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Abstract

The capability of correctly predicting part de�ections after support removal is

important to asses the quality of a �nal artifact produced by laser powder bed

fusion (LPBF) technology. The �nite element method is usually employed to

perform part-scale thermo-mechanical analysis to estimate the �nal distortion

of 3D printed parts. Due to the high �exibility of LPBF additive manufactur-

ing, most of the components produced by means of such a technology have an

optimized shape and complex geometrical features. Consequently, the process

of generating an analysis suitable mesh starting from the original 3D virtual

model turns out to be a non-trivial task. Immersed boundary methods rep-

resent a possible solution to perform accurate process simulation without the

meshing burden. In this work, an immersed numerical framework to perform

thermo-mechanical part-scale analysis is experimentally validated by means of

part de�ection measurements obtained for a single-cantilever structure after

support removal. The comparison between simulation and experiment shows

that the proposed numerical framework is able to deliver results with an almost

perfect correlation to the measured data and a maximum relative error below
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5%.
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1. Introduction

Laser powder bed fusion (LPBF), alternatively known as selective laser melt-

ing (SLM), selective laser sintering (SLS), electron beam melting (EBM), direct

metal laser sintering (DMLS), or direct metal laser melting (DMLM), are ad-

ditive manufacturing (AM) processes consisting of either a laser or an electron

beam which selectively melts a layer of metal powder, building the �nal prod-

uct by means of a layer-by-layer process. Nowadays, most of the metal additive

manufacturing systems employ laser powder bed fusion technology due to its

capacity to produce small geometrical features, to cover a larger range of scales,

to deliver more accurate surface �nishing, to achieve lower porosity, and to ob-

tain better mechanical properties of the resulting part compared to other AM

technologies [1]. Furthermore, compared to more traditional manufacturing

techniques, LPBF technology allows to abolish most of the standard produc-

tion constraints, opening the possibility to optimally design components and to

manufacture complex shapes. Due to these key features, LPBF AM has seen a

rapid growth over the last decades.

Nevertheless, there are still open issues that do not allow us to consider

LPBF a �mature� technology yet. Currently, one of the main limitations of

LPBF processes is the di�culty to predict a-priori the �nal shape of the printed

artifact. In fact, during an LPBF process a single material point undergoes

multiple, rapid melting-solidi�cation cycles, which induce high residual stresses

within the component. These residual stresses are then partially released once

the part is removed from its support, leading to a deformed component.

Numerical analysis can play an important role enabling the prediction of the

�nal deformation of a printed component without undergoing long and expensive

trial and error procedures. However, due to its multi-scale nature in both space
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and time, numerical simulations of LPBF processes are extremely challenging

from a modeling as well as from a numerical point of view. For detailed reviews

on the state of the art of LPBF AM process simulations we refer to [2�4]. In par-

ticular, we can distinguish three main groups of physical models which di�er in

the spatial and temporal scale they aim at solving [5]: powder, micro-structural,

and part-scale models. Powder models aim at predicting melt-pool geometries

and thermal pro�les starting from powder and solid material properties as well

as process parameters [6, 7]; the required high spatio-temporal resolution limits

this kind of analysis either to a single or to few adjacent laser tracks. Micro-

structural models focus on the grain growth process occurring during the rapid

melting-solidi�cation cycles in very localized regions, often limiting the analysis

to 2D-settings [8�10]. The objective of part-scale models is instead to deliver

an accurate prediction of part de�ections and residual stresses at large-scale.

Most of the numerical methods proposed in the literature for part-scale AM

simulations employ the �nite element method (FEM) to perform a coupled

thermo-mechanical analysis of the LPBF AM process. This kind of analysis can

be computationally very expensive due to the long time-scale of the process and

the non-linear, plastic behavior of the material. Therefore, most of the works

consider direct energy deposition (DED) processes, since they usually involve a

lower range of spatial and temporal scales compared to LPBF [11�14].

