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Abstract

The design of lightweight structures is a challenging task. Shape and
stress are strongly dependent on each other and cannot be sepa-
rated. Tensile and bending-active structures are examples of this.
Isogeometric analysis provides the possibility to unify the design
and analysis model. The model conversion to a polygonal mesh is
avoided and the parametrization by Non-uniform Rational B-Splines
(NURBS) is maintained while generating the simulation model from
the geometric design in Computer-Aided-Design (CAD). This is a ma-
jor advantage in the digital design of lightweight structures because
structural feedback can be provided during the shape generation.

This research extends the existing isogeometric methods in order to
obtain design through analysis. Missing links in the design chain were
found in the coupling of the individual structural members. Therefore,
three novel coupling formulations are proposed. The first one deals
with the rotational coupling of displacement-based element formula-
tions, e.g. Bernoulli beams. The second one provides an embedding
technique using implicit geometry description through the parame-
ter space. The last one uses the large parameter space of NURBS to
inherently describe a frictionless sliding contact between objects in
an innovative manner. Furthermore, a form finding technique for
bending-active structures for fast design exploration is proposed.

Lightweight structures are often assembled in several steps. This
makes the construction process important, which is very challenging
in the simulation. Therefore, the linking of several analysis steps is
investigated and incorporated into CAD. The necessary components
in order to enable a smooth workflow, from the geometric design to
the analysis and results, are developed and the potentials of paramet-
rics in the design process, including multi-stage, nonlinear structural
analysis, are revealed. The gained knowledge is consolidated in the
plug-in Kiwi!3d for Rhino/Grasshopper, which allows for a smooth
parametric design chain. The benefits and applicability of the ex-
tended isogeometric concept for real structures are demonstrated
with several examples.
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Zusammenfassung

Der Entwurf leichter Tragwerke ist aufgrund des Wechselspiels zwi-
schen Form und Kraft besonders anspruchsvoll. Formgebung und
Mechanik können z. B. für Membranbauten und biegeaktive Struktu-
ren nicht getrennt voneinander betrachtet werden. Die isogeometri-
sche Analyse bietet die Möglichkeit das Entwurfs- und Analysemo-
del zu vereinen. Die Erstellung eines Polygonnetzes für die Struktur-
analyse kann vermieden werden, indem die Parametrisierung mit
Non-uniform Rational B-Splines (NURBS), welche für Computer-
Aided-Design (CAD) üblich ist, auch im Analysemodell genutzt wird.
Dies bietet einen immensen Vorteil im digitalen Entwurfsprozess von
Leichtbaubaustrukturen, da mechanisches Feedback schon während
der Geometrieerstellung möglich ist.

Diese Arbeit erweitert die bestehenden isogeometrischen Ansätze
um eine durchgängige Entwurfskette zu gewährleisten. Hierfür wer-
den zusätzliche, noch fehlende Kopplungsmethoden für individuelle
Strukturelemente benötigt. Deswegen werden drei unterschiedli-
che Kopplungsmethoden vorgeschlagen. Die erste beschäftigt sich
mit der Rotationskopplung von verschiebungsbasierten Elementfor-
mulierungen, wie z. B. Bernoullibalken. Die zweite Methodik inte-
griert die Kopplung zweier Elemente durch eine implizite Geometrie-
beschreibung im Parameterraum. Das letzte Verfahren ermöglicht
durch die Ausnutzung des NURBS-Parameterraumes die Einbezie-
hung von reibungslosen Gleitkontakt ohne die explizite Bestimmung
der Kontaktflächen. Darüber hinaus wird eine Methode zur schnellen
Formfindung von biegeaktiven Strukturen im Vorentwurf vorgestellt.

Leichte Tragwerke bestehen oftmals aus mehreren Bestandteilen, die
in mehreren Schritten zusammengefügt werden, was wiederum die
Einbeziehung des Bauablaufes in die Analyse erfordert. Dies kann
eine große Herausforderung in der Simulation darstellen. Deswegen
wird die Verkettung verschiedener Analysen untersucht und in CAD
integriert. Die für einen von der Formgebung bis hin zur Simulation
reibungslosen Arbeitsablauf notwendigen Bestandteile im Entwurf
von nichtlinearen, mehrstufigen Prozessen werden beleuchtet und
die Potentiale des parametrischen Modells aufgedeckt. Das gewonne-
ne Wissen ist die Basis für das Plug-In Kiwi!3d für Rhino/Grasshopper,
welches eine nahtlose Entwurfskette ermöglicht. Die Vorteile und die
Anwendbarkeit der erweiterten isogeometrischen Methoden in der
Praxis werden anhand mehrerer Beispiele gezeigt.
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1
INTRODUCTION AND MOTIVATION

Isogeometric analysis (IGA) as introduced by Hughes et al. [70] in 2005
has the aim of seamlessly linking the analysis, i.e. computer-aided engi-
neering (CAE), into the design environment, i.e. computer-aided design
(CAD). The main idea is to use the basis functions of the geometry also
for the analysis. These basis functions are usually non-uniform rational
B-Splines (NURBS), which are common in CAD. The choice of these basis
functions removes the step of meshing, i.e. reparametrizing the geometry
with classical analysis-inherent basis functions, from the design process
of structural systems.

The potential of isogeometric analysis with finite element methods (FEM)
and boundary element methods (BEM) were explored extensively and
many element formulations for volumes, surfaces and curves, modeling a
huge variety of structural aspects, emerged. Most of the researchers refer to
problems in mechanical or biomedical engineering if an application case
is shown. The potential of the method in construction engineering is often
disregarded. Nonetheless, isogeometric analysis is in fact very suitable for
this field. Every construction is unique. Consequently, the design process

5



1 Introduction and Motivation

Figure 1.1: INSIDE/OUT pavilion at the inner court of the
Technical University of Munich by Eike Schling.

becomes more important, since the structural system has to be conceptu-
alized, constructed, evaluated and verified for every single produced entity.
These complex systems, as for example shown in Figure 1.1, consist of
many structural members, which makes the assembly process particularly
important. Existing research on IGA in this context mainly focuses on the
coupling of surfaces. Construction engineering, on the contrary, requires
also curve-like elements, such as beams and cables, and therefore, also
coupling techniques for these elements are crucial.

Furthermore, smooth shapes, which are perfect for the simulation with IGA,
appear particularly often in lightweight design. Lightweight structures are
characterized by their substantial form and force interaction accompanied
by large deflections. The shape and the stress state are inseparable. These
delicate structures gain their stiffness by implying some initial internal
stresses. Deforming and connecting the structural members usually intro-
duce those stresses. Consequently, it is necessary to design and model the
structure including these stresses. Here, the direct possibility of integrating
structural analysis into CAD is a huge benefit, since direct structural feed-
back can be provided to the designer. It is usually not possible to directly
constitute the shape in lightweight design. Since the shape is a primary cri-
terion in the initial design phases, a parametric setup that allows testing of

6



1 Introduction and Motivation

several configurations in an automated manner is highly beneficial. Many
modern CAD system already provide a parametric design environment for
the conception of the geometry. However, generating the classical FEM
model for the necessary structural feedback interrupts the tool chain. The
results are provided in the CAE environment. The parametric geometry
model is then manually adapted in order to meet the design criteria. IGA
can remove the interruptions of this highly iterative process by including
the structural analysis of the system into the parametric CAD environment
using the same parametric description. Providing an enclosed, smooth
design chain can speed up the process and enrich the design space.

This thesis will present several aspects of isogeometric analysis, which
enable an efficient CAD-integrated design of lightweight structures. It has
been organized in the following way.

CHAPTER 2 outlines typical sources of nonlinearity in structural systems.
The essential components of structural analysis are reviewed. These are
necessary for the implementation of an isogeometric design workflow
including construction stages.

CHAPTER 3 presents the fundamentals of isogeometric analysis. This com-
prises the geometric description of NURBS as well as the geometry repre-
sentation of common CAD programs, i.e. Boundary-Representation and
Trimming. The chapter is completed with some special aspects of NURBS,
which have to be taken into account while setting up a simulation.

CHAPTER 4 gives a brief overview of the isogeometric element formulations,
which are implemented in the research FE code Carat++1 and applied in
the CAD-integrated analysis of the application examples.

CHAPTER 5 presents the findings of this doctoral research related to the
coupling of structural elements with isogeometric analysis. After a short
introduction to the topic, three different novel techniques and fields of
application are proposed. The first one addresses the coupling of rotations
focusing on the application with beams. The second one explains the
approach of embedding entities inside the parameter domain of another
NURBS patch, which corresponds to an implicit description of the coupling.
Lastly, the two methods are combined in an innovative approach for sliding
interfaces by explicitly describing the coupling condition and implicitly
describing the geometry.

1 https://www.bgu.tum.de/st/software2/forschung/carat/
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1 Introduction and Motivation

CHAPTER 6 investigates several important features of a fully CAD-integrated
isogeometric workflow for the design of structures. This includes some
aspects of pre- and post-processing as well as the potential of parametrics
in CAD. Furthermore, it shows the possibilities of applying IGA in the
design of lightweight structures. The design cycle of membrane structures
is presented and an approach for fast design explorations of bending-active
structures is proposed.

CHAPTER 7 demonstrates the applicability of isogeometric analysis for
a holistic design process. The gathered showcases consist of academic
examples, which are oriented towards real structural systems, and a built
gridshell pavilion, where isogeometric analysis has already been involved
in the design process.

CHAPTER 8 contains some conclusions of this thesis and suggests interest-
ing future investigations and potential applications.

8
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2
FUNDAMENTALS OF STRUCTURAL

ANALYSIS

Lightweight structures are very delicate in their conception. Structural
feedback needs to be generated in order to obtain a feasible design. In the
past, physical mock-ups and trial-and-error were the main possibilities to
generate the required information. Nowadays, it is much more common
to digitally design the shape and compute the structural response. The
ability to conduct a numerical structural analysis significantly sped up the
design loops and enabled the study of a larger range of structural systems.

This chapter resumes the fundamentals of structural analysis. Because
of the high form-force-interaction of lightweight structures, which are a
main field of application of the proposed methods in this thesis, differen-
tial geometry plays a crucial part. Furthermore, large displacements and
nonlinear behavior have to be considered.

9



2 Fundamentals of Structural Analysis

2.1 Structural Mechanics

The following conventions hold for the whole thesis if not indicated dif-
ferently. Capital letters denote entities in the undeformed configuration
whereas lower-case characters are linked to the current configuration.
Latin indices are typically in the set of i ∈ {1, 2, 3} whereas for Greek in-
dices it holds α ∈ {1, 2} for surfaces and α ∈ {2, 3} for curves. The partial
derivative w.r.t. a variable xi with index i is abbreviated by ∂ (•)

∂ xi
= (•),i . This

is typically used for the partial derivatives w.r.t. a convective coordinate
θ i or w.r.t. the degrees of freedom (DOFs) of an element ur .

2.1.1 Nonlinearities

Nonlinearity in structural analysis means that the response of a system to
an impact is not linearly correlated with the impact (see Figure 2.1). This
behavior may originate from different sources which are described in the
following sections.

impact

re
sp

o
n

se

linear

nonlinear

Figure 2.1: Impact-response-diagram for linear and nonlinear
behavior of a structural system.

Material Nonlinearity

Material nonlinearity means that the stress-strain relation is not constant.
In simplified computations, linear elastic materials are often used (see
Figure 2.2(a)). A double strain implies a double stress response in the
structure. The relation can be described by the Young’s modulus E , which

10



2.1 Structural Mechanics

is the slope in the stress-strain diagram. Nonlinear elastic material (see
Figure 2.2(b)) removes the linear dependency between stressσ and strain
ε. However, one strain value is related to one stress value. Plasticity is
an additional source of nonlinearity. The material behaves like an elastic
material in the beginning. If a certain stress levelσy is reached, the stresses
do not correlate linearly to the strains anymore. An ideal elasto-plastic
material (see Figure 2.2(c)) does not increase the stresses after the yielding
level is reached, i.e. the structure deforms further without increasing the
load. Elastic behavior is observed while unloading and reloading up to
the yield strength. Therefore, a strain value is not directly linked to one
stress value. The loading history has to be incorporated into the model.
Figure 2.2(d) shows the stress-strain relation for an elasto-plastic material
without idealizing the yielding zone. Further loading is needed in order to
increase the strains also after reaching the yield stress. Un- and reloading
also induces elastic behavior which in return implies that the loading
history is needed for the correct modeling of the material.

These are only a few of many existing material models. Other factors like
temperature, strain-rate, damage or time could also be considered in the
constitutive law.

Geometric Nonlinearity

For a geometrically linear system, the equilibrium equation is set up only
once and all stiffnesses and forces can be computed with the initial local
coordinate systems. In consequence, strains and stresses are linearly de-
pendent on the nodal displacement since the stiffness matrix does not
change. This solution strategy is typically valid and applied if the displace-
ments are small. Geometric nonlinearity by contrast requires an update of
the equilibrium equations during the analysis because stresses and forces
may change their direction and amplitude.

The difference between linear and geometrically nonlinear analysis is illus-
trated in Figure 2.3. It shows the undeformed and deformed configuration
of a truss system with length L and l , respectively. The elongation ∆L
of the trusses is measured in the direction of the initial truss for a linear
approach. A doubled deformation u results in a doubled elongation. The
nonlinear approach compares the total lengths of the trusses in both con-
figurations. The different elongation measures are also reflected in the
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Figure 2.2: Stress-strain-diagram for: (a) linear elastic material,
(b) nonlinear elastic material, (c) ideal elasto-plastic material and

(d) elasto-plastic material.

emerging stresses and forces N in Figure 2.3. Lastly, the location and the
orientation of the equilibrium computation differ. For the given system in
Figure 2.3, the linear and the geometrically nonlinear approach result in
different loads, which are required to obtain the displacement u .

Constraint and Contact Nonlinearity

Nonlinearity in a system can also occur as a result of changing boundary
conditions. Contact problems are a common example. The structural
behavior of the system changes when two bodies collide. The contact areas
of the bodies with each other or the boundaries have to be detected and
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Figure 2.3: Equilibrium determination for the geometrically (a)
linear and (b) nonlinear case.

resolved by adding additional constraints. Note that the structural element
formulation does not change. Penalty methods or Lagrange methods are
often used to enforce the constraint.

In this thesis, nonlinearities related to changing contact constraints, which
are directly detected during the simulation, are not considered. However,
controlled contact scenarios or changes of the boundary conditions, oc-
curring for example in an assembly process, can be represented by several
stages of analysis and a correct linking of those (see Section 2.2). Figure 2.4
shows such an assembly process. A beam is bent into a loop using two ca-
bles in order to align the ends. The system can only bend in one direction.
Once the beam ends are connected and aligned, the cables are removed
and a clamped support is applied to the beam ends. Furthermore, another
cable is added to the middle of the beam, which pulls the top out-of-plane
towards another support.

In addition to the modeling of assembly processes, an approach for sliding
contact using the beneficial properties of NURBS will be elaborated in
Section 5.5.

2.1.2 Structural Modeling

Real structures are always volumes. However, common procedure is to
perform a reduction of dimensions for surface- and curve-like elements,
such as shells and beams, in order to reduce the degrees of freedom and
computational costs. Geometric assumptions are made for the reduced di-
mensions, which are usually much smaller than the remaining dimensions,
i.e. t � L1, L2 or h , w � L (see Figure 2.5). The dimensional reduction is, if
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(a) (b)

Figure 2.4: Constraint nonlinearity of an assembly process: (a)
in-plane-bending of a beam to a loop with aligned ends with

contracting cables and (b) out-of-plane-bending with different
boundary conditions and structural elements towards another

support by another contracting cable.

necessary, preceded by a homogenization of the material. Furthermore, it
is common to use the mid surface or center line for the reduction. The re-
duced entities are then described by the parametric geometry description
and the missing dimensions for the volume are derived from the reduced
geometry. This means e.g. that a surface-like structural element will be
described by its mid surface and a vector that is dependent on the paramet-
ric description of the mid surface, e.g. the surface normal, represents the
thickness. In the case of a curve, a frame that represents the cross section
of the line-like element describes the reduced dimensions.

2.1.3 Differential Geometry

A large portion of this thesis is strongly related to geometry. Therefore,
this section gives a brief overview of differential geometry in its different
dimensions. The reader is referred to Başar et al. [6], Klingbeil [77], and
Pottmann [108] for more details.

Geometry can be described in an explicit, implicit or parametric way. The
parametric description will be pursued in more depth since it is the most
general and flexible approach. A set of curvilinear coordinates θ i describes
the geometrical entity. The number of those parameter lines is equal to the
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Figure 2.5: Dimensional reduction with base vectors of a (a)
surface-like and (b) curve-like volume.

dimension of the geometric object. A curve has one parameter whereas a
surface has two and a volume three. Functions that generate the coordi-
nates x j in a given coordinate system map these parameters into space
(see Figure 2.6). In Euclidean space, the Cartesian coordinate system is
defined by the static orthonormal base vectors e j .

�

θ 1,θ 2,θ 3
�

7→ X
�

θ 1,θ 2,θ 3
�

= X j
�

θ 1,θ 2,θ 3
�

e j (2.1)

A curvilinear local coordinate system is beneficial for describing local prop-
erties of a geometry. The covariant base vectors G i are derived by partial
differentiation of the position vector w.r.t. geometry parameters, i.e. the
curvilinear coordinates:

G i =
∂ X

∂ θ i
= X ,i (2.2)
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G1

e1

e2

e3

X
�

θ 1,θ 2,θ 3
�

G2
G3

θ 1

θ 2

θ 3

Figure 2.6: Volume with curvilinear coordinate system and base
vectors.

The corresponding contravariant basis G i is defined by the following con-
dition.

G i · G j =δ
i
j =







1 for i = j

0 for i 6= j
(2.3)

The metric coefficients are computed by a scalar product.

Gi j = G i · G j and G i j = G i · G j (2.4)

The metric is used to transform the base vectors into the other coordinate
system

G i =G i j G j and G i =Gi j G j (2.5)

The metric tensor G is defined as

G =Gi j G i ⊗ G j =G i j G i ⊗ G j (2.6)

The relation between the metric coefficients is given by
�

G i j
�

=
�

Gi j

�−1
(2.7)
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e1
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X
�

θ 1,θ 2
�

θ 1

θ 2

G1

G2

Figure 2.7: Surface with curvilinear coordinate system and base
vectors.

Differential Geometry of Surfaces

A surface can be described as a volume for which one curvilinear coordinate
is constant, e.g. θ 3 = 0 (see Figure 2.7). The position vector is then only
depending on two parameters.

X = X
�

θ 1,θ 2
�

= X j
�

θ 1,θ 2
�

e j (2.8)

In the following chapters of the thesis, base vectors w.r.t. the continuum
will be denoted with G i , whereas base vectors w.r.t. the dimensionally
reduced entity will be denoted with A i . The Equations (2.2) - (2.7) also
hold for the differential geometry of surfaces. However, some additional
geometric properties can be evaluated. In order to do so, the surface nor-
mal is needed. The vectors A 1 and A 2 are the tangent vectors of the surface
and can be used to compute the normal. The normalized surface normal
also defines the third base vector.

A 3 =
A 1×A 2

‖A 1×A 2‖2
(2.9)

In this case, the covariant and contravariant third base vector coincide.

A3 = A 3 (2.10)
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e1

e2

e3

X
�

θ 1
�

θ 1

G1

Figure 2.8: Curve with curvilinear coordinate and base vector.

The curvature of a surface is an important property and is defined by the
curvature tensor

K = BαβAα⊗Aβ = BαβAα⊗Aβ (2.11)

where Bαβ is the second fundamental form of the surface defined as:

Bαβ = Bβα =−Aα ·A 3,β = Aα,β ·A 3 (2.12)

More details can be found in Başar et al. [6] and Klingbeil [77].

Differential Geometry of Curves

Fixating another coordinate in Equation (2.8) to a constant value further
reduces the geometry. A parametric curve is resulting (see Figure 2.8).

X = X
�

θ 1
�

= X j
�

θ 1
�

e j (2.13)

Similar to the surface, additional geometric properties might be of interest.
Therefore, a so-called frame is needed. Many ways are possible to define
a frame for a curve. One of the most common is the orthonormal Frenet-
Serret base. It is defined by the tangent T , the binormal B and the normal
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N T
B

R
R

jumps

undefined frames

Figure 2.9: Curve with Frenet-Serret frames including jumps
and undefined behavior at straight segments.

N (see Figure 2.9).

T =
A 1

‖A 1‖2
(2.14)

B =
A 1×A 1,1

‖A 1×A 1,1‖2
(2.15)

N =B × T (2.16)

The corresponding circle of the maximum curvature lies in the plane,
which has the binormal B as its normal. The normal N is pointing towards
the center of the circle.

Important features like the curvature κ and torsion τ can be evaluated.

κ=
‖A 1×A 1,1‖2

‖A 1‖2
3 (2.17)

τ=

�

A 1×A 1,1

�

·A 1,1,1

‖A 1×A 1,1‖2
2 (2.18)

Although very common, this basis has two problems (cf. Figure 2.9). First
of, B and N are undefined for a straight curve. Furthermore, sudden jumps
in the frame are possible, which might be problematic for the description
of the continuum.

Hence, another frame, namely the Bishop Frame (see Bishop [22]), is often
used. It requires an initial frame at the beginning of the curve. This frame
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T

T0

N
V

N 0
V0

Figure 2.10: Curve with Bishop frames.

is then moved along the curve such that the torsion τ of the frame around
the curve is minimal (see Figure 2.10).

min

�
L
τ
�

θ 1
�

dθ 1 (2.19)

The smallest-rotation-mapping is another possibility for the definition of
curve frames. It maps an initial frame from one point to all other points
of a curve. The starting point is often used for the initial frame, but it is
not restricted to it. In contrast to the Bishop frame, the orientation of the
frame at an arbitrary point on the curve can be determined directly and it
is not necessary to perform an integral over the arc length in-between the
actual point and the initial frame. The mapping matrix Λ is defined using
the Rodrigues’ rotation formula. The rotation is defined by an axis ê and
an angleφ.

R = ê⊗ ê+ cosφ ( I − ê⊗ ê) + sinφ (ê× I ) (2.20)

The axis is defined by the cross product of the normalized tangents T0

and T of the curve at the point of the initial frame and the point, where
the frame has to be computed. The corresponding angle is defined by the
angle between those two tangents.

ê=
T0× T

‖T0× T‖2
cosφ = T0 · T sinφ = ‖T0× T‖2 (2.21)
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TN 0

T0

V0

V =Λ
�

T0, T
�

V0

T0 × T

T0

V0

Figure 2.11: Curve with frames constructed by
smallest-rotation-mapping.

Inserting those quantities into Equation (2.20) including some rearrange-
ments results in the following mapping matrix Λ for the initial frame.

Λ
�

T0, T
�

=
�

T0 · T
�

I +
�

T0× T
�

× I +
1

1+ T0 · T

�

T0× T
�

⊗
�

T0× T
�

(2.22)

Applying this rotation to the initial frame results in the frame at the actual
point:

N =Λ
�

T0, T
�

N 0 and V =Λ
�

T0, T
�

V0 (2.23)

A curve with frames constructed by this mapping operation is shown in
Figure 2.11. The mapping is undefined for T =−T0 since the denominator
in Equation (2.22) becomes zero. An exception can be added for this case.

2.1.4 Kinematics

The deformation gradient F is used to described the relation between the
current configuration x and the reference configuration X as shown in
Figure 2.12.

F =
∂ x

∂ X
= gi ⊗ G i (2.24)
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Figure 2.12: Reference and current configuration of a domain.

The Green-Lagrange (GL) strains E are used in this thesis to derive the
element formulations and to set up the equilibrium.

E =
1

2

�

F T · F − I
�

= Ei j G i ⊗ G j =
1

2

�

g i j −Gi j

�

G i ⊗ G j (2.25)

where I is the identity tensor. The GL strains express the distortion w.r.t.
the reference configuration. The coefficients Ei j are determined by half
the difference between the metrics g i j and Gi j .

The counterpart of the GL strain in the current configuration is the Euler-
Almansi strain tensor e.

e=
1

2

�

I − F−T · F−1
�

= ei j gi ⊗g j =
1

2

�

g i j −Gi j

�

gi ⊗g j (2.26)

The coefficients ei j are equal to the ones from the GL strain tensor ei j = Ei j .

2.1.5 Constitutive Law and Stresses

Every strain measure has its energetically conjugated stress measure. The
second Piola-Kirchhoff (PK2) stresses S relate to the Green-Lagrange
strains E as

S =C : E (2.27)

The fourth order elasticity tensor C, which is given in the curvilinear coor-
dinate system, links strains and stresses (see Equation (2.28)). Throughout
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this thesis linear St. Venant-Kirchhoff material will be used and thus a time
and path independent linearization can be used.

C=C i j k l G i ⊗ G j ⊗ Gk ⊗ G l (2.28)

The Cauchy stresses σ are related to the Euler-Almansi strains e, which
refer to the current configuration.

σ =σi j gi ⊗g j (2.29)

They can also be computed from the PK2 stresses due to the assumed
linear relation between stress and strain.

σ =
1

det F
F · S · F T (2.30)

The first Piola-Kirchhoff stresses P are another stress measure. They refer
to both the current and the reference configuration and can be computed
from the other introduced stress tensors.

P = detF ·σ · F−T = F · S = P i j gi ⊗ G j (2.31)

The constitutive law is often given in the local Cartesian coordinate system
for standard materials. If this is the case, the strains have to be transferred
from the curvilinear local coordinate system to a local Cartesian one.

