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A NEW APPROACH FOR AMERICAN OPTION PRICING: THE
DYNAMIC CHEBYSHEV METHOD\ast 

KATHRIN GLAU\dagger , MIRCO MAHLSTEDT\ddagger , AND CHRISTIAN P\"OTZ\S 

Abstract. We introduce a new method to price American options based on Chebyshev inter-
polation. In each step of a dynamic programming time-stepping we approximate the value function
with Chebyshev polynomials. The key advantage of this approach is that it allows us to shift the
model-dependent computations into an offline phase prior to the time-stepping. In the offline part
a family of generalized (conditional) moments is computed by an appropriate numerical technique
such as a Monte Carlo, PDE, or Fourier transform based method. Thanks to this methodological
flexibility the approach applies to a large variety of models. Online, the backward induction is solved
on a discrete Chebyshev grid, and no (conditional) expectations need to be computed. For each time
step the method delivers a closed form approximation of the price function along with the options'
delta and gamma. Moreover, the same family of (conditional) moments yield multiple outputs in-
cluding the option prices for different strikes, maturities, and different payoff profiles. We provide a
theoretical error analysis and find conditions that imply explicit error bounds for a variety of stock
price models. Numerical experiments confirm the fast convergence of prices and sensitivities. An
empirical investigation of accuracy and runtime also shows an efficiency gain compared with the
least-squares Monte Carlo method introduced by Longstaff and Schwartz [Rev. Financ. Stud., 14
(2001), pp. 113--147]. Moreover, we show that the proposed algorithm is flexible enough to price
barrier and multivariate barrier options.
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1. Introduction. A challenging task for financial institutions is the computation
of prices and sensitivities for large portfolios of derivatives such as equity options.
Typically, equity options have an early exercise feature and can either be exercised
at any time until maturity (American type) or at a set of predefined exercise dates
(Bermudan type). Lacking explicit solutions, different numerical methods have been
developed to tackle this problem. One of the first algorithms to compute American put
option prices in the Black--Scholes model has been proposed by [4]. In this approach,
the related partial differential inequality is solved by a finite difference scheme. A rich
literature further developing the PDE approach has accrued since, including methods
for jump models [22], [17], extensions to two dimensions [16], and combinations with
complexity reduction techniques [15]. Besides PDE based methods a variety of other
approaches have been introduced, many of which trace back to the solution of the
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B154 KATHRIN GLAU, MIRCO MAHLSTEDT, AND CHRISTIAN P\"OTZ

optimal stopping problem by the dynamic programming principle; see, e.g., [28]. For
Fourier based solution schemes we refer to [24], [10]. Simulation based approaches are
of fundamental importance; the most prominent representative of this group is the
least-squares Monte Carlo (LSM) approach of [23]; we refer to [13] for an overview
of different Monte Carlo methods. Fourier and PDE methods typically are highly
efficient; compared to simulation, however, they are less flexible toward changes in
the model and particularly in the dimensionality. In order to reconcile the advantages
of the PDE and Fourier approach with the flexibility of Monte Carlo simulation, we
propose a new approach.

Like most approaches, we discretize the continuous time problem of pricing an
American option and then solve it. Hence, we actually compute the price of a Bermu-
dan option. It is well known that the Bermudan price converges toward the American
option price and thus one can either use a high number of exercise rights or an ex-
trapolation technique to obtain the American option price; see [12]. The pricing of
Bermudan options is similar to the pricing of discretely monitored barrier options as
stated in [10]. Our proposed new approach will be general enough to cover this pricing
problem as well.

We consider a general dynamic programming time-stepping in discrete time. Let
Xt be the underlying Markov process and the value function Vt is given by

VT (x) = g(x),

Vt(x) = f (g(t, x),\BbbE [Vt+1(Xt+1)| Xt = x])

with time steps t < t + 1 < \cdot \cdot \cdot < T and payoff function g. The computational
challenge is to compute \BbbE [Vt+1(Xt+1)| Xt = x] for for all time steps t and all states
x, where Vt+1 depends on all previous time steps.

In order to tackle this problem, we approximate the value function in each time
step by Chebyshev polynomial interpolation. We thus express the value function Vt+1

as a finite sum of Chebyshev polynomials Tj(x) = cos(j acos(x)) times coefficients
ct+1
j . In this case, the conditional expectations become

\BbbE [Vt+1(Xt+1)| Xt = x] \approx 
\sum 

ct+1
j \BbbE [Tj(Xt+1)| Xt = x] =

\sum 
ct+1
j \Gamma j,k(1.1)

with generalized moments \Gamma j,k := \BbbE [Tj(Xt+1)| Xt = x]. The choice of Chebyshev
polynomials is motivated by the promising properties of Chebyshev interpolation such
as the following.

\bullet The vector of coefficients (ct+1
j )j=0,...,N is explicitly given as a linear combi-

nation of the values Vt(xk) at the Chebyshev grid points xk. For this, (1.1)
needs to be solved at the Chebyshev grid points x = xk only.

\bullet Exponential convergence of the interpolation for analytic functions and poly-
nomial convergence of differential functions depending on the order.

\bullet The interpolation can be implemented in a numerically stable way.
The computation of the continuation value at a single time step coincides with

the pricing of a European option. Its interpolation with Chebyshev polynomials is
proposed in [11], where the method shows to be highly promising and exponential
convergence is established for a large set of models and option types. Moreover, the
approximation of the value function with Chebyshev polynomials has already proven
to be beneficial for optimal control problems in economics; see [19] and [5].

The key advantage of our approach for American option pricing is that it collects
all model-dependent computations in the generalized conditional moments \Gamma j,k. If
there is no closed-form solution, their calculation can be shifted into an offline phase
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THE DYNAMIC CHEBYSHEV METHOD B155

prior to the time-stepping. Depending on the underlying model a suitable numerical
technique such as Monte Carlo, PDE, or Fourier transform methods can be chosen,
which reveals the high flexibility of the approach. Once the generalized conditional
moments \Gamma j,k are computed, the backward induction is solved on a discrete Chebyshev
grid. This avoids any computations of conditional expectations during the time-
stepping. For each time step the method delivers a closed form approximation of the
price function x \mapsto \rightarrow 

\sum 
ctjTj(x) along with the option's Delta and Gamma. Since the

family of generalized conditional moments \Gamma j,k are independent of the value function,
they can be used to generate multiple outputs including the option prices for different
strikes, maturities, and different payoff profiles. The structure of the method is also
beneficial for the calculation of expected future exposure, which is the computational
bottleneck in the computation of CVA, as investigated in [14].

The offline-online decomposition separates model and payoff yielding a modular
design. We exploit this structure for a thorough error analysis and find conditions
that imply explicit error bounds. They reflect the modularity by decomposing into a
part stemming from the Chebyshev interpolation, from the time-stepping, and from
the offline computation. Under smoothness conditions the asymptotic convergence
behavior is deduced.

We perform numerical experiments using the Black--Scholes model, Merton's jump
diffusion model, and the constant elasticity of variance (CEV) model as a represen-
ative of a local volatility model. For the computation of the generalized conditional
moments we thus use different techniques, namely, numerical integration based on
Fourier transforms and Monte Carlo simulation. Numerical experiments confirm the
fast convergence of option prices along with its delta and gamma. A comprehensive
comparison with the LSM reveals the potential efficiency gain of the new approach,
particularly when several options on the same underlying are priced.

The rest of the article is organized as follows. We introduce the problem setting
and the new method in section 2 and provide the error analysis in section 3. Section
4 discusses general traits of the implementation and section 5 presents the numerical
experiments. Section 6 concludes the article, followed by an appendix with the proof
of the main result.

2. The Chebyshev method for dynamic programming problems. First,
we present the Bellman--Wald equation as a specific form of dynamic programming.
Second, we provide the necessary notation for the Chebyshev interpolation. Then
we are in a position to introduce the new approach and its application to American
option pricing.

2.1. Optimal stopping and dynamic programming. Let X = (Xt)t\leq T

be a Markov process with state space \BbbR d defined on the filtered probability space
(\Omega ,\scrF , (\scrF t)t\geq 0,\BbbP ). Let g : [0, T ] \times \BbbR d  - \rightarrow \BbbR be a continuous function with
\BbbE [sup0\leq t\leq T | g(t,Xt)| ] < \infty . Then

V (t, x) := sup
t\leq \tau \leq T

\BbbE [g(\tau ,X\tau )| Xt = x] \forall (t, x) \in [0, T ]\times \BbbR d

over all stopping times \tau ; see (2.2.2\prime ) in [28]. In discrete time, the optimal stopping
problems can be solved with dynamic programming.

Namely, with time-stepping t = t0 < \cdot \cdot \cdot < tn = T the solution of the optimal
stopping problem can be calculated via backward induction

VT (x) = g(T, x),

Vtu(x) = max
\bigl( 
g(tu, x),\BbbE [Vtu+1(Xtu+1)| Xtu = x]

\bigr) 
.
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B156 KATHRIN GLAU, MIRCO MAHLSTEDT, AND CHRISTIAN P\"OTZ

Note that n refers to the number of time steps between t and T . For notational
convenience, we indicate the value function at each time step with subscript tu to
directly refer to the time step tu. For a detailed overview of optimal control problems
in discrete time we refer to [28].

2.2. Chebyshev polynomial interpolation. The univariate Chebyshev poly-
nomial interpolation as described in detail in [33] has a tensor based extension to
the multivariate case; see, e.g., [31]. Usually, the Chebyshev interpolation is de-
fined for a function on a [ - 1, 1]D domain. For an arbitrary hyperrectangular \scrX =
[x1, x1] \times . . . \times [xD, xD], we introduce a linear transformation \tau \scrX : [ - 1, 1]D \rightarrow \scrX 
componentwise defined by

\tau \scrX (zi) = xi + 0.5(xi  - xi)(1 - zi).(2.1)

Let N := (N1, . . . , ND) with Ni \in \BbbN 0 for i = 1, . . . , D. We define the index set

\scrJ := \{ j \in \BbbN D : 1 \leq ji \leq ND for i = 1, . . . , d\} .