Only recently, physical and numerical models have been developed to predict

part distortions and residual stresses for LPBF AM processes. For instance, a

full thermo-mechanical simulation based on a multi-scale approach is carried out

by Gouge et al. [15] for LPBF processes of complex parts using Pan Solver from

Autodesk Inc. In Liang et al. [16] the modi�ed inherent strain method [17] is

applied to predict distortions of 3D printed components manufactured by means

of LPBF technology. Both these approaches employ inherent strains evaluated

with thermo-mechanical high-�delity simulations which resolve the melt-pool

length-scale on a small reference domain.

A simple yet e�ective method is the so-called pragmatic approach introduced

by Williams et al. [18], where - without involving any inherent strain evalua-
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tion - a weakly-coupled thermo-mechanical problem is solved at the scale of a

complete component. This method sequentially activates deposited layers at

melting temperature. Although this represents only a rough homogenization

of the microscopic stress states induced by the individual laser tracks, it was

demonstrated that such a model may predict de�ections of the �nal artifact

with deviations from the experimental measurements in the range of 5 − 10%.

In the present work, we employ a similar physical model, following an extension

of the pragmatic approach as proposed in [19].

As all standard FEM analyses, also the aforementioned FEM-based ap-

proaches require a computational mesh which conforms to the physical boundary

of the artifact to be simulated. Generating such a mesh can be a time-consuming

task for the complex geometries typically involved in AM production. Moreover,

the 3D virtual model (usually stored in .stl �le format) might present geometric

�aws which have to be repaired before mesh generation, and the generated mesh

may be over-re�ned in parts of the domain where critical geometrical features

(e.g., sharp corners, small holes, etc.) are presents. We �nally remark that such

a mesh must not only conform to the geometry but also to the layers of the

built process.

Despite all the issues stated above, the problem of converting raw .stl data

into an analysis-suitable mesh is generally neglected in the literature of simu-

lation for AM. In the opinion of the authors, this step is instead crucial since

one of the key features of this technology is the possibility to produce optimized

and complex topological parts which are not trivial to be meshed. Therefore, in

industrial practice, conversion from CAD to analysis-suitable meshes turns out

to be critical when performing numerical simulations of AM processes [20].

Immersed boundary methods can be an attractive alternative to e�ectively

handle the numerical analysis of complex geometrical components. Even if most

of the modern CAD software can directly generate "water-tight" models, for

such a kind of complex geometries an .stl check is usually recommended before

the build is performed [21]. The .stl check usually includes a watertight check,

a check of normal vectors orientation, and redundant or duplicated elements
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removal.

Employing standard numerical methods, the design and analysis process

consists of the following steps:

1. Generate a 3D virtual model in a CAD environment;

2. Check-and-repair the .stl �le using an .stl �le repair software (e.g.,

MAGICS R©);

3. Generate an analysis suitable mesh;

4. Run the thermo-mechanical simulation using a FEM code.

With such a work�ow, if, for instance, the numerical results show that the �nal

de�ection of the part is too large, the CAD model must be modi�ed and the

overall procedure entirely repeated, whereas, adopting an immersed approach

would avoid step 2 and 3, running the thermo-mechanical analysis directly on

the CAD model. In such a way, the immersed work�ow will require an .stl repair

software only once the �nal design is ready to be printed.

In particular, the Finite Cell Method (FCM) [22] has already been applied to

simulate thermal [23] and thermo-mechanical [24] problems, but limited to the

problem of the identi�cation of melt-pool length-scales. In this work, FCM is

applied to simulate an LPBF process at part-scale by means of a layer-by-layer

activation process. Numerical results are validated by means of the publicly

available experimental measurements provided by the US National Institute of

Standards and Technology (NIST) for the part de�ection of a single-cantilever

structure of Inconel 625 (IN625 R©).

All numerical results presented in this work are obtained using AdhoC++, a

high-order �nite element code implementing FCM, that is developed and main-

tained at the Chair for Computation in Engineering at the Technical University

of Munich.