2.1.6 Equilibrium

The strong form of the static equilibrium is defined in the deformed state.
Internal stressesσ and external body forces b have to be in equilibrium
inside the domain. On the boundary ΓD , the Dirichlet boundary condi-
tions have to be fulfilled, i.e. the displacement u has to be equivalent to
the predefined displacements û. The Neumann boundary conditions are
described on ΓN by the balance of the internal forces with the external
forces t on the boundary (cf. Figure 2.13).

divσ+b= 0 (2.32)

u= û on ΓD (2.33)

nσ = t on ΓN (2.34)
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Figure 2.13: Structural domain in the undeformed and
deformed configuration.

The Principle of Virtual Work is used in order to derive the weak form of
the equilibrium. The equilibrium equations are then only fulfilled in an
integral sense (see Wunderlich et al. [132]). The total virtual work δW is
composed by the work of the internal and external forces.

δW =δWint+δWext = 0 (2.35)

with δWint =−
�
Ω0

S :δE dΩ and (2.36)

δWext =
�
ΓN0

T :δu dΓ +
�
Ω0

ρ0 B :δu dΩ , (2.37)

where Ω0 describes the domain and Γ0 the boundary in the undeformed
state. The external forces on the boundary ΓN0 are denoted as T . Note
that PK2 stresses are not physical. However, describing the potential fully
within the reference configuration has some advantages as the domain,
which has to be integrated, is known. Furthermore, every increment in
an incremental analysis refers to the same configuration, which in return
implies that the solving of the increment can be separated from the already
known stress-strain state.
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2.2 Sequenced Simulation Process

2.2 Sequenced Simulation Process

Complex erection processes often require to incorporate several analysis
steps. The structural systems of the different stages may alternate w.r.t.
structural members and boundary conditions. This design process makes
it necessary to interrupt the analysis, add the required modifications and
restart the analysis considering the previous analysis steps, i.e. stresses
and strains.

Dieringer et al. [42] discussed two methods, namely the InitDisp and Init-
Stress method, for transferring results from one simulation to another one
in a Total Lagrangian framework.

The first analysis step is the same for both approaches. The Principle of
Virtual Work is used to compute the equilibrium state:

δWint =−
�
Ω0

S (u) :δE (u) dΩ , (2.38)

δWext =
�
ΓN0

T :δu dΓ +
�
Ω0

ρ0 B :δu dΩ , (2.39)

The difference appears in the consecutive analysis. The InitDisp approach
uses basically the same expression as Equation (2.38) and (2.39) for the
computation of the equilibrium, starting to look for the equilibrium with
the solver at the previously computed displacement. These displacements
can be seen as initial displacements u0. Stresses and strains still refer to the
initial configuration and the integrals for the virtual work are performed
on the same domain as in the previous steps.

δWint =−
�
Ω0

S

u
︷ ︸︸ ︷

�

u0+∆u
�

:δE (u) dΩ , (2.40)

δWext =
�
ΓN0

T :δu dΓ +
�
Ω0

ρ0 B :δu dΩ (2.41)

New boundary conditions, which are defined in the deformed configura-
tion of the first analysis, can easily be transferred to the reference configu-
ration for the integration due to the parametric geometry description.

The InitStress method updates the geometry by the deformed geometry of
the first analysis, i.e. a new reference configuration is established in the
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Figure 2.14: Definition of the displacement, the reference X and
deformed x configuration for the InitDisp and InitStress approach.

consecutive analysis. The resulting stresses of the previous analysis are
applied as initial stresses S0, i.e. prestresses.

δWint =−
�
Ω1

0

�

S0

�

u0

�

+ S (∆u)
�

:δE (∆u) dΩ , (2.42)

δWext =
�
Γ 1

N0

t :δ (∆u) dΓ +
�
Ω1

0

ρ1b :δ (∆u) dΩ , (2.43)

The methods are visualized in Figure 2.14. The difference of the approaches
can clearly be seen in how the displacement u is defined and which con-
figuration is set as reference.

The InitDisp approach may be inconvenient since the nodes of the initial
meshes sometimes do not coincide for coupled structures. This is for ex-
ample the case if the first deformed part of the structure is used to derive
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the second part. Then the initial meshes do not match. The InitStress ap-
proach only provides an approximation of the structural behavior in the
consecutive analysis and is therefore examined for its general applicability.

The two methods are compared for a simple membrane strip, which is
tensioned by a line load (see Figure 2.15). Each method provides the cor-
rect equilibrium in the second simulation as long as the load level stays
the same. However, if the boundary conditions, here the load level λ,
change, the equilibrium matches the reference solution only for the Init-
Disp method. The system computed with the InitStress method behaves
softer for an increased load and unloading does not result in the initial
unstressed patch but a much smaller one.

1 1

t=0.1m

ν=0.2

E=100kN/m2

P=5kN/m

Initial Setup

h=5m

L=10m
λ ·P

λ

Pseudo time

Simulation 2

λ
=

1
λ
=

2
λ
=

0

reference InitStress InitDisp

Simulation 1 Simulation 2

u0

σ0

Figure 2.15: Comparison of the two methods InitStress and
InitDisp for simulating staged construction. Note that the

computation was carried out with better refinement, i.e. more
Gauss points and control points, than illustrated. The reference

solution is added for simulation 2 with dotted lines (adapted from
Bauer et al. [14]).
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The problem can also be illustrated analytically with a simple truss exam-
ple, which is supported on one end and loaded by a single force λ ·P on
the other (see Figure 2.16). The equilibrium condition can be determined
analytically for ν= 0.0:

λ ·P =N = E A ·εG L ·
l

L
= E A ·

(l 2− L 2) · l
2L 3

, (2.44)

where the Green-Lagrange strain is denoted by εG L in derogation from
E , which is used in the rest of the thesis, for the sake of readability. The
mapping l

L is needed in order to obtain a physical normal force N .

By splitting the loading into several load steps, the equilibrium condition
for the i-th step can be rewritten using the InitStress method as follows:

λ(i ) ·P =N (i )
0 +∆N (i ) =

 

λ(i−1) ·P +E A ·
l (i )

2− L (i )
2

2L (i )2

!

·
l (i )

L (i )
(2.45)

with L (i ) = l (i−1)

The geometry is updated to L (i ) = l (i−1) in every step i and the previous
stress state N (i−1) is implied as prestress N (i )

0 to the structure. The missing
forces∆N (i ) required to balance the external forces are generated by the
deformation with respect to the equilibrium shape in the previous step.
This equation can be solved for l (i ) in order to get the necessary defor-
mation. Or in the case of displacement control, the needed force in order
to arrive at the given elongation is computed. This is reiterated until the
necessary loading level is reached.

The introduced error for one step decreases if the deformation of the in-
dividual step is small. Whether splitting the deformation in many small
steps results in a reduced total error is investigated in the following. The
previously described truss should be elongated by a fixed value û and the
corresponding load level is computed. The elongation is split in n equal
load steps, where the load levelλ(i ) is determined in every step and applied
as prestress in the following step.

Figure 2.16 shows the relative error of the final load level for different
elongations û

L applied by one to a hundred steps. The analytic solution
of applying the displacement in one step is taken as reference solution.
Note that the equilibrium of all steps is computed exactly and is not nu-
merically approximated. Hence, the emerging error is fully attributed to
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the methodological setup of the InitStress approach. If the elongation is
applied in more steps, the error of the final load level becomes larger even
though the error in every single step is becoming smaller. Consequently,
this method can only be applied for very small deformations where the
error stays in a certain range. An elongation of 10% introduces an error of
up to 13% which is usually not acceptable but cannot be avoided by using
many updating steps. If only a small elongation, e.g. 0.1%, is applied, the
error is around 0.15% which may be tolerable for certain applications.

R
el

at
iv

e
E

rr
o

r
o

fL
o

ad
ε λ
·P

1e-4

1e-3

1e-2

1e-1

1e+0

0 10 20 30 40 50 60 70 80 90 100

Number of Load Steps n

0.1%
1.0%
5.0%

10.0%

L

û
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Figure 2.16: Relative error of the load, which is needed to
elongate the truss within n steps for several final elongations û

L .

Figure 2.16 shows also that the error accumulates and that fewer steps
provide better accuracy. The error potential of two steps, i.e. only one up-
date of the reference configuration, is investigated in the following since
this is a typical application case. Figure 2.17 compares the relative error
of the final load level of the truss when applying the final displacement in
two steps, where the percentage k of the first displacement w.r.t. the total
displacement û is varied. The error is maximal for equal load steps and
minimal if one load steps is much larger than the other. If the coupling of
non-matching nodes massively interrupts the workflow as described in
Dieringer et al. [42] and Dieringer [43] or at least one deformation is very
small, the InitStress method might be applicable despite the introduced
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error. However, this thesis will only apply the InitDisp method for trans-
ferring analysis results to further simulations since it models the correct
structural behavior. The effort of storing the initial displacements in the
isogeometric workflow is less computationally expensive than tracking
the stress history of each integration point. First of all, there are in general
many more integration points than control points, i.e. FE nodes, and sec-
ondly, the coupling of patches is generally accomplished by weak coupling
and not by directly imposing coupling conditions on the nodes.
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Figure 2.17: Relative error of the load needed to elongate the
truss within two steps for several final elongations û

L plotted
against the relative displacement in the first step.
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3
FUNDAMENTALS OF ISOGEOMETRIC

ANALYSIS (IGA)

Isogeometric Analysis distinguishes itself from classical finite element
analysis by the applied basis functions. CAD-related splines and other
description techniques are used instead of (linear) polynomials. The iso-
geometric concept is conform to the isoparametric one of FEM since the
same basis functions are used for the geometry description and the so-
lution field. Isogeometric analysis is often attributed with the usage of
Non-Uniform Rational B-Splines (NURBS) as basis functions since most
common CAD programs for free form surfaces use this geometry descrip-
tion. Nevertheless, literature on other forms of isogeometric analysis, such
as subdivision surfaces (see Cirak et al. [35–37]), can also be found. From
the idea of using B-Splines/NURBS, other branches of research emerged
on spline technology, which focus more on using the advantages of splines
in the analysis and further development of new spline types. T-Splines
as investigated in e.g. Bazilevs et al. [16], Beirão da Veiga et al. [18], and
Casquero et al. [31, 32] and Hierarchical splines as analyzed in e.g. Bracco
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et al. [26], Buffa et al. [30], and Schillinger et al. [115] are two of the largest
groups of alternatives to NURBS. They will not be treated in this thesis,
since they are not part of currently established CAD programs and are
therefore not applicable for a fully CAD-integrated design process.

3.1 Geometry Description

NURBS became popular for CAD programs since they simplify the descrip-
tion and modification of free forms. They are an integral part of the design
process in many industries. Complex CAD models are often assembled
from several NURBS geometries. This chapter will give a general overview.
The reader is referred to Cohen et al. [39] and Piegl et al. [107] for more
details on NURBS.

3.1.1 B-Splines

B-Splines represent the basis of NURBS. A set of B-Splines Ni ,p

�

ξ
�

is de-
fined by a polynomial degree p and a knot vectorΞ. The knot vector bounds
the parametric coordinate ξ of the parameter space. The sum over the
product of the basis functions with a matching set of n control points Pi

constitutes the curve C (ξ) in the geometry space.

C (ξ) =
n
∑

i=1

Ni ,p (ξ)Pi (3.1)

The knot vector Ξ is defined by a set of non-decreasing numbers ξi . The
basis functions are defined piece-wise between these knots. They are com-
puted recursively by the Cox-deBoor formula (see Boor [25]) starting from
p = 0:

Ni ,0(ξ) =







1, ifξ ∈
�

ξi ,ξi+1

�

0, otherwise
(3.2)

The computation continues for p ≥ 1 and ξ ∈
�

ξi ,ξi+p+1

�

with

Ni ,p (ξ) =
ξ−ξi

ξi+p −ξi
Ni ,p−1(ξ) +

ξi+p+1−ξ
ξi+p+1−ξi+1

Ni+1,p−1(ξ) (3.3)
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Figure 3.1: B-Spline curve C
�

ξ
�

and basis functions with
polynomial degree p = 3 and knot vector

Ξ = [0, 0, 0, 0, 1, 3, 3, 5, 5, 5, 5].

Inside each knot span, i.e. knot interval, the basis functions are C∞-contin-
uous and only p + 1 basis functions are nonzero. At a single knot, the
basis functions are C p−1-continuous. If a knot appears k times, it has
the multiplicity k . A multiplicity of p results in a C 0-continuity and the
respective control point of the curve is interpolated. If a knot vector has
a p + 1 multiplicity at the start and end, it is called an open knot vector.
The first and last control point coincide with the start and end of the curve.
The tangents at both ends are defined by the line between the first and
second or last and second-last control point, respectively. Figure 3.1 shows
a B-Spline curve with its respective control points and basis functions in
the parameter space.
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3.1.2 Non-uniform Rational B-Splines (NURBS)

Non-uniform Rational B-Splines are weighted B-Splines functions. Ev-
ery control point Pi with respective basis function Ni ,p has an attributed
weight wi . The weighted basis functions are denoted as Ri ,p .

C (ξ) =
n
∑

i=1

Ri ,p (ξ)Pi with Ri ,p (ξ) =
Ni ,p (ξ)wi

n
∑

j=1
Nj ,p (ξ)w j

(3.4)

If all weights are equal, the NURBS curve is a regular B-Spline curve. Fig-
ure 3.2 shows the curve of Figure 3.1 with a weighted control point P2 and
the respective resulting changes in the parameter and geometry space.
The initial B-Spline curve and basis functions are indicated in gray. Note
that the changes happen only in the knot spans, where the basis function
N2,3 is nonzero.

3.1.3 NURBS Surfaces

NURBS curves can be extended to NURBS surfaces by a tensor product
of two independent sets of B-Splines defined by p and Ξ and q and H ,
which are then weighted. The rectangular parameter space is defined by
the parametric coordinates ξ and η. The NURBS surface is then computed
as a linear combination of the basis functions and the respective control
points.

S (ξ,η) =
n
∑

i=1

m
∑

j=1

Ni ,p (ξ) ·M j ,q (η) ·wi j
n
∑

k=1

m
∑

l=1
Nk ,p (ξ) ·Ml ,q (η) ·wk l

Pi j

=
n
∑

i=1

m
∑

j=1

Ri j ,p q (ξ,η)Pi j (3.5)

Figure 3.3 shows the parameter space of a NURBS surface with polynomial
degree p = q = 2, Ξ = [0, 0, 0, 5, 10, 10, 10] and H = [0, 0, 0, 7, 10, 10, 10] and
its basis functions. The resulting NURBS surface for a given control point
net is shown in Figure 3.4.
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Figure 3.2: NURBS curve C
�

ξ
�

and basis functions with
polynomial degree p = 3, knot vector Ξ = [0, 0, 0, 0, 1, 3, 3, 5, 5, 5, 5]

and w2 = 2.8.

3.1.4 Boundary Representation (B-Rep)

Volume models in CAD are usually described using a boundary representa-
tion (B-Rep). This implies that volumes are defined by their outer surfaces
as depicted in Figure 3.5. This model has a topological and a geometrical
part. In order to describe the topology, the following entities are used:

• Faces F

• Edges E

• Vertices V

The connections between the independent geometrical entities are defined
by the topology. An edge is for example attributed to several borders of
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0,0,0, 5, 10,10,100,
0,

0,
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0,
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ξ

η

ξ

η

Figure 3.3: Parameter space and basis functions of a B-Spline
surface with p = q = 2 and Ξ = [0, 0, 0, 5, 10, 10, 10] and

H = [0, 0, 0, 7, 10, 10, 10].

ξ

η

Figure 3.4: B-Spline surface in geometry space of the
parametrization of Figure 3.3.
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(a)

vertex V

edge E

face F

(b)

Figure 3.5: Boundary representation (B-Rep) of a volume: (a)
spatial and (b) topological.

the surfaces and thereby connects them. Vertices are used analogously
to connect the edges. This simple principle of creating objects is used in
most CAD programs. An alternative is Constructive Solid Geometry (CSG),
which stores the object as a sequence of Boolean operations, e.g. unions
and intersections, of simpler shape. While this method is only used for
solids, B-Reps are also used for large and complex surface models and the
principle is also transferable to structural models that contain independent
curves.

3.1.5 Trimming

NURBS surfaces are restrained to a topological rectangle due to their
tensor-product structure. This restriction is not always suitable for ge-
ometry models, since splitting the geometry in topological rectangles may
be unintuitive and requires a lot of effort. Therefore, the boundary repre-
sentation is adapted for the NURBS surfaces. The NURBS surface describes
the geometry, i.e. the shape, but the borders of the surface are defined by
curves on the NURBS surface. These curves are typically described in the
parameter space of the NURBS patch by C

�

ξ̄
�

as shown in Figure 3.6. Note
that • signifies entities which are related to the parameter space. The parts

37



3 Fundamentals of Isogeometric Analysis (IGA)
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�
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η

Figure 3.6: Trimmed surface in geometry and parameter space
with related boundary curves.

of the surface, which are inside these boundary curves, are considered as
existing and are allocated with material. Those outside are ignored. The
parametrization of the NURBS patch itself does not change. The boundary
curve C

�

ξ̄
�

in the geometry space belonging to the trimmed surface is
then computed from the parameter curve. Both curve representations are
attributed to the topological edge.

3.2 Analysis with NURBS

The following properties make B-Splines particularly suitable for finite
element analysis:

• Partition of unity:
∑n

i=1 Ni ,p

�

ξ
�

= 1

• Local support in the interval
�

ξi ,ξi+p+1

�

• Non-negativity: Ni ,p

�

ξ
�

≥ 0

• Linear independence:
∑n

i=1αi Ni ,p

�

ξ
�

= 0⇔ αi = 0

The same properties hold for NURBS if all weights are positive, which is
usually the case.
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3.2 Analysis with NURBS

3.2.1 Finite Element Method

The finite element analysis is based on the Principle of Virtual Work as
defined in Section 2.1.6. The NURBS basis functions describe the geometry
and the respective solution field within the isogeometric approach. The
problem is thus discretized by the discrete control point coordinates and
the degrees of freedom ur , which are also related to the control points.
The discretization is a requirement for solving the problem numerically
with the Finite Element Method (FEM).

Equation (2.35) is rewritten by the variational principle to

δW =
∑ ∂W

∂ ur
δur =

∑

−Rrδur = 0

arbitrary δur

=======⇒Rr =−
∂W

∂ ur
= 0 (3.6)

for the discretized system. It follows that for arbitrary virtual displacements
δur , the components of the residual force vector R representing the un-
balanced forces have to be zero. This expression is generally nonlinear
and is thus linearized at the current displacement u∗ in order to solve it
with an iterative procedure.

LIN
�

Rr

�

=−
∂W

∂ ur
−
∂ 2W

∂ ur ∂ us
∆us

=Rr |u∗ +
∑

s

∂ Rr

∂ us
∆us =Rr |u∗ +

∑

s

Kr s∆us = 0 (3.7)

The residual force vector R and the stiffness matrix K are then defined as:

Rr =−
∂W

∂ ur
=−

∂Wint

∂ ur
−
∂Wext

∂ ur
=R int

r +R ext
r (3.8)

Kr s =
∂ Rr

∂ us
=−

∂ 2W

∂ ur ∂ us
=−

∂ 2Wint

∂ ur ∂ us
−
∂ 2Wext

∂ ur ∂ us
= K int

r s +K ext
r s (3.9)

3.2.2 Integration

A numerical integration has to be performed in order to obtain the integral
of the virtual work over the whole domain. The domain of a curve is defined
by its length L and the domain of a surface by its area A. A curve can also

39



3 Fundamentals of Isogeometric Analysis (IGA)

be inscribed in the parameter space of another NURBS patch and has the
domain L̄ in the geometry space.

Typically, Gauss integration is used for the numerical integration. There-
fore, the integral over the curve or surface has to be mapped from the
geometry space into the parameter space by the Jacobian Jx ,ξ. The map-
ping from the parametric to the Gaussian domain, which is defined by
u , v ∈ [−1, 1], is provided by the Jacobian Jξ,u . Furthermore, the parameter
domain is split into the nonzero knot spans. Each knot span is integrated
separately, i.e. has its own Gauss domain for the integration since the
basis function are defined continuously within. These integrals are then
summed up to the total integral.

The integral of a nonzero knot span from ξs to ξe along a curve is given by:

‖L‖=
�

L
dL =

� ξe

ξs

Jx ,ξdξ=
�

G
Jx ,ξ Jξ,u dG (3.10)

with Jx ,ξ =









∂ X

∂ ξ









2

and Jξ,u =
∂ ξ

∂ u
=
ξe−ξs

2

Analogously, a surface integral over a knot span defined in
�

ξs,ξe

�

×
�

ηs,ηe

�

is computed as follows

‖A‖=
�

A
dA =

� ξe

ξs

� ηe

ηs

Jx ,ξdηdξ=
�

G
Jx ,ξ Jξ,u dG (3.11)

with Jx ,ξ =









∂ X

∂ ξ
×
∂ X

∂ η









2

and

Jξ,u =
∂ ξ

∂ u
·
∂ η

∂ v
=
ξe−ξs

2
·
ηe−ηs

2

Furthermore, it is possible that the integration along a trimmed boundary
L̄ is needed.

‖L‖=
�

L
dL =

� ξ̄e

ξ̄s

Jx ,ξ̄dξ̄=
�

G
Jx ,ξ̄ Jξ̄,u dG (3.12)

with Jx ,ξ̄ =









∂ X

∂ ξ

∂ ξ

∂ ξ̄
×

d X

dη

∂ η

∂ ξ̄









2

and

Jξ̄,u =
∂ ξ̄

∂ u
=
ξ̄e− ξ̄s

2
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Figure 3.7: Mapping from the geometry space to the Gauss
space for curve, surface and boundary curve (adapted from

Teschemacher et al. [123]).

A common number of Gauss points within an untrimmed knot span is
p +1 in the respective direction. This integration scheme, which is used
throughout this thesis, was proposed by Hughes et al. [70]. More efficient
algorithms can be found in e.g. Auricchio et al. [5], Dornisch et al. [46], and
Hughes et al. [71].

Defining the position of the integration points inside a trimmed knot span
is more complex. The Adaptive Gaussian Integration Procedure (AGIP)
by Breitenberger [27], which is an established method for the integration
of trimmed knot spans, is applied in this thesis. Other strategies were
proposed by Guo et al. [64], Kang et al. [72], Kim et al. [75], Kudela et al.
[80, 81], Nagy et al. [96], Parvizian et al. [102], Rank et al. [110], Ruess et al.
[111, 112], Seo et al. [120], and Wang et al. [128]. A comprehensive review
of integration approaches of trimmed patches can be found in Marussig
et al. [92].

Figure 3.7 provides an overview of the different mappings for the integra-
tion of different geometric entities.

3.2.3 Refinement

Another important feature of NURBS is the refinement. It adds more design
handles, i.e. control points, to the curve or surface. Hence, local disconti-
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nuities can be created. It is important to state that the NURBS refinement
does not modify the geometry but the parametrization. The same holds
for the degrees of freedom, which can be exactly transferred to the refined
parametrization. This is advantageous when dealing with several analysis
steps. It is possible that the model, which already contains some results,
needs to be refined e.g. for capturing some local effects of a newly added
joint during a later stage.

Order elevation and knot insertion are the two basic refining procedures.

Order elevation, also called p -refinement, increases the polynomial degree
of the NURBS basis function by∆p . The continuity at all knots is preserved.
Consequently, the multiplicity k is also increased at every knot by∆p since
C pnew−knew = C pold+∆p−(kold+∆p ). Figure 3.8(a) shows the order elevated B-
Spline curve and the corresponding parametrization and basis functions
from Figure 3.1. The shape of the curve does not change whereas the
parametrization does.

Knot insertion, also called h-refinement, adds additional elements to the
parametrization by subdividing existing ones. An additional knot is in-
serted and hence a nonzero knot span is subdivided into two. This can also
be used to increase the multiplicity of a knot, i.e. decrease the parametric
continuity. Two additional knots are inserted into the knot vector of the
B-Spline curve of Figure 3.1. The first one increases the multiplicity at
ξ= 1 and therefore decreases the continuity to C p−k =C 3−2 =C 1 (see Fig-
ure 3.8(b)). The curve interpolates the control polygon atξ= 1. The second
inserted knot at ξ= 2 subdivides the second nonzero knot span ξ ∈ [1, 3[.
As for order elevation, the knot insertion only changes the parametrization,
i.e. control points and basis functions, and not the geometry of the curve.

The combination of the procedures is possible, but the sequence is not com-
mutative. A p -refinement followed by a h-refinement is called k -refine-
ment.

More details on the refinement procedures can be found in Boehm [24],
Cohen et al. [38], and Piegl et al. [107] and on refinement in the context of
isogeometric analysis in Cottrell et al. [40] and Hughes et al. [70].

Especially with NURBS, it is often easy to describe the initial geometry
with few control points. However, these control points with their basis
functions also have to represent the solution. If only few control points
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Figure 3.8: Refined B-Spline curve with control points and basis
function: (a) order elevation and (b) knot insertion.

43



3 Fundamentals of Isogeometric Analysis (IGA)

are used, the solution space is very restricted. This can be overcome by a
sufficient refinement.

The effect of the refinement on the results can easily be visualized with the
simple elastica. The ends of an initially straight beam are moved towards
each other (see Figure 3.9). Depending on the refinement level, different
deformations evolve. Note that due to the smooth geometry description,
it is much more difficult to visually evaluate the quality of the result than
for classical linear finite elements.

Furthermore, the choice of the refinement level, i.e. the number of control
points, is not only dependent on the ability to represent the deformed state
but on the ability to represent the undeformed and deformed state with
the same parametrization.

The elastica from Figure 3.9 is taken as a short illustrative example of the
problem. The final equilibrium shape of the highest refinement level, i.e.
p = 4 and 17 control points (see Figure 3.10(a)), can also be represented
with only small deviations by the parametrization of refinement level two,
p = 2 and 11 control points, (see Figure 3.10(b)). The found parametriza-
tion, i.e. the knot vector, is transferred to the flat initial patch by refining a
linear curve accordingly. When pulling the ends of this flat curve onto the
supports, not the desired rebuilt shape of Figure 3.10(b) is evolving due
to the respective normal strains. The energy minimum in equilibrium is
shown in Figure 3.10(c), which clearly deviates from the correct solution.

