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Abstract

CAO (Computer Aided Optimization) tools and particularly the field of numeri-
cal shape optimization offer new possibilities to considerably improve existing
designs. However, these tools are still away from being part of a standard design
process. This work tries to take a step towards the integration of a shape opti-
mization tool in the design process of turbomachinery components.

In this work a complete shape optimization workflow based on the Vertex Mor-
phing method is developed. Generally, Vertex Morphing is a parameter-free,
gradient-based shape optimization method where the shape is described solely by
its discretization providing the widest possible design space. A drawback of this
description is the noisy sensitivity field resulting in a non-smooth shape update.
Therefore, in addition to the geometry a design control field is introduced on
which the mathematical optimization problem is defined. Both fields are related
by a linear mapping based on an explicit filter which is consistently incorporated
in the theory. In this way, the ill-posed shape optimization problem is overcome
and meaningful shapes are obtained.

The extension developed in this work for the optimization of geometrically com-
plex three-dimensional aerospace components comprises the implementation
of the adjoint sensitivity analysis method for the relevant response functions.
As constraints are immanent in industrial applications, the Gradient Projection
method is added in the workflow projecting the function gradient on the sub-
space tangent of all active constraints to obtain feasible designs. The evolution
of the design is achieved by an improved Traction method containing a distance
dependent stiffness distribution and an inclusion of invariable areas in the design
update further reducing mesh irregularities and mesh dependencies.

The overall design chain is presented and tested on several academic and real
size engineering problems. The method shows to be robust and very efficient
even for highly sophisticated problems with many design variables, complex
geometries and numerous active constraints.
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Chapter 1

Introduction

1.1 Motivation

Especially in aerospace industry the reliability of the different components is of
major interest. For this reason, in the past the focus mainly was on the conser-
vation of approved designs based on the gained test experience. But in the last
few decades there has also been a great interest on improvement and enhance-
ment of the existing components motivated by economic and ecological reasons.
Computer aided optimization tools and particularly the field of numerical shape
optimization offer new possibilities to considerably improve these designs. How-
ever, optimization software is still away from being part in the standard design
process in industry. This work tries to take a step towards the integration of
the Vertex Morphing method [Ble13, HSB14, Hoj14, SHB14, Sta15, EDB19]
as a shape optimization tool in the design process of turbomachinery components.

In every optimization process a key element is the parametrization of the shape.
In practice Computer Aided Design (CAD) methods where the design param-
eters of the CAD model are defined as design variables are commonly used in
structure mechanics optimization problems [HCT+99, BF84, ELA11, Kie11].
These parameters can be for instance morphing boxes or the control points of
the NURBS. The advantage of these methods is the permanent connection be-
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1.1 Motivation

tween the discretized analysis model and its CAD representation throughout the
optimization. Furthermore, the limited design space often allows for zero-order
methods like evolutionary strategies [Ash06] and genetic algorithms [GH88],
both having the advantage that no gradient information is required. Nevertheless,
the CAD-based optimization suffers from the low number of design variables
resulting in a limited design space with the consequence that the optimized
design has always the same features as the initial one.

This drawback motivates the use of larger design spaces which node-based
parametrizations can provide. The Vertex Morphing method is such a parameter-
free, gradient-based optimization method. Herein, the shape is described solely
by its discretization providing the largest possible design space. The main disad-
vantage of this description is the noisy sensitivity field resulting in a non-smooth
design [MP01, JMP98]. Therefore, in addition to the geometry a control field is
introduced on which the mathematical optimization problem is defined. Both
fields are related by a linear mapping based on an explicit filter which is consis-
tently incorporated in the theory. In this way, the ill-posed shape optimization
problem is overcome and the nodal sensitivities are transformed to meaningful
shapes. So far, the Vertex Morphing method has been successfully applied in
the context of unconstrained optimization of shell structures [Fir10, AFB10] and
fluid-structure interaction problems [Hoj14, Sta15].

This thesis continues the aforementioned work and extends the Vertex Morphing
method for the optimization of highly three-dimensional solid structures and
constrained problems in turbomachinery industry. In the sequence the main
topics are further introduced.

1.1.1 Adjoint sensitivity analysis of structural problems

In the Vertex Morphing method the vertices of the Finite Element mesh are
defined as design variables requiring gradient-based optimization algorithms
due to their large number. In such optimization processes the evaluation of the
gradient information is one of the crucial steps as it mainly drives the evolution
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1 Introduction

of the shape.

For problems involving many design variables and only few response functions
the adjoint sensitivity analysis has shown to be very efficient leading to a compu-
tational cost which is in the same order as the solution of the underlying physical
problem [JMP98, SL01]. For this reason it is commonly used for the sensitivity
analysis of structural [LBT11, FB12, TM94], fluid [Sch10, Pir74] and coupled
problems [MAR04, Sta15]. A major goal of this thesis is to implement the
adjoint sensitivity analysis in the open source Finite Element code CalculiX
which is used for the structural assessment of turbomachinery components. The
challenge here is to introduce a new response function for the optimization of
local mechanical stresses based on the Kreisselmeier-Steinhauser formulation
[KS79] and the necessary constraint functions to obtain feasible designs. More-
over, [KSWB14] has shown that the computed node-based gradient information
can not be directly used as it inherently reflects the influence of the discretization.
Thus, the work also comprises the derivation of the necessary weighting steps to
achieve mesh independent results.

1.1.2 Regularization in node-based shape optimization

In node-based shape optimization regularization methods are essential [BWDC05]
and according to [Fir10] these methods can be separated into out-of-plane reg-
ularization and in-plane regularization. Both terms reflect the origin of Vertex
Morphing in the optimization of two-dimensional shell structures. In case of
three-dimensional solid structures these terms are substituted by "out-of-surface
regularization" and "regularization of the volume mesh", respectively. The latter
methods ensure robust and reliable grids during the optimization whereas the
out-of-surface regularization methods transform the noisy sensitivity field in a
smooth one.

As aforementioned, the computed node-based sensitivities can not be used
directly for the optimization since the problem is ill-posed resulting in non-
smooth designs. For this reason, several out-of-surface regularization methods
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1.1 Motivation

have been proposed which smooth the raw sensitivities. The class of implicit
smoothing methods based on the Sobolev gradient penalizes high curvatures
of the sensitivity field by the use of an elliptical equation. It is extensively
used and validated particularly for aerodynamic shape optimization problems
[JV00, MP09, Sch10, Moh97] where it is included in the sensitivity analysis
step as pre-conditioner. Explicit filters are based on convolution integrals where
the raw sensitivity field is convoluted with a kernel to obtain the smooth gradi-
ents. It is applied in a separate computational step after the sensitivity analysis.
These methods are commonly used in the context of structural optimization
[LBT11, FB12, FWB13].

With the above mentioned methods the noisy sensitivity field can be transformed
to meaningful shapes. However, in the course of the design update the Fi-
nite Element mesh typically gets distorted which leads to a reduced accuracy
of the results or the optimization even aborts before the optimum is reached
[Jia06, Sch11, LBT11]. Therefore, in addition to the gradient smoothing a regu-
larization of the volume mesh is required which maintains a sufficient quality
of the three-dimensional grid. Till today various methods have been developed
which can globally be partitioned in geometrical and mechanical motivated meth-
ods. The geometric methods improve the mesh locally since they are based on a
local criterion, e.g. Laplacian smoothing [OBB01, LBT11], whereas the mechan-
ical methods improve the mesh globally by an auxiliary mechanical model. The
Traction method [SMA09, RFS+14] which uses the elastic smoothing properties
of the global stiffness matrix or the implicit in-plane regularization method for
two-dimensional shell models [SHB14, Sta15] based on the Updated Reference
strategy [BR99, LB10, WB05] can be mentioned.

Typically, both methods are applied consecutively: first the sensitivity smoothing
and afterwards the regularization of the volume mesh. Alternatively, the shape
and mesh regularity can also be combined [Sch11, HSB14]. In this way, the
regularization methods are summarized in one step but the complexity of the
problem is increased.
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1 Introduction

In this work, both regularization methods are executed separately. The smooth
design update is achieved by the Vertex Morphing method which had already
been introduced above. The stability of the optimization process with respect to
the mesh quality is controlled by an improved Traction method. It is extended by
a distance dependent stiffness distribution and an inclusion of invariable areas in
the design update.

1.1.3 Consideration of constraints

As aforementioned, the Vertex Morphing method so far has been applied to
unconstrained optimization problems [FB12, AFB10, HSB14, SHB14] using
the simple and robust Steepest Descent method [Rao09] for the design update.
But typically in real industrial applications constraints are immanent demanding
for more sophisticated optimization algorithms as the design space is divided in
a feasible and an infeasible region where the constraints are either fulfilled or
violated. The combination of constrained optimization algorithms and the Vertex
Morphing method is a relatively new area of application. The challenge here
is to incorporate the very large design space of Vertex Morphing in a suitable
optimization strategy.

Regarding the algorithms, direct methods are of central importance for the so-
lution of constrained minimization problems which directly solve the problem
by searching through the feasible region for the optimal solution [LY08]. Zou-
tendijk’s Method of Feasible Directions [Zou60] and Rosen’s Gradient Projection
method [Ros60, Ros61] are two commonly used representatives. The latter one
which computes the feasible direction by projecting the function gradient on
the subspace tangent of all active constraints has been chosen in this work. The
decision which constraints are considered to be active is made by an Active
Set method [GMW81, LY08, KT61, Lue69]. Herein, the idea is to partition
the constraints into an active and an inactive group based on the indication of
the Lagrange multipliers. In the optimization workflow both algorithms are
combined and executed in an iterative manner in every optimization iteration.
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1.2 Objective of the present work

Still, in automotive, aerospace or marine industry most of the problems solved
with node-based optimization techniques consist of smooth surfaces with small
curvatures and very limited design spaces. This problem description does not ap-
ply at all to the applications presented here. This work tries to take a step towards
the integration of parameter-free, gradient-based shape optimization methods
in the design process of highly three-dimensional turbomachine components.
Therefore, the focus in this work is on the extension of the Vertex Morphing
method for real size applications in this field. More precisely, the semi-analytic
adjoint sensitivity analysis containing all the necessary regularization methods
has to be implemented in the open source Finite Element program CalculiX for
the required response functions. Additionally, a suitable mesh update method
including the preservation of a sufficient mesh quality and a constrained opti-
mization method have to be developed and implemented. Finally, all the single
modules are merged to a complete optimization framework that can handle com-
plex industrial optimization problems.

The present thesis is organized as follows:

In Chapter 2 the Vertex Morphing method implemented in the free Finite Element
code CalculiX in the course of this research project is presented in detail. Kernel
of this gradient-based optimization method is the computation of the sensitivi-
ties. Here, the gradients are obtained by the semi-analytic adjoint method also
containing the algorithms to relieve the gradient information from the influence
of the mesh topology and the element formulation. Typically, the node-based
gradients suffer from non-smooth gradient information. This deficiency is cured
by an explicit filter which is consistently incorporated in the theory of Vertex
Morphing. Special emphasis is given to the formulation of the objective function
stress and mass being important quantities in aerospace industry and to some
geometrical constraints. Having an accurate sensitivity field for the shape update,
the three-dimensional mesh can be adopted towards the optimal design. More
precisely, the mesh update vector is obtained as the solution of a pseudo linear-
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1 Introduction

elastic problem with fictitious boundary conditions.

In Chapter 3 the aforementioned single modules are wrapped up to a complete
optimization framework. Additionally, the algorithm for the constrained aggre-
gation based on the Gradient Projection method is presented. As constraints
are immanent in industrial applications, e.g. the maximum admissible mass of
a component, the optimizer has to determine feasible designs even for highly
constrained problems. Emphasis is also given to some implementation aspects.

Chapter 4 introduces the various applications of the method. The selection of the
test cases is such that each of them challenges the optimization process differ-
ently. The chapter contains academic examples to demonstrate accordance with
the analytically derived solution up to geometrically complex real-size industrial
applications with many design variables and highly constrained design spaces.

At the end, the overall summary as well as suggestions for potential future work
are addressed in Chapter 5.
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Chapter 2

The Vertex Morphing method

In this chapter the components for a parameter-free, gradient-based shape opti-
mization process based on the Vertex Morphing method [Ble13, HSB14, EDB19]
are presented. The method is capable to optimize three-dimensional solid struc-
tures of real-size industrial applications. The chapter is organized as follows:
Section 2.1 introduces the general mathematical optimization problem. In section
2.2 the sensitivity analysis which is the kernel of the gradient-based optimization
is deduced in detail. In section 2.3 and 2.4 important response functions and
geometrical constraints for the optimization of parts from aerospace industry are
introduced. The sensitivity weighting curing the influence of the discretization
on the gradient information is addressed in section 2.5. At the end of the chapter
(section 2.6) the regularization methods necessary to obtain meaningful designs
and to prevent a deterioration of the mesh during the optimization are presented.

9



2.1 Formulation of the optimization problem

2.1 Formulation of the optimization problem

The optimization problems in mechanical engineering are typically formulated
as a mathematical optimization problem. The following discrete problem is
considered

Minimize J(s,u(s)), s ∈Rn

such that Gi(s,u(s)) < 0, i = {1, . . . ,nG}
H j(s,u(s)) = 0, j = {1, . . . ,nH}
sl < s < su

(2.1)

with the objective function J, the inequality constraints G, the equality con-
straints H, the design variables s and the state variables u which are typically the
displacements in structure mechanics. The design variables are bounded by the
lower constraint sl and the upper constraint su, respectively.

By the choice of the type of design variables the basic properties of the opti-
mization problem are characterized. For example in sizing optimization tasks
cross section parameters are defined as design variables [LMGM05]. In topol-
ogy optimization the material density of the Finite Element is considered as
design variable [BS04, INR07], whereas in shape optimization problems the
CAD representation [HCT+99] or the nodes of the Finite Element mesh [FB12]
are parameterized. The size n of the design space Rn specifies the number of
independent variables which influences the choice of the potential optimization
algorithm. If a high number of variables is involved, gradient-based algorithm
are very efficient. Zero-order methods are limited to problems with a low number
of design variables.

The objective function J is the measure for the quality of the current design. In
most of the problems in structure mechanics one is interested in the improvement
of properties like stress, displacement, frequency or mass of a component.The
feasible domain can be restricted by nG inequality constraint and nH equality
constraint. During an optimization an inequality constraint can become active,
inactive or redundant. Equality constraints are either active or redundant. The
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2 The Vertex Morphing method

set of all active inequality and equality constraints is denoted as the set of active
constraints [Fir10].

2.2 Sensitivity analysis

2.2.1 Overview of methods

As a general definition, sensitivity analysis quantifies the impact of a variation
of the input parameters of a model on its output parameters. Therefore, the sensi-
tivity analysis plays an important role in several areas of application. Among
these, inverse and identification studies, error estimation, reliability analysis
and numerical optimization can be mentioned. In the field of gradient-based
optimization the sensitivities of the objective and the constraint functions are
utilized to find a feasible local optimum.

In static problems the response function J depends on the design variables s
and on the state variables u. Again, the state variables u depend on the design
variables s, which can be expressed as J(s,u(s)). The discretized governing
system of equations of the underlying mechanical problem also depends on s and
u, i.e. R(s,u(s)) = 0. Herein, the vector of the design variables s = [s1, · · · ,sn]

is of size n and the vector of the state variables u = [u1, · · · ,um] is of size m,
respectively.

Generally, the goal of the sensitivity analysis is to compute the total differential
dJ/ds. In the following, the approaches to assess this derivation are only de-
duced for the response function J independent of any gradient-based algorithm.
However, many algorithms for constrained problems also require the gradient
information of the inequality and equality constraints. The sensitivities for theses
quantities are computed in exactly the same way as for the response function and
are therefore not mentioned separately.

In many cases a simple approach is to compute the total differential with a global
finite difference step. The most popular ones are the backward and forward
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2.2 Sensitivity analysis

differences. The latter one is defined as

dJ
dsi

=
J(si +∆si)− J(si)

∆si
+ o(∆si) (2.2)

derived from a Taylor series expansion. The first term is the finite difference step
and the second one is the truncation error. With a decreasing step size ∆si the
truncation error decreases too. However, a small sep size ∆si amplifies the round-
off errors arising from the subtraction of the floating point numbers J(si +∆si)

and J(si), called the condition error. Consequently, there is an optimal step
size for which the error is minimized. Generally, this optimal step size has to
be assessed in preparation of the sensitivity analysis. Regarding the effort, the
calculation of n sensitivities with equation (2.2) leads to n+ 1 evaluations of the
response function J which typically requires n+ 1 solutions of the system of
equations R(s,u(s)) = 0. It is obvious that for an increasing number of design
variables the computational time quickly becomes prohibitive. Though much
effort has been spent to overcome this drawback, e.g. [AGH01] and [KL97], this
is the main reason why a sensitivity analysis with global finite differences is not
very common in practice even if the implementation is straightforward. More
detailed information about this method can be found in [CK06, HA89, KHK05].

A more sophisticated approach is the assessment of the sensitivities by analytical
methods. A common classification of the available methods is by the sequence
of the discretization and differentiation step. In the discrete approach at first
the governing equations are discretized and then differentiated. Here, a deeper
understanding of the Finite Element program and access to the source code is
compulsory. In a first step the total derivative of the response function with
respect to the design variables has to be formulated applying the chain rule of
differentiation

dJ
ds

=
∂J
∂ s

+
∂J
∂u
· ∂u

∂ s
. (2.3)

The terms containing the response function J can be solved analytically or by
means of finite differences. More demanding is the term ∂u/∂ s which is the
derivation of the state variables u with respect to the design variables s. Instead
of computing this expression directly, it is assessed by applying the chain rule of
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2 The Vertex Morphing method

differentiation to the state equation R(s,u(s)) = 0

dR
ds

=
∂R
∂ s

+
∂R
∂u
· ∂u

∂ s
= 0. (2.4)

By substituting equation (2.4) in equation (2.3), the derivation of the state
variables can be replaced

dJ
ds

=
∂J
∂ s

+
∂J
∂u
· ∂R

∂u

−1
· ∂R

∂ s
. (2.5)

Typically, the derivation of the governing equations R are the most time con-
suming parts in equation (2.5). Therefore, it is worth to spent some effort in
an efficient computation of these terms. In dependency of the sequence of the
evaluation of the particular terms two methods can be distinguished.

The direct approach carries out the evaluation from right to left, which means
that first the term

∂R
∂u

−1
· ∂R

∂ s
(2.6)

is determined by solving the following system of equations

∂R
∂u
· ∂u

∂ s
= −∂R

∂ s
. (2.7)

The right hand side consists of n columns which means that the system of equa-
tions has to be solved n times. The term ∂u/∂ s can be inserted in equation (2.5)
which then requires n vector multiplications of size m.

In the adjoint approach, the evaluation starts from the left hand side leading to
the following system of equations:

∂R
∂u

T
·λ = −∂J

∂u

T
. (2.8)

The vector λ is called the adjoint variable. The number of right-hand sides
depends on the number of response functions. Hence, this system of equations
has to be solved as many times as response functions are defined. At the end the
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2.2 Sensitivity analysis

adjoint variable is substituted back in equation (2.5)

dJ
ds

=
∂J
∂ s

+λ
T · ∂R

∂ s
. (2.9)

In this equation n vector multiplications of size m have to be executed.

From the discussions above it is clear, that the choice between direct and adjoint
sensitivity analysis depends on the number of design variables and response
functions. In small problems with only a few design variables but many response
functions involved in the optimization the discrete approach might be preferred.
Otherwise the adjoint method is more efficient. But typically in parameter-free
shape optimization, many design variables and only a few response functions are
defined. For this type of problems the adjoint sensitivity analysis is the method
of choice. Therefore, in this work, the adjoint approach is preferred too.

