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Abstract

Tourists exploring a city often look for sequences of points of interest, such as museums,
restaurants, and parks, that they can visit along a route. The problem of identifying such
tourist trips is called the Tourist Trip Design Problem (TTDP). Many algorithms and
heuristics solving the TTDP have been developed in the past, but only few of them try
to find the best trip from a user-centered perspective. Recommender Systems (RSs) in
tourism have to take into account the user’s context and real needs to provide accurate
and useful recommendations. In addition, they need to be integrated into practical
applications that are a pleasure to use in order to support users in finding desired
results. In practice, tourists often travel in groups, which complicates the problem of
finding satisfying recommendations. RSs for groups have to consider the preferences of
all group members and provide recommendations that are perceived as useful and fair
by the whole group.

In this thesis, we show how to solve the TTDP for individuals and groups from a
user-centered perspective. For this purpose, we suggest different extensions to a state-
of-the-art tourist trip algorithm that allow a more realistic modeling of the TTDP, such
as context-aware recommendations. In addition, we present platforms and user interfaces
for the integration of TTDP algorithms into practical applications that help tourists in
finding the best trip. We demonstrate how to extend our approach to solve the TTDP
not only for individuals, but also groups of users. A key contribution of this thesis is
the evaluation of all of our proposed solutions in user studies. Furthermore, we have
conducted a large user study showing how real groups make travel-related decisions and
how they can be supported in finding satisfying recommendations. The results of this
thesis are supposed to facilitate the development of RSs in the tourism domain and
improve the quality of tourist trip recommendations for individuals and groups.
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Zusammenfassung

Touristen, die eine Stadt erkunden, suchen oft nach einer Folge von Sehenswürdigkeiten,
wie z.B. Museen, Restaurants und Parks, welche sie entlang einer Route besuchen
können. Das Problem der Identifizierung solcher Touristenreisen bezeichnet man als
Tourist Trip Design Problem (TTDP). In der Vergangenheit wurden viele Algorith-
men und Heuristiken zur Lösung des TTDP entwickelt, doch nur wenige dieser Ansätze
versuchen, die beste Reise aus Benutzersicht zu finden. Empfehlungssysteme in der
Tourismusbranche müssen den Kontext und die tatsächlichen Bedürfnisse des Benutzers
berücksichtigen, um akkurate und nützliche Empfehlungen bereitzustellen. Darüber hi-
naus müssen sie in praktische Anwendungen integriert werden, die mit Freude benutzt
werden können, um die Benutzer bei der Suche nach den gewünschten Ergebnissen zu
unterstützen. In der Praxis reisen Touristen oft in Gruppen, was das Problem, zufrieden-
stellende Empfehlungen zu finden, erschwert. Empfehlungssysteme für Gruppen müssen
die Präferenzen aller Gruppenmitglieder berücksichtigen und Empfehlungen generieren,
die von der gesamten Gruppe als nützlich und fair empfunden werden.

In dieser Arbeit zeigen wir, wie das TTDP für Einzelpersonen und Gruppen aus
Benutzersicht gelöst werden kann. Zu diesem Zweck schlagen wir verschiedene Erweite-
rungen eines modernen Touristenreise-Algorithmus vor, die eine realistischere Modellie-
rung des TTDP ermöglichen, wie z.B. kontextsensitive Empfehlungen. Darüber hinaus
präsentieren wir Plattformen und Nutzerschnittstellen für die Integration von TTDP
Algorithmen in praktische Anwendungen, die Touristen bei der Suche nach der besten
Reise helfen. Wir zeigen, wie wir unseren Ansatz erweitern können, um das TTDP
nicht nur für Einzelpersonen, sondern auch für Gruppen zu lösen. Ein wesentlicher
Beitrag dieser Arbeit ist die Evaluierung aller unserer Lösungsvorschläge in Benutzer-
studien. Darüber hinaus haben wir eine große Benutzerstudie durchgeführt, die zeigt, wie
echte Gruppen reisebezogene Entscheidungen fällen und wie diese bei der Suche nach
zufriedenstellenden Empfehlungen unterstützt werden können. Die Ergebnisse dieser
Arbeit sollen die Entwicklung von Empfehlungssystemen in der Tourismusbranche er-
leichtern und die Qualität von touristischen Reiseempfehlungen für Einzelpersonen und
Gruppen verbessern.
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1 Introduction

According to the World Travel and Tourism Council [1], travel and tourism is one of
the most important sectors for economic development. In 2018, the sector contributed
directly or indirectly US$ 8.8 trillion to the global economy and supported 292 million
jobs which is equal to 10.4% of the world’s gross domestic product and 1 in 10 of all
jobs. The number of tourist arrivals is expected to reach 2.2 bn by 2029.

Large cities offer an almost infinite number of points of interest (POIs) that tourists
can visit on a trip, such as museums, restaurants, and parks. Visiting all POIs is
usually not feasible due to constraints, such as the time or budget available for the
trip. Consequently, when planning a trip, tourists are looking for the POIs that are
of most interest to them. However, identifying attractive POIs in an unfamiliar area
is a challenge. Gathering information from tourist guides, magazines, or travel-related
websites is time-consuming. Browsing a lot of data makes it difficult to make decisions
and increases the risk of missing attractive POIs. This so-called information overload
problem justifies the demand for tools to filter large amounts of data when searching for
information that is of great interest to the user [2]. Recommender Systems (RSs) are an
example of such information filtering tools which are already very popular in the field of
tourism [3].

Recommending “physical” items, such as POIs, is more challenging than recommend-
ing digital products, such as movies [4]: Users have to physically visit POIs to know and
rate them. The cost of visiting a POI is more expensive than watching a movie. If a
POI can be visited depends also on many contextual factors, such as the time, location,
and weather. For instance, outdoor activities are less suitable on a rainy day. Further-
more, travel preferences can change over time. A family is more interested in visiting
parenting-related POIs, such as playgrounds, after having a baby.

Identifying the most attractive POIs is only the first step of travel planning. When
exploring a city on a single- or multi-day trip, users usually want to visit POIs along an
enjoyable and feasible route. Ideally, this route contains the most attractive POIs and
respects user constraints related to travel cost and trip duration while avoiding inappro-
priate detours. Another critical aspect of trip planning is the order in which POIs are
visited. On the one hand, it has been shown that human movement follows reproducible
patterns [5]. For instance, many people enjoy going to a bar for a drink after having
dinner at a restaurant. On the other hand, travelers want to avoid unpleasant combi-
nations of POIs, such as visiting two restaurants within a short time frame. Likewise,
POIs should be recommended at the right time during a trip. A restaurant is more
appreciated during midday or in the evening, for example. Nevertheless, the order of
POIs in a tourist trip is not as flexible as the order of songs in a playlist, for example,
because the location of the recommended POIs becomes a limiting factor.
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The problem of finding tourist trips that respect the aforementioned constraints is
called the Tourist Trip Design Problem (TTDP) [6]. The current generation of so-called
Mobile Tourist Guides (MTGs)1 is supposed to not only identify travel items of interest
to the user, but also solve the TTDP by providing routing features to combine POIs
along enjoyable routes. Tourist trip RSs that take into account contextual factors are
called Context-Aware Recommender Systems (CARSs) [8].

In practice, tourists often travel in groups. This complicates the problem of finding
a tourist trip since group members often have different opinions on what to visit on a
trip. The travel preferences and constraints of all group members should be considered
when agreeing on a tourist trip to satisfy all group members. Different strategies for
aggregating user preferences exist; however, there is no single perfect one. Instead, the
group’s intrinsic characteristics and the problem’s nature have to be considered [9].

Group Recommender Systems (GRSs) support the decision-making of groups of users.
They acquire the group members’ preferences, use a group recommendation strategy to
come up with recommendations, present recommendations to the group, and support
the group members in making a final choice [10]. Thereby, not only the selected group
recommendation strategy, but also the way how groups interact with the GRS plays an
important role on the way to reach a consensus in a group. For instance, a recommen-
dation could be presented on a shared display which may facilitate an open discussion
between the group members. However, in this case, the interaction could be dominated
by few group members and some people may feel uncomfortable when revealing their
preferences to others. An alternative is to keep private data on personal devices, such
as smartphones, and use the shared display solely to present the final recommendation
to the group. Many factors can influence a group’s choice of the preferred GRS config-
uration, for instance, the group type and the relationship between the group members.

1.1 Problem Statement

Much research has been done to recommend travel items, such as POIs, to users. Today,
the focus is shifting towards recommending tourist trips, that is, personalized sequences
of POIs along feasible and enjoyable routes. While most TTDP approaches tackle the
problem of finding the best tourist trip from a pure Operations Research (OR) perspec-
tive, little research has been done to solve the TTDP from a user-centered perspective
taking into account typical aspects of RSs. For instance, existing approaches do not
consider the fact that the perceived value of a POI or trip can differ between users and
highly depends on the context of the recommendation. Furthermore, only few TTDP
works have been integrated in practical applications and evaluated in user studies with
real users or groups. Consequently, current tourist trip RSs are not necessarily a pleasure
to use or do not satisfy the users’ true needs.

Until today, TTDP research focuses only on recommendations for individuals and does
not consider that tourists often travel in groups. Existing GRSs recommend POIs to

1In published literature, MTGs are also known as (personalized) electronic tourist guides and personal
navigation systems for tourism [7].

2



1.2 Goals of the Thesis

groups, but do not combine them along routes that satisfy all group members. A deep
understanding of how groups behave when interacting with GRSs, especially in public
places while traveling, is still missing. The result are GRS configurations that either
provide a poor user experience (UX) or generate recommendations that are perceived as
unfair or inaccurate.

In summary, many approaches exist to combine POIs along routes. However, these
approaches often lack the user focus. They either do not tailor the recommendations to
the users’ needs or consider how individuals and groups interact with tourist trip RSs.
User-centered approaches to solving the TTDP are required to overcome these problems.
They should be integrated into practical applications and evaluated in user studies to
measure their utility when used by real users and groups.

1.2 Goals of the Thesis

In this thesis, we wanted to tackle the aforementioned problems. Our main goal was to
increase the satisfaction of individuals and groups interacting with tourist trip RSs. For
this purpose, we wanted to answer the following research question (RQ):

How can RSs solve the TTDP for individuals and groups of users from a
user-centered perspective?

Based on the description of the identified problems, we broke down the main RQ into
smaller subproblems:

RQ 1 How can existing TTDP algorithms be extended to increase the satisfaction of
individuals with the recommended trips?

RQ 2 Which platforms and user interfaces (UIs) support tourists the best in solving the
TTDP in realistic scenarios with regard to different usability and UX criteria?

RQ 3 Which group recommendation strategies provide the highest user satisfaction
when solving the TTDP for groups?

RQ 4 How do different group types agree on decisions when interacting with a GRS for
tourist trips and how fair are their decisions?

RQ 5 Which platform-UI configurations for receiving group recommendations support
groups the best when looking for a tourist trip with regard to different UX criteria?

In the following chapters, we present our solutions to each of these problems and
explain how we verified them in user studies to answer all RQs. The outcome of this
thesis are concrete recommendations for the development of practical tourist trip RSs.
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1.3 Methodology

The methodology in this thesis is characterized by prototyping and user studies to solve
the TTDP from a user-centered perspective and answer the RQs.

As a first step in our research, we developed a framework for the development and
evaluation of platform-independent RSs. We used this framework to develop the tourist
trip RS TourRec, a practical application that we used as the basis for answering the
RQs in this thesis. The modular and scalable architecture of TourRec allowed us to
add new recommendation algorithms, clients, and data sources to the RS and facilitated
the evaluation of these components in user studies.

With the introduction of TourRec, we developed a general approach of solving
the TTDP from a user-centered perspective. We developed different extensions to this
general approach to increase the user satisfaction with the recommended tourist trips.
Using previous works as baselines, we evaluated our extensions in different user studies.
In addition, we conducted an online evaluation with real users over a period of more than
one year. The results of our studies allowed us to understand how different extensions
can improve the quality of the recommended trips. Furthermore, we conducted user
studies to evaluate different UIs for tourist trip RSs for individuals.

The findings we received from the evaluations of our algorithms and UIs for tourist trip
RSs for individuals were the basis for solving the TTDP for groups. For this purpose, we
adapted existing group recommendation strategies and developed novel approaches. We
compared all strategies in a large user study to identify the most promising strategies
for different group types.

We extended TourRec’s UIs to enable group recommendations. We conducted a
user study to determine the best configurations for receiving group recommendations.
For this purpose, we observed how different group types agree on travel preferences and
to what extent their decisions respect each group member’s preferences in a user study.
In addition, we evaluated different GRSs configurations with regard to different UX
criteria. A major drawback of previous research in the field of GRSs is that studies were
either conducted on a small scale, in a contrived setting, or used synthetic groups which
can lead to falsified results [11]. This is why we conducted our studies in a user-centered
approach with real groups only.

The presented methodology follows the design-science process, as introduced by Hevner
et al. [12]. In this thesis, we addressed each of the seven guidelines for design-science
research to the following extent:

Guideline 1: Design as an Artifact We produced viable artifacts in form of a frame-
work and multiple prototypes that we evaluated in user studies to answer our RQs.

Guideline 2: Problem Relevance We reviewed a large number of published literature
in the relevant research fields (see Sections 2.3, 2.4.3, 3.1, 4.1, and 5.2). This allowed us
to identify research gaps and open challenges and confirm the importance and relevance
of our RQs.
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Guideline 3: Design Evaluation We conducted user studies to evaluate all of the
prototypes that we developed in the course of this thesis to answer our RQs. Table 1.1
summarizes the main goals and metrics of all user studies in this thesis. More detailed
explanations are provided in the respective sections.

Table 1.1: Overview of user studies conducted within the scope of this thesis.

Section Main goal Metrics

5.3.3 Comparison of a context-aware tourist trip al-
gorithm with a context-unaware solution

User satisfaction

5.4.4 Measurement of the impact of route attrac-
tiveness attributes on the user’s decision of
choosing a walking route between two POIs

Travel decision

5.4.4 Evaluation of the quality of recommended
routes that consider route attractiveness at-
tributes

Selected recommendation

5.6 Evaluation of additional extensions for tourist
trip algorithms with real users

User preferences, user re-
quests, and recommenda-
tion characteristics

6.1.2 Evaluation of the usability of a web-based,
context-aware tourist trip RS

Usability

6.2.2 Evaluation of the usability of a mobile tourist
trip RS

Usability

6.5 Comparison of different platform-UI configu-
rations for tourist trip RSs

UX

7.3 Comparison of different group recommenda-
tion strategies for solving the TTDP for groups

User satisfaction

8.2 Analyzing travel preferences of different group
types and understanding group behavior and
decision making when interacting with GRSs
for tourist trips

Group homogeneity,
fairness, applied decision
making strategies, and
observed group behavior

8.2 Comparison of different platform-UI configu-
rations for tourist trip GRSs

UX

Guideline 4: Research Contributions This thesis contributes to the research fields of
OR, RSs and Human-Computer Interaction (HCI). Section 1.5 summarizes all of our
contributions.

Guideline 5: Research Rigor Our research relies on rigorous methods: Our ideas are
based on the results of related work, prototypically implemented, and evaluated in user
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studies. We used statistical tests and qualitative analyses where applicable to prove our
findings.

Guideline 6: Design as a Search Process The design process of our research is a
search process. We iteratively developed solutions to answer our RQs, verified them in
user studies, and used the findings as input for the subsequent research phases.

Guideline 7: Communication of Research We published the results of this thesis
in peer-reviewed journals, conference and workshop papers, and book chapters. Ap-
pendix A lists all of our own publications and summarizes all excerpts from these pub-
lications.

1.4 Structure of the Thesis

The rest of this thesis is organized as follows:

Chapter 2 presents the fundamentals of RSs that are required to solve the TTDP
for individuals and groups from a user-centered perspective. A broad understanding
of recommendation techniques, context-aware recommendations, RSs in tourism, GRSs,
UIs for RSs, and the evaluation of RSs is necessary to fully comprehend the RQs in this
thesis and the solutions that we developed to answer them. This is why we introduce
each of these aspects in detail and summarize important related work where applicable
to highlight our contributions in the relevant research areas.

In Chapter 3, we introduce the TTDP. We present different route planning problems
that serve as models for the TTDP. Furthermore, we present the most important al-
gorithms and heuristics for each of these problems and provide an overview of open
challenges in TTDP research.

Chapter 4 introduces the AnyRec framework for the development and evaluation
of platform-independent RSs. We explain how the framework can be used to develop
practical tourist trip applications and evaluate different components from a user-centered
perspective. Furthermore, we introduce the tourist trip RS TourRec that we developed
using AnyRec.

In Chapter 5, we present a general approach to generate tourist trip recommenda-
tions for individuals and introduce different extensions to improve it. We show how
to enable context-aware recommendations that allow a more realistic prediction of POI
values when recommending tourist trips. Furthermore, we integrate route attractiveness
attributes that consider the quality of the routes between two POIs to recommend more
attractive trips. We present the results of user studies that we conducted to evaluate
our extensions and suggest further ideas to improve our approaches. In addition, we
summarize the insights of the online evaluation that we conducted using the live version
of TourRec. Consequently, RQ 1 can be answered.

In Chapter 6, we present different UIs for solving the TTDP for individuals. These
UIs include a web-based application, a mobile application, a public display variant, and
a Distributed User Interface (DUI) approach combining a smartphone with a public
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display. We explain how we evaluated the UIs in user studies and summarize the results
of these studies to answer RQ 2.

In Chapter 7, we present group recommendation strategies that we developed to rec-
ommend tourist trips to groups. We explain every strategy in detail and show how we
evaluated them in a user study. The results of this study allow us to answer RQ 3.

RQ 4 and RQ 5 are answered in Chapter 8. We present the results of a user study
in which we analyzed how different group types decide on travel preferences when in-
teracting with GRSs for tourist trips and evaluated the fairness of group decisions.
Furthermore, we introduce different configurations for receiving group recommendations
and the results of the user study that we conducted to evaluate these configurations with
real groups.

In Chapter 9, we summarize our results, discuss them, and present the limitations of
this thesis. Furthermore, we suggest future work.

1.5 Contributions

This thesis delivers new insights into the research fields of OR, RSs and HCI. More
concretely, it shows how connecting relevant aspects of these fields allows us to solve
the TTDP from a user-centered perspective. In the following, we present the main
contributions of this thesis.

The Combination of Research in Combinatorial Optimization Problems with Current
Topics in RSs Research in RSs is mainly based on machine learning and artificial intel-
ligence techniques. However, recent research tries to develop recommendation algorithms
utilizing OR methods [13]. Finding optimal routes for tourists is a typical combinato-
rial optimization problem. In the relevant literature, the so-called Orienteering Problem
(OP) is used as a basic model for finding tourist trips composed of multiple POIs [14].
Previous research in this field developed algorithms providing optimal or near-optimal
solutions to the problem but rarely integrated these algorithms into practical applica-
tions. Furthermore, existing OP solutions cover only very few of the important aspects
of RSs, such as preference elicitation, fast algorithms for practical applications, context-
aware recommendations, recommendations for groups, and UIs for RSs. We show how
practical RS applications taking into account these aspects can utilize OR methods to
provide individuals and groups with feasible and enjoyable recommendations that satisfy
their needs.

Approaches for Solving the TTDP from a User-Centered Perspective In published
TTDP literature, the value of a POI for a user is often described as a fixed profit, and the
value of a trip is simply the sum of the POI profits. Novel algorithms are often evaluated
by comparing them to optimal solutions. In this case, the researchers’ main goal is to
find near-optimal solutions with few gaps and quick execution times. However, when
utilizing these algorithms in practical applications, this evaluation type is not suitable.
The goal of RSs is to suggest items which are not necessarily an optimal solution from
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a pure mathematical perspective but instead a pleasure for the user [15]. The perceived
quality of a tourist trip recommendation depends on many factors, such as the user’s
previous experiences, the attractiveness of routes between POIs, and the group type
when traveling with others. We developed algorithms that take into account the users’
personal preferences and these factors to better adapt the recommendations to the users’
actual needs. We evaluated our solutions in user studies to gain a better understanding
of how the recommendations are perceived by real users.

Strategies to Solve the TTDP for Groups of Users Until today, TTDP research
focuses solely on the creation of tourist trips for individuals. In practice, however,
tourists often travel in groups. Recently, first approaches to finding tourist trips that
satisfy all members of a group were published [7, 16]. Nevertheless, an investigation
which preference aggregation strategies work best to find a consensus is still missing [7].
We applied established group recommendation strategies to the TTDP and compared
them to novel approaches, such as a strategy that allows groups to split into smaller
groups during a trip. We show how well these strategies satisfy users based on a user
study that we conducted with real groups.

UIs for Solving the TTDP for Individuals and Groups Practical applications solving
the TTDP have to provide UIs that facilitate preference elicitation, present sequences of
POIs in an adequate and attractive manner, and allow users to provide feedback on single
items as well as on the whole sequence of POIs. The development of such UIs is especially
challenging when solving the TTDP for groups because multiple users interact with the
same RS at the same time. The goal is to create UIs that facilitate group decision making
which still requires more research. We developed and evaluated different prototypes and
UIs to solve the TTDP for individuals and groups. We conducted different user studies
to evaluate which platforms and UIs individuals and groups prefer and how they rate
them with regard to different usability and UX criteria.

A Comparison of Different Platform-UI Configurations of a GRS GRSs have to per-
form four tasks: Acquiring information about the members’ preferences, generating rec-
ommendations, presenting the recommendations to the members, and supporting them
in finding a consensus [10]. Different configurations of a GRS that solve these tasks
for tourists who are looking for a sequence of POIs are possible: connecting multiple
smartphones, sharing a public display, and combining both devices in a DUI approach.
To the best of our knowledge, we were the first to investigate the usage of public displays
in GRSs for tourist trips and compare different configurations of a GRS in a user study.
For this purpose, we conducted a user study with real groups and evaluated these config-
urations with regard to different UX criteria. Furthermore, we examined how the group
type influences a group’s choice of the preferred configuration and used these results to
provide recommendations for the design of GRSs.
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An Understanding of the Behavior of Different Group Types when Interacting with
a GRS Many factors can influence the process of decision-making in groups, such as
the group type and group homogeneity. Group members that know each other very well
communicate differently than people with a rather loose relationship. If group mem-
bers have similar travel preferences, chances are high that they can reach a consensus.
However, if discussions are dominated by one person or a subgroup, decision-making can
become unfair. We conducted a user study with real groups interacting with a fully work-
ing GRS. Thereby, we observed how different group types agree on group preferences
and to what extent these preferences respect each group member’s personal preferences.
We provide new insights into how the behavior of groups and the fairness of decision-
making in groups is influenced by group characteristics and provide recommendations
for the development of GRSs in tourism.

A Framework for the Development and Evaluation of Platform-Independent RSs
Researchers and students often face the problem of implementing the same core com-
ponents of a RS, such as a client applications, a backend, and user management, every
time they want to test an innovation in the field of RS research, such as novel algo-
rithms. This is why we developed AnyRec, a framework supporting the development
of practical RSs and their evaluation in user studies. AnyRec reduces implementation
overhead but does not limit developers in the selection of a programming language, for
example. It can be used to develop any type of RS. We developed the tourist trip RS
TourRec to answer the previously presented RQs. It is the first example of a practical
RS application that was developed using AnyRec.
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2 Fundamentals of Recommender Systems

In this chapter, we introduce the term Recommender System and present background
knowledge and related work that form the basis of this thesis. We explain how recom-
mendations can be made for individuals and groups, introduce context-aware recommen-
dations, show how RSs support tourists, and present UIs and evaluation strategies for
RSs.

2.1 Recommendation Techniques

RSs are “software tools and techniques that provide suggestions for items that are most
likely of interest to a particular user” [17]. Items that can be recommended to users can
be any type of product, service, or information. RSs have been successfully applied in
various domains, such as e-commerce [18], media [19], and tourism [3, 20].

In other words, the goal of a RS is to identify items that are useful for the user in a
given context. The utility of an item is often expressed in user ratings. Ratings can be
collected implicitly or explicitly [21]: Implicit ratings are derived from the users’ actions,
such as how long they view or consume a recommendation. Explicit ratings are provided
when the user is asked to rate an item on a pre-defined scale. Different types of rating
scales exist for this purpose [21, 22]:

• Unary : one rating option (e.g., “Like it”)

• Binary : two rating options (e.g., “Good / Bad”)

• Multi-staged : numeric or ordinal scales (e.g., five-star scale, 100-point slider)

In an experiment, Sparling and Sen [22] demonstrated that the cognitive load for all
types of non-unary scales is similar. Users were, however, most satisfied with the five-star
scale.

Ratings can be visualized in a user-item rating matrix [21]. Table 2.1 shows an example
of such a matrix with three users and four items. In this example, ratings are expressed
on a scale ranging from 0 (lowest rating) to 5 (highest rating). The empty cell indicates
that item 4 has not been rated by user C. A RS is supposed to predict the rating of user
C for item 4. If the rating is high, the recommendation should be presented to the user.

Formally spoken, a RS tries to estimate the rating function R

R : User × Item→ Rating

11
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Table 2.1: Example of a user-item rating matrix with three users and four items.

Item 1 Item 2 Item 3 Item 4

User A 2 0 5 5

User B 4 4 2 2

User C 2 0 4

for all items that have not yet been rated by the user [8]. This prediction can take
into account the user’s explicit and implicit past ratings. Different recommendation tech-
niques to make these predictions exist. The most popular techniques are content-based
recommendations, Collaborative Filtering (CF), knowledge-based recommendations, and
demographic recommendations [17]. Furthermore, multiple techniques can be combined
to hybrid approaches to overcome the limitations of single techniques [23]. In this sec-
tion, we present these techniques, show how they predict user ratings, and explain how
they can be combined to hybrid approaches.

2.1.1 Content-Based Recommendations

Content-Based Recommender Systems (CBRSs) try to recommend items that are similar
to those the user has liked in the past [24]. In the published RS literature, the similarity
between two items is often calculated by using item categories or keywords extracted
from the items [25]. For example, if a user liked French restaurants in the past, a
content-based RS for restaurants will provide the user with other restaurants of the
same cuisine.

The idea of content-based recommendations arose from traditional Information Re-
trieval (IR) [24, 26]. The biggest advantage of CBRSs over previous approaches is the
use of user profiles that keep record of the user’s tastes and preferences. In general,
CBRSs try to predict the utility of an item i for a user u [26]:

pred(u, i) = score(ContentBasedProfile(u), Content(i)), (2.1)

where ContentBasedProfile(u) is u’s user profile and Content(i) is the item profile,
i.e., the features characterizing i. Keyword analysis techniques from IR can be used to
create user profiles.

An example of a model used in many CBRSs is the vector space model, a model for
representing textual documents in a vector space [27]. In RSs that use the vector space
model, profiles and items are represented as weighted term vectors. The cosine similarity
can be used to determine the similarity between two documents using the weighted term
vectors [27]:

sim(di, dj) =

∑
k wki × wkj√∑

k wki
2 ×

√∑
k wkj

2
, (2.2)
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where wkj denotes the weight for term tk in document dj . The keyword weights can be
specified using the Term Frequency-Inverse Document Frequency weighting function [26].

Other possible techniques for content-based recommendations are Bayesian classifiers
and various machine learning techniques, such as clustering, decision trees, and artificial
neural networks [26].

A special form of content-based recommendations are case-based recommendations.
In case-based RSs, “items or products are represented as cases and recommendations are
generated by retrieving those cases that are most similar to a user’s query or profile” [28].
Compared to CBRSs, case-based RSs rely on very structured representations of items.
This allows the implementation of more sophisticated similarity metrics [28]:

Similarity(t, c) =

∑
i=1..nwi × simi(ti, ci)∑

i=1..nwi
, (2.3)

where ti is a feature i of the target query t, ci the corresponding feature of the candidate
case or item c, and wi the relative importance of feature i. The similarity between two
features ti and ci is calculated as follows [28]:

simi(ti, ci) = 1− |ti − ci|
max(ti, ci)

. (2.4)

Equation (2.4) is an example of a symmetric similarity metric. There is no bias
in favor of either higher or lower feature values than specified by the user. For some
features, an asymmetric similarity metric is more appropriate. In this case, the metric
prefers feature values that are lower than the user’s specification over feature values that
are higher than the user’s specification, or vice versa [28]. For example, a user who is
willing to pay e 300 for a flight will rather accept an offer that costs e 200 instead of a
recommendation that costs e 400.

CBRSs offer several advantages compared to other recommendation techniques: They
are built solely on the user’s own ratings; hence, recommendations can be made even
when only one user is using the system. Furthermore, they can recommend new items
which have not yet been rated since recommendations are based on item features, but
not ratings. However, CBRSs have some limitations [26, 27]:

• New User Problem: Content-based methods require a user profile before a recom-
mendation can be made. A user with no or few ratings cannot receive accurate
recommendations.

• Limited Content Analysis: CBRSs depend on features that describe the items. A
sufficient number of features describing an item is required for accurate recom-
mendations. In addition, different items with the same set of features are indistin-
guishable.

• Overspecialization: Recommendations are similar to items that the user liked in
the past. This reduces diversity and serendipity.
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2.1.2 Collaborative Filtering

While content-based methods consider only the user’s own ratings, the general idea of
CF is to recommend items that other users with similar tastes and preferences liked
in the past [26]. Different algorithms exist to implement CF. One of the most popular
algorithms are nearest neighbor algorithms. They can be divided into user-based nearest
neighbor and item-based nearest neighbor algorithms [21].

User-based nearest neighbor algorithms predict the rating of a user u for an item i by
analyzing ratings for i from users with similar preferences. Users that are similar to u
are called neighbors [21].

Different formulas for predicting the rating of a user u for an item i based on the
ratings r of all neighbors exist. Equation (2.5) gives more weight to neighbors with
higher similarity and takes into account that some users give consistently higher or
lower ratings to items than other users [21]:

pred(u, i) = ru +

∑
n⊂neighbors(u) userSim(u, n)× (rni − rn)∑

n⊂neighbors(u) userSim(u, n)
. (2.5)

userSim(u, n) measures the similarity between two users u and n. The Pearson Cor-
relation Coefficient (PCC) is one way to calculate the similarity of two users. It measures
the linear correlation between two variables and is often used in RSs to identify similar
users [19]. PCC ranges from -1.0 (perfect negative linear relationship) to 1.0 (perfect
positive linear relationship). Values of 0.10, 0.30, and 0.50 indicate small, medium, and
large effect sizes, respectively [29]. Schafer et al. [21] recommend to not use negative
correlations to increase prediction accuracy. Equation (2.6) shows the formula for cal-
culating the PCC between user u and a neighbor n, where CRu,n denotes the set of all
items rated by u and n [21]:

userSim(u, n) =

∑
i⊂CRu,n

(ruj − r̄u)× (rni − r̄n)√∑
i⊂CRu,n

(rui − r̄u)2 ×
∑

i⊂CRu,n
(rni − r̄n)2

. (2.6)

The ratings of user C in Table 2.1 are more similar to user A’s ratings than the ones
of user B.1 Hence, when predicting the rating of user C for item 4, the rating given by
user A has a higher impact on the prediction than the rating given by user B.

While user-based nearest neighbor predict ratings based on the similarity of users,
item-based nearest neighbor algorithms consider the similarity of items. Two items that
were similarly rated by different users are called similar items. Item 3 and 4 in Table 2.1
received equal ratings from all users who rated both items. Hence, these two items
are considered to be very similar. Experiments have shown that item-based nearest
neighbor algorithms provide a higher prediction quality than user-based nearest neighbor
algorithms [30].

Equation (2.7) shows how to predict the rating of a user u for an item i by considering
the similarity of items [21]:

1Please keep in mind that Table 2.1 shows only a simplified example of a user-item rating matrix. For
more accurate and trustworthy predictions, a higher number of ratings is required.
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pred(u, i) =

∑
j⊂ratedItems(u) itemSim(i, j)× ruj∑

j⊂ratedItems(u) itemSim(i, j)
. (2.7)

itemSim(i, j) measures the similarity between two items i and j. Schafer et al. [21]
presented an approach that uses adjusted-cosine similarity to calculate the similarity
between two items. Equation (2.8) shows the formula for adjusted-cosine similarity
which compares the ratings of all users RBi,j who rated both item i and item j:

itemSim(i, j) =

∑
u⊂RBi,j

(rui − r̄u)× (ruj − r̄u)√∑
u⊂RBi,j

(rui − r̄u)2 ×
∑

u⊂CRBi,j
(ruj − r̄u)2

. (2.8)

An advantage of CF is the diversity of the recommendations. CF can recommend any
type of item, even items that are not similar to any item the user has consumed in the
past. However, CF requires user ratings and therefore comes with some limitations [26]:

• New User Problem: As in content-based methods, CF needs to know the user’s
preferences before a recommendation can be made.

• New Item Problem: Items need a substantial amount of user ratings before they
can be recommended.

• Sparsity : The proportion of ratings in a user-item rating matrix is usually much
lower than in Table 2.1. A sparse user-item rating matrix makes it more difficult
to identify similar users. Furthermore, items with very few ratings will rarely be
recommended.

2.1.3 Knowledge-Based Recommendations

Knowledge-based RSs use domain knowledge to predict if an item can satisfy the user’s
needs [17]. Two types of knowledge-based RSs can be distinguished: case-based and
constraint-based approaches [31]. Both types make recommendations based on knowl-
edge about the items and how well they match the user requirements. The major dif-
ference is that case-based approaches use similarity metrics to make recommendations
(see Section 2.1.1) whereas constraint-based RSs “predominantly exploit predefined rec-
ommender knowledge bases that contain explicit rules about how to relate customer
requirements with item properties” [31].

An important interaction style in both types of knowledge-based RSs is critiquing.
The idea is that the user can improve a search result by critiquing features of the rec-
ommended items. One of the first IR systems that applied critiquing was RentMe, a
web interface for a database of classified ads for rental apartments [32]. RentMe allows
users to specify a search query and refine the results by using critiques, such as “The
apartment could be bigger” or “This neighborhood could be more dynamic”. Then, the
results are updated. The original search query is kept in mind but some constraints can
be relaxed if too few results can be found after the critiquing. Entree and Recom-
mender.com are other examples of knowledge-based RSs that implement critiquing [33].
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Figure 2.1: Critiquing in Entree [23].

They allow to specify a query and improve the recommendations by modifying the query
(e.g., “add feature”) and critiquing the recommendations (e.g., “less $$”) (Figure 2.1).

Knowledge-based RSs do not require any user ratings because their decisions are
independent of individual tastes [33]. Furthermore, they are strongly complementary to
other types of RSs [23]. However, knowledge of domain experts has to be gathered before
a knowledge-based RS can recommend items. This knowledge has to be transformed into
a formal and executable representation. This issue is known as knowledge acquisition
bottleneck [31].

2.1.4 Demographic Recommendations

Demographic RSs generate recommendations based on the user’s demographic profile.
For instance, a RS for movies can take into account the user’s age and languages. Simi-
lar to collaborative methods, demographic RSs have the ability to “entice users to jump
outside of the familiar” [23]. However, compared to the previously presented recommen-
dation techniques, little research has been done on demographic recommendations [17].

16



2.2 Context-Aware Recommendations

2.1.5 Hybrid Techniques

Hybrid RSs combine multiple recommendation strategies to overcome the limitations
of single strategies. For example, a CF component can be combined with a CBRS to
overcome the New Item Problem without decreasing the diversity of recommendations.

Burke [23] identified seven types of hybrid recommendation strategies:

• Weighted : Each component calculates a profit for an item. All profits are combined
numerically.

• Switching : The RS selects one component which is used to generate a recommen-
dation. The decision is based on a selection criterion.

• Mixed : Each component generates recommendations. All recommendations are
presented in a combined list.

• Feature Combination: Elements of one component are integrated into another
component. For instance, a CBRS can be extended by a collaborative feature.

• Feature Augmentation: One component computes features which are then part
of the next component. Content-boosted CF is an example where content-based
recommendations are used to fill a sparse rating matrix before CF is applied [34].

• Cascade: Components are ordered hierarchically. A component with a lower pri-
ority cannot change decisions made by components with higher priority, but solve
ties.

• Meta-level : The RS uses a model learned by another component as input.

2.2 Context-Aware Recommendations

The utility of an item for a user can change under different conditions. For instance, a
user who enjoys spending time in parks during summer will most likely not appreciate
recommendations for outdoor activities on a rainy day. Hence, a park’s utility for this
user does not only depend on the user’s general attitude towards parks, but also on
the weather. Weather is just one example of a contextual factor that has an impact on
predicted ratings. Other examples of relevant contextual factors when recommending
POIs, such as parks, are the time of the day, the POI’s crowdedness, and the user’s
budget [35].

In general, context describes a broad concept which has been researched in many
fields besides computer science, such as linguistics, philosophy, and psychology [8]. Dey
defines context as “any information that can be used to characterize the situation of an
entity” [36]. An entity in this regard is “a person, place, or object that is considered
relevant to the interaction between a user and an application, including the user and
applications themselves” [36].

Wörndl et al. [37] differentiate between four types of context:
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• User context (e.g., the user’s budget)

• Temporal context (e.g., the time of the day)

• Geographic context (e.g., the user’s current location)

• Social context (e.g., whether the user is traveling alone)

Baltrunas et al. [35] designed a methodology to assess the relevance of contextual
factors in different situations and the influence of contextual conditions on ratings. They
applied their methodology to analyze the relevance of tourism-related contextual factors
(e.g., weather) on POI categories gathered from a list of POIs in Bolzano, Italy, and
how different contextual conditions change the user’s rating of a POI. Their results
show that, for example, temperature is a relevant factor when deciding upon visiting a
nature wonder (0.62 on a scale ranging from 0 to 1), but less important when visiting
a castle (0.13). A cold temperature significantly reduces the average rating of a castle
POI while other conditions do not have any impact. This methodology has been applied
to other domains, such as mobile shopping [38].