Beyond the ability to represent the solution field, e.g. the displacements,
one also has to consider a sufficient polynomial degree for the correct
evaluation of the internal forces. The inner forces are related to derivatives
of the displacements for some structural elements. If the initial polynomial
degree is not high enough, the distribution of the inner forces is corrupted
as illustrated for a straight Bernoulli beam under a line load in Figure 3.11.

The displacements match well for all polynomial degrees. However, the
correct solution of the bending moments, i.e. a parabola, can only be
approximated by p = 2,3 since the bending moment is related to the
second derivative of the displacement for a Bernoulli beam. The same
holds for the shear force, where the solution of p = 3 can still approximate
the analytic, linear distribution, but the solution of p = 2 is zero since the
shear force is related the third derivative of the displacements.
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(a)

(b)

(c)

Figure 3.9: Bending of the elastica with control points in the
initial and final state for: (a) 5 control points and p = 2, (b) 11
control points and p = 2 and (c) 17 control points and p = 4

(adapted from Bauer et al. [12]).
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(a) (b) (c)

Figure 3.10: Elastically bent strip: (a) final equilibrium state for
p = 4 and 17 control points, (b) geometrically approximating the

equilibrium shape with p = 2 and 11 control points and (c)
equilibrium shape of the rebuilt geometry.

Displacement Bending Moment Shear Force

p = 2
p = 3
p = 4

Figure 3.11: Displacement, bending moment, and shear force of
a simply supported beam under line load for p = 2 (green), p = 3

(orange), and p = 4 (blue).

3.3 Special Aspects of NURBS-based Analysis

NURBS basis functions are beneficial for many types of analyses and struc-
tural systems due to their smoothness. Nevertheless, some drawbacks
related to the parametrization exist. Some of the most important ones
in the context of geometrically nonlinear structural design will be briefly
presented in this section.
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maxmin
(a) (b)

normal force

Figure 3.12: Cable under single load with deformation and
normal forces for a B-Spline with (a) Ξ = [0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4]

and (b) Ξ = [0, 0, 0, 0, 1, 2, 2, 2, 3, 4, 4, 4, 4].

3.3.1 Local Discontinuities

The representation of local discontinuities inside a knot span, e.g. related
to concentrated load application, is one of the biggest issues within clas-
sical isogeometric analysis. The basis functions in combination with the
structural element formulation are not able to represent a discontinuity as
can be seen in Figure 3.12(a). A point load is set onto the middle of a cable,
which is supported at both ends. The correct solution would be a triangu-
lated displacement with the peak under the point load. It is not possible to
represent this with a polynomial degree p > 1. A parametric discontinuity
C 0 is needed in order to be able to represent a kink. Note that it is possible
to create geometric discontinuities G 0 for higher degrees if p control point
positions are coinciding. However, this also implies that the length of the
tangent becomes zero at the discontinuity, which in return would result
in very large inner forces. Consequently, this solution, which would repre-
sent the correct displacement shape, represents no equilibrium state, i.e.
minimum potential. The problem behind that is the same as in Figure 3.10.
Another interfering effect is the oscillation of the inner forces around a dis-
continuity. The correct solution for displacements and forces is obtained
if the parametrization is suitable and provides a parametric discontinuity
C 0 at the point of the force as can be seen in Figure 3.12(b).

The solution quality of an initially continuous curve can be improved by
h-refinement. The discontinuity can either be directly generated by knot
insertion at the location of the local feature until the required discontinuity
is obtained or a knot insertion can be performed in order to generate more
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maxmin
(a) (b)

normal force

Figure 3.13: Cable under single load with deformation and
normal forces for a B-Spline, which has no C 0-continuity in the

discretization, with (a) 20 equally distributed nonzero knot spans
and (b) 12 locally concentrated elements.

elements. Creating a C 0-discontinuity is only applicable for cables since
this discontinuity acts as a hinge for beams as explained in the following
section. Figure 3.13 presents two refinement strategies without directly
creating the C 0-discontinuity. One system is refined equally over the whole
knot vector, i.e. every nonzero knot span is subdivided into five elements.
The other procedure inserts the knots around the local feature in order to
locally generate many small elements keeping the error local. The oscilla-
tions and the error in the displacements are localizing and diminishing
for both approaches. However, the locally concentrated refinement with
only 12 elements achieves a better result than the equally distributed one
with 20 elements.

The same effect arises for NURBS surfaces. Figure 3.14 shows the result
of a form found four-point sail with a ridge cable between the low points.
Figure 3.14(a) is modeled by one patch whereas Figure 3.14(b) is modeled
by two coupled, trimmed triangular patches meeting at the ridge cable.
The respective geometric discontinuity at the ridge cable emerges only for
the model with two patches.

Local refinement of surfaces by inserting knots into the knot vectors is
more problematic. It is not possible to locally insert knots around a feature,
since the inserted knots are active over the whole domain due to the tensor
product structure. Especially if the discontinuity is not aligned to a knot
line, the whole patch has to be refined, which results in a large number
of degrees of freedom. They might be unnecessary in other regions of the
patch. Local refinement techniques such as T-Splines or Hierarchical B-
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(a) (b)

Figure 3.14: Four-point sail with ridge cable modeled by (a) one
patch and (b) two patches joint at the ridge cable.

Splines provide a solution to this problem. However, since these advanced
basis functions are not available in common CAD programs, this falls
outside the scope of this thesis. Alternatively, the problem can be bypassed
by trimming the discontinuity and its assumed region of influence out of
the patch, refining only this part and coupling it to the remaining unrefined
patch.

3.3.2 Hidden Discontinuities

Unintended discontinuities in the solution due to the discretization may
also be a problem. The initial geometry might be geometrically continuous
in the desired way while the parametrization is not. The discontinuity may
appear after the analysis (see Figure 3.15). This is for example typically the
case for a circular segment with an angle larger than π

2 . The C 0-continuity
is hidden in the initial geometry. When the structure is loaded, the C 0-
continuity acts like a hinge.

Two solutions to avoid this problem in the analysis are feasible. Either one
rebuilds and consequently approximates the geometry by a parametriza-
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(a) (b)

Figure 3.15: Hidden discontinuity for a semicircle: (a)
geometrically continuous in the undeformed configuration and
(b) discontinuous in the deformed configuration (adapted from

Bauer et al. [12]).

tion without this discontinuity or one adds a geometric boundary condition
at the discontinuity in order to preserve the desired smoothness.

3.3.3 Trimming

The last presented drawback in using the geometry description directly
provided by CAD may appear with trimmed geometries. The effect is the
most distinct for narrow or small holes. Note that the definition of small is
relative to the size of the affected knot spans. The problem is related to the
local discontinuities. The smooth solution space is not able to represent
this discontinuity of missing material. Figure 3.16 shows a trimmed plate,
which is clamped on one side. A long slit is trimmed out with the result
that two cantilevering stripes emerge. One of them is loaded at its tip.
Additionally, the short edge of the hole is simply supported. If the trimmed
patch is used as is in the calculation, the unloaded strip also deforms
since the basis functions distribute the load to this side (cf. Figure 3.16(b)).
Appropriate refinement can avoid this behavior (cf. Figure 3.16(c); note
that only refinement around the hole would be sufficient) or by assembling
several independent patches (cf. Figure 3.16(d)).
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3.3 Special Aspects of NURBS-based Analysis

clamped
simply supported

displacement
maxmin

(a) (b)

(c) (d)

Figure 3.16: Trimmed patch with control points: (a) setup with
boundary conditions, (b) deformation of the initial

parametrization, (c) deformation of a refined parametrization and
(d) deformation of a remodeled system consisting of several

coupled patches.
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4
ISOGEOMETRIC STRUCTURAL ELEMENTS

In order to model the assembly of complex systems, it is necessary to be
able to simulate the behavior of different structural elements with differ-
ent dimensions. This chapter’s purpose is to present basic formulas and
assumptions of the applied geometrically nonlinear structural element
formulations. The solid formulation is step by step dimensionally reduced
to a shell and a beam formulation.

4.1 Solid Elements

The element formulation of a solid can be derived from the geometry
description. The position vector of the undeformed and deformed con-
figuration is equal to the volumetric (NURBS) geometry description as
illustrated in Figure 4.1.

X
�

θ 1,θ 2,θ 3
�

= X v

�

θ 1,θ 2,θ 3
�

(4.1)

x
�

θ 1,θ 2,θ 3
�

= xv

�

θ 1,θ 2,θ 3
�

(4.2)
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y

z

x

X
�

θ 1,θ 2,θ 3
�

x
�

θ 1,θ 2,θ 3
�

G1

G2
G3

g1

g2
g3

Figure 4.1: Geometry description of a solid with position and
base vectors in the undeformed and deformed configuration.

The Green-Lagrange strains are computed by the metric of the deformed
and undeformed configuration.

Ei j =
1

2

�

g i j −Gi j

�

(4.3)

The energetically conjugated PK2 stresses are determined by the material
law, which is typically described by a fourth order tensor.

S i j =C i j k l Ek l (4.4)

If the material law is given in a locally orthonormal coordinate system,
the strains have to be transformed into this coordinate system ei . Entities
referring to a Cartesian coordinate system will be denoted by e•.

eEi j = Ek l

�

ei · G k
��

G l ·e j

�

(4.5)

The internal work is defined as in Equation (2.36).

Wint =−
�
Ω0

S :δEdΩ (4.6)

4.2 Shell Elements

A shell is a volume which is reduced by one dimension. All points of the
volume outside of the center surface are addressed by a third base vector.
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4.2 Shell Elements
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�
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�

x
�
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�

A 1
A 2

G1

G2
G3

A 3

a1
a2

g1

g2
g3

a3

t

t

Figure 4.2: Geometry description of the Kirchhoff-Love shell
with position and base vectors in the undeformed and deformed

configuration.

The assumptions, which are made for this vector, are defined by the ap-
plied shell theory. Many shell models for isogeometric analysis exist in the
literature. Isogeometric adaptions of the Reissner-Mindlin theory can be
found in Beirão da Veiga et al. [17], Benson et al. [20, 21], and Dornisch
et al. [45, 46] among others. Especially the Kirchhoff-Love theory found its
revival with IGA since a C 1-continuity is required between the elements,
which is directly the case for NURBS in contrast to classical polynomial
approximations. The isogeometric Kirchhoff-Love shell formulation was
proposed by Kiendl et al. [74]. The hierarchic shell by Echter et al. [50] and
Oesterle et al. [99] provides the possibility of enabling and disabling higher
order theories based on the Kirchhoff-Love shell.

Despite the available higher order shell theories, the Kirchhoff-Love shell
by Kiendl et al. [74] is one of the most applied formulations, since it is
simple and still effective, especially for thin shells. With the kinematics of
Kirchhoff-Love, the cross section has to remain straight and perpendicular
to the surface and a constant thickness t of the shell is assumed. Hence,
the normalized surface normal can directly be applied for the definition
of the cross section (see Figure 4.2).

This results in the following position vectors in the undeformed and de-
formed configuration. The curvilinear coordinate θ 3 is defined by the
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4 Isogeometric Structural Elements

thickness t in the interval
�

− t
2 , t

2

�

.

X
�

θ 1,θ 2,θ 3
�

= X s

�

θ 1,θ 2
�

+θ 3A 3

�

θ 1,θ 2
�

(4.7)

x
�

θ 1,θ 2,θ 3
�

= xs

�

θ 1,θ 2
�

+θ 3a3

�

θ 1,θ 2
�

(4.8)

The base vectors are derived by applying Equation (2.2) to Equation (4.7).

G1 =
∂ X s

�

θ 1,θ 2
�

∂ θ 1
+θ 3

∂ A 3

�

θ 1,θ 2
�

∂ θ 1
= A 1+θ

3A 3,1 (4.9)

G2 =
∂ X s

�

θ 1,θ 2
�

∂ θ 2
+θ 3

∂ A 3

�

θ 1,θ 2
�

∂ θ 2
= A 2+θ

3A 3,2 (4.10)

G3 = A 3 (4.11)

The metric is simplified by neglecting higher order termsO
�

�

θ 3
�2
�

because

it is assumed that t � L1, L2.

Gαβ =
�

Aα+θ
3A 3,α

�

·
�

Aβ +θ
3A 3,β

�

≈Aαβ −2θ 3Bαβ (4.12)

The same holds for the deformed configuration, analogously.

Applying Equation (2.25), the following strain components are all zero:

E33 = E13 = E23 = E31 = E32 = 0 (4.13)

The remaining nonzero strain components are computed as follows:

Eαβ =
1

2

�

gαβ −Gαβ
�

=
1

2

�

aαβ −Aαβ
�

+θ 3
�

Bαβ − bαβ
�

= εαβ +θ
3καβ

(4.14)

The strain can be split into parts related to extension or compression εαβ ,
and change of curvature καβ , i.e. normal forces and bending moments.

The stress-strain relation can also be written in Voigt notation since both
tensors are symmetric. The material matrix D is defined in a local Cartesian
coordinate system. Thus, locally orthogonal strains and stresses are used.
Analogously to the strain, the stresses can be split into parts of normal
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4.3 Membrane Elements

forces ñ and bending moments m̃. This already includes a pre-integration
over the thickness.
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(4.15)

The following term for the internal virtual work arises:

Wint =−
�
Ω0

S :δEdΩ =−
�

A
(ñ :δε̃+ m̃ :δκ̃)dA (4.16)

4.3 Membrane Elements

The membrane element is contained in the KL-shell element. It is assumed
that membranes have no resistance to bending moments. The curvature of
membranes can change without resulting stresses. In order to compensate
this weakness, membranes are often prestressed. The prestress ñ0 can
directly be considered in the virtual work.

Wint =−
�
Ω0

�

S + S0

�

:δEdΩ =−
�

A

�

ñ+ ñ0

�

:δε̃dA (4.17)

More details on isogeometric membrane elements can be found in Philipp
et al. [105].

4.4 Beam Elements

Beam elements are required for a full set of structural elements in civil
engineering. They are modeled by a curve with additional properties. In
the realm of lightweight structures including large deformations, spatial,
geometrically nonlinear element formulations are crucial. The first isogeo-
metric spatial, nonlinear beam was proposed by Raknes et al. [109], which
is neglecting torsion and can therefore be seen as a bending-stabilized
cable. An extended Timoshenko beam theory can be found in e.g. Marino
et al. [91] and Weeger et al. [130]. Analogously to the Kirchhoff-Love shell
theory, Euler Bernoulli kinematics can be adopted since a C 1-continuity
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x(θ 1,θ 2,θ 3)
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g1
g2

g3

y

z

x

Figure 4.3: Geometry description of the Euler-Bernoulli beam
with position and base vector in undeformed and deformed

configuration (adapted from Bauer et al. [8]).

between the elements of the NURBS curve is naturally given. Greco et
al. [60] applied this for a linear 3D application, which was extended to a
geometrically nonlinear formulation in Bauer et al. [10].

The development of this structural element was already part of my Master’s
thesis (see Bauer [7]). The present summary of the beam formulation is a
revised version of Section 2.1 of Bauer et al. [8].

The isogeometric geometrically nonlinear beam accounts for Bernoulli
kinematics. The cross sections remain orthogonal to the center line after
deformation and there are no changes of the cross sectional dimensions.
Torsion according to St. Venant is considered whereas warping effects are
neglected. Three translational degrees of freedom and one for a relative
rotation around the beam axis are used for the spatial beam.

The continuum of the undeformed and deformed beam, X and x, respec-
tively, can be defined by the longitudinal beam axis, represented by a
NURBS curve ( X c and xc, respectively) and two normalized base vectors
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4.4 Beam Elements

Aα, α ∈ {2, 3}, which are perpendicular to each other and to the beam axis
A 1 (see Figure 4.3). Under the Bernoulli assumption, every kinematic can
be described by:

X
�

θ 1,θ 2,θ 3
�

= X c

�

θ 1
�

+θ 2A 2

�

θ 1
�

+θ 3A 3

�

θ 1
�

(4.18a)

x
�

θ 1,θ 2,θ 3
�

= xc

�

θ 1
�

+θ 2a2

�

θ 1
�

+θ 3a3

�

θ 1
�

(4.18b)

The peculiarity of this beam formulation is in the determination of the
base vectors Aα. Two mapping matrices based on the Euler-Rodrigues
formula are applied to define the undeformed configuration of the beam.
Two initial base vectors at the beginning of the beam A0

α are mapped to
every position of the center line by the mapping matrix Λ(T0, T ) in order
to create a unique orientation. Subsequently, they are aligned to the real
beam orientation by a rotation around the beam axis by the rotation matrix
R T (Ψ ). This results in

Aα
�

θ 1
�

= R T (θ 1)

�

Ψ
�

θ 1
�

�

Λ
�

T0, T
�

θ 1
�

�

A0
α , (4.19)

where T is the normalized tangent of the beam axis and T0 the tangent at
the beginning of the beam. The vectors Ti are the normalized A i vectors,
i.e. represent the orthonormal local coordinate system.

We use the same mapping for the base vectors aα of the deformed beam.
In contrast to the undeformed configuration, the mapping matrix Λ (T , t)
maps not the initial base vectors at the beginning of the beam A0

α, but the
base vectors Aα

�

θ 1
�

of the undeformed configuration. The cross section
is rotated around the axis of the deformed beam t by the rotation matrix
R t(ψ). The rotation angleψ is also the fourth degree of freedom.

aα
�

θ 1
�

= R t(θ 1)

�

ψ
�

θ 1
�

�

Λ
�

T
�

θ 1
�

, t
�

θ 1
�

�

Aα
�

θ 1
�

(4.20)

The Green-Lagrange strain tensor and the energetically conjugated second
Piola-Kirchhoff stress tensor are used for the Principle of Virtual Work.
Consequently, the covariant base vectors G i of the continuum are required.
They are computed by the differentiation of the position vector X by the
respective contravariant coordinate θ i . The same applies for the deformed
configuration.

G1 = A 1+θ
2A 2,1+θ

3A 3,1 , G2 = A 2 , G3 = A 3 (4.21)
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4 Isogeometric Structural Elements

Recall that the GL strain tensor in the curvilinear coordinate system is
defined as

E =
1

2

�

g i j −Gi j

�

G i ⊗ G j , Ei j =
1

2

�

g i j −Gi j

�

(4.22)

In order to simplify the derivation of the element formulation for slen-
der beams with h , w � L , the following is assumed: second order terms

O
�

�

θ 2
�2
�

,O
�

�

θ 3
�2
�

,O
�

θ 2 ·θ 3
�

can be neglected and


G1





2
≈


A 1





2
. Warp-

ing effects vanish with these assumptions.

Consequently, the remaining nonzero components of the strain tensor are

E11 =
1

2

�

g11−G11

�

=
1

2

�

a11−A11

�

+θ 2(
b2

︷ ︸︸ ︷

a2,1 ·a1−
B2

︷ ︸︸ ︷

A 2,1 ·A 1)

+θ 3(
b3

︷ ︸︸ ︷

a3,1 ·a1−
B3

︷ ︸︸ ︷

A 3,1 ·A 1)

=

ε
︷ ︸︸ ︷

1

2

�

a11−A11

�

+θ 2

κ21
︷ ︸︸ ︷

�

b2−B2

�

+θ 3

κ31
︷ ︸︸ ︷

�

b3−B3

�

(4.23)

E1α =
1

2

�

g1α−G1α

�

=
1

2
θ β (

tα
︷ ︸︸ ︷

aβ ,1 ·aα−
Tα

︷ ︸︸ ︷

Aβ ,1 ·Aα) =
1

2
θ β

κβα
︷ ︸︸ ︷

�

tα−Tα
�

(4.24)

The corresponding strain in the Cartesian coordinate system is

eE11 =
E11



G1





2

2 =
ε+θ 2κ21+θ 3κ31

‖A 1‖2
2 (4.25)

eE1α =
E1α



G1





2



Gα





2

=
θ β κβα

2‖A 1‖2
, (4.26)

where ε is the axial strain and καi is the change in curvature in direction of
the base vectors aα. καi consists either of bα and Bα denoting the curvature
of the respective configuration in the particular direction or tα and Tα
denoting the change of the torsion in the structural element formulation
of the Euler-Bernoulli beam.
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4.5 Cable Elements

The second Piola-Kirchhoff stresses S are then computed using the elas-
ticity tensor C:

S =C : E (4.27)

The following term for the internal virtual work results from inserting
the nonzero strain components in the equation of the weak form of the
equilibrium as defined in Equation (2.36),

δWint =−
�
Ω0

S :δE dΩ =−
�
Ω0

eS 11δ eE11+ eS
12δ eE12+ eS

13δ eE13 dΩ

(4.28)

This term can be pre-integrated over the cross section assuming that the
base vectors Aα are the principal axes of the cross section:

δWint =−
�
Ω0

E eE 11δ eE11+G eE 12δ eE12+G eE 13δ eE13 dΩ

=−
�

L

E

‖A 1‖2
4 ·
�

Aε δε+ IA 3
κ21 δκ21+ IA 2

κ31 δκ31

�

+
G I

‖A 1‖2
2 ·
�

−
1

2
κ32 δκ32+

1

2
κ23 δκ23

�

dL (4.29)

Young’s modulus E and shear modulus G originate from the constitutive
law of a linear elastic material.

4.5 Cable Elements

The same geometric description as for the beam can be used for the cable.
In contrast to the beam, it is assumed that not only second order terms of
the cross section can be neglected in the computation of the strains but
also first order terms due to the high slenderness. This implies that the
strain is constant over the cross section. The strain eE11 is simplified and
eE1α vanishes.

eE11 =
1
2

�

a11−A11

�

‖A 1‖2
2 =

ε

‖A 1‖2
2 (4.30)
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4 Isogeometric Structural Elements

Cables are typically prestressed. This can be considered in the analysis
by adding a prestress value eS 11

prestress to the stresses emerging from elastic
deformation.

eS 11 = eS 11
elastic+ eS

11
prestress (4.31)

The following term for the virtual work evolves:

δWint =−
�
Ω0

eS 11δ eE11 dΩ =−
�

L

�

E A ε

‖A 1‖2
2 + eS

11
prestress

�

δε

‖A 1‖2
2 dL (4.32)

Deriving the cable from the beam formulation in Equation (4.29) by re-
moving the terms of bending and twisting leads to the same expression.
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5
ISOGEOMETRIC COUPLING

This chapter elaborates on several novel coupling procedures for structural
elements. Both implicit and explicit coupling are possible. The explicit
coupling introduces additional conditions in order to enforce the coupling
conditions. Two explicit coupling formulations will be presented. The first
one implements rigid coupling between two beams (see Section 5.3) while
the second one allows for slippage between a spatial point and a NURBS
patch. This sliding condition will be presented for curves (see Section 5.5)
but would be also applicable for surfaces. The proposed implicit coupling
involves an approach of embedding structural elements inside another one.
No additional coupling formulation is needed since it is already implied
in the geometry description (see Section 5.4).

5.1 Fundamentals of Weak Coupling within Isogeometric
Analysis

Coupling is an essential and well-researched component in the analy-
sis of complex structures. The first approaches in IGA were restricted to
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5 Isogeometric Coupling

matching discretizations, i.e. coinciding control points. Later, the methods
were extended to nonconforming patches. The penalty method (see e.g.
Breitenberger et al. [28], Herrema et al. [67], and Lei et al. [84]), Lagrange
multipliers (see e.g. Apostolatos et al. [2] and Teschemacher et al. [123]),
Nitsche’s (see e.g. Du et al. [49], Guo et al. [62, 63], Nguyen et al. [97], and
Ruess et al. [112]) and mortar method (see e.g. Brivadis et al. [29], Dornisch
et al. [47, 48], and Schuß et al. [118]) are established methodologies in IGA.
An overview can be found in e.g. Apostolatos et al. [2] and Marussig et al.
[92].

The coupling approaches suggested in this thesis base on the concept
of Isogeometric B-Rep Analysis (IBRA) as proposed in Breitenberger [27]
and Breitenberger et al. [28]. The principal steps for coupling multiple
patches will be summarized in the following. These steps are essentially
independent of the coupling formulation that will eventually be applied.

There are usually two patches to be coupled. One of them is referred to
as master (•)m and the other one as slave (•)s. An additional term is added
to the virtual work in order to incorporate the coupling conditions by the
penalty method. Equation (5.1) specifies this term for the coupling of the
displacement u along a domain Γ with a penalty factor α.

δW coup
int =−

�
Γ0

α ·
�

um−us
�

·δ
�

um−us
�

dΓ (5.1)

The integration over the weak coupling domain Γ is done on the mas-
ter side. In general, the procedure is the same for curves and surfaces as
indicated in Figure 5.1. The coupling domain has to be defined by a geo-
metric entity. This description is an approximation, if the intersection of
non-matching parametrized NURBS is not describable with NURBS or if
CAD only provides a solution within the defined tolerances. This coupling
domain is then typically either a point, a curve in the parameter space of a
surface or an interval in the parameter space of a curve. The intersection
points of all knot lines with the coupling domain have to be projected
into the coupling domain in order to ensure continuous coupling (see
Figure 5.1(a)). In the case of two curves, the knots of the master can be
used directly and only the respective slave knots have to be projected onto
the parameter space of the master curve. The coupling domain, which
is described by a NURBS curve, is then refined by knot insertion at the
respective knot lines. Note that this is only done for the coupling formu-
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5.2 Connecting NURBS Patches

lation. The number of control points in the system and consequently the
amount of DOFs is not changing. The Gauss points are set according to the
refined knots. Computing the stiffness matrices and force vectors of the
coupling formulation with both sides requires the projection of the integra-
tion points into the parameter space of the slave patch (see Figure 5.1(b)).
The coupling domain is then integrated as described in Section 3.2.2. In
the case of a point, the procedure reduces to determining the parametric
coordinates of the point in both patches and evaluating the stiffness matrix
and the force vector.