Sensitivity Analysis

Discrete Variational

Direct AdjointFinite Differences Direct Adjoint

Semi-analytical

Analytical

Exact semi-analytical

Figure 2.1: Overview of methods for sensitivity analysis

According to figure 2.1 several options exists for the computation of the partial
derivatives in the discrete adjoint approach. The sensitivities in the analytical
approach are based on exact analytical differentiation of element quantities. It
is clear, that this requires a deep knowledge of the element formulation being
the main reason why in practice the semi-analytical approach is favored. Here,
the sensitivities are approximated at element level with finite differences making
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2 The Vertex Morphing method

the approach independent from the element formulation. To sum it up, the
semi-analytical approach combines ease of implementation with computational
efficiency. But as all finite difference steps, however, this approach exhibits
truncation and condition errors too, cf. [BH90, PCR89]. To eliminate these accu-
racy problems, the group of exact semi-analytical methods has been developed.
A review of proposed methods for the elimination of errors in semi-analytical
design sensitivities can be found in [BFD08, WCB15, LO94, BK00].

In the variational approach the governing equations are first differentiated and
then discretized. In case the source code of commercial structural analysis pro-
grams is not accessible or very complex and requires intimate knowledge these
kind of methods are applied. Herein, the sensitivity analysis is based on pre- and
post-processing operations without any modifications of the original code. At
first the continuous formulation of the governing equations are derived, analyti-
cally differentiated and finally solved numerically. The goal of this approach is
to formulate a pseudo-load vector applied at the right-hand side of the standard
structural problem to obtain the state derivative ∂u/∂ s at the end, cf. [Dao05].
The main drawback of these kind of methods is that the pseudo load vector has
to be derived and implemented for every mechanical problem separately which
makes it inflexible. The focus of this work is on discretized approaches using
the Finite Element method. Therefore, this type of sensitivity analysis method is
only mentioned for the sake of completeness and will not further discussed. For
more details, the interested reader is referred to [HG99] and [CK06].

A comprehensive review of the methods used for sensitivity analysis of structural
problems can be found in [KHK05, TM94, HA89] and the references therein.

2.2.2 Structural adjoint semi-analytical sensitivity analysis

The discrete sensitivities are based on the discretization of the differential equa-
tions of the underlying mechanical problem. In case of the proposed structural
shape optimization method these are the equilibrium equations for the linear
elastic structure. It states that the change of body momentum is equal to the sum
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of all forces acting on this body.

x1 x2

x3
^Ω

Г

n

t

b

dA

Figure 2.2: State of body in equilibrium

For the derivation of the equilibrium conditions let Ω be a closed volume bounded
by a smooth surface Γ, cf. figure 2.2. Furthermore, a unit normal to the surface
n pointing outwards is considered. On this body acts a body force bi defined on
Ω and a traction t̂i on each boundary surface Γt ⊂ Γ. On the boundary surface
Γu ⊂ Γ and Γu∩Γt a displacement ûi is prescribed. The goal is to determine the
displacement ui of the body under the prescribed boundary conditions.

∂σi j
∂x j

+ bi = 0 in Ω

ui = ûi on Γu

σi j ·n j = t̂i on Γt

(2.10)

The set of equations in (2.10) represents the strong form of the described
boundary-value problem which is derived in detail in the textbooks [Hug00,
Tim51, Dho04]. The stresses σi j and the displacements ui are connected through
the constitutive equation

σi j = Ei jkl · εkl (2.11)

with Ei jkl being the fourth order elasticity tensor and εkl the infinitesimal strain
tensor. The strains are derived from the displacements with respect to the spatial
coordinates

εkl =
1
2
·
(

∂ui

∂x j
+

∂u j

∂xi

)
. (2.12)

The discretization of equation (2.10) leads to an algebraic system of equations
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2 The Vertex Morphing method

with the discrete nodal displacements u as unknowns

R(s,u) = K(s,u(s)) ·u(s)− f(s) = 0. (2.13)

The matrix K is the stiffness matrix of the problem depending on the design
variables s and in the geometrically nonlinear case on the displacements u too.
The vector f is called the external load vector which also depends on the design
variables.

In structural shape optimization, typically, one is interested in quantities like the
mass of a structure, the eigenfrequency, the strain energy, the stresses or displace-
ments at a certain position, cf. section 2.3. These response functions depend
directly from the design variables and often indirect from the displacements,

J = J(s,u(s)) (2.14)

In case of structural shape optimization, equation (2.8) reads

KT ·λ = −∂J
∂u

T
. (2.15)

After solving this equation with respect to the adjoint variable λ , the total
gradient of the response function can be expressed as

dJ
ds

=
∂J
∂ s

+λ
T · f∗. (2.16)

Herein, f∗ is, due to its similarity with the external load vector, the pseudo load
"vector" which is defined as

f∗ =
∂K
∂ s
·u− ∂ f

∂ s
. (2.17)

Each column of the matrix represents a pseudo load case defined for each design
variable si, i = 1, · · · ,n [Sta15]. Since the adjoint semi-analytical analysis is
applied, all partial derivatives are computed by means of finite differences. The
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2.3 Response functions

terms ∂J/∂ s and ∂J/∂u are approximated by

dJ
dsi
≈ J(u, si +∆si)− J(u, si)

∆si
(2.18)

and
dJ
dui
≈ J(ui +∆ui, s)− J(ui, s)

∆ui
, (2.19)

respectively. The term ∂K/∂ si requires the assembly of the stiffness matrix
for every design variable. In the semi-analytical sensitivity analysis this costly
assembly is avoided as the derivatives are computed on element level with
finite-differences,

∂K
∂ si
≈ K(u, si +∆si)−K(u, si)

∆si
. (2.20)

Herein, the main advantage is that the cumbersome element specific derivation of
the stiffness matrix does not have to be implemented. Nevertheless, the drawback
of this method is the reduced accuracy due to the finite difference step as trun-
cation errors are inherent, cf. [BH90, PCR89]. To identify the erroneous shape
design sensitivities, [CO93] introduced the rigid-body motion test for analysis
and detection of possible errors in the derivatives. The exact semi-analytical
sensitivity analysis overcomes this deficiency. In [BFD08, LO94, BK00] the
accuracy is increased by correction factors based on product spaces of rigid body
vectors. In case of geometric nonlinear shape optimization [WCB15] proposes a
correction based on the product spaces of two sets of zero eigenvectors.

2.3 Response functions

Objective and constraint functions are generally denoted as response functions
as they typically provide a characteristic property of the design in a scalar
value. They depend on the design variables s and the state variables u. For an
application in a gradient-based optimization these functions necessarily have to
be differentiable to be able to compute the first order gradient. The algorithms
described in this work only consider a single objective function to be optimized.
In case more than one objective function is present, multiobjective optimization
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2 The Vertex Morphing method

algorithms have to be taken into account and the interested reader is referred
to [EKO90] and the references therein. In the following, the mass and the
stress response function as well as their first order derivatives are described in
detail being two important quantities for the optimization of turbomachinery
components.

2.3.1 Mass

In many structural optimization problems the mass of a component is an impor-
tant quantity. For example in aerospace industry the mass is directly linked to
the fuel consumption which again has an impact on the operating costs of the air-
craft. Thus, a light weight design of the different components is of major interest.

In the discretized Finite Element model the total mass M of a component is
determined by the summation of the mass mi over the considered elements i with
i = 1, ...,nelems. The mass mi itself is defined as the product of the volume Vi of
an finite element times its material density ρi,

M =
nelems

∑
i=1

mi =
nelems

∑
i=1

Vi ·ρi. (2.21)

The number of elements nelems evaluated in the response function can vary be-
tween the whole structure or just a subset, depending from the the underlying
optimization problem.

Clearly, the mass M is only a function of the design but not a function of the state
variables and consequently the response function only depends on the design
variables,

J(s) = M(s). (2.22)

Thus, the first order derivative of the mass with respect to the design variables
form equation (2.3) reduces to

dJ
dsi

=
∂J
∂ si

. (2.23)
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2.3 Response functions

In an optimization the mass response function can either be used as a constraint or
as an objective. The latter one only make sense if further constraints or variable
bounds are defined otherwise the optimization converges to trivial solutions, e.g.
zero volume designs. One exception is in combination with shell or membrane
structures as these elements have per definition a constant thickness. This permits
the investigation of minimal surface problems. Figure 2.3(b) shows the famous
catenoid from Leonard Euler discovered in 1740. This minimal surface consists
of two coaxial rings which are connected by a surface generated from a rotated
catenoid around the center axis of the two rings. It is the only minimal surface
witch is rotationally symmetric. The initial shape of this catenoid has a height
to radius ratio of 1.30, see figure 2.3(a). It can be demonstrated by analytics
and experiments that this minimal surface is obtained up to a ratio of 1.32548
[Lin09]. Above this limit, meaning that the distance between the two rings
is increased, the catenoid degenerates to two disks at the top and the bottom
through a discontinuous transition [BPBA99].

(b) (a) 

Figure 2.3: Catenoid minimum surface, initial shape (a) and final shape (b)

2.3.2 Stress

In many of the problems in structural optimization one is interested in the
improvement of the stresses as they are directly linked to the life and load
capability of a component. However, due to the local nature of the stresses,
many positions have to be taken into account. The most obvious approach is to
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2 The Vertex Morphing method

consider only the maximum stress in the response function with the formula

σmax = max
i=1...nnodes

(σi), (2.24)

where nnodes is the number of nodes taken into account [ALDDR10]. Clearly,
this formulation has the advantage that only one node is considered in the op-
timization problem with the drawback that this function is not differentiable.
The gradients of the response function only reflect the influence of the design
variables on the worst position. The design update will thus reduce the current
largest stress, but the stresses at other locations are not considered and can
increase. Due to this alternating positions of the maximum stress the gradi-
ents can change significantly from iteration to iteration. The parameter-free
optimization even reinforces this effect as very local design changes can be
realized [AFB10]. Consequently, if the maximum stress measure is used as
response function this discontinuity causes severe problems. More iterations are
typically necessary or the algorithm does not converge to the local optimum at all.

Therefore, it is essential to replace the maximum function by a formulation
which aggregates all nodal stress values into one continuous scalar function.
Every local stress position accounts proportional to its value to the function. This
means that the design update also considers the change of the stress value at these
positions. In the literature the Kreisselmeier-Steinhauser (KS) function [KS79]
and the p-norm are commonly used. Le et al. [LBT11] implemented the p-norm
in the context of a parameter-free shape optimization process and demonstrated
its capabilities on several academic test cases. In [LCAT+17] and [PTB+17]
the p-norm is succesfully integrated in the framework of a combined shape and
topology optimization process. Qi et al. [QL10] showed the equivalence between
the p-norm and the KS-function and pointed out that the KS-function is even
more adaptive to optimization problems. In [LSS15] the nondifferentiability of
the maximum stress formulation is avoided by the use of the KS-function. There,
the shape of stiffeners on thin-walled structures is optimized to minimize the
stress concentration. Poon et al. [PM07] used the KS-function to aggregate all
constraints in one closed function for the optimization of a wing structure. If
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2.3 Response functions

many constraints are involved the KS-function typically leads to conservative
results. This effect can be avoided by updating the aggregation parameters during
the optimization leading to more accurate results. Based on these references
the KS-function is preferred which is in terms of the stress response function
formulated as

σKS =
1
ρ
· ln

(
nnodes

∑
i=1

eρ·σi
σ̄

)
=

1
ρ
· ln(H). (2.25)

Herein,
nnodes

∑
i=1

defines the summation over all nodes within the response function

with σi being the corresponding nodal stress value. The stresses are scaled by
a reference stress σ̄ which has a major influence on the behavior of the KS-
function. If σ̄ is small compared to the highest stress value in the structure the
function tends to infinity. On the other hand, if the fraction σi/σ̄ is very small
the highest stress values are not emphasized and the function becomes useless.
Therefore, σ̄ should be in the range of the highest stress value in the response
function. The parameter ρ is a scalar value that determines the importance of
the highest stress value in the set. For large ρ the influence of the KS-function
is limited to the neighborhood of the highest stress. For lower values of ρ the
function spreads more even over the structure. For a deeper understanding about
the aggregation parameters σ̄ and ρ , Arnout et al. [AFB10] as well as Poon et al.
[PM07] analyzed their influence on the optimization result in detail. Concluding,
it is important to note that the KS-function, in contrast to the maximum stress
function σmax, does not have any physical meaning.

Regarding the stress measure, scalar ones like the von Mises hypothesis, the
Tresca hypothesis or the Rankine hypothese are often better suited than the tensor
formulation of the stress. Subsequently, the von Mises stresses will be used for
the evaluation of the response function. In three dimensional continuum the von
Mises stresses are calculated by

σvM =

√
1
2
[(σI−σII)2 +(σII−σIII)2 +(σII−σI)2] (2.26)

with the principal stresses σI, σII and σIII.
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2 The Vertex Morphing method

The stress at an arbitrary nodal position is a function of the design variables and
the state variables

J(s,u) = σKS(s,u). (2.27)

Therefore, the chain rule of differentiation has to be applied to obtain the follow-
ing expression

dJ(s,u)
ds

=
∂σKS

∂ s
+

∂σKS

∂u
· ∂u

∂ s
. (2.28)

where ∂u/∂ s denotes the state derivative introduced in section 2.2.1 which is
independent from the considered response function. From equation (2.28) it can
be concluded that the KS-function has to be derived with respect to the design
variables s and the displacement field u. The derivation of the KS-function fol-
lows exactly the same way for the design variables as well as the displacements.
Therefore only the first partial derivative ∂σKS/∂ s is deduced in detail.

Characteristic for the semi-analytical sensitivity analysis is the approximation of
the partial derivatives with a finite difference step

∂σKS

∂ si
≈

1
ρ
· ln(H+∆H)− 1

ρ
· ln(H)

∆si
. (2.29)

After several transformations, including two linearizations based on a Taylor
series expansion, equation (2.29) can be rewritten in the following form

∂σKS

∂ si
≈ 1

σ̄ ·∆si ·H
·

(
nnodes

∑
i=1

eρ·σi
σ̄ ·∆σi

)
. (2.30)

In this expression, except of ∆σi all terms are already available from the compu-
tation of the scalar value of the response function. The term ∆σi is received by
subtracting the nominal von Mises stress σi at node i from the perturbed one at
node i. The transformation from equation (2.29) to equation (2.30) is described
in detail in appendix B.

For the verification of the implemented adjoint sensitivity analysis of the stress
response function, a small academic example is evaluated and compared with
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2.3 Response functions

the sensitivities gained from a global finite differences step. The underlying
mechanical problem is a beam in bending, simply supported at both ends under a
constant distributed load of 10 MPa defined along the whole beam. The length of
the beam is 20 mm and its cross section is 1×1 mm. The problem setup is shown
in figure 2.4(a). A Young’s modulus of 2.1×105 MPa, a Poisson ratio of 0.3 and
a density of 7.85×10−9 t/mm3 are the corresponding material properties. The
geometry is discretized with two rows of 20 linear hexahedral elements, cf. figure
2.4(b). The design variables are defined at the top of the structure. Furthermore,
the response function is evaluated for every design variable with ρ = 2 and
σ̄ = 200 MPa as aggregation parameters.

(b)(a)

20

2.5

2

x

y

Figure 2.4: Beam in bending, mechanical model (a) and Finite Element dis-
cretization (b)

(b)(a)

Sensitivity

0.000E+00
-2.913E-02
-5.827E-02
-8.740E-02
-1.165E-01
-1.457E-01
-1.748E-01
-2.039E-01
-2.331E-01
-2.662E-01

Figure 2.5: Comparison of sensitivity field of stress response function computed
with finite differences (a) and the adjoint method (b). For the purpose
of a better comparison, the length of the gradient vectors has been
normalized.
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The contour plot in figure 2.5(b) shows the adjoint sensitivity field. It can be
seen that all nodal sensitivities are strictly negative with the highest absolute
value occurring in the middle of the beam. The gradient follows the distribution
of the bending moment which is in terms of shape optimization comprehensible
as a design change in the center of the beam has the highest effect on the stresses.
The sensitivities in figure 2.5(a) are computed with the forward finite differences
step from equation (2.2). As already mentioned in section 2.2.1, the optimal
perturbation has to be assessed in advance which is for this example 1.0×10−6

Comparing the gradients in longitudinal direction of the beam, both methods
lead to nearly the identical sensitivity field, cf. figure 2.6. Only at the nodes of
both ends minor differences can be observed.

This small example demonstrates very well that the implemented adjoint sen-
sitivity analysis of the stress response function from equation (2.30) provides
reliable gradient information.
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Figure 2.6: Gradient field of the stress response function evaluated along the
longitudinal direction of the beam. For the purpose of a better
comparison, the length of the gradient vectors has been normalized.

25



2.4 Geometrical constraints

2.4 Geometrical constraints

Often, in industrial applications the geometrical design space which is available
for the evolution of the design is limited. Without the consideration of these
constraints, commonly denoted as side constraints, in the definition of the opti-
mization problem, the optimal design does not satisfy them in many cases. A
redesign of the optimal shape to comply with the geometric boundary conditions
is not trivial and typically leads to a deterioration of the optimized quantities.
Therefore, it is essential to integrate the geometric constraints in the optimization
algorithm.

Some of the most significant types of constraints are the thickness of a structure
and the bounds of the design variables. For example, for casting structures it
is important to limit the maximum wall thickness due to cooling effects. On
the other hand, if the members are too thin they cannot be filled with liquid.
Both cases can be avoided by a limitation of the wall thickness. Regarding the
variable bounds, turbo jet engine components are arranged in a very compact
manner due to weight reduction only leading to a limited design space. For the
integration of optimized parts in those systems they perfectly have to fit to the
existing interfaces.

In many cases the side constraints are simply not included in the optimization
algorithm. In case a design variable violates such a constraint during the op-
timization it is placed directly on the boundary of the constraint. Thus, the
resulting design remains feasible which seems very efficient at first sight [Fir10].
Nevertheless, [HG99, Ble90, Roz93] do not recommend this strategy as the
abrupt design change leads to oscillations in the convergence history due to the
fact that the optimizer tries to violate this constraint in every iteration.

Therefore, in this section, a method is proposed to consider side constraints
in a gradient-based optimization algorithm. This approach is applied for the
geometric limitation of the design space and the wall thickness constraint.
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2.4.1 Restricting amount of design change

The evolution of the optimized shape below or above a certain limit can be
restrained by the definition of variable bounds su and sl, respectively. The
approach proposed in this work is discussed in detail on the basis of figure
2.7. Herein, the discretized geometry of the initial design as well as the design
at iteration k is shown and represented by the nodal coordinates of the design
variables x0 = [x0

1, . . . ,x0
n] and xk = [xk

1, . . . ,xk
n]. Additionally, every design

variable is bounded by an upper constraint su = [su,1, . . . ,su,n] which is defined
as the maximum allowable Euclidean distance between the actual geometry
xk and the initial design x0 individually for every design variable. Clearly, as
the design update takes place in several discrete steps, this bound will not be
exactly met. To reduce the risk of a violation of the variable bounds, [Har08]
proposed to define them as so-called "smeared" constraints meaning that the
variable si is considered to be active if a certain percentage of the permitted
maximum displacement su,i is reached, e.g. β = 0.98. The "smeared" constraint
is highlighted by the grey area in figure 2.7. In the course of the design update
from k−1 to k, the design variable si attains this area with the consequence that
no further displacement in outward direction is allowed.

su,i

xi
0

xn
0

xi
k

x1
k xn

k

ni
n1

0

0

nn
0

x1
0

Figure 2.7: Constrained design update with an upper bound su defined for the
design variables

For the decision if the geometric constraint is active at node si, the Euclidean
distance ∆xk

i between the actual design xk
i and the initial one x0

i has to be
computed with

∆xk
i = ‖∆xk

i ‖= ‖xk
i −x0

i ‖. (2.31)
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Based on this information, the constraint function which reads as

∆xk
i −β · su,i ≤ 0 (2.32)

can be evaluated. As soon as a design variable attains the bound this inequality
constraint is violated and the constraint has to be considered as active for this
design variable. As the Euclidean distance does not contain any information
about the direction of the displacement, the presented procedure is up to this
point also valid for lower constraints sl.

