comparison of the GPS‐
derived snow cover properties with validation data measured in parallel at the study site Weissfluhjoch.
Moreover, the precision of the processed GPS signals, which are the main input for the calculations of the
snow cover properties, are evaluated. Finally, the advantages, limitations, and further enhancements are
considered and discussed.

6.1. Comparison of GPS‐Derived Seasonal Snowpack Evolution and Validation Data

Figure 4 presents the seasonal evolution of SWE, HS, and LWC derived by GPS and the continuous as well as
manual snow pit validation data for the three winter seasons separately. The validation data for SWE encom-
passes snow pillow and snow scale data as well as two manual data sets (Manual 1 and 2) related to snow
profile measurements as described in section 2.1. The validation data for HS include recordings from two
ultrasonic sensors (Ultrasonic 1 and 2) as well as daily snow stake observation (Manual 3) and weekly to
biweekly manual snow profile recordings (Manual 4). In addition, information on air and snow surface tem-
perature, meltwater discharge recorded at a snow lysimeter and normalized GPS C/N0 values are shown.

The snowpack evolution followed in each of the three winter seasons a typical high‐alpine pattern of a snow‐
covered season from autumn to the beginning of summer. The onset of the continuous snow cover was
between mid‐October and early November. The melt‐out date varied between mid‐June and early July.
According to Figure 4, the season with the deepest snowpack was 2017‐2018, with maximum SWE values
above 1,000 mm during several days, which were recorded at the snow pillow, the snow scale, and derived
from the GPS signal. The SWEmaximum in 2015‐2016 and 2016‐2017 was 850 and 750 mm, respectively. In
addition to the high SWE values in 2018, of course, also, HS was higher compared the other two seasons with
its maximum slightly above 3 m. The maximum HS values reached approximately 2 m in the other
two seasons.

Each of the three winter seasons was divided into three periods, namely, the ‘beginning of the snow‐covered
season’ (cyan color shading), the ‘dry‐snow accumulation period’ (without color shading), and the ‘wet‐snow
melting period’ (blue color shading). In the following, the main findings regarding the seasonal evolution of
the GPS‐derived snow cover properties as well as the validation data are summarized. A more detailed
description is given in Text S1 in the supporting information. In Henkel et al. (2018), we already investigated
the dry‐snow accumulation period of the winter season 2015‐2016.

In general, the GPS‐derived snow cover properties followed the overall seasonal evolution very well. For
SWE, the agreement between the different measurement methods was better during the dry‐snow accumu-
lation period than during the periods with wet snow. In all three seasons, occasional large deviations were
obvious for the snow pillow and snow‐scale measurements, which were most likely affected by bridging
effects within the snowpack (Johnson &Marks, 2004). These measurement errors were especially prominent
for both weighing devices at the end of April 2018 and for the snow scale also in the other two seasons. In
addition, nonnatural heat‐flux or drainage might lead to overestimations or underestimations (Johnson &
Schaefer, 2002; Smith et al., 2017), which might be an issue especially at the beginning of the snow‐covered
season. In those times, snow pillow and snow scale were indeed not suited for validation. The GPS‐derived
SWE values seem then much more reliable and better fitted the manual SWE observations. In general, the
manual measurements are considered to be reliable. Only the SWE Manual 1 and the HS Manuel 4 values
were too high in spring 2018. The reason for this discrepancy was the uneven snow distribution within
the study plot; HS was larger at the location where the snow profiles were taken at this time.