After the relevance of contextual factors and their impact on the utility of items has
been assessed, the contextual factors have to be integrated into the recommendation
process to improve the recommendations. Van Setten et al. [39] explain that contextual
factors can either be used as soft or hard criteria in the recommendation process. Items
that do not match a hard criterion are no candidates for a recommendation (e.g., a POI
that costs more than the user’s budget). Items that do not match a soft criterion receive
a lower utility, depending on how strongly the criterion is violated. They can, however,
still be recommended, especially when no better alternatives are available.

Adomavicius and Tuzhilin [8] presented three different paradigms that explain how to
incorporate context at different stages of the recommendation process:

• Contextual Pre-Filtering : Context is used to filter the relevant ratings from the
user-item rating matrix before a recommendation is made.

• Contextual Post-Filtering : At first, recommendations are made without consid-
ering context. Then, the recommendations can be adjusted based on the given
context. This can be done by either filtering out recommendations that are not
suitable (hard citerion) or changing the ranking of the recommendations (soft cri-
terion).

• Contextual Modeling : Context is used directly in the recommendation process.

The diagrams in Figure 2.2 illustrate the three different paradigms to incorporate
context. While Contextual Pre-Filtering and Contextual Post-Filtering use the two-
dimensional user-item rating matrix as input, Contextual Modeling extends the matrix
by the third dimension context. Formally spoken, Contextual Modeling extends the
rating function R introduced in Section 2.1 by a third entity contextual information [8]:

R : User × Item× Context→ Rating
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Figure 2.2: Paradigms for incorporating context in RSs (adapted from [8]). u illustrates at
which stages the recommendation function is used on user u, c at which stages
information about context is applied.

2.3 Recommender Systems in Tourism

The previously presented techniques can be used to recommend items of various types.
During the last years, an increasing number of RSs has been used in the field of e-tourism
to support tourists at different stages of their trip planning or when already traveling.
These e-tourism RSs are mainly used to recommend one of the following travel-related
items [3, 20]:

• Ranked lists or sets of POIs.

• Travel plans2 combining coherent travel items, such as destinations, activities, and
other services, in one recommendation. For example, a travel plan for a skiing trip
could contain a destination, a nearby ski resort, and a hotel [40].

• Sequences of POIs along an enjoyable route for a single or multi-day trip (also
called tourist trips).

In the following, we present important examples from published literature for each of
these three recommendation goals. The goal of this section is to provide a comprehensive
list of research projects and prototypes in the field of tourist trip RSs. We use this
list to classify the goals of this thesis in relation to research in e-tourism and RSs and
present related research areas which are not covered by the results of this thesis. Further

2also called travel bags or travel bundles in published literature
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extensive surveys of tourism RSs have been published by Borràs et al. [20] and Gavalas
et al. [3].

Parts of this overview have been published in [41, 42].

2.3.1 Recommendation of Lists or Sets of Points of Interest

The majority of RSs in tourism suggest lists or sets of POIs to users without combining
them to coherent travel plans or tourist trips. In this section, we list some of the most
important RSs for this recommendation goal and briefly present their main characteris-
tics and key features. Even though we focus on recommending tourist trips in this thesis,
these examples served as inspiration for our own solutions as a tourist trip RS has to
identify attractive POIs that can be merged to a composite trip. Thus, the following list
summarizes ideas and technical solutions for realizing such POI recommendations.
GUIDE is a MTG developed for early mobile devices [43]. It takes into account

different personal and environmental contextual factors, such as the user’s age and the
time of the day, to recommend appropriate POIs. A user study with 60 participants
showed that the system is appreciated by the vast majority of users. Another mobile
CARS is COMPASS [39]. In a user survey with 57 participants, the users confirmed
that context-aware tourism recommendations are perceived as useful. However, some
participants emphasized that they want to be the ones who decide which factors are rel-
evant for a recommendation; hence, a CARS should not take away the full responsibility
from the user. Baltrunas et al. [35] developed the CARS ReRex, an iPhone applica-
tion which utilizes relevant contextual factors for POI recommendations in the city of
Bolzano, Italy (Figure 2.3). ReRex allows users to switch on/off contextual factors
and to specify them, if necessary (e.g., the type of companion). A usability test with
20 participants confirmed that context-aware recommendations are more effective than
context-unaware recommendations. South Tyrol Suggests is a novel CARS for POIs
in South Tyrol, Italy [44]. It considers various contextual factors, such as the weather
at a POI. Furthermore, a personality questionnaire is used to overcome the cold-start
problem. In a user study with 54 participants, the authors showed that including the
weather factor increases the user’s satisfaction with the selected recommendation. The
application is available for download on Google Play3. MobyRek recommends travel
products when the user is already traveling and when the current situation is appro-
priate for a recommendation, such as a nearby restaurant [45]. It uses a conversational
approach to improve the recommendations iteratively and reduce the user’s effort. Xie
et al. [46] proposed a novel system called CompRec-Trip for recommending sets or
sequences of POIs. In addition, they developed a graphical UI that allows users to
customize the recommendations. Benouaret and Lenne [47] presented a novel RS for
travel packages whereby each package is composed of a set of different POIs. The au-
thors used a real-world dataset to demonstrate the quality of the recommendations and
are planning to do a further study with a mobile application that they develop. Baral
and Li [48] presented another promising approach to find POIs but it has not yet been

3https://play.google.com/store/apps/details?id=it.unibz.sts.android (accessed February 16,
2020)
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implemented in a practical application. Their approach combines different aspects of
check-in information in Location-based Social Networks (LBSNs), such as categorical,
temporal, social, and spatial information, in one model to predict the most potential
check-in locations.

(a) (b)

Figure 2.3: Context-aware POI recommendations in ReRex [35]. The application (a) provides
a list of recommendations and (b) marks recommendations that are particularly
suited for the specified context.

2.3.2 Recommendation of Travel Plans

While the previously presented examples of RSs suggest independent items which are
not directly connected to each other, travel plan RSs combine multiple travel items,
such as destinations, activities, and other services, to one coherent recommendation.
Hence, they can be understood as an extension of RSs for POIs as they also answer
travel-related questions that go beyond the choice of POIs, such as accommodation. In
the following, we list and briefly describe important travel plan RSs that were presented
in published literature.

Lenz [49] was the first to develop a case-based RS for holiday trips. The case de-
scription of CABATA contains features such as the type of holiday, the travel region,
and means of transport. The case solutions present recommendations that fulfill all
user requirements and others that are at least similar to the user query. CABATA
is a prototypically implemented part of an architecture for travel agent systems called
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IMTAS and was presented to the public in 1994 [50]. Ricci and Werthner [51] extended
the idea of CABATA in different directions. For example, the recommendations do not
only consider the user query but also the personal case base of the user or other, similar
users. Other examples of case-based travel RSs are DieToRecs and Trip@dvice. Di-
eToRecs allows the recommendation of single items, such as destinations or hotels, and
bundling of travel items for a personalized travel plan [52]. The case base of Trip@dvice
contains travel plans created by the community [53]. It has been selected by the Euro-
pean Union and by the European Travel Commission as a travel RS in the European
tourism destination portal visiteurope.com. Ricci [54] presented TripMatcher and Va-
cationCoach, two of the early travel RSs using content-based approaches to match the
user preferences with potential destinations. VacationCoach explicitly asks the user
to choose a suitable traveler type, such as culture creature or beach bum. TripMatcher
uses statistics on past user queries and guesses the importance of attributes not explic-
itly mentioned by the user to come up with recommendations. A conversational RS for
travel planning was introduced by Mahmood et al. [55].

2.3.3 Recommendation of Sequences of Points of Interest along Routes

The previously presented examples of RSs in tourism recommend POIs and some of them
enrich the recommendations with other travel-related items or information to propose so-
called travel plans. However, they are not able to plan complete sightseeing trips as they
do not recommend a chronological sequence of POIs and do not come with recommended
durations of stay or suggest walking routes between the recommended POIs. Tourists
exploring a city on single- or multi-day trip are often looking for such sequences of POIs
along feasible and enjoyable routes to facilitate travel planning. These sequences are
known as tourist trips [6]. Tourist trip recommendations have to respect several user
requirements and constraints, such as the time available for the trip, opening hours of
POIs, and desirable breaks [3].

Tourist trips RSs are often developed with the goal of providing solutions to different
combinatorial optimization problems. In Section 3, we introduce these problems and
summarize algorithms and heuristics solving them to generate routes. In the following,
we present a list of practical tourist trip applications and alternative approaches for
recommending sequences of POIs. We explain their key features and describe briefly
how they come up with personalized trip recommendations. The purpose of this section
is to provide a broad understanding of existing approaches and technical solutions for
recommending tourist trips, which is the focus of this thesis. Furthermore, it allows
us to highlight our own contributions in the field of tourist trip recommendations by
explaining the key differences from our approaches to the presented examples at the end
of this section.

The aforementioned CARS GUIDE was also one of the first applications that com-
bines recommended POIs to tourist trips [43]. For this purpose, users have to choose
POIs they would like to visit. Then, the system creates a route taking into account
relevant factors, such as the opening hours of the selected POIs. GUIDE is also able to
update the recommended routes dynamically when the user decides to stay longer at a
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POI as planned. Hence, it takes into account temporal contextual factors due to a re-
duced remaining time for the trip. e-Tourism [56] is a web application that recommends
personalized tourist trips in the city of Valencia, Spain. It first recommends a list of POIs
by considering different criteria, such as the user’s travel preferences, demographics, and
former trips. e-Tourism uses a taxonomy to classify the user’s profile information and
uses a hybrid of demographic, content-based, and preference-based filtering to generate
recommendations. Then, it creates a route by scheduling the recommended POIs. The
City Trip Planner is a web application that recommends multi-day tourist trips [57].
It respects certain limitations, such as opening hours, and can include a lunch break into
the trip. A mobile web application for multi-day trips is dailyTRIP [58]. Besides user
preferences, it takes into account opening hours, time available for visiting attrations,
and average visiting times. Rodŕıguez et al. [59] developed SAT, a tourist support system
which includes a multi-criteria model considering tourist wishes and needs, desired activ-
ities, and characteristics of the target area. They implemented a practical application of
the system and demonstrated it by recommending personalized trips in the Autonomous
Region of Andalusia. Tanahashi and Ma [60] performed two user studies to test their
mashup system OnMyWay that allows designing road trips. Their work focuses on the
design of UIs to facilitate the exploration of data relevant for the itinerary planning, but
does not present algorithms for an automatic route generation. myVisistPlannerGR

is another web-based application for trip planning [61]. It supports travelers in planning
trips in the region of Northern Greece. It considers the user’s demographics and inter-
ests, and user-selected criteria, such as visit duration and geographical areas of interest.
Gavalas et al. [62] developed eCOMPASS, a context-aware web and mobile tourist trip
planner. They developed the SlackRoutes algorithm which integrates multi-modal
route planning into the recommendations and suggests lunch breaks. A pilot study in
Berlin showed that the recommended trips are attractive, feasible, and relevant to the
user’s preferences. Scenic Athens is another context-aware MTG for personalized tour
trip recommendations developed by Gavalas et al. [63] (Figure 2.4). Compared to similar
applications, Scenic Athens can also incorporate scenic routes into the recommended
trips. The authors developed an Android application and conducted several performance
tests as well as a small user study with locals and tourists to evaluate their approach.
c-Space is a novel tourist trip RS which takes into account the travel and time-use
implications of visiting POIs already when selecting a set of candidate POIs [64]. The
authors conducted a Social Choice experiment to create a user model for their RS and a
latent-class analysis to segment the participants with regard to their travel preferences.
Results identified three traveler segments. The authors evaluated their user model with
recommendations in Trento, Italy. The feedback from 35 users confirmed the usefulness
of their approach.

Photos and LBSNs have become a popular data source to generate tourist trip rec-
ommendations. De Choudhury et al. [65] used photo streams to estimate where users
were and how much time they spent at a POI and for traveling between POIs. Based
on this information, their approach creates a POI graph and recommends tourist trips.
In a user study, the authors showed that their recommendations are as good as ground
truth trips provided by bus tour companies in terms of overall usefulness and POI sat-
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(a) (b) (c)

Figure 2.4: Tourist trip recommendation in Scenic Athens [63]. The app allows (a) users
to rate POI category preferences (a similar UI is available for scenic route cate-
gories) and display recommendations on (b) a list view that illustrates POIs (green
background) and scenic routes (purple background) and (c) on a map with walking
instructions.

isfaction. Lu et al. [66] developed Photo2Trip, a trip planning framework that uses
data extracted from 20 million geo-tagged photos to recommend trips. The data gath-
ered from the photos allowed them to identify not only popular destinations, but also
the order of locations, typical travel paths between destinations, and the recommended
duration of stay for each location. Another solution using photos was presented by Bril-
hante et al. [67]. Their application TripBuilder uses unsupervised learning for mining
common patterns of movements of tourists in a given geographic area. Therefore, Trip-
Builder mines public photos from Flickr and collects POI data from Wikipedia to
create a POI database including patterns of movement of tourists that visited a POI in
the past which is used to generate trips. The authors created datasets of three cities to
evaluate their approach. Results showed that their method outperforms two baselines.
The PersTour algorithm, recently presented by Lim et al. [68], personalizes POI visit
durations on recommended trips. The authors used real-life travel sequences and POI
popularity extracted from geo-tagged photos to train their model. In an evaluation,
they compared their approach against various baselines using a Flickr dataset across ten
cities. Their approach outperformed the baselines with regard to different metrics, and
it was able to recommend trips that better reflect real-life travel sequences of tourists.
Quercia et al. [69] introduced a different approach for route recommendation. Instead of
recommending shortest paths between two directions or maximizing POI profits, their
trip recommender suggests routes that are perceived as pleasant. The authors collected
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crowd-sourced ratings to identify pleasant routes and showed that this type of informa-
tion can be computed from Flickr metadata. Their user studies confirmed that their
approach can recommend beautiful, quiet, and happy routes adding only a few extra
walking minutes to the trip. Yu et al. [70] developed a tourist trip RS which uses check-
in data from the Chinese LBSN Jie Pang to generate travel packages. A route planning
algorithm is used to find routes containing appropriate POIs from the recommended
travel packages. The authors implemented a first prototype of their system which is
composed of a mobile client and a recommendation server. Other approaches extract
POI sequences from travel blogs [71]. The content of travel blogs often provides much
crowdsourced geospatial data, such as the locations of POIs and the spatial relation
between POIs. These data can be transformed to POI graphs that show popular POIs
and recommended sequences of POIs.

These examples of tourist trip RSs pursue a similar goal as the prototypes that we
developed in this thesis: they recommend sequences of POIs along routes for single- or
multi-day trips. This section provided an overview of different approaches for achieving
this goal. It also revealed research gaps that we want to close with our work. Only few
practical applications use the advanced OR methods that we present in Chapter 3 to
recommend tourist trips. In this thesis, we show how to extend these methods to solve
the TTDP from a user-centered perspective. For this purpose, we integrated aspects from
RS research which have not yet been considered in such methods, such as context-aware
recommendations, and evaluated our proposed solutions in user studies. Section 3.2
explains these open challenges in TTDP research and our motivation to tackle them in
more detail. Furthermore, in contrast to the aforementioned examples of tourist trip
RSs, we also solved the TTDP for groups of users (see Chapters 7 and 8).

2.4 Group Recommender Systems

The aforementioned recommendation techniques are tailored to recommendations for
individuals. In addition, the majority of the presented RSs generates recommendations
only for one person at a time. In some situations, however, groups of users are looking
for a mutual recommendation, such as a restaurant for dinner or a movie. GRSs support
groups in making a decision and finding a consensus that satisfies all group members.
In this section, we define the term Group, explain how GRSs make recommendations,
and present examples of GRSs.

2.4.1 Social Groups

A wide range of definitions for the term Group exist [72–74]. For example, Bonner
defines a group as “a number of people in interaction with one another, and it is this
interaction process that distinguishes the group from an aggregate” [75]. According to
this definition, interaction among group members is a key characteristic that makes an
aggregate of individuals a group. Most existing definitions emphasize the importance of
interaction among group members when defining groups [73]; however, a large number of
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A B C

(a) Symmetric interdependence with
reciprocity.

A

CB D

(b) Hierarchical interdependence with-
out reciprocity.

A

CB D

(c) Hierarchical interdependence with
(unequal) reciprocity.

A B C

(d) Sequential interdependence with-
out reciprocity.

Figure 2.5: Examples of group interdependencies (adapted from [72]). Letter represent persons,
arrows indicate the direction of influence.

definitions exist that use one or more of the following characteristics to describe groups:
goals, interdependence, structure, and cohesiveness [72].

Group members can perform a wide range of interactions which can either focus on
the relationships among the group members (e.g., supporting each other) or on the
tasks and goals of the group [72]. Goals that groups pursue can be very different.
McGrath [76] describes four main types of group goals: generating, choosing, negotiating,
and executing. Groups can generate new ideas and plans, choose between alternatives,
solve conflicts, and perform action tasks. Tasks and goals of a group are highly related.
Steiner [77] defines a task as “a set of specifications identifying the goal that is to be
achieved and the procedures that an individual or group may employ when attempting
to achieve it”. In other words, tasks are what a group must do to achieve its goals [73].
Steiner, furthermore, distinguishes between divisible and unitary tasks. Divisible tasks
can be divided into subtasks and therefore make a division of labor feasible.

Interdependence describes dependencies between group members [72]. Figure 2.5 il-
lustrates four examples of interdependencies in groups. In Figure 2.5a, the influence
among all members is equal and reciprocal. Figure 2.5b, however, illustrates the inter-
dependency of a group which is hierarchically but not reciprocal. Person A influences
all group members, but not vice versa. There are also examples where hierarchical
groups are reciprocal. In the example of Figure 2.5c, however, A still influences the
other group members to a greater extent than they can influence A. The fourth example
(Figure 2.5d) shows a sequential interdependence. A has no direct influence on C, but
B’s actions (which influence C) are influenced by A.
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The group structure are features, such as roles, norms, and relationships in a group,
that organize a group [72]. The group cohesion, furthermore, describes the integrity,
solidarity, and social integration of groups and the “sticking-togetherness” of the group
members [72, 77]. Group members of a cohesive group are more attracted to the group
than to other options with regard to factors, such as expected payoffs and costs of mem-
bership [77]. Consequently, “members of cohesive groups are generally better satisfied
with the group than members of noncohesive group” [73] .

According to Forsyth [72], four group types can be distinguished: Primary Groups,
Social Groups (also known as Secondary Groups), Collectives, and Categories. A pri-
mary group is a “small, long-term group characterized by frequent interaction, solidarity,
and high levels of interdependence among members that substantially influences the at-
titudes, values, and social outcomes of its members” [72]. Members of primary groups
share close relationships with the other group members and feel very committed to
their group; the group is an important part in their life. Examples of primary groups
are families and close friends. Secondary groups, however, are usually larger than pri-
mary groups and characterized by rather loose relationships. Thus, it is easy for group
members to leave a secondary group and join another one. Secondary groups are often
created in goal-focused situations. Coworkers and fellow students are examples of sec-
ondary groups. Collectives are usually larger groups of people that are often created
spontaneously. They do not exist for a long time and their members do not feel very
committed to the group. People waiting in a line or watching the same concert can
be called collectives. Categories are groups whose members are similar to one another,
often in terms of demographic factors, such as gender, age, or nationality. Even though
members in a category do not know each other, they still can feel very connected to
their category. Examples of categories are U.S Americans and supporters of the same
football team.

Groups can also be characterized in terms of homogeneity. The degree of homogene-
ity in groups can refer to different variables, such as the group members’ needs, their
personality attributes, and their perception of the group goals [73]. Steiner [77] ex-
plains that in competitive situations, group members hold different goals for the group,
whereas in cooperative situations, the goals are homogeneous. However, with regard to
task-relevant abilities, heterogenous group promise a high productivity when the task is
disjunctive, but a low productivity for conjunctive tasks.

Experiments using groups as subjects can choose between experienced groups (also
called natural groups) and näıve groups (also called artificial groups) [73]. Experienced
groups have already established relationships which can influence study results. In näıve
groups, the members are either randomly assigned to the group or selected by the inves-
tigator. Using näıve groups allows studying groups that do not exist in the real world,
e.g., groups composed of only highly dominant individuals. However, using näıve groups
makes it more complicated to transfer results to the real world.
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Figure 2.6: Group recommendation strategies (adapted from [25]).

2.4.2 Group Recommendation Techniques

Two main principles for generating a group recommendation exist (Figure 2.6): On the
one hand, the user profiles of all group members can be aggregated to create a group
profile [78]. This group profile is then used to request a recommendation (Aggregating
Profiles of Users (AP)). On the other hand, a recommendation can be made for every user
individually before the recommendations are combined into one group recommendation
(Aggregating Recommendations (AR)) [10, 79].

2.4.2.1 Aggregating Profiles of Users

Many strategies that can be used to aggregate profiles of group members to a group pro-
file were inspired by Social Choice Theory [78]. In the following, we present examples
for some of the preference aggregation strategies that were discussed in published litera-
ture [78, 80]. Table 2.2 shows the ratings of a group of three users. Each user rated the
six same items. We use these ratings to illustrate the following group recommendation
strategies.

AP strategies can be categorized into majority-based, consensus-based, and borderline
strategies [81]. Table 2.3 exemplifies four consensus-based strategies. These strategies
consider the preferences of all group members. The Average strategy calculates the
average of the individual ratings of all group members for every item. The Multiplica-
tive strategy is a similar strategy. It uses the product of the group members’ ratings
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Table 2.2: Ratings of a group of size 3.

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6

User A 3 1 2 1 4 5

User B 3 4 5 4 3 1

User C 3 1 5 4 2 3

to decide upon a recommendation. One disadvantage of both strategies is that they
allow manipulation. For example, people can give very low ratings to all items that they
would like to avoid to increase the chances that one of their favorite items is selected by
the RS. The issue of manipulation is less relevant when ratings are inferred from user
behavior and when the group members are unaware of the ratings of others [11]. The
Median strategy allows overcoming this problem even when using explicit ratings [80].
In the example of Table 2.3, the median ratings of items 3 and 4 are high even though
user A’s ratings for both items are low. A problem of the Average, Multiplicative,
and Median strategies is that they can assign high ratings to items which can be un-
satisfying for some group members. If we do not assume manipulation, user A will most
likely be unhappy with the recommendation of item 4. The Average without Misery
strategy overcomes this problem by removing all items that received at least one rating
below a pre-defined threshold. In the example of Table 2.3, the threshold t is set to 2.
All items with ratings below this threshold are removed. Therefore, only items 1, 3, and
5 remain candidates for a recommendation.

Table 2.3: Group ratings generated by consensus-based strategies based on the user ratings in
Table 2.2.

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6

Average 3 2 4 3 3 3

Median 3 1 5 4 3 3

Without Misery (t = 2) 3 - 4 - 3 -

Multiplicative 27 4 50 16 24 15

Borderline strategies take into account only a subset of the user preferences. Table 2.4
shows three examples of borderline strategies. The assumption behind the Least Mis-
ery strategy is that a group is as satisfied as its least satisfied member. Therefore,
it uses the minimum rating among all group members as group rating. This is why
item 1 in Table 2.4 receives the highest group rating. The Most Pleasure strategy
is the opposite of the Least Misery strategy. It assumes that a group is as satisfied
as the most satisfied group member. Therefore, items 3 and 6 receive the highest group
rating, while item 1 receives the lowest rating of all items. In groups which apply the
Dictatorship strategy, one group members decides upon the group preferences. In the
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example of Table 2.4, user A’s ratings are the group ratings. Therefore, item 6 receives
the highest rating.

Table 2.4: Group ratings generated by borderline strategies based on the user ratings in Ta-
ble 2.2.

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6

Least Misery 3 1 2 1 2 1

Most Pleasure 3 4 5 4 4 5

Dictatorship (User A) 3 1 2 1 4 5

Whilst all of the previously presented strategies take into account the strengths of
the preferences, majority-based strategies take only into account the relative position of
items in each individual’s preference list [78]. Table 2.5 shows how to apply the Borda
Count strategy. For every user, it assigns 0 points to the lowest rated item, 1 point
to the second lowest item, and so on. In case of ties, points are distributed. Another
example of a majority-based strategy is Approval Voting, a strategy where the group
members vote for items. If a user votes for an item, this item receives 1 point. The
group rating is determined by the sum of the votes. Table 2.6 shows an example where
the group members voted for items they somewhat liked (in this example, every item of
Table 2.2 with a rating of 3 or higher).

Table 2.5: Example of the Borda Count strategy based on the user ratings in Table 2.2.

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6

User A 3 0.5 2 0.5 4 5

User B 1.5 3.5 5 3.5 1.5 0

User C 2.5 0 5 4 1 2.5

Group 7 4 12 8 6.5 7.5

Table 2.6: Example of the Approval Voting strategy based on the user ratings in Table 2.2.

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6

User A 1 0 0 0 1 1

User B 1 1 1 1 1 0

User C 1 0 1 1 0 1

Group 3 1 2 2 2 2
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2.4.2.2 Aggregating Recommendations

The idea of AR is to generate a recommendation for every group member individually
before all recommendations are combined into one group recommendation. The simplest
approach to create a group recommendation is to recommend a set containing the top
item(s) of all group members [10]. Then, it is up to the group members to select their
favorite item(s) from the recommended set. Felfernig et al. [25] presented the concept of
aggregated predictions which extends the idea of AR. In this case, the group members’
predictions for candidate items are aggregated which leads to a ranking of candidate
items. Social Choice strategies from AP can be used to aggregate the predictions (see
Section 2.4.2.1).

The recommendation techniques for individuals introduced in Section 2.1 can be used
when aggregating predictions. For instance, CF can be applied to predict ratings of
group members before aggregating them in the next step [25].

2.4.3 Group Recommender Systems in Published Literature

In the following, we present examples of GRSs from different domains. These examples
illustrate how to apply the previously presented group recommendation techniques in
practical applications. In this thesis, we used similar techniques for our own solutions
and developed novel techniques based on these approaches (see Chapter 7).

2.4.3.1 Overview of Existing Group Recommender Systems

MusicFX was one of the first GRSs using a preference aggregation strategy inspired by
Social Choice to recommend items to groups [82]. It aggregates the music preferences of
gym members to select the music played in the gym. It uses a variant of the Average
strategy. The users can rate music stations, such as Alternative Rock, on a scale from
+2 (”I love this music”) to -2 (”I hate this music”). These ratings are increased by 2
to convert them to positive numbers and then squared to widen the gap between well
rated and poorly rated music stations. After that, the list of music stations is sorted by
the sum of ratings so that the most popular categories are on top. The candidate set
is limited to a defined number of music stations. The probability of selecting a music
station is then calculated by dividing the rating of this music station by the sum of the
ratings of the other music stations in the limited candidate set. MusicFX was installed
in a gym and according to a poll conducted six week after the installation, the majority
of the respondents thought that MusicFX improved the music selection. However, 15%
of the respondents complained about occasional bad music which is a downside of the
Average strategy.

Let’s browse recommends webpages to groups [83]. It uses active badges worn by
the participants to identify the current group members and updates the recommendation
when a new user enters or leaves the group. The individuals’ user profiles are created
by performing a keyword frequency analysis on their webpages. Let’s browse uses a
simple linear combination of the user profiles to recommend the page which scores the
best according to the aggregated profile.
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O’Connor et al. [84] were the first to use CF in a GRS. They developed PolyLens, an
extension of the movie RS MovieLens4. PolyLens uses the Least Misery strategy
to merge the recommendation lists of all group members. A field study showed that
PolyLens was mainly used by small groups of two or three users. 77% of the par-
ticipants mentioned that they find group recommendations more useful than individual
recommendations when deciding upon a movie. Another GRS for movies was presented
by Quijano-Sanchez et al. [85]. Their approach uses CF to generate recommendations
while taking into account aspects such as personality and trust.

Popescu [86] developed a voting mechanism for a playlist RS which encourages the
group members to state their preferences truthfully. First, the users rate songs and the
ratings are normalized so that all ratings given by a user sum to 1. The rating of a song
is computed as the sum of the ratings given by the individual users. The probabilistic
weighted sum method does not select the item with the highest rating. Instead, the
rating is normalized by the sum of the ratings and the result is a probability distribution
which determines the probability of the song to be chosen. The results of a small user
study showed that the probabilistic weighted sum method is a promising strategy to
aggregate user preferences.

2.4.3.2 Group Recommender Systems in Tourism

A few RSs suggest travel-related items to groups of users. In the following, we present
important examples of GRSs in the field of e-tourism. RSs in the tourism domain differ
from those of other domains, such as movie RSs, as they recommend physical items.
Hence, for the success of a GRS in the tourism domain it is even more critical to make
recommendations that satisfy all group members as the costs of visiting physical items,
such as POIs, are more expensive for every group member than watching a movie, for
example [4].

INTRIGUE [87] recommends lists of POIs to groups; however, it does not combine
POIs along a route. Recommendations are tailored to the needs of subgroups, such as
children and disabled (Figure 2.7). It applies a weighted Average strategy to generate
group recommendations. In this strategy, every subgroup is assigned a weight that takes
into account the size and relevance of the subgroup.

Pocket Restaurant Finder is a GRS for restaurants [88]. The group members can
rate different features, such as the cuisine, the distance they are willing to travel, and the
budget. The user’s individual preference for each restaurant is determined by calculating
the ratings of the single features and adjusting them according to the relative weights
specified by the user. The group profit for a restaurant is the average of all individual
preferences for this restaurant.

The Travel Decision Forum supports users in agreeing on attributes of a trip, such
as desired room facilities and leisure activities [80]. It allows users to view and copy the
preferences of the other group members which may reduce the effort of specifying own
preferences and support the learning from other users. However, revealing preferences

4https://movielens.org/ (accessed February 16, 2020)
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Figure 2.7: The GRS INTRIGUE [87]. In the unique listing of tourist attractions, recommen-
dations are ordered by the predicted rating for the whole group (red stars) while
explanations are tailored to subgroups.

allows manipulation. Users can give low ratings to items that are liked by other group
members to prevent these items from showing up in a recommendation. The author
implemented the Median strategy to overcome this problem. The Travel Decision
Forum also offers a random choice as well as an automatically generated mechanism
which is non-manipulable as well.

CATS is a case-based RS proposing ski packages that consist of several attributes, such
as a location, ski lift systems, and hotel features [40]. It allows group members to critique
features of the cases which updates the recommendations accordingly. Furthermore, a
case can be added to a stack area which indicates that the user is interested in this
vacation. Users can also discard cases which makes a recommendation of this vacation
impossible. Hence, the recommendation strategy in CATS can be seen as a variant of
the Least Misery strategy [11]. The final recommendation is drawn from the stack
area.

Another GRS that applies critiquing is Where2eat. It recommends restaurants in
Bolzano, Italy [89]. Each restaurant is composed of the five features price, type, location,
facilities, and cuisine. Recommendations can be made for pairs of users. One user can
request a recommendation by specifying desired restaurant features. Then, the system

33



2 Fundamentals of Recommender Systems

suggests restaurants similar to the user query. The user picks one recommendation
and forwards it to the other user who can either accept or refuse the suggestion or
critique features to receive a new list of recommendations. The user can then send
the counterproposal which comes with an automatically generated explanation. This
procedure continues until the group agrees on a restaurant.

Nguyen and Ricci [90] developed STSGroup, an extension of the previously presented
mobile application South Tyrol Suggests. STSGroup supports groups in finding a
POI to visit. The focus of their work is the discussion stage of the group decision making.
For this purpose, they integrated a chat-based interface into the mobile application that
allows group members to communicate with each other. When using the chat, users
can suggest POIs which can be rated and commented by other group members. In
addition, users can ask for group recommendations to automatically suggest POIs to
the group. POIs that can be recommended are represented by 84 features. These
features are weighted according to the importance of the features for the users, which
are collected through the group members’ actions during the group discussion. The
individuals’ weights are then aggregated by using a weighted Average strategy which
favors users who provide a lot of feedback in the chat or who are in a vulnerable context,
such as bad mood.

Recently, Benouaret and Lenne [91] presented a package-to-group recommendation
framework which recommends sets of POI packages to tourist groups. They developed
two models that incorporate the user impact in selecting items. They compared their
models to two baseline approaches in an experiment using the Yelp challenge dataset5.
Their study was conducted with artificial groups from the dataset and the presented
models were not integrated in a practical application.

2.5 User Interfaces for Recommender Systems

The previous sections describe how RSs generate recommendations. Individuals and
groups who want to receive a recommendation have to interact with the RS through its
UIs to specify preferences, send queries, and view results.

Over the course of the last decades, practical RS applications have been developed
for different types of platform-UI configurations: desktop and web-based UIs, mobile
applications, and DUIs that distribute UIs over multiple devices. Each of these UI types
comes with different advantages and limitations. The selected configuration has a large
impact on the success of a RS, especially in the tourism domain. The requirements of
tourists towards a RS strongly depend on the context of use. For instance, tourists may
prefer wide screens with large UIs when planning trips in advance but also want to receive
information on their mobile devices when already on the move [20]. Furthermore, the
requirements can change when interacting with a RS in a group instead of traveling alone
as additional aspects, such as privacy and embarrassment, become more important [11].

5https://www.yelp.com/dataset/challenge (accessed February 16, 2020)
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In this section, we present the most important types of platform-UI configurations for
RSs and highlight their advantages and limitations. This overview served as input for
the development of our own prototypes which we present in Sections 6 and 8.

2.5.1 Desktop and Web-Based User Interfaces

RSs started to become successful on e-commerce websites which used them to draw the
user’s attention to potentially interesting items, such as movies, books, and news [3]. In
the early 1990s, the history of RSs started as manual filtering systems which allowed users
to query for items they were looking for [92]. RSs were soon developed for operating
systems with graphical UIs. They were integrated into news clients, such as Emacs
Gnus and NN for UNIX machines and NewsWatcher for Macintoshes [93], or came
with world wide web interfaces [32, 33, 83, 94].

Web-based UIs became particularly popular among tourism RSs as they enable a
user-friendly travel planning. They allow “displaying a large amount of data extended
with maps, images or even high quality videos. Moreover, the mouse permits to interact
easily with the computer and move through maps, perform zoom actions, select items
or even drag and drop them” [20]. Many web-based RSs that support tourists in their
travel planning have been published in the last years (see Section 2.3).

Since web-based RSs are designed to be accessed via personal computers or notebooks
with large screens and often provide many interaction options, they are usually not
optimized for the usage while on the move [20].

2.5.2 Mobile Recommender Systems

With the widespread adoption of mobile devices, such as smartphones, tablets, and
wearables, people can now access RSs anywhere, anytime. They hence overcome the
limitations of traditional web-based RSs which are not designed to be used while already
on the move. For instance, tourists can use mobile RSs to discover new POIs and update
their planned trips whenever necessary [20]. Another advantage of mobile devices is
that they usually come with a large number of sensors. Data collected by these sensors
can be used to make context-aware recommendations (see Section 2.2). For example,
mobile devices equipped with GPS can use the current location of the user to provide
recommendations in the vicinity. Such sensors can also determine whether the current
situation is appropriate for a recommendation, that is, the user is not busy with other,
critical tasks and can benefit from a recommendation in the current context. If this is
the case, the RS can proactively suggest items. The concept of recommending items
without explicit user request is called proactive recommendations [37].

Mobile devices, however, come with some limitations compared to desktop computers.
Screen size is usually smaller and input is limited since many mobile devices come only
with virtual keyboards or small physical keyboards. This makes it more difficult and
time consuming to specify queries, browse large amounts of data, and search for the right
information [95, 96]. Also, the availability of mobile internet can vary and users can be
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completely offline when traveling abroad without a suitable data plan. Nevertheless, the
rapid advancement of mobile devices helps overcoming some of these limitations [20].

2.5.3 Public Displays

Figure 2.8: A public display inte-
grated into a so-called
mobility station of the
Münchner Verkehrs-
gesellschaft (Munich
Transport Company).
The selected application
shows a map with POIs
in the vicinity.

Public displays are mediums deployed in public
spaces that bring digital content to the general
public [97]. They can be found in shopping malls,
airports, and at any public place that is of interest
to locals and tourists to display relevant content to
passersby (Figure 2.8). Many of the existing pub-
lic display applications, such as digital timetables,
have an information-only purpose, but advances in
technology allow shifting more towards interactive
public displays. Interactive public displays have
the great advantage that they can tailor their con-
tent to the users’ needs. Imagine an interactive
display in a shopping mall or at a touristic area
which does not only show a static map, but also
highlights shops or POIs the user might be inter-
ested in.

Public displays vary in size from small televi-
sion screens to display static information, such as
visitor information in museums, to large and inter-
active multi-user wall displays [98]. Besides their
size, public displays can be differentiated based on
offered input types and interaction techniques [99].
For instance, users can directly interact with the
touch screen or use keys that are attached to the
display. More sophisticated methods include voice
commands and gestures that are captured by cam-
eras, for example.

Social embarrassment is a factor that often pre-
vents people from interacting with a public display.
Brignull and Rogers [100] examined how people
behave in front of public displays, how they ap-
proach them, how they interact with them, and
how they socialize around them. The authors no-
ticed a honey-pot effect around the public display.
This effect describes the progressive increase of
people near the display. Progressive increase in
this context means that people standing around the
display and open for discussions give a tacit signal
to others in the vicinity. Consequently, the number of people around the display and
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thereby also the number of people tacitly inviting others to join the gathering increases
gradually. Furthermore, the authors identified three activity spaces when examining the
flow of public interaction around public displays:

• Peripheral awareness activities: Activities not related to the display, such as eating
or socializing.

• Focal awareness activities: Activities associated with the display, such as talking
about it and watching the screen being used by others.