To determine whether the evolution of the shape at a certain design variable takes
place in inward (sl) or outward (su) direction, the scalar product κ of the shape
update vector from equation (2.31) and the normal vector is computed,

κi = ∆xk
i ·nk

i . (2.33)

This operation can be interpreted as the projection of the shape update vector
to the normal direction. As per definition, the normal vector always points in
outward direction for every design variable si, a value of κi > 0 indicates that the
design moves in direction of the upper constraint. Thus, the upper bound su,i for
the design variable si is activated if equation (2.32) is violated and additionally
the vectors ∆xk

i and nk
i point in the same direction (κi > 0).

As the constraint function (2.32) is linear and it only depends on design variable
si, all entries of the gradient vector are zero except for the entry at position si

which receives the value one. 

s1
...

si−1

si

si+1
...

sn


=



0
...
0
1
0
...
0


(2.34)
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The lower and upper bounds are defined relative to the initial mesh and the Eu-
clidean distance is used to describe the displacement. This means equation (2.32)
and the gradient vector in (2.34) also holds for lower constraints sl. The only
difference is the scalar product κ which has to be negative for lower constraints
and positive for upper constraints to activate a constraint. Generally, for a design
variable either the upper or the lower constraint can be active but never both at
the same time.

In the following, this constraint is tested on the catenoid example introduced
in section 2.3.1 which is defined by the radius r and the height h = 1.3r. The
problem is enhanced by a geometric limitation which bounds the movement of
the design variables to a maximum of 0.2r. According to figure 2.8 on the left,
this boundary can be interpreted as a cylinder with a radius of 0.8r. It is obvious,
that the optimal solution gained in figure 2.3 cannot be reached anymore as it
would violate this constraint. The feasible constrained optimum is also shown
in figure 2.8 on the left. On the right, the geometries of the unconstrained and
constrained optimum are evaluated along the line between point A and B. It
clearly can be seen, that in the middle of the constrained catenoid the design
variables touch the boundary at the radius 0.8r. This design in fact represents
the minimal surface under the defined geometric constraint.
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Figure 2.8: Catenoid minimum surface under a geometric constraint, constraint
optimum (left) and comparisons of unconstrained and constrained
geometry (right)
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2.4.2 Minimum or maximum member size

The second geometric limitation which can be defined in an optimization prob-
lem is the minimum or maximum wall thickness. According to the variable
bounds introduced in section 2.4.1, the wall thickness is also a linear constraint
and can therefore be treated in a comparable manner.

For the derivation of the algorithm let xk = [xk
1, . . . ,xk

n] be the nodal coordinates
of the design variables s in iteration k which are modified by the optimizer. To
every design variable si a minimum (sl,i) and a maximum (su,i) value for the wall
thickness can be assigned stored in the vectors sl and su, respectively. Further-
more, a second node set xc = [xc,1, . . . ,xc,m] containing the nodal coordinates of
m control nodes is defined. Figure 2.9 visualizes both node sets for an arbitrary
mesh topology.

xi
k

x1
k xn

k

xc,1

xc,j xc,m

Figure 2.9: Constrained design update with an upper bound su for the wall
thickness constraint

On that basis the wall thickness is calculated as the distance between the design
variables and the control nodes. More precisely, the actual wall thickness dact,i

in iteration k for the design variable si is defined as the minimum Euclidean
distance between xk

i and the control nodes xc,

dact,i = min
j=1...m

(‖xk
i −xc, j‖). (2.35)

The distance dact,i has to be compared with the minimum or maximum wall
thickness sl,i and su,i, respectively. In combination with the safety parameter β ,
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introduced in section 2.4.1, the inequality constraint for the maximum allowable
wall thickness at node si can be formulated as,

dact,i ≤ β · su,i, (2.36)

and rearranged,
dact,i−β · su,i ≤ 0. (2.37)

In the same way the constraint for the minimum allowable wall thickness is
derived:

dact,i ≥ β · su,i (2.38)

β · su,i−dact,i ≤ 0 (2.39)

In case a design variables exceeds one of these constraints, the assessment of
the gradient vector follows exactly the same way as in equation (2.34). Indeed,
both constraints from equation (2.36) and (2.38) can be defined for one design
variable, but they can never be active at the same time.

Note, this approach is only an approximation of the wall thickness as the normal
direction from the node si to the opposite surface would have been exact. How-
ever, for highly resolved meshes the distribution of the control nodes xc should
be sufficiently dense, that this inaccuracy is negligible.

(a) (b) 

Figure 2.10: Minimum weight of a beam under a minimum wall thickness
constraint, initial design (a) and optimal design (b)

To demonstrate the applicability of the proposed wall thickness constraint, a
small example is discussed. Figure 2.10(a) shows a beam with a sinusoidal
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lower surface and a flat top surface leading to a wall thickness between h and 3h.
The design variables are defined on the top surface acting in vertical direction.
The goal is to reduce the mass under the constraint to preserve a minimum wall
thickness of at least 0.8h at every position. The corresponding control set is
defined on the bottom of the beam. The optimal design which successfully
preserves the minimum wall thickness at every design variable is illustrated in
figure 2.10(b). As expected, the flat top surface converges to the sinusoidal shape
of the lower surface which is the constrained optimal design.

2.5 Sensitivity weighting

A general problem in discrete sensitivity analysis is the fact that the shape sensi-
tivities strongly depend on the discretization. The sensitivity value at each node
inherently reflects the influences of the surrounding mesh and the element formu-
lation [Fir10, KSWB14]. In case of gradient-based optimization methods this
disturbance in the gradient information should be controlled carefully. Therefore,
in this section, these two major sources of inaccuracies are investigated and
practical remedies are presented.

2.5.1 Dependency of the discretization

The influence of the discretization is deduced based on the example of figure 2.4.
The objective is to minimize the mass of the beam according to equation (2.21)
evaluated for the whole structure. The mechanical model is regularly discretized
with two rows of linear 8-node hexahedral elements with full integration (Fig.
2.4(b)). The design variables, defined at the top of the structure, are perturbed in
vertical direction.

Regarding the gradient field of the mass response function, it is expected to be
constant, since a movement of any material point should have the identical impact
on the weight of the structure. Keeping this in mind, at first the gradients without
any additional weighting step are calculated and illustrated in figure 2.11(a). The
sensitivity field does not show the expected constant distribution since the values
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Sensitivity

7.850E-09
6.978E-09
6.106E-09
5.233E-09
4.361E-09
3.489E-09
2.617E-09
1.744E-09
8.722E-10
0.000E+00 (b)(a)

Figure 2.11: Gradient field of the mass response function without sensitivity
weighting (a) and with sensitivity weighting (b)

at the corner nodes are by a factor of two lower than the inner ones, cf. figure
2.12. This inaccuracy is introduced by the discrete character of the sensitivities.
To counteract this effect, weighting is proposed as additional post-processing
step leading to the desired constant behavior as figure 2.11(b) clearly shows. The
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Figure 2.12: Gradient filed of the mass response function evaluated along the
longitudinal direction of the beam

evaluation of the gradients along the longitudinal direction of the beams in figure
2.12 reveals the main differences. The nodal sensitivities in the version with
weighting represent exactly the defined density of 7.85×10−9 being the correct
value. The nodal values in the version without the weighting step still have to be
multiplied with a certain factor to achieve the desired result of version (b). In this
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2.5 Sensitivity weighting

example the scaling factor turns out to be 4 for the corner nodes (3.925×10−9 )

and 2 for the interior ones (1.963×10−9 ). Applying this weighting step, the
sensitivity field is considered improved in the sense that it now reflects the char-
acteristics of the underlying optimization problem independent of the chosen
discretization.

To understand the derivation of these weighting factors in detail, let us consider
an arbitrary objective function J which depends on the position of the discrete
control point parameters sl through the surface geometry S and the "objective
density" φ :

J(sl) =
∫
A

φ (S(sl))dA =
∫
A

φ

(
n×m

∑
l=1

Rl(ξ ,η)sl

)
dA (2.40)

Herein, R(ξ ,η) is the two-dimensional shape function which discretizes the
surface geometry S and n×m is the number of the control points distributed on
the area A on the surface element. According to the chain rule of differentiation,
the sensitivities with respect to the control points sl can be expressed as

∇sJ =
∫
A

∂φ

∂S
∂S
∂ sl

dA =
∫
A

∂φ

∂S
Rl(ξ ,η)dA. (2.41)

From equation (2.41) it is clear that the geometric influence of the mesh on the
sensitivity is defined by the integral of the corresponding shape functions. Thus,
the discrete sensitivities reflect the density of the discretized mesh [KSWB14].
The sensitivity values ∇sJ are of integral nature whereas the design variables
s itself are the supporting values of a field. For the sake of consistency the
sensitivity values also have to be of "field nature" which is achieved by computing
the geometric influence coefficient bl for every design variable and scaling the
sensitivity values with the inverse of the geometric influence matrix B:

bl =
∫
A

Rl(ξ ,η)dA (2.42)

B = diag(bl) (2.43)
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2 The Vertex Morphing method

∇sJw = B−1
∇sJ (2.44)

It is important to note, taking the weighted sensitivities ∇sJw does not alter the
optimization problem since only the search direction is modified. Consequently,
for non-convex problems both weighted and unweighted sensitivities lead to
the same optimum solution. But in case of non-convex problems different local
optima might be obtained.

2.5.2 Influence of the element formulation

Apart from the discretization, the element formulation itself influences the
gradient field. In structural simulations quadratic elements are typically used.
Therefore, the example of figure 2.4 has been assessed again with 20-node
hexahedral elements. The computation of the geometric influence matrix B from
equation (2.43) reveals the drawback of the higher order elements. As figure
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Figure 2.13: Geometric influence coefficients bl for unit tetrahedral and hexahe-
dral elements

2.13 shows, its diagonal entries bl are negative for hexahedral elements or even
zero for tetrahedral ones. Applying the B-matrix on the quadratic hexahedral
elements leads to a sensitivity field which is alternating between the corner nodes
and the mid nodes of the element from negative to positive values. The figures
2.14(a) and 2.15 clearly show the described behavior. The negative values at the
corner nodes are physically wrong as they suggest a weight reduction in outward
direction whereas the values at the mid nodes are correct showing the desired
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positive sensitivity value of 7.85×10−9 of the mass response functions.

Sensitivity
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6.832E-09
5.815E-09
4.797E-09
3.780E-09
2.762E-09
1.744E-09
7.269E-10
-2.907E-10
-1.308E-09 (b)(a)

Figure 2.14: Gradient field of the mass response function for quadratic hexahe-
dral elements without (a) and with (b) correction of the values at
the corner nodes
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Figure 2.15: Gradient field of the mass response function evaluated along the
longitudinal direction of the beam

As a practical remedy the sensitivities at the corner nodes are not computed
at all in the sensitivity analysis but are extrapolated after the weighting step in
equation (2.44) from the neighboring mid-node values:

∇sJw,cor =
1
n

n

∑
i=1

∇sJw,mid,i (2.45)
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2 The Vertex Morphing method

Herein, n is the number of mid nodes next to the considered corner node derived
from the topology of the mesh. With this extrapolation the expected constant
sensitivity field can be obtained, see figures 2.14(b) and 2.15.

Neglecting the sensitivities at the corner nodes reduces the number of design
variables at a first sight. However, these short-waved solutions where the mid
node moves independent from the corner node are not desired anyway and are
eliminated by the out-of-plane regularization (section 2.6.3). Thus, it can be
assumed that the interpolation step for quadratic elements does not restrict the
design space remarkably.

2.6 Regularization of shape optimization problems

In this section the regularization methods in node-based shape optimization
are discussed. The section is organized as follows: Section 2.6.1 introduces
the main problems in node-based optimization and points out the necessity of
regularization. The various out-of-surface regularization methods are discussed
in section 2.6.2 and the proposed approach in the Vertex Morphing method is
presented in 2.6.3. Section 2.6.4 introduces the different regularization methods
for retaining the quality of the volume mesh during the optimization. At the end
of this section (section 2.6.5), an extended Traction method which is utilized
for update of the three-dimensional mesh in the Vertex Morphing method is
presented.

2.6.1 Motivation

Shape optimization problems of linear elastic bodies in equilibrium can be gen-
eralized as optimization problems of domains in which elliptic boundary value
problems are defined [AKSK97]. It is well known that this kind of domain
optimization problems do not have sufficient regularity [HG99, BWDC05]. Ac-
cording to [Fir10] the methods to overcome this ill-posedness can be separated
in techniques for the out-of-surface regularization and for the regularization of
the volume mesh, commonly denoted as "in-plane regularization" in the case of
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2.6 Regularization of shape optimization problems

two-dimensional shell structures.

Regarding the out-of-surface regularization, independent from the type of differ-
entiation (analytical, semi-analytical or global finite differences) the gradients
of the response functions are not smooth. In this context the term "smooth"
is related to a geometrical curvature measure as in gradient-based shape op-
timization problems the smoothness of the gradients is directly linked to the
smoothness of the optimized geometry. This non-smoothness mainly arises from
the fact that the computed gradients are less regular than the parametrization
[Sta15, JMP98, MP09]. In this context, Haslinger et al. [HN88] worked out that
an optimal shape for elliptic boundary value problems can only be achieved if the
constraint of Lipschitz continuity is fulfilled as a requirement for the smoothness
of the shape. However, this has not been discussed thoroughly and there is still
a lack of theory. To overcome this irregularity several approaches are existing:
Imam [Ima82] suggests to limit the number of design variables by isoparametric
representations of the surfaces which corresponds with the idea of Braibant et
al. [BF84] to use B-splines for the definition of the geometry. Among others
Bletzinger [Ble13], Schmidt [Sch10] and Le et al. [LBT11] ensure a well-posed
shape optimization problem by filtering techniques that imposes a minimum
length scale. Independent of the chosen method, there is in fact a need for an
out-of-surface regularization.

During the optimization the finite element mesh typically undergoes big design
changes and therefore can easily get distorted. The volume mesh regularization
is applied to retain a sufficient mesh quality and particularly to preserve reliable
gradient information in every optimization iteration. Hence, the goal of these
methods is to change the discretization of the geometry and not the geometry
itself. In case of node-based shape optimization the nodal positions of the mesh
are adjusted.

The Vertex Morphing method presented in this work contains both the out-of-
surface regularization and the regularization of the volume mesh. In order to
evaluate the proposed methods with respect to the smoothness of the sensitivity
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2 The Vertex Morphing method

field and the quality of the grid during the optimization the two-dimensional
quadratic plate with a circular hole of figure 2.16 is considered. The objective is
the reduction of the notch stresses with equation (2.25) as response function. The
nodes on the edge of the hole are defined as design variables and additionally
evaluated for the response function. Furthermore, as a constraint the mass of
the plate must not exceed the initial mass. As one can expect, the optimizer will
update the circular hole to an elliptical one with a ratio of the axis of 2/1 which
is identical to the ratio of the external loading. Under the defined constraint this
is the optimal design as the stress concentration is minimized and homogenized
around the edge of the hole.

σ2=σ

σ1=2σ

σ1=2σ

σ2=σ

Figure 2.16: 2D quadratic plate with circular hole under tension stresses

Regarding the out-of-surface regularization three different cases are studied for
the sake of comparison. In the first one, no regularization is applied at all. In the
second case an explicit filter is applied to the computed gradient field as described
in section 2.6.2 and in the third one the regularization of the Vertex Morphing
method is applied (section 2.6.3). Figure 2.17 compares the reduction of the
objective function during the optimization as an indication for the quality of
the gradients received from the out-of-surface regularization step. The function
values are normalized, therefore a value of 1 relates to the initial design. In the
first case where no additional regularization of the gradient field takes place,
the optimization did not even finish after 100 iterations with an improvement of
the objective function by less than 10 %. The other two cases converged to the
optimal design after 38 and 44 iterations with an improvement of 29% in both
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Figure 2.17: Comparison of out-of-surface regularization methods with respect
to the improvement of the normalized response function

cases. According to figure 2.18 the optimal design of case one did not converge
to the analytical solution but sticks at a the circular shape forming several kinks.
The final shapes of case two and three develop the expected elliptical shape with
the ration of 2/1. Though an additional effort has to be given, the out-of-surface
regularization is mandatory for node-based parametrizations.

(a) (b) (c)

Figure 2.18: Comparison of optimal shapes of the circular hole for an optimiza-
tion without any out-of-surface regularization (a), with an explicit
filter (b) and the Vertex Morphing method (c)

At a first sight, the optimal design seems to be trivial but the reduction of
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2 The Vertex Morphing method

curvature and the update of the interior nodes is a very challenging task in
shape optimization since the elements easily get distorted if no volume mesh
regularization is applied. Therefore, this example is also the basis to demonstrate
the importance of controlling the volume mesh. In the first case, the improvement
of the mesh quality is neglected only the smoothing of the sensitivity field with
an explicit filter applied. In the second case Vertex morphing which is based on
the traction method [AW96] is applied, cf. section 2.6.5.
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Figure 2.19: Comparison of volume mesh regularization methods with respect
to the change of the aspect ratio

Figure 2.19 compares the mesh quality during the optimization for the different
cases. The figure shows the quality of the elements located around the circular
hole as these are the ones where the sensitivities are computed and the shape
change mostly takes place. For a reliable gradient information the decrease
of the element quality should be as less as possible. As a quality measure the
aspect ratio of the worst element is evaluated. It is defined as the ratio between
the shortest and the largest element edge. A perfectly shaped element has the
value of 1 whereas a ratio of 0 indicates that the element already collapsed since
at least one element edge approached zero. In the case where no additional
volume mesh regularization is applied the optimization failed at iteration 9. As
can be seen in figure 2.20(a), the elements at the top and at the bottom of the
ellipse collapsed. The Vertex Morphing method with volume mesh regularization
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2.6 Regularization of shape optimization problems

continued until the optimum design was reached, see figure 2.20(b). The Vertex
Morphing method delivers a higher quality of the mesh and thus allows for
more optimization steps with the drawback of an increased computational effort.
However, if large design changes are expected a mesh quality preservation step
is mandatory in the optimization process.

(a) (b)

Figure 2.20: Comparison of final shapes of the circular hole for an optimization
without any volume mesh regularization (a) and with regularization
(b)

In what follows, an overview of the common regularization methods is given
and in particular the methods implemented in the Vertex Morphing method
are presented. For the out-of-surface regularization of the sensitivity field a
consistent formulation is deduced where the smoothing is no longer considered
as a "post-processing" step. The method for the volume mesh regularization
is based on the ideas of the Traction method. To further reduce the mesh
deterioration, two extensions are included: in the pseudo-elastic problem the
invariable areas are only constrained in normal to the surface direction, i.e. the
direction responsible for the design change. Tangentially, the nodes can freely
vary. Furthermore, the Young’s modulus is defined as a function of the distance
from the design variables. This leads to a variable stiffness in the component
which distributes the displacements more evenly in the finite element mesh and
further reduces the mesh dependencies.
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2 The Vertex Morphing method

2.6.2 Overview of out-of-surface regularization methods

As mentioned in the section above, almost all gradient fields in node-based shape
optimization problems are not smooth. For this reason a projection, smoothing or
filtering step is required [MP09, JV00, LBT11]. Generally, the methods used for
the regularization of the sensitivity field can be explicit or implicit. The explicit
methods are applied directly on the noisy field while the implicit ones operate
on the smooth (unknown) field [Sta15].

Explicit filters are based on convolution integrals [Yos95] where the raw sensi-
tivity field G is convoluted with a kernel K to obtain the smooth field Ḡ:

Ḡ(ξ0) = AG(ξ ) =
∫

Γ
K(ξ )G(ξ0−ξ )dξ (2.46)

Herein, A and ξ represent the filtering operator and the local curved coordinate,
respectively. Mind, the description is one-dimensional but an extension to two-
dimensional surfaces with a local system of orthogonal surface coordinates is
straight-forward. Motivated by scale-space theory [Lin94], Gaussian kernels
are commonly used in shape optimization problems due to their scale-space
properties like linearity, shift invariance, non-enhancement of local extrema and
invariance of scale and rotation [SR11]:

K(ξ ) =
1√

2πσ
e−

|ξ |2

2σ2 (2.47)

In this equation |ξ | is the Euclidean distance to the center of the filter. The
standard deviation σ is denoted as filter radius and assumed to be constant
during an optimization. The higher the value of σ , the wider the influence of the
filter and thus the gradient field becomes smoother, cf. figure 2.21.