The seasonal evolution of HS was very similar for all measurement methods for all three seasons and during
all periods. The applied snow densification approach allowed determining an increase in HS due to a snow-
fall with good accuracy. During the wet‐snow melting period, the GPS‐derived HS evolution was as well in
good agreement with all other measurements; however, snowfall events were captured less precisely. During
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the entire dry‐snow accumulation period, no melt‐water outflow was recorded at the lysimeter. At the same
time, the air and snow surface temperature were mainly below 0 °C. Regarding the evolution of melt‐water
in the melting period and on days with wet snow at the beginning of the snow‐covered season, the
occurrence and evolution of LWC were in line with the temperature evolution. However, as LWC and
meltwater outflow describe different processes, they were not fully correlated, as, for example, the
snowpack might contain liquid water without meltwater outflow yet. This was, for example, the case in
spring 2018 when the meltwater outflow started approximately half a month later than the first
occurrence of liquid water. As LWC is a volumetric measure and as HS is still low at the beginning of the
snow‐covered period, LWC easily reached high values of up to 8%. Moreover, in this period, the shallow
snowpack was also likely to completely refreeze again. Within the wet‐snow melting period, however,
LWC changes are less quick and a certain irreducible water content remains at any time. In the melting
period, LWC varied mainly between 1 and 4%; high values of LWC of up to 8% were only reached towards
the melt‐out date.

6.2. Statistical Comparison of All Measurements for Dry‐ and Wet‐Snow Conditions

Figures 5a–5c show the results of the regression analysis comparing GPS‐derived SWE and SWEmeasured at
the snow pillow and the snow scale for the three winter seasons, separately for dry and wet snow. Each type
of measurement was compared to the other ones. Besides the linear regression equation, also the root‐mean‐
square error (RMSE) and the coefficient of determination (R2) are given. The dry‐snow values cover the

Figure 4. Global Positioning System (GPS)‐derived snow water equivalent (SWE), snow height (HS), and liquid
water content (LWC) and GPS C/N0 in comparison to validation data at the Weissfluhjoch for the three winter
seasons: (a) 2015‐2016, (b) 2016‐2017, and (c) 2017‐2018. The cyan areas represent the periods at the beginning of the
winter season with alternating dry‐ and wet‐snow conditions, the white areas represent the dry‐snow accumulation
period, and the blue areas the wet‐snow ablation period. The grey areas mark the snow‐free time after ablation.
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entire dry‐snow accumulation period as well as dry snow days during the early season. The wet‐snow values
represent the entire wet‐snow melting period as well as wet‐snow days during the early season.

Overall, the agreement between GPS‐derived, snow pillow and snow scale SWE values was very good.
Comparing the results of the SWE regression analysis for dry‐ andwet‐snow periods, the SWE values showed
better agreement during dry‐snow periods than during wet‐snow periods for all methods. Deviations were
particularly prominent in case of wet‐snow conditions with SWE values above approximately 500 mm, when
snow pillow, snow scale, and GPS differedmore widely. The best fit was obtained for the comparison of GPS‐
derived values with snow pillow measurements both for dry‐ and wet‐snow conditions (Figure 5a).
Regarding dry snow, the RMSE and the R2 were 30 mm and 0.99, respectively, for wet snow 72 mm and
0.93, respectively. The agreement of R2 was about as good as, but slightly less for the RMSE, in the case of
comparing snow pillow and snow scale (Figure 5c) with an RMSE of 34 mm for dry snow and 81 mm for
wet snow. The regression results for the comparison of GPS‐derived SWE and snow scale measurements
were still good, but weaker than the other two comparisons with an RMSE of 45 mm for dry snow and
103 mm for wet snow (Figure 5b), which, however, mainly resulted from errors in the snow scale recordings
due to bridging effects.

Figures 5d‐5f show the results of the regression analysis comparing GPS‐derived HS and HS measured with
the Ultrasonic 1 and 2 sensors, each versus the other, for the three entire winter seasons. Results are again
given separately for dry‐ and wet‐snow conditions. As already mentioned, the HS values measured at
Ultrasonic 1 were not available during the season 2016‐2017. Comparing Figures 5a‐5c and 5d‐5f, the scatter
was smaller for HS than for SWE, which might be due to the better accordance of the HS validation data in
general. Regarding the results of the regression analyses in Figures 5d‐5f, it is obvious that the correlation
was highest for the two ultrasonic sensors (Figure 5f). Comparing the GPS‐derived HS values with the mea-
surements yielded a RMSE in the range of 0.10 to 0.14 m, similar to the range obtained for the ultrasonic
measurements (0.10 to 0.13 m) and R2 approached almost 1.0 in all cases. Moreover, for all comparisons
the degree of agreement did not depend on the type of snow conditions: the fits were as good for dry‐ as
for wet‐snow conditions.