The Chebyshev polynomials are defined for z \in [ - 1, 1]D and j \in \scrJ by

Tj(z) =

D\prod 
i=1

Tji(zi), Tji(zi) = cos(ji \cdot acos(zi)),

and the jth Chebyshev polynomial on \scrX as pj(x) = Tj(\tau 
 - 1
\scrX (x))1\scrX (x). The Chebyshev

points are given by

zk = (zk1 , . . . , zkD
), zki = cos

\biggl( 
\pi 
ki
Ni

\biggr) 
for ki = 0, . . . , Ni and i = 1, . . . , D

and the transformed Chebyshev points by xk = \tau \scrX (zk). The Chebyshev interpolation

of a function f : \scrX \rightarrow \BbbR with
\prod D

i=1(Ni + 1) summands can be written as a sum of
Chebyshev polynomials

IN (f)(x) =
\sum 
j\in \scrJ 

cjTj(\tau 
 - 1
\scrX (x)) =

\sum 
j\in \scrJ 

cjpj(x) for x \in \scrX (2.2)

with coefficients cj for j \in \scrJ 

cj =

\Biggl( 
D\prod 
i=1

21\{ 0<ji<Ni\} 

Ni

\Biggr) \sum 
k\in \scrJ 

\prime \prime 
f(xk)Tj(z

k),(2.3)

where
\sum \prime \prime 

indicates the summand is multiplied by 1/2 if ki = 0 or ki = Ni.

2.3. The dynamic Chebyshev method. In this section, we present the new
approach to solve a dynamic programming problem (DPP) via backward induction
using Chebyshev polynomial interpolation.

Definition 2.1. We consider a DPP with value function

VT (x) = g(T, x),(2.4)

Vtu(x) = f
\bigl( 
g(tu, x),\BbbE [Vtu+1

(Xtu+1
)| Xtu = x]

\bigr) 
,(2.5)

where t = t0 < \cdot \cdot \cdot < tn = T and f : \BbbR \times \BbbR \rightarrow \BbbR is Lipschitz continuous with
constant Lf .
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THE DYNAMIC CHEBYSHEV METHOD B157

At the initial time T = tn, we apply Chebyshev interpolation to the function
g(T, x), i.e., for x \in \scrX ,

VT (x) = g(T, x) \approx 
\sum 
j\in \scrJ 

cj(T )pj(x) =: \widehat VT (x).

At the first time step tn - 1, the derivation of the conditional expectation
\BbbE [g(tn, Xtn)| Xtn - 1 = x] is replaced by \BbbE [

\sum 
j cj(tn)pj(Xtn)| Xtn - 1 = x] yielding

Vtn - 1(x) = f
\bigl( 
g(tn - 1, x),\BbbE [Vtn(Xtn)| Xtn - 1 = x]

\bigr) 
\approx f

\Biggl( 
g(tn - 1, x),\BbbE 

\biggl[ \sum 
j\in \scrJ 

cj(tn)pj(Xtn)

\bigm| \bigm| \bigm| \bigm| Xtn - 1
= x

\biggr] \Biggr) 

= f

\Biggl( 
g(tn - 1, x),

\sum 
j\in \scrJ 

cj(tn)\BbbE 
\bigl[ 
pj(Xtn)

\bigm| \bigm| Xtn - 1 = x
\bigr] \Biggr) 

.

At time step tn - 1 the value function Vtn - 1 needs only to be evaluated at the specific
Chebyshev nodes. Hence, denoting with xk = (xk1

, . . . , xkD
) the Chebyshev nodes, it

suffices to evaluate

Vtn - 1(x
k) \approx f

\Biggl( 
g(tn - 1, x

k),
\sum 
j\in \scrJ 

cj(tn)\BbbE 
\bigl[ 
pj(Xtn)

\bigm| \bigm| Xtn - 1 = xk
\bigr] \Biggr) 

=: \widehat Vtn - 1(x
k).(2.6)

A linear transformation of (\widehat Vtn - 1
(xk))k\in \scrJ yields the Chebyshev coefficients according

to (2.3), which determines the Chebyshev interpolation \widehat Vtn - 1 =
\sum 

j cj(tn - 1)pj . We
apply this procedure iteratively as described in detail in Algorithm 2.1.

The stochastic part is gathered in the expectations of the Chebyshev polyno-
mials conditioned on the Chebyshev nodes, i.e., \Gamma j,k(tu) = \BbbE [pj(Xtu+1

)| Xtu = xk].
Moreover, if an equidistant time-stepping is applied the computation can be further
simplified. If for the underlying stochastic process

\Gamma j,k(tu) = \BbbE [pj(Xtu+1
)| Xtu = xk] = \BbbE [pj(Xt1)| Xt0 = xk] =: \Gamma j,k(2.7)

for u = 0, . . . , n - 1, then the conditional expectations need to be computed only for
one time step; see Algorithm 2.2. One can precompute these conditional expectations,
and thus the method allows for an offline/online decomposition.

3. Error analysis. In this section we analyze the error of Algorithm 2.1, i.e.,

\varepsilon tu := max
x\in \scrX 

| Vtu(x) - \widehat Vtu(x)| .(3.1)

Two different error sources occur at tu, the classical interpolation error of the Cheby-
shev interpolation and a distortion error at the nodal points. With distortion, we
refer to the computational noise that comes from the fact that we do not observe the
correct function values Vtu(x

k) at the nodal points but distorted values \widehat Vtu(x
k). We

call the error induced from this noise distortion error. Later on in this section the
distortion error will be discussed in more detail. The behavior of the interpolation
error depends on the regularity of the value function. Here, we assume analyticity of
the value function. The concept can be extended to further cases such as assuming
differentiability or piecewise analyticity. The latter is discussed in preliminary form
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B158 KATHRIN GLAU, MIRCO MAHLSTEDT, AND CHRISTIAN P\"OTZ

Algorithm 2.1. Dynamic Chebyshev algorithm.

Require: N \in \BbbN D, \scrX = [x1, x1]\times . . .\times [xD, xD], 0 = t0, . . . , tn = T
1: Determine index set \scrJ and nodal points xk = (xk1 , . . . , xkD

)

2: Precomputation step:
3: For all j, k \in \scrJ and all tu, u = 0, . . . , n - 1
4: Compute \Gamma j,k(tu) = \BbbE [pj(Xtu+1

)| Xtu = xk]

5: Time T
6: \widehat VT (x

k) = g(T, xk), k \in \scrJ , derive

7: cj(T ) = DN (j)
\sum 

k\in \scrJ 
\prime \prime \widehat VT (x

k)Tj(z
k)

8: Obtain Chebyshev interpolation \widehat VT (x) =
\sum 

j\in \scrJ cj(T )pj(x) of VT (x)

9: Iterative time-stepping from tu+1 \rightarrow tu, u = n - 1, . . . , 1

10: Given Chebyshev interpolation of \widehat Vtu+1(x) =
\sum 

j\in \scrJ cj(tu+1)pj(x)

11: Derivation of \widehat Vtu(x
k), k \in \scrJ at the nodal points

12: \widehat Vtu(x
k) = f(g(tu, x

k),
\sum 

j\in \scrJ cj(tu+1)\Gamma j,k(tu))

13: Derive cj(tu) = DN (j)
\sum 

k\in \scrJ 
\prime \prime \widehat Vtu(x

k)Tj(z
k)

14: Obtain Chebyshev interpolation \widehat Vtu(x) =
\sum 

j\in \scrJ cj(tu)pj(x) of Vtt(x)

15: Deriving the solution at t = 0
16: \widehat V0(x) =

\sum 
j\in \scrJ cj(0)pj(x)

Algorithm 2.2. Simplified dynamic Chebyshev algorithm.

Require: Time steps 0 = t1, . . . , tn = T with \Delta t := tu  - tu - 1

1: Replace in Algorithm 2.1 lines 2--4 with:

2: Precomputation step:
3: Compute \Gamma j,k = \BbbE [pj(X\Delta t)| X0 = xk] for all j, k \in \scrJ 

in [25, section 5.3] and is further investigated in a follow-up paper. Hence, we need
a convergence result for the Chebyshev interpolation which incorporates a distortion
error at the nodal points.

First, we introduce the required notation. A Bernstein ellipse \scrB ([ - 1, 1], \varrho ) with
\varrho > 1 is defined as the open region in the complex plane bounded by an ellipse
with foci \pm 1 and semiminor and semimajor axis lengths summing to \varrho . We define
a generalized Bernstein ellipse \scrB (\scrX , \varrho ) around the hyperrectangle \scrX with parameter
vector \varrho \in (1,\infty )D as

\scrB (\scrX , \varrho ) := \scrB ([x1, x1], \varrho 1)\times \cdot \cdot \cdot \times \scrB ([xD, xD], \varrho D)

with \scrB ([x, x], \varrho ) := \tau [x,x] \circ \scrB ([ - 1, 1], \varrho ), where for x \in \BbbC we have the transform

\tau [x,x]
\bigl( 
\Re (x)

\bigr) 
:= x + x - x

2

\bigl( 
1  - \Re (x)

\bigr) 
and \tau [x,x]

\bigl( 
\Im (x)

\bigr) 
:= x - x

2 \Im (x), where the sets
\scrB ([ - 1, 1], \varrho i) are Bernstein ellipses for i = 1, . . . , D.

Proposition 3.1. Let \scrX \ni x \mapsto \rightarrow f(x) be a real-valued function with an ana-
lytic extension to some generalized Bernstein ellipse \scrB (\scrX , \varrho ) for \varrho \in (1,\infty )D with
supx\in \scrB (\scrX ,\varrho ) | f(x)| \leq b. Assume distorted values f\varepsilon (xk) = f(xk)+\varepsilon (xk) with | \varepsilon (xk)| \leq 
\varepsilon at all nodes xk. Then

max
x\in \scrX 

\bigm| \bigm| f(x) - IN (f\varepsilon )(x)
\bigm| \bigm| \leq \varepsilon int(\varrho ,N,D,B) + \varepsilon \Lambda N
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THE DYNAMIC CHEBYSHEV METHOD B159

with

\varepsilon int(\varrho ,N,D,B) := 2
D
2 +1 \cdot B \cdot 

\Biggl( 
D\sum 
i=1

\varrho  - 2Ni
i

D\prod 
j=1

1

1 - \varrho  - 2
j

\Biggr) 1
2

(3.2)

and Lebesgue constant \Lambda N \leq 
\prod D

i=1

\bigl( 
2
\pi log(Ni + 1) + 1

\bigr) 
.