Regarding the class of implicit filters, a well established and commonly used
filter in shape optimization of structural and aerodynamic problems is the
Sobolev-gradient smoothing [JV00, MP09, SIGS08, JJ07, Sch10, Moh97]. In
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Figure 2.21: Three different realizations of Gaussian kernels with σ = 5, σ = 7
and σ = 10.

this method, the Laplace-Beltrami operator

I− ε
∂

∂x
∂

∂x
(2.48)

is applied to compute the smoothed gradient field Ḡ as the solution of the
following elliptical equation

Ḡ− ε
∂

∂x
∂ Ḡ
∂x

= G. (2.49)

The parameter ε is an arbitrary positive scalar value penalizing high curvatures
detected by the curvature operator ∂ 2/∂x2. It can be noted that equation (2.48)
can also be applied directly to the design update δ s.

In the following, the relation between the explicit and implicit filters are shown
for the one-dimensional case. According to [SR11], the raw sensitivity field G
convoluted with a Gaussian kernel with the filter σ2 = γt can be considered as a
fundamental solution of the unsteady diffusion equation

∂ Ḡ
∂ t

=
γ

2
· ∂

2Ḡ
∂x2 . (2.50)
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The term γ/2 is the diffusion coefficient indicating how fast the diffusion of Ḡ is
over the pseudo-time t. For equation (2.50) an implicit first-order approximation
is stated in [SR11] and [JJ07] which yields

Ḡ− γt
2

∂ 2Ḡ
∂x2 = Ḡ(0). (2.51)

Comparing equation (2.49) and (2.51) leads to the relation

σ
2 = 2ε, (2.52)

so that the smoothing intensity ε can be interpreted as half the variance σ2 from
the Gaussian kernel. Hence, an explicit filtering with an Gaussian kernel is
first-order equivalent to the implicit Sobolev-gradient smoothing.

Generally, the optimal choice of ε and σ is case dependent and can be considered
as a Newton’s step in the steepest descent method of equation (2.71) [SIGS08].
But the determination of the optimal values for both parameters requires ad-
ditional computational effort. Therefore, in practice they are often considered
as additional design variables guiding the optimal design to the desired curvature.

The explicit and implicit filter methods have in common that they are tuned
by a single scalar value, the "filtering coefficient" which indicates the "filtering
intensity". Furthermore, both smooth the design by establishing a distance-based
relation between the different nodal values. Practically, the choice of the filter
method is not as decisive as the choice of the filtering coefficient.

2.6.3 Consistent out-of-surface regularization

The filter methods presented in the previous section smooth the sensitivity field
in an additional step decoupled from the optimization problem. In this section,
the filtering in the Vertex Morphing method [Ble13, HSB14, Hoj14] is intro-
duced where the regularization of the sensitivity field is no longer considered
as a "post-processing" step but is consistently incorporated in the optimization
problem. Therefore, beside the geometry field x an additional control field s is
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introduced on which the mathematical optimization problem is defined. Both
fields are related by a mapping operator A. Furthermore a material coordinate ξ

(one-dimensional case) is defined on Γ. Both the geometry field x(ξ ) and the
control field s(ξ ) are a function of this material coordinate.

The geometry x is obtained from the control field s by the following operation,

x(ξ0) = As =
∫

Γ
A(ξ0,ξ )s(ξ )dξ . (2.53)

In this equation the geometry x is obtained by a convolution of the control field
s with a kernel A which can be the Gaussian kernel K from equation (2.47) or
any other self-adjoint function. Typically, in the beginning of an optimization
an initial geometry x0 is given and the distribution of the related design control
field s0 is unknown. However, the absolute values of the design control field
don’t have to be known as one is only interested in its change δ s to determine
the change of the geometry δx. According to equation (2.53) the variation of the
geometry is formulated as

δx(ξ0) =
∫

Γ
A(ξ0,ξ )δ s(ξ )dξ . (2.54)

Based on equation (2.53), Bletzinger [Ble13] concluded that the derivative of
x(ξ0) with respect to s(ξ ) equals A(ξ0,ξ ),

dx(ξ0)

ds(ξ )
= A(ξ0,ξ ) (2.55)

Substituting equation (2.55) in (2.53) the change of the geometry can also be
expressed as

δx(ξ0) =
∫

Γ

dx(ξ0)

ds(ξ )
δ s(ξ )dξ . (2.56)

In gradient-based shape optimization one is interested in the change of the
objective function J(x,u) with respect to the design s. Applying the chain rule
of differentiation the following expression can be derived:

dJ
ds

=
∂J
∂ s

+
∂J
∂x

∂x
∂ s

. (2.57)
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The term ∂J/∂ s is zero since a change of the control field does not alter the
objective function. Then, equation (2.55) can be substituted in (2.57) which
finally yields

dJ
ds

(ξ0) =
∫

Γ

∂J
∂x

A(ξ ,ξ0)dξ . (2.58)

In this equation only the partial derivative ∂J/∂x remains. This means, the
change of the objective function J with respect to the control field s is purely
based on the variation of the geometry x. This term can efficiently be computed
by means of the adjoint sensitivity analysis introduced in section 2.2. According
to [Ble13] this procedure is defined as "sensitivity filtering" as higher oscillating
geometrical modes are suppressed.

The main difference between Vertex Morphing and the aforementioned filter
methods is the consistently in the optimization problem included filtering step
by the chain rule of differentiation. That means, the filter appears twice in an
optimization step: once for the update of the geometry in equation (2.54) and a
second time for the computation of the sensitivities in equation (2.58).

Typically, in numerical applications the geometry is discretized and consequently
the control field as well, cf. figure 2.22(a). The strategy here is to discretize
the control field s = [s1, ...,sn] with as many nodes as the geometry space x =

[x1, ...,xn]. Similar to the A operator from equation (2.46), a matrix A can be
defined which linearly maps s onto x:

x = As (2.59)

Figure 2.22(b) shows the change of the geometry x due to a change of the control
field at the position si linked by the A operator. If x and s have the identical
number of grid points and these are distributed equally, A is symmetric and
AT = A. But this does not necessarily have to be the case. Thinking about CAD
parametrization, the number of control points is smaller than the number of
geometry parameters. Nevertheless, the role of the control field remains identical
between the FE and CAD parametrization.
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s(ξi)s(ξ1) s(ξn)
s(ξi)s(ξ1) s(ξn)

x(ξi)x(ξ1) x(ξn)

x(ξi)

x(ξ1) x(ξn)
A

(a) (b)

Figure 2.22: Discrete geometry x and control field s (a) and mapping between
s(ξi) and x(ξi) with the filter matrix A (b)

According to equations (2.54) and (2.57) the formulas for the variation of the
geometry δx and the computation of the sensitivities ∇sJ can also be written in
a discrete form,

δx = Aδ s, (2.60)

∇sJ = AT
∇xJ. (2.61)

Again, in the above equations it becomes clear, that the filter has to be applied
twice in an optimization step. Once to generate the geometry x or its variation δx
from the control field s or δ s, respectively and once to filter the nodal sensitivity
∇xJ back to the control field ∇sJ. In most of the cases A is symmetric thus the
backward filtering in equation (2.60) is equal to the forward filter operation.

(b)(a)

Sensitivity

0.000E+00
-2.913E-02
-5.827E-02
-8.740E-02
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-1.457E-01
-1.748E-01
-2.039E-01
-2.331E-01
-2.662E-01

Figure 2.23: Variation of the geometry δx for the model from figure 2.4 based
on a Gaussian filter with a filter radius of σ = 2 (a) and a filter
radius of σ = 4 (b)
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Figure 2.23 shows the design update of the geometry δx for the mechanical
model from figure 2.4 for two different filter radii computed with the Vertex
Morphing method. The filter function is based on the Gaussian kernel with a
filter radius of σ = 2 and σ = 4 applied on the gradients of the stress response
function of equation (2.30). Figure 2.24 compares these results with the one
where no filter is applied (figure 2.5(b)) in longitudinal direction of the beam. It
can be seen, that the local small scale oscillations at the corners and the maximum
in the middle are smoothed. Furthermore, the higher the filter radius, the lower
the curvature of the design update.
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Figure 2.24: Comparison of the variation of the geometry δx with different filter
radii for the model from figure 2.4

To study the effect of the formulation of the geometry in terms of s instead of
x on the solution of the optimization problem, the second order Taylor series
expansion of the objective function is considered,

J̃ = J +(∇sJ)T
δ s+

1
2

δ sT Hsδ s. (2.62)

Herein, Hs denotes the Hessian matrix with respect to the control parameters s.

49



2.6 Regularization of shape optimization problems

The derivative of J̃ with respect to δ s can be computed as

∇J̃ = (∇sJ)T +Hsδ s, (2.63)

and the stationary condition ∇J̃s = 0 of this equation can be solved for δ s,

δ s = −Hs
−1

∇sJ. (2.64)

Now, the problem is be reformulated in terms of x with the following two
relations:

∇sJ = AT
∇xJ, (2.65)

Hs = AT HxA. (2.66)

Substituting the equations (2.65) and (2.66) in (2.62) leads to the design update
δ s in terms of the control field,

δ s = −(AT HxA)−1AT
∇xJ. (2.67)

Finally the variation of the geometry δx is obtained by replacing δ s = A−1δx
in equation (2.68),

δx = A(−A−1Hx
−1A−T )AT

∇xJ = −Hx
−1

∇xJ. (2.68)

In the above equation the filter matrix A finally cancels out and independent of
the parametrization the optimization problem remains unchanged. This implies
that for convex problems the optimal design is not influenced by the choice of A
but only the geometry is The reparameterized by a variable transformation.

As a matter of fact in most of the engineering applications the optimization
problem is non-convex and the filter influences the optimal design. The goal
is to find an optimal solution which satisfies both the requirements defined in
the optimization problem and the manufacturing constraints with respect to the
smoothness. The design of the different local minimum is characterized by
specific curvature meaning that there is always an operator A defined through the
filter radius which corresponds to such a design. Consequently, the filter radius
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can be considered as an additional design handle to steer the optimal design and
to explore the whole design space.

2.6.4 Overview of mesh quality control methods

Generally, in node-based shape optimization problems the geometry is described
by the Finite Element mesh and no other link to any CAD description is preserved.
In this discretization the nodes located at the surface of the mesh are considered
as the design variables of the optimization problem since only these nodes are
responsible for a design change. A movement of the internal nodes does not
alter shape but only the discretization. More precisely, the design change of the
surface nodes can be decomposed in a normal and a tangential direction with
respect to the surface,

δxl = δxl,n ·n+ δxl,t · t = sl ·n+ rl · t, l = 1, ...,ns. (2.69)

Here, ns is the number of surface nodes, n and t are the unit update vectors
normal and tangential to the surface at node l. Due to the decomposition it
becomes clear, sl is the shape relevant component which is responsible for the
design change. Consequently this component is defined as design variable and
updated by the optimizer. The tangential component rl only changes the dis-
cretization and is called the mesh relevant component [Sta15]. The update of this
component together with the position of the internal nodes is addressed in the
volume mesh regularization methods. As demonstrated in the example in figure
2.20 the mesh can easily become distorted if the focus is only on the update of
the out-of-surface direction. In these cases the optimization often aborts before
the optimum is reached. Hence, a method for the mesh quality control is strongly
recommended.

Till today various methods have been developed for mesh quality control. Gener-
ally, they can be classified in three main groups: the grid generation methods,
the mesh smoothing methods and the mesh motion methods. The former group
concerns about the generation of a smooth mesh within a 2D or 3D boundary
[HDZ05, HX96, TSW99]. The second group of mesh smoothing methods im-
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proves the quality of an existing 2D or 3D mesh [OBB01, Knu00, HZGB04],
whereas the goal in the mesh motion methods is to find a valid 2D or 3D mesh
after the movement of a 1D or 2D boundary [BSB07, JT06, SMA09]. The differ-
ent approaches can be based on geometrical or mechanical considerations as in
all fields the ideas are similar. Geometrical methods solve the mesh optimization
problem locally since they are based on a local criterion, whereas mechanical
methods use an auxiliary mechanical model to improve the mesh globally. Fig-
ure 2.25 gives an overview of the described classification of the different mesh
quality control methods.

Geom.

approach

Mech.

approach

Geom.

approach

Mech.

approach

Geom.

approach

Mech.

approach

Grid generation

Mesh quality control methods

Mesh smoothing Mesh motion

Figure 2.25: Classification of mesh quality control methods

Grid generation

Numeric grid generation originally arose from the need to compute solutions
to the partial differential equations of fluid dynamics for complex geometries
[KS93]. The idea behind is to reduce the complexity of the meshing by separat-
ing the complicated shape of the physical region where the computation needs
to be performed from the problem. Instead, the grid is generated on a simpler
domain called the logical region and is transformed afterwards. This region can
often be reduced to an unit square in two dimensions or an unit cube in three
dimensions. Having generated a trivial grid in this area or volume, the goal is
to define a transformation from the logical to the physical region also called
map as shown in figure 2.26. In the two-dimensional case the variables x and
y are the coordinates of the physical region while ξ and η are the coordinates
of the logical one. A key element of a transformation is to avoid zero Jacobian
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η

ξ
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x

x(ξ,η)

ξ(x,y)

Figure 2.26: Transformation x(ξ ,η) from the logical (left) to the physical re-
gion (right) and the inverse transformation ξ (x,y)

since this generates folded elements. Thus the problem of grid generation can
be reduced to the problem of finding a valid transformation map for which the
spacing between elements varies smoothly and the angles between grid lines do
not become too small.

As described above, the methods for this type of problem can be geometrically
or mechanically motivated. The Delaunay triangulation [She02, LL86] and the
octree methods [Mar09] are two representatives of the geometrical methods. The
former one creates a mesh of triangles in 2D or tetrahedrals in 3D based on
points defining a surface or a volume, respectively. The octree methods create a
grid in a three-dimensional space by recursively subdividing it into eight octants
(or four quads in the 2D case).

On the other hand there are the mechanical methods which solve an auxiliary
mechanical model for the unknown transformation. According to [KS93] one can
distinguish between hyperbolic, parabolic and elliptic grid generators. Among
them, the elliptical ones are most commonly used since their interior grid is very
smooth and insensitive to the boundary parametrization even for non-smooth
boundary data. For the grid generation an additional partial differential equation
has to be solved. The simplest one is the Amsden-Hirt [AH73] grid generator
which is based on the Laplace equation

∇
2x = 0. (2.70)
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More precisely, the map between the square logical region and the physical one
is defined for the different variables in two dimensions as

∇2x = xξ ξ + xηη = 0
∇2y = yξ ξ + yηη = 0

(2.71)

The Amsden-Hirt elliptic equation results in a linear system of equations and
is solved in the logical domain. It has to be noted that for non-convex physical
regions the transformation may have zero Jacobian which leads to folded meshes.
For the same problem the Thompson-Thames-Mastin [TSW99] grid generator
produces unfolded grids based on the inverse of equation (2.71):

∇2ξ = ξxx + ξyy = 0
∇2η = ηxx +ηyy = 0

(2.72)

The solution of this system of equations is performed in the physical region and
in contrast to the Amsden-Hirt grid generator this leads to a nonlinear system of
equations.

In order to gain a refined control over the grid, Castillo et al. [CSR87] introduced
a third region, called the reference region, that already has some properties of the
the physical domain but is usually considerably simpler as shown in figure 2.27.

η

ξ

y

x

u(ξ,η)

ξ(u,v)

x(u,v)

u(x,y)

v

u

Figure 2.27: Transformation for logical (left) to reference (middle) and physical
region (right)

On the first sight grid generation seems not to be relevant in the context of node-
based shape optimization as the optimization typically starts from a sufficiently
smooth mesh which is preserved during the iterations. Nevertheless, the ideas
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behind these methods are also adopted in the fields of mesh smoothing and mesh
motion problems and therefore worth to mention in this work.

Mesh smoothing

Regarding the class of mesh quality improvement based on geometrical ap-
proaches, Laplacian smoother are widely-used, e.g. in the field of computer
graphics [OBB01] or for shape optimization of mechanical problems [LBT11].
The basic principle of the method is visualized in figure 2.28 where the mesh
is smoothed by the movement of the node P. In its simplest form, it repeatedly
moves each mesh node by a displacement u equal to a positive scale factor γ

times the difference between the average of the neighboring n nodes xi and the
node P:

u(P) =
1
n
·∑

n
xn−P (2.73)

P̃ = P+ γu(P) (2.74)

The nodal coordinates after the smoothing are denoted as P̃. As a matter of
fact, Laplacian smoothing is robust and requires only small numerical effort.
However, it develops unnatural deformations when applied to highly irregular
meshes thus several improvements have been sought. Taubin [Tau95] proposed
to alternate two scale factors of opposite sign with the negative factor for larger
magnitudes in the Laplacian smoothing algorithm. Such smoothing suppresses
high frequencies of equation (2.73) while preserving and enhancing the low ones.
Desbrun et al. introduced in [DMSB99] an accurate approximation of the mean
curvature at the mesh vertex P generating reliable and robust results even for
irregular meshes.
Based on the work of [CSR87], Hansen et al. [HZGB04] proposed a method for
the smoothing of unstructured grids. Herein, the quasi-linear elliptic Laplace
equation (2.70) is discretized with Finite Elements and smoothing is achieved
by computing a metric which incorporates the influence of neighboring elements.

A mechanical motivated mesh smoothing method is proposed by Stavropoulou
et al. [SHB14, Sta15]. This approach is inspired by form-finding which is a
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Figure 2.28: Mesh regularization by Laplacian smoother

method to determine the free-form equilibrium shape of a membrane subjected
to a certain stress field [BR99, LB10, WB05]. Since no additional external body
forces and surface tractions are acting, the weak form of equilibrium reduces to
the internal work done by the predefined stress field,

δw(s,r) = δwint = t
∫

a
σ0 : δ εda = 0. (2.75)

Herein, σ0 are the prescribed Cauchy stress tensor components acting on the
resulting geometry with area a, ε is the Euler-Almansi strain tensor [BW97]
and t is the thickness which is considered to be constant. As the stress field
is given no material definition is needed and the problem reduces to a purely
geometrical one. But solving equation (2.75) directly the system of equations
becomes singular with respect to the tangential movement r because of the
non-uniqueness of the discretization [BR99]. For the regularization Bletzinger
et al. suggested in [BR99] the Updated Reference Strategy where the problem is
solved in the reference configuration of the form-finding step i,

δw(s,r) = δwint = t
∫

Ai
Si : EdAi = 0. (2.76)

In this equation Si is the 2nd Piola-Kirchhoff stress tensor, E is the Green-
Lagrange strain tensor and Ai is the updated reference geometry of step i. But the
difference to the original problem is that now the 2nd Piola-Kirchhoff stresses
Si are assumed to be given instead of the Cauchy stresses σ0 [Ble98] with the
consequence that equation (2.76) is well defined and even linear with respect to
s and r. At the end of the form-finding the Cauchy stresses σ i

0 converge to the
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predefined stress field σ0 and the final free-form shape is obtained.
For the mesh regularization the point of departure is again equation (2.75) but the
idea is slightly modified: now the shape has to be retained and the discretization
has to be improved. By the definition of a set of Dirichlet boundary conditions
acting in normal to the surface direction the shape remains unchanged and only a
movement of the nodes in the mesh relevant direction r is possible. The desired
mesh quality is achieved by the definition of an "ideal" element as reference
configuration where the integration takes place and a prestress S controlling
the size or concentration of the elements. Figure 2.29 visualizes the described
procedure.

δwint = 0

x

y

x

y

Ai

Ai

Ai

Si

Figure 2.29: Mesh regularization by the Updated Reference Strategy with
"ideal" element Ai and prestress Si (middle) for element i

Generally, every element can have its individual "ideal" element, e.g. the initial
high quality mesh at the beginning of an optimization or simply a unit square.
The resulting system of equations is linear and can be solved in one step with
respect to the tangential displacements r for every node. In the special case of
square initial "ideal" elements as template for all elements and an isotropic stress
state, the method reduces to the aforementioned Amsden-Hirt method [Sta15].