Figure 5. Global Positioning System (GPS)‐derived versus measured validation data for snow water equivalent (SWE)
and snow height (HS). Linear regression analysis, root‐mean‐square error (RMSE), and R2 are given separately for
dry‐ and wet‐snow periods during all three seasons: a, (SWE): GPS versus snow pillow, (b) SWE: GPS versus snow scale,
and (c) SWE: snow pillow versus snow scale. (d) HS: GPS versus US1, (e) GPS versus US2, and (f) US1 versus US2.
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No direct LWCmeasurements were available for comparison during the three investigated winter seasons to
validate the GPS‐derived LWC values. However, for the winter seasons 2012‐2013 and 2013‐2014, Schmid
et al. (2015) had compared continuous GPS‐derived LWC values with LWC values derived by an upward‐
looking ground‐penetrating radar (upGPR). Comparing GPS‐ and upGPR‐derived LWC values for the range
of 0 and 8% per volume, they reported an RMSE of 0.4 to 0.7 percent points indicating good agreement. We
assume that the RMSE for the three winter seasons studied here were in a similar range since overall the
characteristics of the winters did not differ much.

A more detailed analysis, including comparisons of all continuous and manual measurements, can be
found in Text S2 and Tables S2, S3, and S4. In summary, the R2 between the lysimeter meltwater outflow
and the GPS‐derived LWC values was 0.79 regarding all three seasons during the melting period in
spring; R2 was slightly lower (0.67) when also the wet snow periods in autumn were included. If all
SWE validation data are compared to the GPS‐derived results for all three winter seasons, the mean
RMSE and R2 were 41 mm and 0.99, respectively, for dry snow and 73 mm and 0.93, respectively, for
wet snow, which is within the range if all SWE measurement methods are compared with each other.
Regarding HS, RMSE and R2 were 0.13 m and 0.98, respectively, for dry snow, and 0.14 m and 0.95,
respectively, for wet snow.

6.3. Accuracy Analysis of GPS Signals

The GPS signals are the backbone of the snow cover property derivation. However, depending on the snow
conditions, the signal quality and availability vary. Table 1 presents accuracy estimates of parameters for sig-
nal processing to compare no‐snow, dry‐snow, and wet‐snow conditions; for wet‐snow conditions different
LWC values are considered. The summary statistics presented in Table 1 refer to a time window of 24 hr with
a temporal resolution of the raw data of 1 s. Averages for the below given SWE and LWC classes include all
days, which fall into a specific SWE or LWC class. For SWE, we selected five classes centered around 0, 250,
500, 750, and 1,000 mm each with a class width of ±50 mm, if snow was present, and for LWC four classes
centered around 0, 2, 4, and 6% with a class width of ±0.5%, when liquid water was present. These classes
cover a wide range of possible snow conditions. Only classes, which were covered in this study, are shown.
For example, the classes of 4% LWC and 1,000 mm did not occur during the study period (Figure 4).
Moreover, not all class were well populated, again reflecting the natural conditions. Nevertheless, Table 1
provides an overview on the signal accuracy estimations for typical conditions.

The table includes information on the maximum number of GPS satellites, which were simultaneously in
view for the processing and information on the mean normalized C/N0 values. In case of no snow, the
maximum number of satellites was 10 for GPS2. The satellite availability was slightly reduced with an

Table 1
Accuracy of GPS signal processing

Snow condition SWE classes (mm) nmax μp (dB‐Hz) RMSEr (m)

No snow 0 10 47.72 0.009
Dry snow 250 (200‐300) 9 46.95 0.009

500 (450‐550) 9 46.57 0.015
750 (700‐800) 8 47.59 0.024

1,000 (950‐1,050) 7 47.45 0.033
Wet snow, LWC: 2% (1.5‐2.5%) 250 (200‐300) 9 45.14 0.021

500 (450‐550) 8 43.35 0.029
750 (700‐800) 8 41.22 0.032

1,000 (950‐1,050) 7 41.53 0.052
Wet snow, LWC: 4% (3.5‐4.5%) 250 (200‐300) 9 43.48 0.026