Alternatively, as described in Guo et al. [62], it is possible to describe the
coupling domain in 3D space and use this entity as integration domain.
Such an entity, named edge, is provided by CAD in B-Rep descriptions of
surfaces only. It can compromise between the non-matching boundary
descriptions and parametrizations of the coupled surface. Nevertheless,
the parametrization, i.e. knot lines, have to be projected onto this entity.

The final outcome for FEM is always a set of integration points with inte-
gration weights and parameter coordinates on the master and the slave
side.

5.2 Connecting NURBS Patches

The coupling conditions can also be used for connecting points in space
and aligning cross sections (see Figure 5.2). This can be achieved by a
simple change in the coupling condition which is added to the virtual
work. Instead of penalizing different displacements, the difference in lo-
cation between both sides can be penalized. This results in the following
additional term for connecting point xm with point xs.

δW connect
int =−α ·

�

xm−xs
�

·δ
�

xm−xs
�

(5.2)

The tips of the base vectors tm
i and ts

j can be pulled together in order to
align two elements by penalizing the difference of the tips.

δW align
int =−α ·

�

tm
i − ts

j

�

·δ
�

tm
i − ts

j

�

(5.3)

Note that the indices of the base vectors do not have to match, since vari-
ous right angles can be realized with this formulation. Furthermore, the
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Figure 5.1: General steps of the coupling procedure of two
NURBS patches: (a) knot projection into the integration domain
and (b) projection of the integration points into the parameter

domain of the NURBS patches.
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xsxm

(a)

ts
jtm

i

(b)

Figure 5.2: (a) Connecting and (b) aligning of the cross sections
of two beams.

negative value of a base vector could be used in order to get the intended
alignment. Of course, the formulation can be used to align several base
vectors or only one per side.

If the points are far apart or have a large angle in between, applying these
conditions might result in an instable simulation in the case of geometri-
cally nonlinear analysis. Therefore, it is proposed to apply the weak bound-
ary condition step-wise, which is similar to increasing loads. Only a por-
tion of the initial distance is penalized such that the points approach each
other but do not have to coincide directly. This portion is then increased
by λ ∈ [0, 1] in every step.

δW connect
int =−α ·

�

�

xm−xs
�

− (1−λ)
�

X m− X s
�

�

·δ
�

�

xm−xs
�

− (1−λ)
�

X m− X s
�

�

(5.4)

The simple version of this step-wise approaching has the disadvantage
that the direction of the movement towards each other is predetermined.
If large and potentially non-symmetric displacements are involved, this
might result in large restraint stresses during the movement, which again
might result in instability of the simulation. Therefore, contracting cables
are recommended for complex connections. They are flexible concerning
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η

ξ

(a)

8000

-4000

(b)

Figure 5.3: Connecting of edges with evenly distributed
connectors illustrated in blue: (a) setup of shells and (b) normal

force in η-direction of the connected patches.

the direction of the pulling and adapt the displacement of each step around
critical points (see Lienhard [85] and Philipp [106]).

When applying this to a continuous connection, one has to take care of
matching coupling points on each side. The main factor is the geometric
distance between the neighboring coupling points. They should possess
the same relation on both sides (see Figure 5.3). If this is not the case,
stresses parallel to the coupling edge appear (see Figure 5.4).

Note that fulfilling this requirement might be non-trivial if the connecting
sides have different lengths and shapes. In order to conform to the con-
tinuous coupling of edges as proposed by Breitenberger [27], one has to
consider the knot spans of both sides and use p +1 Gauss points per ele-
ment. Nonetheless, it was observed that even fewer connection points may
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5.3 Rotational Coupling of Beams

η

ξ

(a)

8000

-4000

(b)

Figure 5.4: Connecting of edges with not evenly distributed
connectors illustrated in blue: (a) setup of shells and (b) normal

force in η-direction of the connected patches.

provide good results. The number of connection points can be reduced to
one for knot spans inside the domain.

5.3 Rotational Coupling of Beams

The coupling of the rotation of two adjacent beams is an essential com-
ponent for the structural analysis in construction engineering. A general
coupling technique for rotations is proposed in this section, which is a
revised and shortened version of Bauer et al. [8]. Additional sections, which
are only part of this thesis, are added as remarks and indented.

In general, there are different coupling scenarios in 2D and 3D space (see
Figure 5.5 and Figure 5.6). The simplest case is a coupling at interpolated
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5 Isogeometric Coupling

control points with matching tangents and cross section. In 3D space,
the cross sections can also be non-matching for parallel tangents (cf. Fig-
ure 5.6(b)). If the tangents remain parallel during the deformation, this case
can be treated like the matching cross sections if the gap can be described
by a local twisting angle around the tangent. The next step in complexity
is integrating non-matching tangents. The bending strip method of Kiendl
et al. [73] can be adopted in 2D space in order to enforce the kink during
the deformation. However, the bending strip is not directly applicable in
3D space as it cannot enforce the torsional coupling. The most general case
is a coupling inside the parametric domain, where no control points in-
terpolate the curve with non-matching tangents and cross sections. Note
that the 2D case is much simpler since the rotational axis is always de-
fined by the normal of the plane. Hence, the rotation can be described by
one angle around a fixed axis, whereas 3D space requires a more sophis-
ticated method to uniquely describe the rotation of both sides, which is
especially the case for a geometrically nonlinear application. Greco and
Cuomo proposed a G 1-coupling for Euler-Bernoulli kinematics in Greco
et al. [59] at interpolated control points. Coupling of Timoshenko beams
in the strong form may inherently be given if the degrees of freedom for
the cross section are defined globally, e.g. by quaternions in Weeger et al.
[129]. In the present paper, an approach to directly deal with the last and
the most general scenario for structural elements without these respective
DOFs is proposed. Furthermore, the formulation will be valid for large
displacements and rotations in 3D space in the context of a geometrically
nonlinear analysis.

5.3.1 Element Formulation

A special coupling condition is needed in the context of isogeometric analy-
sis since the isogeometric FE nodes with the degrees of freedom are in
general not interpolating and since there are structural elements without
global degrees of freedom for rotations.

Consequently, the strong form of the coupling condition is not possible,
even for displacements, in the general case if the discretization and the
parametric continuity should remain unchanged. By allowing a change in
the parametrization, it is legitimate to insert as many knots as necessary
for a C 0-continuity in order to generate an interpolating control point at
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5.3 Rotational Coupling of Beams

(a)

bending strip

(b) (c)

Figure 5.5: Coupling scenarios in 2D space with increasing
complexity: (a) matching cross section and interpolated control
points at patch boundaries, (b) non-matching cross section and
interpolated control points and (c) non-matching cross section

and non-interpolated control points (adapted from Bauer et al. [8]).

the coupling location (see Figure 5.7), which is e.g. used by Greco et al.
[59]. The continuity is then maintained by deriving respective kinematic
constraints for the DOFs on the nodes. This procedure can be bypassed
by a weak formulation of the coupling problem as shown in the following.
Generally, there are several methods to apply boundary conditions in
a weak sense to a structural system, e.g. penalty approach, (augmented)
Lagrange method or Nitsche method. The penalty approach is chosen since
it provides sufficiently good results (Apostolatos et al. [2] and Breitenberger
[27]) for isogeometric shell models and is a flexible and straight-forward to
implement approach.

General Weak Form of the Coupling Formulation

There are basically two conditions which can be used for enforcing cou-
pling. It can be assured that either both sides of the coupling condition
follow the same translation and rotation (see Equation (5.5)) or that the
relation between the both sides (see Equation (5.6)) is constant (see also
Figure 5.8). Both approaches result in an additional term in the virtual
work:

δW coup =−αdisp ·
�

um−us
�

·δ
�

um−us
�

+αrot ·
�

wm−ws
�

·δ
�

wm−ws
�

(5.5)
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(a) (b)

(c) (d)

Figure 5.6: Coupling scenarios in 3D space with increasing
complexity: (a) matching cross section and interpolated control

points at patch boundaries, (b) non-matching cross section,
parallel tangents and interpolated control points, (c)

non-matching cross section, non-parallel tangents and
interpolated control points and (d) non-matching cross section

and tangents and non-interpolated control points (adapted from
Bauer et al. [8]).

δW coup =−αdisp ·
�

�

xm−xs
�

−
�

X m− X s
�

�

·δ
�

�

xm−xs
�

−
�

X m− X s
�

�

−αrot ·
�

r
�

tm, ts
�

−δr
�

T m, T s
�

�

(5.6)

with αdisp being the penalty factor for displacements and αrot for rotations.
u and w represent translation and rotation whereas r (T m, T s) quantifies
the relation between two vectors on the master and slave sides. A prelimi-
nary study on the choice of the penalty factor for the proposed coupling
conditions was conducted and will be presented in Section 5.3.2.
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5.3 Rotational Coupling of Beams

(a) (b)

Figure 5.7: Two coupled curves with their control points: (a) no
interpolation of the curve through a control point at the coupling
point and (b) with respective C 0-continuity at the coupling point

for interpolated control points (adapted from Bauer et al. [8]).

um
us

wm ws

(a)

(xm −xs)

(X m − X s)

r (T m, T s) r (tm, ts)

(b)

Figure 5.8: Coupling conditions: (a) same displacement and
rotation and (b) same relation between position and base vectors
in initial and actual configuration (adapted from Bauer et al. [8]).

The respective contributions to the right-hand-side R coup
r and the stiffness

matrix K coup
r s are defined similarly to the structural element formulations

by deriving the additional term with respect to the degrees of freedom
ûr /ûs . This is shown for Equation (5.5) since this will eventually be chosen.

R coup
r =αdisp ·

�

um−us
�

·
∂ (um−us)
∂ ûr

+αrot ·
�

wm−ws
�

·
∂ (wm−ws)
∂ ûr

(5.7)

K coup
r s =αdisp ·

∂ (um−us)
∂ ûs

·
∂ (um−us)
∂ ûr

+αrot ·
(wm−ws)
∂ ûs

·
∂ (wm−ws)
∂ ûr

+αrot ·
�

wm−ws
�

·
∂ 2 (wm−ws)
∂ ûr ∂ ûs

(5.8)
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The derivation of a coupling condition for large displacements and rota-
tions is shown at the example of a beam since it is one of the most obvious
application examples. However, it can be transferred to every other formu-
lation, such as the Kirchhoff-Love shell, with respective properties. The
coupling of different structural elements, e.g. shell and beam, is also possi-
ble.

Coupling Conditions

A general, nonlinear coupling condition is required to be unique without
singularity for every configuration of connection and displacement. As al-
ready mentioned, there are in principle two ways of describing a coupling
condition. Either the relation between the two triads of the beams is pre-
served or it has to be ensured that the points including the respective triads
on each side deform in the same way. A coupling condition which enforces
the same displacement and rotation on both sides is chosen since the
formulation should be general and applicable to rotational supports. By
choosing the relative condition, it would be necessary to define a reference
triad at a support, which is less intuitive. However, the two conditions are
convertible into each other. The respective changes will briefly be shown
after the proposed, implemented and tested formulation.

Describing large displacements and rotations in a unique way in 3D space
can be demanding for arbitrary initial configurations. Therefore, the ap-
proach of Lumpe et al. [90] for a nonlinear beam formulation was used
and modified. There, the displacements of the tips of the base vectors
were used to describe the rotation of the cross section of a nonlinear beam
element from the reference configuration to the actual one. These dis-
placements are computed by the difference of the reference and the actual
base vector. The displacements of the three base vectors are then split into
parts which are oriented along the reference base vectors. Consequently,
nine projected displacements evolve for an arbitrary rotation in space.
In contrast to Lumpe et al. [90], the amount of considered projected tip
displacements was not reduced to three displacements describing the
rotation in space for this coupling condition. This decision is based on the
fact that the orthonormal base vectors do not have to be kept orthonormal
as they are defined by the structural element and not the rotation com-
ponents. Furthermore, a singularity can be avoided for large rotations by
taking every tip displacement component into account. Figure 5.9 shows
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Figure 5.9: Description of the rotation of base vectors by their
tip displacement: (a) one displacement value and respective valid

configuration and (b) two displacement values (adapted from
Bauer et al. [8]).

a simple rotation around T3. With the reduction, only the displacement
of the tip of T2 in T1-direction would be taken into account and conse-
quently there are two valid configurations tαi (see Figure 5.9(a)) with the
same displacement u2. If the second displacement component of the tip
is also included in the formulation, the rotation is uniquely defined since
the component of the tip displacement in the direction of the base vec-
tor is not equal for the two possible configurations of Figure 5.9(a) (see
Figure 5.9(b)).

Note that in our case of 3D rotations of an orthonormal triad, the tip dis-
placements of only two of three base vectors would be sufficient to uniquely
describe the rotation. However, all of them are considered in order to pro-
vide a general implementation.

Additionally, the rotations are expressed by a projection into the local
coordinate system of the initial beam of the master side in this contribution,
which is indicated by w•/T m

i
. This allows the coupling of selected directions.

As the same displacement and rotation should be enforced on both sides,
the following coupling conditions can be used, where u is the displacement
of the spatial point of the center line and w is the difference of the base
vectors in the actual and reference configuration:

u m
x = u s

x u m
y = u s

y u m
z = u s

z (5.9)
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Figure 5.10: Rotation of the cross sectional triad and respective
tip displacements of the base vectors separated into the

components of the initial base vectors (adapted from Bauer et al.
[8]).
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with

wti /T m
j
=
�

ti − T m
i

�

· T m
j (5.13)

All considered tip displacements wti /T j
are shown in Figure 5.10.

Since the triads of the initial configuration are not aligned in the general
case and the rotation should be described by the tip displacements of the
base vectors, one side has to be mapped in a unique way to the other
in order to describe the displacement with respect to one local initial
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Figure 5.11: Mapping operation from slave to master side: (a)
beam configuration in undeformed and deformed configuration

and (b) splitting a base vector from the master side into the
components of the slave triad (adapted from Bauer et al. [8]).

coordinate system. This can be done by using the projection rule of the
initial coordinate systems also for the actual coordinate systems.

A mapping of a base vector ts
i from the slave side to the master side ts,mod

i
can be computed by the following

ts,mod
i =

�

T m
i · T s

1

�

ts
1+

�

T m
i · T s

2

�

ts
2+

�

T m
i · T s

3

�

ts
3 (5.14)

This mapping is unique for arbitrary configurations and preserves the
initial relation, which is also illustrated in Figure 5.11.

Figure 5.12 shows an overview of all steps in the coupling formulation,
which have to be conducted. The relation between the master and slave
point in the reference configuration is used to transform the actual con-
figuration of the slave point. These modified base vectors ts,mod

i and the
actual base vectors of the master point tm

i are then used for the difference
vector with the reference master base vectors T m

i . The difference vectors
are projected into the reference master coordinate system. These projec-
tions wtm/s,mod

i /T m
j

are used to evaluate the difference in rotation of both

sides by comparison.
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Figure 5.12: All mapping steps of the proposed coupling
condition (adapted from Bauer et al. [8]).

Moreover, coupling conditions can be applied for only one base vector.
This corresponds to a scissor joint which can also change its orientation
in space during the deformation process (see Figure 5.13). The respective
conditions for a pin in tm

2 direction would e.g. be:

u m
x = u s

x u m
y = u s

y u m
z = u s

z (5.15)

w m
tm

2 /T m
1
=w s

ts,mod
2 /T m

1
w m

tm
2 /T m

2
=w s

ts,mod
2 /T m

2
w m

tm
2 /T m

3
=w s

ts,mod
2 /T m

3
(5.16)

Note that these displacements could also be transformed into angles which
would give a direct analogy to a rotational spring. However, this would
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(a) (b) (c)

Figure 5.13: Scissor joints: (a) free torsion with wt1/T m
i

, (b) free
bending moment Mv with wt2/T m

i
and (c) free bending moment

Mn with wt3/T m
i

(adapted from Bauer et al. [8]).

result in a more complex computation of the derivatives and variations in
the implementation.

Alternative Coupling Conditions

This section briefly shows how the components of the proposed coupling
condition can be used in alternative approaches.

Displacements w.r.t. the local coordinate system

The displacements can also be expressed in the local coordinate system
of the master. This is simple for the reference local system, which can be
used for e.g. supports.

u m
T m

i
= um · T m

i = us · T m
i = u s

T m
i

(5.17)

The same holds for the local coordinate system in the actual configuration.
This is for example useful for the modeling of shear force hinges.

u m
tm

i
=um · tm

i = us · tm
i = u s

tm
i

(5.18)

In contrast to the local reference frame, this is not directly compatible
with the implementation of the originally proposed method as additional
variations arise with the projection to tm

i since tm
i is dependent on the

DOFs.
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Rotations w.r.t. the global coordinate system

The rotation of tm
i and ts,mod

i could also be measured in the global coordi-
nate system which results in a small change in the coupling conditions.

wm
ti
=
�

tm
i − T m

i

�

(5.19)

ws,mod
ti

=
�

ts,mod
i − T s,mod

i

�

(5.20)

wm
ti
=ws,mod

ti
(5.21)

This modification is especially useful for boundary conditions, which are
aligned to the global system, if the local coordinate system is not applicable.
It implies only a minimal change in the implementation and both options
can easily be provided.

Remark: Rotation of an arbitrary local axis

The same mapping that is used for the mapping of the slave
to the master side, can also be used to generate an arbitrarily
oriented pin joint between two structural elements (see Fig-
ure 5.14). Furthermore, it can be applied for restraining an
arbitrary rotation in a support point.

Therefore, the rotation axis J is expressed by the reference
base vectors of each side, which is equal to the mapping in
Equation (5.14). The transformation rule is then applied to the
actual base vectors of both sides.

tm,mod
J =

�

J · T m
1

�

tm
1 +

�

J · T m
2

�

tm
2 +

�

J · T m
3

�

tm
3 (5.22)

ts,mod
J =

�

J · T s
1

�

ts
1+

�

J · T s
2

�

ts
2+

�

J · T s
3

�

ts
3 (5.23)

Thereby, the globally defined rotation axis becomes a locally
defined rotation axis and can rotate with the structure during
the analysis. The displacement of the tip of the axis expressed
by the transformed base vectors is then compared in the cou-
pling condition. Note that the displacements are expressed in
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J

J

Figure 5.14: Coupling of two beams by an arbitrarily oriented
pin joint: reference and deformed configuration.

the initial local coordinate system of the master side, which
could also be replaced by another one.
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Relative condition

The relative coupling condition of the displacements is directly convertible
to the enforcing of the same displacements on both sides.

δW coup =−αdisp ·
�

�

xm−xs
�

−
�

X m− X s
�

�

·δ
�

�

xm−xs
�

−
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�
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�

�

xm− X m
�

−
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�

�

·δ
�

�

xm− X m
�

−
�

xs− X s
�

�

=−αdisp ·
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um−us
�

·δ
�

um−us
�

(5.27)
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The proposed approach can also provide a relative condition for the ro-
tations. Comparing the deformed base vectors tm

i and ts,mod
i would be for

example a relative condition since the modified slave base vectors are
computed such that they reproduce the initial relation between the two
coupling partners.

tm
i = ts,mod

i (5.28)

The relative angles between all base vectors could also explicitly be mea-
sured and be enforced to be constant.

Remark: Shell - beam coupling

The presented method can also be used to couple the rotations
of a beam and a shell. The approach only has to be modified in
the sense that the shell provides an orthonormal coordinate
system at the coupling point. Such an orthonormal basis can
be defined by e.g. G1 and the surface normal G3.

T1 =
G1

‖G1‖2
(5.29)

T3 =
G1× G2

‖G1× G2‖2
= G3 (5.30)

T2 =T3× T1 (5.31)

All presented steps and alternative formulations can be used
after replacing the respective base vectors on one side.

5.3.2 Examples

Several benchmarks will be performed in the following in order to prove
the validity and generality of the proposed coupling formulation for an
Euler-Bernoulli beam.

Cantilever

A straight cantilever modeled by two beams is shown as first benchmark
(see Figure 5.15). The coupling point is in the middle of the total length of
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Figure 5.15: Setup of a cantilever with tip load consisting of two
beams (adapted from Bauer et al. [8]).

the cantilever. It is loaded by a tip load. A linear analysis is performed in
order to have analytic results to compare with.

Figure 5.16 shows the relative error of the displacement for a range of
penalty factors for rotation coupling. The penalty factor of displacements
is kept constant to αdisp = 1010 since it was observed that the result is only
affected by the expected error which is introduced modeling the coupling
condition with the penalty method, i.e. adding a virtual spring between
the coupled points. The error of the tip displacement of the cantilever is
dominated by the evolving gap ∆u = F

αdisp =
0.1

1010 = 10−11. Furthermore,
the number of elements per beam and the polynomial degree is varied.
The relative error of the tip displacement is computed with the analytic
solution as reference as follows:

εu y
=

u y −u ref
y

u ref
y

with u ref
y =

F L 3

3E Iz
(5.32)

It can be observed that the quality of the results improves in the beginning
as expected for an increasing penalty factor. After a certain level, here
αrot = 109, the quality of the result is corrupted by the conditioning of the
equation system solved in the analysis.

A circular cross section is used as a second benchmark example in order to
be able to check different relative orientations of the cross sections against
the single beam solution (see Figure 5.17). Furthermore, a geometrically
nonlinear analysis is conducted in order to check large displacements. The
cantilever is bent by a single force at the tip. The first beam is fixed whereas
the initial cross section orientation of the second beam is rotated around
its axis by an angleφ. Each coupled beam is modeled by a B-Spline with
polynomial degree p = 5 and 16 elements, which corresponds to 21 control
points. The single beam is modeled by 32 elements with polynomial degree
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Figure 5.16: Relative error of the u y -displacement of a
cantilever under a tip load modeled by two coupled beams with

different amount of elements: (a) 16 elements and (b) 64 elements
(adapted from Bauer et al. [8]).

p = 5, which results in 37 control points. The penalty factors areαdisp = 1012

and αrot = 109.

One can observe that the evolving gap∆u between the two coupled ends
correlates to the penalty factor which was chosen to be αdisp = 1012 (see
Figure 5.18(a)). The penalty factor acts like a spring with stiffness αdisp

between the two beams. The gap opens only in the direction of the load
and the length of the gap corresponds to the elongation of a spring under
the respective load which is transferred in this joint.

∆u = ‖um−us‖2 =∆uz =
F

αdisp
=

25

1012
= 2.5 ·10−11 (5.33)

The relative angle between the two beams remains almost constant as can
be seen in Figure 5.18(b).

εφi
= arccos(tm

i · t
s
i )−arccos(T m

i · T s
i ) (5.34)

The relative error of the absolute displacement at the coupling point umid

and at the tip utip is computed using the single patch solution as reference.
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Figure 5.17: Setup of a cantilever with tip load consisting of two
beams with circular cross section where the second beam is

rotated around its axis (adapted from Bauer et al. [8]).

The results are depicted in Figure 5.18(c) and Figure 5.18(d).

εu mid
i
=

u mid
i ,coupled−u mid

i ,single

u mid
i ,single

εu tip
i
=

u tip
i ,coupled−u tip

i ,single

u tip
i ,single

(5.35)

The coupled beams show very good accordance with the single beam
solution, also for varying correlation between the base vectors of the cross
section.

Circular Arch Cantilever

The next example will test the most complex loading on the coupling,
i.e. bending torsion interaction. Therefore, a circular arch cantilever with
a point load on the free end is chosen (see Figure 5.19). The beams are
modeled with the same parametric discretization, but the polynomial
degree and the number of elements are varied.
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Figure 5.18: Results of the cantilever beam with rotating cross
section: (a) evolving gap between the two beams, (b) error of the
angle between the cross sectional base vector, (c) relative error of
the displacements at the coupling point and (d) relative error of

the displacements at the tip (adapted from Bauer et al. [8]).
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Figure 5.19: Setup of a quarter circle cantilever (adapted from
Bauer et al. [10])(adapted from Bauer et al. [8]).

The linear analytic results of the tip displacement and the support forces
at the clamped end are computed as follows:

u tip
z =

� π
2

0

�

1

E I3
(−F R · cosα)(−R · cosα)

+
1

G I

�

F R · (1− sinα)
� �

R · (1− sinα)
�

�

R dα (5.36)

=
F R 3π

4E I3
+

F R 3

G I

�

3π

4
−2

�

= 0.138285322802514m , (5.37)

φtip =
� π

2

0

�

1

E I3
(−F R · cosα) · cosα+

1

G I

�

F · (1− sinα)
�

· sinα

�

R dα

=−
F R 2π

4E I3
+

F R 2

G I

�

1−
π

4

�

= 0.0757632997455722rad (5.38)

M̃n =− Fz R =−1.0kNm (5.39)

M̃t = Fz R = 1.0kNm (5.40)

The first evaluation of this example compares the relative error for different
penalty factors αrot and polynomial degrees p . The plots in Figure 5.20
show the relative error w.r.t. the single-beam-solution in order to separate
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Figure 5.20: Relative error at the tip for: (a) uz for 4 elements, (b)
uz for 16 elements, (c)φ for 4 elements, and (d)φ for 16 elements

(adapted from Bauer et al. [8]).

discretization errors from the investigated coupling errors. The coupled
model has 4 or 16 elements per beam, which corresponds to 8 or 32 ele-
ments in the single-patch model.