Mesh motion

According to figure 2.30 the third group of methods introduced in this section are
the mesh motion methods. The goal herein is to find the surface or volume mesh
after a 1D or 2D boundary is displaced. There is a broad variety of methods and
the ideas are often similar to the ones for grid generation and mesh smoothing.
Wang et al. [WCL18] and de Boer et al. [BSB07] developed a geometrically
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Figure 2.30: Starting from an initial mesh (left) the goal is to find the resulting
mesh after the boundary is displaced (right)

motivated approach which interpolates the displacements of the boundary nodes
to the whole mesh with radial basis functions. In this method a small system
of equations only involving the boundary nodes has to be solved without any
additional information about the mesh connectivity. Apart from mesh motion
problems, radial basis functions are well-established tools to interpolate data for
example in the field of fluid-structure interaction where the discrete interfaces be-
tween the structural and the fluid mesh are often not matching [BW01, SCH00].

Farah et al. [DF02, FDKL98] proposed a mechanical approach based on a net
of linear and torsional springs to transfer the displacements from the boundary
to the whole domain. The method is successfully applied to update the mesh of
fluid dynamic problems with moving boundaries. Another mechanical approach
is presented by Jasak et al. in [JT06] where the diffusive properties of the elliptic
Laplacian equation are used to compute the velocity u of each mesh point,

∇(γ∇u) = 0, (2.77)

with a constant or variable diffusion field γ . Thus, the nodal coordinates xn of a
point are evaluated from the previous position xn−1 as

xn = xn−1 +u∆t, (2.78)

where ∆t is the time step. The boundary conditions for equation (2.77) are taken
from the known boundary motion and the whole problem is solved using an
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iterative linear equation solver [HS52]. Instead of using the diffusive properties
of the Laplacian equation, Shimoda et al. [SMA09] and Riehl et al. [RFS+14]
propagate the displacements of the boundary in the domain with the elastic
properties of the continuum. In this method, the velocity field u is obtained
as a solution of a pseudoelastic problem in the pseudolinear elastic continuum
defined on the actual design domain and loaded with a pseudodistributed external
force f̃, or traction, in proportion to the shape gradient function [AW96],

K̃ ·u = f̃ (2.79)

where K̃ denotes the pseudoelastic stiffness matrix. To account for invariable
areas, a Dirichlet boundary condition is defined at these positions. The solution
of the elliptic boundary value problem of equation (2.79) with respect to u is
called the Traction Method. The problem can be analyzed using any numerical
analysis technique applicable to linear elastic problems, such as the Finite Ele-
ment method. In order to further improve this method Azegami et al. [AT06]
replaced the Neumann boundary condition f̃ with the Robin boundary condition
which is a linear combination of the values of a function and the values of its
derivative on the boundary of the domain. This advanced Traction Method
provided smooth convergence to problems which could not be solved with the
previous version.

The regularization method used in the Vertex Morphing method is also based on
the elliptic Traction Method. To further improve the mesh quality conservation
properties a variable Young’s modulus being a function of the distance of an
element from the design variables is incorporated in the pseudoelastic stiffness
matrix K̃. Moreover, to increase the flexibility of the mesh invariable areas are
no longer completely fixed but can move freely in the tangential to the surface
direction. Thereby, the mesh gains a higher level of flexibility with respect to the
shape change. The details are presented in the next section.
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2.6.5 Mesh update method

The proposed mesh regularization method is based on the Traction Method which
is a method to smoothly update the Finite Element mesh of a domain due to
displacement of the domain boundary [AT06][SMA09]. To further improve the
method, the following extensions are implemented.

Definition of the boundary value problem

Beside the update of the Finite Element mesh in the whole domain, in node-
based shape optimization problems the classical Traction Method is also used to
smooth the raw sensitivity field ∇xJ obtained by any sensitivity analysis method,
e.g. adjoint method or Lagrange multiplier method. Thereby, the negative shape
gradient −∇xJ is applied in the normal direction to the design boundary as an
external traction force f̃, i.e. Neumann condition to vary the shape. Using this
method, the smoothed domain variation u as the solution of equation (2.79) that
minimizes the objective functional J can be obtained. The smoothness of the
design update is assured by the smoothing properties of the elastic tensor K̃.

According to section 2.6.3, in the Vertex Morphing method the regularization
of the sensitivity field is already consistently incorporated in the optimization
problem and consequently no additional smoothing is required anymore. Com-
paring both methods the smoothed velocity field u at the design variables in
the Traction method relates to the design update δx in the Vertex Morphing
method from equation (2.60). In order to simplify the control of the magnitude
of shape change in an optimization iteration, the design update δx is applied
as Dirichlet boundary condition in equation (2.79). More precisely, for every
design variable a local cylinder coordinate system is defined with the normal to
the surface direction being the cylinder axis and the displacement is prescribed
along this axis. Thus the change of the shape can be controlled by simply scaling
δx and the pseudoelastic problem reduces to

K̃ ·u = 0, (2.80)
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Generally, equation (2.80) is defined in the global Cartesian coordinate system
x, y, z. To restrict the prescribed displacement of the design variables to the
normal to the surface direction, every variable sl is transformed in its own
local cylindrical coordinate system where the normal direction is defined as
the cylindrical axis, cf. [Dho04]. This is the direction the design update δx is
applied. The remaining two directions, radial and tangential, are not constraint
being part of the solution.

1

2

3

4

n2

n1 n4

n3

1

2

3

4

n

Figure 2.31: Normal direction before (left) and after the averaging (right)

In the Finite Element method the shape is not explicitly given and only an
approximation of it can be estimated through the discretization. To avoid multiple
normal directions as a consequence of the discretization an averaging step has to
be introduced which is visualized in figure 2.31. The unit normal direction n for
every node can be computed as the average of the normals ni, i = 1, ...,nngh, of
the elements sharing the node as follows

n =

nngh

∑
i=1

ni∥∥∥∥∥nngh

∑
i=1

ni

∥∥∥∥∥
. (2.81)

In highly resolved meshes where the area Ai of the different elements has nearly
the same size this approximation shows good results. In case of irregular meshes
[Lin09] proposed a weighting with the inverse of the element area resulting in a
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more accurate normal direction compared to equally weighted normals,

n =

nngh

∑
i=1

ni

Ai∥∥∥∥∥nngh

∑
i=1

ni

Ai

∥∥∥∥∥
. (2.82)

However, even this expression is just an approximation as discretization errors
can not be avoided and in the course of the optimization an analytic description
is not available anyway. But these inaccuracies are acceptable as they are
automatically corrected during the optimization by the update of the design
variables in normal direction.

Treatment of invariable areas

In the classical Traction Method [SMA09, AW96] invariable areas which are
completely fixed in the so-called velocity analysis have to be defined manually
in advance. Kernel of the extended Traction Method is the automated generation
of proper boundary conditions for the surfaces of the mesh which are not part of
the design space such that they do not undergo any design change but retain the
highest possible flexibility with respect to the design update. The goal is to sup-
press all displacements which can alter the design (neglecting the discretization
error) thus only a movement in tangential direction is possible. For the definition
of these boundary conditions multiple point constraints were used. This is a very
powerful concept to establish a relationship between different degrees of freedom
[Dho18, Dho04] by eliminating a certain degree of freedom during the construc-
tion of the global stiffness matrix K̃. As prerequisite the normal direction of the
surface nodes of the invariable areas have to be assessed based on equation (2.81).

More precisely, according to figure 2.31 for every surface node the surface
normal nk for each neighboring face k has to be calculated. For all possible
combinations of faces, the scalar product

αi j =
ni

‖ni‖
·

n j∥∥n j
∥∥ , i 6= j, i, j = 1, ...k, (2.83)
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has to be evaluated. Based on this and a predefined threshold for the scalar
product, e.g. αthresh = 0.5, every surface node can be classified. Therefore,
consider a discretized solid body as shown in figure 2.32. It is obvious that only
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Figure 2.32: Surface characteristics of a solid body

a movement in normal direction n1, n2 and n3 of a surface node will change the
shape of the body. Movements along the surface tangent t1 and t2 will affect the
mesh and not the shape. Thus, the displacements of surface nodes can either
be "shape relevant" or "shape irrelevant" [BFF10] and three different types of
nodes can be distinguished: surface nodes S, edge nodes E and corner nodes C.
The latter ones are identified if the scalar product αi j for at least two pairs of
normal directions ni and n j exceeds αthresh. These nodes are completely fixed in
the mesh update step as every movement is shape relevant. All surface nodes S
fulfill the requirement αi j < αthresh. This node type has only one shape relevant
direction which has to be constrained in the construction of the global stiffness
matrix K̃ by multiple point constraints. Therefore, let us assume that the global
system of equations consist of N degrees of freedom

N

∑
j=1

al ju j = bl, l = 1, ...,N. (2.84)

Additionally, M multiple point constraints are defined

N

∑
k=1

nikuk = 0, i = 1, ...,M. (2.85)
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In our application the coefficients nik represent the corresponding spatial direction
of the normal vector n. For each multiple point constraint i, one degree of
freedom ki, called dependent degree of freedom, is eliminated from the global
system of equation (2.84). All dependent degrees of freedom ki, i = 1, ...,M must
be distinct. Based on Eq. (2.85) all the dependent degrees of freedom can now
be collected at the left hand side:

M

∑
j=1

nik juk j = −
N

∑
k=1,k/∈{k1,...,kM}

nikuk, i = 1, ...,M. (2.86)

This system of M equations and M unknowns can be solved for the dependent
degrees of freedom resulting in the form

uk j =
N

∑
k=1,k/∈{k1,...,kM}

ck jkuk + dk j . (2.87)

As we are concentrating on the surface nodes S, which have only one normal
direction, only one multiple point constraint has to be considered, Thus, Eq.
(2.87) reduces to

ui =
N

∑
k=1,k/∈i

cikuk + di. (2.88)

The displacement ui can now be eliminated by substituting Eq. (2.88) into Eq.
(2.84)

N

∑
j=1, j 6=i

(
al j + alici j

)
u j = bl−alidi, l = 1, ...,N. (2.89)

The new coefficient âl j in the global stiffness matrix K̃ at position (l, j) now
reads

âl j = al j + alici j, j, l = 1, ...,N; j 6= i. (2.90)

An important property of the global stiffness matrix is its symmetry, which has
a major advantage in the solution of the system of equations [Dho04]. Due
to the operations above the symmetric structure is lost and has to be restored.
Therefore, row i

N

∑
j=1, j 6=i

(ai j + aiici j)u j = bi−aiidi (2.91)
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has to be multiplied by cim and added to row m, m = 1, ...,N,m 6= i. The coeffi-
cient âl j at position (l, j) can now be expressed in the form

âl j = al j + alici jai jcil + aiici jcil, j, l = 1, ...,N; j, l 6= i. (2.92)

The coefficient at the right hand-side also has to be modified:

b̂l = bl−alidibicil−aiidicil, l = 1, ...,N; l 6= i. (2.93)

Finally, row i and column i can be dropped from the global stiffness matrix,
with the consequence, that for node S only degrees of freedom remain which
allow a movement in direction of t1 and t2. Edge nodes (see node E in figure
2.32) are characterized by exactly one pair of normal vectors ni and n j for which
αi j > αthresh. This means that two shape relevant directions have to be constraint
by multiple point constraints. In this way every shape relevant movement of
every surface node which is not part of the design space is suppressed. For the
sake of completeness, movements of nodes inside the body are always shape
irrelevant in all three directions.

With these modifications of K̃ and the aforementioned displacements of the
design variables, equation (2.80) can be solved for the vector u which contains
the smooth design update of the whole mesh. For the next iteration (i+ 1) the
nodal coordinates of the Finite Element mesh are updated as follows

xi+1 = xi +u. (2.94)

2.6.6 Mesh quality preservation

Apart from the mesh update, the preservation of a sufficient mesh quality during
the optimization is of major interests. As aforementioned the smoothing prop-
erties of the linear elastic continuum globally retains a good mesh quality. But
particular attention has to be payed to the elements in the vicinity of the design
variables as the evolution of the shape mainly takes place there causing local
mesh distortion and mesh dependencies in the gradient computation. The exam-
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ple in section 2.6.1 revealed this fact clearly. To reduce this local deterioration an
element dependent Young’s modulus has been defined. Generally, the Young’s
modulus enters the global stiffness matrix

K̃ =
nel

∑
e=1

K̃e (2.95)

with K̃e being the element stiffness matrix defined as

K̃e =
∫

V
(DN)T EDNdV . (2.96)

Herein, N is the matrix of shape functions, D is the matrix differentiation operator
and E is the elasticity matrix [Wri01]. In linear elastic problems E has the
following appearance:

E =



λ + 2µ λ λ 0 0 0
λ λ + 2µ λ 0 0 0
λ λ λ + 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ


, (2.97)

where λ and µ are the elastic Lamé constants which can be expressed in terms
of the Young’s modulus E and the Poisson’s coefficient ν

λ =
νE

(1+ν)(1−2ν)
µ =

E
2(1+ν)

(2.98)

In order to prevent this deterioration a high value for E is assigned to elements
in the vicinity of the design variables whereas distant elements receive a low one.
The distribution of this fictitious Young’s modulus is defined by an exponential
decay function

E f ict(r) = E f ict,max · e−∆E·r, (2.99)
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with the decay constant

∆E =
ln
(

E f ict,max
E f ict,min

)
nrow

. (2.100)

The fictitious Young’s modulus is a function of the element row r which is a
measure for the distance of a specific element from the design variables s, see
figure 2.33. The values of the Young’s modulus vary between the maximum
E f ict,max and the minimum E f ict,min. The definition of the decay constant ∆E
ensures that after a predefined number of rows nrow the minimum Young’s
modulus is reached.
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Figure 2.33: Variation of Young’s modulus E assigned to different element rows

For the definition of the element sets ei of the different rows r, the topology
of the mesh has to be taken into account according to algorithm 1. At first the
expression ∆E has to be calculated as an input for the function E f ict(r). Based
on the available information about the mesh topology all elements which at
least contain one design variable are put in the set e1 and receive the highest
fictitious Young’s modulus E f ict(r = 1). For the subsequent element rows r > 1
the steps (4) to (10) have to be carried out (nrow−1) times. In step (6), all nodes
of the elements from the previous row have to be collected. For these nodes all
elements which contain at least one of them are put in the next set. According
to step (8) the elements which already received a Young’s modulus have to be
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2.6 Regularization of shape optimization problems

Algorithm 1 Assessment of the fictitious Young’s modulus for the different
element rows
Input: Number of rows for scaling: nrow
Input: Young‘s modulus: E f ict,max,E f ict,min
Output: Young‘s modulus distribution: E f ict(r)

1: Calculate ∆E from equation (2.100)
2: Find all elements e1 containing at least one design variable s
3: Assign Young’s modulus E f ict(r = 1) to the set e1
4: if nrow > 1 then
5: for r = 1 to (nrow−1) do
6: Determine all nodes sr of the elements in er
7: Determine all elements er+1 containing at least one node from set sr

8: Subtract elements from sets already treated er+1 = er+1−
r

∑
i=1

ei

9: Assign Young’s modulus E f ict(r+ 1) to set er+1
10: end for
11: end if
12: Assign Young’s modulus E f ict,min to all other elements (erest)

deleted from this set and the Young’s modulus can be calculated. In the last step
the Young’s modulus E f ict,min is assigned to the remaining elements.

Due to the scaling two positive effects can be observed: Elements in the vicinity
nearly behave like rigid bodies, which reduces the local mesh deformation and
mesh dependencies during the optimization. Especially in case the stresses are
optimized, a sufficient mesh quality near the design variables is essential for
the computation of reliable local stresses and gradient information. The second
positive effect is that the design update is distributed more even in the whole
mesh. Consequently more elements are involved in the shape update process
reducing the risk of a fast deterioration of single elements within a few design
iterations.
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Chapter 3

Optimization workflow

In chapter 2 the theoretical background and the different elements necessary for
a parameter-free, gradient-based shape optimization process were discussed. As
a key element the adjoint semi-analytical sensitivity analysis is introduced in
section 2.2. Important response functions and geometric constraints for structural
optimization problems are discussed in section 2.3 and 2.4. Section 2.5 concen-
trates on the improvement of the gradient field with respect to the dependency of
the mesh topology and the element formulation. The update of the discretized
design and the conservation of the mesh quality are presented in section 2.6.
These are the basic elements for the proposed optimization process. In this
chapter the focus is on the combination of these single modules to a complete
workflow, the organization of the data structure between the different elements
and some implementation issues. Furthermore, the aggregation of constraints
is discussed for the development of feasible designs for constraint optimization
problems.

Thus, this chapter is organized as follows: Section 3.1 introduces the overall
formulation for structural optimization problems and introduces the general
optimization workflow. The different elements of this workflow are presented in
detail in the next sections. More precisely, in section 3.2 the optimization algo-
rithms for constrained and unconstrained optimization problems are described.
In section 3.3 the update of the design in every iteration is discussed and in 3.4
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3.1 Computational framework

the structural assessment and the corresponding sensitivity analysis is addressed.
Finally, implementation related topics are discussed in the last section 3.5.

3.1 Computational framework

In the literature, basically two main approaches for the formulation of structural
optimization problems are commonly used. The first one is called "nested analy-
sis and design" (NAND) and the second one is the "simultaneous analysis and
design" (SAND) approach. In the SAND formulation which is discussed since
the 1960s the state variables which are typically the displacements in structure
mechanical problems are also treated as design variables and the partial differ-
ential equations describing the physical system are considered as an additional
equality constraint in the optimization problem. The basic idea behind is to
transform an constrained optimization problem in the design variable space into
an unconstrained problem in the mixed space of design and state variables. In
addition, since the physical system is embedded in the optimization problem no
explicit structural or sensitivity analysis is needed. It is also important to note
that in the SAND approach the equilibrium equation does not necessarily has to
be fulfilled in every optimization iteration. In contrast, in the NAND approach
the design variables are treated as independent optimization variables. The result
of the physical problem, such as stresses and strains, depends implicitly on the
design variables. Therefore, the equilibrium equations have to be satisfied in
every iteration. For a deeper understanding about the details of both formulations
the reader is refereed to [AW05].

In this work, the NAND approach is applied and the corresponding parameter-
free, gradient-based shape optimization workflow is presented in figure 3.1. The
optimization problem is solved in an iterative manner meaning the elements of
the workflow are repeatedly executed until convergence. Initially, in the structural
assessment the solution of the underlying physical problem is provided which is
the basis for the corresponding sensitivity computation. Then, according to figure
3.1, the optimizer suggests the update of the design variables. Subsequently the
whole mesh is updated according to the prescribed displacements of the design

70



3 Optimization workflow

variables. On the basis of this new geometry, the physical equations are not in
equilibrium anymore thus the state variables have to be solved again and the next
iterations starts. This workflow is repeated until a certain convergence criterion
is met, e.g. change of the response function. In the next sections each of these
elements is described in detail.

Design update

Sensitivity analysis Structural assessment

Optimization

𝐽(𝒔, 𝒖)

𝒔

𝒙𝛻𝑠 𝐽

Figure 3.1: Main elements of the optimization workflow

3.2 Optimization algorithm

In the computational framework the optimizer is responsible for the update of the
design variables based on the gradient information computed in the sensitivity
analysis step. In practice, one can distinguish between zero-order, first-order
and second-order gradient information methods. A broad and detailed overview
of the different optimization algorithms is given in [Kir92, Rao09]. In this
work first-order methods are applied namely the steepest descent method for
unconstrained optimization problems and Rosen’s gradient projection method
[Ros60, Ros61] for constrained optimization problems.
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3.2 Optimization algorithm

3.2.1 Unconstrained optimization

The shape optimization process can be considered as the evolution of the design
s in several small increments n as follows:

sn+1 = sn +αndn. (3.1)

According to this equation and figure 3.2, the update of the design variables sn+1

in every iteration is based on the previous design sn consequently requiring an
initial guess s0 in the first iteration. The design change itself is achieved by the
modification of sn with the product of the search direction dn ∈Rn and a positive
step size αn.