The outline of this paper is as follows. In Section 2, we present the set

of governing equations used to describe the weakly-coupled thermo-mechanical

problem. Section 3 brie�y describes the setup of experimental measurements

obtained at NIST. In Section 4, we �rst shortly recall the main ideas underlying
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FCM and then detail its implementation to solve part-scale LPBF AM processes.

In Section 5, we present and discuss our numerical results, comparing them

with the experimental measurements, while we draw conclusions and provide

an outlook in Section 6.

2. Governing equations

In the present work a weakly coupled thermo-mechanical analysis is per-

formed in a Langrangian reference frame to model an LPBF manufacturing

process. Interested readers are referred to [25�27] for further details on thermo-

mechanical �nite element modeling for both welding and AM.

2.1. Thermal problem

Assuming the material obeys Fourier's law of heat conduction, to model the

LPBF thermal process we employ the heat transfer di�usion equation de�ned

as follows:

ρCp
∂T

∂t
−∇ · (k∇T ) = Q (1)

where ρ is the temperature-dependent density of the material, Cp is the

temperature-dependent speci�c heat capacity, k is the temperature-dependent

thermal conductivity, T indicates the temperature �eld, t the time, and Q the

equivalent heat source evaluated as:

Q =
ηP

HAV

with η the absorptivity of the material, P the laser power, and HAV the heat

a�ected volume, i.e., the volume where the equivalent heat source is applied.

Since the phase-change transformation occurs within a very short time interval,

the latent heat term associated to the material phase-change can be neglected

in part-scale thermal models, as demonstrated in [28].

In our model, we assume that the heat is dissipated by conduction through

the powder surrounding the solidi�ed domain as well as by radiation and con-

vection through the powder layer upper surface. The former is modeled using

7



a powder conduction heat loss term qpow, de�ned as follows:

qpow = hpow(T − Te)

where Te is the temperature of the surrounding environment and hpow is the heat

transfer coe�cient (HTC) by conduction through the powder. Following [28]

our numerical model de�nes both heat convection and radiation by means of a

single convective heat loss term qloss, de�ned as:

qloss = hloss(T − Te)

where hloss is the corresponding equivalent HTC. This simpli�ed assumption

is justi�ed by Chiumenti et al. [28] since at part-scale it is di�cult to distin-

guish between the two heat transfer modes. In this work we assume a HTC

by conduction hpow = 0.1[W/K/m2] and an equivalent HTC by radiation and

convection hloss = 0.5[W/K/m2].

2.2. Mechanical problem

The mechanical response of the component is calculated using a thermal load

derived from the solution of the thermal problem. The mechanical equilibrium

equation is given by:

∇ · σ = 0 (2)

where σ is the second-order stress tensor de�ned as:

σ = Deεe (3)

with De the fourth-order material tensor and εe the elastic strain tensor. The

total strain ε can be split into three components:

ε = εth + εe + εp
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with εth and εp the thermal and plastic strains, respectively. The thermal strain

drives the mechanical problem and acts as an external (thermal) load that can

be evaluated as:

εth = α∆T I

where α is the temperature dependent thermal expansion coe�cient and I the

second-order identity tensor. In this work, we consider small strain thermo-

elasto-plasticity. Following the von Mises stress criterion together with a

Prandtl-Reuss �ow rule, we can de�ne the yield function Φ and the plastic

strain rate ε̇p as follows:

Φ = σvm − σy(γ) ≤ 0, (4)

ε̇p = γ̇
∂Φ

∂σ
(5)

where σvm is the equivalent von Mises stress, σy(γ) the yield stress with linear

isotropic hardening, and γ the equivalent plastic strain.

3. Experimental setup

To experimentally validate the numerical method presented in this work, we

compare the simulated part de�ection with experimental data obtained for the

AMBench2018 challenge proposed by NIST [29]. All the information regarding

the design and the setup of the experiment reported herein are available on the

AMBench2018 website [29].

In this section, we provide only a brief description of the experimental setup

for the cantilever structure of IN625 described in Figure 1. For this bench-

mark, two manufacturing processes were performed on two di�erent machines:

an Additive Manufacturing Metrology Testbed (the NIST in-house build ma-

chine) and an EOS M270. Measurements of part de�ection after plate removal

are reported only for structures printed on the EOS M270. Therefore in the

remaining part of this work we will consider only the EOS M270 setup.
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Figure 1: Geometry of the build part (source [29]).