• Direct interaction activities: People in this activity space are using the public
display.

Interactive public displays and their applications have to be designed in a way that
motivates people to cross the thresholds to focal awareness and direct interaction and
overcome social embarrassment [100]. Michelis and Müller [101] presented the audience
funnel framework which is based on the aforementioned activity spaces. It adds the
phase of subtle interaction which is specific to gesture-based displays. In this phase,
the user is still some meters away from the display but tries to cause some reaction by
it. Furthermore, multiple interactions and follow-up actions, such as taking a picture,
are added to the framework. Based on the observations of people interacting with the
Magical Mirrors, a set of four large public displays with gesture-based interaction
installed in Berlin, Germany, the authors found out that the biggest challenge for public
displays is initiating subtle interaction.

Privacy is another issue that prevents people from interacting with a public display. A
six-month field evaluation of the digital public notice area Digifieds in Oulu, Finland
confirmed that even though people showed interest in interacting with a public display,
some of them felt uncomfortable when entering personal information [102]. Passersby
could have a look on personal data that the user is inputting or sensitive content which
is not meant for the eyes of strangers, such as the next location that the user will visit.
Brudy et al. [103] call this phenomena shoulder-surfing. It has been shown that using
a mobile device to enter personal information is one promising solution to overcome
privacy issues [104] (see Section 2.5.4). Other solutions to protect users from shoulder-
surfing are flashing borders when a passerby enters a defined area around the display
and blacking out parts of the visible content [103].

Huang et al. [105] provide recommendations for the design of large, public displays
based on another field study they conducted by observing the behavior of people towards
46 public displays located in three cities in Western Europe. The authors recommend to
minimize text and present informative content to arouse the interest of passersby which
do not to spend more than a few seconds to determine whether the public display is of
their interest. Displays should be positioned close to eye-height to encourage glances
while dynamic content can prolong the user’s attention. Another important recommen-
dation is to give the user at least some control over what information is presented, that is,
offer a personalization of content. Their study, however, was limited to non-interactive
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displays presenting non-urgent content. Further studies are required to show which of
these recommendation can be applied to interactive public displays.

The work of Alt et al. [106] summarizes important RQs, study types, and methods
for evaluating public displays in field studies and laboratory studies. Furthermore, the
authors provide a set of guidelines for designing public display studies.

2.5.4 Distributed User Interfaces

The limitations of the previously mentioned UIs motivated researchers to distribute
them across multiple devices, allowing them to overcome the limitations of each device.
A distribution of UI elements can be done across different dimensions, not only devices.
Elmqvist [107] included five dimension into his definition of DUIs:

“A distributed user interface is a user interface whose components are
distributed across one or more of the dimensions input, output, platform,
space, and time.”

He defines the dimensions as follows:

• Input : Managing user input can be distributed across several different devices.

• Output : Graphical output can be distributed across several different devices.

• Platform: Distributing across different platforms affects different architectures,
operating systems, and networks, for example.

• Space: UIs can be distributed geographically.

• Time: UIs elements distributed in time work asynchronously.

Another definition, which focuses on different aspects that have to be considered in a
distribution, is provided by Vanderdonckt [108]:

“A UI distribution concerns the repartition of one or many elements from
one or many user interfaces in order to support one or many users to carry
out one or many tasks on one or many domains in one or many contexts of
use, each context of use consisting of users, platforms, and environments.”

The key aspects in Vanderdonckt’s definition are elements, UIs, users, tasks, domains,
and the context of use. Vanderdonckt presents a set of questions that have to be answered
to distribute UIs. The presented aspects provide the answers to these questions:

• Distribute what? Any UI element can be distributed. Pixels are the most atomic
level where distribution can occur.

• Distribute from what? All distributed elements should belong to one or many
clearly identified UIs.
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• Distribute for who? DUIs are often used by different users who can be co-located
or work at different places.

• Distribute for which? Tasks can distributed by dividing them into subtasks that
are carried out on different platforms, for example.

• Distribute on what? Tasks cannot only be attached to one single domain model,
but also several, potentially distributed domain models.

• Distribute across what? According to Vanderdonckt, the platform is a parameter
that significantly influences the design of DUIs. UIs can be produced for several
devices simultaneously, migrated from one device to another, or divided across
devices, displays, or platforms.

• Distribute where? The environment is the social and physical setup in which a
user is working on a task. Different UIs can be offered to the users when the
environment changes to adapt to the current situation.

Migratory UIs describe a similar concept. DUIs are distributed across one or more of
the aforementioned dimensions, whereas the migration of UIs describes “the action of
transferring a UI from a device to another one, for example from a desktop computer to
a handheld device” [109]. While the original idea covered only migrating whole applica-
tions between systems, more recent migratory UIs also distribute at an UI component
level [107]. This is why we use only the term Distributed User Interface in this work to
describe migratory UIs and DUIs.

DUIs promise to overcome the limitations of the previously presented platform-UI
configurations. In the tourism scenario, users can use a website to plan a trip and a
mobile application to access relevant information while already on the move. Kenteris et
al. [110] developed the myMytileneCity guide which allows users to select interesting
content, such as lodging, sightseeing, and entertainment, on a website. Then, the system
generates an application which can run on mobile devices. The application does not need
internet access; content can be updated when the user is online again.

DUIs can also facilitate interaction with public displays and surfaces and thereby in-
crease the user’s privacy. Schmidt et al. [111] showed how to use mobile devices in a
stylus-like fashion to interact with surfaces. Their approach facilitates authentication
on surfaces, for example. Users can touch a password field on the surface to activate it
and then enter the password on the mobile device hidden from the eyes of others. Alt et
al. [104] developed the aforementioned digital public notice area Digifieds and used it
to compare a wide range of different interaction techniques to create new content, post
content on Digifieds, and retrieve content from the display. Content can be created
directly on the display using a virtual keyboard, a mobile client, or a web browser on a
remote PC. While content created on the display appears directly on the screen, users of
the mobile or web client can either choose an alphanumeric code or QR code captured
by a camera and attached to the display to place content on the screen. Another option
for mobile devices is the phone/display touch feature which allows users to touch the
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screen with the mobile device at the position where they want the content to appear.
Content can be retrieved on the mobile device, the website, as printout, or via e-mail. 20
participants tested all combinations except for the alphanumeric code technique which
was not part of this study. Results showed that there is no single perfect interaction
technique. The usability is best for creating content directly at the display but creating
content on a PC is significantly faster than at the display or on a mobile device. How-
ever, young and technology-savvy users and users on-the-go prefer the mobile device
interaction techniques. Vepsäläinen et al. [112] examined which methods work best to
redirect the web browser of a mobile device to a webpage acting as the screen controller.
In a small laboratory usability study, they compared NFC, QR code, typing an URL,
and connecting to a WiFi access point. The usability of the URL method is higher than
of NFC and WiFi at the 10% significance level. QR code is ranked second with regard
to usability. Other approaches in published literature use changing bluetooth device
names [113] or manipulate live video images on mobile devices to update content on
remote or public displays [114].

Figure 2.9: The mobile and large display UIs
of the distributed RS DiRec [115].

Only a few RSs for DUIs have been de-
veloped in the last years. Abdrabo and
Wörndl [115] developed DiRec, a DUI
for video recommendations. DiRec dis-
tributes parts of the application across a
mobile device and a larger display (Fig-
ure 2.9). This allows users to rate a rec-
ommendation on the mobile device while
consuming it on the large display, for ex-
ample. The authors compared the UX of
DiRec with a version that runs only on
the mobile device. DiRec outperformed
the mobile version with regard to stimu-
lation and novelty, but it was also more
difficult to get familiar with the DUI ap-
proach than the mobile application.

2.6 Evaluating Recommender Systems

The process of evaluating a RS helps us to measure its success. Gunawardana and
Shani [116] differentiate between three types of RS evaluations: Offline experiments,
online evaluations, and user studies. In the following, we describe these evaluation
types.

2.6.1 Offline Experiments

Offline experiments use pre-collected data, such user ratings, to evaluate the performance
of a RS. One of the most popular metrics in such evaluations is the RS’s accuracy [117].
Accuracy indicates how close a RS’s prediction for a user, e.g., the ranking or exact rating
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of an item, differs from the user’s actual ranking of preference or rating [118]. Accuracy
can be measured by using some parts of the data to train the recommender model and
hide other parts which are then predicted using the trained model. Other metrics for
offline experiments are precision, recall, and F-measure [116]. Precision measures the
rate of false positives, that is, items that are predicted to be a good recommendation
but actually not appreciated by the user. Recall, on the other hand, measures how
good a RS is in not leaving out recommendations that should have been presented to
the user [119]. F-measure is the harmonic mean of the equally weighted precision and
recall [116]. Compared to the more popular accuracy, precision, and recall, it has rarely
been used in RS evaluations [119].

The advantage of offline experiments is that they do not require any interaction with
the actual users; only pre-collected data are required. However, offline experiments
can cover only certain aspects, such as accuracy, which is not always a suitable metric
for measuring the success of a RS [15]. For example, a user who receives a set of
accurate but similar recommendations may not be satisfied with the RS because of the
low diversity of the recommendations. If a user is looking for novel or positively surprising
recommendations, accurate recommendations which lack serendipity can have a negative
impact on the user’s satisfaction with the RS. Other aspects that have an impact on the
success of RSs are the usability and the perceived usefulness of the RS [120]. Besides
providing accurate recommendations, RSs should also be a pleasure to use [15]. It is
hence important to evaluate RSs from a user’s perspective instead of relying solely on
offline experiments. Online evaluations and user studies are two evaluation types that
allow overcoming the limitations of offline experiments.

2.6.2 Online Evaluations

Online evaluations are conducted with real users on real systems solving real tasks [116].
Hence, they allow to evaluate the true value of a RS from different perspectives. With
online evaluations, the overall system goals, such as profit generated by the users and
retention, can be evaluated. Different aspects of the RS can be varied in an A/B test
setting to evaluate the impact of an updated recommendation algorithm or UI, for ex-
ample. However, online evaluations are more expensive than offline experiments. They
require real users, a fully working system, and can have a negative impact on the users’
perception of the product when the tested modifications lead to a significant downgrade
for the users.

2.6.3 User Studies

User studies overcome some of the limitations of offline and online evaluations [116].
They allow to evaluate the user interaction with a RS but are conducted with users
specifically selected for the user study. A user study allows observing participants that
solve tasks on a RS, taking notes, and measuring qualitative data, such as how long it
takes for the participants to solve a task. In addition, questionnaires and qualitative
questions can be used to gather additional data, such as the system’s usability.
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Two established questionnaires for measuring the usability of interactive systems are
the System Usability Scale (SUS) and the User Experience Questionnaire (UEQ). The
SUS is a questionnaire that consists of ten usability statements with five response options
on a scale ranging from strongly agree to strongly disagree [121]. The SUS is calculated
by converting every response to a score from 0 to 4 where 4 is the best score. The
common response to half of the statements is strong agreement, and to the other half,
strong disagreement, to avoid response biases. The scores are summed up and multiplied
by 2.5 to get a total score between 0 and 100. An SUS score above 68 is considered as
above average [122].

The UEQ is a questionnaire “that allows a quick assessment done by end users cov-
ering a preferably comprehensive impression of user experience” [123]. It is a semantic
differential with 26 items grouped into six UX aspects:

• Attractiveness: Measures the overall impression.

• Perspicuity : Measures whether the system is easy to use and understand.

• Efficiency : Measures whether the system helps the users to accomplish their tasks
without unnecessary effort.

• Dependability : Measures the level of control that the users feel while interacting
with the system.

• Stimulation: Measures whether the users are excited and motivated to use the
system.

• Novelty : Measures the level of interest that users feel about the system and whether
they think that it is an innovative system.

The UEQ comes with a benchmark dataset that allows comparing the performance of
each aspect to other systems. It classifies the six UX scales of the tested system into five
categories (compared to the benchmark dataset): excellent, good, above average, below
average, and bad.

Compared to the previously mentioned types of evaluations, user studies are the only
method that allows collecting qualitative data which can be used to interpret quantitative
results. However, user studies are expensive; a large number of participants is required
to draw statistically significant conclusions. Finding participants can be challenging.
Participants should resemble the potential users of the tested RS as closely as possible,
which is hard to achieve [117].

Knijnenburg and Willemsen [117] differentiate between user studies, which are smaller
observational studies used to improve the usability of a RS, and user experiments, which
“denote the use of experimental conditions and formal measurement as a means of testing
theories about users interacting with” [117]. They emphasize that user experiments are
mandatory for a proper evaluation of the UX of a RS. Two frameworks that can be used
to evaluate the UX of RSs in user experiments were introduced by Pu et al. [120] and
Knijnenburg et al. [124].
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Recommender systems’ Quality of user experience (ResQue) is a framework which
measures different user-centered aspects, such as the quality of the recommendations,
the RS’s usability, and the user’s satisfaction with the RS [120]. It is based on ex-
isting usability-oriented research and uses principles from other, established usability
evaluation models.

ResQue comprises 43 questions clustered into 15 constructs. These constructs are,
moreover, structured into four layers of higher-level constructs:

• Perceived System Qualities, such as the recommendation accuracy, interface ade-
quacy, and interaction adequacy.

• Beliefs, such as the perceived usefulness, perceived ease of use, and transparency.

• Attitudes, which are more long-lasting than beliefs, e.g., the overall satisfaction
and trust.

• Behavioral Intentions, which express whether or not the user is willing to use the
system and consume the recommendations.

The framework allows researchers to understand how the users’ perception of physical
features of a RS influences their beliefs, attitudes, and behaviors [120]. Consequently,
not only the recommendation accuracy of a RS can be evaluated; furthermore, it is also
possible to evaluate the effects of changing system aspects. For example, an updated UI
could have a positive impact on the user’s satisfaction with the RS and thereby increase
the user’s interest in using the RS in future.

The Knijnenburg et al. [124] framework has a similar purpose. It is composed of the
following components [117]:

• Objective System Aspects: Aspects of the system that are currently being evalu-
ated, such as algorithms, rating scales, and layouts.

• Subjective System Aspects: The user’s perceptions of the Objective System Aspects,
such as the perceived recommendation quality. Can be measured with question-
naires.

• User Experience: The qualities of the RS, such as the satisfaction with the chosen
items. Is also measured with questionnaires.

• Interaction: The user’s interaction with the system, e.g., the number of clicks or
time spent with the RS.

• Personal and Situational Characteristics: Characteristics, such as domain knowl-
edge and choice goals, measured with questionnaires.

Knijnenburg et al. [124] explain that the framework can be used as a guideline for con-
trolled experiments. For example, it allows measuring the effects of a changing Objective
System Aspect on the user’s perceptions (Subjective System Aspects), experience (User
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Experience), and behaviors (Interaction) [117]. Therefore, the framework “allows for a
better understanding of why and how certain aspects of the system result in a better
user experience” [124].

2.7 Summary

RSs are software tools and techniques that identify products, services, or informations
that best satisfy the user’s needs. How well an item matches a user’s preferences is often
expressed in ratings. Different techniques exist to predict ratings of a user u for an item
i. CBRSs recommend items that are similar to those the user has liked in the past.
They use item categories or keywords extracted from the items to measure the similarity
between a user query and an item. Case-based RSs are a variant of CBRSs that rely on
very structured representations of items. The goal of CF is to identify items that other
users with similar tastes and preferences like. Nearest neighbor algorithms can be used
to identify similar users. User-based nearest neighbor algorithms predict the rating of
a user u for an item i by analyzing ratings for i from similar users. Item-based nearest
neighbor algorithms, however, predict ratings based on other items that were similarly
rated by other users. Knowledge-based RSs and demographic RSs are two other types
of RSs. Different techniques can be combined to so-called hybrid approaches.

More sophisticated RSs consider not only items and users to predict ratings, but also
the context of the recommendation. Different contextual conditions change predicted
ratings. For example, outdoor POI are assigned a lower profit on rainy days. Context
can be integrated into RSs at different stages, either before or after a recommendation is
made or directly within the recommendation process. Contextual factors can either be
soft or hard criteria in the recommendation process. If an items does not match a hard
criterion, it is completely removed from the list of recommendation candidates. Items
that do not match a soft criterion can still be recommended, but the probability of a
recommendation decreases.

RSs and context-aware recommendations are particularly popular in e-tourism. RSs
in tourism are mainly used to recommend POIs, travel plans, and sequences of POIs.
Sequences of POIs along enjoyable routes are also called tourist trips. Recommending
tourist trips is a challenging task. Tourists can usually not visit all POIs during their
trip. Tourist trip RSs have to identify the most attractive POIs and combine them
along a route. The recommendation has to respect several constraints, such as time and
budget constraints, opening hours of POIs, and desirable breaks.

In practice, tourists often travel in groups. Groups are aggregates of individuals that
are characterized by interactions, mutual goals, interdependencies between the group
members, a group structure, and cohesion. Different techniques exist to recommend
items to groups. User profiles of group members can be aggregated using Social Choice
strategies to create a group profile which is used to request a recommendation. An
alternative approach is to make a recommendation for every user individually before the
recommendations are combined into one group recommendation.
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Users and groups interact via UIs with RSs. Originally, RSs were developed for operat-
ing systems with graphical UIs and web browsers. Novel mobile devices, such as smart-
phones, allow to access recommendations even when on the move. In addition, their
sensors promise highly context-aware recommendations. However, their small screen
size and dependence on mobile internet can be significant limitations. An alternative
to smartphones are displays that are deployed in public spaces, but privacy concerns
and social embarrassment can prevent people from interacting with them. Distributing
applications over multiple interfaces allows overcoming the limitations of single devices.
UIs can be distributed among many dimensions, such as user input and graphical output.

The evaluation of RSs is done in offline experiments, online evaluations, or user studies.
A disadvantage of many previous RS evaluations is that they focus on prediction accuracy
only. However, RSs should also be a pleasure to use and hence, evaluated from the user’s
perspective. ResQue and the Knijnenburg et al. framework are two frameworks that
can be used to measure the UX of RSs in user experiments.
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3 The Tourist Trip Design Problem

The problem of finding a sequence of POIs along a route that respects different user
requirements and constraints, such as opening hours of POIs and the time available for
the trip, is called the TTDP [6]. Many route planning problems have been introduced
to model realistic variants of the TTDP that consider these user requirements and con-
straints. The integration of such problems into practical tourist trip applications allows
the recommendation of personalized POI sequences, as introduced in Section 2.3.3. How-
ever, only few state-of-the-art RSs try to solve complex but realistic variants of the TTDP
and hence are not able to recommend tourist trips that are entirely tailored to the user’s
needs. On the other hand, we believe that route planning problems should be extended
by established recommendation techniques, such as context-aware recommendations and
group recommendations, to be more suitable in practical tourism applications.

In this chapter, we provide a summary of route planning problems that serve as basic
models for the TTDP. Extensive overviews of existing algorithms and heuristics solving
the described problems have been published [14, 125, 126]. Therefore, we focus on
explaining the main idea of each problem and show how it can be applied to model
the TTDP. In addition, we summarize open challenges in TTDP research. We used the
findings of this chapter to come up with novel solutions to solve the TTDP for individuals
and groups.

3.1 Models for the Tourist Trip Design Problem

The majority of literature in the field of tourist trip recommendations uses the so-called
OP to model the TTDP [14]. This is why our work is based on the OP and some
of its variants which we present in this section. Furthermore, we summarize the most
important algorithms and heuristics that have been published to solve the presented
problems.

Parts of this overview have been published in [41, 42].

3.1.1 Orienteering Problem

A well-known optimization problem that formulates a simple version of TTDP is the
OP. The name orienteering originally described a running and navigation sport where
the participants have to find and arrive at fixed locations [127]. In one variant of this
sport, profits1 are assigned to the locations and the participants do not have to visit all

1In this thesis, we use the term profit to describe the predicted value of a POI in a tourist trip for a
user. In published literature, the term score is often used for the same purpose.
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locations but are supposed to maximize the collected profits during the playing time.
Hence, this sport requires not only a good stamina but also path finding skills.

More generally speaking, in the OP, several locations with an associated profit have
to be visited within a given time limit. Each location may be visited only once, while
the aim is to maximize the overall profit gained on a single tour [127]. The problem can
be applied to other domains, such as transportation logistics and tourism [6].

The OP can be formulated as an integer problem [125]:

Max

N−1∑
i=2

N∑
j=2

si × xij , (3.1)

N∑
j=2

x1j =
N−1∑
i=1

xiN = 1, (3.2)

N−1∑
i=1

xik =
N∑
j=2

xkj ≤ 1; ∀k = 2, . . . , N − 1 (3.3)

N−1∑
i=1

N∑
j=2

tij × xij ≤ Tmax, (3.4)

2 ≤ ui ≤ N ; ∀i = 2, . . . , N, (3.5)

ui − uj + 1 ≤ (N − 1)(1− xij); ∀i = 2, . . . , N, (3.6)

xij ∈ {0, 1}; ∀i, j = 1, . . . , N, (3.7)

where N is the number of locations than can be visited. si is the profit of location i
and xij = 1 if a visit to location i is followed by a visit to j, 0 otherwise. tij is the cost of
traveling from i to j and Tmax is the time budget. ui denotes the place of location i in the
path. The objective function (3.1) is to maximize the sum of the collected profits. The
constraints guarantee that the path starts at location 1 and ends at location N (3.2),
the connectivity of the path and that every location can only be visited once (3.3), that
the total costs of the path do not exceed the time budget (3.4), and prevent subtours
(3.5, 3.6).

The OP is NP-hard [128]. Hence, when using the OP as a model for the TTDP
to recommend tourist trips in practical applications with a large dataset of locations,
heuristics are necessary to ensure reasonable computation times.

In the relevant OP literature, it is differentiated whether a directed or undirected
graph is given [14]. In the tourist trip scenario, the locations are POIs that a user can
visit during a single-day or multi-day trip. A tourist can access all of these POIs from
any point in the city. The cost of traveling between two POIs, which can be expressed
by the walking or driving time, for example, remains the same regardless of the direction
of movement. Hence, for this scenario, an undirected graph with edges connecting all
pairs of vertices should model the travel area. However, there may be exceptions where
a directed graph is more appropriate. For instance, if a museum gift shop can only be
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Figure 3.1: Illustrations of the a) OP and b) Team Orienteering Problem (TOP) with k = 3
teams. Numbers denote location profits. Edge costs are removed for readability.

reached after visiting a museum, the edge connecting these two vertices is only in one
direction. Another differentiation is whether the starting and destination locations are
fixed points or not [14]. In the tourist trip scenario, a fixed starting point could either
be the user’s current location or a desired starting point, such as a hotel. If a fixed
destination is required depends on whether the user has a specific destination in mind.
Another option is a round trip in which the user wants to return to the starting point
at the end of the trip. Figure 3.1a illustrates an example path from a starting point S
to a destination D solving the OP.

A large number of exact algorithms and heuristics solving the OP have been devel-
oped. Tsiligirides [127] started with suggesting two algorithms based on approximate
methods: a stochastic algorithm using a Monte Carlo method and a deterministic algo-
rithm, similar to Wren and Holiday’s [129] approach for a vehicle-scheduling problem,
which partitions the given area into several sectors. Chao et al. [130] presented a heuris-
tic for the OP which is composed of two steps: initialization and improvement. Only
locations within an ellipse over the entire set of points with the start and end points as
the two foci of the ellipse are considered for the suggested solution. In the initialization
phase, multiple solutions are created by inserting points in a greedy way. The path with
the highest profit is selected as the initial solution. Improvements can then be made
by exchanging, moving and removing points in the paths. They showed the good per-
formance of this approach by applying it to 107 problems. The heuristic of Golden et
al. [128] calculates centers of gravity to find the best route. This approach outperforms
both algorithms presented by Tsiligirides. Gendreau et al. [131] described a tabu search
heuristic for the OP. By testing this approach on randomly generated instances, they
showed that it always yields optimal or near-optimal solutions.

Some recent work also tackles the traditional OP [132–134]. Taylor et al. [135] recently
introduced an algorithm solving the OP as an integer linear program which can also take
into account must-see POIs [135]. However, the research focus is shifting towards more
complex variants of the OP which have been developed to serve as more sophisticated
models for the TTDP.
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3.1.2 Team Orienteering Problem

The goal of the TOP is to find k routes at the same time maximizing the total profit of
all routes [136]. The name of this problem is derived from a team in which each team
member selects one route in an attempt to avoid overlaps in the points visited by each
team member. In the tourism scenario, a team member could be interpreted as one day
in a multi-day trip, for example. Figure 3.1b shows an example solution to the TOP
with k = 3 teams.

A few exact algorithms solving the TOP have been proposed [137–139]. The first
heuristic, MAXIMP, was introduced by Butt and Cavalier [140]. It is composed of
four steps: First, weights are assigned to vertex pairs, estimating how valuable it is to
include both vertices in the same tour. Then, vertex pairs which are not feasible are
removed before vertices are assigned to tours. In the end, a final check tries to find out
if adding single vertices to a tour can increase the total profit of that tour. Another
solution was presented by Chao et al. [136]. They extended their approach introduced
in [130] to find k paths instead of only one. The authors showed that their approach
is computationally efficient and outperforms a concurrent version of Tsiligirides’s algo-
rithm. Archetti et al. [141] presented metaheuristics for the TOP: two variants of a
generalized tabu search algorithm and a variable neighborhood search algorithm. All of
these three solutions outperform previous heuristics, however, the variable neighborhood
search algorithm turned out to be more efficient and effective for this problem than the
two tabu search algorithms they presented. Souffriau et al. [142] presented a Greedy
Randomised Adaptive Search Procedure (GRASP) for the TOP. GRASP is a
metaheuristic first introduced by Feo and Resende [143]. It performs a number of in-
dependent iterations to eventually return the best result. A Path Relinking extension
that recombines solutions from different iterations of the original GRASP approach to
find better solutions to the TOP was presented by Souffriau et al. [144]. The authors
developed a fast and a slower but more accurate variant of the Path Relinking meta-
heuristic. They showed that the path relinking extension significantly outperforms the
basic GRASP algorithm.

Friggstad et al. [145] presented an algorithm solving a problem that can be understood
as an extension of the TOP: avoiding low-quality trips in multi-day recommendations.
They evaluated their algorithm by using an anonymized Google historical visit dataset
and Foursquare public check-in data. Results showed that their algorithm significantly
improves the quality of the worst day compared to a state-of-the-art multi-tour algo-
rithm. Another evaluation with human raters showed that the recommended trips score
only slightly below trips created by human travel experts.

3.1.3 Orienteering Problem with Time Windows

In the Orienteering Problem with Time Windows (OPTW), each location can only be
visited within a defined time window [146]. These time windows can represent the
opening hours of POIs, for example. If the TOP is extended by time windows, it is
called the Team Orienteering Problem with Time Windows (TOPTW) [147].
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Kantor and Rosenwein [146] were the first to solve the OPTW [125]. They developed
the tree heuristic and compared it to a simple insertion heuristic. The tree heuristic is
based on a depth-first search which creates paths by iteratively adding vertices until a
complete path is generated or one of six rules forces the abandonment of the current
path. Tests showed that the tree algorithm delivers significantly better results than
the insertion heuristic. Vansteenwegen et al. [147] developed an Iterated Local Search
(ILS) heuristic solving the TOPTW. It is composed of an insertion step and a shake
step. In the insertion step, a new vertex is inserted into the path after verifying that all
scheduled visits after the new vertex still satisfy their time windows. In the shake step,
vertices can be removed or shifted to improve the solution by escaping local optimums.
The authors used a large test set to show that their approach can find high quality
paths in a very short time, making the heuristic optimal for usage in practical applica-
tions. However, according to Gavalas et al. [148], the heuristic comes with two major
weaknesses: (i) vertices with high profits can be left out if they are to time-expensive
to reach and (ii) topology areas with a high density of vertices can be left out when
vertices with high profits isolated from these areas are included into the solution. They
developed two cluster-based heuristics CSCRatio and CSCRoutes extending the ILS
to overcome these weaknesses. The main idea behind both heuristics is to organize
vertices into clusters based on topological distance criteria. The heuristics try to com-
bine vertices in the same cluster to reduce travel duration. Compared to CSCRatio,
CSCRoutes constructs routes that visit each cluster at most once. Both approaches
outperform ILS with respect to solutions quality and can reduce the frequency of long
transfers between vertices. A recent approach was presented by Hu and Lim [149], who
developed a three-component heuristic for the TOPTW. It executes a local search pro-
cedure and a simulated annealing procedure to explore the solution space. Then, routes
can be recombined to identify high quality solutions. This heuristic outperforms existing
approaches in published literature with regard to average performance.

3.1.4 Time Dependent Orienteering Problem

The Time Dependent Orienteering Problem (TDOP) assumes that the time needed
to travel between two locations depends on the time the traveler leaves the first lo-
cation [150]. This extension can be used to model different modes of transportation
in a tourist trip recommendation. For example, a tourist can leave a POI later than
planned when a bus connection to the next POI is available as the traveling time be-
tween the two POIs decreases. Combining the TDOP with time windows and multiple
routes leads to the Time Dependent Team Orienteering Problem with Time Windows
(TDTOPTW) [151].

Fomin and Lingas [150] introduced the TDOP and provided a (2 + ε)-approximation
algorithm to solve it. Garcia et al. [151] were the first to develop a heuristic solving
the TDTOPTW. It starts with calculating an average travel time between each pair of
POIs. Using these averages, a heuristic, which is based on the ILS metaheuristic imple-
mented by Vansteenwegen et al. [147], creates a solution solving the TOPTW. In the
end, a repair procedure introducing the real travel times between the POIs is executed.
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The authors implemented their heuristic into desktop and mobile prototypes which have
been initialized with real data from the Spanish city of San Sebastian. Garcia et al. [152]
developed a second approach to solving the TDTOPTW using real travel time between
POIs instead of calculating average values. The main concept of this approach is a
fast, local evaluation of each possible insertion which involves only the POI that is in-
serted and the POIs directly before and after the new POI. Again, the authors used a
test set with around 50 POIs from San Sebastian to evaluate their approach. Results
showed that the real travel time approach outperforms the approach with average travel
times. Gavalas et al. [153] extended the previous TOPTW heuristics in [148] to solve the
TDTOPTW. They presented two heuristics: TDCSCRoutes and SlackCSCRoutes.
TDCSCRoutes modifies CSCRoutes’s insertion step to handle time dependent travel
times among different vertices. The decision if a vertex is inserted is based on the inser-
tion cost, whereas SlackCSCRoutes takes into consideration the effect of an insertion
in the whole route. The authors compared their algorithms with two other algorithms
using a dataset with POIs from Athens, Greece. With respect to the total profit of a
trip, TDCSCRoutes performs marginally better than the three other algorithms.

3.1.5 Multi Constrained Team Orienteering Problem

The Multi Constrained Team Orienteering Problem with Time Windows (MCTOPTW)
introduces additional thresholds besides the time budget which a path is not supposed
to exceed [154]. A common constraint when traveling is money. Tourists usually have a
limit on how much they want to spend for entrance fees or food, for example. In this case,
the vertices come with a fixed cost and the routing algorithm has to find a path which
does neither exceed the financial threshold nor the time budget. Souffriau et al. [155]
extended the MCTOPTW to the Multi Constrained Team Orienteering Problem with
Multiple Time Windows (MCTOPMTW) which allows defining different time windows
on different days and more than one time window per day.

Garcia et al. [154] were the first to solve the MCTOPTW. Their metaheuristic is
based on the ILS metaheuristic implemented by Vansteenwegen et al. [147]. It takes
into account every constraint while checking the feasibility of a vertex insertion when
comparing vertices that can be inserted. The authors proved the appropriateness of
their approach on different test sets. Souffriau et al. [155] developed a hybrid of the ILS
metaheuristic implemented by Vansteenwegen et al. [147] and GRASP and adapted it
to solve the MCTOPMTW. Tests on a large dataset showed that the average run of
the algorithm has a total profit gap of 5.19% and an average execution time of 1.5 s.
Sylejmani et al. [156] developed a Tabu Search approach for solving the MCTOPTW. In
this approach, neighborhood exploration is done by using three general moves: insert a
new POI into the path, replace a POI from the path with another POI not in the path,
and swap two POIs inside the path. In a test set of 148 instances, the heuristic average
performance has a gap of 4% from the state-of-the-art approach in [155] and an average
execution time of 6 s.
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3.1.6 Orienteering Problem with Maximum Point Categories

Bolzoni et al. [157] introduced the Orienteering Problem with Maximum Point Categories
(OPMPC), an extension of the OP that considers location categories and introduces
the maximum number of locations per category as additional constraint. The authors
developed different variants of their algorithm CLIP and evaluated them using two real-
world datasets. They proved that CLIP is able to generate trips that are close to the
optimal solution. The TourRec problem, introduced by Gionis et al. [158], is a similar
extension of the OP which also considers location categories and the order in which the
user wants to visit the categories [158]. The authors introduced two different satisfaction
functions for the TourRec problem: an additive satisfaction function, which is the sum of
each location’s profit, and a coverage satisfaction function, which represents the number
of locations and activities in the vicinity that the user could visit or join during the trip.
The authors developed algorithms for both variants and showed their practical utility
and efficacy using a Foursquare dataset.

3.1.7 Arc Orienteering Problem

In the Arc Orienteering Problem (AOP), profits are associated with edges (arcs) instead
of vertices [159]. As in the traditional OP, AOP algorithms try to find a route from a
starting point to a destination that maximizes the total profit while not violating given
constraints. However, the goal is to find a trip that is composed of the most attractive
routes. Souffriau et al. [159] used GRASP to solve the AOP. Their approach finds a
near optimal solution in only 1 s. The AOP is suitable in scenarios where the user mainly
benefits from the routes between locations. For instance, Souffriau et al. integrated their
approach into two real-life applications that support cyclists in finding attractive routes.

Verbeeck et al. [160] extended the AOP to the Cycle Trip Planning Problem (CTPP)
in which a vertex can be visited multiple times. A combination of the OP and the AOP
is the Mixed OP [125]. In this variant, profits are assigned to routes as well as locations.

3.1.8 Orienteering Problems with Flexible Location Profits

The aforementioned problems assume that each vertex or edge is assigned a fixed profit.
A few works introduced problems where the profit of a location is flexible and depending
on certain events. These problems allow a more realistic modeling of the TTDP since
the value of a POI can be influenced by the presence or absence of other POIs in a trip,
for example [6]. In the following, we present some important models for the TTDP with
flexible location profits.

3.1.8.1 Generalized Orienteering Problem

In the Generalized Orienteering Problem (GOP), every location is assigned multiple
profits representing different goals of the visitor [161]. Hence, the user’s travel purpose
can be modeled. If a traveler is planning a trip with sports activities only, a museum
will have a low profit even if this user likes museums in general.
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The objective function in the GOP is nonlinear. Therefore, the GOP can penalize
paths that include two similar attractions, for example. This is important for a realistic
modeling of the TTDP to avoid unpleasant combinations of POIs, such as two restaurant
in a row [162].

3.1.8.2 Orienteering Problem with Variable Profits

The Orienteering Problem with Variable Profits (OPVP) assumes that the vertex values
depend on a number of discrete passes or the time spent at the vertex [163]. This
problem allows modeling a version of the TTDP where it is necessary to visit a POI
multiple times or stay at POIs for at least a minimum amount of time to fully benefit
from the visits.

The authors presented programming models for the case of discrete passes and the
case of a continuous amount of time to be spent at the vertex. They developed a branch-
and-cut algorithm for both cases and showed that the pass model can be solved for about
200 vertices within two hours of computing time. The continuous time model, however,
is beyond the computational reach for more than 75 vertices.

3.1.8.3 Team Orienteering Problem With Decreasing Profits

In the Team Orienteering Problem with Decreasing Profits (DPTOP), the profit of each
vertex decreases with time [164]. Hence, the DPTOP can be used to model a variant of
the TTDP where the profit of a POI is lower the later the traveler arrives at this POI.
The decreasing function of time can, for example, represent the fitness state of travelers
if we assume that they enjoy POIs less when being more tired at a later point of the
trip.

3.1.8.4 Clustered Orienteering Problem

In the Clustered Orienteering Problem (COP), the profit of a vertex can only be gained
if all vertices of a group of vertices are part of the path [165]. Travel-related scenarios
where this problem may be used for modeling are complementary exhibitions, events,
and plays which become only interesting if all parts are visited.

The authors presented an exact branch-and-cut algorithm and a tabu search heuristic
to solve the COP. The exact algorithm is able to solve instances with up to 318 vertices
in one hour of computing time. The simple heuristic approach, however, is able to
calculate high quality solutions in a short computing time.

3.1.8.5 Orienteering Problem with Stochastic Profits

The Orienteering Problem with Stochastic Profits (OPSP) assumes that the locations’
profits are stochastic with a known distribution and their values are not revealed before
the locations are visited [166]. The crowdedness of a POI is an example of a stochastic
factor in tourism. RSs should suggest POIs which are not too crowded and they can
use historical data to predict the number of visitors. The actual number of visitors at a
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POI without a mandatory ticketing or a fixed number of places is stochastic, hence the
full benefit for visitors cannot be estimated before they arrive at the POI.

The authors suggested an exact parametric solution technique and a Pareto-based
bi-objective genetic algorithm to solve the OPSP.

3.1.8.6 Orienteering Problem with Stochastic Travel and Service Times

Campbell et al. [167] introduced the Orienteering Problem with Stochastic Travel and
Service Times (OPSTS) in which travelers are punished if they do not reach a location
before a deadline. They exemplify the problem using the example of a company providing
deliveries or services to their customers: a reward is received for all customers which can
be reached on the planned route before the deadline and a penalty is received for those
not reached. The problem can also be used to model the TTDP if we assume that a
user’s satisfaction decreases with every POI missed in a given area and time frame. In
this case, the total profit of a trip is the sum of the POIs’ profits minus the penalty for
every POI not being visited during the trip.