Feasible 

domain

sn+1

sn

s0

Figure 3.2: Design update with Steepest Descent algorithm for an unconstrained
optimization problem

Generally, a gradient vector dn can be considered as suitable descent direction if
the condition

(∇sJ(sn))
T dn < 0 (3.2)

is fulfilled guaranteeing an angle greater than 90◦ between the gradient of the
response function ∇sJ(sn) and dn. As ∇sJ(sn) points in the direction of the
steepest ascent dn has to be a direction in which the function value decreases.
The computation of the descent direction can be generalized as

dn = −Dn∇sJ(sn), (3.3)
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3 Optimization workflow

where Dn is a positive definite matrix. Replacing Dn by the inverse of the Hessian(
∇2

s J(sn)
)−1 results in the well-known Newton’s method commonly applied for

the solution of nonlinear optimization problems. However, the large number of
design variables makes the approximation or even evaluation of the Hessian very
expensive [Hoj14] being the reason why this approach is not very common in
practice. If Dn is defined as the identity matrix I, the expression reduces to the
Steepest Descent method where

dn = −∇sJ(sn). (3.4)

In 1847 Cauchy was the first who observed the properties of the negative gra-
dient of the response function being exactly the direction where the value of
the response function decreases the fastest. Thus, this method may seem to be
the best algorithm since every one-dimensional search starts in the direction of
the steepest descent [Rao09]. This statement holds for points far away from
the minimum but in the vicinity of the minimum it converges rather slowly.
Nevertheless, this algorithm has been chosen for several reasons.

First, the Vertex Morphing method introduces an additional design space where
the optimization problems is solved and linked to the geometry by a kernel filter.
As derived in section 2.6 this approach is equivalent to the implicit Sobolev-
gradient smoothing which is already enhanced by some approximation of the
Hessian matrix.

Furthermore, from a geometrical point of view, the design variables are defined
on a local surface coordinate system approximated by the normal in every node.
Due to this reason the coordinate system varies in every optimization iteration
which would require the storage of the deformation gradient for every surface
node in every step if higher-order algorithms are used. The steepest descent
algorithm makes the whole optimization history independent and simple.

Beside the descent direction, the step size αn is the second variable driving
the design update and having a major influence on the convergence of the
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3.2 Optimization algorithm

optimization problem. Ideally αn is determined by minimizing the function
J(α) = J(sn +αndn) with respect to αn which is called exact line search. Due
to the fact that this approach becomes very costly even for simple optimization
problems, it has only minor practical relevance. Here, the initial step length α0

is predefined based on the geometric dimensions of the initial design and auto-
matically bisected towards the minimum according to the Armijo test algorithm
in combination with a backtracking line search [LY08]. The procedure is shown
in detail in algorithm 2.

Algorithm 2 Line search algorithm
Input: coefficients: τ ∈ (0,1),ρ ∈ (0,1)
Output: actual step length: αn

1: while J(sn +αdn) > J(sn)+ τα (∇sJ(sn))
T dn do

2: α = ρα

3: end while
4: set αn = α

As described in the above algorithm two coefficients have to be defined as input
parameters, namely τ which defines the amount of reduction proportional to
the step length and the search direction and ρ which reduces the step length.
Typically, τ is chosen rather small, e.g. 1.0×10−5 , and ρ is set to 0.5 . In the
"while loop" α is bisected until the inequality is fulfilled which states that the
response function of the new design has to be lower than the old design plus a
portion of the gradient vector.

This approach belongs to the group of "inaccurate" line search algorithms as
inaccuracy is introduced by simply terminating the search procedure before it
has converged. However, in practice this is often acceptable in order to conserve
overall computation time [LY08].

3.2.2 Aggregation of constraints

Typically in real industrial applications constraints are immanent, e.g. the maxi-
mum admissible mass of a component or the limitation of the available space.
These constraints divide the design space into two domains, the feasible one
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3 Optimization workflow

where the constraints are satisfied and the infeasible one where at least one
constraint is violated. For the various algorithms to solve such constrained
optimization problems one can refer to Bertsekas [Ber99] and Luenberger et
al. [LY08]. In this work Rosen’s Gradient Projection method [Ros60, Ros61]
is used due to the advantageous computational efficiency of CalculiX and the
straightforward integration in the optimization strategy as explained later in the
section.

The method is motivated by the ordinary Steepest Descent algorithm described
above. The main idea is to project the function gradient on the subspace tangent
of all active constraints in order to find the direction of movement. The process
is always initiated at a feasible design sn where a certain number of active
constraints Gi, i = 1, ...,nact , exist. At this point of time a feasible direction dn

is sought fulfilling equation (3.2) so that the response function J is reduced as
follows:

dn = −∇sJ(sn)P = P(−∇sJ(sn)) (3.5)

The projection matrix P ∈Rn×n is computed based on the following matrix
operation

P = I−N(NT N)−1NT (3.6)

with I being the identity matrix and N being a matrix of rank n× nact which
contains the gradient information of all active constraints.

N = [∇sG1(sn),∇sG2(sn), ...,∇sGnact(sn)] (3.7)

The projection matrix has to be computed if at least one constraint is active based
on the algorithm shown in figure 3.3. As initial information the function values
G j and the gradient vectors ∇sG j(sn) have to be computed for all inequality
constraints j = 1, ...,nG and the lower and upper bounds (the corresponding
function value is one and the gradient vector is introduced in section 2.4). In the
first step the validity of equation (2.1) is checked and the constraints violating it
are added to the set of active constraints nact .
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From structural assessment:

𝐺𝑖

From sensitivity analysis:

𝛻𝑠𝐺𝑖

𝐺𝑖 < 0 ∀ 𝑖
Case 1:

𝑑 = −𝛻𝑠𝐽

Calculation of

λ𝑖

yes

no

∃λ𝑖< 0
no

yes

Case 3:

𝑑 = −𝛻𝑠𝐽𝑃

Set constraint

𝐺𝑖 inactive

𝑛𝑎𝑐𝑡 > 0
noyes Case 2:

𝑑 = −𝛻𝑠𝐽

Figure 3.3: Algorithm for the assessment of a feasible descent direction in
consideration of constraints

In case the number of active constraints nact equals zero, the algorithm is termi-
nated indicating that an unconstrained optimization problem is present. Figure
3.2 visualizes this situation where the actual design point lies inside the feasible
domain and the descent direction is simply the negative gradient from equation
(3.4).

If the number of active constraints nact > 0, the corresponding Lagrange multi-
pliers have to be computed,

λ = −(NT N)−1NT
∇sJ(sn). (3.8)
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The case all the components of λ are non-negative implies that the Karush-Kuhn-
Tucker conditions for the original problem are satisfied at sn and the projection
matrix can be computed. As shown in the corresponding figure 3.4, the steepest
descent direction to the minimum is restricted by the active constraints and the
descent direction d has to follow the constraint boundary until no further im-
provement of the objective function is possible or a constraint becomes inactive.

If, however, at least one component of λ is negative, it is possible, by relaxing
the corresponding inequality, to move in a new direction. A negative value
λi implies that the current design indeed lies on the boundary of Gi but this
constraint is not active as the gradient vector d points in direction of the feasible
domain. This case is described in figure 3.5 where the initial design s0 lies on
the boundary of a constraint but the shape update happens inside the feasible
domain and does not violate the constraint. Consequently Gi can be eliminated
from the set of active constraints nact . Following the proposed algorithm, the
Lagrange multipliers have to be re-calculated for the reduced set and checked
again for negative elements.

Feasible 

domain

s0

sn+1

sn

Infeasible 

domain

Figure 3.4: Design update where the initial design lies on the boundary of a
active constraint

77



3.2 Optimization algorithm

Feasible 

domain

s0

sn+1

sn
Infeasible 

domain

Figure 3.5: Design update where the initial design lies on the boundary of a
non-active constraint

Generally, the techniques of linear and nonlinear programming are of greatest
use in connection with a large system involving many design variables and being
subjected to constraint equations [Ros60]. Rosen’s gradient projection method
belongs to this group of methods. The original constrained optimization problem
is transformed into a sequence of matrix and vector multiplications and the
computation of the inverse of (NT N)−1 needed in equation (3.6) and (3.8). But
instead of computing this inverse directly, it is obtained by solving nact system
of equations which is from a numeric view point more stable. Furthermore, the
sequence of the mathematical operations is arranged such that the storage of the
projection matrix can completely be avoided. All these operations can efficiently
be implemented in CalculiX on the basis of the existing routines and are shown
in detail in Appendix B.

Furthermore, the gradient projection fits very well in the concept of updating
the design by the product αndn due to the fact that on the subspace tangent
the method reduces to the simple Steepest Descent method for unconstrained
optimization problems.
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3 Optimization workflow

3.3 Design update

The next step after the determination of the improved set of design variables sn+1

by the optimizer is the update of the shape. This step has to fulfill several tasks,
namely the update of the mesh according to the value of the design variables
while keeping all other surfaces unaltered, update the whole volume mesh and
retain the quality of the finite elements. As described in section 2.6.3, in the
Vertex Morphing method the update of the surface geometry is linked with the
update of the design variables through the following expression:

δx = Aδ s (3.9)

The geometry update is the main input for the proposed Traction method (section
2.6.5) used for updating the whole volume mesh in order to conform to the new
boundary geometry. Therefore, the smoothing properties of the global stiffness
matrix in the linear elastic problem

K̃ ·u = 0 (3.10)

are used to distribute the surface displacements homogeneous in the volume
mesh. Further improvements of the method are automatically provided by Cal-
culiX according to the proposed method in the sections 2.6.5 and 2.6.6: first, the
multiple point constraints which improve the flexibility of the invariable surface
mesh by allowing a movement tangential to the surface. Second, The variable
Young’s modulus distribution further reducing mesh dependencies and mesh
degeneration.

Having all the input, the optimization algorithm automatically creates a new
Finite Element model which is solved in a linear elastic analysis for the unknown
nodal displacements u. The update of the whole volume mesh - derived from the
update of design variables - is finally transferred to the structural assessment.
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3.4 Structural assessment and sensitivity analysis

3.4 Structural assessment and sensitivity analysis

The free Finite Element program CalculiX (the GNU General Public License
applies) offers many different methods for diverse physical areas of applications,
e.g. static and dynamic analysis, CFD problems, or eigenvalue problems. The
whole spectrum of available methods is shown in figure 3.6. The parameter-free
shape optimization process presented in this work is destined to optimize linear
and nonlinear (considering geometric and material nonlinearity) static problems.

In the course of this research project a semi-analytical adjoint sensitivity analysis
module has been implemented in CalculiX, see method twelve in figure 3.6. This
step always starts directly after a static assessment in the same CalculiX run
since it needs the information from the previous step for the computations of
the gradients like the global stiffness matrix, the stress state or the displacement
field. Both the structural assessment and the sensitivity analysis have to be
reevaluated in every optimization iteration after the change of the geometry since
these results are required by the Steepest Descent algorithm.

1. Static analysis 2. Frequency analysis 3. Buckling analysis

4. Dynamic analysis 5. Steady state

dynamic analysis

6. Coriolis frequency

calculation

7. Flutter frequency

calculation

8. Magnetostatics 9. Magnetodynamics

CalculiX

10. Electromagnetic

eigenvalue problem

11. Superelement

creation

12. Sensitivity

analysis

Figure 3.6: Available methods in the free Finite Element code CalculiX

Regarding the time consumption, for the applications presented in the next chap-
ter the sensitivity analysis consumes most of the computational time. Depending
on the number of CPU’s the solution of the static problem is by a factor two up
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to six faster than the computation of the gradients. However, this experience
can not be applied to arbitrary models since the ratio between the structural
assessment and the sensitivity analysis depends on various parameters, e.g. the
overall number of degrees of freedom of the Finite Element model, the number
of design variables, the size of the sets for the response functions and the degree
of parallelization. Therefore, a detailed time consumption study is presented in
section 4.3.2.

3.5 Implementation aspects

The presented design process provides the software platform for the structural
shape optimization of large problems. A discretized structural case and an
additional optimization inputdeck specifying the optimization task is given to
the workflow. In the course of the optimization a part of the domain surface
defined by the design variables is altered to improve the objective function. As
final result an updated discretization of the underlying Finite Element model is
submitted by the workflow.

This whole optimization workflow is defined in a modular way which eases
the exchange of specific modules or their adaption for other applications. The
workflow as well as the interaction of the different modules is presented in figure
3.7. Herein, the following two software packages are used: The open source
Finite Element program CalculiX [Dho18] applied for the solution of various
physical problems and the programming language Python [Van17].

The latter one is used for two different tasks. First, the whole optimization
workflow is embedded in the Python environment which is responsible for the
data exchange between the different modules and for the driving the optimization.
As a second application, the step length control module is also realized in Python
containing the Armijo test algorithm and the Backtracking line search. Herein,
the step length parameter α is determined on basis of the descent direction and
the response function values.
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The Finite Element program CalculiX is the kernel of the whole optimization
workflow. The program is written in C and Fortran using the advantages of both
languages. The C routines build the framework of the program being responsible
for the memory allocation, the variable definition and the solution of the systems
of equation. The computational tasks are mainly done in the Fortran routines
due to its intuitive programming language. Generally, CalculiX is capable to
solve various physical problems as figure 3.6 demonstrates. But here only the
linear and nonlinear structural problems are of interest. As aforementioned, the
semi-analytic adjoint sensitivity analysis method has been implemented in Cal-
culiX in the course of this research project. Beside the gradient computation it
also contains the out-of-surface regularization, the sensitivity weighting and the
Gradient Projection computation for constrained problems. Both the structural
assessment and the sensitivity analysis form another module in the workflow.
The advantage of combining both steps in one tool is that the information gen-
erated in the static step and needed in the sensitivity step can easily be passed.
Notice that this module is freely available in CalculiX (www.dhondt.de).

Having computed the update of the design variables, the volume mesh is adapted
by the solution of a linear elasticity problem with a non-uniform Young’s modu-
lus distribution and multiple point constraints on all boundaries of the domain.
In this mesh motion module again CalculiX is used. The displacements of the
design variables are distributed through the elastic properties of the global stiff-
ness matrix assembled with a Young’s modulus proportional to the inverse of the
distance to the design variables. This results in an more evenly deformed mesh
which is the basis for the next optimization iteration. The automated generation
of the multiple point constraints is also freely available in CalculiX.

Regarding some further implementation aspects, the structural assessment as
well as the sensitivity analysis enable a parallel computation on several CPU’s as
these are the most time-consuming parts of the workflow. Thus, the sequential
parts of the codes are clearly reduced. This means that the contribution to matri-
ces and vectors of system size are assembled element-wise on the sub-domain of
the single processor whenever advantageous. The efficiency of the parallelization
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CalculiX

Mesh smoothing

Design update

CalculiX

Sensitivity analysis

Python

Structural assessment

Step length control

Out-of-plane regular.

Python

Projection of gradient

Figure 3.7: Optimization workflow with respect to the different modules and
tools
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will be demonstrated with the example in section 4.3.

Furthermore, much effort has been spent to consider the sparsity of the matrices
and vectors. For example, in the computation of the gradients a reduced effort
is achieved by screening the partial derivatives ∂J/∂ s and ∂J/∂u of equation
(2.5) for zero entries. Indeed for the stress objective function a perturbation ∆s
or ∆u at a certain node only changes the stresses at the node itself and at the
nodes on the neighboring elements, see figure 3.8(a). According to figure 3.8(b)
in case none of the nodes is in the set of the objective function, the function
value in fact does not change and consequently the entry in the gradient vector
for the perturbed node is zero. Whether a vector entry is zero depends on the
mesh topology and on the set of the objective function. Thus, this information is
valid in every optimization iteration.

objective 

function

Nodes influenced by perturbation

(a) (b)

Perturbed node

Figure 3.8: Impact of perturbation of a node on the objective function; (a)
perturbed and neighboring nodes are in the set of the objective
function (grey area) and (b) perturbed and neighboring nodes are
not included in the set

84



Chapter 4

Application of Vertex Morphing

In the previous chapters the theory for node-based shape optimization was de-
rived. In detail, chapter 2 provides the theoretical background for the adjoint
sensitivity analysis, its transfer to specific response functions, the consistent
out-of-surface regularization of the gradient field and the regularization of the
volume mesh as well as the mesh update. Chapter 3 concentrates on the complete
parameter free shape optimization workflow and the aggregation of constraints.
The whole process is designed to optimize complex three-dimensional industrial
applications robustly and efficiently.

At first, the success of this project is studied on three academic examples in 2D
and 3D where the results can easily be compared with the analytic solution or the
work of others. After that two large geometrically complex parts from aerospace
industry are investigated.

In order to avoid repeating explanations about the filter, in all the applications
the Gaussian filter from equation (2.47) is used. The filter radius is defined in
terms of the standard deviation σ and the Gaussian function is set to zero in a
distance of 3σ from the center. To guarantee the unit-integration-condition of
the filter, the post-scaling approach [Ble13] is proposed. Moreover, an additional
weighting with respect to the direction of the design variables is implemented by
decreasing the influence of a design variable onto the filter if the angle between
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4.1 Holes in a plate

the considered design variable and the neighboring design variable increases.
This is achieved by adding the scalar product of the considered design variable
direction and the direction of the neighboring design variable as additional factor
in the computation of the filter matrix A. Per definition, up to 90◦ an interaction
is supposed. If the angle exceeds this value they do not influence each other and
the scalar product is set to zero.

4.1 Holes in a plate

Reduction of notch stresses in aircraft structures is a common task since these
are often fatigue-prone locations. As an example cutouts in sheet metals for air
ducts or bolt holes can be mentioned. For manufacturing reasons they are in
many cases circular in shape but ideally the optimal hole geometry has to be
determined to minimize the stress concentration. As this shape optimization
problem has a major benefit on the fatigue life of the part it has been subject of
many studies.

The presented two-dimensional problems are modeled with one row of linear
elements and the thickness in the third dimension is chosen to be larger than
the span of the filter function to avoid any interaction between the nodes on
both layers. Consequently, the setup is perfectly equivalent to a 2D simulation
as the model remains unchanged in the third dimension until the end of the
optimization. Moreover, in both models the distance between the holes and the
borders is defined large enough that no remarkable interaction takes place.

4.1.1 Single hole in a plate

The first example considered here is a quadratic plate with a single circular
hole subjected to biaxial in-plane stresses σ1 and σ2 according to figure 2.16.
This problem has already been introduced in the context of regularization of the
raw sensitivities in section 2.6 and is now evaluated with respect to the optimal
design. As an additional information the filter radius has been defined as 15 % of
the hole diameter and the aggregation parameters of the KS-function are defined
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4 Application of Vertex Morphing

as ρ =15 and σ̄ = 1.5σ1, respectively. For the sake of comparison with the
analytical solution, the resulting stresses have been normalized with σ1 which
yields the Kt-factor.

Kt-factor

2.56E+00
2.46E+00
2.36E+00
2.26E+00
2.16E+00
2.06E+00
1.96E+00
1.86E+00
1.76E+00
1.66E+00
1.56E+00
1.46E+00
1.36E+00
1.26E+00
1.17E+00
1.07E+00
9.67E-01
8.68E-01
7.68E-01
6.69E-01
5.70E-01
4.70E-01

A

B
a

b

Figure 4.1: Evolution of the design and the Kt-factor from the initial design, at
top-left, to top-right, bottom-left and bottom-right

According to Peterson [Pet74] the worst stress concentration factor for the
circular hole is analytically derived as

Kt =
σmax

σ1
= 3−α , (4.1)

where α is the ratio between σ2 and σ1 being 0.5 in this example. Thus, the
corresponding Kt-factor for the initial design is computed to 2.50 which fits very
well with the result of the Finite Element analysis where the Kt-factor is 2.56, cf.
figure 4.1 at top-left. Since only the mass constraint is applied which is identical
to a constraint that the area of the hole must not decrease, the optimal solution
is well known. The circular hole transforms to an elliptical one with the ration
of its axis of 2/1 which exactly reflects the ratio of the applied stresses σ1 and
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σ2. The analytically derived Kt-factor in [Pet74] for the elliptical hole can be
computed for the positions A and B in figure 4.1 at bottom-right as follows,

Kt,A =
(
1+ 2a

b

)
σ2
σ1
−1,

Kt,B =
(

1+ 2b
a

)
− σ2

σ1
.