Figure 5.20 shows a different behavior for polynomial degree p = 2, 3 than
for higher polynomial degrees. This convergence to a different result is
linked to the still existing differences in the discretization. Figure 5.21
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Figure 5.21: Different discretizations of the coupled circular
arch: (a) control points with respective weights of the two curves,
which are constructed by two 45◦ circular segments (dark blue),

(b) control points with respective weights of the two curves, which
are constructed by knot insertion into a 90◦ circular segment

(lighter blue) and (c) refined control points and Gauss integration
points for 4 nonzero knot spans and both discretizations (adapted

from Bauer et al. [8]).

shows the control points and weights of two 45◦-segments, constructed by
two independent segments with CAD (see Figure 5.21(a)) and with knot
insertion in the middle of a 90◦-segment (see Figure 5.21(b)). One can
observe in Figure 5.21(c) that the weights of the control points and the
positioning of the Gauss points differ for these parametrizations, where
each curve was refined to 4 nonzero knots spans, which in return influences
the outcome of the result if the curves are not refined enough.

This is confirmed in Figure 5.22 where the discretization of Figure 5.21(b)
is used which is closer to the parametrization of the single beam. Note that
there is still a difference due to continuity in the middle of the knot span.

The polynomial degree has no influence on the quality of the result if there
are many elements as can be seen in Figure 5.22(b) and Figure 5.22(d). The
leveling-off of the error in Figure 5.22(a) and Figure 5.22(c) is therefore not
related to the coupling scheme but the discretization. As observed above,
the quality of the result reaches its optimum for a penalty factor αrot = 109.

Figure 5.23 shows the convergence behavior for different polynomial de-
grees p and numbers of elements per beam with penalty factor αrot = 1010.
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Figure 5.22: Relative error at the tip for: (a) uz for 4 elements, (b)
uz for 16 elements, (c)φ for 4 elements, and (d)φ for 16 elements

(adapted from Bauer et al. [8]).
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Figure 5.23: Numerical results for the quarter circle cantilever
under tip load: (a) uz at the tip, (b)φ at the tip, (c) M̃n at the

support, and (d) M̃t at the support (adapted from Bauer et al. [8]).
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5

7.5

Figure 5.24: Cantilevering skew cross modeled by four coupled
beams (adapted from Bauer et al. [8]).

Note that the discretization of Figure 5.21(a) was used for Figure 5.23 since
this parametrization is the outcome of the ‘‘real’’ modeling in common
CAD systems.

Cross Junction

The next example should check if several beams can be coupled to one
point and if the forces are transferred correctly. Non-matching tangents
are a further property of this example to be verified. Therefore, four beams
assembled as a cross with one angular beam are modeled as shown in
Figure 5.24. Note that the coupling is not restricted to orthogonal configu-
rations. One beam is clamped on the end and the skew one has a tip load.
The clamped beam is the master beam for all three coupling conditions.
The beams without boundary conditions should ideally remain straight
and only be translated and rotated without internal forces.

As can be observed in the deformation plot with respective internal forces,
the results match the expected behavior. The unbounded beams remain
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(a) Ñ (b) M̃n

(c) M̃v (d) M̃t

0

max

Figure 5.25: Inner force of the cantilevering cross: (a) normal
force Ñ , (b) bending moment M̃n , (c) bending moment M̃v , and

(d) torsional moment M̃t (adapted from Bauer et al. [8]).

straight and no internal forces evolve. The internal forces of the other two
beams are in equilibrium with the load and the support forces respectively.

The largest difference∆φi j measured as angle between two base vectors
tm

i and ts
j at the coupling point is 6.66e-8rad, which is sufficiently small.

∆φi j = arccos(tm
i · t

s
j )−arccos(T m

i · T s
j ) (5.41)

Mainspring

The mainspring benchmark example was chosen in order to test the ca-
pability to undergo large rotations. A cantilever with the length L = 20π is
again modeled by two beams with flat rectangular cross sections. Every
center line is modeled by a B-Spline curve with p = 6 and 10 nonzero
knot spans. A moment M = 2π

L E I at the tip is needed to bend the straight
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beam into a circle. The load factor k is incrementally increased from 0 to 2,
which ideally should result in a double circle with radius R = E I

k ·M =
L

4π = 5.
Note that the moment cannot be applied directly to the system since the
element formulation of the beam is displacement-based and the nodal
forces are changing during the simulation. Yet, it can be incorporated by
the external work which generates additional terms in the stiffness matrix.
The penalty factors for displacement and rotation are both set to α= 107.
The setup and the corresponding deformation is shown in Figure 5.26(a).
The analytic solution of the tip displacement is

uref = L − sin (k ·2π) ·
L

k ·2π
, vref =

�

1− cos (k ·2π)
�

·
L

k ·2π
. (5.42)

The comparison of the tip displacements to the analytic reference solution
in Figure 5.26(b) shows an agreement over the whole load path.

Gridshell

A lattice gridshell is a perfect application example for advanced coupling
conditions. Three by three beams are laid over each other and connected
at the intersection points. In this case, the formulation for scissor joints is
applied, i.e. only t2 is coupled. All ends are supported in z -direction. All
beams are loaded with a line dead load in order to bend them into space
as shown in Figure 5.27(a).

Figure 5.27(b) shows the close-up of one outer joint. It can be observed that
the base vectors t2 at the joint are matching within the tolerance introduced
by the penalty approach. The angle between them, which corresponds
to the error of the result, isφtm

2 ts
2
= 0.00198. The initial angle ofφT m

1 T s
1
= π

2
between the tangents of the beam changed toφtm

1 ts
1
= 1.384. This behavior

is perfectly in accordance with the modeling of a scissor joint, which can
change its orientation during the analysis and stays local on the beam.
Also the internal moments as shown in Figure 5.28(a) and Figure 5.28(b)
are matching the expected result. The laths are bent around their weak
axis and torsion occurs only in the outer four laths. Evaluating the normal
forces is more demanding. The continuous basis functions are not able
to represent discontinuities as introduced by the point coupling. In order
to represent the correct behavior, the length of the tangent would have to
change suddenly at the coupling, which is not possible. High oscillations
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Figure 5.26: Mainspring modeled by two coupled beams: (a)
setup and several deformed states and (b) comparison of the tip
displacement with the reference solution (adapted from Bauer

et al. [8]).
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Figure 5.27: Gridshell with three by three laths connected by
scissor joints: (a) setup with supports and loads and respective

deformed structure and (b) close-up on one joint with base
vectors t2 at every Gauss point of each beam and respective cross

sections (adapted from Bauer et al. [8]).

are the result (cf. Figure 5.28(c)). This phenomenon can also be observed
with other higher-order basis functions. In order to restrain the propa-
gation of these oscillations, local refinement, i.e. knot insertion around
the discontinuity points, can be applied to the curves, which leads to a
proper representation of the normal force as can be seen in Figure 5.28(d).
However, the displacement of the two different refinements differs only
by 0.299%, which implies that the not locally refined curve can be used for
the evaluation of the overall structural behavior.

5.4 Embedded Isogeometric Elements

Coupling of overlapping elements as illustrated in Figure 5.29 can also be
described in an implicit way. The requirement is that one element has to
completely lie inside another one. The smaller entity can be a point, a curve
or a surface and even a volume if volumetric NURBS are considered. The
relation can be expressed by redefining the geometry description. For this
reason, the smaller one is projected into the parameter space of the larger
one, which is similar to the description of trimming curves. Consequently,
the projected NURBS patch is expressed by the master NURBS patch and
its NURBS description in the parameter space of the master patch. The
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(a) (b)

(c) (d)

Figure 5.28: Inner forces of the gridshell: (a) bending moment
M̃n , (b) torsional moment M̃t , (c) normal forces Ñ and (d) normal
forces Ñ with locally refined curves (adapted from Bauer et al. [8]).

technique of expressing one entity by another one is also called embedding.

A more detailed explanation of this concept will be given in the following
for a curve, which is embedded into a NURBS surface. The description is
adopted from Section 2.2 and 2.3 of Bauer et al. [9].

The control points P i of the embedded curve have the coordinates of the
parameter space (θ 1,θ 2) of the surface. The computation of the NURBS
curve in the parameter space is performed analogously to Equation (3.4).

C (θ̄ 1) =





θ 1
�

θ̄ 1
�

θ 2
�

θ̄ 1
�



=
n̄
∑

ī=1

Rī ,p̄ (θ̄
1)P ī (5.43)

This kind of description is directly available from CAD, when constructed
by intersection of a surface and a curve or other surface (see Figure 5.30).
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Figure 5.29: Geometry and parameter space of a surface with
different types of embedded entities.

The curve description with knot vector and control points in the parameter
space results from a surface-to-surface intersection (SSI) problem, see
Choi [34], Krishnan et al. [79], Patrikalakis [103], and Sederberg et al. [119].
In general, it is not possible to describe the resulting curve by the same
knot vector nor to exactly represent the original (intersecting) curve. The
precision is dependent on the tolerances of the CAD system respectively
the SSI-algorithm. Note that the position of those control points within
the parameter space of the master element does not change during the
analysis. The deformation of the curve is only implied by the deformation
of the surface (cf. Figure 5.31).

The curve in the geometric space can then be expressed as follows (see
Figure 5.32):

C (θ̄ 1) =
n
∑

i=1

m
∑

j=1

Ri j ,p q

�

θ̄ 1
�

Pi j =
n
∑

i=1

m
∑

j=1

Ri j ,p q

�

θ 1
�

θ̄ 1
�

,θ 2
�

θ̄ 1
�

�

Pi j

=
n
∑

i=1

m
∑

j=1

Ri j ,p q

 

n̄
∑

ī=1

Rī ,p̄

�

θ̄ 1
�

P ī

!

Pi j (5.44)

Table 5.1 gives an overview of all aforementioned curve definitions and
their mapping space.
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Figure 5.30: NURBS surface and curve defined in the geometry
space (CAD) (adapted from Bauer et al. [9]).
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(a) (b)

Figure 5.31: Embedded curve in the (a) undeformed surface and
(b) in the deformed surface. The surface knot vector is

Ξs =Hs = [0, 0, 0, 1, 1, 1] and the curve knot vector is equal to
Ξc = [0, 0, 1, 1] for a linear curve. The control points of the curve are
located at P 1 = [0, 0]T and P 2 = [1, 1]T. Note that the curve in the

deformed configuration is still represented by a linear curve in the
parameter space (adapted from Bauer et al. [9]).

general curve description in geometry space C : θ 1
c →R

3

embedded curve description in parameter space C : θ̄ 1→R2

embedded curve description in geometry space C : θ̄ 1→R3

Table 5.1: Overview of curve definitions with respective
mapping space.

Additionally, a local coordinate system B i is introduced in order to describe
a local 3D continuum. The base vectors B i are defined as unit vectors and
orthogonal respectively tangential to the curve (see also Figure 5.32).

B i =
ÒB i

‖ÒB i ‖2

(5.45)

ÒB i denotes the not normalized base vectors. These base vectors of the
curve can be derived from the base vectors of the surface A i . The first base
vector is aligned to the tangent of the curve, the second corresponds to the
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Figure 5.32: Surface with embedded curve and the underlying
parameter space with the defining NURBS curve: definition of the
base vectors of the embedded curve B i and of the base vectors of

the underlying surface A i (adapted from Bauer et al. [9]).

surface normal A 3 and the third is perpendicular to the others.

ÒB 1 =
∂ X s

∂ θ̄ 1
= A 1

∂ θ 1

∂ θ̄ 1
+A 2

∂ θ 2

∂ θ̄ 1
(5.46)

ÒB 2 =A 3 = A 1×A 2 (5.47)

ÒB 3 =ÒB 1×ÒB 2 (5.48)

The base vector ÒB 3 can be rewritten with the help of a pseudo parameter
θ̄ 2 and the triple product expansion, see Breitenberger et al. [28]:

ÒB 3 =A 1
∂ θ 1

∂ θ̄ 2
+A 2

∂ θ 2

∂ θ̄ 2
with

∂ θ 1

∂ θ̄ 2
= ÒB 1 ·A 2 and

∂ θ 2

∂ θ̄ 2
=−ÒB 1 ·A 1

(5.49)
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NURBS-based Embedded Finite Elements

Variations with respect to a discrete global vector of degrees of freedom
û of the geometric quantities are usually required for the formulation of
a finite element. In the following, discrete nodal values will be denoted
by ˆ(•). Each node has the degrees of freedom of the element formulation
of the surface element. These are e.g. three displacement DOFs u , v , w .
Optionally, additional DOFs for the embedded element, like a rotation
around the center lineφ, can be applied. Note that these additional DOFs
are also attributed to the surface control points even though they do not
influence the surface element itself.

û=
�

û 1,1 v̂ 1,1 ẑ 1,1 ( φ̂1,1 ) | ...

| û n ,m v̂ n ,m ŵ n ,m ( φ̂n ,m )
�

(5.50)

The center line xc of the deformed configuration can be described as a
function of the initial coordinates of the surface control points and their
respective displacements.

xc

�

θ̄ 1
�

=
n
∑

i=1

m
∑

j=1

Ri j ,p q

�

θ 1
�

θ̄ 1
�

,θ 2
�

θ̄ 1
�

�

x̂i j

=
n
∑

i=1

m
∑

j=1

Ri j ,p q

 

n̄
∑

ī=1

Rī ,p̄

�

θ̄ 1
�

P ī

!

·
�

X̂ i j + ûi j
�

(5.51)

Since all parameters of the undeformed geometry are invariant to the vari-
ation, the variation xc,r of the position vector with respect to the variation
parameter r (the r -th component of û as defined in Equation (5.50)) can
be written as:

xc,r =
∑

i

∑

j

Ri j ,p q

�

X̂ i j + ûi j
�

,r
=
∑

i

∑

j

Ri j ,p q ûi j
,r (5.52)

The description of the center line also influences the variation of the base
vectors bi :
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,r

=
∑

i

∑

j

�

∂ R(i j ,p q )
∂ θ 1

∂ θ 1

∂ θ̄ 1
+
∂ R(i j ,p q )
∂ θ 2

∂ θ 2

∂ θ̄ 1

�
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(5.54)

The integration of the terms related to the curve element for FE analysis
is required. As commonly applied, this is realized as a Gauss-quadrature.
Note that the coordinates and weights of the Gauss points are derived
from the elements of the curve in the parameter space of the surface. The
minimal number of Gauss points is derived by the largest polynomial
degree p+1 either of the parameter curve or the surface. The refinement of
NURBS curves in the parameter space can be executed in the same manner
as for space curves. This refinement does not alter the geometry. Only the
number of control points in the parameter space is increased, but since
no additional DOFS are introduced, it does not enrich the solution space.
Nevertheless, a refinement of the curve in the range of the refinement
of the surface is beneficial since they share the same DOFs. This can be
realized by e.g. inserting knots at every crossing of the parameter curve
over a knot line of the surface (see Figure 5.33). The size of the elements
is then similar and the numerical error of the integration is in the same
order as for the surface elements, see Breitenberger et al. [28].

5.4.1 Embedded Beam

The implicit geometry description is perfectly suited for the representation
of a beam that is coupled to a surface, i.e. embedded into the surface.
The description of the derivation of the element formulation is based on
Section 3.2 of Bauer et al. [9].
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(a) (b)

Figure 5.33: Embedded curve (pc = 2) with Gauss points (orange
squares) and respective knots (gray lines) for (a) unrefined curve
and (b) refined curve with knot insertion at the intersections with
the knot lines of the surface and order elevation corresponding to

the polynomial degree of the the surface ps = 3 (adapted from
Bauer et al. [9]).

There are two convenient attachments for a beam to a surface, which
is described in the parameter space: (i) rigidly attached and (ii) hinge-
attached.

How to apply the nested parametrization concept to the element formula-
tion of the nonlinear spatial isogeometric Bernoulli beam (BB) presented
in Section 4.4 for those two cases is shown in the following.

Analogously to Section 4.4, X and x are the position vectors for the contin-
uum of the beam and are defined as follows (see also Figure 5.34):

X
�

θ̄ 1, θ̄ 2, θ̄ 3
�

= X c

�

θ̄ 1
�

+ θ̄ 2 B B
2

�

θ̄ 1
�

+ θ̄ 3 B B
3

�

θ̄ 1
�

(5.55a)

x
�

θ̄ 1, θ̄ 2, θ̄ 3
�

= xc

�

θ̄ 1
�

+ θ̄ 2bB
2

�

θ̄ 1
�

+ θ̄ 3bB
3

�

θ̄ 1
�

(5.55b)

The center lines X c and xc are defined by the curve in the parameter space.
The remaining input parameters, i.e. the base vectors B B

i and bB
i can be

described by transferring the original element formulation to the nested
curve properties. Note that the surface normal A 3 provides a unique refer-
ence. Hence, the moving trihedral with the respective Λ-operator, which
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Figure 5.34: Definition of the position vectors X and x, the
surface vectors X s and xs and the center line vectors X c and xc for
the undeformed and deformed configuration with a cross section

defined by B B
2 and B B

3 . Here illustrated for a rectangular cross
section, which is aligned to the surface normal (adapted from

Bauer et al. [9]).

has been introduced in Section 4.4 in order to create a reference trihedral
for the description of the cross section, is not needed in the embedded
formulation.
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Rigidly Attached Beam Element

Rigidly attached means that the cross section of the beam is fully linked to
the surface. In other words when the surface is twisted, also the beam is
twisted. This corresponds e.g. to ribs on a shell structure.

Consequently, the local coordinate system B i , which is strictly derived
from the surface, can be applied as the base vectors B B

i of the continuum
of the beam (Figure 5.34). The not normalized base vector ÒB 1 is used in
tangential direction in order to represent longitudinal changes. In contrast
to the original element formulation from Section 4.4, the fourth DOFψ for
torsion is not applicable, since the twisting is tracked solely by the surface.

Hinge-attached Beam Element

An application for this formulation is e.g. a beam supported membrane. In
this case, the orientation of the cross section of the beam is independent of
the surface. Only the center line stays attached. The base vectors B B

α and
bB
α with α ∈ {2, 3} are derived by modifying the reference base vectors from

the surface Bα and bα, respectively . Therefore, a fourth, torsional DOF is
activated. It measures the relative rotation around the curve tangent. The
reference vectors are then rotated by a correction angle in the reference
and/or the torsional DOF in the deformed configuration (cf. Figure 5.35).

B B
α

�

θ̄ 1
�

=R B 1
(Ψ ) Bα

�

θ̄ 1
�

(5.56a)

bB
α

�

θ̄ 1
�

=R b1

�

ψ
�

R b1
(Ψ )bα

�

θ̄ 1
�

(5.56b)

The angle is applied with an Euler-Rodrigues rotation matrix with B 1 or b1

as axis of rotation. For more details within the context of beam elements,
see Bauer et al. [10].

R b1

�

ψ
�

= I cos
�

ψ
�

+ sin
�

ψ
�

b1× I +

=0
︷ ︸︸ ︷

�

1− cos
�

ψ
�

�

b1⊗b1

= I cos
�

ψ
�

+ sin
�

ψ
�

b1× I (5.57)

Nonlinear Kinematics

The kinematics are derived directly from the geometric description in com-
bination with the laws of continuum mechanics. Strains and stresses are
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B 2

B 1
B 3

(a)

B B
2

B 1

B B
3

Ψ

(b)

b1

b2
b3

(c)

b1

bB
2

bB
3

Ψ +ψ

(d)

Figure 5.35: Modification of the twisting of the beam: (a) initial
configuration of the reference base vectors B in the undeformed

geometry, (b) application of the correction angle Ψ in order to
obtain the reference configuration for the analysis, (c) initial

configuration of the reference base vectors b in the deformed
geometry, (d) application of the correction angle Ψ and torsional
DOFψ in order to obtain the resulting deformed configuration

(adapted from Bauer et al. [9]).
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determined by using the Green-Lagrange strain tensor and the energeti-
cally conjugated second Piola-Kirchhoff stress tensor.

The base vectors of the continuum of the curve element are defined as:

G i =
∂ X

∂ θ̄ i
= X ,ī , gi =

∂ X

∂ θ̄ i
= x,ī (5.58)

Then, the GL strain tensor can be computed according to Equation (2.25)
as follows:

Ei j =
1

2

�

g i j −Gi j

�

(5.59)

Following the derivation of the element formulation in Section 4.4, the
following weak form of the equilibrium evolves for both attachments with
B B
α being principal axes of the cross section:

δWint =−
�
Ω0

S :δE dΩ =−
�

L

E

B 2
11

·
�

Aε δε+ I B B
3
κ21 δκ21

+I B B
2
κ31 δκ31

�

+
G I B B

1

B11
·
�

−
1

2
κ32 δκ32+

1

2
κ23 δκ23

�

dL , (5.60)

where A is the area of the cross section and I B B
i

the moments of inertia
w.r.t. the base vectors.

Examples

The following examples will demonstrate the validity and potential of the
proposed embedded approach for beams, which will be referred to as plug-
on beam (POB) from here on. Moreover, variations in order to use the
formulation for mass assignment and boundary conditions are shown.

Mainspring

The mainspring provides a good benchmark example for the embedded
beam formulation. The problem is geometrically nonlinear and can be
modeled with a rigidly attached beam. Therefore, a cantilevering shell strip
with two embedded beams on the edges is generated (see Figure 5.36). The
surface description consists of a trimmed patch with polynomial degree
p = q = 5. The cutting curves are not aligned to knot lines. Thus, the
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E = 2.0 ·108kN/m2

ν= 0.0
h = 0.01m
w = 0.1m
t = 0.01m
b = 1.0m

x
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L

b
u

v

unrefined
control
point net

refined,
trimmed
mesh

m
M

Figure 5.36: Initial geometry of the mainspring with input
parameters and trimmed mesh with initial control point net. The

virtual volume of the beam is depicted in blue (adapted from
Bauer et al. [9]).

embedded beams run skew through the parameter space. There are no
control points that can be used for a standard NURBS curve description
at the edge. The beam orientation is connected to the surface normal.
The shell element formulation is the same as the Kirchhoff-Love shell
presented in Section 4.2. Bending moments are applied to each structural
element on one end of the structure. In order to turn the strip by 2π, the
moments M = 2πE h w 3

12L and m = 2πE t 3

12L are needed at the free edge for the
beams and the shell, respectively.

Figure 5.37(a) shows different intermediate stages of the roll up process
and Figure 5.37(b) compares the numerical tip displacements to the ana-
lytical result (see Equation (5.42)), which are in good agreement.

Bending-torsion interaction

The quarter circle example is used in this section in order to test the bend-
ing torsion interaction. Therefore, a circular shell strip is modeled and a
beam is embedded onto the longest boundary edge as illustrated in Fig-
ure 5.38. The beam is not attached to the surface normal. The cantilever
is supported on one side by fixing all displacements of the outer control
points on this edge. Additionally, the second control point in the circular
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Figure 5.37: Computed results of the mainspring: (a) deformed
geometry for ten load steps and (b) numerical results compared to

the analytic solution (adapted from Bauer et al. [9]).
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Figure 5.38: Cantilevering quarter circle with out-of-plane tip
load: definition of the geometry, the cross sections and the loading
scenario. The virtual volume of the beam is depicted in dark blue.

direction of the corner of the beam is fixed in order to clamp the beam. A
point load is applied at the other end of the beam.

In order to evaluate the behavior of the element formulation, a convergence
study for the refinement is done. The refinement of the surface in tangential
direction is varied for different polynomial degrees whereas the second
direction has a constant parametrization with p = 2 and three elements.
The displacement is evaluated at the tip of the beam (see Figure 5.39) and
the inner forces inside the beam at point A, which is is located in the middle
of the beam (see Figure 5.40). All polynomial degrees converge to the same
value for a sufficient number of elements.

This problem has no analytical solution that can be used for the assessment
of accuracy. However, due to the parametrization, the embedded model
can be compared to the independent Bernoulli beam (BB) formulation of
Section 4.4. The beam lies on the edge of an untrimmed surface and the
control points of the surface and an individually modeled curve coincide
if the same parametrization is chosen. Since the cross section of the beam
is not oriented along the surface normal, only a displacement coupling is
necessary, which can be implied by sharing the same DOFs. Figure 5.41
shows the relative error ε, which is computed by Equation (5.61) for the
displacement, plotted against the number of elements for different poly-
nomial degrees. Note that the BB result has the same refinement as the
POB one.

ε =
‖(•)BB− (•)POB‖2

‖(•)BB‖2
(5.61)
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Figure 5.39: Convergence of the tip-displacements for the

quadrant cantilever: (a) x -displacement u tip
x , (b) y -displacement

u tip
y , (c) z -displacement u tip

z , (d) rotationφtip
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Figure 5.40: Convergence of inner forces for the quadrant
cantilever at point A: (a) normal force Ñ , (b) bending moment M̃n ,

(c) bending moment M̃v , (d) torsional moment M̃t .
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Figure 5.41: Comparison of the tip-displacements of the
plug-on beam with the Bernoulli beam for the quadrant cantilever:

(a) x -displacement u tip
x , (b) y -displacement u tip

y , (c)

z -displacement u tip
z , (d) rotationφtip
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Figure 5.42: Setup of a mass manipulated, simply supported
plate with mesh. The additional weight at the curve is varied by

the respective density. No additional stiffness is applied. The blue
volume only visualizes the additional mass (adapted from Bauer

et al. [9]).

The rotational degree of freedomφtip is defined differently for the Bernoulli
beam. Consequently, it is not suitable as a reference value. Instead, the
rotation is compared to an extremely refined configuration with 2048
elements and a polynomial degree of p = 9 (POB2048).

εφ =
‖(•)POB2048− (•)POB‖2

‖(•)POB2048‖2
(5.62)

The implementation shows good convergence to the reference values and
the hinge attached formulation with an additional rotational DOF can be
considered as applicable.

Mass manipulation

The embedded formulation can also be used to add or remove mass to or
from a system, which may be needed in an eigenvalue or dynamic analysis.
The example with mass from Bauer et al. [9] consists of a flat, simply sup-
ported plate with an aspect ratio of 2 : 1 (see Figure 5.42). A non-structural
mass is added along an embedded line, which is independent of the knot
lines. The plate is modeled with 50 elements in each direction and a poly-
nomial degree of p = q = 4. No stiffness is added to the curve, i.e. E = 0.0,
in order to separate the effects of mass and stiffness. The eigenfrequencies
and -forms are investigated in an eigenvalue analysis for a varying mass
on the embedded curve.