3.1.9 Orienteering Problems for Groups of Users

The goal of the aforementioned problems is to create one or more routes for individuals.
Recently, a few works proposed variants of the OP which try to find routes for a group
of users. This is an important extension when modeling the TTDP since tourists often
travel in groups.

Lim et al. [168] introduced the GroupTourRec problem which has three objectives:
(i) cluster users into groups, (ii) recommend a tourist trip to the group, and (iii) rec-
ommend a tour guide to the group. Hence, the goal of GroupTourRec is not to make
recommendations to pre-defined, individual groups. Instead, it connects people with
similar interests.

Anagnostopoulos et al. [16] introduced TourGroup, an extension of the OP, to cre-
ate tours that satisfy all members of a group by finding a compromise route. They
presented three different formulations of the problem: TourGroupSum, TourGroupMin,
and TourGroupFair. The objective functions of these problems are derived from prefer-
ence aggregation strategies which are based on Social Choice Theory. TourGroupSum
tries to maximize the sum of the individuals’ satisfactions, TourGroupMin tries to make
the least satisfied person as happy as possible, and TourGroupFair tries to optimize the
overall group satisfaction while penalizing overly unfair solutions. The authors presented
a set of algorithms solving the TourGroup problem: a dynamic programming heuristic,
multiple greedy heuristics, BUMA (an algorithm that can use any of the presented al-
gorithms to recommend a route to each group member and then selects the one which is
best for the whole group) and an ant-colony optimization algorithm. Furthermore, they
implemented an exhaustive search algorithm, which is an exponential-time algorithm re-
turning the optimal solution, as benchmark. The authors created datasets of POIs and
users in the Italian cities of Pisa, Rome, and Florence using different sources, such as
Wikipedia and Flickr, to evaluate their algorithms. Results showed that the ant-colony
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heuristic always gives high-quality solutions with reasonable execution times. Its run-
ning times are significantly faster than the ones of the dynamic programming heuristic
and BUMA which also find the optimal solution most of time. The greedy heuristics
should be chosen if very quick route creation is required.

Sylejmani et al. [7] introduced the Multi Constrained Multiple Team Orienteering
Problem with Time Windows (MCMTOPTW), a problem to model the case of multiple
trips with multiple tours while taking the social relations between the different group
members into account. They presented four different approaches to solving this problem:

• Solo: individual users conduct the trip alone.

• Subgroups: the group is split, users with common preferences and mutual social
relations travel together.

• All together: all users stay together.

• Combined: users are together at times and separated at other times.

The authors developed a new algorithm based on a tabu search metaheuristic. The
fast mode of this algorithm takes about 20 s to obtain better personalized trips for tourist
groups than when scheduling the whole group together. They used a newly generated
test set to compare the solutions obtained by different approaches. Results showed that
the combined approach performs better than any of the other approaches. The all
together approach performs better than the solo and the subgroups approaches
and is four times faster than the combined approach. However, when applying a single
tour algorithm on averaged user preferences, the personal preferences of the individual
group members get lost.

3.2 Open Challenges

The OP and its variants have been researched for over 30 years and became very popular
models for the TTDP. Various extensions allow modeling more complex variants of the
TTDP that consider multi-day trips, opening hours of POIs, and multiple constraints,
for example. Table 3.1 summarizes all problems presented in this chapter, their key
characteristics, and how they can be applied in the tourism scenario.

We identified three important challenges that research in TTDP still has to meet:
context-aware tourist trips, a user-centered perspective on TTDP algorithms, and tourist
trips for groups of users.

Some of the existing TTDP models, such as the OPTW, introduce aspects which can
be understood as contextual factors from a RS perspective: if a location is recommended
depends on its opening times, which is an example of a temporal contextual factor [8].
The influence of different contextual factors on single POI recommendations has been
researched in the last years [35]. However, there are contextual factors specifically rel-
evant for sequences of POIs, such as the order of POIs in a trip and how visiting a
POI influences the perceived quality of the remaining trip. The attractiveness of routes
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Table 3.1: Summary of models for the TTDP from published literature with their most relevant
characteristics and relevance for the tourism scenario. (Note: for some of the listed
problems, team variants for finding k tours have been introduced.)

Problem Constraints & parameters Relevance for tourism scenario

OP Time budget Recommend POIs along a route

OPTW Time windows Respect opening hours

TDOP Travel time dependency Integration of different modes of
transportation

MCTOPMTW Multiple budgets, time windows Multiple travel constraints (e.g.,
time and budget)

OPMPC Location categories Limit number of POI categories

TourRec Total distance covered, location
categories

Specify number of POI cate-
gories

AOP Profits assigned to arcs Recommend routes instead of
POIs

CTPP Profits assigned to arcs, vertices
can be visited multiple times

Recommend routes instead of
POIs

Mixed OP Profits assigned to vertices and
arcs

Recommend routes and POIs

GOP Multiple profits, nonlinear ob-
jective function

Model travel purpose, penalize
similar attractions

OPVP Profit depends on number of dis-
crete passes or time spent at ver-
tex

Visit POIs multiple times, spec-
ify minimum duration of stay

DPTOP Profit decreases with time Penalize late arrivals at POIs

COP Profit of a vertex can only be
gained if all vertices of a cluster
are visited

Recommend complementary
POIs and activities

OPSP Stochastic profits (not revealed
before vertex is visited)

Model stochastic factors, such as
crowdedness of a POI

OPSTS Penalty for vertices not visited
before a deadline

Decreasing user satisfaction if
POIs are missed

GroupTourRec Multiple users and profits,
collective group interest, tour
guides

Cluster travelers into groups,
recommend trips and guides to
groups

TourGroup Multiple users and profits Recommend tourist trips to
groups

MCMTOPTW Multiple users, profits, and con-
straints

Multiple trips with multiple
tours
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between POIs can also have a large influence on the perceived quality of a recommended
trip and therefore be considered as another type of contextual factor. TTDP algorithms
have to integrate such contextual factors to make the recommendations more suitable for
practical applications. In Chapter 5, we show how to use combinations of different OP
variants to meet this requirement. We introduce a novel problem that enables flexible
location profits to model all types of contextual factors that are relevant in a tourist trip
RS. It considers the user’s preferences for location categories, such as the OPMPC and
TourRec problem, but without the requirement to specify fixed category bounds. Fur-
thermore, we present a solution that integrates ideas from the Mixed OP to recommend
tourist trips that also consist of attractive routes.

One main focus in published OP literature is the development of heuristics with little
gaps to optimal solutions and quick execution times in order to utilize them in prac-
tical applications. The optimal solution in this case is the maximum possible sum of
location profits that can be reached without violating the given constraints. In practical
applications, the satisfaction with a recommended trip is not necessarily the sum of POI
profits. Many individual aspects influence how a tourist perceives the quality of a trip.
Hence, evaluating a tourist trip from a pure OR perspective is not suitable to determine
the most satisfying tourist trip recommendation. Instead, tourist trips generated by OP
algorithms should be evaluated from a user-centered perspective to find trips that are
not only a near-optimal solution from a pure mathematical perspective, but instead a
pleasure for the user. One approach to achieve this goal is to integrate TTDP algorithms
into RSs. A RS can take into account many aspects influencing the perceived quality of
a recommendation, such as context, and therefore be used for a user-centered approach
to generate tourist trips. This is why we integrated all of our solutions to the TTDP
into practical applications and evaluated them in user studies with real users and groups
in this thesis.

The vast majority of OP studies focus solely on the creation of tourist trips for indi-
viduals. Since tourists often travel in groups, approaches solving the TTDP for a group
of users are necessary. GRSs apply preference aggregation strategies from Social Choice
Theory to create a user profile representing the whole group. This approach can be
adapted to solve the TTDP for a group of users, however, an investigation on which
strategies work best to find a consensus is still missing [7]. Such an investigation should
also evaluate the influence of social-psychological aspects, such as group type, on how
well a preference aggregation strategy can support a group in finding a consensus. In
Chapter 7, we present different group recommendation strategies for solving the TTDP
and compare them to novel approaches, such as a solution that allows groups to split
temporarily during a trip. Until today, very few works have solved the TTDP for user
groups. Both [16] and [7] evaluated their approaches in experiments using datasets but
created synthetic groups. To the best of our knowledge, we are the first to evaluate
TTDP strategies for groups in a user study using a practical application and with real
groups.

58



3.3 Summary

3.3 Summary

The problem of finding a sequence of POIs along a route is called the TTDP. A large
number of algorithms and heuristics solving the TTDP exist. The majority of them use
the OP to model the TTDP. In the OP, several locations with an associated profit have
to be visited. Each location may be visited only once. The travel time between locations
and the maximum time available for the trip limits the number of locations that can be
visited. The goal is to find a route that maximizes the overall profit. Team variants,
such as the TOP, have been introduced to find multiple routes and maximize the total
profit of all routes.

Further variants of the OP allow a more realistic modeling of the TTDP. The OPTW
introduces time windows which can represent opening hours of POIs, for example. The
TDOP assumes that the time needed to travel between two locations depends on the time
the traveler leaves the first location. It can hence be used to model public transport in the
TTDP. The MCTOPTW introduces multiple constraints (e.g., time, budget) that limit
the number of locations in a trip. In the OPMPC, location categories are considered.
The maximum number of locations per category can be specified as additional constraint.
Other variants introduce flexible location profits. For instance, the profit of a location
can change depending on the presence or absence of other locations in the same trip or
when the user does not spend a minimum time at a location.

Very few works have solved the TTDP for user groups. This is an important issue as
tourists often travel in groups. However, recommending tourist trips to groups remains
an open challenge in research. Besides recommendations for groups, TTDP algorithms
should also be context-aware and evaluated from a user’s perspective instead of using
datasets only. In this thesis, we combine different variants of the OP, such as the
OPTW, the Mixed OP, and variants with flexible location profits, to model all types of
contextual factors in a RS. We apply existing group recommendation strategies to the
TTDP, develop novel approaches, and compare them in user studies with real groups to
solve the TTDP for groups from a user-centered perspective.
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4 A Framework for the Development of
Practical Tourist Trip Recommender
Systems

In this chapter, we introduce AnyRec, a framework that we developed to facilitate the
development of practical RSs and the evaluation of TTDP algorithms and UIs from a
user-centered perspective. AnyRec aims to be the starting point of any generic RS. It
provides common components that are required in most RSs, such as user management,
data gathering and dispatching, Application Programming Interface (API) interfaces,
and evaluation from an end user’s perspective. The framework makes it convenient to
implement new or improve existing user clients, recommendation algorithms, and data
sources.

We used the AnyRec framework to develop the tourist trip RS TourRec. In this
chapter, we introduce AnyRec and show how it can be used to develop and evaluate
novel recommendation algorithms and UIs. Furthermore, we explain the general idea
of TourRec and present all of its components. The outcome of this chapter is an
architecture that supports the development of practical applications solving the TTDP
from a user-centered perspective. The TourRec RS that we developed based on this
architecture serves as the basis for answering all of our RQs in the following chapters.

4.1 Existing Tools and Frameworks for the Development and
Evaluation of Recommender Systems

Many existing machine learning services support developers in creating and training
models. Popular commercial examples are Amazon Machine Learning1, Google
Cloud Machine Learning (ML) Engine2, and Azure ML Studio3. These ser-
vices can often be combined with different machine learning frameworks, such as Ten-
sorflow4, and can be used for different machine learning tasks, such as predicting
ratings for recommendations. An example of an open-source machine learning server is
Prediction IO5. Apache Mahout6 is a machine learning framework facilitating the
development of RSs by providing a set of CF algorithms, for example.

1https://aws.amazon.com/aml/ (accessed February 16, 2020)
2https://cloud.google.com/ml-engine/ (accessed February 16, 2020)
3https://studio.azureml.net/ (accessed February 16, 2020)
4https://www.tensorflow.org/ (accessed February 16, 2020)
5https://predictionio.apache.org/ (accessed February 16, 2020)
6https://mahout.apache.org/ (accessed February 16, 2020)
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Research has been focusing on providing tools and frameworks for supporting research,
development, and evaluation of RSs. LensKit for Python is such an example of an
open-source toolkit [169]. It is a set of Python tools for RS research and development
which provides various modules for splitting data for cross-validation, algorithm APIs
for training models, and top-N and prediction accuracy metrics for evaluation purposes.
Guo et al. [170] developed LibRec, an open-source Java library that implements more
than 70 recommendation algorithms and a set of evaluation metrics. Another framework
for the implementation and evaluation of recommendation algorithms is RankSys [171].
It is implemented in Java 8 and targets the ranking task problem with a focus on novelty
and diversity. Mihelčić et al. [172] presented a RS extension for RapidMiner, a data
science platform for machine learning. The goal of their extension is to simplify and
speed up the creation of new RSs.

These examples help researchers to develop and evaluate RSs. Their focus, however,
are often machine learning tasks, such as predicting ratings by supporting developers
in creating and training models, offering recommender algorithms, and supporting the
evaluation of the recommendations using established metrics, such as accuracy. The
framework that we present in this chapter has a different purpose and should rather be
understood as a complement for the mentioned tools. It does not provide a set of recom-
mendation algorithms. Instead, it focuses on the overall developer experience of the RS.
By providing a RS skeleton, the framework facilitates the development and deployment
of novel user clients, recommendation algorithms, and data sources. Furthermore, it
supports the evaluation of every component from a user’s perspective. Consequently,
RSs developed using our framework do not only focus on high prediction accuracy, but
support users in the whole process of finding best items. We used these strengths of our
framework to develop TourRec, a practical tourist trip RS that solves the TTDP from
a user-centered perspective.

4.2 System Overview

AnyRec is a multi-tier architecture that is partitioned into three tiers: presentation
tier, application logic tier, and data tier (Figure 4.1). In addition, external services can
be integrated into the RS. External services are typically third party data providers that
provide the items that can be recommended.

AnyRec is domain-independent, any kind of item can be recommended depending
only on the available data sources. One main advantage of AnyRec is its modularity.
Through well-defined interfaces and communication via the Hypertext Transfer Protocol
(HTTP) protocol, novel data sources, clients, and recommendation algorithms can easily
be added independent of programming language or runtime environment. Furthermore,
the framework enables the evaluation of RSs from a user’s perspective. For example,
multiple recommendation algorithms can be tested in an A/B testing approach and
evaluated according to UX criteria, such as the perceived quality of recommendations in
the desired client application.
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Figure 4.1: The AnyRec architecture.

In the following, we present each of the three tiers in detail. We demonstrate the
capabilities of our framework by presenting TourRec, a RS for tourist trips that we
developed using AnyRec. We explain how we can use TourRec to solve the TTDP
from a user-centered perspective and answer the RQs of this thesis.

A brief description of the presented architecture has been published in [173].

4.2.1 Presentation Tier

The entry point for all user requests are the clients. They are part of the presentation tier
and should be the front facing UIs of the RS. Clients can be any suitable UI for RSs (see
Section 2.5) and developed using any programming language. A client is responsible for
gathering user preferences and other relevant user input data, such as the user’s current
location. The user request is then sent to the backend which is part of the application
logic tier. Users eventually receive and view recommendations in the client application.

We developed and evaluated several client applications for TourRec within the scope
of this thesis (see Chapters 6 and 8). Individuals and groups can use these clients
to specify their travel preferences and all of the important constraints for solving the
TTDP. The recommended trips are displayed on the clients and can be rated by the
users. Consequently, TourRec’s presentation tier allows us to answer the RQs “Which
platforms and UIs support tourists the best in solving the TTDP in realistic scenarios with
regard to different usability and UX criteria?”, “How do different group types agree on
decisions when interacting with a GRS for tourist trips and how fair are their decisions?”,
and “Which platform-UI configurations for receiving group recommendations support
groups the best when looking for a tourist trip with regard to different UX criteria?”
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4.2.2 Application Logic Tier

The backend is the core of the AnyRec framework. It acts as the connecting link be-
tween the clients, the data sources, and the recommendation algorithms. The framework
provides well-defined HTTP endpoints for user management, authentication, recommen-
dation queries, and feedback that each client must adhere to.

The backend receives incoming recommendation requests from the clients via HTTP
requests. The framework defines a list of middleware that all requests must pass through
before being further handled by the application. These middleware validate the en-
veloped data against a JSON schema provided by the developer, for example. This step
ensures that the following components can operate on the expected data structure.

After the request passed the middleware, necessary data from external services are
gathered. A custom adapter for each external service is required. The adapter is respon-
sible for building the request and defines the output data structure for its corresponding
external service. Once AnyRec gathered the required data for a recommendation from
the clients and all external services, the request is handed over to the recommendation
algorithm. The recommendation algorithm receives the full user request including the
user preferences and all data from the external data source. AnyRec allows integrating
multiple recommendation algorithms into the RS. All algorithms are extracted into their
own dedicated microservice. They communicate with AnyRec over well-defined HTTP
interfaces. Only one recommendation algorithm receives the recommendation request.
By default, AnyRec chooses an algorithm mircoserivce randomly, but developers can
also assign selection probabilities. This facilitates the A/B testing approach where mul-
tiple algorithms can be evaluated. The selected algorithm microservice responds back
to AnyRec with the generated recommendation.

The backend is based on the PHP framework Laravel 5.87. AnyRec provides skele-
tons for algorithm microservices written in PHP and Java; however, any programming
language or framework can be used to built recommendation algorithms. The whole
framework is built with mircoservices in mind and the AnyRec components are con-
tainerized with Docker8 which consist of a complete and isolated run time environment.

The TourRec backend fetches POIs that can be recommended in a trip from the
Foursquare Places API9. Contextual data are fetched from other external service. For
instance, weather data are provided by the OpenWeatherMap API10. In this thesis,
we developed multiple tourist trip algorithms in Java and PHP which we present in
the following chapters. The results of the studies that we conducted to evaluate these
algorithms allow us to answer the RQs “How can existing TTDP algorithms be extended
to increase the satisfaction of individuals with the recommended trips?” and “Which
group recommendation strategies provide the highest user satisfaction when solving the
TTDP for groups?”

7https://laravel.com/ (accessed February 16, 2020)
8https://www.docker.com/ (accessed February 16, 2020)
9https://developer.foursquare.com/ (accessed February 16, 2020)

10https://openweathermap.org/ (accessed February 16, 2020)
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Users

id: INT

uuid: CHAR

api_token: VARCHAR

created_at: TIMESTAMP

updated_at: TIMESTAMP

Feedback

id: INT 

user_id: INT

route_id: INT

feedback: TEXT

created_at: TIMESTAMP

updated_at: TIMESTAMP

Routes

id: INT

uuid: CHAR

user_id: INT

request: JSON

response: JSON

like: TINYINT

user_rating: TINYINT

title: VARCHAR 

created_at: TIMESTAMP

updated_at: TIMESTAMP

deleted_at: TIMESTAMP

Figure 4.2: TourRec database schema.

4.2.3 Data Tier

AnyRec stores all relevant data from the user requests to the actual recommendation
in the data tier and assigns them to unique identifiers for later reference. The data tier
comprises a database which is also used to store user profiles, API credentials, and eval-
uation data, such as user ratings of recommendations. Note that in our framework, the
items to recommend are not stored in our database but instead provided by the external
data sources. The framework’s default database is MySQL11, but PostgresSQL12 and
MariaDB13 are also supported.

TourRec stores all relevant trip data in a MySQL database. This includes the user
request with travel preferences, the recommended trip, the algorithm which was used to
generate the recommendation, and the user ratings and feedback for the recommended
trip (Figure 4.2). These data allow us to gather quantitative and qualitative feedback
when evaluating different TourRec components in this thesis. The data tier therefore
supports us in answering the previously mentioned RQs.

4.3 Summary

In this chapter, we presented AnyRec, a framework supporting the development of
practical RSs and their evaluation from a user’s perspective. It is a multi-tier archi-
tecture that is partitioned into three tiers: presentation tier, application logic tier, and
data tier. The client applications are part of the presentation tier. They allow users
to specify queries, receive and view recommendations, and provide feedback on the rec-
ommended trips. The application tier consists of the backend and the recommendation

11https://www.mysql.com/ (accessed February 16, 2020)
12https://www.postgresql.org/ (accessed February 16, 2020)
13https://mariadb.org/ (accessed February 16, 2020)
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algorithms. The backend receives user requests, fetches relevant data from external ser-
vices, and forwards all data to the algorithms. One of the algorithms is then selected
to make a recommendation which is returned to the client by the backend. The data
tier is used to store important data, such as user requests and corresponding recom-
mendations. The modular architecture of the framework facilitates the implementation
of novel user clients, recommendation algorithms, and data sources. Furthermore, it
supports researchers in evaluating these components by enabling A/B tests and storing
qualitative and quantitative user feedback.

We used the AnyRec framework to develop TourRec, a RS for tourist trips. Tour-
Rec serves as the basis for answering the RQs in this thesis. In the following chapters,
we present the different recommendation algorithms and UIs that we developed to solve
the TTDP for individuals and groups.
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5 User-Centered Solutions to the Tourist
Trip Design Problem for Individuals

Many algorithms and heuristics solving the OP and its variants for individuals have
been developed (see Chapter 3). However, existing approaches solve these problems
only partly from a user-centered perspective, as they take into account only basic user
constraints, such as time and budget. As described in Section 3.2, next-generation MTGs
should also consider different types of contextual factors, such as the weather, time of
the day, and previously visited POIs, to better adapt tourist trip recommendations to
the user’s needs. For instance, outdoor POIs should be avoided on rainy days and
some restaurants are only suitable for lunch or dinner. Another factor that can be
understood as contextual factor is the attractiveness of routes between POIs in a trip.
In some scenarios, such as relaxing city walks, the quality of routes between POIs is
considered at least as important as the selection of POIs. Furthermore, only few works
integrated solutions to the TTDP into practical applications and evaluated them in user
studies. Consequently, it is not known if solutions that are optimal from a mathematical
perspective also satisfy real users in realistic scenarios.

In this chapter, we describe the problem of recommending tourist trips to individuals
and explain the additional requirements that result when solving the problem from a
user-centered perspective. We present an algorithm to solve the TTDP for individu-
als that is based on Dijkstra’s algorithm for shortest paths and was developed in close
collaboration with this project. We introduce several extensions to this algorithm that
allow a more realistic modeling of the TTDP. These extensions include the integration
of contextual factors that have an impact on the profits of POIs as well as route at-
tractiveness attributes that influence the selection of routes between POIs in a trip. We
present the user studies that we conducted to evaluate our extensions and summarize the
results of an online evaluation that we conducted using the live version of the TourRec
application. The findings of this chapter allow us to answer our first RQ: “How can
existing TTDP algorithms be extended to increase the satisfaction of individuals with
the recommended trips?” The results serve, furthermore, as a basis for the following
chapters.

5.1 Problem Description

The formulation of the TTDP that we solved in this thesis is a variant of the traditional
OP, as introduced in Chapter 3. A user is looking for a single-day trip recommendation.
The trip starts at a specified starting point and ends at a different destination. Fur-
thermore, the user can specify the maximum duration of the trip. Every location that
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the user could visit on the trip has a profit. The goal is to find a trip from the starting
point to the destination that maximizes the total profit for the user without exceeding
the time budget. This problem can be described as a graph problem with the POIs as
vertices and the connection between the POIs as edges [174]. The graph is undirected
and every vertex in the graph is connected to all other vertices because a traveler can
choose to visit all the POIs from any location. The number of POIs in a trip depends
on the distances between the POIs, which are denoted by the edge weights, and the
specified time budget.

We extended the described problem by further constraints to better adapt the rec-
ommendations to the user’s needs. In our scenario, POIs are not only vertices with a
fixed profit. Instead, every location is assigned a realistic POI category, such as Food.
As explained in Section 3.2, our solution should consider the user’s preferences for POI
categories and contextual factors, such as the previously visited POIs, the weather, and
the time of the day, to better adapt the recommendations to the user’s needs. Conse-
quently, users should be able to specify their interests by rating categories. The ratings
and the impact of the contextual factors determine the profit of a POI. Another impor-
tant requirement is that the recommended trip should be suitable for a walking tourist.
Hence, the distance between the starting point and the destination has to be limited.
Furthermore, the routes between the recommended POIs should be perceived as attrac-
tive.

We tackled the described problem by iteratively improving a tourist trip algorithm that
is based on Dijkstra’s algorithm [175]. In the following, we present different variants of
this algorithm. Then, we introduce a context-aware variant of the algorithm and show
how to integrate route attractiveness attributes. All variants were evaluated in user
studies.

5.2 A Tourist Trip Recommendation Algorithm based on
Dijkstra’s Algorithm

In this section, we present an algorithm solving the TTDP from a user-centered perspec-
tive. It is based on Dijkstra’s algorithm and extends a preliminary solution which has
been introduced by Iltifat [174]. While Dijkstra’s algorithm is an iterative algorithm that
determines the shortest path between two vertices in a graph with non-negative edge
weights, in our scenario, we are looking for a path that maximizes the total profit of the
trip. We explain two variants of this approach: a constraint-free and a constrained-based
variant. Both variants are based on the same abstract model to solve the TTDP [41]:

1. Retrieving and scoring of items, based on user preferences and context.

2. Combining and grouping the items to form a composite trip.

The tourist trip algorithm that we describe in this section has been developed by
Wörndl and Hefele [176] and in close collaboration with this research project. It served
as a basis for all of our own approaches in this chapter. Furthermore, we used this
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algorithm as a basis for solving the TTDP for groups of users in the following chapters.
This is why we describe the idea, implementation, and evaluation of the Dijkstra-based
tourist trip algorithm in detail in this section. The following description is adapted
from [41], which is an extended and updated version of [176].

5.2.1 Retrieving and Scoring Points of Interest

According to the problem description in Section 5.1, a tourist trip recommendation is
made from a starting point to a different destination. The recommended trip has to
contain POIs that are located in the area around and between both locations. Hence,
potential POIs in this area have to be identified and their profits determined before an
algorithm can propose a tourist trip that consists of some of these POIs.

The solution introduced by Wörndl and Hefele used Foursquare Places API as data
source which consists of 105M places around the world. Developers can search for POIs
and ask for recommended places in an area via a RESTful API. Preliminary tests showed
that the Foursquare API returns more diverse POIs in various categories compared to
other, similar APIs, such as Google Places [174]. This is why we also decided to use
Foursquare as POI data source in this thesis.

The Foursquare API allows specifying a circular or elliptical region for the POI search.
In their initial solution, Wörndl and Hefele set the maximum distance between starting
point and destination to 5 km to make the trips suitable for walking tourists. The search
region for the Foursquare API request is determined as follows: First, the midpoint be-
tween starting point and the destination is determined. Then, a circle is drawn around
this midpoint with the distance between starting point and midpoint multiplied by 1.2
as radius. The Foursquare API limits the number of places returned per request. Con-
sequently, multiple requests with an offset parameter have to be sent if there are more
POIs in the specified region than returned by one request.

Foursquare POIs are assigned one or many categories. The categories can be very
specific and follow a hierarchical structure to define subcategories.1 For example, a Food
POI can be assigned to the following hierarchy of categories: Food→ German Restaurant→
Bavarian Restaurant. In their initial solution, Wörndl and Hefele used only a few number
of Foursquare top level categories that are typical for travel-related activities: Sights and
Museums, Night Life, Food, Outdoors and Recreation, Music and Events, and Shopping.

Users specify their travel preferences by rating every POI category on a scale ranging
from 0 (not interested in this category) to 5 (strongly interested in this category). The
final profit of a POI, furthermore, considers the Foursquare rating of the POI and the
number of votes, i.e., how many people rated the POI. The approach applies a logarithmic
scale of votes for the final profit of a POI to put more weight on the POI rating:

profit = rating × log2(number of votes+ 1). (5.1)

Only POIs that fulfill the following requirements are candidates for a recommendation:

1The full list of Foursquare categories is available under https://developer.foursquare.com/docs/

resources/categories (accessed February 16, 2020).
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• The POI has a Foursquare rating, that is, a sufficient number of Foursquare users
have checked in or left reviews for the POI,

• the POI is overall well rated,

• there are not more than ten venues in the POI’s category (otherwise some of the
worst rated POIs of this category are removed), and

• the user did not rate the POI’s category with 0 (otherwise all POIs of this category
are removed).

The set of candidate POIs is used to build a weighted graph with the POIs as vertices
and the connection between the POIs as edges (see Section 5.1). The edge weight is
defined as the distance (beeline) between two POIs which can be calculated using the
latitude and longitude information of two POIs.

5.2.2 Constraint-Free Algorithm

The constraint-free variant of the Dijkstra-based algorithm does not consider any user
constraints related to travel cost and trip duration when recommending tourist trips
from a starting point to a destination. Instead of choosing the subpath with the shortest
distance in each iteration of the Dijsktra-based algorithm, this variant prefers paths
that maximize the fraction entertainment/distance. entertainment in this scenario is
defined as the sum of the profits of all POIs in the recommended trip. distance is the
total path length.

It has been shown that the number of POIs in each of the six categories differs greatly.
For instance, Food is often the most returned POI category. This can lead to unsatisfying
results that contain too many restaurants, even when the category Food has a low user
preference. The presented approach uses the PCC to better correlate the POIs in a
recommendation to the user preferences. For example, if a user rates Shopping with
a 4 and Sights and Museums with a 2, the recommended tourist trip should contain
roughly twice as many POIs in the category Shopping than in Sights and Museums.
Consequently, the algorithm wants to maximize:

r(preferences, number of places per category in path so far)× entertainment2

distance2
,

where the correlation coefficient r increases the number of places in a category that the
user likes, but that is also underrepresented in the set of discovered places. Preliminary
tests showed that the algorithm’s performance can be improved if entertainment and
distance values are weighted more than the PCC, which is why they are squared.

5.2.3 Constraint-Based Algorithm

The basic principle of the constraint-based variant of the Dijkstra-based algorithm is
the same as in the constraint-free variant. The only difference is that the constraint-
based variant takes into account time and budget constraints for the trip. The user
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can specify these constraints with each request. Furthermore, each POI is assigned
values for cost and time to spend at the POI. Then, a weighted graph is created, as
explained in Section 5.2.1. Every time a subpath is compared against another path in
the Dijkstra-based algorithm, it is verfied that the subpath does not violate time or
budget constraints. In addition, a trip recommended by the constraint-based variant
cannot contain more than one restaurant or more than one nightlife POI.

If all of these conditions are met, the subpath is compared to the priorly found best
solution. Similar to the constraint-free variant, the algorithm tries to maximize:

r(preferences, number of places per category in path so far)× entertainment.

Compared to the constraint-free variant, the constraint-based algorithm uses only the
profits of POIs to compare subpaths, but not the distance between the POIs. The
distance, however, is used for creating the subpath and as an overall trip constraint.

The recommended duration of stay at each POI is based on the findings of Melià-
Segúı et al. [177]. They derived heuristics for some of the six POI categories based on
a real world Foursquare dataset with 3.7M users and 300M check-ins. For instance,
they found out that users spend 41 min on average for breakfast, 53 min for lunch,
and 1 h 39 min for dinner. In their work, Wörndl and Hefele used 45 min as a rough
estimation of the time to spend at POIs in the category Food. Some of the values
identified by Melià-Segúı et al. were less suitable for the presented tourist trip scenario
because the observed categories did not match any of the six POI categories or because
of disproportionately long durations of stay for a single-day tourist trip. For instance,
the average duration of stay for Arts & Entertainment is around 5 h. In order to allow
users to do multiple activities on a single-day tourist trip, more realistic estimations with
no value greater than 60 min were used as suggested durations of stay. In addition, the
suggested durations of stay are adjusted with regard to user preferences. The assumption
is that tourists who like certain POI categories a lot want to spend more time than
average at such POIs. Table 5.1 summarizes how the suggested durations of stay are
adjusted.

Table 5.1: Adjustment of suggested durations of stay based on the user’s rating for a POI
category.

Rating Adjustment

0 (worst) No recommendation

1 −15 min

2 −5 min

3 No adjustment

4 +5 min

5 (best) +15 min
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The cost estimation for a POI is based on Foursquare’s price categories. Foursquare
assigns POIs to one of the four categories cheap, moderate, expensive, and very expensive.
Wörndl and Hefele converted this categorization into concrete values: e 8 for cheap, e 16
for moderate, e 24 for expensive, and e 32 for very expensive.

Some Foursquare venues are not assigned to a price category. For instance, a fixed
price assignment is often not possible for POIs in the category Outdoors and Recreation.

5.2.4 Evaluation

Wörndl and Hefele implemented both variants of the Dijsktra-based algorithm in PHP.
Furthermore, they developed a web-based client application to evaluate the algorithms
in a user study. Users were able to specify their travel preferences and optional time and
budget constraints on the client application. If constraints were enabled and entered,
the constraint-based algorithm was used, otherwise the constrained-free variant.

In the following, we describe the user study setup and summarize the most important
results, as presented by Wörndl and Hefele.

5.2.4.1 Setup

Both the constraint-free and constraint-based variants were compared to the preliminary
solution of Iltifat [174] which did not integrate the PCC into the path-finding algorithm
and used different estimations for durations of stay and costs. For this purpose, the
web-based client application presented two tourist trip recommendations for each user
query: one tourist trip for the preliminary version, one for the improved approach. The
two trip recommendations were presented to the user as red and blue paths on a map
and as a list with the POI categories. The users were not aware that different variants of
a tourist trip algorithm were used and the assignment to the two colors was randomized.
At the bottom of the recommendation UI, a short survey composed of the following five
questions was displayed for both trip recommendations:

1. The total number of places was...? (too low / low / perfect / high / too high)

2. The length of the path was...? (too short / short / perfect / long / too long)

3. How well did your received places match your preferences? (not at all / rather not
/ fairly well / quite well / perfectly)

4. Would you consider taking this route yourself? (no / maybe / yes)

5. How satisfied are you with the overall result? (not satisfied / rather not satisfied
/ rather satisfied / quite satisfied / very satisfied)

Table 5.2 lists the answer scales and best possible value when mapping the response
options to scales from 1 to 5 and 1 to 3, respectively.

The survey also contained a question asking the users if they preferred the red or
blue trip recommendation. In addition, an input text field for optional comments was
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Table 5.2: Answer scales and best possible response options for the Dijkstra-based algorithm
user study.

Question Answer scale Best value

1 1 – 5 3

2 1 – 5 3

3 1 – 5 5

4 1 – 3 3

5 1 – 5 5

provided. The link to the publicly available web application was shared via e-mail lists
and Facebook groups.

5.2.4.2 Results

The web application was accessed over 600 times during the evaluation period. In total,
533 recommendations were made. Feedback was submitted 123 times for tourist trips
in cities all over the world. Hence, the collected dataset contained feedback for 123
tourist trips generated by the preliminary solution and 123 tourist trips generated by
the improved algorithm. 85 of these 123 data records for the improved algorithm were
made for the constraint-free variant, and 38 for the constraint-based variant. The results
for both variants are aggregated in the following.

The average distance between the specified starting points and destinations was about
2.5 km (s = 1.2). The actual trip length for both trips was about 5.6 km on average.
Furthermore, trips generated by the preliminary solution contained 14.3 POIs on average
and trips generated by the improved algorithm 15.4 POIs on average.

Outdoors & Recreation was the most popular POI category with an average user
rating of 3.48. In contrast, Shopping was the least popular category with 28 users
rating the category with 0, which means that they wanted no POIs from this category
in their recommendation. Table 5.3 shows all average category ratings and the detailed
distribution of the ratings given by the users.

Figure 5.1 illustrates how the preliminary solution and the improved algorithm per-
formed with regard to each of the five questions of the questionnaire. Both algorithms
performed equally with regard to the first two questions. When analyzing the responses
for the improved version in detail, however, the authors found out that about 50% of
respondents stated that the total number of places was perfect, about 12% thought the
number was too low, and about 16% found it too high. Furthermore, more than 70% of
the users found the length of the recommended trips perfect and only in less than 5%
of the cases, the users rated the trip length as too short or too high. This indicates that
the improved approach can recommend reasonable trips. The responses for the third
question confirmed that the modified representation of user preferences in the improved
approach led to higher user satisfaction. Slightly more than 20% stated that they would
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Table 5.3: User preferences by categories.

Category 0 1 2 3 4 5 Mean

Sights & Museums 8 10 20 25 31 29 3.2

Nightlife 23 21 21 24 18 16 2.33

Food 9 14 14 29 37 20 3.07

Outdoors & Recreation 6 3 12 38 33 31 3.48

Music & Events 13 9 20 33 29 19 2.92

Shopping 28 29 20 27 14 5 1.88

not use the recommendation, while around 40% answered with maybe and around 40%
with yes to question 4. Slightly more users favored the improved algorithm. The re-
sults for the fifth question show that the users were more satisfied with the improved
approach. 62% of the users were quite satisfied or very satisfied with the results.

38% of the users liked the recommendation from the preliminary version better than
that of the improved algorithm. 47% preferred the recommendations made by the im-
proved approach and 15% preferred no algorithm.

33 participants submitted anonymous, textual comments. The majority of comments
were positive. Many users liked the idea of the tourist trip RS or a particular rec-
ommendation. Some users commented that there were too many restaurants in the
recommendations made by the constraint-free alternative; for example, one user com-
mented:

“I have the feeling, that the system should not recommend more than 2
restaurants without explicitly marking them as alternatives, just because I
can’t eat in all 10 suggested one’s. I think it would be good to make this
dependent on the category since for shopping 10 shops might be a good
fit.” [41]

Based on the results of this study, we decided to use the constraint-based variant
of the improved algorithm as input for our own work. In the following, we explain
how to extend this algorithm to a context-aware variant and introduce a solution that
considers the attractiveness of routes between POIs. Finally, we present additional ideas
to improve the Dijkstra-based tourist trip algorithm and summarize the results of an
online evaluation that used the live version of the TourRec application to evaluate our
ideas.
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Figure 5.1: Average results for each of the five questions in the evaluation of the Dijkstra-based
tourist trip algorithm.