(4.2)

Taking the optimal geometry where a = 2b, a and b are the major and minor
axis of the ellipse, the boundary condition σ1 = 2σ2 and inserting it in equation
(4.2) yields

Kt,A =
(
1+ 2a

b

)
σ2
σ1
−1 =

(
1+ 2·2b

b

)
σ2
2σ2
−1 = 1.50,

Kt,B =
(

1+ 2b
a

)
− σ2

σ1
=
(

1+ 2b
2b

)
− σ2

2σ2
= 1.50.

(4.3)

It is interesting to notice that for the optimal geometry Kt,A = Kt,B = 1.50 which
indicates that the stress concentration is completely homogeneous around the
elliptical hole. This optimal solution can also be seen in figure 4.1 at bottom-right
where the final design of the shape optimization is illustrated. With a constant
Kt-factor of 1.53 around the hole, the value approaches almost the analytical
solution after 43 iterations, cf. figure 4.2.
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Figure 4.2: History for the normalized stress and mass response function
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(a) (b) (c)

Figure 4.3: Gradients of the stress response function (a) and mass response
function (b) as well as projected gradient (c) at iteration 30

An essential process step necessary to find the constrained optimum at all is
the aggregation of constraints in the descent direction. As described in section
3.2.2, Rosen’s gradient projection method is applied projecting the gradient of
the response function on the subspace tangent of all active constraints. The func-
tionality of the projection can descriptively be demonstrated on the basis of this
example. Figure 4.3(a) shows the unconstrained shape update at optimization
iteration 30 for the stress response function reducing the stresses in direction
of the steepest descent. In figure 4.3(b) the gradients of the mass response
function are shown always leading to a constant offset of the design variables
as discussed in section 2.5. In this special case of an uniform gradient vector
of the constraint function, the projected gradient vector is still similar in shape
compared to the gradient vector of the objective function. It is simply shifted
such that the constraint is fulfilled, see figure 4.3(c). In case of a nonuniform
gradient vector or more than one active constraint the projected gradient vector
can have a completely different shape. However, taking the projected gradient
as descent direction in every optimization iteration prevents the violation of
the constraints. In figure 4.2 the history of the normalized mass is evaluated
confirming that during the whole optimization the weight is not increased.

Though, the optimal solution for the minimization of the notch stresses is trivial,
it is an illustrative example to demonstrate the potential of the proposed process.
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4.1 Holes in a plate

4.1.2 Two closely-spaced holes in a plate

The second conceptual example is a two-dimensional biaxially loaded plate
with two closely-spaced holes illustrated in figure 4.4(a). As aforementioned,
in the past much effort has been spent to reduce the stress concentration by
finding the free-form shapes of holes and fillets for various problems. Among
many others, Waldmann et al. [WHR03] analyzed the stress concentration of
the underlying mechanical model and optimized the shape of the holes in the
context of reworking where only material removal is allowed.

h

e=0.21h

σ

σ(a) (b)

Figure 4.4: Plate with two closely-spaced holes, mechanical model (a) and Finite
Element discretization (b)

Figure 4.4(b) shows the discretized Finite Element model for the shape opti-
mization which consists of linear elements and the design variables are defined
on the boundaries of the two holes which also serve as set for the evaluation
of the response function. Regarding the main dimensions, the diameter of both
holes is defined as h and the distance e between both holes is 0.21h. The plate
is uniformly loaded in all directions by a traction force σ . The optimization
task can be formulated as a stress minimization problem at the boundaries of
the two holes while all movements of the design variables are constrained to

90



4 Application of Vertex Morphing

their negative normal direction such that only a displacement in outward direc-
tion is permitted. This constraint considers the reworking since the size of the
holes can only be increased due to the repair. As described in section 2.3 the
aggregation parameter ρ determines how close the KS-function approximates the
largest stress value. Unlike in real applications where the focus is on sufficiently

Kt-factor
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1.28E+00
1.14E+00
1.00E+00

Figure 4.5: Evolution of the design and the Kt-factor from the initial design, at
top-left, to top-right, bottom-left and bottom-right

improving the response function regardless of the value of ρ , the goal in this
example is to obtain the optimum solution from [WHR03]. For such a case,
ρ hast to be defined very high which leads to numeric problems [AFB10] or
alternatively increased in the course of the optimization. Here, the latter option
is chosen and ρ is increased in the course of the optimization from 10 to 40.
The second aggregation parameter σ̄ is held constant with a value of 2σ and the
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4.1 Holes in a plate

initial step size α0 = 0.001h is defined very small to exactly trace the nonlinear
displacement of the design variables. The standard deviation of the Gaussian
kernel for the out-of-surface regularization is assumed to be 0.075h. Generally,
smaller filters allow for a faster approach to the optimal geometry, especially if
the optimum includes high curvatures. Nevertheless, the filter can not be smaller
than a certain limit due to stability reasons thus the standard deviation of the filter
is only reduced in the last iterations to 0.025h when the shape nearly converged
to the optimal design.

According to [WHR03], the Kt-factor for the aforementioned circular holes is
3.96 at the worst position occurring in the symmetry plane between them. After
the optimization the notch stresses are reduced to a factor of 2.02. Key element
of the obtained geometry is that the interaction effects between the holes are
completely eliminated. It is also interesting to note that the Kt-factor for two
interacting optimal holes is identical to that for the corresponding optimal shape
for a single hole presuming identical boundary conditions.
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Figure 4.6: Distribution of Kt-factor around the holes evaluated at the grid points

Regarding the results obtained with the Vertex Morphing method, the Kt-factor
of the initial geometry fits with 3.98 very well to the results of [WHR03]. Fur-
thermore, figure 4.5 illustrates that the notch stresses are continuously reduced
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in every iteration until the final design is reached (figure 4.5 at bottom-right)
where the Kt -factor approaches 2.06 only deviating by 2 % from the results of
[WHR03]. In figure 4.6 it can be seen that the interaction between both holes is
also eliminated and the Kt-factor is distributed evenly around the hole. Finally,
figure 4.7 verifies that the optimal shape computed with the Vertex Morphing
method and the one from [WHR03] fit very well.

Beside the fact that the optimal solution can successfully be obtained, the proper
treatment of mesh is also worth to point out in this example. The introduction
of large geometry changes and especially the reduction of curvature is a very
challenging task in shape optimization. To get a rough idea about the magnitude
of the shape change, the nodal displacement in the course of the optimization is
approximately twelve times larger than the length of the corresponding element
edge. In such cases the optimization often fails due to the deterioration of the
mesh quality or the process diverges since no meaningful shape can be found
by the variables further reducing the objective function. As seen in figure 4.5
the circular holes converge smoothly to the optimal design without any mesh
irregularity.
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Figure 4.7: Comparison of the optimized shapes
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4.2 Fillet design

In this section the shape optimization of a fillet at the transition of two cylinders
under tension is studied. More precisely, the purpose of this example is to discuss
two important aspects. The first one is the extension of the shape optimization
process to three-dimensional problems and to the commonly used quadratic
element formulations. The second aspect is the influence of two important pa-
rameters of the optimization which are the filter radius and the step size of the
optimization algorithm.

The geometry and the boundaries of the fillet design are axially symmetric (figure
4.8). The fillet is defined with a radius r and merges tangentially in the two
cylinders. The bigger one has a diameter of 7.6r with a thickness of 2.5r and the
smaller one has a diameter of 4r being 3r thick. The face of the bigger cylinder
is constrained in all degrees of freedom. The shape optimization is performed
for a tension load acting on the front face of the smaller cylinder. The design
surface is depicted in a dark grey color and consists of 4140 design variables.

4r7.6r

r2.5r 3r

Figure 4.8: Initial geometry of fillet design. The design surface is marked in
dark grey. At the top-right, the mechanical system with the boundary
conditions is shown.
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4.2.1 Reduction of notch stresses

The goal of the optimization is to minimize the stresses in the transition between
both cylinders under the constraint of at least preserving the initial mass. Re-
garding the chosen filter, the standard deviation of the Gaussian kernel is defined
to be 0.18r which spans approximately 8 elements. The initial step size is about
13 % of the element size.

Figure 4.9 shows the optimization history of the stress objective function which
converged after 53 iterations to a local minimum and achieved about 22 % of
improvement. After that the sensitivities are very small and the objective function
remains almost unchanged. Regarding the mass, the constraint is active during
the whole optimization and thus is retained by the Gradient Projection method
almost at its initial value. The initial and the optimized design are compared in
figure 4.10. In the course of the optimization the stress concentration factor Kt

decreased from 1.45 to 1.06 which is an improvement of 27 %. The reduction
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Figure 4.9: Optimization history of the normalized response functions

of the stresses is mainly achieved by pulling the wall boundary in the region
of the highest stresses out and pushing it in on both sides next to this area. In
the case of a curved boundary this is equally to flattening the curvature. The
corresponding shape update vectors at the first iteration can be seen in figure
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4.2 Fillet design

4.11. Vertex Morphing transforms the sudden change of the surface sensitivity
to a meaningful geometry. Comparing the design with CAD, this would not be
feasible with a standard parametrization.
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Figure 4.10: Evoltion of Kt-factor from the initial design at the left to the opti-
mized one at the right.

Figure 4.11: Combined in- and out-of-surface update vectors at the longitudinal
upper design boundary in the first iteration.

Furthermore, this example also reveals the advantage of the improved Traction
method (section 2.6.5). Concentrating on the update vectors of the invariable
areas, they also contribute to the shape update due to their displacement in tan-
gential to the surface direction. Generally, the in-plane component of the update
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vectors computed by the Traction method supports to reduce the mesh distortion.

Additionally, as it can be seen in figure 4.10, the regularization of the quadratic
elements works very well and results in smooth shapes throughout the optimiza-
tion.

4.2.2 A filter and step size study

In this section the influence of the step size and the filter radius on the basis of
the presented fillet optimization example is reviewed.

As discussed in the sections 2.6.2 and 2.6.3, the filter radius is defined as the
standard deviation of the Gaussian kernel used to create the filter matrix A of the
Vertex Morphing method. Demonstrated by [HSB14] and also concluded on the
basis of this example, the smaller the filter radius the faster the improvement of
the objective function. Figure 4.12 compares the objective improvement for four
different filter radii as a function of the total design update defined as the sum
over the step sizes in every iteration. This measure has to be chosen as due to the
Backtracking algorithm the step size in an iteration may be different for different
filter radii though the initial step size is equal. The final geometry in all four
cases is similar with small differences in the curvature. This leads to slightly
higher Kt values for higher filter radii which explains the marginally worse
improvement of the objective. As already mentioned, the rate of improvement
of the objective function is the highest for the smallest filter radius. Of course
there are certain limitations on the size of the filter radius. Having in mind that
the filter is needed to regularize the ill-posed shape optimization problem it can
not be defined arbitrarily small. There is a certain limit where the regularization
intensity of the A operator is too small so that the stability criterion is not fulfilled
and shape irregularities rapidly occur. Therefore, the filter function has to include
a sufficient number of grid points. A practical approach to avoid the definition
of the filter size as a fixed distance, is to define it in dependency of the surface
element size. This guarantees a minimum number of grid points evaluated in
the filter function. Beside the numerical stability there are also some practical
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Figure 4.12: A filter radius study for the fillet geometry. The total update is
defined as the sum over the step sizes in every iteration.

reasons requiring a sufficiently high filter radius. Due to production limits and
costs a certain level of smoothness as well as a minimum curvature with less
geometrical details is desired.

The shape optimization problem is in general nonlinear. As an approximation the
gradient information is linearized and multiplied with a finite step size in every
optimization iteration. Therefore, in the following step size study the influence of
the step size of the Steepest Descent method on the objective function is studied.
Theoretically, with an increasing step size the deterioration of the optimizer from
the real direction to the local optimum also increases. As demonstrated in figure
4.13 on the basis of various step sizes this consideration applies also in practical
applications. The smaller the step size the faster is the rate of improvement of
the objective function. However, the final design is not affected by the chosen
step size since the geometry is identical in all four cases with an improvement
of 22 %. This is achieved by the Backtracking algorithm which bisects the step
size until the local minimum is reached. Regarding the computational cost, very
small step sizes require many iterations until the design has converged whereas
larger steps proceed faster taking several cutbacks into account.
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Figure 4.13: A step size study for the fillet geometry. The total update is defined
as the sum over the step sizes in every iteration.

4.3 Low pressure turbine blade

In this section the Vertex Morphing method is applied to the shape optimization
problem of a low pressure turbine blade. Compared to the academic examples
this problem is much larger in computational size with a highly complex three-
dimensional geometry. First, the constraint shape optimization is performed.
Then, the capability of the proposed optimization process is discussed on the
basis of a time consumption study.

4.3.1 Constrained optimization of stresses

In this section the shape optimization of the blade shown in figure 4.14 is per-
formed. The model consists of 725.407 quadratic tetrahedral elements and
1.114.091 nodes resulting in an average element edge length of 0.5 mm. The
design surface is highlighted in dark grey in the figures 4.14(b) and 4.14(c)
including 93.330 nodes. The objective function is the reduction of the stresses
according to equation (2.25) and also evaluated in the grey area. The correspond-
ing aggregation parameters σ̄ and ρ are set to 300 and 10, respectively. An
important aspect in the optimization of aerodynamic structures is the limitation
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(a)

(b) (c)(d)

Figure 4.14: Cyclic symmetric model of a bladed rotor (a), the discretized blade
with the design space marked in dark grey (b)(c) and the mechanical
system with the bearing conditions and the centrifugal load (d).

of the design change and the conservation of the main design features to restrain
potential negative effects on the aerodynamic behavior of the component. To this
end, large enough filters are used such that the improvement pattern is smooth
and the overall shape is not disturbed. The chosen filter radius approximately
spans 18 elements which corresponds to a standard deviation of 3 mm of the
Gaussian function. Furthermore, a displacement constraint of 1.0 mm for every
design variable is defined assuming that up to this value no effect on the aerody-
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namics takes place. In addition, as the weight is always an important quantity in
aerospace industry it is not allowed that the optimized design exceeds its initial
value.

The rotation of the rotor system (figure 4.14(a)) exerts a centrifugal load on the
blade which causes high stresses particularly in the transition of the airfoil and
the blade root. Moreover, a temperature gradient induced by the hot flow in the
gas path causes additional thermal stresses which have to be superimposed. The
resulting von Mises stresses are shown in figure 4.15 where the life limiting
positions occur in the aforementioned transition zone with 311 MPa at the leading
edge and 372 MPa at the trailing edge.
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Figure 4.15: Von Mises stresses for the initial design caused by mechanical and
thermal loads.

In what follows, the section is divided in two parts: First, some brief remarks on
the computational loop are discussed. Then, the improved design is presented
and compared with the initial one.

The optimization loop starts with the static analysis including the mechanical
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and thermal loads based on the discretized model shown in figure 4.14. As a
result, the global stiffness matrix, the external load vector as well as the stress
and displacement fields are obtained. Based on these quantities the gradients of
the objective function and the constraints are evaluated from equation (2.16) and
repeated here for clarity

dJ
ds

=
∂J
∂ s

+λ
T ·
(

∂K
∂ s
·u− ∂ f

∂ s

)
. (4.4)

The Gradient Projection method uses these sensitivity fields to determine the
shape update vector which lies on the subspace tangent of all active constraints.
In the sequence, the improved Traction method (section 2.6.5) is applied to update
the surface mesh with the shape update vector as prescribed displacement. Herein,
the distance dependent Young’s modulus is distributed within the adjacent two
elements rows. Having the updated nodal coordinates for the whole mesh the
next iteration is started with the computation of the physical problem. The loop
is continued until the optimization problem has converged.
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Figure 4.16: History for the normalized stress and mass response functions.

Figure 4.16 shows the history of the optimization for the stress response function.
All in all the Vertex Morphing method needed 21 iterations to improve the
design remarkably until convergence. Around 7.5 % improvement in the KS-
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function which corresponds to a reduction of 6.4 % (291 MPa) at the leading
edge and 21 % (295 MPa) at the trailing edge, respectively, can be achieved. In
aerospace industry this is a huge improvement as the designs typically challenge
the limits with several optimization tasks being involved. For instance, the airfoil
is optimized with respect to its aerodynamic properties and its dynamic behavior.
Comparing the stress history for both positions in figure 4.17 in detail reveals
the advantage of the KS-formulation. In the first optimization iterations mainly
the trailing edge position showing the highest stresses is improved while the
leading edge stresses are more or less retained at the same level by the KS-
function. For example, the maximum stress function from equation (2.24) would
not track the leading edge stresses at all even if they would increase due to the
fact that only the worst position is taken into account. As the stresses are more
and more aligned in the course of the optimization the influence of the leading
edge position on the KS-function increases leading to a steeper slope of stress
reduction. At the end of the optimization both positions nearly have the same
degree of capacity utilization. This property of the KS-function is an important
advantage for the development of equally loaded and robust designs.
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Figure 4.17: History for the von Mises stresses at the leading and trailing edge.

Regarding the behavior of the constraints during the optimization, figure 4.16
shows the history of the mass constraint and figure 4.18 tracks the number of
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Figure 4.18: History for the number of active displacements constraints.

active geometric constraints in every iteration. In every iteration the normalized
mass is successfully kept below the value of 1.0 by the Gradient Projection
method. Thus, the design in every iteration can be considered feasible with
respect to its weight. As aforementioned, the geometrical constraint was defined
to become active at a maximum displacement of a design variable of 1.0 mm. Up
to iteration 19 all variables are still below that limit and the number of active ge-
ometric constraints is consequently zero. At iteration 20 the constraint becomes
active at 140 variables in the region of the trailing edge leading to a kink in the
objective function as suddenly the design can not be improved anymore in this
region. Though the optimization algorithm found once more a feasible design,
the objective function could not be further reduced and the optimization finished.

The improvement of the design can also be seen through the sensitivity map
on the blade. Figure 4.19 displays the surface sensitivity of the stress objective
function of the initial design. The regions with the highest sensitivity undergo
the largest deformation. This is also confirmed in the figures 4.20 and 4.21 where
the initial and the final shape at two different cross sections is compared. During
the optimization the cross-section is thickened up mainly in the region of the
trailing edge to reduce the centrifugal load. This result demonstrates that with

104



4 Application of Vertex Morphing

Vertex Morphing smooth design changes can take place while no wrinkles, kinks
or any other mesh irregularities occur.
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Figure 4.19: Surface sensitivity distribution of the stress objective function for
the initial design.

A-A

A-A

Figure 4.20: Cross section at the transition zone for the initial (dashed line) and
the final design (continuous line).
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A-AA-A

Figure 4.21: Radial cross section of the initial (dashed line) and the final design
(continuous line).

4.3.2 A time consumption study

Besides the development of meaningfully improved designs, the efficiency of
the Vertex Morphing method with respect to the computational time is also of
great interest for the application in an industrial environment. Therefore, the
computational efficiency of the implemented sensitivity analysis is discussed and
compared with the corresponding static analysis step. More precisely, the time
dependency of the sensitivity analysis with respect to the number of CPU’s, the
number of design variables and the size objective set is investigated. The study
is based on the low pressure turbine model shown in figure 4.14. The sensitivity
analysis contains the computation of the gradients for the optimization problem
defined in section 4.3.1, the filtering and the post-processing steps introduced in
chapter 2.
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Figure 4.22: Computational efficiency of the sensitivity analysis and the corre-
sponding static step.

The most time consuming parts in the code like the partial derivatives in equa-
tion (2.16) or the filtering are parallelized. However, some parts still have to
be executed sequentially. As a measure for the quality of the parallelization,
the parallel efficiency is introduced which is defined as the ratio between the
CPU time and the wall clock time. Ideally, the computational efficiency grows
linearly with the number of CPU’s with a slope of one meaning that the code is
perfectly parallelized. Figure 4.22 compares the parallel efficiency of the static
step and the sensitivity analysis implemented in CalculiX. For both, the behavior
is approximately linear up to 16 CPU’s. The slope of the static step is about
0.53 and the one of the sensitivity analysis step is approximately 0.75. From
this results it can be concluded that the parallelization had been successfully
implemented in CalculiX and the split of the problem to several threads clearly
reduces the time consumption.