Figure 5.43(a) shows the eigenmodes of the plate without additional mass.
The eigenfrequency decreases for an increased mass on the curve. The
asymmetric configuration distorts the shape and sequence of the eigen-
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f = 0.2003984

f = 0.3206378

f = 0.5210538

f = 0.6813572
(a) ρbeam = 0.00

f = 0.5304918

f = 0.5144196

f = 0.2825097

f = 0.1687506

(b) ρbeam = 0.05

f = 0.1452303

f = 0.2712789

f = 0.4332633

f = 0.5120579
(c) ρbeam = 0.10

Figure 5.43: First four eigenforms of the mass manipulated
plate (see Figure 5.42) with respective eigen angular frequency f

for: (a) ρbeam = 0.00, (b) ρbeam = 0.05 and (c) ρbeam = 0.10
(adapted from Bauer et al. [9]).

forms (see Figures 5.43(b) and (c)).

Edge-independent line loads and supports

On top of adding additional elements, the embedded description can also
be directly used for the consideration of boundary conditions, which are
independent of the parametrization. Typical applications are supports and
loads. Figure 5.44(a) shows a plate, which is deformed by fixing certain lines
on a shell by a support and applying a pressure load next to it in order to
bend the plate around the support. The lower dark blue body in Figure 5.44
is only visualized for illustration purposes since the simulation resembles a
simplified forming process. The stresses depicted in Figure 5.44(b) match
the expected behavior. The von-Mises stresses are concentrated in the
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supportsforming
load

(a) (b)

Figure 5.44: (a) Setup of the forming example with support and
loads, (b) deformed shell with von-Mises stresses. The upper shell

is computed, the lower body is only depicted for illustration
purposes (adapted from Bauer et al. [9]).

bent area along the supports. The corner of the plate that is bent around
the straight edge, stays flat and experiences no stress. Note that the edge
is not aligned to the knot lines. The corner that is bent around the curved
edge is undulating since it is not possible to fold the sheet around the edge
without stresses.

5.4.2 Embedded Area

The same technique can not only be used for curves on surfaces but also
for areas within a surface. Here, different boundary curves are applied
to the same untrimmed NURBS patch. The integration of these areas is
analogue to trimmed surfaces. The embedding for areas can be used for
the support and load application but also to modify the properties of the
surface element. An example for the weakening of a shell strip is given in
Figure 5.45. The strip is clamped on one side and loaded on the other by
a line load pz . A small band, which is not oriented along the knot lines,
is assigned with a lower Young’s modulus. The strip can either be mod-
eled by explicitly modeling the three areas or by considering the band
as an embedded area with negative Young’s modulus in a homogeneous
strip. The displacement of the three parametrizations as illustrated in
Figure 5.45(c) are compared in Figure 5.45(b). The embedded and the
trimmed parametrization have the same underlying NURBS patch, but
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Figure 5.45: Weakening of a shell strip by an embedded area: (a)
problem description with the weakened area (Young’s modulus
E2) in blue, (b) convergence plot of the displacement uz for the

strip modeled by embedding, coupling of trimmed and
untrimmed patches with several polynomial degrees and (c)

discretization by knot lines for the untrimmed and
trimmed/embedded case, respectively.
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the trimmed case consists of three independent patches that are weakly
coupled. The untrimmed parametrization models the band directly and
the three patches with different parametrizations are coupled as well by a
weak rotational coupling.

The untrimmed case shows the best convergence behavior. The solution
can be represented by a coarse mesh. The trimmed coupled case performs
slightly worse since the band is not aligned to the knot lines. Nevertheless,
good results can be achieved for relatively coarse meshes. The embedded
model avoids weak coupling. Weak and strong areas w.r.t. the bending
resistance are represented by the same control points which is the reason
for the slightly poorer convergence behavior.

5.4.3 Embedded Point

Points can be embedded in curves and surfaces. Usually, they are used
for boundary conditions that cannot be applied in a strong form, i.e. by
constraining the respective control points. The location of the embedded
point is defined by a θ 1-coordinate for curves or

�

θ 1,θ 2
�

-coordinates for
surfaces. The structural element or boundary condition is then added to
the system by an additional term in the internal or external work. Since a
point does not have a dimension, integration is not needed. The additional
part in the internal work for a fixed support introduced by the penalty
approach is constituted of the following:

δWint =−α ·u
�

θ 1,θ 2
�

·δu
�

θ 1,θ 2
�

(5.63)

5.5 Isogeometric Sliding Elements

Coupling including a sliding interface is a next step in the complexity of
the coupling of two structural members. Note that this section is a revised
version of Bauer et al. [13].

A structure sliding along another one still poses a challenge to finite ele-
ment models since the topology information, i.e. which elements interact,
is changing. Typically, this problem is overcome by either the derivation
of an application specific element e.g. by Arya et al. [3], Aufaure [4], Chen
et al. [33], Coulibaly et al. [41], Ghoussoub [53], Pargana et al. [101], and
Zhou et al. [133] or by the introduction of a contact search. Each procedure
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Figure 5.46: Description of the continuum with the position
vectors x1

�

θ 1
�

and x2 (adapted from Bauer et al. [13]).

comprises a disadvantage. Special elements are not general enough and
can only be used for one type of finite element whereas contact search is
computationally expensive.

The proposed formulation for a sliding contact without friction makes
use of the parameter space of a NURBS patch and is inherently free of the
aforementioned problems. In contrast to classical finite elements, the pa-
rameter space of the geometry is not subdivided into smaller independent
parameter spaces. The point of contact for sliding can be described with
one curve (or surface) parameter over the whole sliding domain. The con-
tact search becomes unnecessary since the point of contact is inherently
described by the parameter. Further benefit can be seen in the smooth-
ness of the NURBS. Sliding is not corrupted by kinks and conversion to an
approximated curvature is avoided.
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5.5 Isogeometric Sliding Elements

5.5.1 Element Formulation

The proposed new element formulation is a sliding contact formulation.
It takes advantage of the parameter space of the NURBS discretization.
The core idea is introducing a relative kinematic which is defined in the
parameter space and thus providing slip along the curve. The point on
the curve defined by the unfixed curve parameter θ 1 can be coupled to a
spatial point by a weak coupling formulation as proposed by Bauer et al.
[9, 12]. Therefore, an additional term δW sc based on the penalty approach
is added to the virtual work. The distance between the point x1 = C

�

θ 1
�

on the NURBS curve C , and the spatial point x2 is penalized with a penalty
factor α.

δW sc =−α
�

x1
�

θ 1
�

−x2
�

·
�

δx1
�

θ 1
�

−δx2
�

(5.64)

The coupled points (cf. Figure 5.46) are described as follows

x1
�

θ 1
�

=
n
∑

i=0

Ri ,p

�

θ 1+ ū 1
θ 1

� �

X 1
i +u1

i

�

(5.65)

x2 =X 2+u2 (5.66)

In contrast to common isogeometric elements, this formulation is includ-
ing an additional degree of freedom ū 1

θ 1 , which is added to the parameter
point, and thereby inherently providing sliding of the point along the curve.
Consequently, the vector of the discrete degrees of freedom û of the system
consists of the following components.

û=
�

ū 1
θ 1 | u 1

x u 1
y u 1

z | ...

| u 1
n x u 1

n y u 1
n z | u 2

x u 2
y u 2

z

�

(5.67)

The resulting residual force vector R sc
r and tangential stiffness matrix K sc

r s
of the additional penalty term are computed by inserting Equation (5.64)
in Equation (3.6) and Equation (3.7).

R sc
r =

W

∂ ûr
=α

�

x1
�

θ 1
�

−x2
�

·
∂
�

x1
�

θ 1
�

−x2
�

∂ ûr
(5.68)
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K sc
r s =

∂ 2W

∂ ûr ∂ ûs
=α
∂
�

x1
�

θ 1
�

−x2
�

∂ ûs
·
∂
�

x1
�

θ 1
�

−x2
�

∂ ûr

+α
�

x1
�

θ 1
�

−x2
�

·
∂ 2
�

x1
�

θ 1
�

−x2
�

∂ ûr ∂ ûs
(5.69)

The distinct influence on the positioning of the two coupled spatial points
of the respective degrees of freedom is shown in Figure 5.47. Figure 5.47(a)
shows the initial matching positions and all degrees of freedom of the sys-
tem. Figure 5.47(b) depicts the evolving gap∆x for u 2

y = 1, which results in
a nonzero entry in R sc

r and K sc
r s . Furthermore, the degrees of freedom of the

curve, e.g. u 1
1y = 1, initialize a penalized gap as illustrated in Figure 5.47(c).

The spatial point x1 on the curve is also moved by the new degree of free-
dom in the parameter space ū 1

θ 1 = 1. It slides along the curve while moving
the point in the parameter space as exemplified in Figure 5.47(d).

It should be noted that the proposed approach is independent of the struc-
tural element formulation of the curve, which in turn implies that every
NURBS-based element derivation, e.g. cable or beam, can be used.

Remark: Sliding along a Multipatch Geometry

The sliding point on the curve is deliberately coupled to a point
in space because this allows a flexible application, meaning
that the sliding condition can be attached to arbitrary points,
i.e. on structural elements or boundary conditions. In order to
be able to slide, the degree of freedom in the parameter space is
needed. Hence, the whole sliding domain has to be described
by one parameter domain. In the case of cable elements, this
is easily viable since the knot vectors of multiple curves can
just be joined together. If the other side is always in contact
with the sliding element, the spatial point can be fully attached
to the element and the continuous domain is not necessary. It
can thus be modeled by a multipatch (see Figure 5.48).
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Figure 5.47: Detachment∆x = ‖
�

x1 −x2
�

‖2 of the spatial points
for the variation w.r.t. different types of degrees of freedom. (a)
undeformed system with coincident points and all degrees of

freedom, (b) resulting∆x for DOF u 2
y , (c)∆x for DOF u 1

1y and (d)

∆x for DOF ū 1
θ 1 (adapted from Bauer et al. [13]).
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Figure 5.48: Coupling of a sliding cable to a multipatch surface.

5.5.2 Examples

The following examples will validate the concept of sliding using the para-
metric domain of NURBS.

Cable over a Pulley

A pulley as shown in Figure 5.49 is a good example for frictionless sliding of
a cable. The initial cable is prestressed withσ0 = 1. Both ends are moved
by the same absolute length u0. If the cable can slide on the pulley without
restrictions, the inner force in the cable does not change. The contact area
on the pulley is assumed to be constant and not moving. Therefore, it
can be modeled by points approximating the sliding line. Here 50 points
were chosen. The points are fixed in space, but the respective points in the
parameter space of the curve are loose in order to make sliding possible.

In general, the normal force in the cable is constant and equal to the pre-
stress. Small oscillations may occur in this example due to the abrupt
change of curvature at the end of the pulley. This is induced by the smooth
basis functions, here polynomial degree p = 3, which cannot exactly rep-
resent such a discontinuity.

Prestressing

The sliding cable can also be used to apply prestress into an initially un-
stressed membrane as shown in this benchmark example. A quarter of
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u0

u0
N0

R

Figure 5.49: Pulley with conducted sliding cable and the
respective normal forces for several displacement steps.

a membrane with a hole in the middle is modeled (see Figure 5.50). The
inner ring is bounded by a sliding cable which is connected to the mem-
brane by several sliding points. Therefore, the spatial point is coupled to
the membrane, whereas the point can slide in the parameter space of the
edge curve. This corresponds to a cable in a sleeve. Shortening the cable
in the sleeve, i.e. pulling the cable out of the sleeve, introduces a normal
force in the cable. This force has to be in equilibrium with the respective
stresses in the membrane.

If the outer borders are far away from the inner ring, the ring keeps the
form of a perfect circle but shrinks. The relation between the normal force
of the cable and the respective principal normal stress of the membrane is
given by the boiler formula. The displacement of the membrane is linearly
increasing in radial direction from the domain towards the edge cable.
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membrane

sliding cable in
membrane sleeve

cable
sliding out

sliding cable fixed
to membrane

(a)

(b)

Figure 5.50: Prestressing of a membrane by the tightening of an
inner ring. The cable is pulled out by a force. (a) Setup of the model
and (b) resulting normal force in the cable and displacement plot
with the deformed (black) and undeformed (gray) isolines of the

trimmed NURBS surface (adapted from Bauer et al. [13]).
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6
CAD-INTEGRATED ISOGEOMETRIC DESIGN

PROCESS

This chapter will concentrate on the peculiarities of an isogeometric design
process. It will show all necessary steps for the establishment of a fully
integrated, smooth process and feature the potentials in the design of
lightweight structures.

In order to create a continuous workflow, an isogeometric design tool
was developed in Rhinoceros, which is a common CAD program for the
design of complex free form structures. TeDA1 (Tool to enhance Design
by Analysis) was initiated by Breitenberger et al. [28] with the focus on
B-Rep surfaces. It is an interface in Rhinoceros, which can assign structural
properties to surfaces, i.e. cross sections, loads and supports, and gener-
ate an input file for the solvers Carat++2 and Kratos Multiphysics3. This
research extended TeDA for the needs of a more comprehensive analysis

1 https://www.bgu.tum.de/st/software2/forschung/teda/
2 https://www.bgu.tum.de/st/software2/forschung/carat/
3 https://github.com/KratosMultiphysics/Kratos
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6 CAD-integrated Isogeometric Design Process

tool, including e.g. beams, multi-stage analysis and advanced loading path
options.

Moreover, Rhinoceros provides a parametric environment, called Grass-
hopper, which is widely used by designers from all industries. The para-
metric setup of models has great potentials for the design processes since
adaptions can easily be made for the whole model. Hence, an interface,
named Kiwi!3d4, was created in cooperation with str.ucture GmbH. It is
built upon TeDA. Since the model has to adapt to every change in the
input, automation of the generation of the analysis models was one of the
biggest tasks, i.e. avoiding to manually remodel the whole analysis model
by clicking when something is changed.

An overview of the main steps of a fully CAD-integrated design process is
given in Figure 6.1. It includes pre-processing in CAD, parsing the analysis
model to the solver, which is in this case Carat++, and post-processing in
CAD. Note that the solving is not done in CAD but with an external solver.
This has the advantage that the process becomes more flexible as the solver
could be exchanged in order to solve other analysis tasks. Moreover, the
user does not have to interact with the solver, i.e. it runs in the background,
and no difference to a fully CAD-integrated solver will be noted. The differ-
ent possibilities of where to set the point of transfer between CAD and FE
solver in this process are described in detail in Teschemacher et al. [123].
TeDA/Kiwi!3d and Carat++ communicate with each other on patch level,
which implies that the full geometry information is available at any time.

6.1 Pre-Processing

The first step in the design process is identifying the boundaries and goals
of the planning task and developing an initial geometric model thereof.
This model may later be refined and optimized in the design iterations. In
order to enable analysis on the geometric model, the geometries, surfaces
and curves, have to be attributed with the corresponding structural ele-
ment type, e.g. shell or membrane, material and cross section properties.
Furthermore, it is often necessary to add a refinement strategy to the patch,
since initial geometries are often parametrized with few control points that
do not allow for the necessary solution space. The boundary conditions

4 https://www.kiwi3d.com/
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Figure 6.1: CAD-integrated workflow with the main tasks of the
pre-processing, simulation and post-processing.

can either be applied on the existing geometries or a boundary-specific
geometry can be derived. This means that the boundary conditions are
only applied on parts of the structural element, e.g. in the corners.

The CAD-inherent topology information contains only B-Reps, i.e. the
connection between surfaces. In order to be able to deal with curve-like
structural elements, the topology between curves has to be added. The
same holds for the interaction of curves and surfaces (see Figure 6.2). There-
fore, the B-Rep methodology of describing coupling is extended. Each side
of the coupling has its segment in the respective parameter space. In addi-
tion to having all topology information, it is necessary to define the type of
coupling in between the elements. This implies simple interaction types
like rigid or hinge-like connections but also more complex types.

Once the analysis model is complete, a text file is written in order to parse
the model to the solver. The steps in the solver were already part of Section 3
to Section 5 and are not explained further in this chapter.
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ξc

ξsηs

Figure 6.2: Necessary topology information (in blue) for a
structural system consisting of curve-like and surface-like

elements.

6.2 Post-Processing

Post-processing, i.e. visualization of results, is an important feature for
the design of structures. The designer receives a visual feedback of the
structural response w.r.t. different quantities, which are important for the
design decisions. Typically, color plots visualize these results. The degrees
of freedom are related to the control points for IGA, which are not related
to a specific point on the patch and often lie outside of the geometry.
Nevertheless, the CAD program can easily visualize these results by using
the CAD-inherent rendering mesh or a custom visualization mesh. The
respectiveξv - andηv -coordinates on the NURBS patch of the nodes of this
visualization mesh are evaluated w.r.t. the respective degree of freedom on
the NURBS patch (see also Herrema [66] and Hsu et al. [69]). Consequently,
it is possible to extract the exact result value V

�

ξv ,ηv

�

for any point on the
surface at any time with the basis functions Ri ,p and the discrete results Vi

on the control points.

V
�

ξv ,ηv

�

=
n
∑

i=1

Ri ,p

�

ξv ,ηv

�

·Vi (6.1)

The CAD program uses the mesh in order to interpolate the values on the
nodes and creates a smooth color plot.

Nonetheless, not every result of an isogeometric structural analysis is at-
tributed to the control points. Those are secondary results, for example the
stresses. Typically, stresses or the like are evaluated on the Gauss points
and not on the FE nodes. Figure 6.3 summarizes the different locations of
the results in geometry and parameter space and illustrates the relation to
the visualization mesh.
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Figure 6.3: Visualization of results by a coarse visualization
mesh: (a) geometry space with primary results (degrees of

freedom) and secondary results (e.g. stresses) and (b) parameter
space with projected nodes of the visualization mesh and

secondary results.

Secondary results exist also in classical finite elements. However, these
results may then be projected to the mesh nodes. The FE mesh nodes
and the visualization mesh nodes usually coincide for classical elements.
The nodes know their neighboring finite elements and one can thereof
interpolate the result values of the respective Gauss points. In contrast, the
visualization mesh of isogeometric elements is independent and the cor-
relation is not defined a priori. A direct interpolation of all corresponding
points for the visualization nodes is much more difficult and computation-
ally expensive since it has to search for the respective Gauss points and a
sophisticated interpolation scheme has to be used.

Bypassing this through first projecting the results from the Gauss points
to the control points, e.g. by a least-square fit, and then evaluating the
visualization mesh nodes as presented in Equation (6.1) is cumbersome
and the results are getting smeared. The smearing is caused by two reasons.
The basis functions are smooth and the results are represented by those
basis function and secondly, the influence area of a control point, i.e. FE
node, is typically much larger for isogeometric elements than for classical
finite elements. Each element usually has p +1 Gauss points and the node
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(a) (b)

Figure 6.4: FE node (orange) with corresponding influencing
Gauss points (light blue): (a) isogeometric NURBS elements and

(b) linear elements.

influences up to p +1 neighboring elements in each direction. Figure 6.4
shows the corresponding Gauss points (light blue) of one FE node (orange)
for NURBS and quad-elements. Note that the two parametrizations have
the same amount of FE nodes. A further challenge is trimming since trim-
med elements corrupt the equally distributed rectangular topology of the
integration points.

If CAD is enhanced such that it can compute the necessary results from
the degrees of freedom, e.g. the stresses from the displacement, the color
plot could be generated similar to the control point entities. The post-
processor can arbitrarily compute and retrieve the needed nodal values
of the visualization mesh. However, this might be complex and requires
an implementation of the FE code in the CAD software. Furthermore, the
post-processing tool is then restricted to the implemented result types.
Additionally, there are result types, which cannot be computed only from
the degrees of freedom on the control points. This is for example the case
for a structural analysis including damage since the points have to be
tracked over the whole analysis and cannot just be evaluated at a certain
time. Therefore, a more general approach using the Gauss point results
directly is discussed in the following sections.

6.2.1 Scalar Results

As previously described, the given data for the post-processing are the
refined NURBS patch information and a set of points on the NURBS patch,
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(a) (b)

Figure 6.5: Visualization in the post-processing: (a) knot spans
with Gauss points and (b) visualization mesh for color plot with

nearest Gauss points.

which are described by ξ- and η-coordinates. These points, later also re-
ferred to as result points, are attributed with the respective result that has
to be visualized. The task is to transfer the results from the initial set of
points, often the Gauss points, to the nodes of the visualization mesh.

The interpolation of the result points is not challenging for curves, since
the mapping of the result points is only in 1D and linear interpolation can
easily be implemented, if necessary. Therefore, only the visualization of
surface results will be explained in more detail.

Figure 6.5(a) depicts such a set of points, i.e. the Gauss points, for a sim-
ple rectangular plate. Note that the number of Gauss points was reduced
to two per direction and knot span for illustration purposes. The corre-
sponding visualization mesh is shown in Figure 6.5(b). A nearest-neighbor
approach determines the values for the visualization nodes. The closest
Gauss point in the parameter space is identified and its value is assigned
to the visualization node. The distance in the parameter space is chosen.
The search for the closest point has to be fast since it has to be computed
for every visualization mesh. Moreover, by scaling the deformation of the
structure other parts of the structure might come closer than the initially
nearest Gauss point and the value suddenly jumps.

The quality of such a visualization approach is strongly dependent on the
quality of the meshes. Therefore, the meshes in Figure 6.6 are investigated.
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(a) (b)

Figure 6.6: Visualization meshes: (a) coarse and (b) fine.

In addition to the visualization mesh, the density of the result points is
crucial for the quality of the color plot. Figure 6.7 shows the result of the
nearest neighbor search for different density levels. Squares depict the
result points whereas circles illustrate the nodes of the visualization mesh.
The color indicates the assigned result value.

Figure 6.8 shows the resulting color plot for the nearest neighbor search in
Figure 6.7. It can be seen that a smooth color plot is the outcome in the case
of many result points. The quality is then only depending on the quality of
the visualization mesh, e.g. no distorted elements, since there is always a
result point which is very close to the visualization node. The quality of the
color plot is in general lower for a coarse result point set. Increasing the
density of the visualization mesh only results in a separation of colors since
many visualization points find the same result point as nearest neighbor
and therefore generate an area with a constant result value. If the nodes of
a coarse visual mesh are distributed equally to the result points, i.e. every
result point is only nearest neighbor to one visualization point, also this
combination can produce smooth color plots. Advanced shaders can also
be used to further smoothen the result.

Other more sophisticated interpolation techniques could give better re-
sults in the case of unequally distributed points. Nevertheless, it was found
that the nearest neighbor approach in this context generates sufficiently
good results and is additionally very robust for any type of point configu-
ration, which is one of the most important properties.

The previous example showed the visualization of a continuous result. De-
spite the continuous basis functions, the results may also be discontinuous
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(a) (b)

(c) (d)

Figure 6.7: Nearest neighbor search for visualization mesh
nodes (circles) to result points (squares): (a) coarse visualization
mesh and few result points, (b) fine visualization mesh and few

result points, (c) coarse visualization mesh and many result points,
and (d) fine visualization mesh and many result points.

as e.g. in structural analysis including damage. Figure 6.9 contains a patch,
where all result points inside the inner square have the value one whereas
the outer ones have zero. The smearing of the results for the projection to
the control points is shown on the left. The right side shows the color plot
that was generated with the result points only. The visualization mesh is
the same for both cases.

If the visualization mesh does not change, it would also be possible to pass
the location of the mesh vertices in the parameter space of the structural
elements to the solver. These points must not be considered in the analysis
itself but have to be evaluated for the desired stresses and other entities.
An interpolation or nearest neighbor search is then avoided. However,
in general the visualization mesh is changing for the deformed structure.
Computing the visualization mesh from the Gauss point would be another
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(a) (b)

(c) (d)

Figure 6.8: Color plot of results for: (a) a coarse visualization
mesh and few result points, (b) a fine visualization mesh and few

result points, (c) a coarse visualization mesh and many result
points, and (d) a fine visualization mesh and many result points.

(a)

1

0
(b)

Figure 6.9: Discontinuous results: (a) visualization with
backmapping of the results to the control points and (b)

visualization by using the result points directly.

136



6.3 Parametric Environment

tensioncompression

Figure 6.10: Vector results for a plate under load.

approach to the problem. In this case, one has to ensure that additional
evaluation points on the borders of the geometry are added in the begin-
ning of the analysis.

6.2.2 Vector Results

The results may also contain vectors. Consequently, the ability of the post-
processor of displaying vector results is needed. The directions are directly
displayed on the result point. Additionally, if the length of the vector is a
measure for the result, a coloring is meaningful (see Figure 6.10).

If the vector results are written with Cartesian coordinates by the FE solver,
it is important to look at the results in the corresponding deformation
state in order to avoid misinterpretation of results. Alternatively, the vector
results could be expressed in relation to the base vectors of the NURBS
patch in order to enable scaling.

6.3 Parametric Environment

Parametric modeling is widely spread in engineering and architecture. Pro-
ceeding from input parameters, combining and applying functions to the
input set generates the necessary data. This is closely related to program-
ming. The focus in the field of architecture is mainly on shape generation
and appearance. Bringing structural analysis tools into common design
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environments opens up a totally new range of possibilities. Engineering
and architecture interlock much closer since both professions can work
on the same model and tools from one area are accessible to the other.
Architects obtain structural feedback whereas engineers can use the CAD
functionalities to derive complex shapes and also e.g. load distributions.