5.3 Context-Aware Tourist Trip Algorithm

The previously presented approach for recommending tourist trips does not consider any
contextual factors. In Section 2.2, we explained the concept of CARSs and how they can
improve recommendations. In this section, we propose a novel, context-aware tourist
trip recommendation algorithm that enhances the previous, Dijkstra-based solution. It
incorporates various kinds of contextual information, including two contextual factors
that are especially relevant for POI sequences. We present the contextual factors that
our CARS observes and explain how the respective contextual conditions ratings have
been acquired. Then, we show how we integrated the contextual information into our
novel algorithm. We compared our algorithm to the previous, context-unaware approach
in a user study.

The content of this section has been published in [178] with some revisions.

5.3.1 Acquiring Context Relevance

We designed an online questionnaire to acquire quantitative measures of how selected
contextual factors influence a user’s decision of going to a POI. The following approach
assesses the context relevance and is based on the Baltrunas et al. [35] methodology (see
Section 2.2).

For each of the six top level POI categories introduced in Section 5.2.1, we asked the
participants to rate how a given condition would influence the decision of going to this
POI. The questionnaire covered the following contextual factors and conditions:
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• Previously visited POI (category): Arts & Museum, Food, Music Event, Nightlife,
Outdoors & Recreation, Shopping

• Time of the day : Morning (8am - 12pm), Midday (12pm - 2pm), Afternoon (2pm
- 6pm), Evening (6pm - 10pm), Night (past 10pm)

Consequently, the participants rated eleven conditions for each of the six POI cat-
egories. We selected twelve POIs in Munich, Germany as visual examples for the six
predefined categories. Figure 5.2 shows an extract of the questionnaire in which par-
ticipants were asked whether they would visit a certain POI after they have been to a
different POI.

Figure 5.2: Extract from the online ques-
tionnaire to acquire context rele-
vance [178].

Using this methodology, we were able
to observe contextual factors that are es-
pecially crucial for sequences of POIs and
have not yet been observed in related
work. For other contextual factors, such
as the day of the week, weather, and tem-
perature, which are also relevant for sin-
gle POIs, we can rely on [35]. Opening
hours were also considered. They are a
hard criterion, which is why they do not
require a preliminary user study. We in-
corporated all mentioned contextual fac-
tors into the context-aware recommenda-
tion algorithm.

The aim of this study was to evaluate
the influence of the selected contextual
factors on the users’ decisions to visit a
category represented by a selected POI as
well as the change of POI popularity pre-
cipitated by contextual conditions. In to-
tal, we received 324 responses by 27 par-
ticipants. Participants were recruited via
mailing lists and mainly composed of stu-
dents.

We calculated the measured relevance
U for each contextual factor for all POI
categories. The values are listed in Ta-
ble 5.4. U is normalized to an interval [0, 1], where U = 0 means that the contextual
factor does not have any influence for this POI category. U is also relevant for the ac-
tual context-aware tourist trip recommendation algorithm and is thereby utilized as a
weighting factor for the context assessment in Equation 5.2.

In addition to the measured relevance U of a contextual factor, our context-aware
approach also depends on ratings for POIs under different contextual conditions. The
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dataset resulting from the previous conducted questionnaire can also be utilized to de-
termine such a rating. To make the responses quantifiable, Yes, I don’t know, and No are
mapped to the values 2, 1, and 0. A simple approach would be to use the mathematical
expectation value as a rating of a POI category for each contextual condition. However,
this does not respect the variation of the rating for a POI when a contextual condition
holds or not. Informally speaking, if a POI category is typically very popular except
during night, the expectation value would not reflect the real value of the contextual
condition Night. For example, the expectation value for POIs in the category Food is 1.3.
However, if we consider only ratings for POIs in the category Food under the contextual
condition Night, the expectation value is 0.749. Hence, we must present a comparison
between the average ratings of POIs and ratings of the same items assuming a certain
contextual condition holds. We achieve this by dividing the expectation value for a spe-
cific contextual condition by the expectation value over all ratings for this POI category.
For the category Food during night time, the normalized rating is therefore: 0.749

1.3 = 0.58.
All computed ratings for POI categories under different contextual conditions are listed
in Table 5.5.

Table 5.4: Measured relevance of the contextual factors by POI categories.

Previously visited POI Time of the day

Arts & Museums 0.52 0.48

Nightlife 0.26 0.74

Food 0.49 0.51

Outdoors & Recreation 0.33 0.67

Music & Music Event 0.31 0.69

Shopping 0.42 0.58

5.3.2 Incorporating Context into a Tourist Trip Algorithm

Our collected dataset includes two types of data that can be utilized to calculate context-
awareness for a tourist trip. First, ratings for categories under different contextual
conditions, as displayed in Table 5.5. A rating rTC1...Ck

indicates the evaluation for the
POI category T made in the context C1, ..., Ck and must be in the interval [0, 2] to reflect
the aforementioned Yes, I don’t know, and No mappings. Second, the relevance UC1...Ck

of each contextual factor C1, ..., Ck, as listed in Table 5.4. As explained in Section 5.3.1,
the measured relevance must be in the interval [0, 1].

Given these data, we can calculate a context-awareness factor C with a simple weighted
arithmetic mean:

C =

∑k
i=1 UCirTCi∑k

i=1 UCi

(5.2)
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Table 5.5: Ratings for POI categories under different contextual conditions.

Contextual Condition Arts Nightlife Food Outdoors Music Shopping

Previously visited POI

Arts & Museum 1.36 1.16 1.43 1.25 1 0.72

Food 1.4 1.77 0.19 1.28 1.06 1.18

Nightlife 0 1.43 1.04 0.13 1.45 0

Outdoors & Recreation 1.63 0.86 1.37 0.76 1.42 1.52

Music Event 0.04 1.69 1.1 0.6 1.32 0.11

Shopping 0.91 0.79 1.45 0.97 0.52 1.25

Time of the day

Morning 1.56 0.19 0.3 1.36 0.1 1.82

Midday 1.56 0.07 1.29 1.41 0.19 1.78

Afternoon 1.48 0.15 0.85 1.41 0.68 1.71

Evening 0.64 0.79 1.4 0.76 1.71 0.8

Night 0.42 2 0.58 1.07 1.55 0.11

C can now be used to extend the 2D recommender baseline algorithm introduced in
Section 5.2.3 by scaling the result of its comparison function:

P = r(preferences, number of places per category in path so far)× entertainment×C.
(5.3)

C is in the interval [0, 2]. A value of C = 0 zeroes the profit P of a POI while C = 2
doubles the profit.

In the following, we illustrate the presented methodology with an example comparison
considering the two contextual factors Time of the day and Previously visited POI:

It is 5 pm and the user has just been to a restaurant. The CARS should now predict
the user rating for another restaurant. In this scenario, the 2D comparison algorithm
would calculate a profit of 4.5 on a scale ranging from 0 to 5. To calculate the context-
awareness factor C, we use the values 0.49 and 0.51 as relevance of the contextual
factors from Table 5.4 and the values 0.19 and 0.85 as ratings for the category Food in
the current contextual condition from Table 5.5. After calculating C, the 2D profit of
4.5 is downscaled to 2.37:

C =
0.19× 0.49 + 0.85× 0.51

0.49 + 0.51
= 0.526 (5.4)

P = 4.5× 0.526 = 2.37 (5.5)
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5.3 Context-Aware Tourist Trip Algorithm

According to Section 2.2, one could assume that this algorithm adheres to Contextual
Post-Filtering. However, the definition explicitly states that the traditional RS must be
executed on the entire dataset first. Since this is not the case, the paradigm Contextual
Modeling was utilized to incorporate context into the baseline algorithm.

The contextual factors that are considered in the current implementation of the
context-aware tourist trip algorithm and their values (contextual conditions) are:

• Previously visited POI (category): Arts & Museum, Food, Music Event, Nightlife,
Outdoors & Recreation, Shopping

• Time of the day : Morning (8am - 12pm), Midday (12pm - 2pm), Afternoon (2pm
- 6pm), Evening (6pm - 10pm), Night (past 10pm)

• Day of the week : Working day, Weekend

• Weather : Sunny, Cloudy, Clear Sky, Rainy, Snowing

• Temperature: Hot, Warm, Cold

• Opening hours: Open, Closed

One benefit of the weighted arithmetic mean is the independence of the number of
contextual factors. This list can easily be extended. Also the number of contextual
factors applied on POIs within a tourist trip can vary. For example, designing contextual
factors only known for a specific POI category, e.g., Nightlife, is not a concern. On the
other hand, one disadvantage resulting from considering multiple contextual factors for
C is that a supposedly drastic condition, e.g., the POI is closed, can be balanced out
by a different condition such as Sunshine. We present a solution to this problem in
Section 5.5.1.

5.3.3 Evaluation

We developed a web-based application to evaluate our context-aware recommendations
(see Section 6.1 for more information about the client application). The RS is based
on the TourRec system architecture that we introduced in Chapter 4. Again, POI
data was fetched from Foursquare and weather data from OpenWeatherMap. We im-
plemented our algorithm in PHP.

5.3.3.1 Setup

The RQ that we wanted to answer in this user study was whether a context-aware al-
gorithm distinguishing between several contextual conditions can improve tourist trip
recommendations generated by a context-unaware algorithm. For this purpose, we con-
ducted an A/B test to measure the effect of the novel approach presented in this section
on the user’s satisfaction compared to the previously presented Dijkstra-based approach
that does not exploit context at all. In this study, only one tourist trip recommenda-
tion was displayed to the participants after every request; thereby, the algorithm for the
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recommendation was randomly chosen. Apart from the recommended trip, participants
were not able to distinguish between the algorithms. The recommendation screen dis-
played relevant contextual information (e.g., the weather) whether or not the context
was actually considered.

After every recommendation, a questionnaire was presented to the user. It was com-
posed of the following six statements that reflect the dependent variables of the study.
Their purpose was to cover all contextual factors that we investigated in this study.
Every statement came with with five possible response options on a scale ranging from
1 (strongly disagree) to 5 (strongly agree).

1. Overall, I am satisfied with the recommended tour.

2. The number of places in my route is well chosen.

3. The selection of different categories in the trip is satisfying.

4. Places are suggested at the right times during the tour.

5. The tour is feasible for a walking tourist.

6. I consider taking this route myself.

We spread the link to the publicly available TourRec application via e-mail and
added the questionnaire that the users were asked to complete to the bottom of the
application’s UI. The participants were mainly composed of students.

5.3.3.2 Results

In total, 15 forms were completed for the baseline algorithm and 9 for the context-aware
approach. The conditions were not balanced because of the random selection of an
algorithm.

Figure 5.3 illustrates the performance of both algorithms for each of the six statements.
Our novel approach for context-aware route recommendations performed somewhat bet-
ter with regard to the overall satisfaction with the recommended trip and the right num-
ber of POIs in the recommendations. In terms of Feasible Walking Route and Consider
Taking the Route, the context-aware algorithm was rated slightly lower than the base-
line. However, for these four mentioned statements, the difference was not significant.
The biggest difference between the context-aware and context-unaware recommendation
algorithms occurred with regard to statements 3 and 4. The selection of categories in the
recommended trips was rated better by the participants in the context-aware algorithm.
Furthermore, the participants believed that the context-aware algorithm suggests POIs
better at the right times of day.

A Mann-Whitney U test showed that the difference for statement 4 is significant at
p < 0.01. We conclude that our novel approach leads to improved recommendations.
However, due to the low number of observations, some of the results were not significant.
We recommend conducting a larger user study with more participants in the future to
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Figure 5.3: Context-aware algorithm user study results (adapted from [178]).

verify these results. Furthermore, our study was conducted with a random sample of
students. Repeating the study with participants from different backgrounds could lead
to different results as well.

5.4 The Integration of Route Attractiveness Attributes into
Tourist Trip Recommender Systems

In the previously presented approaches to solving the TTDP, the total profit of a trip
is the sum of the profits of the visited POIs. The profit of a POI is influenced by many
factors, such as previously visited POIs. However, we argue that tourists do not always
want to take the shortest route between two POIs. Rather, the perceived quality of
a tourist trip depends also on the attractiveness of the routes between the POIs. For
example, a trip becomes more attractive when the route between two POIs is a relaxing
walk in a green area instead of a walk by a loud street, even if this means taking a detour.
Furthermore, when too many tourists take the same routes, the recommendations can
be adapted to better balance the tourist flows in the city, thereby helping reduce the
crowd and pollution in these areas. Consequently, tourist trip RSs should be able to
determine the profits of routes by considering all relevant route attractiveness attributes
and adapt the recommendations accordingly. In Section 3.1.7, we presented different
problems that can be used as underlying models for this variant of the TTDP. They
all consider profits for routes; however, they have not been implemented in CARSs to
recommend personalized tourist trips.

In this section, we present a solution to integrate route attractiveness attributes into
a tourist trip RS for walking tourists. Our approach allows the integration of any data
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influencing the quality of routes and adjusting the importance of each attribute according
to the user’s needs. We illustrate our approach by explaining the integration of three
attributes as an example. In addition, we present the results of a user study to evaluate
the recommended routes.

The content of this section has been published in [179] with some revisions.

5.4.1 Route Attractiveness

The influence of environmental attributes on people’s decisions to participate in outdoor
activities, such as walking, has been explored earlier. We analyzed previous studies [180],
literature reviews [181, 182], developed frameworks [183], and models [184, 185] that dealt
with the influence of environmental attributes on the choice of walking routes. Some
of these publications also investigated the people’s decisions to cycle; however, they all
focused on the physical activity of walking. It is not possible to directly compare the
results of all works as they used different methodologies or were limited to specific target
groups, such as elderly people. Based on our findings, we thus devised a novel, subjective
list of route attractiveness attributes that should be considered when evaluating routes
in a tourist trip RS. Table 5.6 lists all attributes that we identified and their probability
of affecting the route attractiveness. The attributes are classified into three categories:
attributes that are likely to affect the route, attributes that are somewhat likely to affect
the route, and attributes that are less likely to affect the route or for which the data are
insufficient to determine the probability.

All the earlier studies that we reviewed agree that aesthetics attributes are the most
important route attractiveness attributes. These attributes include the number of trees
along the path, pollution, and cleanliness. Traffic speed is an important safety hazard
influencing the attractiveness of a route while the impact of traffic noise is unclear. Other
important route attractiveness attributes are the presence of pavements, maintenance of
the walking surface, and personal safety in form of surveillance (people around, avoiding
empty streets, etc.).

We suggest that smart tourism applications, such as tourist trip RSs, should consider
all attributes in the first category and examine whether attributes from the secondary
category should be considered before recommending routes to people. Further research
is necessary to evaluate the impact of the attributes from the last category, and their
impact may also highly depend on the use case.

5.4.2 Edge Weight Calculation of Exemplary Attributes

The previously presented approaches to recommend tourist trips are executed on graphs
with the POIs as vertices and the connection between the POIs as edges. The extension
that we introduce in this section, however, does not use only the distance between two
vertices to determine the edge weight (cost). It also considers the presence or absence
of the relevant route attractiveness attributes listed in Table 5.6.

In the following, we explain the calculation of the edge weights in tourist trip al-
gorithms taking into account route attractiveness attributes for three examples: trees,
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Table 5.6: Route attractiveness attributes for tourist trip RSs. The listed attributes in every
category are not ordered. The (+) sign indicates a positive impact on a walking
route, and the (-) sign, a negative impact.

Attribute Impact Probability

Aesthetics: Trees (+) High

Aesthetics: Pollution (-) High

Aesthetics: Cleanliness (+) High

Permeability: Pavements (+) High

Traffic: Speed (-) High

Walking Surface: Maintenance (+) High

Personal Safety: Surveillance (+) High

Aesthetics: Landscaping (+) Medium

Permeability: Intersection Distance (-) Medium

Traffic: Volume (-) Medium

Personal Safety: Lightening (+) Medium

Traffic: Crossings (+) Medium

Traffic: Crossing Aids (+) Medium

Streets: Width (+) Medium

Aesthetics: Parks (+) Medium

Permeability: Slopes (-) Medium

Permeability: Stairs (-) Medium

Traffic Control Devices (+) Low / Unclear

Walking Surface: Continuity (+) Low / Unclear

Traffic: Verge Width (+) Low / Unclear

Destination: Shops (+) Low / Unclear

Traffic: Noise (-) Low / Unclear

Facilities: Places to rest (+) Low / Unclear

Environment: Walking Trails (+) Low / Unclear

Facilities: Shops (+) Low / Unclear

Personal Safety: Blind Walls (-) Low / Unclear

Aesthetics: Green strips (+) Low / Unclear
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pollution, and cleanliness. These are the most relevant attributes for our scenario. We
then present the final edge weight calculation taking into account all three attributes.
Our goal is to present a flexible and extendable solution for integrating attractiveness at-
tributes. Providers of tourist trip RSs should be able to easily add or replace attributes,
depending on the available data sources. Users should be able to individually adjust the
importance of each attractiveness attribute while exploring a city.

5.4.2.1 Aesthetics: Trees

The tree edge weight is based on the tree density on a route. The greater the number
of trees on the edge, the higher is the tree density and vice versa. A higher tree density
corresponds to a lower edge weight in the graph.

In order to weight the different tree densities, we utilize a weighting method described
by Giles-Corti et al. [186]. For our purpose, we normalize the weights to a scale from 0
to 5 (Table 5.7).

Table 5.7: Weights for tree density according to [186] and after normalization (exact values in
brackets).

Tree Density Weight Normalized Weight

Many trees touching 14.3 5

Some trees touching 11.4 4 (3.986)

Trees close but do not touch 8.6 3 (3.007)

Trees spread apart 5.7 2 (1.993)

Sparse trees 2.86 1

No trees 0 0

We use the horizontal spread of the tree when viewed from the top, i.e., the crown
spread, to define tree density. For the sake of simplicity, we use a generic crown radius of
5 m for every tree in our algorithm. This is roughly the average crown size of the Tilia
cordata Mill. species, which is the species of trees most commonly planted in Berlin,
Germany (35 %) [187]. We use the following function to estimate tree density:

DensityScore(Edgei) =
EdgeLength(Edgei)

NumberOfTrees(Edgei)
, (5.6)

where Edgei is the ith edge in the graph; EdgeLength is the distance of the edge in
meters; and NumberOfTrees is the total number of trees assigned to the edge. Using
this equation and assuming a generic crowd radius of 5 m, we estimated tree density as
specified in Table 5.8.

The tree edge weight is eventually calculated by dividing the density score by the
normalized weight of the respective tree density category in Table 5.8. When there are
no trees, the edge length is divided by 0.5.
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Table 5.8: Tree density categorization based on density score.

Tree Density Density Score (x)

Many trees touching x < 5

Some trees touching 5 ≤ x < 15

Trees close but do not touch 15 ≤ x < 25

Trees spread apart 25 ≤ x < 35

Sparse trees 35 ≤ x
No trees 0

5.4.2.2 Aesthetics: Pollution

Air quality is measured differently by different countries. Pollutants are measured over a
certain defined period, and the density of the pollution is usually measured in micrograms
per cubic meter. Some of the most common air pollutants are nitrogen dioxide (NO2),
ozone (O3), fine particulate matter (PM2.5), and coarse particulate matter (PM10). In
order to standardize the concentration values of different pollutants, we use the Common
Air Quality Index (CAQI) (Table 5.9) [188]. The CAQI is an index that compares air
quality across different European countries. It has been used in the data on the website
airqualitynow.eu since 2006.

Table 5.9: CAQI values corresponding to different pollutant concentrations [188].

Index Class Grid Pollutant (hourly) density in µ/m3

NO2 PM10 O3 PM2.5 (opt.)

Very high >100 >400 >180 >240 >110

High 75–100 200–400 90–180 180–240 55–110

Medium 50–75 100–200 50–90 120–180 30–55

Low 25–50 50–100 25–50 60–120 15–30

Very low 0–25 0–50 0–25 0–60 0–15

If two or more pollutants have different CAQI values for a region, the higher value is
considered to be the overall CAQI value as the worst grid value determines the overall
index class.

We use the CAQI values to map air pollution values to edges. The air pollution weight
is calculated by dividing the CAQI value of the edge by 25 and multiplying it with the
edge length. For very low air pollution CAQI values, we divide the CAQI value of the
edge by 50 to reduce the costs of edges with very low pollution even more strongly.
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5.4.2.3 Aesthetics: Cleanliness

There is no standard way of measuring cleanliness as it greatly depends on the public
perception of littering. In this work, we measure cleanliness as littering on a scale of
0 to 10. The littering value could be reported by citizens through mobile applications,
for example. Values less than 5 are considered as low or medium littering while values
greater than or equal to 5 are considered as high littering. The value of 0 represents
either no littering or unavailability of data.

The littering weight for high littering is calculated by multiplying the littering value
by the edge length. For low littering values, we divide the littering value by 2 before
multiplying it by the edge length. For no littering or no data, we multiply the edge
length by 0.1.

5.4.2.4 Final Edge Weight

The final edge weight e takes the edge length and the attractiveness attributes into
account. Our proposed calculation assigns weights to the attributes:

e = (x× treesWeight) + (y × airpollutionWeight) + (z × litterWeight), (5.7)

where x, y, and z determine the importance of each attractiveness attribute. They
can either be fixed, provided at runtime by the user, calculated from user preferences, or
learned through user behavior. The dynamic nature of these values makes the algorithm
adjustable, allowing us to meet the requirement of a flexible and extendable solution
to integrate attractiveness attributes. For example, if the presence of trees is more
important than no littering for a user, x should be greater than z. If the user wants
to completely ignore an attribute, the corresponding value is set to 0. Furthermore,
additional attributes with the desired weight can be added at any time. In this work, we
initially set x, y, and z to 1. We evaluated the importance of each attribute, as described
in Section 5.4.4.1.

5.4.3 Implementation

As explained, the calculated final edge weight can be interpreted as the cost for traveling
between two POIs in a tourist trip RS. Tourist trip algorithms, such as the previously
presented approaches, can be used to incorporate the costs when recommending tourist
trips: The RS first determines the profits for POIs that the user could visit on a trip
based on the user’s interests and contextual factors, such as the weather. Then, a tourist
trip algorithm tries to recommend a sequence of POIs along a route. The algorithm uses
the calculated costs to determine the exact route between two POIs in the trip.

In order to execute a tourist trip algorithm that incorporates route attractiveness
attributes, we need map data to build a weighted graph of vertices and edges that is
required in our presented approaches. In the following, we explain the pre-processing of
map data and our example attributes, and the mapping of these attributes to the graph.
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Figure 5.4: Mapping a CAQI vector to edges [179].

For our prototype, we used the open-source vector map data source OpenStreetMap2

to access the required data. We implemented our approach using only a small extract
of OpenStreetMaps since loading all map data for a large city or region and performing
route operations on it is a memory-intensive task. In this work, we used an extract of
the city center of Munich, Germany.

In OpenStreetMap, ways are essentially a collection of connected nodes. We can
consider ways as edges for simplicity of discussion. A node in OpenStreetMap can be
a street intersection, a bench, or any other point specific information. Nodes, such as
benches, trees, or ways that are only used to define boundaries of a park, for example,
are not connected to other nodes, and hence, they do not specify streets or footpaths.
We need to extract only those nodes that are surely connected. We use these ways
from our OpenStreetMap extract to eventually build a graph. Given the latitude and
longitude information of two neighboring nodes, we can calculate the distance between
them, and eventually create a weighted graph.

In the next step, we map the attractiveness attributes to the graph edges so that they
can be used in the tourist trip algorithm.

Tree data are available in OpenStreetMap files and represented by latitudes and lon-
gitudes. We assign every tree to the edges of the nearest node. This approach increases
the actual number of trees assigned to the graph; however, this tree count is only used
to estimate the tree density for an edge.

Air pollution data are represented by a vector line with a starting point and an end
point. Since we do not have access to real pollution data, we used random CAQI
values in this work. First, we find two nodes: the nearest node for the starting point
and that for the end point of the CAQI vector. Within the length of a single CAQI
vector, multiple edges of the graph might be present. The CAQI value needs to be
translated to all the edges lying between two points A and B. Hence, we use a shortest
path calculation between two nearest nodes to find all such edges. This approach is
illustrated in Figure 5.4. Nodes A and B represent the starting and end points of a
CAQI vector. They are mapped to the nearest nodes, and the shortest path between
these nodes has three edges. If multiple CAQI values are mapped to the same edge, the
highest CAQI value is assigned.

2https://www.openstreetmap.org/ (accessed February 16, 2020)
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The litter data are also represented as a point; however, the impact is considered to
be within a certain radius. Since we do not have access to real littering data, we used
random values in this work. First, we find the nearest node for every litter position.
Then, we determine all the edges that are within or intersect with a 10 m radius around
this nearest node. For each edge, we add the current litter value to the total litter value
of this edge. It is important to note that multiple littering spots near the same edge add
up, and hence the final littering value of an edge can be greater than 10.

After assigning all the weights to the edges, the final graph can be created and used by
a tourist trip RS or any type of routing application to find routes taking into account the
integrated attractiveness attributes. We developed a web application incorporating the
aforementioned attractiveness attributes to visualize our approach and the routes that
can be generated. The applications was developed using ReactJS 16.3.03, a JavaScript
library for building web applications. Figure 5.5 shows the recommendation made by
our application regarding the shortest path between two POIs and different alternatives
depending on the considered attribute.

Figure 5.5: Visualization of route attractiveness attributes in our application and the recom-
mended routes between two POIs [179]. Top left: shortest path, top right: trees,
bottom left: air pollution (green: very low pollution, yellow: medium pollution,
red: very high pollution), and bottom right: cleanliness (green: littering value < 2,
orange: littering value < 5, red: littering value ≥ 5).

3https://reactjs.org/ (accessed February 16, 2020)
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5.4.4 Evaluation

The main goal of the user study is to determine the impact of route attractiveness
attributes on the user’s decision of choosing an alternative walking route between two
POIs instead of the shortest path. The user study is divided into two parts:

1. Determination of the impact of the three considered attributes on route attrac-
tiveness.

2. Evaluation of the recommended routes, including the route attractiveness at-
tributes of the examples.

In all, 16 users participated in the user study. Most of the participants were students
from Munich in the age range 22 and 29 years.

5.4.4.1 Attributes Questionnaire

A relevant route attractiveness attribute either has a positive impact or a negative impact
on route attractiveness. We asked the participants about their decision to walk a route
between two POIs if an attribute is (a) present and (b) absent.

Table 5.10 summarizes the results of our questionnaire. Air pollution is obviously
a very critical attribute for travelers. In fact, 100% of our participants claimed that
they will avoid routes with at least little air pollution (Table 5.9), while the absence
of air pollution is the reason for choosing an alternative route over the shortest path.
A similar, less unanimous behavior can be observed when asking participants about
littering: 81.25% of the participants mentioned that they will avoid routes that are
characterized by visible littering and 87.5% of the participants will choose an alternative
route over the shortest path to avoid littering. Greenery, however, seems to be a bonus
for travelers. Having no greenery (e.g., no trees) does not influence their decision of
choosing an alternative route.

Table 5.10: Influence of the presence or absence of route attractiveness attributes on travel
decisions. (Note: highest value marked in bold)

Travel Avoid No influence

No air pollution 100% 0% 0%

Little air pollution 0% 100% 0%

No greenary 12.5% 18.75% 68.75%

Greenary 93.75% 0% 6.25%

No littering 87.5% 0% 12.5%

Littering 6.25% 81.25% 12.5%

We conclude that air pollution and littering are two dominant factors influencing
the choice of a route. Hence, they should receive very high weight in a tourist trip
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RS. Missing greenery does not necessarily decrease the recommendation probability of
a route if the route is clean. However, almost a fifth of travelers prefer routes with
greenery when traveling. Greenery can therefore be used to choose between different
routes with similar pollution. This also validates our assumption that users should be
able to adjust the weights, if necessary.

5.4.4.2 Evaluation of the Recommended Trips

The participants of our user study were then asked to use the application. Each partici-
pant had to specify two POIs, a starting and ending point, five times. For each POI pair,
the shortest path and a route for each of the four test conditions (tree attribute only,
air pollution attribute only, litter attribute only, and all the attributes combined) were
calculated. For each test condition, the participants saw the attributes visualized on the
application’s map, as illustrated in Figure 5.5. Since some of our data were assumed,
the participants were asked to assume that all data are real.

After every recommendation, the participants were given a comparison of the time
taken in minutes for the detour compared to that for the shortest path and were asked
if they would prefer the recommended route over the shortest path.

Table 5.11 summarizes the results. For each test condition, we conducted a binomial
test to find out if the integration of route attractiveness attributes had a significant
effect on the users’ decision. Results show that integrating trees, air pollution, and
all the attributes taken together prompt tourists to significantly more often select the
recommended route over the shortest path. Less littering, however, does not seem to
make people choose the recommended route more often than the shortest path.

Table 5.11: Ratio of users choosing the more attractive route over the shortest path. (Note:
*p < 0.05; **p < 0.01; ***p < 0.001)

Algorithm Mean Sig.

Air pollution only 0.7 ***

Trees only 0.76 ***

Littering only 0.59

Combined 0.66 **

5.4.4.3 Discussion

Previous research showed that many environmental factors have a significant influence on
the perceived attractiveness of routes. The presence or absence of some of these factors
is prompting people to choose routes with the given characteristics even at the cost of
taking a detour. For tourists, in particular, route attractiveness plays an important
role when planning tourist trips. Many tourists do not want to only visit as many
POIs as possible. The walking time between two locations is also part of the pleasure
and can increase a traveler’s happiness. Hence, attractive routes are often preferred
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over the shortest path if they promise a more pleasant journey. RSs for tourists should
incorporate route attractiveness attributes to better adapt their recommendations to the
users’ individual needs.

We presented a list of attributes that influence people’s decisions on the choice of
walking routes. We demonstrated the integration of three such attributes into a tourist
trip RS. In our preliminary user study, a significant majority chose recommended routes
considering attractiveness attributes over the shortest path.

Route recommendations considering environmental data not only promise improved
support of tourists while traveling in cities, but also help cities to become smarter from
many perspectives. Recommendations can be made to avoid currently polluted areas
until the air quality improves. The congestions of routes and means of transport can be
integrated as route attractiveness attributes to support tourists, locals, and commuters,
helping them avoid congested areas. Thus, better distribution of travelers and, in turn, a
higher satisfaction of all players in a city can be ensured. Furthermore, cities can analyze
how people move between POIs and start initiatives to make alternative routes more
attractive by adopting measures such as planting more trees and improving pavements
along unpopular routes.

Our user study came with some limitations. We had to use random data for air
pollution and littering since we did not have access to real data. Furthermore, our
sample size was limited to 16 participants from a similar background and in the same
age range. Finally, the prototype that we used for the evaluation was not integrated in
a fully working tourist trip RS that allowed the users to specify own travel goals and
preferred POI categories or adjust the importance of attractiveness attributes. For a
better understanding of the influence of route attractiveness and detours on a traveler’s
satisfaction with a recommended trip, we propose evaluating our approach in a larger
user study with real tourists and a fully working application.

5.5 Proposed Extensions

Incorporating context and route attractiveness attributes into tourist trip algorithms im-
proves the quality of the recommended trips; however, our user studies also revealed some
shortcomings and potentials for improvement. In the following, we suggest extensions
to our algorithms that promise better recommendations and show how to integrate our
approach into a different TTDP algorithm. We implemented all of our ideas prototypi-
cally. They were preliminarily evaluated in an online evaluation that we conducted using
TourRec. The main findings of the online evaluation are summarized in Section 5.6.

5.5.1 Counteracting the Equalization of two or more Extreme Contextual
Conditions

As previously mentioned, one disadvantage of our context-aware approach is the possible
equalizing of two or more extreme contextual conditions due to the weighted arithmetic
mean. This is why we suggest a modified version of our context-aware algorithm that
sets an item profit to 0 if one or more context ratings are below a threshold t. We
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implemented a first version of this extension in which we set the threshold t = 0.3. Using
this threshold, a restaurant cannot be recommended directly after another restaurant,
even when the time is perfect for a Food recommendation (e.g., for lunch), as the profit
of a Food POI when recommended after another Food POI is below the threshold, as
shown in Table 5.5.

However, it is possible that an algorithm that implements this approach terminates
too early and does not use the whole time budget when no suitable POIs without context
ratings below the threshold t can be found. We present statistical evidence that supports
this assumption in Section 5.6.2.3.

5.5.2 Item Dependencies

Our results and previous experiments [78] showed that consuming recommended items
can have a large impact on the profits of other items in the same sequence. However, the
contextual factor Previously visited POI that we observed in Section 5.3 considers only
the influence of one POI on another POI’s profit. We argue that consuming an item
does not only have an impact on the utility of the subsequent item, but on a sequence of
items. For instance, after visiting a restaurant, a user will most likely not be interested
in another restaurant within the next few hours, even when doing some other short-
time activities in the meantime. Only after a few hours or activities, the user might be
interested in going to a restaurant again.

We developed the idea of item dependencies to determine how the presence or absence
of an item in a recommendation influences the utility of the subsequent items in the same
recommendation. Item dependencies are based on the Previously visited POI ratings, as
presented in Table 5.5. The underlying concept of item dependencies is that the longer
the period between two POIs in a sequence, the lower the impact of the prior POI on the
other POI. This means that the item rating in Table 5.5 approaches 1. The concept is
similar to the OPSP (see Section 3.1.8.5). The main difference is that in the OPSP, each
vertex has a normally distributed random profit and the profit is not revealed before the
user arrives at the POI. The idea of item dependencies is that the influence of one POI
on another POI is already known before the trip is generated.

Initial values of item dependencies can be taken from Table 5.5. Item dependencies
can follow a general pattern (e.g., limiting restaurants in a trip to a reasonable number)
but usually differ between users because of personal preferences. This is why a RS should
learn which combinations of POIs the user appreciates or rejects. Critiquing can be used
to achieve this goal (see Section 2.1.3). For example, users can be presented with two or
more alternatives for concrete POI recommendations and indicate their preference for
one POI over the other. Other options are suggestions for adding or removing POIs.
Users should not be overwhelmed with interactions, this is why implicit feedback should
play an important in practical applications. If, for example, a user spends a lot of time
at a POI, it is likely that the user is interested in similar POIs.

The following example illustrates the basic idea of item dependencies: A tourist visits
a restaurant R1. Visiting another restaurant R2 right after R1 would decrease the profit
of R2 by 81% according to Table 5.5. If the tourist visits other POIs after R1, visiting
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R2 will become more interesting again. The item dependency d(R1, R2) approaches 1
over the number of visited POIs between R1 and R2. That is, if the period between two
restaurants is long enough, R1 will have no impact on R2 anymore.

We use the following formula to describe how an item dependency d evolves over
visited POIs:

d(POI1, POI2) = 1 + (d′ − 1)× e−tx, (5.8)

where POI1 is the prior POI and POI2 the new POI that is added to the sequence.
d′ is the initial item dependency value from Table 5.5. It is in the interval [0, 2], as
explained in Section 5.3.2. t > 0 determines how quickly d approaches 1. x is the
number of other POIs between POI1 and POI2. For example, x = 0 if there are no
other POIs between POI1 and POI2. Using this formula, d(POI1, POI2) will never
be exactly 1. Consequently, one can define a threshold (e.g., after 10 other POIs or a
certain amount of time) after which a previous POI has no influence on a subsequent
POI, that is d(POI1, POI2) = 1.

The following example of a sequence of three POIs and with t = 0.2 illustrates the
evolvement of item dependencies:

Restaurant R1 → Shopping Mall S1 → Restaurant R2

The user already visited R1 and S1. Now, the RS is about to add R2 to the sequence.
The item dependencies d(S1, R2) and d(R1, R2) have to be determined to calculate the
profit of R2:

d(S1, R2) = 1 + (1.45− 1)× e−0.2×0 = 1.45 (5.9)

d(R1, R2) = 1 + (0.19− 1)× e−0.2×1 = 0.34 (5.10)

As there is already another POI between the two restaurants, R1 decreases the profit
of R2 by 66% and not 81%.

If there are, for example, five other POIs between R1 and R2, d(R1, R2) will change
accordingly:

d(R1, R2) = 1 + (0.19− 1)× e−0.2×5 = 0.70 (5.11)

Figure 5.6 illustrates the curve progressions of item dependencies with factors 0.19 and
1.45. Both curves approach 1. The more POIs are between two restaurants in a trip,
the more likely it is that a second restaurant is appreciated by the user and becomes
part of the recommended sequence.

Our approach has two main advantages over previous solutions: It does not only
update the previously introduced Previously visited POI contextual factors, it also makes
the usage of PCC (see Section 5.2) to improve the selection of POI categories obsolete.
Since item dependencies allow to punish unwanted combinations of POIs in a trip, such as
two restaurants in a row, a suitable number of POIs in a category is chosen automatically.
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Figure 5.6: Two examples of the development of item dependency d between two items over
the number of items between both items with the initial profits p1 = 0.19 and
p2 = 1.45. All item dependencies approach 1.

The number of desired categories, such as Food, can still be increased by specifying a
high user rating for this category.

When a routing algorithm tries to add a POI to a recommendation, the item depen-
dency between the new POI and all previous POIs has to be calculated. The final profit
of the new POI when added to the recommendation is the product of all item depen-
dencies and the POI’s original profit (which considers the user preferences and other
contextual factors).