As shown in Figure 2, on a single building plate four occurrences of the same

geometry were built.

Figure 2: AMB2018-01 building plate in EOS M270 (source [29]).

In our code, we do not model the entire building plate since the four struc-

tures have su�cient space between them, thus we can assume no interaction be-

tween adjacent structures. For our numerical simulation, we consider a cuboidal

substrate having dimensions 90 mm × 6 mm × 12.7 mm, keeping the original

substrate height which plays an important role in the solution of the thermal

problem acting like a thermal sink. The x-y plane dimensions of the substrate
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are obtained by scaling the outline of the structure geometry by a factor 1.2.

We use the same temperature dependent material properties described in Sec-

tion 4.5 for both the substrate and the structure.

Table 1 reports the process parameters used during the build process for

the EOS M270. After building, part of the �nal structure is removed from the

support plate by means of electrical discharge machining (EDM), allowing the

part to de�ect upward due to the residual stress. The 11 ridges built on the

upper surface of the structure (see Figure 3) are ground to obtain a smooth sur-

face allowing an accurate prediction of the de�ection by means of a coordinate

measuring machine. Di�erent measurements were performed at the NIST labo-

ratories, including upward de�ection after removing the part from the substrate.

For further details on the measuring process we refer to [30].

In the present work, we aim at replicating the measured upward de�ection

of the structure by means of the numerical method described in the following

section.

Parameters Value
Total number of layers 625
Average layer time 52 s
Layer height 20 µm
Contour scan speed 900 mm/s
Contour laser power 100 W
In�ll scan speed 800 mm/s
In�ll laser power 195 W
Hatch distance 100 µm
Laser spot size (FWHM) 50 µm (estimated)

Table 1: Process parameters [29]

4. Numerical method

In this work, we employ the Finite Cell Method, an immersed boundary

�nite element method, to solve the thermo-mechanical problem de�ned in Sec-

tion 2. FCM, thanks to its immersed nature, allows to solve physical problems

on complex geometries avoiding time consuming conforming mesh generation
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Figure 3: Original .stl �le with measurement ridges and removed support description
(source [29]).

processes. Further details on the implementation of an FCM-based thermo-

mechanical problem solver can be found in [31].

4.1. The Finite Cell Method

Ωphys

(a) Physical domain Ωphys.

Ωphys

Ωfict

(b) Fictitious domain extension.

Ωphys

Ωfict

(c) Finite cell mesh.

Figure 4: Illustration of the Finite Cell Method.

Figure 4 depicts the main idea of the Finite Cell Method. Starting from a

generic initial domain Ωphys, referred to as the physical domain, FCM extends

Ωphys by adding a �ctitious domain Ω�ct such that the �nal domain Ω = Ωphys∪

Ω�ct has a simple shape (e.g., a rectangle in two-dimensions or a cuboid in

three-dimensions) that can be trivially discretized using regular elements, see,

e.g., [22, 32].
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Structured Cartesian meshes, whose elements do not conform to the bound-

ary of the physical domain Ωphys are commonly used in FCM. These elements

are referred to as cells to di�erentiate them from boundary conforming �nite

elements, hence the name Finite Cell Method. Only cells intersecting the phys-

ical domain are considered during a Finite Cell simulation, which includes cells

that lie completely in Ωphys and the so-called cut cells that are intersected by

the boundary of Ωphys. The solution space spanned by the shape functions is

de�ned on the cells, while the original physical geometry Ωphys is implicitly re-

constructed by means of an indicator function α that associates an arbitrary

point in Ω with either the physical or the �ctitious domain. The indicator

function α is de�ned as

α =

 1

10−g

∀x ∈ Ωphy

∀x ∈ Ωfict

(6)

where, for numerical stability reasons g is typically selected between 4 and

12. The discontinuity introduced by the indicator function α requires adaptive

integration schemes. We refer to [33, 34] for further details. To numerically solve

the problem discussed in Section 2, we employ a simple yet e�ective voxel-based

integration scheme and refer the interested reader to [35] for further details.