Proof. Using the linearity of the interpolation operator we obtain for the Cheby-
shev interpolation of f\varepsilon with f\varepsilon (xk) = f(xk) + \varepsilon (xk) that

IN (f\varepsilon )(x) = IN (f)(x) + IN (\varepsilon )(x).

The tensor-based multivariate Chebyshev interpolation IN (\varepsilon ) can be written in La-
grange form

IN (\varepsilon )(x) =
\sum 
j\in \scrJ 

\varepsilon (xj)\lambda j(x) with \lambda j(x) =

D\prod 
i=1

\ell ji(\tau 
 - 1
[xi,xi]

(xi)),

where \ell ji(z) =
\prod 

k \not =ji
z - zk
zji - zk

is the jith Lagrange polynomial. This yields

max
x\in \scrX 

| IN (\varepsilon )(x)| = max
x\in \scrX 

\bigm| \bigm| \bigm| \bigm| \sum 
j\in \scrJ 

\varepsilon (xj)\lambda j(x)

\bigm| \bigm| \bigm| \bigm| \leq \varepsilon max
x\in \scrX 

\sum 
j\in \scrJ 

| \lambda j(x)| =: \varepsilon \Lambda N .

The term \Lambda N is the Lebesgue constant of the (multivariate) Chebyshev nodes which
is given by

\Lambda N = max
x\in \scrX 

\sum 
j\in \scrJ 

\bigm| \bigm| \lambda j(x)
\bigm| \bigm| = max

x\in \scrX 

\sum 
j\in \scrJ 

D\prod 
i=1

\bigm| \bigm| \ell ji(xi)
\bigm| \bigm| = D\prod 

i=1

max
xi\in [xi,xi]

Ni\sum 
ji=0

\bigm| \bigm| \bigm| \ell ji\bigl( \tau  - 1
[xi,xi]

(xi)
\bigr) \bigm| \bigm| \bigm| .

Since maxxi\in [xi,xi]

\sum Ni

ji=0 | \ell ji(\tau 
 - 1
[xi,xi]

(xi))| = maxz\in [ - 1,1]

\sum Ni

ji=0 | \ell ji(z)| = \Lambda Ni , which

is the Lebesgue constant of the univariate Chebyshev interpolation, we have \Lambda N =\prod D
i=1 \Lambda Ni

. From [33, Theorem 15.2] we obtain for the univariate Chebyshev interpo-
lation \Lambda N \leq 2

\pi log(N + 1) + 1 and hence

\Lambda N \leq 
D\prod 
i=1

\Bigl( 2
\pi 
log(Ni + 1) + 1

\Bigr) 
.(3.3)

For the distorted Chebyshev interpolation it holds that\bigm| \bigm| f(x) - IN (f\varepsilon )(x)
\bigm| \bigm| \leq | f(x) - IN (f)(x)

\bigm| \bigm| + | IN (\varepsilon )(x)
\bigm| \bigm| .

Therefore, the proposition follows directly from (3.3) and [31].

We use this result to investigate the error of the dynamic Chebyshev method.
First, we introduce the following assumption.

Assumption 3.2. We assume \scrX \ni x \mapsto \rightarrow Vtu(x) is a real valued function that has
an analytic extension to a generalized Bernstein ellipse \scrB (\scrX , \varrho tu) with \varrho tu \in (1,\infty )D

and supx\in \scrB (\scrX ,\varrho tu ) | Vtu(x)| \leq Btu for u = 1, . . . , n.
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B160 KATHRIN GLAU, MIRCO MAHLSTEDT, AND CHRISTIAN P\"OTZ

Proposition 3.5 provides conditions on the process X and the functions f and g
that guaranty Assumptions 3.2. Under this assumptions, we can apply Proposition
3.1 to obtain an error bound for the dynamic Chebyshev method at each time step.
This error bound has a recursive structure, since the values of Vtu depend on the
conditional expectation of Vtu+1 . The interpolation error of the final time step is of
form (3.2). At any other time step tu an additional distortion error by approximating
the function values at the nodal points by

Vtu(x
k) \approx f

\biggl( 
g(tu, x

k),
\sum 
j\in \scrJ 

cj(tu+1)\BbbE [pj(Xtu+1
)| Xtu = xk]

\biggr) 
= \widehat Vtu(x

k)

comes into play. Proposition 3.1 yields

\varepsilon tu := max
x\in \scrX 

| Vtu(x) - \widehat Vtu(x)| \leq \varepsilon int(\varrho tu , N,D,Btu) + \Lambda NFtu ,

where Ftu := maxj\in \scrJ | Vtu(xj)  - \widehat Vtu(xj)| . The term Ftu depends on the function f
and the interpolation error at the previous time step tu+1.

Moreover, two additional error sources can influence the error bound. If there
is no closed-form solution for the generalized moments \BbbE [pj(Xtu+1

)| Xtu = xk] a nu-
merical technique, e.g., numerical quadrature or Monte Carlo methods, introduces
an additional error. The former is typically deterministic and bounded whereas the
latter is stochastic. In order to incorporate this error in the following error analysis
we introduce some additional notation. The conditional expectation can be seen as a
linear operator which operates on the vector space of all continuous functions \scrC (\BbbR D)
with finite L\infty -norm

\Gamma k
tu : \scrC (\BbbR D) \rightarrow \BbbR with \Gamma k

tu(f) := \BbbE [f(Xtu+1
)| Xtu = xk].

Define the subspace of all D variate polynomials \scrP N (\scrX ) := span\{ pj , j \in \scrJ \} equipped
with the L\infty -norm. We assume the operator \Gamma k

tu is approximated by a linear operator\widehat \Gamma k
tu : \scrP N (\scrX ) \rightarrow \BbbR on \scrP N (\scrX ) which fullfills one of the two following conditions. For

all u = 0, . . . , n the approximation is either deterministic and the error is bounded by
a constant \delta ,

| | \Gamma k
tu  - \widehat \Gamma k

tu | | op := sup
p\in \scrP N

| | p| | =1

\bigm| \bigm| \bigm| \Gamma k
tu(p) - \widehat \Gamma k

tu(p)
\bigm| \bigm| \bigm| \leq \delta \forall k \in \scrJ ,(GM)

or the approximation is stochastic and uses M samples of the underlying process and
the polynomials p may have stochastic coefficients. In this case we assume the error
bound

| | \Gamma k
tu  - \widehat \Gamma k

tu | | op := sup
p\in \scrP N

| | p| |  \star \infty =1

\BbbE 
\Bigl[ \bigm| \bigm| \bigm| \Gamma k

tu(p) - \widehat \Gamma k
tu(p)

\bigm| \bigm| \bigm| \Bigr] \leq \delta  \star (M) \forall k \in \scrJ (GM*)

with norm | | p| |  \star \infty = maxx\in \scrX \BbbE [| p(x)| ]. In order to incorporate stochasticity of \widehat Vtu(x),
we replace (3.1) by

\varepsilon tu+1
:= max

x\in \scrX 
\BbbE 
\Bigl[ \bigm| \bigm| \bigm| Vtu(x) - \widehat Vtu(x)

\bigm| \bigm| \bigm| \Bigr] .(3.4)

Note that in the deterministic case (3.1) and (3.4) coincide. Additionally, a truncation
error is introduced by restricting to a compact interpolation domain \scrX . We assume
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THE DYNAMIC CHEBYSHEV METHOD B161

that the conditional expectation of the value function outside this set is bounded by
a constant

\BbbE [Vtu+1
(Xtu+1

)1\BbbR D\setminus \scrX | Xtu = xk] \leq \varepsilon tr.(TR)

The following theorem provides an error bound for the dynamic Chebyshev method.

Theorem 3.3. Let the DPP be given as in Definition 2.1. Assume the regularity
Assumptions 3.2 hold and the boundedness of the truncation error (TR). Then we
have

\varepsilon tu \leq 
n\sum 

j=u

Cj - u\varepsilon jint + \Lambda NLf

n\sum 
j=u+1

Cj - (u+1)(\varepsilon tr + \varepsilon gmV j)(3.5)

with \varepsilon gm = \delta if assumption (GM) holds and \varepsilon gm = \delta  \star (M) if assumption (GM*) holds

and C = \Lambda NLf (1 + \varepsilon gm), V j = maxx\in \scrX | Vtj (x)| , and \varepsilon jint = \varepsilon int(\varrho tj , N,D,Btj ).

Proof. The proof of the theorem can be found in the appendix.

The following corollary provides a simplified version of the error bound (3.5)
presenting its decomposition into three different error sources (interpolation error \varepsilon int,
truncation error \varepsilon tr, and the error from the numerical computation of the generalized
moments \varepsilon gm).

Corollary 3.4. Let the setting be as in Theorem 3.3. Then the error is bounded
by

\varepsilon tu \leq 
\bigl( 
\varepsilon int(\varrho ,N,D,B) + \varepsilon tr + \varepsilon gmV

\bigr) 
\~Cn+1 - u(3.6)

with \~C = max\{ 2, C\} , \varrho = min1\leq u\leq n \varrho tu , B = max1\leq u\leq n Btu , V = maxu\leq j\leq n V j.
Moreover, if \varepsilon tr = 0, Lf \leq 1, and N = Ni, i = 1, . . . , D, the error bound can be

simplified further. Under (GM*) \delta  \star (M) \leq c/
\surd 
M , c > 0 yields

\varepsilon tu \leq \~c1\varrho 
 - N log(N)Dn + \~c2 log(N)DnM - 0.5

for some constants \~c1, \~c2 > 0. Under (GM) the term M - 0.5 is replaced by \delta .