For the example sequence Restaurant R1 → Shopping Mall S1 → Restaurant R2

the final profit p of R2 is:

p(R2) = d(S1, R2)× d(R1, R2)× p′(R2), (5.12)

where p′(R2) is the original profit of the second restaurant. If the original profit of
R2 for the user is 4 on a scale ranging from 0 to 5, the profit in this sequence will be
updated to:

p(R2) = 1.45× 0.34× 4 = 1.97 (5.13)

5.5.3 Minimizing the Distances to the Final Destination

The previously presented Dijkstra-based algorithm tends to recommend tourist trips in
which the majority of POIs is concentrated in a small area. This is often the case when
the requested route passes a touristic area with many POIs. In this case, the algorithm
reaches the specified time limit without recommending POIs close to the destination.
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Hence, the connection from the last POI to the final destination can be perceived as
relatively large with a disproportionate walking distance (Figure 5.7).

(a) (b)

Figure 5.7: Examples of (a) a tourist trip that is concentrated in a touristic area and charac-
terized by a large walking distance to the destination and (b) a tourist trip whose
POIs are evenly distributed along the route.

To overcome this problem, we propose considering the distance to the final destination
when adding a new location to a path in the Dijkstra-based algorithm. Hence, the
extended algorithm tries to maximize entertainment/(distance + distance to destination)
for every subpath. In Section 5.6.2.3, we present statistical evidence that this approach
reduces the probability of a disproportionate walking distance to the final destination.

5.5.4 Integration into other Tourist Trip Algorithms

The context-aware recommendation techniques that we introduced in this thesis can also
be integrated into other types of routing algorithms. We suggest the integration into
established TTDP algorithms. In this section, we show how to implement GRASP, a
metaheuristic that performs a number of independent iterations until it returns the best
result found [143]. It has been used by Souffriau et al. [142] to solve the TOP and ex-
tended in other works to solve related problems (see Section 3.1). GRASP selects next
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POIs randomly to some extent; hence, recommendations can become more serendipi-
tous compared to other tourist trip algorithms. It has been shown that modifications of
GRASP, such as GRASP with Path Relinking post-processing (see Section 3.1.2), im-
prove the performance of GRASP but lead to a significantly higher running time [133].
This is why we rely on the original GRASP method in the following as it is more suitable
for practical tourist trip applications. We extended this implementation of GRASP by
context-aware recommendations and item dependencies and used it in the online evalu-
ation of TourRec in Section 5.6.

The following description of a GRASP algorithm for tourist trip recommendations is
based on [142]: A GRASP algorithm performs a number of iterations until a stopping
criterion is met. For each iteration, a parameter between 0 and 1 is randomly chosen,
prescribing a ratio between greediness and randomness. Next, a candidate list with all
possible insertions is created. For each POI in the insertion list, a heuristic value is
calculated. A threshold between the minimum and maximum heuristic values of the
candidate list and based on the greediness parameter is calculated. Only POIs with a
heuristic value exceeding the threshold are taken into account for insertion in this round.
For this purpose, one POI of the restricted candidate list is randomly picked. At the
end of each iteration, a path containing multiple POIs is created and another iteration
with a different greediness parameter is started. In the end, the best iteration result is
returned.

In our scenario, the heuristic value of a POI j is calculated by dividing the profit p of
the POI by the distance from the previous POI i:

hj =
pj

dist(i, j)
(5.14)

The threshold is computed by multiplying the greediness parameter g with the dif-
ference between the maximum and minimum heuristic values of the candidate list and
adding the product to the minimum heuristic value:

t = hmin + g × (hmax − hmin) (5.15)

Calculating the threshold ensures that only POIs with a sufficient high profit per
distance are taken into account for the recommended trip despite the random selection
of a POI.

5.6 Insights from an Online Evaluation of TourRec

We conducted an online evaluation to test our proposed extensions with real users.
For this purpose, we integrated the extensions into different variants of the previously
presented Dijkstra-based algorithm. In addition, we implemented a variant of GRASP,
as explained in Section 5.5.4. The online evaluation was conducted using an updated
version of the TourRec application that is publicly available on the Google Play Store
(see Section 6.2).
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5.6.1 Setup

We used TourRec’s A/B testing feature to compare the context-aware algorithm that
we introduced in Section 5.3 (Baseline) to four more variants that implemented the
suggested extensions that we presented in Section 5.54:

• Dijkstra: The context-aware algorithm extended by item dependencies.

• Dijkstra-based with Distance to Destination (DBDD): The context-aware
algorithm extended by item dependencies which tries to minimize the distance to
the destination.

• Dijkstra Plus: The context-aware algorithm extended by item dependencies
and with counteracting the equalization of contextual conditions.

• GRASP: The proposed GRASP algorithm extended by item dependencies.

TourRec randomly chose one of these algorithms for every trip request. The users
were not able to see which algorithm was selected. The goal of this online evaluation
was not to collect individual feedback for each of the presented extensions. Instead,
we wanted to learn the users’ travel preferences when using a tourist trip RS in a re-
alistic scenario and understand the impact of our proposed extension on the generated
recommendations. We suggest conducting additional user studies to evaluate the user
satisfaction with each of the presented algorithms in future work.

The online evaluation was conducted from May 23, 2018 until July 6th, 2019. We
promoted the mobile application via various Facebook groups and mailing lists. However,
we had no impact on who downloaded and used the application. The application was
available for download in 52 countries. In total, 373 trip requests were made by 135 real
users. Note that if a user deleted the application and re-installed it or used different
devices to generate tourist trips, a new user ID was assigned to the user. Hence, duplicate
users were possible in this dataset.

5.6.2 Results

We used the collected dataset to analyze the travel preferences of the TourRec users,
the requests that they formulated, and the recommendations generated by the five vari-
ants of the tourist trip algorithm.

5.6.2.1 Travel Preferences

Users were able to rate POI categories on a scale ranging from 0 to 5. With the start of
the online evaluation, we introduced subcategories to allow users to specify their travel
preferences more precisely. The user rating for a subcategory overwrites the rating of the
corresponding main category. For instance, users can rate all Food POIs with a 3 but
rate French Restaurants with a 5 if they like restaurants in general but prefer going to a

4We published the results of a preliminary user study to evaluate some of these algorithms in [189].
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French restaurant. Every trip request contained the full set of rated user preferences, i.e.,
ratings for the 64 subcategories that are listed in Appendix B. The mobile application
allowed the users to generate multiple trips with the same travel preferences or update
the preferences whenever desired. In the following, we explain how to determine the
popularity of each of the 64 POI categories based on all user requests that we collected.

Not every user requested the same number of trips. However, since every user should
have the same weight when identifying the most popular categories, we firstly have to
calculate each user’s average preferences for every subcategory. For instance, if a user
requested two trips and rated French Restaurant once with 1, once with 5, the average
user preference for French Restaurant is 3. Furthermore, when calculating the average
user preferences, we have to remove sets of preferences in which all categories were rated
with the default value of 3. In this case, these users did not specify their personal
travel preferences before requesting a recommendation. This approach resulted in 135
sets of user preferences. The average values of these user preferences are illustrated in
Figure 5.8. Italian Restaurant received the highest ratings while Shopping Mall received
the lowest ratings on average.

Table 5.12 shows the average rating per main category. The values are very similar
to the results obtained by Wörndl and Hefele (see Section 5.2.4). Arts & Entertain-
ment, Food, and Outdoors & Recreation are the most popular categories while Shopping
received the lowest ratings on average.

Table 5.12: Average user preferences per main category in the online evaluation.

Category Mean

Arts & Entertainment 3.20

Nightlife 1.99

Food 3.44

Outdoors & Recreation 3.38

Shopping 1.79

5.6.2.2 Route Requests

Figure 5.9 illustrates the locations of all 373 trip requests. The majority of the requests
were made for trips in Germany. In total, trips were requested in 31 countries all over
the world. Table 5.13 lists the ten most frequent countries for tourist trip requests.

The average time budget specified by the users was 7.36 h (s = 1.87). 69.7% of the
requests kept the default value of 8 h. When removing all requests with the default
maximum duration of 8 h, the average time budget was 5.9 h (s = 2.92).
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Figure 5.8: Average user ratings for TourRec’s POI categories ordered by popularity.
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Figure 5.9: Locations of requested tourist trips in the online evaluation.

5.6.2.3 Recommendations

Table 5.14 shows that the actual average duration of a trip was 6.3 h (s = 2.23). A
significant number of the recommended trips took between 7 and 8 h which is a result
of the high ratio of users that did not change the default time budget of 8 h. Compared
to the average maximum duration specified by the users, the duration of recommended
trips deviated by 1.06 h on average. Table 5.14 reveals that especially trips generated
by Dijkstra Plus are on average shorter than the user’s time budget. On the other
hand, GRASP deviates only by 34 min on average.

We conducted Shapiro-Wilk tests to test if the trip duration deviations are normally
distributed and rejected the null hypothesis (p < 0.001); hence, there is evidence that the
data tested are not normally distributed. The result of a Kruskal–Wallis test confirms
that there is a significant difference between the average trip duration deviations (p <
0.001).

Dunn’s post-hoc tests [190] reveal that the average duration of trips generated by
Dijkstra Plus deviates significantly more from the user request than the duration of
trips generated by Baseline (p < 0.001), GRASP (p < 0.001), Dijkstra (p = 0.004)
and DBDD (p = 0.005). Dijkstra Plus is more selective than the other algorithms
when POIs do not fully fit the contextual conditions which makes a recommendation
impossible.

On average, the recommendations contained 4.8 POIs between start and destination.
GRASP, which was able to generate the trips with the lowest unused time, contained
most POIs on average. However, a Kruskal–Wallis test does not confirm that there are
significant differences between the numbers of POIs. 18 of the 373 route recommenda-
tions contained no POIs but only the direct route between starting point and destination.
This could happen when the dataset contains no POIs in the recommendation area or
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Table 5.13: The ten most frequent countries for tourist trip requests in TourRec.

Rank Country Requested trips

1 Germany 202

2 Italy 20

3 Austria 18

4 Spain 17

4 France 17

6 Singapore 14

7 United States 9

7 Netherlands 9

7 Belgium 9

10 Switzerland 8

Table 5.14: Tourist trip characteristics by algorithm.

Algorithm n Duration (Avg.) Deviation (Avg.) POIs (Avg.) No POIs

Baseline 82 6.57 h 0.77 h 5.05 3

Dijkstra 80 6.08 h 1.05 h 4.78 4

DBDD 60 6.23 h 0.92 h 4.70 4

Dijkstra Plus 75 5.75 h 2.01 h 4.24 7

GRASP 76 6.85 h 0.57 h 5.17 0

Total 373 6.30 h 1.06 h 4.80 18

when the selected algorithm cannot fulfill the user request (e.g., Dijkstra Plus cannot
recommend any POIs when the user is looking for shopping recommendations during the
night). Dijkstra Plus recommended 7 trips without any POIs while GRASP was the
only algorithm that was always able to include at least one POI into the recommended
trip. A recommend trip contained 1.25 POIs in the category Food on average. The result
of a Kruskal–Wallis test confirms that trips generated by Dijkstra (0.98) and DBDD
(0.97) contained significantly less POIs in the category Food than trips recommended
by the Baseline algorithm (1.76). This proves that the concept of item dependencies
reduces the number of POIs in the category Food in an average trip of 6.3 h to a more
reasonable value.

We conducted additional tests to verify whether DBDD can distribute POIs more
evenly along the route. The goal of this approach was to avoid disproportionate walking
distances to the final destinations. For this purpose, we calculated how long the walking
time from the last POI to the final destination is compared to the overall walking time of
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Figure 5.10: Boxplots visualizing the distribution of the normalized walking times to destina-
tion for all algorithms.

the trip for every recommended trip with at least one POI. We call this ratio normalized
walking time to destination. If, for instance, a user walks for two hours during the whole
trip including one hour to arrive at the final destination, the normalized walking time
to destination is 0.5. Boxplots for all algorithms are illustrated in Figure 5.10.

We conducted statistical tests to verify whether the normalized walking time to des-
tination differs between algorithms. Shapiro-Wilk tests show that there is evidence that
the data are not normally distributed (p < 0.001). The result of a Kruskal–Wallis test
confirms that there is a significant difference between the normalized walking times to
destination (p < 0.001). Dunn’s post-hoc tests show that:

• GRASP recommends trips with a significantly higher normalized walking time to
destination than all the other strategies (p < 0.001),

• Dijkstra recommends trips with a significantly higher normalized walking time
to destination than Baseline (p < 0.001) and Dijsktra Plus (p = 0.015)

• DBDD recommends trips with a significantly lower normalized walking time to
destination than Dijkstra (p = 0.04), but only after removing the outlier (Fig-
ure 5.10). The outlier is a trip that contained only one POI that was located next
to the starting point. However, not enough time was left to visit any other POI.
Hence, the normalized walking time to destination was 1.
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The results indicate that the introduction of item dependencies increased the likelihood
of trips with a relatively long walking time to destination. The idea of the DBDD
algorithm as well as counteracting the equalization of contextual conditions turned out
to be solutions to this problem. Our GRASP implementation did not integrate any
of these two extensions which is why it generated trips with a high normalized walking
time to destination. Furthermore, the randomness factor of GRASP can lead to longer
walking times to destination.

5.6.3 Discussion

The online evaluation confirmed the findings presented in Section 5.2.4.2: users of a
tourist trip RS are mainly interested in going to restaurants, visiting arts & entertain-
ment venues, and doing outdoor activities while traveling. It is important to keep in
mind that the popularity of POI categories strongly depends on many factors, such as
the user’s travel goals. A tourist looking for a relaxing beach vacation will rate POI cat-
egories most likely differently than when planning a cultural trip to Paris, for example.

The results of the online evaluation revealed that the extensions suggested in Sec-
tion 5.5 promise to improve tourist trip recommendations from a user’s perspective. For
instance, we introduced the concept of item dependencies to avoid unwanted combina-
tions of POIs, such as too many restaurants, in a trip. We showed that the number
of restaurants decreases significantly to around one restaurant during a half-day tourist
trip. Additional user studies are required to evaluate how the users perceive this result
and other effects of item dependencies.

It has been shown that our approaches to solving the TTDP for walking tourists can
lead to a disproportionate walking distance to the final destination of the trip. Keeping
in mind the final distance to the destination during the execution of our Dijkstra-based
tourist trip algorithm promises to distribute POIs more evenly along the route. We have
empirical evidence that our proposed approach reduces the walking time from the last
POI to the final destination compared to the overall walking time.

Another problem of our tourist trip algorithm that we identified in Section 5.3.3 is
the possible equalizing of two or more extreme contextual conditions. We developed
an extension of the algorithm that sets the profit of a POI to 0 if one or more context
ratings are below a threshold. However, this extension can make it more difficult to
find suitable trips and enough POIs that can be combined along a route. Hence, the
recommended trips are significantly shorter than the user’s time budget which may lead
to unsatisfying results.

The online evaluation delivered insights into user preferences and expectations when
interacting with tourist trip recommendations. It also showed how several extensions to
tourist trip algorithms can improve the quality of recommended trips. Furthermore, we
showed how to integrate these extensions into an algorithm from published literature.
However, we did not collect quantitative data to evaluate the quality of the recommended
trips. Therefore, future work should conduct additional user studies to evaluate how
satisfied real users are with recommendations made by each algorithm.
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5.7 Summary

In this chapter, we tackled the problem of recommending tourist trips to individuals.
More concretely, we wanted to present extensions to existing TTDP solutions to improve
the quality of tourist trip recommendations.

Generally speaking, the problem of finding a tourist trip can be formulated as a graph
problem. In an undirected graph, all POIs that can be visited are the vertices and the
connection between the POIs are the edges. The distance between two POIs is denoted
by the edge weight.

We firstly presented a solution to the TTDP that is based on Dijkstra’s algorithm.
This solution is composed of two steps: (i) retrieving and scoring POIs, and (ii) grouping
the POIs to a composite trip. External services and APIs can be used to gather POIs
of travel-related categories. The profit of a POI determines the value of the POI for
the user. It can take into account the user’s travel preferences and the number of votes
provided by other users in a LBSN.

Wörndl and Hefele [176] presented a constraint-free and a constraint-based variant
of their improved approach of the Dijkstra-based tourist trip algorithm. The algorithm
calculates the PCC between the user preferences for categories and the number of POIs
per category in the trip. The idea is that the number of POIs in a category in a trip
should be appropriate in relation to other categories and the user’s preferences. The
constraint-based algorithm takes into account time and budget constraints for the trip.
In addition, it adjusts the suggested durations of stay based on the user’s preferences for
categories. The authors compared both approaches to a preliminary solution in a user
study. The total amount of POIs and the length of the trips was equally well rated for
both approaches. Trips generated by the improved approach matched better the users’
preferences. Slightly more users would actually make the recommended trip and the
users were more satisfied with the overall result when the improved approach was used.
Overall, more users preferred trips made by the improved approach compared to the
preliminary solution. We used the constraint-based variant of the improved algorithm
as input for the following extensions.

CARSs can increase the quality of recommendations compared to traditional 2D RSs.
A lot of research has been done to identify contextual factors relevant for tourism recom-
mendations. Every contextual factor has a different relevance for different POI categories
and a different impact on the predicted rating of an item. We integrated some of the most
important contextual factors for POI recommendations into the Dijkstra-based tourist
trip algorithm including two that are especially relevant for POI sequences: Time of
the day and Previously visited POI. An A/B test confirmed that the context-aware vari-
ant of the Dijkstra-based algorithm outperforms the previous algorithm which does not
consider context. The participants were overall slightly more satisfied with the recom-
mended trips and the POIs are recommended at significantly more suitable times during
the trip. The results also showed that two or more extreme contextual conditions could
be equalized in the proposed approach. This is why we suggest that items should be
discarded if one or more context ratings are below a threshold t. Furthermore, instead
of only considering the previously visited POI, a tourist trip RS should consider all the
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previously visited POIs as we believe that the absence or presence of POI can have a
significant impact on other POIs in the same trip. We call this influence item dependen-
cies. Item dependencies are in the interval [0, 2]. Hence, the presence or absence of an
item can increase or decrease another item’s profit by up to 100%. Item dependencies
approach 1 when more items are recommended between the two items.

In many scenarios, the quality of a trip is not only determined by the sum of the profits
of the recommended POIs. Moreover, the attractiveness of the routes between the POIs
can have a high impact on the user’s satisfaction. A wide range of route attractiveness
attributes has an impact on people’s decisions to participate in outdoor activities. Some
of them, such as tree density, pollution, and littering, have a high probability to affect
the quality of a walking route and should definitely be considered in tourist trip RSs.
This is done by updating the final edge weight in the POI graph. In addition, attribute
weights can be assigned to determine the importance of each attractiveness attribute. We
implemented this approach using OpenStreetMap data and developed a web application
to evaluate the impact of the attributes and the recommended routes. The results showed
that having no air pollution and littering motivates people to choose an alternative route
over the shortest path. Greenery, however, seems to be a bonus for travelers and missing
trees does not influence their decision of choosing an alternative route. The evaluation of
four test conditions for recommending routes showed that integrating trees, air pollution,
and all the attributes taken together prompt tourists to significantly more often select the
recommended route over the shortest path. Less littering, however, does not make people
choose the recommendation more often than the shortest path between two locations.

Besides item dependencies and counteracting the equalization of two or more extreme
contextual conditions, we also proposed an extension of our context-aware tourist trip
algorithm that minimizes the distance to the final destination when recommending a
tourist trip. Furthermore, we showed how to integrate our context-aware recommenda-
tion techniques into GRASP, an established algorithm from published literature. We
conducted an online evaluation over a period of more than one year to test all of these ex-
tensions with real users. For this purpose, we implemented our proposed extensions into
different variants of the Dijkstra-based, context-aware algorithm and GRASP. All al-
gorithms were integrated in the publicly available TourRec Android application which
used TourRec’s A/B testing feature to randomly choose one algorithm for every re-
quest. Overall, 373 tourist trips were requested during the evaluation period. The results
of the online evaluation showed that real users downloaded the application to generate
tourist trip recommendations in cities all over the world. They were especially looking
for trips containing POIs in the categories Arts & Entertainment, Food, and Outdoors
& Recreation. An average trip contained 4.8 POIs and had a duration of 6.3 h. The
concept of item dependencies allows travelers to avoid unwanted combinations of POIs
within a trip, such as too many restaurants. When keeping in mind the distance to the
final destination, our tourist trip algorithm was able to ensure a better distribution of
POIs along the walking route, that is, it reduced the probability of a disproportionate
walking time to the final destination. Counteracting the equalization of two or more
extreme contextual conditions can avoid inappropriate recommendations; however, the
trip length in our approach deviated significantly from the specified time budget. We
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recommend larger user studies in future work to collect additional quantitative data
about the quality of the recommended trips.
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Trip Recommender Systems

The success of a RS does not only depend on recommendation accuracy, it should also
provide a positive UX and be a pleasure to use (see Section 2.6). RSs can run on different
platforms and users interact with these platforms and its applications via UIs; hence,
the choice of a platform and the design of UIs is a critical task when developing tourist
trip RSs.

In this chapter, we show how the TTDP can be solved on different types of platform-
UI configurations, as introduced in Section 2.5. While web-based applications enable a
user-friendly travel planning, mobile applications are more suitable for receiving recom-
mendations while already traveling. We developed prototypes of the TourRec appli-
cation for both variants and evaluated the usability of our solutions in user studies. In
addition, we introduced two additional platform-UI configurations that allow travelers to
receive recommendations while already traveling and in public spaces: a public display
application and a distributed approach that combines a mobile application and a public
display. We conducted an additional user study to compare the usability and UX of the
mobile application to these two variants. The results of this chapter allow us to answer
our second RQ: “Which platforms and UIs support tourists the best in solving the TTDP
in realistic scenarios with regard to different usability and UX criteria?”

The content of this section has been published in [173, 178, 191, 192] with some
revisions.

6.1 Web Application for Context-Aware Tourist Trip
Recommendations

The first TourRec application that we developed is a web-based prototype. This
application was used to compare our context-aware, Dijkstra-based tourist trip algorithm
to the context-unaware variant in an A/B test in Section 5.3.3.

6.1.1 Description

The web application is structured into three segments: search, recommendation, and
feedback. In the search segment, users can enter their preferences for all six POI cate-
gories, the starting point and destination, as well as the time frame for the trip, which is
translated to the user’s time budget. (Figure 6.1). The input is validated on both client
side as well as server side.
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Figure 6.1: Preference elicitation in the context-aware, web-based RS [178].

Figure 6.2: Context-aware recommendation in the context-aware, web-based RS [178].

The recommendation segment is structured as follows (Figure 6.2): A map with the
suggested POIs and a rendered walking path on it is located on the left-hand side.
Note that in this prototype, only one recommendation per request gets displayed. This
allowed us to conduct an A/B test in which the users were not aware of the chosen
algorithm. On the top right-hand side, contextual information that has been acquired
by the system and is relevant for the user for this situation, such as the weather forecast,
is displayed. Finally, an ordered list of POIs and their estimated arrival and departure
times, respectively, can be found below the contextual information.

The feedback segment is located at the bottom of the prototype. It provided the
user with a short introduction into the feedback process. In essence, it is a simple table
with multiple statements which can each be answered with radio buttons on a five-point
Likert scale ranging from strongly disagree to strongly agree (see Section 5.3.3.1).

The web application was built with help of the JavaScript framework Vue.js 2.2.01

and the CSS framework Bulma 0.4.02.

1https://vuejs.org/ (accessed February 16, 2020)
2http://bulma.io/ (accessed February 16, 2020)
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6.2 Android Application

6.1.2 Evaluation

We asked the users to complete the SUS questionnaire (see Section 2.6.3) after every
tourist trip recommendation to evaluate the usability of the context-aware prototype.
The questionnaire was part of the application’s feedback segment, similar to the previ-
ously presented questionnaire for evaluating the quality of the recommended trips (see
Section 5.3.3). The link to the application and the questionnaire were spread via e-mail.

19 participants completed the SUS questionnaire after using the prototype. The par-
ticipants were mainly composed of students. The average SUS score was 84.17. This
score approximately converts to a percentile rank of 94% [122]. This means that the
web-based, context-aware TourRec prototype performs better than about 94% of sys-
tems tested in terms of perceived usability. However, since our application was accessible
from virtually any device, the actual system usability could vary for different screen sizes,
operating systems, and browser vendors.

6.2 Android Application

As explained, web-based tourist trip applications allow a user-friendly travel planning,
but they are less suitable for receiving recommendations while already traveling. This
motivated us to develop a mobile TourRec application for Android devices. The initial
version of the mobile application has been introduced in [173] and extended over the
course of the last years. The current version of TourRec is available for download in
the Google Play Store3

6.2.1 Description

The biggest difference to the web-based application is the smaller screen size. In addition,
it is optimized for devices with touch screens and supports gestures to zoom in and out on
the map that displays the recommended trip, for example. The user’s general movement
through the mobile application is similar to the web-based application. The starting page
of the mobile application allows users to requests a new tourist trip recommendation by
specifying the starting point (e.g., the current location), a destination, the starting time
and the maximum duration of the trip (Figure 6.3a). If desired, users have the option
to specify travel preferences by rating the POI categories on a scale from 0 to 5, as
in our other prototypes (Figure 6.3b). The current version of the TourRec Android
application allows users to rate subcategories to specify travel preferences more precisely,
as introduced in Section 5.6.2.1 (Figure 6.3c).

Recommendations are displayed on a map (Figure 6.3d) or as a list of POIs with
additional information, such as predicted arrival times and suggested durations of stay
(Figure 6.3e). The list view also summarizes relevant trip data, such as the overall
duration and the weather forecast. Clicking on a POI in the list shows all relevant
information about the POI on the Foursquare website.

3https://play.google.com/store/apps/details?id=de.tum.in.cm.tourrec (accessed February 16,
2020)
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Users can rate recommendations on a five-star scale (Figure 6.3e). In addition, they
can reject a recommendation by clicking the Thumbs Down icon on the top right corner
of the recommendation interface. After clicking the icon, a pop-up window appears that
allows the users to specify the reason for rejecting the recommendation (Figure 6.3f).
User can select one reason or decide to not specify any. The rejection and the selected
critique are stored in TourRec’s data tier.

Note that all UIs were designed using Material Design, a design language introduced
by Google4.

6.2.2 Evaluation

We conducted a usability test to evaluate the initial mobile application in [173] which
did not contain subcategories and the critiques in Figure 6.3f. The average SUS score
among 39 participants was 84.64. The score converts approximately to a percentile rank
of 95%, meaning that the application performs better than about 95% of tested systems
in terms of perceived usability. In addition, we separated the participants into two study
groups based mobile operating system the user usually uses (iOS and Android). Our
results showed that Android users were slightly more satisfied than iOS users (SUS score
of 88.06 vs. 81.25).

6.3 Public Display Application

The mobile prototype was the first TourRec application that we developed to receive
recommendations while already traveling. In this section, we propose two additional
platform-UI configurations for this purpose: a public display variant and a DUI approach
that combines a mobile application with a public display. We present a user study to
compare all three variants in Section 6.5.

A tourist trip RS on public displays comes with some advantages compared to a
mobile application: Users do not need their own devices with internet connection while
traveling. Larger displays can facilitate orientation in an unknown area and support the
selection of a suitable recommendation when all relevant data, such as POI information,
a map, and context data, are displayed on a single UI. Furthermore, a public display can
facilitate decision making when used by a group because the recommendation can be
viewed by all members of the group. More advanced approaches allow users to modify
the recommendation directly on the public display and send it to their personal devices.

These advantages represent our motivation to integrate public displays into our Tour-
Rec application. For this purpose, we adapted the mobile TourRec application to
public displays and compared it to the smartphone application and a DUI approach
in a user study (Section 6.5). We tried to keep the changes to the smartphone’s UIs
to a minimum so that the only independent variable tested in our user study was the
interaction type rather than other changes in the layout. Thus, the public display ap-
plication applies the same layout but attempts to benefit from the larger display area

4https://material.io/guidelines/ (accessed February 16, 2020)
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6.3 Public Display Application

(a) (b) (c)

(d) (e) (f)

Figure 6.3: UIs of the TourRec Android application for (a) formulating a user request, (b)
rating main categories, (c) rating subcategories, (d) viewing the recommendation
on a map, (e) viewing the recommendation as a list with additional information,
and (f) critiquing the recommendation.
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(a) (b) (c)

Figure 6.4: Public Display UIs for (a) specifying travel preferences, (b) formulating a user
request, and (c) viewing the recommendation on a map and as a list of POIs [193].

wherever possible. Figure 6.4 shows the most important public display UIs. Again,
the final tourist trip recommendation is presented both on a map and as a list of POIs
(Figure 6.4c). However, the public display variant takes advantage of the larger screen
and displays both modes simultaneously. The map and list are displayed on the top and
bottom of the screen, respectively.

We used the AngularJS 1.5.55 framework to implement the public display application.
In this work, we used a kiosk system equipped with a 55-inch multi-touch screen in por-
trait orientation as public display (Figure 6.5). Similar tourism information kiosks can
be found in many touristic areas. The kiosk system ran Windows 10 and the application
could be accessed via any web browser.

6.4 Distributed User Interface Approach

The DUI approach distributes the recommendation process among a smartphone and a
public display. The two main reasons for this approach are: (i) users can keep sensi-
tive data on their private device but view the recommendation on a large display, and
(ii) users can prepare a trip request prior to traveling and display a recommendation
on a public display as required. We decided to use a QR code for the pairing between
the smartphone and public display because it has been shown that this method pro-
vides high usability in similar scenarios (see Section 2.5.4). Furthermore, QR codes are

5https://angularjs.org/ (accessed February 16, 2020)
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already used in common software, such as WhatsApp6, to pair a desktop client and a
smartphone.

Figure 6.5: TourRec running on a
kiosk system [42].

After the user formulated a request, the extended
smartphone application allows the user to send it
to a public display. The user has to scan the QR
code on the public display using the smartphone’s
camera to transmit the request to an intermediary
server application that we developed for this pur-
pose. The public display fetches the trip request
from the intermediary server application. To iden-
tify the correct smartphone, each request is labeled
with a unique ID that is also encoded in the QR
code. After the public display received the request,
it forwards it to the backend and receives a rec-
ommendation, which is then presented to the user
on the public display. The smartphone and pub-
lic display applications are the same as previously
presented; however, they are extended by the pair-
ing feature. The intermediary server application is
a web service implemented in Node.js 8.9.37.

6.5 A User Study to Compare
Different User Interfaces for Tourist
Trip Recommender Systems

We compared the three variants that are suitable for receiving recommendations while
already traveling in a user study: the smartphone application, the public display variant,
and the DUI approach.

6.5.1 Setup

We evaluated the three variants relative to UX, execution time of the selected tasks,
and comfortability of use in a public space. The user study followed a within-group
design. We allowed the participants to test the prototypes in random order to avoid
biased results due to the learning effect. The participants were asked to execute three
tasks for each platform-UI configuration:

1. Request a tourist trip recommendation between two predefined POIs.

2. Request a tourist trip recommendation between two predefined POIs with their
own travel preferences.

6https://www.whatsapp.com/ (accessed February 16, 2020)
7https://nodejs.org/en/ (accessed February 16, 2020)
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3. Request a tourist trip recommendation from the current location to a predefined
destination.

The participants were asked to fill out a UEQ after every interaction with one of the
tree platform-UI configurations (see Section 2.6.3). In addition, we included one extra
question asking the user how comfortable they felt using the prototype in a public place.

In total, 16 people in age ranges from 18–24 years (25%) and 25–34 years (75%),
8 female and 8 male, participated in the user study. All participants were bachelor
or master’s degree students or had recently graduated. 62% of the participants had a
technological, educational background while 38% stated that they have a background in
other disciplines. Overall, the participants had rather limited experience with interactive
public displays, For instance, 50% of the participants had never used a similar system
previously.

6.5.2 Results

We performed statistical tests where applicable to determine whether the performance of
the platform-UI configurations differed significantly relative to any of the aforementioned
aspects. We used analysis of variance when the results were distributed normally and
the Friedman test in other cases. The Shapiro-Wilk test for normality was performed
to select the correct significance test. In case of a significant difference, we performed a
post-hoc test to identify where the difference occurred, i.e., between platform-UI config-
urations.

Figure 6.6 shows the results of all prototypes relative to the six UEQ aspects. The
attractiveness of all prototypes is considered excellent, which means that it is among the
10% best results of the benchmark dataset. However, perspicuity, which determines how
easy it is to get familiar with the application, is significantly higher for the stand-alone
smartphone mode compared to the DUI approach (p = 0.002). Many people are famil-
iar with using smartphone applications. Hence, it was easier for them to learn how to
use the stand-alone smartphone variant than the DUI approach. For dependability, the
difference between the stand-alone smartphone and public display modes is significant
(p = 0.006), which means that the participants felt more in control of the interaction
when using a smartphone than a public display. Moreover, the public display’s depend-
ability score is below average compared to the benchmark dataset that comes with the
UEQ because the public display scored very low for the Secure vs Insecure item in the
questionnaire. Thus, further effort to protect user data and prevent shoulder-surfing is
required. This was also confirmed by many participants who expressed their concerns
about privacy during the study as their data would be publicly visible on the large
screen. However, half of the participants stated verbally that the large screen of the
public display is a great advantage. In addition, 25% emphasized that the public dis-
play would be the ideal choice when used by groups of travelers, as the larger screen
can facilitate discussions among group members. Our DUI approach appears to be a
promising solution because its dependability is similar to the stand-alone smartphone
variant. Furthermore, the DUI approach demonstrates the highest novelty, which means
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Figure 6.6: UEQ results for the three TourRec applications (adapted from [192]).

that this approach felt the most innovative and creative. However, this difference is not
significant.

Table 6.1 shows the average execution times for each task and prototype. The execu-
tion times of Task 1 are significantly shorter for both the stand-alone smartphone mode
(p = 0.007) and the stand-alone public display mode (p = 0.015) than the DUI approach.
Task 3, which required the users to give the system access to their current location, is
significantly faster on the smartphone than on the public display (p = 0.002) and the
DUI approach (p = 0.003). Interacting with the pop-up window to grant location per-
mission was faster on the smartphone than on the public display because this window
was relatively large on the smartphone but difficult to see on the public display. There is
no significant difference between the execution times of Task 2 which included entering
the travel preferences before requesting a recommendation. Hence, specifying prefer-
ences using sliders can be done as quickly on mobile screens and large touch screens.
Many people are more familiar with using smartphones but the preference sliders were
larger on the public display which made it easier to select the desired ratings.

The analysis of execution time shows that there is nearly no difference between the
public display and smartphone configurations. This is surprising because many partici-
pants had no previous experience with interactive public displays.

Comfortability using a smartphone in a public place is significantly higher than when
using a public display (p = 0.005) or the DUI approach (p = 0.005). During the study,
75% of participants explained that using two devices is a disadvantage and too complex
because they could obtain the same recommendation using a single device. However,
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Table 6.1: Average execution times for each task and prototype.

Task 1 Task 2 Task 3

Smartphone 33.38 s 77.44 s 25.56 s

Public Display 34.69 s 73.06 s 33.63 s

DUI approach 43.81 s 81.19 s 36.81 s

25% of participants emphasized that preparing the trip recommendation in advance, e.g.,
by entering trip parameters on the smartphone while waiting in line to use the public
display, could be a significant advantage in practical use.

6.6 Summary

In this chapter, we introduced different platform-UI configurations for a tourist trip
RS. The basic idea is the same among all variants that we developed: Users can rate
POI categories on scales ranging from 0 to 5. A tourist trip request is composed of a
starting point, a destination, a starting time, and the maximum duration of the trip.
The recommended route is displayed as a list with additional information and on a map.

We developed a web-based TourRec client that is suitable for planning trips in
advance. We used this prototype to compare our context-aware, Dijkstra-based tourist
trip algorithm to a context-unaware solution in an A/B test in Section 5.3.3. Another
user study with 19 participants proved the high usability of the web-based solution.

In addition, we introduced platform-UI configurations that allow receiving recommen-
dations while already traveling: a mobile application, a public display variant, and a
DUI approach which distributes TourRec among both smartphone and public display.
The mobile application for Android devices has been developed and extended over the
course of the last years. For instance, we introduced subcategories in the mobile ap-
plication that allow users to specify their travel preferences more precisely. Users can
also rate recommendations and critique them. The feedback is stored in TourRec’s
data tier. In a user study with 39 participants, the mobile application received a high
usability score. We adapted the mobile application to public displays. In this work, we
used a kiosk system as public display. One main advantage of the public display variant
was the large screen which allowed us to display the recommendation as a list and on
a map simultaneously. In addition we developed a DUI approach that allows users to
specify their preferences and a tourist trip request on the mobile device but view the
recommendation on the large screen.

We compared the UX of the mobile application, the public display variant, and the
DUI approach in a user study. In this study, very high attractiveness was demonstrated
by all approaches. The results also showed that integrating public displays into a tourist
trip RS is perceived as an advantage by some users; however, the feedback received
also indicates that public displays could become more valuable when a group of users
attempts to agree on a tourist trip. This is why we show how to extend TourRec to
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6.6 Summary

enable group recommendations in the following chapters. Furthermore, privacy concerns
relative to using a public display remain. The DUI approach allows the user to keep
sensitive data, such as travel preferences, on the private device while benefiting from
the public display. This is particularly important in a group recommendation scenario
where the users want to share a mutual display but not reveal their personal preferences
to other group members. However, further efforts are needed to protect the data on the
public display and prevent shoulder-surfing.
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7 Recommending Tourist Trips to Groups
of Users

Many people want to travel in groups, such as families, friends, and colleagues. It is
challenging to recommend good sequences of POIs to groups of users: Group members
can have different expectations towards a tourist trip but a group recommendation is
supposed to consider the travel preferences of all group members. Consequently, GRSs
have to find compromises that are appreciated by all group members to guarantee a
positive experience for the whole group.