The method is formulated such that high order basis functions can be di-

rectly employed to approximate the solution space. In particular, integrated

Legendre polynomials and B-spline basis functions have already been exten-

sively employed [36, 37].

Remark. Our implementation is completely general and can be used with any

polynomial degree (and in the case of splines also with high continuity). How-

ever, we remark that, in the present work, for the sake of simplicity given the

relatively simple geometries studied, we always adopt a polynomial degree p = 1.

Nevertheless, the possibility to increase it is surely attractive in particular when

very complex geometries are involved (e.g., lattice structures) and/or when ex-

tremely accurate values of derived quantities such as residual strains and stresses
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are required. This speci�c topic will be studied in a forthcoming contribution.

Remark. In the presented implementation, the voxelized geometry is solely used

to distribute the integration points in a simple way. The geometry of the part

which is employed to perform the inside/outside test to evaluate the indicator

function α and to impose the boundary conditions is the original .stl model.

Therefore, this FCM discretization should not be confused with a voxel-based

FEM approach (see, e.g., [38] ).

4.2. Activation procedure

Figure 5 shows the FCM cell discretization embedding the original .stl data

�le together with the base plate support (cells completely outside the domain

are not visualized). In all the performed analyses, we employ trilinear hex-

ahedral elements for the approximation of the solution space, while on each

integration voxel we distribute eight Gauss points. Since no conforming mesh

generation is required, we can directly import the .stl �le into the numerical

thermo-mechanical problem solver.

The presented methodology allows to distinguish between two di�erent kind

of layers:

1. cell-layer : the layer of �nite cells where the basis functions are supported;

2. powder- or physical-layer : the layer corresponding to the actual layer of

powder spread by the AM machine.

In the present implementation, at the beginning of each thermo-mechanical

cycle a new cell-layer, including m powder-layers, is created. As described

in Section 4.1, the geometry is reconstructed only at the integration level by

means of a voxel based integration grid, which is chosen to be much �ner than

the cell discretization. In particular, we use 4 × 4 × 4 voxels in each �nite cell

and (p+ 1)d Gauss integration points in each voxel, where p is the ansatz order

of the basis functions and d indicates the dimensionality of the problem. In case

of trilinear �nite cells for 3D problems, we have 8 Gauss points/voxel.
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Figure 5: FCM cell edges (gray) embedding the original .stl �le (orange).

4.3. Time integration

In the presented numerical implementation, we employ a backward Euler

implicit time integration scheme and we distinguish between a heating and a

cooling time step having di�erent time step sizes. Each time step can be further

subdivided into smaller sub-steps to improve convergence. In a single heating

time step, we activate a cell-layer L including m physical-layers.

The heating time step size ∆tLh depends on the heated surface (i.e., on the

geometry of those speci�c powder layers). It is, thus, evaluated at run time as

follows:

∆tLh =

m∑
i=1

HASi

hdv
(7)

where HASi is the heat a�ected surface of the ith-layer, hd the hatch distance

of the speci�c laser scan strategy, and v the laser velocity.

The cooling time step size ∆tLc is instead calculated as follows:

∆tLc = mt̄l −∆tLh , (8)

where t̄l is the average layer time (see Table 1), i.e., the average time spent to

print a single powder layer including the dwell time and the powder deposition
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time.

4.4. Thermo-mechanical cycle

Once a new cell-layer is generated, an inside-outside test is performed at each

integration point (see Figure 6) to assign the value of the indicator function α

de�ned in Section 4.1. At this stage of the process we are already able to start

the thermo-mechanical cycle depicted in Figure 7.