Proof. Assuming C > 2 and using the geometric series, the first term in the error
bound (3.5) can be rewritten as

n\sum 
j=u

Cj - u\varepsilon jint \leq \varepsilon int

n\sum 
j=u

Cj - u = \varepsilon int

n - u\sum 
k=0

Ck = \varepsilon int

\biggl( 
1 - Cn+1 - u

1 - C

\biggr) 
\leq \varepsilon int C

n+1 - u,

where \varepsilon int = maxj \varepsilon 
j
int = maxj \varepsilon int(\varrho tj , N,D,Btj ) \leq \varepsilon int(\varrho ,N,D,B) for \varrho =

min1\leq u\leq n \varrho u and B = max1\leq u\leq n Btu . For C \leq 2 the sum is bounded by \varepsilon int 2
n+1 - u.

Similarly, we obtain for the second term in the error bound (3.5) with \beta = (\varepsilon tr +
\varepsilon gmV j)

\Lambda NLf

n\sum 
j=u+1

Cj - (u+1)\beta j \leq \Lambda NLf \beta 

n - (u+1)\sum 
k=0

Ck \leq \Lambda NLf \beta C
n - u \leq \beta Cn+1 - u,

where \beta = maxj \beta j . Moreover, we used \Lambda NLf \leq \Lambda NLf (1+ \varepsilon gm) = C in the last step.
Thus, we obtain the following error bound (3.5):

\varepsilon tu \leq (\varepsilon int + \beta ) \~Cn+1 - u =
\bigl( 
\varepsilon int(\varrho ,N,D,B) + \varepsilon tr + \varepsilon gmV

\bigr) 
\~Cn+1 - u,

where \~C = max\{ 2, C\} and V = maxj V j , which shows (3.6).
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B162 KATHRIN GLAU, MIRCO MAHLSTEDT, AND CHRISTIAN P\"OTZ

Furthermore, using the definition of the error bound (3.2) and N = Ni, i =
1, . . . , D, we conclude that \varepsilon int(\varrho ,N,D,B) \leq c1\varrho 

 - N for a constant c1 > 0. For the
Lebesgue constant of the Chebyshev interpolation there exists a constant c2 > 0 such
that

\Lambda N \leq 
D\prod 
i=1

\Bigl( 2
\pi 
log(N + 1) + 1

\Bigr) 
\leq 

D\prod 
i=1

\Bigl( 4
\pi 
+ 1
\Bigr) 
log(N) \leq c2 log(N)D.

Under (GM*), \delta  \star (M) \leq c/
\surd 
M , c > 0, yields with \varepsilon tr = 0, Lf \leq 1,

\varepsilon tu \leq 
\bigl( 
\varepsilon int(\varrho ,N,D,B) + \varepsilon tr + \varepsilon gmV

\bigr) 
(\Lambda NLf (1 + \varepsilon gm))

n+1 - u

\leq 
\bigl( 
c1\varrho 

 - N + cV M - 0.5
\bigr) \bigl( 

c2 log(N)D(1 + cM - 0.5)
\bigr) n

\leq \~c1\varrho 
 - N log(N)Dn + \~c2 log(N)DnM - 0.5

and this converges toward zero for N \rightarrow \infty if
\surd 
M > log(N)Dn. If (GM) holds, we

have \varepsilon gm = \delta and the term M - 0.5 is replaced by \delta .

The following proposition provides conditions under which the value function has
an analytic extension to some generalized Bernstein ellipse and Assumption 3.2 holds.

Proposition 3.5. Consider a DPP as defined in (2.4) and (2.5) with equidistant
time-stepping and gt(x) := g(t, x). Let X = (Xt)0\leq t\leq T be a Markov process with
stationary increments. Assume e\langle \eta ,\cdot \rangle gtu(\cdot ) \in L1(\BbbR D) for some \eta \in \BbbR D and gtu has
an analytic extension to the generalized Bernstein ellipse \scrB (\scrX , \varrho g) for u = 0, . . . , n.
Furthermore, assume f : \BbbR \times \BbbR \rightarrow \BbbR has an analytic extension to \BbbC 2. If

(i) the characteristic function \varphi x of X\Delta t with X0 = x is in L1(\BbbR D) for every
x \in \scrX ,

(ii) for every z \in \BbbR D the mapping x \mapsto \rightarrow \varphi x(z  - i\eta ) has an analytic extension
to B(\scrX , \varrho \varphi ) and there are constants \alpha \in (1, 2] and c1, c2 > 0 such that
supx\in B(\scrX ,\varrho \varphi ) | \varphi x(z)| \leq c1e

 - c2| z| \alpha for all z \in \BbbR D,
then the value function x \mapsto \rightarrow Vtu(x) of the DPP has an analytic extension to B(\scrX , \varrho )
with \varrho = \varrho g.

Proof. At T the value function x \mapsto \rightarrow VT (x) is analytic since VT (x) = gT (x) and
gT has an analytic extension by assumption. Moreover, e\langle \eta ,\cdot \rangle gT (\cdot ) \in L1(\BbbR D) for some
\eta \in \BbbR D. We assume e\langle \eta ,\cdot \rangle Vtu+1(\cdot ) \in L1(\BbbR D) and Vtu+1 has an analytic extension to
B(\scrX , \varrho ). Then the function

x \mapsto \rightarrow Vtu(x) = f
\bigl( 
gtu(x),\BbbE [Vtu+1

(Xtu+1
)| Xtu = x]

\bigr) 
is analytic if x \mapsto \rightarrow \BbbE [Vtu+1(Xtu+1)| Xtu = x] = \BbbE [Vtu+1(X

x
\Delta t)] has an analytic extension.

From [11, Conditions 3.1] we obtain conditions (A1)--(A4) under which a function of

the form (p1, p2) \mapsto \rightarrow \BbbE [fp1

(Xp2

)] is analytic. In our case we only have the parameter

p2 = x and so Xp2

= Xx
\Delta t. Condition (A1) is satisfied since e\langle \eta ,\cdot \rangle Vtu+1

(\cdot ) \in L1(\BbbR D)

and for (A2) we have to verify that | \widehat Vtu+1( - z - i\eta )| \leq c1e
c2| z| for constants c1, c2 > 0.

| \widehat Vtu+1
( - z  - i\eta )| =

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\BbbR D

ei\langle y, - z - i\eta \rangle Vtu+1
dy

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 
\int 
\BbbR D

| e - i\langle y,z\rangle | 
\bigm| \bigm| \bigm| e\langle y,\eta \rangle Vtu+1(y)

\bigm| \bigm| \bigm| dy
\leq | | e\langle \eta ,\cdot \rangle Vtu+1

(\cdot )| | L1
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THE DYNAMIC CHEBYSHEV METHOD B163

and thus (A2) holds. The remaining conditions (A3)--(A4) are equivalent to our
conditions (i)--(ii) and [11, Theorem 3.2] yields the analyticity of x \mapsto \rightarrow \BbbE [Vtu+1

(Xx
\Delta t)]

on the Bernstein ellipse \scrB (\scrX , \varrho \varphi ). Hence, x \mapsto \rightarrow Vtu(x) is a composition of analytic
functions and therefore analytic on the intersection of the domains of analyticity
\scrB (\scrX , \varrho \varphi ) \cap \scrB (\scrX , \varrho g) = \scrB (\scrX , \varrho ) with \varrho = min\{ \varrho g, \varrho \varphi \} .

It remains to prove that e\langle \eta ,\cdot \rangle Vtu(\cdot ) \in L1(\BbbR D). Here the Lipschitz continuity of
f yields

| | e\langle \eta ,\cdot \rangle Vtu(\cdot )| | L1 \leq Lf

\Bigl( 
| | e\langle \eta ,\cdot \rangle gtu(\cdot )| | L1 + | | e\langle \eta ,\cdot \rangle Vtu+1

(\cdot )| | L1

\Bigr) 
< \infty .

Often, the discrete time problem (2.4) and (2.5) is an approximation of a contin-
uous time problem, and thus we are interested in the error behavior for n \rightarrow \infty .

Remark 3.6. Assume the setup of Corollary 3.4. Moreover, assume that \varepsilon tr =
\varepsilon gm = 0. If we let N and n go to infinity, we have to ensure that the error bound
tends to zero. We use that \varepsilon int(\varrho ,N,D,B) \leq C1\varrho 

 - N for a constant C1 > 0 and
N = mini Ni. The following condition on the relation between n and N ensures
convergence

n <
log(\varrho )

C1D
\cdot N

log(\Lambda N ) + log(Lf )
+ 1.

4. Implementational aspects of the dynamic Chebyshev method. In this
section, we discuss several approaches to compute the generalized moments (2.7) which
contain the model dependent part. Moreover, preparing the numerical experiments,
we tailor the dynamic Chebyshev method to the pricing of American put options.

4.1. Derivation of generalized moments. Naturally, the question arises how
the generalized moments (2.7) can be derived. Here, we present four different ways
and illustrate all approaches in the one-dimensional case \scrX = [x, x]. Similar formulas
can be obtained for a multidimensional domain.

Probability density function. For the derivation of \BbbE [pj(Xtu+1
)| Xtu = xk],

let the density function of the random variable Xtu+1
| Xtu = xk be given as fu,k(x).

Then, the conditional expectation can be derived by solving an integral,

\BbbE [pj(Xtu+1
)| Xtu = xk] =

\int x

x

Tj(\tau 
 - 1
[x,x](y)) f

u,k(y)dy,

using pj(y) = Tj(\tau 
 - 1
\scrX (y))1\scrX (y). This approach is rather intuitive and easy to imple-

ment.

Fourier transformation. Assume the process X has stationary increments and
the characteristic function \varphi of X\Delta t is explicitly available. We apply Parseval's iden-
tity (see [30]) and use Fourier transforms

\BbbE [pj(Xtu+1)| Xtu = xk] =

\int \infty 

 - \infty 
pj(x+ xk)F (dx) =

1

2\pi 

\int \infty 

 - \infty 

\widehat pxk
j (\xi )\varphi ( - \xi )d\xi ,

where pxk
j (x) = pj(x+ xk). Using the definition of \tau [x,x], we can express the Fourier

transform of pxk
j (x) with the help of the Chebyshev polynomial Tj(y). This yields

\BbbE [pj(Xtu+1
)| Xtu = xk] =

1

2\pi 
e - i\xi xk

ei\xi (x - 
x - x
2 )x - x

2

\int \infty 

 - \infty 
\widehat Tj

\Bigl( x - x

2
\xi 
\Bigr) 
\varphi ( - \xi )d\xi .(4.1)

The Fourier transforms of the Chebyshev polynomials \widehat Tj are presented in [7] and the
authors also provide a MATLAB implementation.
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B164 KATHRIN GLAU, MIRCO MAHLSTEDT, AND CHRISTIAN P\"OTZ

Truncated moments. In this approach, we use that each one-dimensional Cheby-
shev polynomial can be represented as a sum of monomials, i.e.,

Tj(x) =

j\sum 
l=0

alx
l, j \in \BbbN .