A second question that this study tries to answer is how influential is the size of
the design space and the number of nodes evaluated in the objective function for
the computational time of the sensitivity analysis. Therefore, several variants
with different combinations of design spaces and sets for the objective function
are defined in table 4.1 and visualized in figure 4.23. All other parameters which
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influence the time consumption, e.g. the number of CPU’s, are not varied in this
study.

Variant
Number of

design variables
Number of nodes

in the objective function

A 26.939 26.939
B 52.913 52.913
C 73.487 73.487
D 93.330 93.330
E 113.702 113.702
F 52.913 26.939
G 73.487 26.939
H 93.330 26.939
I 113.702 26.939

Table 4.1: Variants for parameter study with respect to the time consumption of
the sensitivity analysis.

A

B

C

D

E

Figure 4.23: Different variants with respect to the design space.

Figure 4.24 evaluates the time consumption as the ratio between the time con-
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sumption of the sensitivity analysis (SA) and the static step (SS). This value
gives an indication how much more expensive a sensitivity step is compared to
the solution of the underlying physical problem. For the variants A to E, the
set where the objective function is evaluated is identical to the set of the design
variables. In these cases the effort for the evaluation of the gradients compared to
the effort for the solution of the static step increases linearly with an increasing
number of design variables. In the variants F to I, the set for the objective func-
tion is kept constant (according to model A in figure 4.23) and only the size of
the design space is changed. Similar to the variants A to E, the time consumption
for the sensitivity analysis is also increasing for larger sets of design variables
but the slope is less steep. The reduced effort is achieved by the screening the
vectors ∂J/∂ s and ∂J/∂u of equation (4.4) for zero entries as described in
detail in section 3.5. This study verifies the idea how an examination of the mesh
topology and especially the relationship between the design space and the set of
the objective function can reduce the computational effort in many cases. It can
also be concluded that a smart definition of the optimization improves the ratio
between the time consumption of the sensitivity analysis and the static step.
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Figure 4.24: Ratio of the computational time of the sensitivity analysis (SA) and
the static step (SS) as a function of the number of design variables.
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4.4 Case shell

4.4 Case shell

In the current section the shape optimization of a case shell is examined dis-
cussing two important aspects in such industrial optimization problems. The
first aspect is the influence of a geometrical wall thickness constraint on the
optimization result. Generally, manufacturing of complex structures is many
cases only possible by casting. For these kind of processes it is essential that
the wall thickness remains within certain limits as too thick members have a
negative effect on the cooling of the melt and too slender areas can not be filled
with liquid. The result of the constrained optimization problem is presented and
compared with a geometrically unconstrained optimization result. The second
aspect discussed here is the influence of this geometrical constraint on the com-
putational efficiency. As discussed in section 2.4 the geometrical constraint has
to be defined for every design variable separately which potentially can lead to a
huge number of active constraints in the computation of the feasible direction.

Figure 4.25: CAD model of engine component.
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4 Application of Vertex Morphing

The outer case shell discussed here is part of a more complex structure which is
illustrated in figure 4.25. The whole component is responsible to bypass the hot
gas flow between the two cylindrical case shells in axial direction exposing it to
high temperatures. In addition, the part has to transfer the loads from the bearing
housing via the eight struts radially outwards to the engine mounts. This structure
mechanical problem is solved in a linear elastic analysis on the basis of a 45◦

sector model with equivalent cyclic symmetry boundary conditions as shown in
figure 4.26. According to the figure on the bottom-right the mechanical loads are
applied on the inner as well as on the outer shell and the bearing is located on
the left flange. The sector is discretized with 669.970 elements and 1.042.172
nodes. The design space which is marked in dark grey is highly resolved with
second order tetrahedral elements and contains 136.800 design variables. The
rest of the model consists of linear tetrahedral and quadrilateral elements. The
combination of the mentioned mechanical and thermal loads leads to very high
local stresses in the outer case shell. Figure 4.27 shows the corresponding von
Mises stresses of the sector model highlighting the most critical position which
occurs with 772 MPa in the transition of the case shell to the strut.

Figure 4.26: Discretized sector model of the engine component with the applied
mechanical boundary conditions shown on the botoom-right.
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Figure 4.27: Von Mises stresses of the initial design.

Goal of the shape optimization is the reduction of the von Mises stresses in the
design space using the KS-function from equation (2.25) and repeated here

σKS =
1
ρ
· ln

(
nnodes

∑
i=1

eρ·σi
σ̄

)
. (4.5)

The aggregation parameters ρ and σ̄ are set to 10 and 500 MPa, respectively.
To avoid the trivial solution of reducing the stresses by just increasing the wall
thickness, the side constraint that the mass has to remain below the initial value
is added to the optimization problem.

In the Vertex Morphing optimization process, first the node-based sensitivity
analysis for the stress objective function and the mass constraint is performed
based on the results of the linear elastic analysis. Having the adjoint sensitivities
available, the regularization of the gradient information is computed using the
Gaussian kernel with a standard deviation which approximately spans nine
elements in the filter radius. The Gradient Projection method uses the smoothed
sensitivity fields to calculate a feasible descent direction by the projection the
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4 Application of Vertex Morphing

objective gradient on the subspace tangent of all active constraints. In the
sequence, the mesh motion algorithm presented in section 2.6.5 updates the
volume mesh on the basis of the shape update vector scaled with the predefined
initial displacement of approximately 10 % of the average element length in the
design space. For the preservation of the mesh quality of the elements next to the
design variables, the number of element rows for the Young’s modulus scaling is
set to two. At the end of this iteration the structural assessment is repeated with
the updated discretization. The loop is continued until the objective function has
converged to a local minimum.
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Figure 4.28: History for the normalized stress and mass response functions.

According to figure 4.28 the specific optimization problem converged after
35 iterations to a local optimum including a reduction of the stress objective
function by 13 %. The resulting design which is shown in figure 4.29 reveals
some interesting characteristics some of them being not evident at first sight. The
radius in the transition zone where the highest stresses occur due to notch effects
is clearly increased during the optimization process. In [Pet74] it is demonstrated
on various examples that this is a common remedy for stress reduction in notched
areas. The shell sections left and right from the strut are reinforced with smooth
ribs to distribute the load more even in the case shell. In contrast to these
features, the thickness of the shell section directly behind the strut had been
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4.4 Case shell

(a)

(b)

Figure 4.29: Shape optimization of case shell. Finite Element mesh of the initial
design (a) and final design after convergence of the optimization
algorithm (b).
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4 Application of Vertex Morphing

reduced by the optimizer. The mechanical interpretation of all these changes
can be that the stiffness in the transition zone is homogenized to distribute the
load more even in the case shell. Figure 4.30 shows that the combination of all
these single geometrical changes lead to a significant stress reduction of 37 %
as in the final design a von Mises stress of only 486 MPa remains. Regarding
the side constraint, figure 4.28 also shows that the new design is mass neutral
compared to the initial one due to the fact that the constraint is kept at a value
of approximately one by the Gradient Projection algorithm. In all the iterations
the Lagrange multiplier is strictly positive indicating that the constraint is active
during the whole optimization. The reduction of the shell thickness which
compensates the additional mass of the ribs and the larger radius mainly takes
place in the regions far away from the critical position. As the area which
contributes to the mass compliance is very large, the absolute value of thickness
reduction is comparably small.
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Figure 4.30: Von Mises stresses of the improved design.

The improvement of the design can also be seen through the sensitivity field
of the objective function. Figure 4.31 displays the filtered surface sensitivity at
different steps of the optimization. As shown in figure 4.31 at top-left, in the
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4.4 Case shell

initial design the high sensitivities occur very local in the region of the highest
stresses. In the course of the optimization when the peak stresses are eliminated
and the stress field is more homogeneous the influence of other areas on the
objective function increases leading to more evenly distributed sensitivities. As
a general characteristic, the absolute values are decreasing towards the local
optimum which also holds in this example. Theoretically, at a local optimum the
gradients should even become zero. Here, in the final design which is shown in
figure 4.31 at bottom-right the sensitivity values are considerably reduced but
do not completely vanish. However, in constrained optimization problems the
local optimum is often located in the infeasible region and can not be reached. In
these cases the optimal design lies on the boundary of the active constraint called
the constrained optimum. This case implies sensitivity values unequal to zero.
In the example discussed here, the sensitivity information in the last iteration is
unequal to zero but no design update could be computed which further improves
the objective function. For any step length the Armijo condition can not be
fulfilled thus the underlying constrained optimization problem is considered to
be converged to the constrained optimum.

In order to show the necessity and the importance of geometric constraints in real
size industrial applications the optimal design computed above is investigated in
detail again with the focus on the resulting wall thickness. As aforementioned,
to avoid problems in the manufacturing process the wall thickness often has to
remain within certain limits. Comparing figure 4.29(a) and (b) it clearly can be
seen that the vertical wall thickness of the strut has been reduced in the course of
the optimization by 50 %. As the initial design is already borderline with respect
to the minimum castable wall thickness the optimal design is not feasible taking
this criterion into account. Therefore, the optimization is executed again with
an additional geometrical constraint on the minimum wall thickness preventing
a shrinkage below this limit. For the sake of confidentiality the dimensions
and limits are not explicitly mentioned here but are not essential at all for the
comprehension of the example. The geometrical constraint is defined according
to section 2.4.2 requiring an additional control node set which is defined at the
opposite sides of the shell regions. All the other boundary conditions remain
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Figure 4.31: Sensitivity distribution of the stress objective function for the initial
design at top-left, iteration 10 at top-right, iteration 20 at bottom-
left and the optimal design at bottom-right.

unchanged. According to figure 4.32, after 36 iterations the problem converged
to a local optimum. Compared to the optimization without any geometrical
constraints the improvement of the objective function is approximately 1 % less.
The corresponding von Mises stresses decreased to 521 MPa being 32.5 % of
the initial design (compared to 37 % without any geometrical constraints). As
expected, the additional constraints further restrict the feasible region and the
optimal design is slightly worse than the one without any geometrical restrictions.
Nevertheless, figure 4.33 showing the cross section of the region behind the
strut demonstrates that the infeasible wall thickness shortfall can successfully be
avoided.
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Figure 4.32: Comparison of optimization history for the normalized stress re-
sponse functions.
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Figure 4.33: Comparison of cross sections of initial design (continuous line), ge-
ometrically unconstrained optimal design (dotted line) and optimal
design with geometrical constraints (dashed line).
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4 Application of Vertex Morphing

In section 2.4.2 it is stated that the geometrical constraint has to be defined
separately for every design variable. Consequently, as many constraints as
design variables could potentially enter the optimization problem which in case
of real size industrial applications could lead to highly constrained optimization
problems. For these kind of problems the preservation of the computational
efficiency is a crucial aspect. In figure 4.34(a) the number of active geometrical
constraints in every optimization iteration is shown for this specific example.
Starting from an unconstrained optimization problem, the number of geometrical
restrictions is steadily increasing up to 2307 active constraint in the final iteration.
As stated in the equations (3.5), (3.6) and repeated here for clarity,

dn = −P∇J, (4.6)

P = I−N(NT N)−1NT , (4.7)

in the Gradient Projection method the computation of the constrained descent
direction dn is purely based on the N matrix containing the gradient vectors
of all active constraints. As N has the size n× nact , for problems with many
design variables which in addition are geometrically constrained too the matrix
can quickly become very large. Especially the computation of the inverse of
(NT N)−1 is very expensive. This demands for an efficient algorithm to compute
the feasible descent direction (dJ/ds)P derived in Appendix B. In figure 4.34(b)
the time consumption for the computation of the feasible descent direction is
evaluated. For the underlying problem, up to 1000 variables no remarkable
increase in computational time can be detected. In the subsequent iterations the
time consumption grows up to 115 % of the computation of the unconstrained
descent direction. Considering the highly constrained optimization problem this
additional effort seems to be reasonable. It also has to be mentioned that the
algorithm is very robust in computing a feasible direction though a huge number
of constraints is involved. Notice that the oscillations in the figure are not related
to this investigation but account for the performance of the specific computer the
iteration was executed on.
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Figure 4.34: History of number of active constraints (a) and corresponding
normalized wall clock time (normalization with respect to the time
consumption for the computation of the unconstrained descent
direction) (b).
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Chapter 5

Conclusion and outlook

This contribution tried to take a step towards the integration of a numerical shape
optimization tool in an industrial design process. The proposed approach is
based on the Vertex Morphing, a node-based shape optimization method which
efficiently transforms the result of the sensitivity analysis into meaningful de-
signs by consistently incorporating the filter algorithm in the theory. The focus
was on the following extensions of Vertex Morphing:

• Implementation of the sensitivity analysis for the relevant response func-
tions in the open source Finite Element tool CalculiX.

• Regularization of the ill-posed shape optimization problem and the dis-
cretization.

• Consideration of constraints in the optimization algorithm reflecting given
boundary conditions to attain feasible designs

In the course of this work the adjoint semi-analytic sensitivity analysis was
successfully implemented in CalculiX. Herein, the adjoint manner accounts for
the vast number of nodal design variables and the semi-analytic formulation
avoids the cumbersome element specific derivation as the finite difference step
is computed directly on element level. In structural optimization one is often
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interested in mechanical stresses as they are directly linked to the life and load
capability of a component. The gradient information for this important quantity
is efficiently computed by the sophisticated Kreisselmeier-Steinhauser formu-
lation which considers the influence of various nodal positions on the response
function. Moreover, the influence of the discretization on the gradient informa-
tion is described and the necessary remedies to achieve mesh independent results
were presented and also integrated in the sensitivity analysis step.

The challenges of the node-based design variables were discussed in detail. At
First, the ill-posed shape optimization problem needs to be regularized. In the
Vertex Morphing method an additional design control field for the definition of
the mathematical optimization problem is introduced. The connection between
this control field and the nodal coordinates is established by a smoothing op-
erator which transforms the noisy sensitivities into meaningful design updates.
In contrast to other methods, this operation is consistently incorporated in the
theory. The preservation of the quality of the three-dimensional mesh was the
second challenge to be discussed. To get a global overview several mesh regular-
ization methods were compared and the extended Traction method responsible
for the mesh update in this work was presented. This approach was enriched by
a distant dependent Young’s modulus distribution and an inclusion of invariable
areas in the design update further reducing the mesh deterioration and mesh
dependencies.

In industrial applications shape optimal designs are typically constrained. There-
fore, the optimization workflow was extended by Rosen’s gradient projection
method aggregating all active constraints into a feasible descent direction. The
method projects the gradient of the objective function on the subspace tangent
of all active constraints. Moreover, the decision which constraints have to be
considered is controlled by an Active Set method.

Finally, the various methods were merged into a complete shape optimization
workflow and its efficiency and robustness were demonstrated on several test
cases. First, academic examples were examined to demonstrate accordance with
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5 Conclusion and outlook

the analytically derived solution and the work of others. The second group of
applications were from turbomachine industry and characterized by their geo-
metrical complexity, large number of design variables and highly constrained
design spaces.

To conclude, various publications already demonstrated the capabilities of Vertex
Morphing as a powerful design tool offering a wide range of applications. In this
work, the Vertex Morphing method was successfully extended for an application
in a turbomachine design process. Therefore adequate reponse functions, geo-
metrical constraints and the adjoint sensitivity analysis method were successfully
implemented in CalculiX. The whole optimization workflow was completed by
a constrained minimization algorithm and a robust mesh update step.

A worthwhile extension of the presented work would be the consideration of
more than one load case in the optimization. Typically, aerospace components
have to fulfill several load cases such as normal operating conditions, limit loads
and ultimate loads. Often these requirements are contradicting and challenging
to fulfill at the same time. The ability of the proposed workflow to consider
additional load cases as side constraints preventing their violation would in
fact be very beneficial. Moreover, to further increase the usability in industrial
applications, one could also think of additional geometrical constraints such as
rotational or cyclic symmetry.
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Appendix A

Transformation of partial
derivative of the stress response
function

Let us start from the partial derivative of the stress response function from
equation (2.25) approximated by a finite difference step with respect to the
design variables s

∂σKS
∂ si

≈
1
ρ
·ln(H+∆H)− 1

ρ
·ln(H)

∆si

≈ 1
ρ·∆si
· ln(H+∆H)− 1

ρ·∆si
· ln(H)

≈ 1
ρ·∆si
· ln
[
H
(

1+ ∆H
H

)]
− 1

ρ·∆si
· ln(H)

≈ 1
ρ·∆si
·
[

ln(H)+ ln
(

1+ ∆H
H

)
− ln(H)

]
≈ 1

ρ·∆si
· ln
(

1+ ∆H
H

)
(A.1)

According to [BSMM05] the logarithm in equation (A.1) can be approximated
by the Taylor series in the range from −1 < x < 1

ln(1+ x) = x− x2

2
+

x3

3
− x4

4
+ · · ·+(−1)n+1 xn

n
±·· · (A.2)
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The perturbation ∆si is considered to be small compared to the dimensions of
the model. Therefore, the higher-order terms of the Taylor series expansion are
assumed to be of higher order small compared to the first-order term and thus
neglected. With this assumption equation (A.1) reduces to

∂σKS

∂ si
≈ 1

ρ ·∆si
· ∆H

H
(A.3)

After the simplification ∆H is substituted by the Kreisselmeier-Steinhauser
summation

∂σKS
∂ si

≈ 1
ρ·∆si·H ·

(
nnodes

∑
i=1

eρ·σi+∆σi
σ̄ −

nnodes

∑
i=1

eρ·σi
σ̄

)
≈ 1

ρ·∆si·H ·
[

nnodes

∑
i=1

eρ·σi
σ̄

(
eρ·∆σi

σ̄ −1
)] (A.4)

Again, under the assumption of ∆σi being small, equation (A.4) is further
reduced with a Taylor series expansion of the exponential function according to
[BSMM05] valid in the range from |x|< ∞.

ex = 1+
x
1!
+

x2

2!
+

x3

3!
+ · · ·+ xn

n!
+ · · · (A.5)

Equation (A.5) is interrupted after the linear term and substituted in equation
(A.4):

∂σKS

∂ si
≈ 1

ρ ·∆si ·H
·
[nnodes

∑
i=1

eρ·σi
σ̄

(
1+ρ · ∆σi

σ̄
−1
)]

. (A.6)

The final expression implemented in the Finite Element code CalculiX reads as

∂σKS

∂ si
≈ 1

σ̄ ·∆si ·H
·

(
nnodes

∑
i=1

eρ·σi
σ̄ ·∆σi

)
. (A.7)
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Appendix B

Efficient computation of projected
gradient vector

The goal of the computation of the projected gradient vector ∇sJP is to take
account of the constraints in the optimization problem. Therefore, the uncon-
strained gradient vector ∇sJ of the objective function has to be projected onto
the subspace tangent of all active constraints as follows:

∇sJP = P∇sJ =
(
I−NCNT)

∇sJ, (B.1)

with
C = (NT N)−1. (B.2)

In this equation P, N and I are the projection matrix, the matrix which contains
the gradients of all active constraints and the identity matrix, respectively. The
projected gradient can also be expressed in terms of the matrix coefficients,(

dJ
dsl

)
P
=
(
δil−ni jc jk(nT )kl

) dJ
dsl

, (B.3)
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and further transformed:(
dJ
dsl

)
P
=
(
δil−ni jc jk(nT )kl

) dJ
dsl

=

=
(
δil−ni jc jknlk

) dJ
dsl

=

= dJ
dsi
−ni jc jknlk

dJ
dsl

=

= dJ
dsi
−∑

k

[
ni jc jknlk

dJ
dsl

]
=

= dJ
dsi
−∑

k

[
∑

j
∑

l

(
ni jc jknlk

dJ
dsl

)]
︸ ︷︷ ︸

wik

(B.4)

In this equation the vector wik has to be computed k times with k = 1, ...,nact and
is determined by the product of the vector v and the scalar value β :

wik =

n11 · · · n1nact
... . . . ...

nns1 · · · nnsnact


 c1k

...
cnactk


︸ ︷︷ ︸

v

·

n1k
...

nnsk


T 

dJ
ds1...
dJ

dsns


︸ ︷︷ ︸

β

(B.5)
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