It is worth to point out that the total thickness of the m new powder layers

created within a single thermo-mechanical cycle does not have to correspond to

the cell-layer height due to the immersed nature of the method. For instance,

in Figure 6, the powder-layer thickness created in a cycle is half of the cell-layer

height. Nevertheless, in both our numerical simulations and in the following

description, at each thermo-mechanical cycle, we assume that the powder-layer

thickness created in a cycle corresponds to the height of a single cell-layer. In

particular, for the simulations presented in this work, we employ two di�erent

values of the parameter m: m = 125 and m = 25. Since each powder layer has

a thickness of 20µm, the corresponding cell thicknesses will be 2.5 and 0.5 mm,

respectively.

At the beginning of each thermo-mechanical cycle, a new cell-layer L includ-

ing m powder-layers is activated and an equivalent thermal load Q is applied

onto the HAV of L. The HAV of a single cell-layer is evaluated as follows:

HAV =

nv∑
i

Vi (9)

where Vi is the volume of the ith voxel and nv is the total number of voxels in

the cell L.

Equation (1) is then solved on the new domain for the heating time step

increment ∆tLh and the evaluated temperature �eld is used to compute the

thermal strain εth in the mechanical problem. The layer cycle is completed by

a cooling time step where Equation (1) is solved for Q = 0 and the residual

stresses in the structure are generated.
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(a) Gauss integration points embedding
the .stl growing domain.

(b) Gauss integration points and the cor-
responding �nite cell discretization.

Figure 6: Integration point inside-outside test. In red are represented the Gauss points lying
within the physical domain, while in white are the Gauss points lying outside the domain. In
this case, we employ a voxel-based integration grid with 2 × 2 × 2 voxels/cell and 23 Gauss
points/voxel.

An important feature of the adopted physical model is the choice of the initial

temperature of the newly created integration points of the mesh every time a

new cell-layer is created. This value, in fact, is used to evaluate the thermal

strain in the mechanical model and has a strong in�uence to predict the correct
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Figure 7: Thermo-mechanical part-scale modeling �owchart.

mechanical behavior during both the manufacturing process and the support

removal stage. Following the pragmatic approach, we instantiate the new Gauss

point temperature value at the so-called relaxation temperature de�ned as �the

temperature above which thermal strain induces negligible thermal stress� [19],

which for IN625 is 750◦C.

Once the entire LPBF process is simulated and the �nal residual stresses

within the component are computed, a part-removal step is carried out where

the base plate cells are progressively removed and the �nal de�ection of the

artifact is calculated.

The main di�erence between the proposed scheme and other similar multiple-

layer activation schemes present in the literature is the possibility to separate the

resolution of the geometry description from the solution approximation. More-

over, in this work the cells are newly generated as each layer is activated, i.e.,

we employ a so-called birth-death element procedure (Martukanitz et al. [39]).

This choice is justi�ed by the fact that generating a cell layer in a cartesian

grid structure is an extremely simple operation. Thereby, about half the com-

putational resources are saved during the course of the simulation and we can

concentrate memory and computational power only where is actually needed,

18



without allocating any space for inactive elements, as required for instance by

the quiet element method [40].

4.5. Material Properties

The material considered in this work is the nickel-based superalloy IN625.

This alloy is commonly used in industry and therefore its material properties

are well-known and widely available. However, in AM applications, we need to

obtain accurate measuments of material properties not only at ambient temper-

ature but also at temperatures close to melting. The temperature-dependent

material properties are taken from [41] and reported in Figure 8. In this work we

implement a temperature independent yielding behavior with linear hardening

as de�ned in [42].
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Figure 8: IN625: Temperature-dependent material properties (source [41]).
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4.6. Domain discretization

The original .stl �le and the base plate domain are immersed within an

embedded domain discretized using 180 × 12 × 2N �nite cells, where N is the

total number of cell-layers activated in the analysis. Since the total number of

powder-layers of the structure is 625, N can be computed as

N =
625

m
.

Therefore, choosing m = 125, we have 5 elements in the structure height and 5

elements in the support height, and, for m = 25, we have 25 elements in both

the structure and the support height.