500 (450‐550) 8 40.56 0.037
750 (700‐800) 7 37.83 0.042

Wet snow, LWC: 6% (5.5‐6.5%) 250 (200‐300) 6 42.41 0.027

Note. Average estimates for different SWE and LWC classes of the maximum possible number of satellites nmax above the elevation mask of 15°, which were
simultaneously in view for processing, the mean normalized C/N0 values, μp and the RMSEr comparing the DD carrier phase residuals rwith fixed residual arcs.
nmax and μp refer to the data recorded at GPS2.
Abbreviations: DD, double difference; GPS, Global Positioning System; LWC, liquid water content; RMSE, root‐mean‐square error; SWE, snowwater equivalent.
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increase of SWE and LWC, which might be related to increasingly long pathways through the snowpack
for signals with shallow angles. The signal strength was also highest during snow‐free conditions and was
slightly reduced during dry‐snow conditions, but showing no correlation with the amount of snow. The
class values lay in the range of the mean and standard deviation presented in section 5. The signal
strength reduction from no snow to dry snow might mainly be caused by surface signal reflection
(Koch et al., 2014; Steiner, Meindl, & Geiger, 2018) at the snow‐air interface, which does not depend
on the amount of snow. This interpretation is confirmed by the almost horizontal line of the normalized
C/N0, shown in Figure 4 in case of dry snow. However, as soon as the snow turns wet, the signal
decreases more prominently, as can be seen for the classes of 1,000 and 750 mm with 2 and 4% LWC.
This effect is mainly due to signal attenuation in wet snow (Koch et al., 2014). The values presented in
the last column of Table 1 result from an RMSE analysis between DD carrier phase residuals and the
fitted arcs as described in Henkel et al. (2018), which are also shown in S1 of the supporting information.
Accuracy information on the carrier phase residuals is mainly representative for the SWE calculations.
The RMSEr values indicate that the agreement between the residuals and the arcs decreases with an
increase in SWE and LWC. SWE and LWC seem to contribute approximately to the same degree to an
increase in RMSEr with values of 0.009 m for no snow and up to 0.052 m for 1,000 mm and 2% LWC.
The decrease in accuracy is mainly caused by an increase in short‐term phase multipath and phase noise.
Nevertheless, it was still possible to derive all snow cover properties with sufficient accuracy as the long
processing period of 24 hr allowed discarding potentially erroneous values. As this approach combines
signal attenuation and time delay, the overall accuracy of all three GPS‐derived snow cover parameters
depends finally on both the normalized signal strength and the accuracy of the carrier phase residuals.

6.4. Advantages, Potential Limitations, and Further Enhancements

The proposed GPS snowmonitoring approach has the prime advantage that three key bulk snow cover prop-
erties can simultaneously by derived with one sensor system only. This enables measuring SWE, HS, and
LWC at the same location, which is usually not possible when applying different sensors for the different
snow cover properties. Moreover, these low‐cost GPS sensors are easy to install with a mast system and need
rather little space regarding the small patch antennas with one installed below and a second one above the
snow cover. Other sensors such as weighing sensors, radar systems, or snow lysimeters are up to 10 m2 large,
requiring more space on the ground including solid concrete foundations or caves in the ground, which
make their installation difficult, man‐power intense and expensive. As shown, the SWE pillow or scale mea-
surements yield partly not consistent results and are burdened with problems such as bridging and errors
due to nonnatural heat‐fluxes, percolations, and drainages into the ground (Johnson & Marks, 2004;
Johnson & Schaefer, 2002; Smith et al., 2017). Ongoing improvements to reduce the influence of edge stress
concentrations at the weighing cells might lessen some of these problems in the future (Johnson et al., 2015).
By using small low‐cost GPS antennas, which can be directly placed on the ground of the area of investiga-
tion, the natural ground heat‐flux is insignificantly affected. The presented GPS approach is nondestructive
and can be applied continuously as it only relies on microwave electromagnetic waves travelling through the
snowpack. This is especially an advantage compared to manual snow pit measurements as the latter are
destructive, labor‐intense, potentially subjective, and only provide a snapshot in time. With this GPS two‐
antenna approach, we consider the complex permittivity of the bulk snowpack. By using a multiantenna
setup within the snowpack at different height levels, we may also detect permittivity changes within
the snowpack.