In the previous chapters, we introduced the TTDP for individuals and presented
algorithms and platform-UI configurations to solve it from a user-centered perspective.
In this chapter, we show how to solve the TTDP for groups of users. This variant of the
TTDP comes with an additional constraint: instead of scoring POIs based on the travel
preferences of only one user, a GRS uses multiple sets of travel preferences as input to
generate a tourist trip recommendation. As explained in Section 2.4.2, two types of group
recommendation techniques can be distinguished for this purpose: The user profiles of
all group members can be aggregated using a Social Choice strategy. The group profile
is then used to request a recommendation (AP). Furthermore, a recommendation can
be made for every user individually before the recommendations are combined into one
group recommendation (AR).

A number of studies have been conducted on group recommendation strategies in
various domains. In the tourism domain, GRS research focuses on recommending single
items or travel plans (see Section 2.4.3). Furthermore, to the best of our knowledge, there
are no user studies that evaluate different group recommendation strategies to solve the
TTDP. In this section, we show how to apply established AP and AR group recom-
mendation strategies to the TTDP. Furthermore, we introduce two novel approaches,
including a strategy called Split Group, which extends the AP approach and allows
groups to split into smaller groups during a trip. We compared all strategies in a user
study with 40 real groups. The results of this user study allow us to answer our third
RQ: “Which group recommendation strategies provide the highest user satisfaction when
solving the TTDP for groups?”.

The content of this section has been published in [194] with some revisions.
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7.1 Problem Description

The problem that we want to solve in this study is an extension of the formulation of
the TTDP that we described in Section 5.1. Instead of recommending tourist trips to
individuals, the goal in this study is to generate recommendations that satisfy groups
of users. For this purpose, a group has to specify a mutual starting point, a mutual
destination, and the maximum duration of the trip. Every group member can have
different interests. For instance, one group member could be interested in visiting mu-
seums, while the rest of the group prefers outdoor activities. The goal is find a tourist
trip from the starting point to the destination that takes into account the interests of
all group members.

We solve the described problem as follows: All group members can specify their in-
dividual travel preferences separately by rating POI categories, as in our previously
presented approaches for individuals. Then, the RS collects the preferences of all group
members. The group members’ preferences and relevant contextual factors are used
to determine the POI profits. The profit of a POI can either be the same or differ-
ent for each group member, depending on the selected group recommendation strategy.
Using this information, the RS generates a tourist trip recommendation from the mu-
tual starting point to the mutual destination that is presented to all group members.
We developed different group recommendation strategies that all implement the Dijk-
stra Plus algorithm. We showed that the context-aware variant of the Dijkstra-based
tourist trip algorithm recommends satisfying tourist trips to individuals (see Section 5.3).
Moreover, the Dijkstra Plus variant of this algorithm counteracts the equalization of
contextual conditions but avoids disproportionate walking times to the final destination
(see Section 5.6).

7.2 Group Recommendation Strategies for the Tourist Trip
Design Problem

In this section, we present the group recommendation strategies that we developed to
solve the TTDP for groups. We show how to apply AP and AR strategies and introduce
our two proposed strategies termed Split Group and Connect Segments.

7.2.1 Aggregating Profiles of Users

As explained, the goal of AP is to create a common user profile that reflects all preferences
of all group members. Social Choice strategies can be used to aggregate the profiles of
group members.

We are interested not only in the relative positions of the ratings in each individual’s
category preferences, but also in the strengths of preferences. Therefore, majority-based
strategies are not suitable for solving the described problem (see Section 2.4.2.1). This is
why we implemented consensus-based and borderline AP strategies in this study: Aver-
age, Average without Misery, and Most Pleasure. These strategies performed
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well in previous experiments, whereas other strategies, such as Least Misery, per-
formed poorly [78]. These strategies work as follows when used to solve the previously
described formulation of the TTDP:

• The Average strategy calculates the average of all group member ratings for every
POI category.

• The Average without Misery strategy works as the Average strategy but
sets the profit of all POI categories with at least one user rating below a threshold
to zero.

• For every POI category, the Most Pleasure strategy uses the maximum indi-
vidual rating as group rating.

The group profile is then used together with the context ratings to calculate the profit
of every POI before executing the Dijkstra-based, context-aware tourist trip algorithm.

7.2.2 Split Group

One disadvantage of AP is that it can undermine individual preferences because every
group member has to use the same recommendation. Therefore, we present an extension
of the AP approach, which allows every user to visit important POIs based on their
personal recommendations. Figure 7.1 visualizes our proposed approach. First, the POI
profits for all users are determined and aggregated to recommend a mutual trip for the
group. Our implementation uses the Average strategy; however, it is also possible
to use other suitable Social Choice strategies. Then, an individual recommendation is
made for each user. The algorithm checks if POIs from the mutual trip could be replaced
with the POIs from the individual trip for every group member. To determine the best
replacement for a POI in the mutual trip, the profit of every candidate POI (i.e., every
POI in the individual trip) is divided by the overall distance that the user needs to walk
from the previous POI to the candidate and to the following POI. If the profit of a
candidate is higher than the current POI’s profit, it replaces the POI, that is, the user
leaves the group to visit this POI. Only POIs with a profit below a threshold t can be
replaced because we believe that no group member should leave the group if the mutual
recommendation is already satisfying for the group member. Furthermore, our approach
avoids waiting times for subgroups. For this purpose, the proposed duration of stay of
a replacement is adapted to the POI that it replaces. A POI can only be replaced by
another POI if the replacement’s default duration of stay is not less than a quarter and
not more than four times the original POI’s duration of stay. This avoids replacing a
POI by another POI with a completely different optimal duration of stay.

Figure 7.5 shows a trip generated by Split Group.
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Figure 7.1: Visualization of Split Group with two users and threshold t = 3 for replacing
POIs [194]. The profits for each user are displayed in the vertices in the format
(user 1|user 2). The left side shows the mutual trip (solid line) and the individual
trips (dotted lines). The final recommendation on the right side is the mutual trip
for both users; however, user 1 visits one POI from the individual recommendation
before rejoining user 2 at the last POI.
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Figure 7.2: Visualization of our AR approach with two users. Only POIs that are part of at
least one of the individual recommendations (left side) are candidates for the group
recommendation. A Social Choice strategy is then executed to generate the trip
recommendation on the right side.

7.2.3 Aggregating Recommendations

AR means that a recommendation is generated for every group member individually be-
fore the recommendations are combined into one group recommendation [79]. Figure 7.2
visualizes our proposed approach which is based on the idea of aggregated predictions
(see Section 2.4.2.2): We apply a Social Choice strategy on the POIs that are part of at
least one of the individual trips to aggregate recommendations. The profit of a POI is
increased by the factor of n2, where n is the number of individual routes that contain
the POI. The idea is to make it more likely that the POIs that are part of multiple
individual recommendations appear in the group recommendation. In this study, we
used the Average strategy to test this approach.
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Figure 7.3: Visualization of Connect Segments with two users. The first two POIs in the
recommended trip on the right side are taken from user 2’s, the last two POIs from
user 1’s individual recommendation (left side).

7.2.4 Connect Segments

Connect Segments is a variation of AR that follows the idea that during a trip, every
group member can visit their favorite POIs for a specified period. For instance, in the
morning, the group visits a museum that user A likes the most, then they have lunch at
user B’s favorite restaurant, and so on.

Connect Segments does not require aggregated preferences. It only calculates
individual recommendations and picks single POIs from these sequences to generate a
new recommendation. In this study, groups visit a segment of two POIs from a group
member’s individual recommendation before the next two POIs are taken from another
group member’s individual recommendation. The order of the group members in this
process is determined randomly. This procedure continues until either the end of all
individual recommendations is reached or no more time is left.

Figure 7.3 illustrates an example of Connect Segments with a group of two users.

7.3 User Study

We evaluated all of the presented recommendation techniques for groups in a user study.
Consequently, we compared the following six techniques for solving the TTDP for groups
in this user study:

• Average (AP)

• Average without Misery (AP)

• Most Pleasure (AP)

• Split Group (AP)

• Aggregating Recommendations (AR)

• Connect Segments (AR)

123



7 Recommending Tourist Trips to Groups of Users

The user study was conducted as a laboratory study. It was part of a larger study that
was composed of two parts: a user study to evaluate recommendation techniques (this
section) and a user study to evaluate different GRS configurations and group interaction
with tourist trip RSs in public spaces (see Chapter 8).

7.3.1 Participants

The participants were made to register for the study as groups because we wanted to
conduct our user study with real, non-synthetic groups. We limited the study to groups
of three to reduce the number of experimental conditions. In total, 120 participants
(40 groups) participated. Our goal was to cover all user types of a tourist trip GRS in
this study. Hence, we were looking for participants with different backgrounds, includ-
ing different experiences with tourism applications and different travel frequencies. All
participants completed a demographic and group-related questionnaire at the end of the
user study. The questionnaire can be found in Appendix C.

The participants were in the age ranges of 18–24 years (60 %) and 25–34 years (40 %),
50.8 % were females and 48.3 % were males. One participant preferred to not specify
the gender. The participants were mainly composed of students and alumni. 23.3%
hold a high school diploma or equivalent degree, 63.3% a bachelor’s degree, and 13.3%
a master’s degree or higher.

We asked participants for self-assessment of their group’s type: 62.4% called their
group “close friends” or “family”, 31.7% “student fellows”, and 3.3% did not know the
other group members prior to the study. The rest gave multiple answers. Using this
self-assessment, we clustered participants into two group types (see Section 2.4.1): If
all group members chose close friends or family as their group type, we categorized the
group as primary group. If at least one group member chose another group type, the
group was characterized as secondary group. Collectives and categories were not part of
this study since these group types do not plan mutual trips. In total, 17 primary groups
and 23 secondary groups participated in our user study.

Our study covered participants with different experiences with tourism-related appli-
cations on smartphones and tablets. Almost half of the participants (49.2%) uses such
mobile applications less than once per month or never. However, 23.4% of the partici-
pants uses tourism applications on smartphones or tablets weekly or daily. Our study
also covered participants with different travel frequencies. Most participants (57.5%)
travel more than three times per year. A small share (5%) travels rarely, i.e. not more
than one time per year.

We asked the participants to rate statements about general travel preferences on a
5-point Likert scale ranging from 1 (strongly disagree) to 5 (strongly agree). The state-
ments and average responses can be found in Table 7.1.

For our participants, visiting the attractions with the highest personal interest and
that satisfied a majority of the group members was more important than visiting the
favorite attractions of every group member and avoiding unwanted attractions. The
question whether or not the participants appreciate splitting during a trip received con-
tradictory responses (Figure 7.4). Many participants stated that splitting was accept-
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Table 7.1: General travel preferences in groups.

Statement Mean SD

When traveling in a group, I think it is okay to split up for a while. 3.58 1.31

When traveling in a group, I want to avoid attractions that do not
interest me.

3.76 1.02

When traveling in a group, I want to visit the attractions that I
am most interested in.

4.38 0.70

When traveling in a group, I want to visit the favorite attractions
of every group member.

3.67 1.07

When traveling in a group, I want to visit attractions that satisfy
the majority of the group.

4.22 0.81

able, even when traveling with close friends. However, 25 % of the participants felt that
splitting should be avoided (response 2 or lower).

7.3.2 Setup

During the user study, we generated three trip recommendations for each of the six
recommendation strategies presented in Section 7.2. Consequently, the participants
received and rated 18 trips. The order of the strategies was randomly chosen for every
group to reduce the learning effect on the results. To reduce the number of independent
variables, the trips came with fixed conditions. Every recommendation strategy was
used to generate trips with three pre-defined start and destination pairs in the city
center of Munich, Germany, a touristic area that offers of a wide range of POIs. The
participants were living in Munich or its suburbs and were hence familiar with the city
and its attractions. All the trips had the same maximum duration (8 h). The weather
during each trip was set to sunny, and the group size was set to three, similar to previous
group recommendation research [78].

Every participant was equipped with an Android smartphone with the extended
TourRec application that enabled group recommendations. The participants entered
their travel preferences separately in their own devices. Again, travel preferences were
specified by rating POI categories on a scale ranging from 0 (not interested in this
category) to 5 (strongly interested in this category). In this study, only subcategories
that were available in the test area in Munich, Germany, were provided to the users.
Consequently, a user profile was composed of 42 subcategories (see Appendix B). The
connection between the smartphones to exchange travel preferences automatically and
display the recommended trip on all devices simultaneously was hard coded. One device
collected the user preferences of all smartphones and requested a recommendation using
the selected group recommendation strategy which was not revealed to the group mem-
bers. The recommended trip was eventually displayed on all smartphones on a map and
as a list with additional information, such as arrival times (Figure 7.5).
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Figure 7.4: Responses to the statement “When traveling in a group, I think it is okay to split
up for a while”.

After examining the recommendations, the participants were asked to rate five state-
ments that we adapted from the ResQue questionnaire on a 5-point Likert scale ranging
from 1 (strongly disagree) to 5 (strongly agree) (see Section 2.6.3):

(S1) The recommended trip matched my personal interests.

(S2) The attractions in the recommended trip are diverse.

(S3) The order of attractions in the trip is satisfactory.

(S4) The recommended trip is feasible for a walking tourist.

(S5) I would make this trip when traveling with my group.

In this study, we were interested in the individual satisfaction with the recommended
trips and therefore did not ask for actual group decisions.

7.3.3 Results

Table 7.2 shows the average responses for all recommendation strategies and whether
there is a significant difference between the strategies based on the Friedman tests that
we conducted.

The results show that there is a significant difference between the strategies with
regard to each of the five criteria. Split Group performed the best in three out of
five criteria, and it had a score similar to the Average strategy and the Average
without Misery strategy for S4 (feasible for walking tourists) and S5 (intention to
make the trip). Conover’s post-hoc tests [195] show that Split Group:
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(a) (b)

Figure 7.5: Extract from a recommendation generated by Split Group [194]. After visiting
an art museum, Bob and Carol visit another museum while Alice spends some time
in a garden before rejoining Bob and Carol at a plaza.

• matches the personal interests of the participants significantly more than the Most
Pleasure strategy (p < 0.001), AR (p < 0.001), and Connect Segments (p <
0.001),

• generates a significantly higher diversity of the trips than all the other strategies
(p < 0.001) except for the Average strategy.

• ensures a significantly better ordering of items in the trip than the Most Plea-
sure strategy (p = 0.004), AR (p = 0.025), and Connect Segments (p < 0.001),

• creates trips that are significantly more feasible for walking tourists than Connect
Segments (p = 0.023), and

• creates trips that the participants would much rather make when traveling with
their groups than the trips generated by the Most Pleasure strategy (p < 0.001)
and Connect Segments (p < 0.001).
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Table 7.2: Average responses for all scenarios on a 5-point Likert scale (Note: *p < 0.05;
**p < 0.01; ***p < 0.001. Highest value marked in bold.)

Q Avg AwMi MoPl Split AR CoSe Sig.

S1 3.74 3.73 3.48 3.88 3.56 3.52 ***

S2 3.71 3.44 3.46 3.85 3.52 3.49 ***

S3 3.64 3.60 3.51 3.72 3.56 3.39 ***

S4 3.98 4.03 3.96 3.99 4.02 3.84 **

S5 3.49 3.43 3.19 3.48 3.32 3.21 ***

Only in the Average strategy our tests did not reveal any significant difference from
Split Group in any of the five statements. The trips generated by the Average with-
out Misery strategy were similarly rated by the participants; however, the diversity
of these trips (S2) was significantly less than the diversity of the trips generated by
the Average strategy (p = 0.005) and Split Group (p < 0.001). The worst strate-
gies in our experiment were Most Pleasure and Connect Segments. Average
(p < 0.001), Split Group (p < 0.001), and Average without Misery (p = 0.003)
created trips that the users would much rather make (S5) than the trips generated by
the Most Pleasure strategy. Trips generated by the Connect Segments strategy
had the worst performance with regard to the order of POIs (S3). This was expected
because our first implementation of the Connect Segments strategy combined parts
of different trips without a post-hoc optimization of the order of the POIs in the new
trip.

We analyzed whether the willingness to split and the trip ratings generated by Split
Group depended on the group type. Our results indicated that there was no significant
difference between primary and secondary groups. Thus, we did not find an effect of
group type on the willingness to split during a trip. This was also confirmed by comments
received from many participants after the study; these participants explained that they
would split temporarily, even when traveling with a very close person, if this satisfies
everyone’s needs.

Finally, we compared the ratings of Split Group provided by people who were willing
to split during a trip with the ratings given by people who thought that splitting should
be avoided or is not an option at all; the result of the Wilcoxon rank sum test shows
that there is a greater possibility that the former group would make a trip generated by
Split Group rather than the latter (p = 0.007).

7.3.4 Discussion

Our user study revealed that many people want to visit the attractions that they are
most interested in when traveling in groups. Furthermore, many of the participants were
willing to split for some time during a daily trip, even when traveling with a primary
group, such as close friends and relatives. The option to split during a trip allows every
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user to visit their favorite POIs and consequently, the quality of the recommended trips
can be improved. However, 25 % of the participants wanted to avoid splitting, or they
completely rejected the idea. UIs in practical RSs should allow users to specify if they are
willing to split during a trip. For those who prefer to travel together, another strategy,
such as the Average strategy, could be used to generate recommendations of a similar
quality.

The Connect Segments strategy that we proposed is another way to ensure that
every group member can visit their preferred POIs. However, our user study revealed
that groups were less satisfied with trips that were generated using this strategy because
it led to a suboptimal order of POIs in a trip. To overcome this problem, we suggest
extending this algorithm by using a post-hoc optimization phase and evaluating the
extension in a subsequent study.

In this study, we set the group size to three to reduce the number of variables. Al-
though many people were open to the idea of splitting during a trip, certain participants
stated that they would not be willing to split into smaller groups because they did not
want to travel alone. Therefore, we believe that the Split Group algorithm would per-
form even better in large groups; this should be verified in future studies. A limitation
of our study was the integration of the Average strategy into Split Group. We did
not test combinations with other Social Choice strategies, which could have led to dif-
ferent results. Furthermore, our Split Group approach considers only single users that
are willing to leave their group during a trip. An alternative approach could identify
subgroups based on the users’ travel interests. In this case, all members of a subgroup
would stay together when leaving the main group.

Our algorithms did not consider POI categories when suggesting a group to split. In
a few cases, a group was supposed to split for lunch or for dinner. The feedback we
received from these groups was that splitting was not an option during such activities,
even when the group members had different food choices. In addition, the groups did
not prefer to split when the categories that the subgroups were supposed to visit were
similar, for example, a garden and a park. We suggest determining the categories that
would be optimal for splitting in future work. The findings can be used to optimize the
Split Group algorithm.

7.4 Summary

In this chapter, we described the problem of solving the TTDP for groups of users.
In our scenario, the goal is to recommend a tourist trip from a mutual starting point
to a mutual destination that considers the preferences of all group members. For this
purpose, we adapted AP and AR strategies to solve TTDP for groups and introduced
two novel strategies: Split Group and Connect Segments.

Social Choice strategies can be used to aggregate the preferences of different group
members. We implemented the Average, Average without Misery, and Most
Pleasure strategies as examples of AP. These strategies create a group profile which
is used in the context-aware, Dijkstra-based tourist trip algorithm. Split Group is an
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extension of the AP approach which replaces POIs from the group recommendation by
POIs from individual recommendations. AR strategies generate recommendations for
every group member individually before they are combined into one group recommen-
dation. Our proposed solution applies a Social Choice strategy on the POIs that are
part of at least one of the individual trips to aggregate recommendations. Our Con-
nect Segments approach follows the idea that during a trip, two POIs are based on
one user’s preferences before the next two POIs are taken from another group member’s
individual recommendation.

We compared all group recommendation strategies in a user study with 40 real groups.
Our study revealed that many participants preferred to visit the attractions that they are
most interested in or that satisfied a majority of the group members. Recommendations
made by Split Group best achieved this goal. It matched the personal interests of the
participants significantly more than most of the other strategies and ensured a higher
diversity of the trips. Furthermore, it ensured a significantly better ordering of items in
the trip than other strategies and many participants were willing to make trips proposed
by Split Group. Only in the Average strategy our tests did not reveal any significant
differences from Split Group. Connect Segments performed worse in our study,
especially with regard to the order of POIs in a trip. It combines parts of different trips
in one recommendation and therefore requires an additional post-hoc optimization of
the order of POIs in the generated trip.

The results of our study indicated the willingness to split during a trip does not depend
on the group type; many participants would split temporarily, even when traveling with
families or close friends. However, some participants wanted to avoid splitting, or they
completely rejected the idea. Practical GRSs should allow groups to specify whether or
not they are willing to split temporarily during a trip and under which circumstances.
For instance, some participants did not want to split when traveling in small groups or
when the POI categories that the subgroups were supposed to visit were similar.
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8 Group Interaction with Tourist Trip
Recommender Systems in Public Spaces

Recommendation algorithms that take into account the user’s preferences and context
are not the only requirement for successful RSs. In Chapter 6, we showed that a RS’s
platform and UIs have a high impact on the user experience. The same applies when a
group of users interacts with a tourist trip RS: On the one hand, group recommendation
strategies have to come up with recommendations that satisfy all group members. On the
other hand, a GRS’s UIs must support groups in finding the best recommendation [84].
The tourism domain poses a particular challenge for UIs in a GRS: Because tourists often
change their plans or look for new attractions while traveling, they need to interact with
the system when moving and in public spaces. Different configurations for receiving
a group recommendation in this scenario are possible: Group members can use their
mobile devices independently to specify their travel preferences and then leave preference
aggregation to the GRS. However, integrating a large, shared display, such as a public
display, into the RS promises a more open discussion about group members’ preferences
and thus higher satisfaction with the group recommendation.

We presented the TTDP for groups and recommendation strategies to solve it in
Chapter 7. In this chapter, we extend our findings from Chapter 6 by introducing three
platform-UI configurations for using a GRS in public spaces: a smartphone variant, a
public display application, and a DUI approach combining both devices. We conducted
a large user study on groups interacting with each of these prototypes. While most
previous works used synthetic groups to evaluate GRSs [11], we conducted our user
study with real groups, such as groups of friends or colleagues. This allowed us to ana-
lyze travel preferences of different group types, understand their behavior and decisions
when interacting with GRSs for tourist trips, and learn how they can be supported in
finding the best recommendation considering all group members’ preferences. Our con-
tribution is a better understanding of the needs of primary and secondary groups and
the challenges they face when interacting with GRSs in public spaces. Consequently,
the results of this study allow us to answer our fourth and fifth RQs: “How do different
group types agree on decisions when interacting with a GRS for tourist trips and how
fair are their decisions?” and “Which platform-UI configurations for receiving group
recommendations support groups the best when looking for a tourist trip with regard to
different UX criteria?”.

The content of this section has been published in [196] with some revisions.

131



8 Group Interaction with Tourist Trip Recommender Systems in Public Spaces

8.1 Developed Group Recommender System Configurations

We developed three configurations of a GRS for tourist trips based on the TourRec
prototypes that we developed for individuals (see Chapter 6). We extended the Tour-
Rec RS with a critiquing feature that allows users to improve the recommended trip
in an iterative manner even after openly discussing the first proposal. Critiquing can
be done both on the POI and trip levels. On the one hand, users can either “pin” or
reject single POIs. Pinning means that a POI has to be part of the recommendation in
the next iteration; rejecting means that the POI will be discarded. On the other hand,
users can critique the whole trip. Critiques that our prototypes offer are: recommend a
longer or shorter trip, spend more or less time at all POIs on average, or recommend a
different trip (consider pinned and rejected POIs but do not change the trip duration or
average durations of stay).

In the following, we introduce all of our configurations for group recommendations.

8.1.1 Smartphones Only

The first configuration uses multiple smartphones, one device for each group member.
This configuration has the advantage that all users can specify their preferences and
critique recommendations individually and privately hidden from other group members
to avoid social embarrassment and manipulation [80].

After all group members have entered travel preferences individually on their smart-
phones, a group recommendation can be requested. This process is adapted from mul-
tiplayer video games: Within the application, one person can create a new group that
others nearby can find and join (Figure 8.1a). By joining the group, the user’s prefer-
ences are automatically aggregated with the other group members’ preferences. In this
work, the connection between devices is hard-coded using a Node.js 8.9.3 server applica-
tion (see Section 6.4). We used the Average strategy to aggregate preferences in this
work. This Social Choice strategy performed well in our experiment in Section 7.3. Fur-
thermore, there is evidence that it is used by humans to make decisions and was already
applied in similar GRSs in tourism [78, 80]. The request with aggregated preferences is
sent to the backend, and the recommendation is then displayed on all devices.

Every group member can critique POIs independently. For this prototype, we chose a
veto approach: A reject from one user is enough to remove a POI. If a POI is pinned, but
not rejected by anyone, it will stay in the recommendation. Hence, this approach could
also be interpreted as a variant of the Average without Misery strategy. Figure 8.1b
shows an example in which one group member wants to keep a restaurant and a museum
but rejects two outdoor activities. After every group member submits feedback, a pop-up
window for trip-level critiquing is displayed on the group creator’s device. The updated
trip is again displayed on all devices.
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(a) (b)

Figure 8.1: UIs for (a) creating a new group on the smartphone and (b) viewing and critiquing
a recommendation on the smartphone [196].

8.1.2 Public Display

In the second configuration, to receive a recommendation, all group members share one
display. This means that the group has to agree verbally on group preferences and
that their individual preferences are not automatically aggregated. Therefore, the group
members must reveal their preferences to other group members and discuss them in
the group, but doing so might be uncomfortable for some. Furthermore, some group
members risk feeling left out during the preference elicitation when part of the group
dominates the interaction with the display. Another problem of discussing preferences in
a group are anchoring effects: Group members who first express their preferences have
a stronger influence on the decision made by the group than other group members [197].
Conversely, as explained in Section 2.4.3.2, knowing other group members’ preferences
can sometimes facilitate preference elicitation due to reduced effort in coming up with
one’s own preferences. In addition, group members can learn from each other when
openly talking about their preferences.

Like the smartphone variant, our public display application applies the Material De-
sign, but attempts to benefit from the larger display area wherever possible. Subcate-
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gories, as introduced in Section 5.6.2.1, can be shown below main categories and switched
using tabs. The recommendation list and map are displayed on one screen (Figure 8.2a).
POIs can be critiqued in the same manner as in the smartphone application. Again, the
group has to agree verbally on their feedback before entering it into the display. After
submitting feedback, a pop-up window asks the group to provide trip-level feedback
prior to a new recommendation.

(a) (b)

Figure 8.2: UIs for viewing and critiquing a recommendation (a) on the public display and (b)
in the DUI approach [196].

Our public display prototype is a web application developed with AngularJS 1.5.5
that runs on any web browser. The public display we used in this study is again a kiosk
system equipped with a 55-inch multi-touch screen in portrait orientation (Figure 6.5).

8.1.3 Distributed User Interface Approach

The third configuration we suggest, the DUI, is a combination of the previous proto-
types. Our DUI approach’s general idea is that group members can enter preferences
independently in smartphones, but send them to a public display, if available. In this
way, group members can specify their personal travel preferences before traveling, but
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generate and discuss recommendations on a shared display. This reduces the risk of
shoulder-surfing.

Every group member can send preferences to a nearby display by selecting correspond-
ing menu items on the mobile app and public display. Again, a hard-coded connection
was used for this study. The public display shows how many user preferences were sent
to the display and aggregates them automatically. Then, the group can request a new
trip using the public display. The recommendation view is distributed over both devices
(Figure 8.2b). The public display shows a large map with which users can interact.
The POI list with critiquing options remains on every user’s smartphone. Consequently,
critiquing can again be done individually. Feedback on the whole trip, a decision that
concerns the whole group, is given mutually on the public display. Therefore, a pop-up
window appears after all group members submit their individual feedback.

8.2 User Study

In this user study, we wanted to discover which of the three aforementioned GRS con-
figurations best supports which types of groups in finding the optimal recommendation:
a smartphone-only variant, a public display application, or a DUI approach. For this
purpose, we wanted to answer the following questions:

• How do different group types agree on group preferences?

• To what extent do group preferences respect each group member’s preferences?

• How do the presented GRS configurations perform according to different UX cri-
teria?

In order to answer these questions, we had to analyze how homogeneous different types
of groups are in their travel preferences (see Section 8.2.3.1). With the user study’s help,
we want to provide recommendations for the development of GRSs used by tourists in
public spaces.

8.2.1 Participants

The user study was conducted as a laboratory study and was composed of a usability
test and different questionnaires. It was conducted in conjunction with the user study
presented in Section 7.3. Therefore, the participants were the same 40 real groups of
three users (120 participants) in both user studies.

We asked the participants how frequently they interact with public and interactive
displays or information kiosks in public spaces, such as tourist areas, shopping malls,
and train stations (see Appendix C). The majority of the participants (55%) use such
displays less than once a month. 16.7% use them monthly, 15.8% never. However, a
small share uses public and interactive displays and information kiosks weekly (10%) or
daily (2.5%). Furthermore, we asked them how comfortable they feel in general when
using a large display in a public space. Most of the participants (62.5%) stated that
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they feel very comfortable (response 4 or higher on a 5-point Likert scale ranging from
1 to 5); however 21.7% feel rather uncomfortable (response 2 or lower) when using such
systems in public spaces.

8.2.2 Setup

During the usability test, each group interacted with all three prototypes, which were
tested in random order to avoid biased results due to learning effect. Before interacting
with a prototype, a moderator asked the group to imagine the following situation: ”It is
a beautiful day in Munich. Your group just arrived in the city center, and you have the
whole day left for sightseeing before you return to your hotel in the evening. However,
you do not know which attractions to visit on your trip.”. Then, the group was asked to
complete the following tasks on the current prototype in the order given:

1. All users specify travel preferences as individuals on smartphones or as a group on
the display.

2. One user creates a group and requests a group recommendation with a fixed start-
ing point and destination on the group creator’s smartphone or on the display.

3a. All users modify the recommendation (POI level) as desired on a smartphone or
as a group on the display.

3b. All users modify the recommendation (trip level) as desired on the group creator’s
smartphones or as a group on the display.

After each prototype, every participant was asked to complete a ResQue questionnaire
for the tested prototype. Table 8.5 shows the questions that we adapted to our scenario.
Additional questions we asked on participants’ general travel preferences and preferred
modes for different tasks are shown in Tables 8.4 and 8.6. During the entire user study,
we video recorded the groups for later behavioral analysis. Additionally, in unstructured
interviews, we asked the participants for their opinions on the GRS.

8.2.3 Results

In the following, we present our user study’s important findings.

8.2.3.1 Group Homogeneity

Again, users were able to rate 42 categories to specify their travel preferences (see Ap-
pendix B). The beautiful day scenario is likely why outdoor activities were highly rated,
while time-consuming indoor POIs, such as Circus, Theater, and Opera House, were
among the least popular categories. Since all participants tested every prototype, we
gathered every user’s individual travel preferences from the smartphones.

A user’s travel preferences are represented by a vector of length 42. We used the PCC
to determine the similarity of two user’s travel preferences. Figure 8.3 illustrates PCCs
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between all user pairs in each group (user-user PCC). Ideally, all pairs of group members
have strong correlation of travel preferences. Group 2 exemplifies a very homogenous
group. In other groups, there is no correlation between group members (group 28), or a
negative correlation between two group members, as in group 34.
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Figure 8.3: User-user correlations per group (adapted from [196]). Every dot illustrates the
PCC of a user-user pair in a group (three pairs per group). Vertical lines illustrate
the range in each group, dashed lines the effect size borders.

We used a group’s average user-user PCC to express the group’s homogeneity. A
Fisher’s z transformation is required before calculating an average PCC [198]. After
calculating all averages and back-transforming them to PCCs, we received the distribu-
tion presented in Figure 8.4 (“User-User”). Most groups had a weak positive average
correlation, but a local maximum of groups also had a strong positive average PCC.

Using this data, we can discover whether group homogeneity differs between group
types. The average PCCs for primary groups (r = 0.42) was higher than for secondary
groups (r = 0.3); however, a t-test on the Fisher’s z transformations of the PCCs
revealed that the difference was not significant (p = 0.157). Hence, we cannot conclude
that groups with close relationships are more homogeneous in their travel interests.
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Figure 8.4: Densities of average user-user PCCs and user-group PCCs (adapted from [196]).
Dashed lines illustrate the effect size borders.

8.2.3.2 Group Travel Preferences

Every group verbally agreed on their group preferences when using the public display
for preference elicitation. How they decided on group preferences was completely up to
participants. The comparison between the individual preferences and the group prefer-
ences allows us to analyze how different group types agree on decisions when interacting
with a GRS for tourist trips and determine the fairness of their decisions.

Concordance Between Group Members’ Individual Preferences and Group Prefer-
ences Figure 8.5 shows the PCC between a user’s individual preferences entered on
the smartphone and group preferences entered on the display for each user in each group
(user-group PCC). Every dot shows how much this user’s preferences complied with
group preferences. If a user’s individual preferences and the group preferences were ex-
actly the same, the user-group PCC would be 1 for this user. We calculated the average
user-group PCC per group to find out how well the group preferences reflected all group
members’ individual preferences. Figure 8.4 (“User-Group”) presents the distribution of
the groups’ user-group PCC.

Obviously, the average user-group PCC per group is always higher than the average
user-user PCC per group since group preferences are supposed to reflect a compromise
among all group members. There is also a strong linear correlation (r = 0.91) between
the average user-user PCC and the average user-group PCC. The average user-group
PCC is usually high when a group is homogenous.

A t-test on the Fisher’s z transformations revealed that the average user-group PCC for
primary groups (r = 0.62) was significantly higher than for secondary groups (r = 0.51)
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(p = 0.048). Hence, we can conclude that groups with close relationships can find better
compromises reflecting all group members’ travel preferences than can secondary groups,
even though they do not have more similar travel preferences (see Section 8.2.3.1). Sup-
port in finding optimal group preferences, e.g., by automatically applying Social Choice
strategies on the individuals’ preferences, is thus more critical when secondary groups
use GRSs.
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Figure 8.5: User-Group correlations per group (adapted from [196]). Every dot illustrates the
user-group PCC of a user (three users per group). Vertical lines illustrate the range
in each group, dashed lines the effect size borders.

Fairness Another metric for analyzing group preferences is fairness. Ideally, all group
members have high correlation with group preferences entered on the display, meaning
that their individual preferences are represented equally. Group 5 is one example for such
an ideal result (Figure 8.5). Possibly, however, preferences are dominated by one person,
e.g., in group 40, group preferences had strong correlation with one user’s individual
preferences, but no or only a weak correlation with other users’ preferences. Group 30
exemplifies two users dictating group preferences.

In our scenario, we suggest two definitions of fairness: a) a loose definition in which all
users have at least a weak positive correlation with group preferences (i.e., all members’
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PCCs are ≥ 0.1) or b) a strict definition in which all group members’ PCCs have the
same effect size. Table 8.1 shows distributions of groups according to these definitions.

Table 8.1: Ratio of fair to unfair group preferences according to both definitions of fairness.

Definition Fair Unfair

Loose definition 82.5% 17.5%

Strict definition 42.5% 57.5%

When applying the strict definition of fairness, the majority of groups did not have
travel preferences equally representing group members’ preferences. Instead, part of the
group dominated group preferences. Primary groups’ fairness was higher than that of
secondary groups (loose: 88% vs. 78%; strict: 59% vs. 30%). This is another indicator
that primary groups can find better compromises than secondary groups when discussing
preferences on a shared display. Hence, secondary groups should receive more support
from RSs in finding optimal group preferences. One solution to this problem is intelligent
UIs that notify the group in real-time when preferences are too biased by one or two
group members (see Section 8.2.4).

Furthermore, we investigated group preferences’ fairness when one person was clearly
leading preference elicitation, i.e., was talking most of the time and clicked the most
on the display. This was the case in 15 (of 40) groups, and these groups’ fairness was
higher than in groups without a clear leader (loose: 93% vs. 76%; strict: 47% vs 40%).
This shows that a person leading interaction with public displays can increase group
recommendations’ fairness by preventing multiple users from trying to optimize their
personal values (see Section 8.2.3.3).

Preference Aggregation Strategies Analysis of video records seemed to show that, to
come up with group preferences, most groups applied strategies similar to the Social
Choice strategies presented in Section 2.4.2.1. To reveal which strategy a group most
likely chose, we applied every strategy to the group members’ individual preferences
we gathered from smartphones to calculate “optimal” group preferences and calculated
correlation with preferences that the group entered on the public display. The strategy
with the highest PCC was the one the group most likely chose.

Table 8.2 shows how often a strategy was applied by both group types. For most
primary and secondary groups, preferences entered on the public display most resem-
bled to the Average strategy. The second most applied strategy was Dictatorship,
meaning that group preferences correlated most with a member’s individual preferences.
More secondary than primary groups applied this strategy, confirming the assumption
presented in Section 8.2.3.2 that agreeing on fair preferences is especially difficult for
secondary groups. However, this results does not necessarily indicate that one group
member had selfish reasons for dominating the preference elicitation. It is possible that
the dominant person tried to make the best decisions for the whole group (see Sec-
tion 8.2.3.3), thereby accidentally giving more weight to own preferences.
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Strategies in which categories were consistently rated by the most enthusiastic (Most
Pleasure) or most unsatisfied (Least Misery) person or in which group members
could have a veto (Without Misery) were barely applied. In practice, however, groups
often seemed to use combinations of these strategies. For example, a group could apply
the Average strategy, but allow vetoes for a small subset of categories.

Table 8.2: Most likely applied preference aggregation strategy.

Strategy Primary Secondary

Average 52.9% 52.2%

Dictator 35.3% 43.5%

Most Pleasure 5.9% 4.3%

Least Misery 5.9% 0%

Without Misery 0% 0%

8.2.3.3 Group Behavior

We observed groups interacting with the display to understand better how they came
up with group preferences.