4.7. Initial and Boundary conditions

In our analysis, we assume that the temperature at the bottom of the base

plate is constantly maintained at 80◦C, whereas the room temperature within

the building chamber is 25◦C. Therefore, at the bottom of the base plate we

apply a Dirichlet boundary condition (BC) imposing the temperature to be equal

to the base plate temperature, while the initial temperature on the remaining

degrees of freedom is set to the room temperature.

The heat dissipated by conduction through the powder and by convection

and radiation through the upper surface of the structure is applied by means

of Neumann BCs as described in Section 2.1. Mechanical boundary conditions

are imposed clamping the bottom surface of the base plate and progressively

removing base plate elements during the support removal stage.

A key feature of the presented implementation is that we can weakly ap-

ply both Dirichlet and Neumann boundary conditions directly on .stl geometry

(see Figure 9). This feature turns out to be particularly important to correctly

solve the thermal problem (see [43] for further details on the application of weak

boundary conditions in FCM).
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Figure 9: A geometrical detail of the triangular .stl surface (blue edges) used for the application
of thermal boundary conditions. In gray the cells embedding the original domain. Note that
the embedding domain is not matching the .stl surface boundaries.

4.8. Error metrics

In the following discussion, we employ two metrics to assess the accuracy of

our numerical results with respect to experimental measurements:

1. The percent error of the maximum de�ection (measured on the 11th ridge

of the structure, see Figure 3);

2. the correlation coe�cient C over vertical displacements at each ridge of

the structure, de�ned as:

C(N,M)% =

∑11
i=1(un,i − ūn)(um,i − ūm)√∑11

i=1(un,i − ūn)2
∑11

i=1(um,i − ūm)2
× 100% (10)

where M and N are the set of measured and simulated data, um,i and

un,i the corresponding displacement values of each set at the ith-ridge of

the structure, and ūm and ūn are the corresponding mean values. There-

fore, a correlation C = 100% indicates a perfect correlation between the

numerical results and the experimental measurements.
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X Measured m =125 m =25
0.5 1.276 1.33 1.256
7.5 0.997 1 0.98
14.5 0.754 0.76 0.73
21.5 0.551 0.56 0.53
28.5 0.387 0.4 0.37
35.5 0.25 0.26 0.24
42.5 0.146 0.15 0.15
49.5 0.065 0.06 0.07
56.5 0.012 0.01 0.02
63.5 0 -0.02 0
70.5 0.003 -0.02 -0.01

Table 2: Experimental measurements and numerical results of upward de�ection at the mid-
point of each ridge (X).

5. Results and discussion

All the numerical analyses discussed in this section have been obtained

using AdhoC++ on a desktop computer provided with Intel R© Core
TM

i7-6700,

CPU@4.0GHz, RAM 64Gb.

The approximated upward de�ections measured at the mid-point of each

grounded ridge are reported in Table 2 and Figure 10 together with the cor-

responding simulated results. Table 3 reports the relative maximum de�ection

error percentage, the correlation value C, and the total wall-clock time of the

simulated results.

The coarse analysis (m = 125) delivers an error on the maximum de�ection

of 4.72%, while in the re�ned analysis (m = 25) this error drops down to ap-

proximately 1%. Both analyses show an excellent (almost perfect) correlation

with respect to the measured data. The computational speed up obtained by

means of the coarse analysis is very signi�cant, dropping from more than 8 hours

to less than 90 minutes (factor 5.5). Moreover, the computational time can be

consistently further reduced employing a distributed parallel implementation,

which will be addressed in a forthcoming contribution.

Figure 11 shows the temperature distribution at each heating time step (i.e.,

when the equivalent heat source is applied in the new layer), on the embedded

23



0 10 20 30 40 50 60 70
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

X [mm]

U
p
w

a
rd

d
efl

ec
ti

o
n

[m
m

]
AMB2018-01-625-CBM-B1-P3

Numerical results m = 125

Numerical results m = 25

0 10 20 30 40 50 60 70
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

X [mm]

U
p
w

a
rd

d
efl

ec
ti

o
n

[m
m

]
AMB2018-01-625-CBM-B1-P3

Numerical results m = 125

Numerical results m = 25

Figure 10: Part de�ection measured at each ridge of the cantilever structure.

max. error [%] C [%] Wall-clock time
m =125 4.72 99.98 1h 28m
m =25 1.10 99.99 8h 19m

Table 3: Maximum de�ection error, correlation coe�cient, and total wall-clock time of the
numerical simulations.