The presented approach allows treating dry‐ and wet‐snow conditions separately to adequately derive all
snow cover properties by combining GPS signal time delay and GPS signal attenuation. This was so far
not possible with previously presented GPS signal attenuation or GPS carrier phase‐based methods. As
demonstrated, it is possible to derive SWE, HS, and LWC even for a deep and wet snowpack. The maximum
SWE, which was reached during our study period, was above 1,000 mmwith up to 2% of LWC in April 2018.
Even with a LWC of 4% and still rather high SWE values of about 800 mm later in spring 2018, all snow cover
properties were derived successfully. We suppose that with our approach it is possible to cope with even lar-
ger SWE amounts for dry‐ and wet‐snow conditions as the signals were still received in fair quality in late
spring 2018. However, at one point the GPS signal processing might also become increasingly difficult if sig-
nal attenuation further increases. With a certain amount of snow and LWC, the signals might be attenuated
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too strongly, causing too many interruptions in GPS signal tracking regarding the carrier phase measure-
ments to correctly process the snow cover properties. As for dry snow the signal penetration depth within
the L‐band domain is orders of magnitude higher than for wet snow (Mätzler, 2002), further studies will
focus on potential limitations for greater amounts of wet snow.

This approach can in general be used at any place on Earth, as the signals of all GNSS like GPS are freely
available and ensure a global applicability even in remote and difficult to access regions, due to their orbital
satellite constellation. However, deep valleys and steep slopes, especially when they are downhill oriented to
the north on the northern hemisphere due to the orbital constellation, as well as coverages by objects such as
trees and buildings in the direct surrounding are most probably limiting factors. For the estimation of the
snow cover properties, carrier phase information of at least four satellites has to be received at both anten-
nas. Regarding signal strength information, only one satellite would be sufficient, however, as this approach
is a combined approach of signal strength and carrier phase information, the latter defines the minimum
amount of four satellites as it is for standard positioning. Including further GNSS systems like Galileo,
Glonass, and Beidou, the satellite coverage would increase, which would also improve the possibility to mea-
sure in difficult locations. A first step toward integration of Galileo was presented in Lamm et al. (2018) and
will be further investigated in follow‐up studies; for example, we intend to use this approach also for
nonhorizontal terrain.

In this study, we present data at daily resolution, which is sufficient for many hydrological applications such
as hydropower forecasts, and allows following the seasonal evolution. Of course, it would be possible to
increase the temporal resolution, as presented with filtering options for SWE under dry‐snow conditions
by Henkel et al., 2018. Koch et al., 2014 provided subdaily LWC calculations showing subdaily melt‐freeze
cycles. For a stable derivation of carrier phase residuals and to compensate temporally specific satellite con-
stellations, a period of at least 3 hr seems necessary. Applying, for example, moving window techniques as
well as including other GNSS satellites besides GPS would definitely help to increase the temporal resolu-
tion, which is also subject of further investigations.

The presented approach and many of the previous studies have been performed at the high‐alpine
Weissfluhjoch study site. Some of the parameters used in the processing chain are site‐specific. We suppose
that our in situ measurements should also work at other locations, especially for sites with similar elevation
and snow climate, but further investigations in other regions and at lower elevations are needed to corrobo-
rate the validity of the applied parameters. This is especially the case for the assumptions on the time‐
dependent densification to derive HS. To avoid potentially site‐specific parameters, further developments
could include a combination of deriving SWE and LWC with the approach presented and retrieving HS
by GNSS reflectometry approaches (e.g., Larson et al., 2009). Moreover, at lower elevation sites rain‐on‐snow
events with quickly varying dry‐ and wet‐snow conditions may present a particular challenge, as they may
cause rapid subdaily changes in snow density and LWC.