The coefficients al, l = 0, . . . , j, can easily be derived using the chebfun function
poly(); see [8]. Then,

\BbbE [pj(Xtu+1
)| Xtu = xk] = \BbbE [Tj(\tau 

 - 1
\scrX (Xtu+1

))1\scrX (Xtu+1
)| Xtu = xk]

=

j\sum 
l=0

al\BbbE [(\tau  - 1
\scrX (Xtu+1))

l1\scrX (Xtu+1)| Xtu = xk].

As \tau \scrX is linear the computation of the generalized moments has thus been reduced
to deriving truncated moments.

Monte Carlo simulation. Last, especially in cases for which neither a proba-
bility density function nor a characteristic function of the underlying process is given,
Monte Carlo simulation is a suitable choice. For every nodal point xk one simulates
NMC paths Xi

tu+1
of Xtu+1

with starting value Xtu = xk. These simulations can then
be used to approximate

\Gamma tu,tu+1(pj)(x
k) = \BbbE [pj(Xtu+1)| Xtu = xk] \approx 

1

NMC

NMC\sum 
i=1

pj(X
i
tu+1

)

for every j \in \scrJ . For an overview of Monte Carlo simulation from SDEs and variance
reduction techniques we refer to [13] and [21].

4.2. Computational complexity of the algorithm. In this section, we in-
vestigate the complexity and thus the computational cost of the dynamic Chebyshev
algorithm. In order to do so, the offline/online structure of the method has to be
taken into account. We assume an equidistant time-stepping and that the stationar-
ity assumption (2.7) holds.

In the offline step, we thus need to compute the (N + 1)2 generalized moments
\Gamma j,k = \BbbE [pj(X\Delta t)| X0 = xk]. When using numerical integration to compute the mo-
ments, the evaluation of the integrand at Mquad quadrature points is required and
similarly for the Monte Carlo approach on MMC samples. In total, the complexity of
the offline phase scales with N2Mquad or N2MMC . The complexity can be reduced
when the straightforward approach for the moment calculation is replaced with a more
sophisticated approach. Moreover, parallelization can help to reduce the runtime sig-
nificantly. It is important to acknowledge that the three quantities N , Mquad, and
MMC are on a different scale. The number of Monte Carlo simulations is typically
much higher than the number of quadrature points or Chebyshev nodes. For example,
50, 000 might be a good choice for MMC whereas for Mquad = 500 might already be
high enough. Later on, we will investigate the optimal relation between N and MMC

in more detail.
After the offline phase all model-dependent quantities are readily available. More-

over, the effort of the offline phase is independent of the number of time steps n or
the number of different payoffs that have to be priced.

In the online phase, we need to compute the vector of nodal values \widehat Vtu(xk) for all
k = 0, . . . , N and then the coefficient vector ctuj for j = 0, . . . , N in every time step.
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THE DYNAMIC CHEBYSHEV METHOD B165

Both require the multiplication of a vector with N+1 entries with a (N+1)\times (N+1)
matrix. Hence, the total effort scales with nN2, where n is the number of time steps.
The complexity of the online phase is therefore independent of the numerical method
applied in the offline calculations. Since N is typically relatively small the method
becomes very efficient.

4.3. Application to option pricing. In the numerical section we use the dy-
namic Chebyshev method to price a barrier option and an American put option.
Assuming an asset model of the form St = eXt , the DPP for an American put option
becomes

VT (x) = (K  - ex)+,

Vtu(x) = max
\Bigl\{ 
(K  - ex)+, e - r(tu+1 - tu)\BbbE [Vtu+1

(Xtu+1
)| Xtu = x]

\Bigr\} 
.

The general formulation of the DPP (2.4) and (2.5) includes also the pricing of different
types of discretely monitored barrier options. One example is an up-and-out call
option with value function

VT (x) = (ex  - K)+1( - \infty ,b](x),

Vtu(x) = e - r(tu+1 - tu)\BbbE [Vtu+1
(Xtu+1

)| Xtu = x]1( - \infty ,b](x)

with strike K and barrier b. Other examples are a down-and-out put option or options
with multiple barriers.

Reducing the truncation error. Typically, the support of the underlying pro-
cessXt is \BbbR and the restriction to a compact domain \scrX = [x, x] introduces a truncation
error. The error is less relevant for barrier options than for American options since
the option value is zero for x > b and thus the truncation error for large x is zero if
x = b. For small x, we know that the option value converges toward zero and the
truncation error becomes small for x small enough. For an American put option we
exploit the asymptotic behavior of the payoff in order to reduce the truncation error.
If Xtu is below the exercise boundary, the option is exercised at the value K  - eXtu ,
which we exploit for Xtu < x. The function x \mapsto \rightarrow Vtu tends to zero from above for
x \rightarrow \infty and thus for x large enough the truncation to zero for x > x is justified.
Hence, we introduce the following modification of the dynamic Chebyshev method,

Vtu+1(x) = Vtu+1(x)1\{ x<x\} + Vtu+1(x)1\{ x\in \scrX \} + Vtu+1(x)1\{ x>x\} ,

\approx (K  - ex)1\{ x<x\} + \widehat Vtu+1
(x)1\{ x\in \scrX \} ,

and thus

\BbbE [Vtu+1(Xtu+1)| Xtu = xk] \approx \BbbE [(K  - eXtu+1 )1\{ Xtu+1
<x\} | Xtu = xk]

+

N\sum 
j=0

cj(tu+1)\Gamma j,k(tu)

for x small and x large enough. One can precompute \BbbE [(K - eXtu+1 )1\{ Xtu+1
<x\} | Xtu =

xk]. We emphasize that similar modifications to reduce the truncation error can
be found for other payoff profiles, e.g., for digitals, butterfly options, or any other
combination of different put options.
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Smoothing initial step. Moreover, we also modify the first time step from tn
to tn - 1. At time tn - 1 we need to calculate the values at the nodal points

Vtn - 1
(xk) = f(g(xk),\BbbE [VT (XT )| Xtn - 1

= xk]).

Instead of approximating VT with Chebyshev polynomials and using (2.6) we can
directly exploit that VT (x) = g(x) and calculate

Vtn - 1(xk) = f(g(xk),\BbbE [g(XT )| Xtn - 1 = xk]).(4.2)

This means we need to calculate the conditional expectations \BbbE [g(XT )| Xtn - 1 = xk]
for k = 0, . . . , N , which are essentially European option prices. From [11], we know
that European option prices are analytic functions of the starting value x for a large
class stock price models and payoffs. Hence, the kink of the payoff is no longer relevant
and the method is ``smoothed,"" i.e., convergence is improved. In section 5.3, we will
investigate the effect of the smoothing on the error decay numerically.

Note that this implementation of the initial step introduces a smoothing effect
but no additional error; on the contrary, by computing the generalized moments (4.2)
directly we avoid a polyonmial approximation of the known payoff function. Hence
the modification improves the accuracy of the method.

The option's sensitivities. The option's sensitivities Delta and Gamma can
be computed by taking the first or second derivative of

S \mapsto \rightarrow \widehat V0(log(S)) =
\sum 
j\in \scrJ 

cj(t0)pj(log(S)).

Thus Delta and Gamma are expressed as the sum of derivatives of Chebyshev poly-
nomials. In particular, their derivation comes without any additional computational
costs in the offline phase or in the time-stepping.

5. Numerical experiments. In this section, we use the dynamic Chebyshev
method to price American put options and we numerically investigate the convergence
of the method. Moreover, we compare the method with the least-squares Monte Carlo
method of [23]. All experiments were performed on a computer with Intel Core i7-
6700 with 3.4GHz and 16GB memory. All codes are written in MATLAB version
R2017b.

5.1. Stock price models. For the convergence analysis we use three different
stock price models.

The Black--Scholes model. In the classical model of [3] the stock price process
is modelled by the SDE

dSt = rStdt+ \sigma StdWt,

where r is the risk-free interest rate and \sigma > 0 is the volatility. In this model the log-
returns Xt = log(St) are normally distributed and for the double truncated moments

\BbbE [Xm1[a,b](X)] for X \sim \scrN (\mu , \sigma 2)

explicit formulas are available. Kan and Robotti [20] present results for the (multi-
variate) truncated moments and provide a MATLAB implementation.
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THE DYNAMIC CHEBYSHEV METHOD B167

The Merton jump diffusion model. The jump diffusion model introduced by
[26] adds jumps to the classical Black--Scholes model. For St = S0e

Xt the log-returns
Xt follow a jump diffusion with volatility \sigma and added jumps arriving at rate \lambda > 0
with normal distributed jump sizes according to \scrN (\alpha , \beta 2). From [6] we obtain the
characteristic function of Xt given by

\varphi (z) = exp

\biggl( 
t

\biggl( 
ibz  - \sigma 2

2
z2 + \lambda 

\biggl( 
eiz\alpha  - 

\beta 2

2 z2

 - 1

\biggr) \biggr) \biggr) 

with risk-neutral drift b = r  - \sigma 2

2  - \lambda (e\alpha +
\beta 2

2  - 1).

The constant elasticity of variance model. CEV model as stated in [32] is
a local volatility model based on the stochastic process

dSt = rStdt+ \sigma S
\beta /2
t dWt for \beta > 0.(5.1)

Hence the stock volatility \sigma S
(\beta  - 2)/2
t depends on the current level of the stock price.

For the special case \beta = 2 the model coincides with the Black--Scholes model. How-
ever, from market data one typically observes a \beta < 2. The CEV-model is one example
of a model which has neither a probability density, nor a characteristic function in
closed-form.

5.2. Expected convergence behavior. Before we perform a numerical con-
vergence analysis, we recall the theoretical error analysis and point out what type of
error decay we can expect.