.stl surface geometry for the case m = 125 (our coarsest discretization). The

same surface geometry is also used in our implementation to apply thermal

boundary conditions.

Figure 12 and Figure 13 show the von Mises stress distribution at the end

of the last cooling time step for the cases m = 125 and m = 25, respectively.

During support removal, residual stresses are relieved generating an upward de-

�ection of the �nal structure. In Figure 12, we can observe that in the building

direction the stresses are characterized by stronger jumps at the element inter-

faces compared to the results of Figure 13. This e�ect is due to the coarser

cell size employed for the analysis along the building direction. Nevertheless,
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(c) (d)

(e)

Figure 11: Temperature distribution at each heating time step.

the accuracy of the predicted part de�ection is not drastically a�ected and the

relative error on the maximal de�ection is kept below 5%.

A possible interpretation of these results starts from the observation that in

both computations the geometry is represented with the same accuracy. There-

fore, the only di�erences between the two analyses is the number of thermo-
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Figure 12: Residual von Mises stresses at the end of the process (m = 125).

Figure 13: Residual von Mises stresses at the end of the process (m = 25).

mechanical cycles (5 and 25, respectively) and the number of �nite cells in the

growing direction (10 and 50, respectively). Since the layer thickness of a single

powder-layer is much smaller than in the other two dimensions, shear stresses

induced by the newly deposited layers on the previous layers are quite small

compared to in-plane, normal stresses; thus a coarse mesh in the building direc-

tion is still able to well capture part-de�ection induced by residual stresses.

Employing an immersed approach, i.e., decoupling the geometry represen-

tation from the discretization of the solution space, allows to adopt very coarse

elements along the building direction paying a negligible price in terms of ac-

curacy. On the contrary, a standard FEM approach using such a coarse dis-
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cretization along the growing direction would lead to less accurate results since

the geometry cannot be represented with su�cient accuracy anymore. Clearly,

for the present benchmark numerical simulations can be obtained also by means

of classical FEM codes, e.g., in Yang et al. [19] an excellent agreement with the

measured stains of the �nal structure is obtained using ABAQUS AM R©.

However, the main advantage of the proposed immersed boundary work-

�ow compared to conforming mesh discretization lies in the possibility to per-

form design-through-analysis within a single, yet e�ective numerical environ-

ment and without the necessity to generate �nite element meshes which conform

to the boundary of the simulated artifact.

6. Conslusions

Obtaining a suitable FEM discretization from complex CAD models can be

very challenging and time-consuming. By means of the Finite Cell Method,

we are able to implicitly reconstruct the geometry of the produced part without

generating a conforming mesh. Combining FCM and a simple yet e�ective part-

scale model, we are able to accurately capture experimental measurements of

part de�ection after support removal.

The immersed nature of FCM allows to employ a very coarse discretization,

able to perform the entire calculation in less than 90 minutes on a standard

desktop computer, delivering at the same time results with a very accurate cor-

relation with experimental measurements while keeping the maximum de�ection

error below 5%. Employing a �ner discretization leads to very similar results in

terms of correlation percentage, while the maximum de�ection error decreases

down to approximately 1%.

It is concluded that the use of an immersed methodology to perform LPBF

large scale process simulations opens the possibility to rapidly estimate part

deformation directly within a CAD environment, since there is no need of a

conforming mesh generation process. This aspect, which is generally neglected

in most of the literature on LPBF simulation, could instead be crucial in the
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industrial practice.

Possible further developments of the present work can include an exten-

sion of the numerical scheme to allow local re�nement and the use of a more

sophisticated multi-scale physical model, such as the modi�ed inherent strain

method [16]. Moreover, the computational time could be further reduced by

means of parallel computation and code parallelization.
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