In fact, the presented approach was already successfully tested within the European Space Agency (ESA)
business applications demo project SnowSense (2015‐2018) at lower elevation sites, for example, at the
Forêt Montmorency study site (673 m above sea level) in Quebec, Canada, as well as at several locations
in Newfoundland, Canada (Appel et al., 2019). Based on the presented measurement algorithms and the
described installation concept at the study site Weissfluhjoch, we furthermore developed self‐supplied snow
measurement stations including an integrated communication unit, which are ready to be used at further
sites. To be applicable in remote and difficult to access areas, these measurement stations were designed
to be easily transportable and contain a self‐sufficient energy component with a solar panel and a battery,
a mast systemwith rigging, an onboard processing unit, and a communication unit to transmit the processed
data (Appel et al., 2017; Lamm et al., 2018). As this GPS approach represents a point‐scale measurement,
combining in situ data with remote sensing data and/or modeling methods should provide improved spatial
information on SWE, HS, and LWC (Foppa et al., 2007; Magnusson et al., 2014; Pulliainen, 2006). Appel
et al. (2019) recently presented promising results to improve hind‐ and forecast hydrological modeling as
well as hydropower forecasts with such a combination. Moreover, such in situ measurements have the
potential for serving as valuable ground truth for various remote sensing and modeling approaches for
dry‐snow and the even more challenging wet‐snow conditions, for example, for microwave remote
sensing approaches.
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7. Conclusions

We presented a novel approach to simultaneously derive with a single sensor system the snow cover proper-
ties SWE, HS, and snow LWC based on a combination of GPS signal attenuation and time delay. To this end,
we applied a low‐cost GPS sensor setup consisting of two antennas. One antenna was installed on the ground
level, remaining below the snowpack during the snow‐covered periods. The other antenna was mounted on
a pole, being permanently above the snow cover. The GPS sensor system was installed and operated at the
high‐alpine study site Weissfluhjoch in Switzerland for three entire winter seasons between autumn 2015
and summer 2018. Our GPS approach allows deriving the three snow cover properties simultaneously and
nondestructively for dry‐ and wet‐snow conditions based on microwave signals travelling through the snow-
pack. It relies on the interaction of signals with dielectric properties, which differs largely between snow‐
free, dry‐snow and wet‐snow conditions. The processing of snow‐covered periods is handled differently
for dry‐ and wet‐snow conditions. We considered signal time delay and attenuation including reflection
and refraction processes using a combination of GPS carrier phases and GPS signal strength information;
the latter expressed as the signal‐to‐noise power density ratio C/N0, to jointly derive SWE, HS, and LWC.

The GPS‐derived SWE, HS, and LWC values showed a high degree of agreement with validation data
recorded in parallel at the study site for the three entire winter seasons. The GPS‐derived LWC showed
a good accordance with the melt‐water outflow at a snow lysimeter. Regarding SWE, the agreement of
all validation data compared to the GPS results was slightly higher for dry snow conditions (RMSE: 41
mm, R2: 0.99) than for wet snow conditions (RMSE: 73 mm, R2: 0.93), which is conform to the overall
agreement of all SWE measurement methods. The best agreement was found between GPS and snow pil-
low data. Regarding HS, the agreement between all methods is even better. Comparing the GPS‐derived
HS results with the validation data, the agreement for dry snow (RMSE: 0.13 m, R2: 0.98) and wet snow
(RMSE: 0.14 m, R2: 0.95) is very good. Even for a deep snowpack with SWE above 1,000 mm and HS
slightly above 3 m, the snow cover properties were reliably derived under dry‐ and wet‐snow conditions.
The accuracy of the GPS signal approach was estimated for different SWE and LWC classes and showed
that the snow parameters can be consistently determined for a wide range of snow conditions. Further
validation will be needed to confirm the applicability of the presented approach at lower elevation sites
with more variable snow conditions. As we use low‐cost GPS sensor components, sensor networks
become feasible, which offer a better spatial and temporal coverage. As shown within the SnowSense pro-
ject (Appel et al., 2019), the in situ data can be assimilated into modeling or remote sensing snow pro-
ducts to, for example, improve the prediction of melt water runoff and hydropower forecasts for large
catchments. Moreover, buried GPS sensors in slopes may support snow management in ski resort or local
avalanche forecasting.
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