First, we consider an analytic value function and omit a possible truncation error.
In this case we know from Corollary 3.4 that the following error bound holds,

\varepsilon tu \leq c1\varrho 
 - N log(N)Dn + c2 log(N)Dn\delta ,

or with \delta  \star instead of \delta if (GM*) holds. This yields for the log-error

log(\varepsilon tu) \leq log
\bigl( 
c1\varrho 

 - N log(N)Dn + c2 log(N)Dn\delta 
\bigr) 

= log
\bigl( 
c1\varrho 

 - N log(N)Dn
\bigr) 
+ log

\Bigl( 
1 +

c2
c1

\varrho N\delta 
\Bigr) 

= log(c1) - log(\varrho )N +Dn log(log(N)) + log
\Bigl( 
1 +

c2
c1

\varrho N\delta 
\Bigr) 
.

(5.2)

If we assume that \varrho N\delta \leq 1 the log-error as a function of N should be bounded by a
function of the form N \mapsto \rightarrow c - m1N +m2 log(log(N)) for constants c,m1,m2 > 0 and
since the linear term dominates the log log-term, we expect to observe an exponential
error decay in N . For \varrho N\delta > 1 we obtain

log
\Bigl( 
1 +

c2
c1

\varrho N\delta 
\Bigr) 
= log

\Bigl( c2
c1

\varrho N\delta 
\Bigr) 
+ log

\Bigl( c1
c2

\varrho  - N\delta 
 - 1

+ 1
\Bigr) 

\leq log
\Bigl( c2
c1

\Bigr) 
+ log(\varrho )N + log(\delta ) + log

\Bigl( c1
c2

+ 1
\Bigr) 
.

When we plug this term into (5.2), the terms  - log(\varrho )N and log(\varrho )N cancel each other
out. Combining the two cases yields two observations for the convergence behavior.
If the error when computing the generalized moments in the offline phase is \delta or \delta  \star 

then the total error of the method will decrease in N until the level \delta , respectively
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B168 KATHRIN GLAU, MIRCO MAHLSTEDT, AND CHRISTIAN P\"OTZ

\delta  \star , is reached. Second, in terms of the total computational effort one should choose
N subject to the accuracy of the generalized moments. For example, in the Monte
Carlo case the optimal N is a function of the number of simulations or of the number
of quadrature points in the Fourier case. In the Monte Carlo case the error \delta  \star decays
typically with cM - 0.5 and from \varrho N\delta  \star \leq 1 follows N \leq \~c log(M) for some constant
\~c > 0. If we fix N like this, the complexity of the offline phase N2M becomes
log2(M)M and the complexity of the online phase N2 becomes log2(M). In the
Fourier case the error \delta depends on the regularity of the integrand which is model
dependent. Typically the error will decrease much faster than the Monte Carlo error.

If the value function is only continuously differentiable and not analytic, we can
no longer apply the results from section 3. Nevertheless, we can use the dynamic
Chebyshev method and come up with a very rough estimate of the expected conver-
gence behavior. We know that the convergence of the Chebyshev interpolation is of
polynomial order for continuously differentiable functions. If we simply replace the
term \varrho  - N by a term N - p for a p \in \BbbN , we can perform the same calculations as in the
anlytic case. We obtain for the log-error

log(\varepsilon tu) \leq log(c1) - p log(N) +Dn log(log(N)) + log

\biggl( 
1 +

c1
c2

N - p\delta 

\biggr) 
.

Assuming Np\delta \leq 1 suggests that the log-error as a function of N is bounded by a
function N \mapsto \rightarrow c  - m1 log(N) + m2 log(log(N)) for constants c,m1,m2 > 0. In this
case the log-error is approximately linear in log(N). If we use Monte Carlo simulation
in the offline step with decay cM - 0.5, the condition Np\delta  \star \leq 1 implies for p = 1 that
N \leq \~c

\surd 
M and more generally N \leq \~cM0.5/p. Similarly to the analytic case, if we

choose N = \~cM0.5/p, the complexity of the offline phase N2M becomes M1+1/p and
the complexity of the online phase nN2 becomes nM1/p.

5.3. Numerical convergence analysis. In this section we investigate the con-
vergence of the dynamic Chebyshev method. We price a barrier call option and an
American put option along with the options' Delta and Gamma in the Black--Scholes
and the Merton jump diffusion model, where we can use the COS method of [10] as a
benchmark. The COS method is based on the Fourier-cosine expansion of the density
function and provides fast and accurate results for the class of L\'evy models. We use
the implementations of method which were provided for the benchmarking project of
[34]. The provided implementations are slightly modified to fit for our examples.

For the experiments, we use the following parameter sets in the Black--Scholes
model

K = 100, r = 0.03, \sigma = 0.25, T = 1,

and for the Merton jump diffusion model

K = 100, r = 0.03, \alpha =  - 0.5, \beta = 0.4, \sigma = 0.25, \lambda = 0.4,

and we use 32 time steps. The jump parameters \alpha , \beta , and \lambda are taken from [34].

5.3.1. Convergence for analytic value functions. We price a barrier option
with call payoff gT (x) = (ex  - K)+1(\infty ,b](x) and barrier b = log(125) in the Black--
Scholes model. Defining \scrX = [x, b], gtu(x) = 1(\infty ,b](x) and f(x, y) = xy the pricing
problem of a barrier option as introduced in section 4.3 can be written in the general
form of (2.4) and (2.5).
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Fig. 5.1. Error decay prices of dynamic Chebyshev in the Black--Scholes model using smooth-
ing in the first time step (left) and without smoothing (right). The conditional expectation of the
Chebyshev polynomials are calculated with the density function.

Remark 5.1. When conditions (i) and (ii) of Proposition 3.5 hold and the smooth-
ing of the payoff as stated in (4.2) is applied then the value function of an up-and-out
barrier option

Vtu : [x, b] \ni x \mapsto \rightarrow \BbbE [Vtu(Xtu+1
)| Xtu = x]1( - \infty ,b](x)

is a function with an analytic extension to some Bernstein ellipse \scrB ([x, b], \varrho ), \varrho \in 
(1,\infty ) for all u = 0, . . . , n  - 1. In this case the convergence result for the dynamic
Chebyshev method of Corollary 3.4 holds.

From [11] we know that conditions (i) and (ii) of Proposition 3.5 are fulfilled in
the Black--Scholes model and thus we can expect the log-error to decay approximately
linearly in the number of Chebyshev nodes.

For the following experiments, we used the density approach to calculate the
generalized moments implemented with the MATLAB quadrature routine quadgk with
an absolute as well as relative error tolerance of 10 - 13 and we set x = log(10). Prices
and sensitivities are calculated on a grid of starting values equally distributed between
90 and 110 and compared to the benchmark method. The left plot in Figure 5.1 shows
the log-error for an increasing number of nodes N = 10, . . . , 100. The log-error for
the prices as well as for Delta and Gamma decays linearly in N as we expected and
reaches an accuracy below 10 - 12. With only 50 nodal points the method is already
able to achieve an accuracy below 10 - 6.

The right plot in Figure 5.1 shows the same experiment without the smoothing
in the initial time step. The method still converges but the decay of the log-error is
no longer linear.

5.3.2. Convergence for differentiable value functions. Next, we price an
American put option in the Black--Scholes and in the Merton model. Here, the value
function is only continuously differentiable but not analytic. Due to the maxima
function in the evaluation of the value function in every time step, we cannot expect
that the function is analytic around the optimal exercise point. However, Peskir and
Shiryaev [28] show that the value function of an American option is still continuously
differentiable at the exercise point. This property is often called the ``smooth-fit""
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Fig. 5.2. Error decay prices of dynamic Chebyshev in the Black--Scholes model (left) and the
Merton model (right). The conditional expectation of the Chebyshev polynomials are calculated with
the Fourier transformation.

property. Bayraktar [1] shows that this smoothness property holds also in a jump-
diffusion model. The expected decay of the log-error is therefore slower than a linear
decay and behaves approximately like  - p log(N). Therefore, we should need more
nodal points as in the analytic case to obtain the same accuracy.

For both models the generalized moments are computed by the Fourier approach
as stated in (4.1). We truncate the integral at | \xi | \leq 250 and use Clenshaw--Curtis with
500 nodes for the numerical integration. For the Fourier transform of the Chebyshev
polynomials the implementation of [7] is used. We run the dynamic Chebyshev method
for an increasing number of Chebyshev nodes N = 50, 100, . . . , 750. Then, option
prices and their sensitivities delta and gamma are calculated on a grid of different
values of S0 equally distributed between 60\% and 140\% of the strike K. The resulting
prices and Greeks are compared using the COS method as a benchmark and the
maximum error over the grid is calculated. Here we use the implementation provided
in [34].

Figure 5.2 shows the error decay for the Black--Scholes model (left-hand side)
and the Merton model (right-hand side). We observe that the method converges
and an error below 10 - 3 is reached for N = 300 Chebyshev nodes. The speed of
the convergence is similar for both stock price models and slower than in the barrier
option example. The plots demonstrate an approximately polynomial error decay in
N . Hence, the experiments confirm that the method can be used for an American
put option.

5.3.3. Convergence for a bivariate barrier option. In this section, we pro-
vide evidence that the method also works for multivariate options by looking at the
convergence of the dynamic Chebyshev method for barrier options with two barriers.
We consider two assets S1

t , S
2
t and an option with payoff

g(x1, x2) = (ex1  - K)+1( - \infty ,b1](x1)1( - \infty ,b2](x2) with x1 = log(S1), x2 = log(S2)

strike K and barrier b. This type of option is also referred to as an outside/rainbow
barrier option as a second (outside) underlying asset is included to generate an addi-
tional discount compared to a standard (barrier) option. An economic example could
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Fig. 5.3. Error decay of the dynamic Chebyshev approach for a bivariate barrier option in a
multivariate Black--Scholes model. The conditional expectation of the Chebyshev polynomials are
calculated using the density function.

be that a company would like to hedge against increasing prices of a commodity only
if the economy stays at or below its current level. In the scenario of an economic
boom higher prices cover the increase in costs and no hedge is required. Different
examples of options with multiple barriers and their economic interpretation can, for
example, be found in [9].