This is possible for classical finite elements as well. Nevertheless, avoid-
ing meshing in the sense of approximating the geometry with a polygo-
nal mesh is a benefit of IGA, especially in the parametric environment.
This affects not only the structural elements themselves but also their
interaction. Meshing surfaces and curves, which are most common in
the field of construction engineering, is rather robust compared to vol-
umes. In spite of that, considering the interaction between several ele-
ments may be demanding and effort has to be made in order to generate
matching parametrizations at the boundaries. This can be also seen in
Figure 6.11. A curve should be coupled to a surface (see Figure 6.11(a)). Fig-
ure 6.11(b) shows the parametrization with NURBS in CAD. The meshed
FE parametrizations for classical analysis are shown in Figure 6.11(c) for
independent meshing and Figure 6.11(d) for meshing generating a match-
ing interface. Automating the generation of the matching interface may be
cumbersome but necessary in a parametric design workflow. The NURBS-
based FE model in contrast can directly apply the parametrization of the
design. The interface of the curve and surface are in general not matching,
i.e. the control points, which are the FE nodes, do not coincide. Neverthe-
less, due to weak coupling formulations, this parametrization can be used.
Note that the geometries themselves, i.e. curve and surface, still coincide
within the CAD tolerances, whereas the independently meshed geometries
often do not.

The parametric interface Kiwi!3d for isogeometric analysis is implemented
in Grasshopper inside Rhinoceros. In this setup, Grasshopper provides
visual programming. The ‘‘components’’ are basically functions depend-
ing on input parameters and return output data, e.g. a circle component
that constructs a circle by a center point, a radius and a normal. These
components are linked with ‘‘wires’’ on the ‘‘canvas’’. The wires transfer
data from one component to another. Native Grasshopper components
are mainly focused on geometry and data processing. Since the program
structure is open and rather well documented, many third party plug-ins
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(a) (b)

(c) (d)

Figure 6.11: Coupling of a surface with a curve: (a) problem
setup, (b) unrefined NURBS control polygons, which can be used

for IGA, (c) meshing of the problem for classic finite elements
without the consideration of the coupling and (d) meshing of the

problem for classic finite elements considering the coupling.

have been developed. The plug-ins can also be combined to accomplish a
project including different design tasks and evaluation methods.

Linking isogeometric analysis into the parametric CAD environment en-
ables the construction of parametric models which contain geometric and
structural parameters. Furthermore, it is possible to automate a whole
design chain. This means that the results of analysis ‘‘one’’ can be used
to setup analysis ‘‘two’’. Consequently, if one parameter is changed, the
whole design chain updates. This is one of the main advantages of a para-
metric CAD-integrated design tool. Many variations of a design task can be
evaluated with one model, including different types of parameters, without
the need of reconstructing the whole model for every change. Parametric
modeling related to IGA was also examined by Alic [1], Herrema [66], and
Hsu et al. [69].
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Figure 6.12: Parametric design of a four-point sail including
form finding and structural analysis with the parameters h , w and
b for the geometry of the form finding, p1, p2 and Pc for the form
finding analysis model and E , t and q for the analysis model in

structural analysis.

Figure 6.12 corresponds to the parametric design process of a four-point
sail seen in Figure 6.13, which is form found and loaded. Therefore a form
finding and a structural analysis are conducted. The dimensions h , w
and b define the support points and the initial geometry of the sail. The
prestress values p1 and p2 are assigned to the surface. The edge cables
are derived from the boundaries of the surface and are prestress by the
parameter Pc . Having the analysis model, one can solve the form finding
analysis. The form found structure is given in the result model and the
deformed geometry can directly be used as input for the consecutive struc-
tural analysis under a dead load q . Young’s modulus E and thickness t
can be assigned in this step for the analysis model since the form finding
analysis is material-independent.

Figure 6.14 presents the result, i.e. the deformed sail under the load q , of
the structural analysis originating from a simple parameter study with
changing height h , prestress Pc in the cable and Young’s modulus E of the
membrane. If the height of the sail changes for example, the form finding
and the structural analysis are updated automatically since the result of the
form finding is used to build the analysis model for the structural analysis.

Further design studies using Kiwi!3d within the parametric CAD environ-
ment can be found in Bauer et al. [11], Goldbach et al. [54–56], Längst et al.
[82, 83], and Oberbichler et al. [98].

Given that the creation of the design model is fully automated, the analysis
can be used as a black box inside an automated optimization loop (see
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q

Pc

p1 p2

h

w
b

E , t

Figure 6.13: Parameters of a four-point sail: height h , widths w
and b , membrane prestress p1 and p2, cable prestress Pc , Young’s

modulus E , thickness t and load q .

E = 50000 E = 200000 E = 800000

Pc = 10 Pc = 20 Pc = 40

h = 3.0 h = 5.0 h = 7.0

Figure 6.14: Deformed four-point sail under a vertical load q as
a parameter study for three different parameters.

141



6 CAD-integrated Isogeometric Design Process
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Figure 6.15: Schematic optimization loop inside the parametric
domain with design object described by the isogeometric analysis

chain, evaluation model and parameter update.

Figure 6.15). Starting from a given parameter set, which can include geo-
metric as well as structural parameters, the analysis model can be built.
The results are then evaluated with regard to one or several objectives.
These objectives can be as simple as a maximal displacement but also
complex including several operations as e.g. for the check of the ultimate
limit state or additional analysis as e.g. a daylight analysis for the energy
input. Furthermore, it is possible to check if constraints are violated. The
CAD environment is especially useful if there are geometric constraints
since CAD-internal functions can directly detect clashes between geome-
tries.

The optimization algorithm provides an updated parameter set for the
geometry and analysis model. Basically any optimization tool can incorpo-
rate this simulation inside the parametric domain. Zero-order algorithms
are most suitable since only the value of the objective is given for evaluation.
Derivatives of the objective are not directly given but can be computed
by finite differences for first order algorithms in order to achieve a more
goal-driven optimization loop. Those algorithms are especially powerful
for few design variables.

An example of such an optimization was performed for a bending-active
beam, which should be bent from flat pieces into a defined shape. Three
additional layers as shown in Figure 6.16 generate unequally distributed
stiffness in order to obtain an asymmetric shape in equilibrium between
the two simple supports without external forces. The length of each layer
is given in the parameter space of the underlying beam by f s

i and f e
i . The
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initial
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Figure 6.16: Optimizing the cross section of a bending-active
beam by positioning layers in order to match the design idea:

initial and optimized equilibrium shape.

underlying curve is trimmed and offset by the thickness. Galapagos5, a
built-in evolutionary optimization solver in Grasshopper, can directly be
used to determine an optimized parameter set. The objective function is
defined by a minimization of the gap between the intended shape, i.e. de-
sign idea, and the actual shape of the bending-active beam. Therefore, the
distance of 30 points on the design shape to the actual shape is measured
and summed up. This sum could be minimized from 9.01 to 1.05, with the
length of the beam being 29.13. This corresponds to an improvement of
88.3%.

6.4 Analysis-enhanced Design Process of Lightweight
Structures

Lightweight structures are characterized by their load carrying behavior.
Form and force are directly related to each other, i.e. they are only in
equilibrium for a distinct shape w.r.t. the boundary conditions. In return,
this implies that the designer cannot create the form in an arbitrary way
but has to follow certain rules, which can be evaluated by experiments and
mock-ups such as those by Heinz Isler and Frei Otto or by simulations.

5 by David Rutten: https://www.grasshopper3d.com/group/galapagos
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Figure 6.17: Design cycle of tensile structures: form finding,
structural analysis and cutting pattern generation.

Popular examples are tensile and bending-active structures. As one can
imagine, a tight interaction between the design software, i.e. CAD, and the
simulation of the physical behavior, i.e. FE analysis, is beneficial for the
design process.

6.4.1 Design Cycle of Membrane Structures

In the case of membrane structures, the continuous workflow is especially
important since not only the form finding process has to be considered but
also structural analysis and manufacturing (cf. Figure 6.17). Form finding
is necessary to find a shape in equilibrium, whereas structural analysis
ensures the safety and serviceability in the built state. Manufacturing is im-
portant since the typical anticlastic shapes of tensile membrane structures
and the synclastic ones of pneus are non-developable surfaces and can
thus not be manufactured by flat textiles or foils from rolls. The approxi-
mation using flat pieces of material, i.e. the cutting pattern, influences the
appearance and behavior of the whole structure.
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Form Finding Analysis

Form finding analysis has to be conducted in order to find a geometry
in equilibrium. An overview of form finding strategies can be found in
Veenendaal et al. [126]. The applied method for the form finding of ten-
sile structures in this thesis, the Updated Reference Strategy (URS), was
originally introduced by Bletzinger et al. [23] and applied with isogeomet-
ric analysis in Philipp et al. [105] and Philipp [106]. It can be seen as an
extension of the force density method by Linkwitz [89] for membranes.
The goal is a shape in equilibrium for a given stress state. A system is in
equilibrium is found if the internal and external work are balanced in the
current configuration.

δW cur =δW cur
int +δW cur

ext =−
�
Ω
(σ :δe)dΩ+

�
Ω

�

p :δu
�

dΩ (6.2)

The resulting singular system can be solved by adding a stabilization term,
which in this case is the linearly blended virtual work in the reference
configuration. The reference geometry is updated after every computation
step. An equilibrium is found if the stress in the reference configuration,
i.e. the PK2 stress, matches the stress in the current configuration, i.e. the
Cauchy stress. This is equivalent to the reference configuration matching
the current one.

In the case of form finding of mechanically prestressed membrane struc-
tures, the external load can be neglected and thus the virtual work can
be simplified to δW = δWint. This is legitimate since the dead weight of
a membrane and thus the respective stresses are usually very small in
comparison to the stresses due to prestressing.

Elastic members can also be considered in the form finding analysis as e.g.
necessary for a membrane that is spanned between elastic beams. Since
prestress is introduced into the membrane, the flexible beams deform
which in return changes the boundaries of the membrane. The respective
terms of the virtual work of the elastic members can be computed like for
the standard structural analysis. In contrast to the form finding elements,
the reference configuration is never updated for the elastic elements. Fur-
thermore, the necessary geometry update of the form finding elements
should only be executed when the total system has found an equilibrium
within the set tolerances in order to ensure a stable simulation.
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Structural Analysis

Structural analysis in the design cycle mainly has to be performed in order
to check the ultimate (ULS) and serviceability (SLS) limit state. The ULS is
principally characterized by the resistance to loading, whereas the SLS is
more concerned about proper functioning and comfort. The analysis itself
is a (geometrically) nonlinear analysis, which has already been described
in Section 2 and Section 3.

δW =δWint+δWext =−
�
Ω0

(S :δE )dΩ+
�
Ω0

�

p :δu
�

dΩ (6.3)

Cutting Pattern Analysis

As mentioned before the surfaces of a membrane structure are usually not
developable. However, the membrane has to be fabricated from originally
flat material with a limited size. Therefore, the form found structure is
divided into stripes, which are flattened. Knitting can avoid this problem
because arbitrary curved shapes and sizes can theoretically be produced.
Nevertheless, the second task of the cutting pattern analysis, namely the
compensation, still has to be considered. The form found structure was
defined by boundary conditions and prestresses in the structural members.
These stresses are typically incorporated by stretching the membrane, i.e.
the initial geometry is unequal to the form found geometry, even for devel-
opable surfaces. In order to retrieve an initial geometry for manufacturing,
several methods have been proposed in literature, see e.g. Dieringer [43],
Gee et al. [52], Govindjee et al. [57, 58], Gründig et al. [61], Haug et al. [65],
Kim et al. [76], Linhard [86], Linkwitz et al. [87, 88], Maurin et al. [93], Mc-
Cartney et al. [94, 95], Sheffer et al. [121], Topping et al. [124], Vaillant et al.
[125], Wang et al. [127], and Widhammer [131]

Note that there are also form finding algorithms which already include the
cutting pattern in the optimization of the shape (see e.g. Gade et al. [51]).

In this dissertation, the Variation of Reference Strategy (VaReS) by Wid-
hammer [131], adapted to isogeometric analysis by Goldbach et al. [56],
is applied. The concept of this approach to cutting pattern generation
is minimization of the difference of the potentials of the given prestress
state and the elastic potential. In order to determine the elastic potential,
a (flat) reference geometry is used to compute the displacements, strains
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and stresses in the current, i.e. target, configuration. The degrees of free-
dom are the coordinates of the reference configuration. The best possible
cutting pattern is reached for the minimal total potential.

min
X∈Ω0

Πtotal (X ) =min
X∈Ω0

�

Πχ (X )−Πpre

�

(6.4)

Mounting Analysis

The mounting analysis simulates the joining of the stripes of the cutting
pattern and the edge cables. It can be performed in two different ways (see
Figure 6.18). The first option is close to the strategy of the cutting pattern
analysis, which computes the stresses out of an initial displacement. The
other one is closer to the real mounting process as sewing and pulling into
form is considered. The advantages and disadvantages will be discussed
in the following.

Figure 6.18: Mounting analysis strategies for membrane
structures: assembly in the target configuration (top right) and in

the initial configuration (bottom right)
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Mounting by assembly in the target configuration

This approach utilizes the fact that the target geometry is known in the case
of a membrane mounting. The form found structure is the optimal shape
and the cutting pattern has the same initial parametrization. Refining the
NURBS patches for the cutting pattern analysis does not change anything
on the stress state, since NURBS refinement reproduces the exact same
shape. Similar to the VaReS approach of the cutting pattern generation, the
flat configuration is set as reference geometry of the form found structure.
This is the starting point of standard geometrically nonlinear structural
analysis including initial displacements. The equilibrium is found by pro-
ceeding from this initial deformation. The advantage of this approach
is the easy modeling of the mounting. The relation between the cutting
patterns are already defined in the target structure. They match within
the tolerances in CAD and weak coupling is applied. The same holds for
the cables. They can be attached to the membrane in the target geometry,
both fixed and sliding. The prestress of the cables can either be applied as
prestress or with a reference geometry. Note that the reference geometry
has to be constructed by scaling the target geometry in order to generate
constant prestress as assumed in the form finding analysis. It is not recom-
mended to refer to a straight cable with respective length L = f · l . More
details are provided in Section 6.4.2. The scaling factor f for the cable
reference geometry is computed as follows:

f =

√

√

√

�

2 ·Spre

E
+1

�−1

(6.5)

from

Spre ·A =
a11−A11

2 ·A11
·E A =

�

‖a1‖2

�2−
�

‖A 1‖2

�2

2 ·
�

‖A 1‖2

�2 ·E A

=

�

‖a1‖2

�2−
�

f · ‖a1‖2

�2

2 ·
�

f · ‖a1‖2

�2 ·E A =
1− f 2

2 · f 2
·E A

It is feasible to use one scaling factor for the whole curve since there is a
linear relation between the length of the basis vectors and the positions of
the control points. The center of the scaling is free of choice as the supports
are applied on the target shape.
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u0

u0

Figure 6.19: Mounting of the membrane by assembly in the
target configuration with flat reference geometry, i.e. initial

displacements. The edge cables are shown in orange.

Figure 6.19 shows the setup of mounting by assembly in the target config-
uration.

Mounting by assembly in the initial configuration

Assembling the membrane in the flat configuration comes closer the ‘‘real’’
assembly. Therefore, the boundary points of the membrane are pulled
from the flat configuration towards the supports. The geometry curves of
adjacent seam lines are subdivided and contracting cables or a connecting
element formulation pulls the resulting points together. It is important
that the seam lines of two neighboring stripes have the same length in
order to avoid restraints similar to those in Section 5.2. How to enforce
same seam lengths is described in e.g. Dieringer [43]. However, if the cut-
ting pattern is manufactured with unequal seam lengths, such restraints
can be considered. There are several methods to involve the edge cables
in the simulation differing in their modeling complexity. The simplest
option is to put the cables on the edges of the flat membrane, compare the
total lengths in the flat and the target configuration and add the missing
stress as prestress. It is assumed that the edge stretches almost uniformly
since the goal is a constant stress in the membrane. Another approach is
similar to the treatment of the edge cables in the assembly in the target
configuration. The cable is already in the target configuration and stresses
evolve from shrinking. The connection points with the membrane can

149



6 CAD-integrated Isogeometric Design Process

Figure 6.20: Mounting of the membrane by assembly in the
initial flat configuration with contracting cables (blue). The edge

cables are shown in orange.

easily be determined since the parametrization of the target and the flat
configuration of the membrane are the same. Hence,ξ- andη-coordinates
can be derived in one configuration and directly used on the other one.
The respective points on the flat geometry can be pulled towards the edge
cables. The points on the edge cables may slide on them in order to avoid
restraints similar to the one between the membrane stripes. Both modeling
approaches are illustrated in Figure 6.20. Furthermore, material nonlin-
earities can be considered in this assembling process since the history of
strains and stresses is available.

This setup of the mounting can have problems with the stability of the
simulation. If a member loses tension, it might not be solvable with the
implicit FE solver. The prestresses for the contracting cables have to be
chosen carefully. Also the patterns should be positioned as close as possible
for a stable simulation and the support points should be approached in
several steps.

Figure 6.21 compares the stresses of the two mounting methods. It can be
observed that the stresses in the membrane as well as the edge cables are
more equally distributed for the assembly in the target configuration. This
lets conclude that the relation between the patch edges changes.
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Figure 6.21: Principal normal force 1 in the mounted membrane
and normal force in the edge cables: (a) assembly in the target

configuration and (b) assembly in the flat configuration.

6.4.2 Form Finding of Bending-Active Structures

This section is a revised and shortened version of Bauer et al. [15]. The
indented remarks are not part of the original contribution.

Bending-active structures are a subcategory of lightweight structures. Their
design is especially difficult since the assembled structure has to consider
the mounting process. This is usually done by laying out flat rods, lifting
and pulling them with cables and forces into the desired shape. The final
form can e.g. be influenced by changing the flat layout. However, deter-
mining this initial layout, which results in the closest possible shape to the
design idea, can be difficult. It would be beneficial to be able to start the
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Figure 6.22: Geometry configuration with base vectors for: (a)
standard approach and (b) inverse approach (adapted from Bauer

et al. [15]).

computation with a configuration close to the intended design. Inverse
methods are needed in order to retrieve correct stress-strain information
from the already deformed state. This is possible with certain assumptions
about the initial geometry. The stresses and strains can then be computed
based on these assumptions. Similar approaches already exist in litera-
ture such as e.g. by Bellmann [19] and in other software such as e.g. in
K2Engineering6.

In order to incorporate these assumptions, the reference configuration
of the isogeometric element formulations is modified. The modifications
are of minor intrusion since the element formulations themselves are
not changed. In the standard approach, the geometries of the current
and reference configuration are compared at every material point. The
corresponding Green-Lagrange strains E and the energetically conjugated
2nd Piola-Kirchhoff stresses S are computed from the metric.

6 by Cecilie Brandt-Olsen: https://github.com/CecilieBrandt/K2Engineering
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Ei j =
1

2

�

gi ·g j − G i · G j

�

(6.6)

where G i and G j are the local base vectors of the geometry. They corre-
spond to a local fiber length and can also be used for measuring geometric
properties such as curvature.

Strains and stresses can be computed for any arbitrary pair of geometry
configurations (see Figure 6.22(a)). The parametric coordinates are used
to link the corresponding material points. This even allows for geometry
refining, i.e. adding degrees of freedom, and still being able to get the link
between the reference and the actual configuration. When releasing the
geometrical form apart from the intended Dirichlet boundary conditions,
the system deforms towards its equilibrium state.

The proposed inverse approach distinguishes itself from the standard pro-
cedure by not starting the search for equilibrium in the initially unstressed
state but in an arbitrary deformed state (see Figure 6.22(b)). The initial con-
figuration is not modeled explicitly but considered by certain assumptions
that will be described in the following sections. Similar to the InitStress
method, the integration is then performed in the initial deformed config-
uration. This strategy is appropriate for a certain type of structures. One
primary condition is that large in-plane strains are not expected or that
the initial integration area can be derived from additional assumptions.
A more complex cutting pattern analysis has to be conducted in order to
consider such large in-plane strains correctly.

Inverse Bending

The term related to bending in the Principle of Virtual Work can be derived
from the change in curvature κ.

δW bend
int =−

�
A/L

m :δκ dX (6.7)

with m= I · D ·κ and κ=
�

κact−κinitial

�

The reduced integration domain is denoted by A for surface elements and
L for curve elements. Material matrix D and the respective moment of
inertia I for the bending axis, which is a result of the pre-integration over
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Figure 6.23: Straight beam bent to elastica shape by bringing its
two ends together (adapted from Bauer et al. [15]).

the cross section, link the strain to the moments. The change of curvature
is purely defined by the geometry and can thus be computed by the base
vectors.

The curvature of an initially flat structure is zero and can therefore directly
be used for computing the actual strains and stresses in a given geom-
etry. One of the most simple and illustrative examples is the elastica. A
single straight beam is bent by bringing its two ends together as shown in
Figure 6.23.

The same result for the two final Dirichlet boundary conditions of the
beam can be obtained by drawing an arbitrary initial shape as shown in
Figure 6.24. Note that the length of this arbitrary curve has to match the
length of the initial flat configuration. All three arbitrary shapes deform
into the same relaxed state which matches the reference solution from
bending the initially straight beam in shape and forces. If the refinement
is sufficient, the relaxed shape is independent of how close the starting
and the equilibrated geometry are.

Inverse Torsion

The method of the inverse approach can also be used for torsional forces.
However, curve and surface elements have to be treated differently. The
approach for beam elements is in general the same as for bending. The
change of the twist is used for computing the torsional moment. If the
reference twist is set to zero, as it is for an initially untwisted rod, one can
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Figure 6.24: Inverse method for bending applied to three
starting shapes (black) with the same boundary conditions as the
elastica in Figure 6.23 and its equilibrated shape (blue) (adapted

from Bauer et al. [15]).

starting configuration

configuration in equilibrium

90◦-twist

Figure 6.25: Application of inverse torsion and bending to a
twisted and bent beam with all states from starting configuration

to relaxed configuration (adapted from Bauer et al. [15]).

use the evolving torsional moments to obtain equilibrium. The main task
for designers is to define the orientation of the cross section in the actual
state.

A simple example, which contains bending and torsion, is a beam with the
shape of a quarter circle. The cross section is twisted increasingly around
the center line with a final twist of 90◦. When releasing this state with
the inverse method the beam deforms back into the assumed straight,
untwisted state as shown in Figure 6.25.

In contrast to the beam, there is no specific term related to torsion in the
Kirchhoff-Love shell element proposed by Kiendl et al. [74]. Figure 6.26
shows the same structural problem as Figure 6.25 but is modeled by a shell.
Figure 6.26(a) takes only bending stresses into account. Consequently, a
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Figure 6.26: Twisted and bent shell as starting configuration
with two respective fibers (blue): (a) application of inverse
bending and (b) application of inverse torsion and bending

(adapted from Bauer et al. [15]).

flattening happens. However, the result is not a straight strip but a curved
one.

This is due to different lengths of the fibers in the starting configuration
as indicated in Figure 6.26(a). If this varying length can be interpreted as
result of torsion, one can also pursue a different approach. Twisting results
in different elongations and therefore different strains and stresses in the
fibers. Fibers close to the center line are less stretched than fibers on the
outside if the length of the strip is maintained. This is called helix-torsion
and is described in more detail by Lumpe et al. [90]. By defining one initial
fiber length, which corresponds to the length of the base vector, for all
fibers, as is the case for initially straight shells, one can also consider this
twisting effect for shells. Note that the reference length is not necessarily
constant along the longer dimension of the shell.

The reference fiber length can easily be defined when using NURBS for the
FE model. The whole surface is described by one entity S (ξ,η) and is not
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subdivided into several smaller elements as is usually the case for classical
finite elements. The new metric Gi j is simply computed by

G11(ξ,η) =G1(ξ,ηref) · G1(ξ,ηref) (6.8)

G22(ξ,η) =G2(ξ,η) · G2(ξ,η) (6.9)

G12(ξ,η) =G21(ξ,η) =
�

G1(ξ,η) · G2(ξ,η)
�

·
‖G1(ξ,ηref)‖2

‖G1(ξ,η)‖2
(6.10)

if the fiber length is pointing in G1-direction. The position of the refer-
ence fiber is described by ηref on the surface. If G2 is the respective fiber
direction, the indices as well as ξ and η have to be swapped.

Applying this modification to the bent and twisted quarter circle results
in a relaxation as shown in Figure 6.26(b). The released strip finds its
equilibrium in a flat and straight configuration. A more detailed evaluation
and large scale application can be found in Schikore et al. [114].

Remark: Normal Forces

Similar to the phenomena described in Section 3.2.3, the so-
lution space may influence the result. The presented relaxing
models flatten in the correct way. However, the normal forces
in the structures are heavily oscillating if the refinement level
is not high enough. In order to obtain a deformation without
normal forces, the length of the base vector must not change.
An exact solution is not possible in the general case as can
be shown by the simple example of a parabola, which is de-
fined by three control points (see Figure 6.27). It should flatten
in a bending relaxation. Only the second and third control
point can move and they have to lie on the x -axis, i.e. all y -
coordinates are zero, for the flat configuration.

When comparing the two definitions of the base vector lengths,
it can be found that there is no solution, satisfying the condi-
tion for all points of the curve.
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Figure 6.27: Setup of a flattening parabola.
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‖G1‖2 =‖g1‖2 (6.13)

⇒ no solution for x2 and x3

Nevertheless, since the problem is assumed to be bending-
dominated, this inaccuracy is acceptable. When increasing
the number of control points, the error decreases as well.

Remark: Fast Design Exploration

Even though the inverse approach is an approximation of the
correct solution, it may be an approach for fast design explo-
rations with relatively few degrees of freedom. For form finding
problems of bending-active structures, it may even be more
accurate than using artificial reference geometries. This is re-
lated to the normal forces which evolve from differences in
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equilibrium

initial shape

Figure 6.28: Relaxing of a curved initial shape, which already is
very close to the physical equilibrium state with a reference

configuration (left) and the inverse approach (right).

the distribution of the length of the base vectors as already
explained in the previous remark. Applying the inverse ap-
proach on the example of Figure 3.10, where a geometry in
equilibrium was rebuilt with fewer control points, results more
or less in the correct equilibrium state whereas the one with an
equally distributed NURBS patch with the same parametriza-
tion as reference configuration deforms into a non-physical
state (see Figure 6.28).