Here, we assume that both assets follow a geometric Brownian motion and hence
we are in a bivariate Black--Scholes type model. We fix the following model parame-
ters,

K = 100, r = 0.03, \sigma 1 = 0.25, \sigma 2 = 0.2, \rho = 0.4, T = 1,

and choose as a barrier b1 = log(125) and b2 = log(120). For the calculation of the
generalized moments we use the density approach implemented using the MATLAB
function integral2 with an absolute and relative error tolerance of 10 - 6. We run the
dynamic Chebyshev method for an increasing number of points N = N1 = N2 ranging
from 10 to 40 and calculate prices on a two-dimensional grid of starting values equally
distributed in [90, 110] \times [90, 110]. For the comparison of prices, we run the method
with N = 50.

Figure 5.3 shows the resulting error decay. We still observe that the log-error
decays almost linearly, in N , where N corresponds to a total number of N2 grid
points. In a general D-dimensional framework we can expect to need ND points
for the same error behavior in N . This is often called the course of dimensionality.
Different numerical techniques have been developed to tackle this problem such as
low-rank tensor techniques and sparse grids. These can be exploited when applying
the dynamic Chebyshev method to multivariate pricing problems.

5.4. Dynamic Chebyshev with Monte Carlo. So far, we have empirically
investigated the error decay of the method for option prices and their derivatives.
In this section, we compare the dynamic Chebyshev method with the least-squares
Monte Carlo approach of [23] in terms of accuracy and runtime.
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Fig. 5.4. Price surface and corresponding error of the dynamic Chebyshev method in the Black--
Scholes model. The conditional expectations are calculated with Monte Carlo.

5.4.1. The Black--Scholes model. As a first benchmark, we use the Black--
Scholes model with an interest rate of r = 0.03 and volatility \sigma = 0.25. Here, we look
at a whole option price surface with varying maturities and strikes. We choose 12
different maturities between one month and four years given by

T \in \{ 1/12, 2/12, 3/12, 6/12, 9/12, 1, 15/12, 18/12, 2, 30/12, 3, 4\} 

and strikes equally distributed between 80\% and 120\% of the current stock price
S0 = 100 in steps of 5\%. We fix n = 504 time steps (i.e., exercise rights) per year,
which is equivalent to two ticks per trading day (assuming 252 trading days per
year). We use a relatively high number of exercise rights to ensure that the solution
in discrete time is a good approximation of the actually continuous time problem of
pricing an American put.

We compare the dynamic Chebyshev method to the least-squares Monte Carlo
approach. We run both methods for an increasing number of Monte Carlo paths
according to

M \in \{ 2500, 5000, 10000, 20000, 40000, 80000\} .(5.3)

The convergence of the dynamic Chebyshev method depends on both the number
of nodes N and the number of Monte Carlo paths M . For an optimal convergence
behavior one needs to find a reasonable relationship between these factors. The anal-
ysis of the expected convergence behavior in section 5.2 shows that the number of
Chebyshev nodes N should be c

\surd 
M for a constant c > 0. Numerical experiments

indicated that c =
\surd 
2 is a very reasonable choice and thus we fix N =

\surd 
2
\surd 
M .

Figure 5.4 shows the price surface and the error surface for N = 400 and M =
80000. The error was estimated by using the COS method as benchmark. We reach
a maximal error below 0.015 on the whole option surface.

In Figure 5.5 the log10-error is shown as a function of the log10-runtime for both
methods. The left figure compares the total runtimes and the right figure compares
the offline runtime. For the dynamic Chebyshev method the total runtime includes
the offline-phase and the online phase. The offline-phase consists of the simulation of
one time step of the underlying asset process X\Delta t for N + 1 starting values X0 = xk

and of the computation of the conditional expectations E[pj(X\Delta t)| X0 = xk] for j, k =
0, . . . , N . The online phase is the actual pricing of the American option for all strikes
and maturities. Similarly, the total runtime of the least-squares Monte Carlo method
includes the simulation of the Monte Carlo paths (offline-phase) and the pricing of
the option via backward induction (online-phase).
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Fig. 5.5. Log-Log plot of the total/online runtime vs. accuracy. Comparison of the dynamic
Chebyshev method with the least-squares Monte Carlo algorithm.

We observe that the dynamic Chebyshev method reaches the same accuracy with
a much lower runtime. For example, a maximum error of 0.1 is reached in a total
runtime of 0.5s with the dynamic Chebyshev method whereas the LSM approach
needs 98s. This means the dynamic Chebyshev method is nearly 200 times faster for
the same accuracy. For the actual pricing in the online phase, the gain in efficiency is
even higher. We observe that the dynamic Chebyshev method outperforms the least-
squares Monte Carlo method in terms of the total runtime and the pure online runtime.
Moreover, we observe that the performance gain from splitting the computation into
an offline and an online phase is much higher for the dynamic Chebyshev method. For
instance, in the example above the online runtime of the dynamic Chebyshev method
is 0.05s whereas the LSM takes 95s, a factor of 1900 times more.

The main advantage of the dynamic Chebyshev method is that once the condi-
tional expectations are calculated, they can be used to price the whole option surface.
The pure pricing, i.e., the online phase, is highly efficient. Furthermore, one only
needs to simulate one time step \Delta t of the underlying stochastic process instead of
the complete path. We investigate this efficiency gain by varying the number of op-
tions and the number of time-steps (exercise rights). From section 4.2, we know that
the computational complexity of the offline phase is independent of the number of
time-steps and the number of payoffs/options we want to price. Once the generalized
moments are calculated the pricing of an option requires only one run of online time
stepping. Figure 5.5 shows that the online runtime even for pricing a complete option
surface is less than 1\% of the total runtime. Therefore we can expect that varying
the number of options and the number of exercise rights has nearly no effect on the
total runtime of the dynamic Chebyshev method.

Figure 5.6 compares the total runtime of the dynamic Chebyshev method with
the total runtime of the LSM method for an increasing number of options and for
an increasing number of time steps. As expected, we can empirically confirm that
the efficiency gain by the dynamic Chebyshev methods increases with the number of
options and the number of exercise rights. In both cases, the runtime of the dynamic
Chebyshev method stays nearly constant whereas the runtime of the LSM method
increases approximately linearly.
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Fig. 5.6. Total runtime of the dynamic Chebyshev and the LSM method for an increasing
number of options (left) and an increasing number of timesteps (right).
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Fig. 5.7. Price surface and corresponding error of the dynamic Chebyshev method in the CEV
model. The conditional expectations are calculated with Monte Carlo.

5.4.2. The CEV model. Next, we use the CEV model for the underlying stock
price process. We perform the same experiments as in the last section. The parameters
in the CEV model, as in (5.1), are the following:

\sigma = 0.25, r = 0.03, \beta = 1.5.

Similarly, we compare the dynamic Chebyshev and the LSM method by computing the
prices of an option price surface. We use the same parameter specifications for K, T
and n. We run both methods for an increasing number of Monte Carlo simulations M
and fix N =

\surd 
2
\surd 
M . Figure 5.7 shows the price surface and the error surface for N =

400 and M = 80000. The error is calculated using a binomial tree implementation of
the CEV model based on [27].

In Figure 5.8 the log10-error is shown as a function of the log10-runtime for both
methods. The left figure compares the total runtimes and the right figure compares the
offline runtimes. Again, we observe that the dynamic Chebyshev method is faster for
the same accuracy and it profits more from an offline-online decomposition. For exam-
ple, the total runtime of the dynamic Chebyshev method to reach an accuracy below
0.03 is 3.5s whereas LSM takes 136s. For the online runtimes this out-performance is
1s to 122s.
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Fig. 5.8. Log-Log plot of the total/online runtime vs. accuracy. Comparison of the dynamic
Chebyshev method with the least-squares Monte Carlo algorithm.
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Fig. 5.9. Total runtime of the dynamic Chebyshev and the LSM method for an increasing
number of options (left) and an increasing number of timesteps (right).

Investigating this efficiency gain further, we look at the performance for different
numbers of options and time steps (exercise rights). Similarly to the last section,
Figure 5.9 compares the total runtime of the dynamic Chebyshev method with the
total runtime of the LSM method for an increasing number of options and time steps.
In both cases, the runtime of the dynamic Chebyshev method stays nearly constant
whereas the runtime of the LSM method increases approximately linearly. This obser-
vation is consistent with the theoretical considerations in section 4.2 and the findings
for the Black--Scholes model in the previous section.

6. Conclusion and outlook. We have introduced a new approach to price
American options via backward induction by approximating the value function with
Chebyshev polynomials. Thereby, the computation of the conditional expectation of
the value function in each time step is reduced to the computation of conditional
expectations of polynomials. The proposed method separates the pricing of an option
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into a part which is model-dependent (the computation of the conditional expec-
tations) and the pure pricing of a given payoff which becomes independent of the
underlying model. The first step, the computation of the conditional expectation of
the Chebyshev polynomials, is the so-called offline phase of the method. The design
of the method admits several qualitative advantageous:

\bullet If the conditional expectations are set up once, we can use them for the pricing
of many different options. Thus, the actual pricing in the online step becomes
very simple and fast.

\bullet In the precomputation step one can combine the method with different tech-
niques, such as Fourier approaches and Monte Carlo simulation. Hence the
method can be applied in a variety of models.

\bullet The proposed approach is very general and flexible and thus not restricted
to the pricing of American options. It can be used to solve a large class of
optimal stopping problems.

\bullet We obtain a closed-form approximation of the option price as a function of the
stock price at every time step. This approximation can be used to compute
the option's sensitivities Delta and Gamma at no additional costs. This holds
for all models and payoff profiles, even if Monte Carlo is required in the offline
phase.

\bullet The method is easy to implement and to maintain. The precomputation step
is well-suited for parallelization to speed up the method.