Once a satisfying configuration of structural elements and
boundary conditions is found, it is necessary to perform a
thorough classical forward analysis including the mounting
sequence in order to ensure that the normal forces only have
a minor influence on the final result.

Example

An illustrative application example is a bending-active gridshell. The final
shape should be close to a part of a sphere. Therefore, a regular grid is
projected onto a sphere. The projected curves are then used as starting
configuration for the structural analysis. The beams have a circular cross
section in order to provide the same bending stiffness in every direction.
Each end is fixed by a simple support and the beams are coupled with each
other by hinges. The inverse method is used to derive the stress-strain
state. The final structure in equilibrium varies slightly from the starting
assembly as can be seen in Figure 6.29. By removing all horizontal supports
beside the necessary ones for a statically determined support, the gridshell
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6 CAD-integrated Isogeometric Design Process

Figure 6.29: Spherical gridshell with starting assembly (black),
relaxed configuration (blue) and flat, bent assembly pattern for

the straight rods (gray) (adapted from Bauer et al. [15]].

finds a flat equilibrated state which can be used for a simplified initial
assembly of the rods on the ground. Note that the flat configuration still
has bending moments in the rods since they are curved. Torsion never
occurs during the whole simulation due to the circular cross section and
the simple hinges.

The results of the inverse method are verified by taking the flat assembly
with remaining bending moments, remodeling it with a new discretiza-
tion and pushing it into shape again. The maximum distance between
the beams of the forward and backward analysis is 0.658mm where the
diameter of the gridshell on the ground is 11.31m and the height is 3.95m.
The maximum bending moment differs by 0.154%.
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7
APPLICATION EXAMPLES

This chapter will highlight the potentials and applicability of the proposed
CAD-integrated methods in complex application examples in the design of
lightweight structures. The coupling formulation for beams will be verified
with systems consisting of many coupled elements. Applications of the
embedded approach and the sliding formulation are briefly presented.
Potentials of the interactive workflow are exemplified. Academic examples
as well as actually built systems will be shown.

7.1 Gridshells

Gridshells are highly complex structural systems. This section will present
two examples verifying the beam coupling formulation presented in Sec-
tion 5.3. In addition, the second example is a bending-active gridshell
using the form finding approach of Section 6.4.2.

161
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7.1.1 Torus

The torus-shaped grid structure shows the applicability of the rotational
coupling formulation for beams in a complex scenario. Therefore, a hexag-
onal grid, where the nodes lie on a torus, is constructed. The shape is
parametrized by the following parameters: the radius of the center line of
the torus rc = 40, the radius of the torus around the center line ri = 10, the
number of repeated basic modules nc = 28 and the number of nodes per cir-
cle on the torus ni = 13. All parameters are also illustrated in Figure 7.1(a).
For the given parameters, 2184 curves evolve and 4368 coupling conditions
become necessary. The linear curves are refined to a polynomial degree
p = 3 and thus possess four control points. A circular cross section with
r = 0.1 is assigned to the curves. A Young’s modulus E = 2.1·105 and a Pois-
son’s ratio ν= 0.0 are chosen. Four opposite points in the center plane are
supported in z -direction. The load F = 7.5 towards the center of the torus,
in this case the x -direction, is applied to one of those support points and
the respective opposite point is held in all directions. The support point
with the load is additionally supported in y -direction (see Figure 7.1(c)).

Figure 7.1(b) shows the load-displacement curve with a maximum dis-
placement of u = 23.956 of the load application point. The example can
prove that the application works for complex structures with many degrees
of freedom and arbitrary orientation.

7.1.2 Moving Mechanism of a Bending-Active Gridshell with
Scissor Joints

Coupling of only certain local rotations as e.g. for scissor joints can re-
sult in kinematic structures. Transformation mechanisms can use this
degree of freedom. The grid shell as shown in Figure 7.2 is supported in
z -direction at the bottom end of the beams. The horizontal displacement
of two opposite points is controlled and moved towards the center of the
structure. The beams are oriented such that the cross sections are aligned
at the coupling points. The coupling points are also positioned inside the
parameter domains and not only at the ends, where interpolating control
points exist. By selecting an irregular pattern for the connection points, a
double-curved shape can be generated.

The generation of such grid structures has been investigated in detail by
e.g. Panetta et al. [100] and Soriano et al. [122]. In the present case study,
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Figure 7.1: Torus with hexagonal beam grid: (a) parameters for
the initial geometry model, (b) load displacement curve and (c)

initial and deformed model (adapted from Bauer et al. [8]).
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(a) (b) (c) (d)

Figure 7.2: Gridshell with scissor joints: (a) initial shape defined
by a surface of revolution, (b) relaxed gridshell, which is in

equilibrium with the bottom supports, (c) intermediate state while
closing by moving the two fixed bottom supports towards each

other and (d) closed shape.

the form is generated by an arbitrary surface of revolution. Geodesic lines
are computed with CAD functions on this surface (see Figure 7.2(a)). The
respective beams are then relaxed by the method described in Section 6.4.2
(see Figure 7.2(b)). The transformation from an open to a closed state by
a controlled movement of two opposite points at the bottom is shown in
Figure 7.2(b)-(d).

7.2 Hyperbolic Paraboloid Shell

Hyperboloids are often used in lightweight shell design. The geometry of
this example is inspired by Wilhelm J. Silberkuhl (see Figure 7.3(a)). The
dimensions are taken from Scheffler [113]. The double-curvature of the
hyperbolic paraboloid is used to span over a rather large distance L = 18m
compared to the shell thickness t = 5cm. Each module is supported on
its short sides and it is assumed that the single modules are coupled with
each other. The structure is additionally stiffened by centrical tendons,
which are embedded into the concrete. These tendons can be modeled
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Figure 7.3: Lightweight concrete roof: (a) geometry setup, (b)
comparison of the displacement uz without and with tendons and

(c) comparison of the von-Mises stresses without and with
tendons.

perfectly with the embedded approach. They reduce the displacements as
well as the stresses in the hyperbolic paraboloid shell under its self-weight
(see Figures 7.3(b) and (c)).

7.3 Sliding Cables

This section will present two application examples for the sliding cable
formulation (see also Bauer et al. [13]).
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7.3.1 Membrane Roof

Sliding cables are often used in membrane structures due to the membrane
being attached to the cables with pockets. The following example will
not only show that it is possible to model the sliding, but also that there
is a substantial difference in the structural response when the sliding is
considered compared to when it is not.

The investigated structure is a six-point sail with edge and ridge cables as
depicted in Figure 7.4. While form finding, it is not important whether the
cables are fully attached to the membrane or not, since the form finding
only searches for an optimal stress state. The structural analysis is then
conducted either with sliding cables or fully attached ones. The color plot
on the right in Figure 7.4 shows the displacement field of the membrane
under a wind load for both cases. The displacement behavior is nearly the
same, but the maximum displacement of the membrane with the sliding
cables is larger. A clearer distinction can be seen in the normal forces of the
cables (see Figure 7.5). Due to peaks in the corners, the maximum value is
2.76 times higher for the fixed cables than for the sliding ones, leading to
different required cable dimensions. In consequence, a correct modeling
of the cables is important. This was also found by e.g. Dinh et al. [44] and
Pauletti et al. [104].

The sliding coupling formulation also works for discrete connections. The
cable detaches from the membrane and straightens in the uncoupled
segments as can be seen in Figure 7.6. Note that in this case, the refinement
of the cables has to be very fine in order to represent such sharp kinks (cf.
Section 3.3.1).

7.3.2 Membrane Wing

Lightweight design with membranes has also potential applications out-
side of construction engineering. It has been rediscovered for the design
of turbine blades based on the construction of the wings of early airplanes.
The wing profile is shaped using ribs and the surface is generated by a taut-
ened membrane in-between. This example considers a simplified module
of such a blade (see Figure 7.7). The profile of the wing is defined by a fixed
border and the leading edge is modeled by a stiff shell. The membrane
is placed on the wing area. A sliding cable is added to the trailing edge
to restrain the membrane. The sliding cable can also be used to adapt
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fixed sliding

3.4071e-11.0977e-5

Displacement

wind

Figure 7.4: Membrane roof under wind load. Different views of
the form found structure on the left hand side. The displacement

field of the membrane for fixed and sliding cables on the right
hand side (adapted from Bauer et al. [13]).

fixed sliding

Figure 7.5: Normal forces in the edge cable of the membrane
roof under wind load, which are highly concentrated in the
corners for the fixed cable (adapted from Bauer et al. [13]).
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Figure 7.6: Straightening and detaching of the cable by using
few sliding points for connecting cable and membrane (adapted

from Bauer et al. [13]).

the structure, i.e. apply different tensioning to the membrane in order to
control the structural behavior. A form finding analysis is needed here
as well. The difference between full coupling and sliding appears in the
structural analysis with a wind load. Note that the loads on the membrane
surfaces are simplified to constant pressure loads and that they are not
coupled by the volume inside the module. The displacements are almost
the same while the normal forces differ. The sliding cable has a constant
distribution whereas the normal forces in the fixed cable increase towards
the ends (see Figure 7.7).

7.4 Bending-Active Façade

The next example is inspired by the adaptive façade of the One Ocean
Pavilion in Seoul by SOMA and Knippers Helbig, see Knippers et al. [78].
The façade is clad on one side with several lamellas made of glass fiber
reinforced polymers (GFRP). The peculiarity of this system is that it can
be transformed by introducing elastic deformation in the lamellas and
thus opening up the façade. The mechanism of this adaptive façade fixates
one corner on the top and bottom while the other corner is moved in the
position for the respective translucence (see Figure 7.8). In order to model
such a system, displacement control features considering a defined load
path are necessary.

168



7.4 Bending-Active Façade

N
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sliding

fixed

wind

(a)

(b) (c)

Figure 7.7: Form found module of a membrane wing under
wind load with edge cable at the trailing edge. (a) Setup for the
nonlinear structural analysis, (b) displacement field for several

modules scaled by 5 for the sliding cable visualized in Rhinoceros
and (c) normal forces in the fixed and the sliding edge cable at the

trailing edge (adapted from Bauer et al. [13]).

The states of a fully opened and closed façade are shown in Figure 7.9.
Intermediate states are possible as well as different opening states for the
single lamellas with a respective control system.

In the design of façades, properties like translucence, shading or energy
input are key features besides resistance to external forces. With the inte-
gration of the analysis in CAD, evaluation tools for those properties are
directly available for every opening state, which is dependent on the de-
formation. Since the elements are not meshed, the tools can directly work
with the smooth NURBS representation.
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(a) (b)

Figure 7.8: Bending-active opening mechanism for (a) a long
and (b) a short lamella of the façade of the One Ocean pavilion in

Seoul.

(a)

(b)

Figure 7.9: Façade of the One Ocean pavilion in Seoul in (a)
closed and (b) open state.
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7.5 Design Process Including Multi-Stage Analysis

The following application examples will show the evaluation of the struc-
tural behavior during an assembly process with several stages and will
provide insight into the design chain of such complex structures.

7.5.1 Beach Bar

The beach bar is a rather simple example, which nevertheless combines
most of the aspects presented before. It is a hybrid structure consisting of
actively bent beams and a form found membrane including the cutting
pattern and structural wind analysis. The construction and design process
is illustrated in Figure 7.10. The whole structural model is set up depending
on several parameters. The parameters allow a modification of the final
shape in a convenient way since the whole assembly process is considered.
Two initially straight beams with lengths L1 and L2 are bent towards the
fixed support points, which are defined by L0 and W . By connecting two
points, which are defined by C1 and C2, the rods are lifted in space and
provide a frame for the membrane. The initial shape of the membrane
and the edge cables for the form finding is derived from the assembled
shape of the beams. Start and end point are defined by M1 and M2. This
geometry is derived automatically by CAD from the previous results. Due
to the weak coupling, the connection points do not have to be considered
in the previous analyses, i.e. no node at the coupling points is needed.
The beams serve as elastic supports in the form finding analysis. Further
inputs for the analysis are the respective prestresses for the membrane p1

and p2 and the cable Pc . The form found shape depends on both geomet-
ric and structural parameters. In addition, the structural behavior of the
form found structure can be evaluated under e.g. a wind load. The cutting
pattern can be generated in order to obtain a manufacturable membrane.

7.5.2 Pringle

The Pringle is also a bending-active hybrid structure. It is the outcome of a
students workshop for the M1 project by Lienhard [85]. The design process
is shown in Figure 7.11. A beam is bent into a circle. The meeting ends are
fixed. Contracting cables are used to force the beam into the a pringle-like
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Figure 7.10: Geometric and structural parameters in the
simulation of the beach bar with all steps in the design process

(adapted from Goldbach et al. [55]).

shape. A membrane is added for form finding with elastic supports. This
complex structure perfectly illustrates the need for CAD-integration.

Furthermore, a study on the importance of tracking the strains and stresses
of the assembly process has been conducted. Figure 7.12 and Figure 7.13
clearly show that the structural behavior is different if the previous analysis
is ignored and the geometry is just updated.
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(a) (b)

(c) (d) (e)

© J. Lienhard

Figure 7.11: Design process of the Pringle: (a) bending of a
straight beam to a circle, (b) bending the circle to a pringle-shape
with cables, (c) generating the initial shape for the form finding,
(d) form found Pringle and (e) physical mock-up (adapted from

Bauer et al. [12]).
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Figure 7.12: Total bending moment while bending the beam
from the circle to the pringle shape with a straight reference

configuration (wr) and without (wor) (adapted from Bauer et al.
[12]).
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Figure 7.13: Displacement of the beam at the cable connectors
while bending from the circle to the pringle shape with a straight

reference configuration (wr) and without (wor) (adapted from
Bauer et al. [12]).

7.6 Shape Generation

The application of isogeometric analysis in the design process is not only
restricted to tracking stress states and computing deformations. It can also
be used to generate shapes. This can be related directly to the structures
which have to be form found as described in Section 6.4.1 for membranes
and Section 6.4.2 for bending-active structures. But it is also possible to
use these techniques as an intermediate step.

7.6.1 Centre Pompidou Metz

Motivated by the Centre Pompidou Metz of 2010 by Shigeru Ban and Jean
de Gastines, a gridshell that has an appealing natural shape was found.
This gridshell, which is covered by a membrane, should surround the mu-
seum. Minimal surfaces are an obvious approach to this design task. The
surface can be form found from several boundary curves. The boundary
curves consider the form of the museum which consists of two cantilevers
connecting to the outside through the holes in the surface. The initial
shape can be constructed by multiple flat surfaces defining the topology of
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(a)

(b)

Figure 7.14: Form finding of the lattice gridshell of the Centre
Pompidou Metz: (a) initial shape for the form finding and (b) form
found shape with projected hexagonal grid (adapted from Bauer

et al. [11]).

the final shape (see Figure 7.14(a)). After form finding, the smooth shape
is available and can be used to project a regular hexagonal grid from the
ground to the surface (see Figure 7.14(b)). Note that in this case, the beams
will be manufactured as curved beams and the shape is therefore directly
in equilibrium if self-weight is neglected. The boundary curves as well as
the grid layout can be modified until a satisfactory spatial grid is reached.

Figure 7.15 shows the scaled deformation of the form found gridshell under
a dead load. The structure is supported at the base of the columns and the
top holes. The result indicates that stiff edge beams are necessary as well
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Figure 7.15: Gridshell of the Centre Pompidou Metz under load:
undeformed and deformed structure (adapted from Bauer et al.

[11]).

some additional supports, which were also realized for the original Centre
Pompidou Metz.

7.6.2 Hotel Canopy

The hotel canopy is a project realized by Eike Schling and Jonas Schikore
(see Figure 7.16). The structural system is based on asymptotic lines on an
anticlastic surface. It is the first commercially built structure of this type. A
large-scale prototype, the INSIDE/OUT pavilion (see Schling et al. [117]),
was built before at the inner court of the Technical University of Munich.
The grid is chosen such that the lines follow a path that experiences no so-
called normal curvature w.r.t. the surface (see Schling [116]). This makes it
possible to use straight lamellas and bend them into the grid such that they
have their larger cross section dimension perpendicular to the surface.
In contrast, conventional bending-active gridshells like the Multihalle
Mannheim of 1972 by Frei Otto have the smaller dimension aligned to the
surface normal. By orientating the stiff axis perpendicular to the surface, a
higher stiffness for out-of-plane loading is achieved. More details on the
structural principle can be found in Schling [116].

The initial surface for the design of an asymptotic gridshell can be created
with an isogeometric form finding analysis. The asymptotic lines can be
computed starting from so-called seed points. If the surface is minimal, the
grid intersects by 90◦. It is beneficial that the surface has not been meshed
because meshing would subdivide the whole surface in many independent
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©Eike Schling

(a)

©Eike Schling

(b)

Figure 7.16: Canopy at the hotel Intergroup near Ingolstadt.

faces. The lines can be computed in the NURBS patch having the precise
curvature information without kinks at every point of the surface.

Lamellas can be produced by an offset of the found lines. One major prob-
lem in the analysis of such a structure is that the designed structure is
already assembled and has internal forces from bending and twisting. Due
to the rather large height of the lamellas, helix-torsion becomes an issue
and has to be considered in the dimensioning. The inverse approach for
shells as presented in Section 6.4.2 provides a perfect strategy to simplify
the structural analysis of such a complex design task.

The production process, as documented in Figure 7.17, includes straight
lamellas which are assembled flat on the ground. This assembly is then
pulled up on one side. Note that the grid automatically results in the design
shape since this is the local minimum of the elastic energy for the given
boundary conditions. The lifting can also be simulated with isogeometric
analysis as presented in Figure 7.18. The force needed to lift one side
basically corresponds to the dead weight of the structure in the simulation
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(a) (b)

Figure 7.17: Mounting process of the canopy grid in the
workshop: (a) flat assembly on the ground and (b) intermediate

state during the mounting.

Figure 7.18: Simulation of the mounting process.

as well as in the real manufacturing (see Schikore et al. [114]). The final
form of the module is then fixated by adding a stiff frame to the borders.
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8
SUMMARY AND CONCLUSIONS

Lightweight structures are an interesting field of application for isogeo-
metric analysis. Large deflections of smooth structures can be represented
in an elegant way. Applying CAD-integrated IGA can significantly facilitate
their design process.

This thesis presents the basic types of nonlinearity in structural analysis.
Differential geometry is outlined for the fundamentals of structural me-
chanics, where the focus is set on geometric nonlinearity. Furthermore,
the correct linking between consecutive analyses is investigated.

This is followed by an introduction to isogeometric analysis. The geometry
description of NURBS and Boundary-Representation models are briefly
summarized and the main aspects of finite element analysis with NURBS
are presented. Furthermore, aspects that have to be taken into account
while modeling analysis suitable NURBS, are illustrated as final considera-
tions in this chapter.

An overview of the applied isogeometric structural element formulations
is given in the consecutive chapters. After an overview of the fundamen-
tals of coupling and connecting, three different coupling procedures are
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proposed. The first one provides a coupling formulation for the rotation of
beams. Emphasis was laid on the generality of the formulation in order to
be able to represent different coupling types. The second coupling proce-
dure is an implicit one. It avoids explicit coupling formulations by adapting
the geometry description and expressing one entity within the parameter
space of another. This approach is explained in detail for an embedded
beam and briefly for the embedding of surfaces and points. The last variant
implies coupling with a sliding interface. Adding a degree of freedom to the
parametric coordinates of the coupling partners elegantly incorporates
the complex sliding boundary condition. The proposed formulation is
compatible with every NURBS-based structural element. Computationally
expensive contact search and custom structural element formulations, e.g.
cables with pulleys, become obsolete.

An important feature in the realization and adoption of the proposed meth-
ods in practice is the possibility to conveniently apply them. Therefore,
key aspects of the integration of isogeometric analysis in the CAD envi-
ronment are emphasized. Once a continuous workflow is realized, the
process can be integrated in a parametric environment that significantly
enriches the design process. Design with structural feedback, where opti-
mization criteria may be provided, is enabled and may lead to an improved
design. The design-through-analysis chain is explained for the design cy-
cle of membrane structures, where several structural aspects interact in
the shape generation. Different modeling techniques are discussed for
the final mounting analysis. Furthermore, an approach for the fast design
exploration of bending-active structures, including beams and shells, is
proposed. The correct, but potentially computationally expensive mount-
ing and assembly process can be omitted in the proposed approach: The
structure is modeled in the assembled state and the structural behavior
is approximated by assuming certain properties for a fictitious reference
configuration. A standard geometrically nonlinear structural analysis is
used to compute the equilibrium state.

The potential of the proposed methods and procedures is demonstrated
with selected examples. Moreover, the advantages of a fully CAD-integrated
workflow are illustrated through the simulation of the assembly of hybrid
structures. The importance of considering the sequence of analysis steps is
a further subject of those examples. The isogeometric analysis can also be
used to generate shapes. The last example considers a built bending-active
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project and shows how isogeometric analysis is applied in manifold ways
at different steps of the design process.

Parametric design is a key feature in the design of structures. This is espe-
cially true for lightweight structures characterized by a tight interaction
between form and force. The designer depends on structural feedback in
order to verify the equilibrium state and needs to have methods in order to
generate equilibrium shapes. Moreover, the closed NURBS-based design
cycle provides huge potential in the design since the disciplines - design,
engineering, manufacturing - can be combined.

The following goals have been reached within the present thesis. Missing
element formulations were developed and implemented into the Chair’s
research FE code Carat++ in order to enable a general isogeometric analy-
sis workflow inside CAD for the field of construction engineering. The
main attention is given to one-dimensional structural elements and their
interaction with each other and other elements. A lack of methods was
identified this area. The result is e.g. a rotational coupling formulation that
allows for both rigid and scissor joint coupling.

Furthermore, novel insights on the geometric modeling with NURBS were
gained. Activating the parameter space, which was virtually ignored before,
has a large potential in the modeling of structural systems. The parameter
space of NURBS is very large in contrast to classical polynomial elements
and can be used for the modeling of embedded entities. Furthermore,
additional degrees of freedom can be added to this embedded description,
which allow for a sliding interface or adaptable properties. The embedded
geometry description was adapted for optimization by Hirschler et al. [68].

The applicability of the new element formulations is demonstrated for
various examples. The proposed element formulations in combination
with the existing ones enable the analysis, evaluation and optimization
of a huge variety of structures in the field of construction engineering. A
special focus was set on the realm of structures with large displacements.
Form finding methods for lightweight structures including tensile and
bending-active structures are integrated in the design workflow.

Kiwi!3d is the resulting interface between the FE kernel Carat++ and the
CAD environment Rhino with Grasshopper. The software is published on-
line and is available for everyone. Several workshops have been conducted
at conferences and Kiwi!3d is used in teaching at the Chair of Structural
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Figure 8.1: Several workshop results of the participants at the
Advances in Architectural Geometry 2018 in Gothenburg and the

Design Modeling Symposium 2019 in Berlin.

Analysis at TUM as well as in other departments and universities. The users
are able to apply isogeometric analysis in an intuitive way, which leads to
the design of complex structures. Some results of the participants of the
Structural NURBS workshop at the Advances in Architectural Geometry
(AAG 2018) in Gothenburg and the Design Modeling Symposium Berlin in
2019 are shown in Figure 8.1.

The accomplished examples including built structures lead to the conclu-
sion that the realization of a holistic design tool using IGA was successful.

Integrating the analysis into CAD by IGA is a step towards a unified digital
model of the design object. Many attempts were made to bring analysis
into the life cycle management, which is also referred to as building infor-
mation modeling (BIM) in the field of construction or digital twin. Applying
isogeometric analysis in this context would imply that no separate meshed
model for classical FEM is needed. However, other challenges persist. One
of them is the derivation of the dimensionally reduced models from the
volumetric model. Discussions with the industry show that necessary mod-
ifications in the process chain would only result in a small overhead, which
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could be compensated by the benefits of a unified model in the future. It is
already often the case that the volumes are constructed from surfaces and
curves. Keeping those inside the model and giving the draftsman some
guidelines for analysis-suitable models would directly allow the use of IGA.

Further encouragement towards such a digital model could be generated
by modified isogeometric elements that are not represented by the center
line or surface. These eccentric elements can use the same structural for-
mulation with an updated geometry description. These are either updated
integration boundaries or additional control point values describing the
eccentricity.

Such eccentricities can also be useful for the simulation of more complex
cross sections. T-beams or prestressed cables that have a varying posi-
tion in the cross section in order to provide better bending resistance
are for example an application for this. Both examples are ideally suited
for embedding. Currently, it is possible to place prestressed cables with
and without bond inside the surface description of the master element by
using embedding, fixed or sliding coupling. Restraining the degree of free-
dom in the parameter space after the initial deformation would represent
subsequent bond.

Another way to combine sliding with the proposed methods is sliding with
aligned base vectors. This may be useful for the simulation of e.g. grid
shells or weaves. By adding a prescribed distance (in the direction of the
base vector), one can consider the thickness of the single structural ele-
ments. This is also interesting without sliding. Also other types of complex
joints, especially between beams, are imaginable. The advantages and ap-
plicability of higher quality methods, like Lagrange multipliers and Nitsche
method, in this context have still to be investigated.

The modularity due to the tight relation to the geometry makes it possible
to combine the proposed methods in countless ways, as outlined here,
and solutions for further complex modeling tasks of structural elements
and their interaction can be found in order to provide even more flexible
and general analysis methods for the CAD-integrated design.

This thesis constitutes a step towards an interactive responsive design
process capable of supporting future concepts in the design of structures.
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