We have investigated the theoretical error behavior of the method and introduced
explicit error bounds. We put particular emphasis on the combination of the method
with Monte Carlo simulation. Numerical experiments confirm that the method per-
forms well for the pricing of American options. A detailed comparison of the method
with the least-squares Monte Carlo approach proposed by [23] confirmed a high effi-
ciency gain, especially, when a high number of options is priced, for example, a whole
option price surface. In this case, the dynamic Chebyshev method highly profits from
the offline-online decomposition. Once the conditional expectations are computed,
they can be used to price options with different maturities and strikes. Besides the
efficiency gain, the closed-form approximation of the price function is a significant ad-
vantage because it allows us to calculate the sensitivities. Since [23] introduced their
method different modifications have been introduced, either to increase efficiency or
to tackle the sensitivities. For example, the simulation algorithm of [18] is compara-
ble to LSM in terms of efficiency but is able to compute the Greeks at no additional
costs. Moreover dual approaches were developed to obtain upper bounds for the op-
tion price; see [29] and more recently [2]. The presented experiments focused on the
one-dimensional case with a bivariate application. A thorough numerical investiga-
tion of the multivariate case including a performance study will be presented in a
follow-up paper.

The presented error analysis of the method under an analyticity assumption is
the starting point for further theoretical investigations in the case of piecewise analyt-
icity and (piecewise) differentiability. The former allows one to cover rigorously the
American option pricing problem, and a preliminary version is presented in [25]. The
qualitative merits of the method can be exploited in a variety of applications. Glau,
Pachon, and P\"otz [14] take advantage of the closed-form approximation to efficiently
compute the expected exposure of early-exercise options as a step in CVA calculation.
Moreover, the method can be used to price different options such as other types of
barrier options, swing options, or multivariate American options.
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Appendix A. Proof of Theorem 3.3.

Proof. Consider a DPP as defined in Definition 2.1, i.e., we have a Lipschitz
continuous function

| f(x1, y1) - f(x2, y2)| \leq Lf (| x1  - x2| + | y1  - y2| ).

Assume that the regularity Assumption 3.2 and the assumption on the truncation
error (TR) hold. Then we have to distinguish between the deterministic case (GM)
and the stochastic case (GM*). In the first case, the expectation in the error bound
can simply be ignored. First, we apply Proposition 3.1. At time point T there is no
random part and no distortion error. Thus,

max
x\in \scrX 

\BbbE 
\Bigl[ 
| VT (x) - \widehat VT (x)| 

\Bigr] 
= max

x\in \scrX 
| VT (x) - \widehat VT (x)| \leq \varepsilon int(\varrho tn , N,D,Mtn).

For ease of notation we will from now on write \varepsilon jint = \varepsilon int(\varrho tj , N,D,Mtj ). We obtain
for the error at tu

max
x\in \scrX 

\BbbE 
\Bigl[ 
| Vtu(x) - \widehat Vtu(x)| 

\Bigr] 
\leq \varepsilon uint + \Lambda NF (f, tu)(A.1)

with maximal distortion error F (f, tu) = maxk\in \scrJ \BbbE 
\Bigl[ 
| Vtu(x

k) - \widehat Vtu(x
k)| 
\Bigr] 
.

Note that whether (GM) or (GM*) hold an approximation error of the condi-

tional expectation of \widehat Vtu+1 is made, i.e., \BbbE [\widehat Vtu+1(Xtu+1)| Xtu = xk] = \Gamma k
tu(
\widehat Vtu+1) \approx \widehat \Gamma k

tu(
\widehat Vtu+1). The Lipschitz continuity of f yields\bigm| \bigm| \bigm| Vtu(x

k) - \widehat Vtu(x
k)
\bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| f \bigl( g(tu, xk),\Gamma k

tu(Vtu+1
)
\bigr) 

 - f
\Bigl( 
g(tu, x

k), \widehat \Gamma k
tu(
\widehat Vtu+1

)
\Bigr) \bigm| \bigm| \bigm| 

\leq Lf

\Bigl( \bigm| \bigm| \bigm| g(tu, xk) - g(tu, x
k)
\bigm| \bigm| \bigm| +

\bigm| \bigm| \bigm| \Gamma k
tu(Vtu+1

) - \widehat \Gamma k
tu(
\widehat Vtu+1

)
\bigm| \bigm| \bigm| \Bigr) 

= Lf

\Bigl( \bigm| \bigm| \bigm| \Gamma k
tu(Vtu+1

) - \widehat \Gamma k
tu(
\widehat Vtu+1

)
\bigm| \bigm| \bigm| \Bigr) 

\leq Lf

\Bigl( \bigm| \bigm| \bigm| \Gamma k
tu(Vtu+1

1\scrX ) - \Gamma k
tu(
\widehat Vtu+1

)
\bigm| \bigm| \bigm| + \bigm| \bigm| \bigm| \Gamma k

tu(Vtu+1
1\BbbR D\setminus \scrX )

\bigm| \bigm| \bigm| 
+
\bigm| \bigm| \bigm| \Gamma k

tu(
\widehat Vtu+1

) - \widehat \Gamma k
tu(
\widehat Vtu+1

)
\bigm| \bigm| \bigm| \Bigr) .

Next, we consider the expectation for each of the three error terms. For the first term
we obtain

\BbbE 
\Bigl[ \bigm| \bigm| \bigm| \Gamma k

tu(Vtu+1
1\scrX ) - \Gamma k

tu(
\widehat Vtu+1

)
\bigm| \bigm| \bigm| \Bigr] = \BbbE 

\Bigl[ \bigm| \bigm| \bigm| \BbbE [Vtu+1
(Xtu+1

)1\scrX  - \widehat Vtu+1
(Xtu+1

)| Xtu = xk]
\bigm| \bigm| \bigm| \Bigr] 

\leq max
x\in \scrX 

\BbbE 
\Bigl[ 
| Vtu+1

(x) - \widehat Vtu+1
(x)| 

\Bigr] 
= \varepsilon tu+1

and for the second term we have

\BbbE 
\Bigl[ \bigm| \bigm| \bigm| \Gamma k

tu(Vtu+11\BbbR D\setminus \scrX )
\bigm| \bigm| \bigm| \Bigr] \leq \BbbE [\varepsilon tr] = \varepsilon tr.

For the last term we have to distinguish two cases. If we assume (GM) holds, the
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operator norm yields\bigm| \bigm| \bigm| \Gamma k
tu(
\widehat Vtu+1

) - \widehat \Gamma k
tu(
\widehat Vtu+1

)
\bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \Bigl( \Gamma k

tu  - \widehat \Gamma k
tu

\Bigr) \Bigl( \widehat Vtu+1

\Bigr) \bigm| \bigm| \bigm| 
\leq 
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \Gamma k

tu  - \widehat \Gamma k
tu

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
op

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \widehat Vtu+1

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\infty 

\leq \delta 
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \widehat Vtu+1

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\infty 
.

Next, we consider the second case and assume that (GM*) holds. Then we have

\BbbE 
\Bigl[ \bigm| \bigm| \bigm| \Gamma k

tu(
\widehat Vtu+1

) - \widehat \Gamma k
tu(
\widehat Vtu+1

)
\bigm| \bigm| \bigm| \Bigr] \leq \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \Gamma k

tu  - \widehat \Gamma k
tu

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
op

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \widehat Vtu+1

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm|  \star 
\infty 

\leq \delta  \star (M)
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \widehat Vtu+1

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm|  \star 
\infty 
.

Hence in either case the following bound holds:

\BbbE 
\Bigl[ \bigm| \bigm| \bigm| \Gamma k

tu(
\widehat Vtu+1

) - \widehat \Gamma k
tu(
\widehat Vtu+1

)
\bigm| \bigm| \bigm| \Bigr] \leq \varepsilon gm max

x\in \scrX 
\BbbE 
\Bigl[ 
| \widehat Vtu+1

(x)| 
\Bigr] 

with \varepsilon gm = \delta if assumption (GM) holds and \varepsilon gm = \delta  \star (M) if assumption (GM*) holds.
We need an upper bound for the maximum of the Chebyshev approximation

max
x\in \scrX 

\BbbE 
\Bigl[ 
| \widehat Vtu+1

(x)| 
\Bigr] 
\leq max

x\in \scrX 
\BbbE 
\Bigl[ 
| \widehat Vtu+1

(x) - Vtu+1
(x)| 

\Bigr] 
+max

x\in \scrX 
| Vtu+1

(x)| \leq \varepsilon tu+1
+ V u+1

with V u+1 := maxx\in \scrX | Vtu+1
(x)| . Hence, the error bound (A.1) becomes

\varepsilon tu \leq \varepsilon uint + \Lambda NLf

\bigl( 
(1 + \varepsilon gm)\varepsilon tu+1 + \varepsilon tr + \varepsilon gmV u+1

\bigr) 
.

By induction, we now show (3.5). For u = n we have \varepsilon tn \leq \varepsilon nint and therefore (3.5)
holds for u=n. We assume that for n, . . . , u + 1 (3.5) holds. For the error \varepsilon tu we
obtain

\varepsilon tu \leq \varepsilon uint + \Lambda NLf

\bigl( 
(1 + \varepsilon gm)\varepsilon tu+1 + \varepsilon tr + \varepsilon gmV u+1

\bigr) 
\leq \varepsilon uint + \Lambda NLf

\Biggl( 
(1 + \varepsilon gm)

\Biggl( 
n\sum 

j=u+1

Cj - (u+1)\varepsilon jint

+ \Lambda NLf

n\sum 
j=u+2

Cj - (u+2)(\varepsilon tr + \varepsilon gmV j)

\Biggr) 
+ \varepsilon tr + \varepsilon gmV u+1

\Biggr) 

= \varepsilon uint + C

n\sum 
j=u+1

Cj - (u+1)\varepsilon jint + \Lambda NLf

\Biggl( 
C

n\sum 
j=u+2

Cj - (u+2)(\varepsilon tr + \varepsilon gmV j)

+ \varepsilon tr + \varepsilon gmV u+1

\Biggr) 

= \varepsilon uint+

n\sum 
j=u+1

Cj - u\varepsilon jint+\Lambda NLf

\Biggl( 
n\sum 

j=u+2

Cj - (u+1)(\varepsilon tr + \varepsilon gmV j)+\varepsilon tr+\varepsilon gmV u+1

\Biggr) 

=

n\sum 
j=u

Cj - u\varepsilon jint + \Lambda NLf

n\sum 
j=u+1

Cj - (u+1)(\varepsilon tr + \varepsilon gmV j),

which was our claim.
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