Discussions Among Group Members We were interested in understanding whether
group members talk to each other when they have to complete a task. Most groups
did not discuss their decisions when an individual device was used for a task. For
instance, only 4 out of 40 groups discussed their travel preferences when specifying them
individually using smartphones. This is particularly critical when a task concerning the
whole group has to be completed, for instance, providing trip-level feedback using the
group creator’s smartphone, as explained in Section 8.1.1. In this case, fewer than 50% of
group creators asked other group members their opinion instead of deciding themselves.
When using a shared display to specify preferences or modify POIs or the entire trip,
groups had very vivid discussions.

User Interaction with the Display Table 8.3 summarizes how many people interacted
with the public display. In most cases, all group members entered preferences and
modified the trip. In three groups, only one person interacted with the display. These
groups’ average user-group PCC was higher than the PCC of groups in which multiple
members interacted with the display; however, this difference was not significant due to
the low number of observations. Nevertheless, this again raises the question of whether
group preferences can be elicited in a fairer manner when only one person enters all
users’ preferences instead of multiple users trying to maximize their personal benefit.

After comparing the 15 groups with a clear leader and the groups with no leader,
we concluded that groups with a leader had a higher average user-group PCC, but the
difference was not significant.
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Table 8.3: Users per group interacting with the display.

# Users Frequency ∅ User-Group PCC

1 3 0.71

2 8 0.54

3 29 0.55

General Preferences Further insights can be derived from the post-study questionnaire
(Table 8.4). Results of Mann-Whitney U tests show that primary groups felt significantly
more comfortable when sharing a public display and when revealing their preferences
to other group members. All types of groups much appreciated knowing other group
members’ preferences.

Table 8.4: General GRS preferences (Note: *p < 0.05; **p < 0.01; ***p < 0.001. Highest value
marked in bold.)

Question Primary Secondary Sig.

I felt comfortable when sharing a display to plan a trip
with my group

4.51 4.23 *

I felt comfortable when revealing my travel preferences
to the other group members

4.59 4.30 *

I appreciated knowing the preferences of the other
group members

4.49 4.36

8.2.3.4 User Experience

We conducted different tests to evaluate the UX of the three GRS configurations with
regard to relevant criteria from the ResQue questionnaire.

ResQue Questionnaire Results of Friedman tests and Conover post-hoc tests [195]
(Mann-Whitney U test for Q5 as preference elicitation in the DUI approach is also done
on the smartphone) on the ResQue questions (Table 8.5) show that specifying travel
preferences using multiple smartphones was perceived as easier than using a shared
display (Q5). However, the public display variant was considered to have the most
attractive layouts (Q2). Participants became familiar with the stand-alone variants of
the GRS faster than with the DUI approach (Q8).

When looking into different group types’ responses, we learned that secondary groups
believed that their personal interests were considered more when not sharing a display
(Q1). Reasons for this were that the primary groups could find better compromises for
group preferences when using the public display than secondary groups (see 8.2.3.2).
Another important finding is that satisfaction with the three prototypes (Q11) and the
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intention to use the recommendation (Q13) showed no difference. We conclude that all
configurations are similarly suitable for receiving group recommendations when traveling.

Task Times We measured how much time groups took to complete each task. On av-
erage, they needed 2 min 53 s to specify preferences on smartphones compared to 4 min
13 s to agree on travel preferences on the public display. This strongly significant differ-
ence was to be expected since preference aggregation in the smartphone configuration
is done automatically by the GRS, not verbally by group members. While requesting
a new recommendation from a smartphone takes the same amount of time as a public
display, modifying a recommendation on POI and trip levels is faster in the DUI ap-
proach (1 min 15 s) than on smartphones only (1 min 31 s) and the public display (2 min
16 s). We conclude that providing feedback on single items using multiple smartphones
means substantial time saving; however, tasks concerning the group as a whole, such as
feedback on the entire trip, can be distributed to a public display without loss of time.

Preferred Modes for Each Task (Specify Preferences, View Recommendation, Mod-
ify Recommendation) Table 8.6 shows that the majority of participants preferred us-
ing smartphones to enter travel preferences and modify the recommendation. Particu-
larly, secondary groups preferred to use individual devices for these data-sensitive tasks.
Viewing the trip was most popular in the DUI approach that distributes the UI over
two devices. In total, a small majority chose the DUI recommender as their favorite
system; however, secondary groups were rather undecided, with many preferring the
smartphone-only variant. This confirms our assumption that primary groups are more
willing to share a display for the GRS interaction.

8.2.3.5 Qualitative Feedback

At the end of the user study, we had short discussions with each group in unstructured
interviews. We asked questions such as ”How did you feel when discussing group prefer-
ences in front of the display?” to start discussions. Further questions resulted from the
first answers.

In general, most groups liked the idea of TourRec and wanted to use it when traveling
the next time. They emphasized that finding the most interesting attractions is often
complex, even when traveling with friends with different travel preferences.

The majority of participants found the DUI prototype the most interesting and fun
to use; however, many participants stated that they preferred the smartphone variant
when traveling because they are used to mobile apps. Critical for integrating public
displays was a) that they are optional, i.e., they can add value to UX when available,
but all functionality is available without an additional display, and b) they have a “send
back to smartphone” feature allowing transfer of selected content, such as recommended
POIs, to users’ devices for consumption at any time.

Using a public display for the whole recommendation process was the least appreciated
approach, especially among secondary groups. However, many users can imagine using it
as a backup solution when they have no smartphones with internet access while traveling.
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Table 8.5: ResQue questionnaire comparing the UX of the smartphone-only (SO), public display
(PD) and DUI approaches (Note: *p < 0.05; **p < 0.01; ***p < 0.001. Highest value
marked in bold.)

Question SO PD DUI Sig.

1 The final trip recommended to us matched my
interests

3.75 3.75 3.67

2 The layouts of this recommender system inter-
faces are attractive

3.89 4.17 4.02 *

3 The layouts of the interfaces are adequate for a
tourist trip recommender system

3.98 4.15 4.02

4 I found it easy to find a trip for our group using
this recommender system

4.11 4.07 4.10

5 I found it easy to specify my travel preferences
in this recommender system

4.31 4.02 - *

6 I found it easy to view the recommended trip in
this recommender system

4.27 4.24 4.29

7 I found it easy to modify the recommended trip
in this recommender system

3.93 3.85 3.78

8 I became familiar with this recommender system
very quickly

4.46 4.42 4.26 *

9 This recommender system helped me to find the
ideal trip

3.51 3.50 3.53

10 I feel in control of telling this recommender sys-
tem what trip I want

3.68 3.69 3.64

11 Overall, I am satisfied with this recommender
system

3.75 3.79 3.85

12 I will use this recommender to find a trip when
traveling in a group

3.91 3.83 3.87

13 As a tourist, I would make the recommended
trip with my group

3.89 3.92 3.85
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Table 8.6: Most preferred prototype for each task (Note: comparison between smartphone-only
(SO), public display (PD) and DUI approach. Highest value marked in bold.)

Primary (n=51) Secondary (n=69)

Task SO PD DUI SO PD DUI

Specify Preferences 66.7% 33.3% - 75.4% 21.7% -

View Recommendation 27.5% 19.6% 52.9% 34.8% 15.9% 46.4%

Modify Recommendation 45.1% 19.6% 35.3% 55.1% 17.4% 27.5%

Favorite RS 31.4% 23.5% 45.1% 40.6% 17.4% 39.1%

Some participants also had the feeling that mandatory discussions for agreeing on group
preferences made them more confident about their decisions. Still, privacy was a main
concern for many participants. Some who liked the public display variant during the
user study were not sure if they would use it in crowded areas when people can possibly
shoulder-surf. They asked for mechanisms to hide sensitive data. Furthermore, a few
admitted they are often too shy to use an unknown system in front of strangers.

8.2.4 Discussion

The results of our user study show that the general idea of a GRS for tourist trips was
appreciated by all group types. Groups with close relationships were more satisfied with
recommended trips when sharing a display throughout the recommendation process than
groups with looser connections because primary groups found fairer compromises when
specifying travel preferences as a group and also felt more comfortable when sharing
a display and revealing their preferences to other group members. Recommendations
to secondary groups were more often unfair and biased towards preferences of part of
the group. Therefore, these groups preferred to use separate devices to specify their
preferences individually and to leave the preference aggregation to the GRS.

Integration of public displays in GRSs motivated groups to discuss travel-related de-
cisions. However, group tasks on a public display can be time-consuming, and some
people felt uncomfortable entering private data on a public device. This is why we sug-
gested a DUI configuration of our GRS. Groups can specify their preferences on their
personal devices even before traveling and switch to public displays, when necessary.
Our results showed all group types appreciated this idea. DUIs were especially appre-
ciated for consuming complex recommendation items, such as tourist trips, as a group
because of the possibility of interacting with the content on a larger display. Distributed
GRSs should give the user control over which content is distributed and also allow group
members to send selected content back to their smartphones, so they can consume the
recommendation even after leaving the display.

Shoulder-surfing and social embarrassment prevent people from using public displays.
Our DUI configuration allows keeping sensitive data on a smartphone, but further effort
is necessary to protect content on public displays. First approaches, for instance blacking
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out parts of the display or mirroring a passerby’s position, have been developed [103],
but future work should evaluate how to integrate them into GRSs.

When groups have to agree on travel preferences on a shared display, the outcome
can be unfair, especially when group members do not have close relationships. We
suggest implementation of intelligent UIs that promote fairness in group decisions. For
example, interfaces can invite group members who have less interaction time or whose
preferences are underrepresented to interact more with the display. For this purpose,
the display might need to know group members’ individual preferences in advance. This
can be achieved by automatically sending preferences on users’ devices to the display,
as suggested in our DUI approach.

Another suggestion resulting from our user study is the improvement of the GRS’s
public display application in a user-centered approach, so it will appeal more passersby
and tourists looking for recommendations.

A limitation of our study was the fixed group size of three users. The behavior of
group members can differ in larger groups and hence, other platform-UI configurations
could be required to ensure fair recommendations and a positive UX for the group.
Furthermore, our user study was conducted as a laboratory study. We suggest repeating
our experiment with different group sizes and in a public area crowded with real passersby
in future work.

8.3 Summary

In this chapter, we presented GRS configurations for receiving tourist trip recommenda-
tions while already traveling: a smartphone-based GRS, a public display variant, and a
DUI approach.

A smartphone-based GRS uses multiple smartphones, one device for each group mem-
ber, to request a recommendation. For this purpose, one user creates a new group that
others can join to connect the smartphones. After all group members have specified
their travel preferences individually, the preferences are aggregated and a recommenda-
tion can be made. Every group member receives the recommendation on the smartphone
and can critique POIs independently. Furthermore, a pop-up window for trip-level cri-
tiquing is displayed on the group creator’s device. The advantage of this approach is
that it reduces social embarrassment and manipulation.

In the public display configuration, all group members share the same display. There-
fore, the group members have to reveal their personal preferences to the group to agree
verbally on group preferences. POIs and the whole trip can be critiqued in the same man-
ner as in the smartphone application. Sharing a public display can facilitate preference
elicitation due to reduced effort in coming up with one’s own preferences. Furthermore,
group members can learn from each other when openly talking about travel preferences.
However, revealing preferences might be uncomfortable for some. Another disadvantage
of this approach are anchoring effects.

The DUI approach promises to overcome these limitations. Group members specify
their personal travel preferences individually on their smartphones, but generate and
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discuss recommendations on a shared display. Critiquing POIs is done individually on
the smartphones while trip-level feedback is done mutually on the public display.

We conducted a user study with 40 real groups to evaluate which configuration per-
formed the best according to various UX criteria and recommendation fairness. Our
analysis indicated that primary groups are not necessarily more homogenous in their
travel preferences than secondary groups. However, they are able to come up with fairer
travel preferences that reflect all group members’ travel preferences when sharing a mu-
tual display. When applying a strict definition of fairness, the majority of groups came
up with unfair group preferences. More primary groups came up with fair preferences
than secondary groups. Fairness was also higher when only one person was leading
preference elicitation on the public display. Most groups seemed to apply the Aver-
age strategy to come up with group preferences. Group preferences resembled more to
the Dictatorship strategy for more secondary than primary groups, confirming that
agreeing on fair preferences is more challenging for secondary groups.

When observing the group behavior during the interaction with the GRS configu-
rations, we learned that most groups did not discuss decisions when using individual
devices for a task. This is especially critical when decisions concern the whole group.
When using a public display, in most cases, all group members interacted with the dis-
play. Furthermore, our user study showed that primary groups felt more comfortable
sharing a display and revealing their travel preferences to group members than secondary
groups.

The evaluation of the UX of each of the three configurations revealed that it is easier
to become familiar with stand-alone variants of the GRS than with the DUI approach
and specifying travel preferences is perceived easier on a smartphone than a public
display. The public display variant was considered to have the most attractive layouts
but secondary groups believed that their personal interests were considered more when
using multiple smartphones instead of sharing a display. Specifying travel preferences
and providing feedback was significantly faster on the smartphone prototypes than on
the public display. Tasks concerning the group as a whole, however, can be distributed
to a public display without loss of time. The majority of participants preferred using
smartphones to enter travel preferences and modify the recommendation. Viewing the
trip was most popular in the DUI approach. The majority of primary groups chose the
DUI recommender as their favorite configuration while many secondary groups preferred
the smartphone-only variant.

Unstructured interviews at the end of the user study revealed that most groups liked
the idea of a tourist trip RS. Many participants liked interacting with a public display
but emphasized that the integration should be optional. Furthermore, they want to be
able to send back content from the display to the smartphones. The interviews also
confirmed that public display applications have to increase privacy and avoid social
embarrassment to become more attractive when used in public spaces. First approaches
to overcome shoulder-surfing have already been developed but have to be adapted to
the GRS scenario.
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In this chapter, we sum up the findings of our work, discuss them, and suggest future
work.

9.1 Thesis Summary

In this thesis, we showed how to solve the TTDP for individuals and groups of users
from a user-centered perspective.

We summarized relevant fundamentals and related work that form the basis of this
thesis in Chapter 2.

In Chapter 3, we presented route planning problems that serve as basic models for the
TTDP. Furthermore, we identified open challenges in TTDP research that motivated
our own work: context-aware tourist trips, evaluation from a user-centered perspective,
and recommendations to groups.

In Chapter 4, we introduced AnyRec, a domain-independent framework supporting
the development of practical RSs and the evaluation of recommendation algorithms and
UIs from a user-centered perspective. It is a multi-tier architecture that is partitioned
into three tiers: presentation tier, application logic tier, and data tier. This type of
architecture allows AnyRec to provide a RS’s most common components which makes
it easier for developers to implement and evaluate novel user clients, recommendation
algorithms, and data sources. We demonstrated AnyRec’s capabilities by developing
TourRec, a tourist trip RS for individuals and groups. It is a fully working application
that is publicly available for download. The TourRec application has been used to
evaluate various recommendation algorithms and user clients that we developed within
the scope of this thesis, thereby solving the TTDP for individuals and groups from a
user-centered perspective. Consequently, the presented architecture and the TourRec
application served as a basis for answering the following five RQs of this thesis.

RQ 1: How can existing TTDP algorithms be extended to increase the satisfaction
of individuals with the recommended trips? As shown in Chapter 3, many algorithms
and heuristics have been developed to solve the OP and its variants for individuals.
However, the majority of these approaches tackles the problem of finding a tourist trip
from a pure mathematical point of view and does not take into account personal user
preferences or the context of the recommendation.

In Chapter 5, we introduced several extensions that allow a more realistic modeling
of the TTDP. We extended an existing tourist trip algorithm that is based on Dijkstra’s
algorithm to enable context-aware recommendations. Furthermore, we showed which
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route attractiveness attribute have an impact on a user’s choice of walking route and
how these attributes can be integrated into a tourist trip RS. We evaluated the exten-
sions in user studies and showed that they can increase the user satisfaction with the
recommendations. Furthermore, we presented ideas to improve these extensions, such
as the concept of item dependencies, and implemented these ideas. The feedback that
we gathered from an online evaluation with TourRec indicates that these ideas can
further improve the quality of the recommended trips.

RQ 2: Which platforms and UIs support tourists the best in solving the TTDP in
realistic scenarios with regard to different usability and UX criteria? Different types
of platform-UI configurations are suitable for tourists who are looking for tourist trip
recommendations. In Chapter 6, we presented a web application, a mobile application,
a public display application, and a DUI approach for the tourist trip RS TourRec. We
evaluated all prototypes in usability tests and conducted a user study to compare the UX
of all applications that can be used while traveling: the mobile application, the public
display variant, and the DUI approach. The results showed that all of our prototypes
were perceived as very attractive. However, for most participants it was easier to get
familiar with the stand-alone smartphone variant than the DUI approach. In addition,
using a public display raises privacy issues triggered by shoulder-surfing, for example.
The DUI approach can be a promising solution to this problem because it allows users to
keep sensitive data on the smartphone. Moreover, 25% of the participants emphasized
that a public display could be the ideal choice when used by groups instead of individuals.
Nevertheless, the majority of the participants felt more comfortable using a smartphone
than a public display or the DUI approach when using a tourist trip RS individually in
public spaces.

RQ 3: Which group recommendation strategies provide the highest user satisfaction
when solving the TTDP for groups? While recommendations for individuals consider
only the preferences of one user, GRSs have to generate recommendations that satisfy a
group of users. Two types of group recommendation techniques have been presented in
related work for this purpose: On the one hand, the user profiles of all group members
can be aggregated using a Social Choice strategy. Then, the aggregated user preferences
are used to request a recommendation (AP). On the other hand, a recommendation
can be made for every user individually before the recommendations are combined into
one group recommendation (AR). Both techniques have been used in related work to
recommend travel-related items, such as restaurants.

We adapted existing AP and AR strategies to solve the TTDP for groups in Chap-
ter 7. Furthermore, we introduced two novel approaches, including a strategy called
Split Group that extends the idea of AP, but allows groups to split during a trip.
All of our approaches integrated the context-aware tourist trip algorithm for individuals
that we introduced in Chapter 5. We compared all group recommendation strategies
in a user study with 40 real groups. Results showed that the Average Social Choice
strategy and Split Group work best for solving the TTDP for groups. Both strategies
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matched the personal interests of the participants significantly more than most of the
other strategies and many participants were willing to make the generated trips. We
received feedback that Split Group could perform even better in larger groups. How-
ever, 25 % of our participants felt that splitting should be avoided. In this case, users
should be able to specify whether or not they are willing to split during a trip and under
which circumstances.

RQ 4: How do different group types agree on decisions when interacting with a GRS
for tourist trips and how fair are their decisions? In Chapter 8, we presented the
results of a user study that we conducted with 40 real groups to observe different group
types interacting with GRSs. For this purpose, we let the group members specify their
travel preferences individually using smartphones and as a team using a public display.

The user study allowed us to examine how different group types agree on group prefer-
ences and to what extent these group preferences respect each group member’s individual
preferences. Our observations revealed that groups with close relationships are not nec-
essarily more homogeneous in their travel interests than groups characterized by rather
loose relationships. However, we found evidence that primary groups can find better
compromises reflecting all group members’ travel preferences when sharing a public dis-
play than can secondary groups. Specifying travel preferences as a group often leads
to unfair results in which only a part of the group dominates group preferences. Our
results showed that this is more likely when secondary groups are traveling together.
For this purpose, UIs should be designed in a way that they promote fairness in group
decisions. For most primary and secondary groups, the strategy to come up with group
preferences most resembled to the Average and Dictatorship strategies. Our user
study also revealed that in most cases, all group members interacted with the shared
display. However, in 15 out of 40 groups, one person clearly led the preference elicitation.
Fairer results are possible when only one person interacts with a shared display instead
of multiple users trying to maximize their personal benefit.

RQ 5: Which platform-UI configurations for receiving group recommendations sup-
port groups the best when looking for a tourist trip with regard to different UX
criteria? The results of Chapter 6 indicated that the integration of public displays
could become more attractive when a group of users attempts to agree on a tourist
trip. For this purpose, we extended the TourRec prototypes to enable group rec-
ommendations. We presented the three resulting GRS configurations in Chapter 8: a
smartphone-only, a public display, and a DUI variant. As part of the large user study
that we conducted with 40 real groups, we evaluated all of these GRS configurations.
The participants were equally satisfied with all configurations and the intention to use
the recommendations generated by any of the three configurations showed no signifi-
cant difference. Many participants called the DUI prototype the most interesting and
fun to use; however, the participants found it easier to specify travel preferences using
smartphones only. The public display variant was considered to have the most attractive
layouts and participants became familiar with the smartphone-only and public display
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variants faster than with the DUI approach. The majority of primary groups called the
DUI approach their favorite configuration while many secondary groups preferred the
smartphone-only variant.

9.2 Limitations

The methodology that we applied to answer our RQs followed the design-science process
(see Section 1.3). It was characterized by viable artifacts that we evaluated in user
studies. In the following, we summarize important limitations that should be noted.
Limitations specific to single user studies are described in the respective sections.

All user studies in this thesis were conducted as laboratory studies, with the exception
of the online evaluation in Section 5.6. The results of these studies could differ when
conducted as field experiments. For instance, users could feel more stressed and be more
worried about shoulder-surfing when interacting with public displays in crowded areas
with many passersby. Consequently, interaction times could be shorter than presented
in Section 6.5.2, and the public display approach could provide a worse UX than the
stand-alone smartphone variant and the DUI approach. However, using smartphones
while walking in crowded areas is difficult. We did not evaluate the consequences of
this in our experiments. Furthermore, our participants rated recommendations without
visiting the recommended POIs, which was another disadvantage of our laboratory stud-
ies. Collecting implicit feedback, such as how long users stay at recommended POIs, is
more accurate than only asking participants if they could imagine visiting the POIs. We
suggest repeating our experiments in public areas with real tourists who are traveling
and looking for recommendations.

Another limitation of our work was the limitation to three members per group in our
group recommendation studies in Chapters 7 and 8. Couples, for instance, could feel
more comfortable with sharing a display and revealing preferences. In our experiment in
Section 8.2, three users could easily stand in front of the kiosk system and interact with
it simultaneously. Larger groups, however, cannot interact with such a device at the
same time. This increases the probability of excluding some group members completely
from the decision-making. On the other hand, larger groups could be more willing to
split during a trip if no group member has to travel alone. For this purpose, subgroups
with similar interests can be identified before a recommendation is made. We suggest
verifying these assumptions in experiments with different group sizes.

The participants in our studies were not fully representative. For instance, no par-
ticipant in our group recommendation studies was younger than 18 years or older than
34 years. The majority of the participants were students or holding a university degree.
Hence, our studies miss feedback from people with different backgrounds. For instance, a
family traveling with children or elderly could prefer different recommendation strategies
that give more weight to the preferences of these group members.

The tourist trip algorithms that we developed in this thesis and used in our experi-
ments are based on the Dijkstra-based algorithm that we presented in Section 5.2. We
explained how to integrate our proposed extensions into other types of algorithms, such
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as GRASP, in Section 5.5.4. Our experiments should be repeated using GRASP and
other algorithms, such as algorithms that use photos and LBSNs as input (see Sec-
tion 2.3.3), and the results compared to our findings.

9.3 Discussion and Future Work

RSs are ubiquitous today. They are an important feature in many online services that
allows users to easily identify products, services, or information that best satisfy their
needs. It is not surprising that tourism became one very popular domain for RSs. When
integrated in tourism applications, they help users to avoid browsing large amounts of
travel-related data. Moreover, they can facilitate all steps of travel planning: First of all,
RSs identify travel destinations, activities, and POIs that users might miss otherwise,
especially when relying on printed media. Then, state-of-the-art tourism applications
combine travel items to coherent travel plans and tourist trips. Finally, they support
travelers with updated recommendations even when already on the move. It should be
stressed that RSs in tourism are not only attractive for tourists. Travel agencies, tour
operators, and public authorities can use them to better advertise their offers by directly
approaching their target groups.

The tourist trip scenario, as presented in this thesis, is a complex example of a tourism
RS. On the one hand, a set of attractive POIs has to be identified. On the other hand, a
routing algorithm has to find a route that consists of the most attractive POIs without
violating constraints, such as the time available for the trip. Until today, most works have
solved the TTDP from a pure mathematical perspective: POIs are vertices in a graph
with a fixed profit. A route has to be found that maximizes the sum of the profits without
violating predefined constraints. However, such a mathematical approach provides only
little benefit in practical applications. The context of a recommendation and personal
travel preferences have a large impact on the user satisfaction with recommended tourist
trips. A user could be interested in completely different POIs when traveling on a rainy
instead of sunny day. Furthermore, tourists often travel in groups which complicates the
search for a good tourist trip recommendation, especially when traveling in heterogenous
groups or groups characterized by loose relationships.

There is a consensus today that a good recommendation is not only defined by an
accurate user rating prediction. Recommendations should also be diverse, serendipitous,
and trustworthy, and a good RS should be a pleasure to use. Additional requirements
arise when traveling in groups. For instance, recommendations should be fair and cover
the interests of all group members. Consequently, in order to determine the real value
of RSs in practical applications, they should not only be evaluated in offline tests, but
also from a user-centered perspective with real users and groups.

We evaluated our solutions for solving the TTDP for individuals and groups in different
user studies and an online evaluation. Our results confirmed that taking into account the
user perspective increases satisfaction with tourist trip recommendations. Integrating
contextual factors and route attractiveness attributes make tourist trip recommendations
more attractive for travelers. The choice of UIs has an impact on how easily users can get
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familiar with RSs and if they are willing to use them in public spaces. Our user studies
revealed additional challenges that developers of practical tourist trip applications have
to meet. For instance, social embarrassment and privacy concerns have been identified
as main concerns of public display users in published literature [100, 102]; our studies
confirmed that users can feel uncomfortable when interacting with large displays in
crowded areas and in front of strangers. Furthermore, secondary groups felt significantly
less comfortable when sharing a public display and when revealing their preferences to
other group members than primary groups. We also showed that many groups can
benefit from splitting temporarily during a trip, but in some situations, splitting could
become less appropriate. This is why GRSs that implement our suggested Split Group
approach have to know if and under which circumstances a group is willing to split. Other
solutions could cluster group members into subgroups based on mutual interests before
splitting a group. Furthermore, group decisions tend to be often unfair, especially when
the group members do not know each other very well. Consequently, GRSs have to
promote fairness in group decisions to satisfy all group members.

Solutions to these problems have to be found in future work to improve tourist trip
recommendations for individuals and groups. Furthermore, we identified four additional
research areas that were only considered marginally in this thesis but are important for
the development of practical tourist trip RSs. In the following, we briefly describe of
each these four research areas. We recommend that they are investigated in future work
and use the findings of this thesis as a basis.

Explanations Many RSs suggest items without describing how the recommendations
were generated and why they meet the user’s requirements. This lack of transparency
can diminish the user’s trust in a recommendation and consequently lead to a lower sat-
isfaction with the RS. RSs should therefore explain their recommendations to counteract
these problems. Explanations do not only aim at increasing the user’s confidence in the
recommendations and satisfaction with the RS by providing transparency. Tintarev and
Masthoff [199] identified seven goals of explanations in RSs:

• Transparency : Explain how the system works

• Scrutability : Allow users to tell the system it is wrong

• Trust : Increase users’ confidence in the system

• Effectiveness: Help users make good decisions

• Persuasiveness: Convince users to try or buy

• Efficiency : Help users make decisions faster

• Satisfaction: Increase the ease of usability or enjoyment

Explanations in tourist trip RSs can be provided on POI or trip level. Explanations on
POI level can be used to describe why a certain POI appears in the recommended trip.
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For example “This museum is recommended to you because you liked impressionist art in
the past”. This is, furthermore, an example of a content-based style explanation [199].
It is based on features that occurred in previously rated items. In this case, users
liked museums with the feature museum type: impressionism in the past. Explanations
on trip level describe the recommended sequence as a whole. For example “This trip
contains many outdoors activity because of warm temperature and sunny weather”. This
explanation also uses contextual factors (temperature and weather) that are considered
by the RS to describe the recommendation. In a practical tourist trip application, both
explanation types can be combined. For instance, an explanation can explain the overall
purpose of the recommended trip (e.g., “The recommendation is a cultural trip because
you like to explore art in your holidays”) and, in addition, explain selected POIs to make
individual decisions more transparent (e.g., “This restaurant is recommended for lunch
because it is close to the subsequent museum”).

Providing good explanations becomes more challenging in GRSs. Some people may
feel uncomfortable when an explanation reveals that they are the reason why a certain
POI was recommended or not. Therefore, explanations should “balance privacy with
transparency and scrutability” [11]. In our scenario, explanations could be used to make
the selected group recommendation strategy more transparent but they should avoid to
expose single group members. For instance, the GRS Intrigue can tailor explanations
to subgroups, such as children, instead of individuals (see Section 2.4.3.2). Explanations
can not only help us to achieve the seven aforementioned goals in GRSs, but also make
group recommendations perceived as fairer by increasing the group members’ awareness
of their fellow travelers’ needs.

Round Trips The formulation of the TTDP that we solved in this thesis required
different starting points and destinations. The idea is that a user or group has a starting
point in mind (e.g., a hotel) and wants to arrive at a different destination at the end of the
trip, such as a restaurant for dinner. However, in practice, travelers might be interested
in round trips, that is, the trip ends at the starting point. This is particularly interesting
for multi-day trips during which tourists want to receive a trip recommendation starting
and ending at their hotel every day.

Most of the published research that we presented in this work solved the TTDP with
different starting points and destinations. Only few works researched round trips. dai-
lyTRIP [58] solves the TOPTW by recommending multiple tours, each starting and
ending at the same location. The published works on round trips lack many of the ex-
tensions presented in this thesis, such as context-awareness and group recommendations.

Many of our findings can be used in the round trip scenario. However, the Dijkstra-
based algorithm introduced in Section 5.2 has to be adapted to enable round trips. The
current implementation would return recommendations without any POIs when using
the same starting point and destination as it would minimize the distance of the trip to
0. Our suggested extensions for context-aware recommendations and the integration of
route attractiveness attributes can be integrated into round trip algorithms. A round
trip algorithm solving the TTDP should be implemented in practical applications and
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evaluated in user studies with real users. For this purpose, our AnyRec framework can
be used. It allows adding the new algorithm to an existing RS without having to change
other components of the RS. A round trip algorithm can also be used as part of our
proposed group recommendation strategies and integrated into our GRS configurations.

Integration of Different Modes of Transportation Most of the existing approaches
to solving different variants of the TTDP assume fixed walking times between POIs.
In our work, we generated tourist trips for walking tourists only. In practice, it might
be appreciated to integrate different modes of transportation to reduce the time spent
between two POIs. In the tourist trip scenario, using public transport seems to be an
obvious solution. For example, tourists in Paris can take the train to visit the Palace of
Versailles in the morning, and then return to Paris to continue sightseeing.

The TDOP is a variant of the OP that can be used to model different modes of
transportation in a tourist trip recommendation (see Section 3.1.4). First approaches
to solving the TDOP and similar variants have been developed and tested with test
instances [152]. Future work could integrate public transport into our context-aware
algorithm and also consider the attractiveness of routes when choosing the preferred
mode of transportation. Furthermore, the choice should depend on the user’s personal
preferences and incorporate knowledge of others. For instance, by using CF, locals can
recommend less crowded routes during peak times. In a previous project, we developed
a hybrid RS for multi-modal route planning that combined CF with knowledge-based
recommendations [200]. We showed that such a RS can outperform state-of-the-art
route planner software in a user study. Multi-modal route recommendations could be
integrated into tourist trip RSs, such as TourRec, to facilitate travel planning for
tourists.

Privacy in Tourist Trip Recommender Systems RSs rely on personalized data to come
up with suitable recommendations, which raises privacy questions. User may not feel
comfortable with sharing personal information, such as the locations they want to visit
while traveling. If they agree on sharing such data, they expect them to be protected
against unauthorized access.

When solving the TTDP for individuals and groups, privacy questions can arise at
different stages of the recommendation process:

• sharing personalized data with the recommendation service,

• shoulder-surfing when using public displays, and

• revealing personal preferences to others when using GRSs.

Future work should research solutions to increase the privacy at each of these stages
to further increase the user acceptance of tourist trip RSs. We already implemented
first approaches within the scope of this thesis. For instance, the TourRec application
does not create a user profile on the server and does not store any personalized data
in the data tier. Users and their requests are anonymized by assigning an ID to a new
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user. If a user deletes and re-installs the TourRec Android app, a new ID is created
and the RS cannot make a connection to previous user IDs. Some of the participants of
our user studies stated that they would feel uncomfortable when interacting with large
displays in public displays. Furthermore, some people did not like using public displays
in groups, especially when the groups are characterized by rather loose relationships.
Our approaches to overcoming this problem included the integration of smartphones
into the recommendation process. For instance, groups can use private devices to spec-
ify preferences and view the mutual recommendation on the large screen, if necessary.
This increases privacy, however, our results showed that further effort is necessary to
increase the acceptance of public displays. First approaches to improving privacy of pub-
lic displays have been developed, for instance, blacking out parts of the visible content.
Nevertheless, these ideas have to be adapted to GRSs and evaluated in user studies.
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A Excerpts from own Publications

The results of this thesis project have been published in peer-reviewed journals, confer-
ence and workshop papers, and book chapters. This thesis contains excerpts from our
own publications which we summarize in the following.

Chapter 2 Parts of the overview in Section 2.3 have been published in [41, 42]. The
literature research was done by Daniel Andreas Herzog.

Chapter 3 Parts of the overview in Section 3.1 have been published in [41, 42]. The
literature research was done by Daniel Andreas Herzog.

Chapter 4 A brief description of the architecture presented in Section 4.2 has been
published in [173]. The initial idea of the architecture has been proposed by Christopher
Laß within the scope of his bachelor thesis and extended by all authors since then.
The implementation of the AnyRec framework was done by Christopher Laß within
the scope of his student assistant work at the Chair of Connected Mobility and under
supervision of Daniel Andreas Herzog. The concept was derived in several iterations and
discussions between Daniel Andreas Herzog and Christopher Laß.

Chapter 5 The description of the Dijkstra-based tourist trip algorithm and the results
from the user study evaluating the algorithm have been published in [41], which is an
extended and updated version of a previously published conference paper [176].

The content of Section 5.3 has been published in [178] with some revisions. The
implementation of the context-aware algorithm and the evaluation in a user study was
done by Christopher Laß within the scope of his guided research project and under
supervision of Daniel Andreas Herzog. The concept was derived in several iterations
and discussions between Daniel Andreas Herzog and Christopher Laß.

The content of Section 5.4 has been published in [179] with some revisions. The
implementation of the algorithm and the evaluation in a user study was done by Sherjeel
Sikander within the scope of his master thesis and under supervision of Daniel Andreas
Herzog and two researchers from the Chair of Traffic Engineering and Control. The
concept was derived in several iterations and discussions between all supervisors and
Sherjeel Sikander.

Chapter 6 The content of Section 6.1 has been published in [178] with some revisions.
The implementation of the web application and the evaluation in a user study was done
by Christopher Laß within the scope of his guided research project and under supervision
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of Daniel Andreas Herzog. The concept was derived in several iterations and discussions
between Daniel Andreas Herzog and Christopher Laß.

The content of Section 6.2 has been published in [173, 191] with some revisions. The
implementation of the initial Android application and the evaluation in a user study was
done by Christopher Laß within the scope of his bachelor thesis. The development of
the final Android application, as presented in Section 6.2, was done by Daniel Andreas
Herzog.

The content of Sections 6.3, 6.4, and 6.5 has been published in [192] with some re-
visions. The implementation of the public display application and the DUI approach
and the evaluation in a user study was done by Nikolaos Promponas-Kefalas within the
scope of his master thesis and under supervision of Daniel Andreas Herzog. The concept
was derived in several iterations and discussions between Daniel Andreas Herzog and
Nikolaos Promponas-Kefalas.

Chapter 7 The content of Section 7 has been published in [194] with some revisions.
The implementation of the algorithms and the evaluation in a user study was done by
Daniel Andreas Herzog.

Chapter 8 The content of Section 8 has been published in [196] with some revisions.
The implementation of the prototypes and the entire user study was done by Daniel
Andreas Herzog.
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B TourRec Categories

Table B.1 lists all categories that can be rated in the publicly available TourRec Android
app (× in the last column indicates categories that were used for the experiments in
Chapters 7 and 8).

Table B.1: TourRec POI Categories.

Main Category Subcategory User Studies

Arts & Entertainment Amphitheater

Aquarium

Art Gallery ×
Circus ×
Comedy Club ×
Exhibit

Historic Site ×
Memorial Site ×
Art Museum ×
History Museum ×
Planetarium ×
Science Museum ×
Opera House ×
Theater ×
Public Art ×
Stadium

Zoo

Nightlife Bar ×
Brewery ×
Lounge ×
Nightclub ×

Food Afghan Restaurant ×
African Restaurant
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Table B.1 (continued)

Main Category Subcategory User Studies

Asian Restaurant ×
Café ×
Eastern European Restaurant

Fast Food Restaurant ×
French Restaurant ×
German Restaurant ×
Greek Restaurant ×
Indian Restaurant ×
Irish Pub ×
Italian Restaurant ×
Latin American Restaurant

Mexican Restaurant ×
Middle Eastern Restaurant ×
Turkish Restaurant ×
Vegetarian / Vegan Restaurant

Outdoors & Recreation Bathing Area

Beach ×
Botanical Garden ×
Bridge ×
Castle

Fountain ×
Garden ×
Hot Spring

Lake ×
Mountain

National Park

Nature Preserve

Palace ×
Park ×
Pedestrian Plaza

Plaza ×
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Table B.1 (continued)

Main Category Subcategory User Studies

Scenic Lookout ×
Sculpture Garden

Volcano

Waterfall

Shopping Clothing Store ×
Department Store ×
Flea Market

Market

Shopping Mall ×
Shopping Plaza

185





C Demographic and Group-Related
Questionnaire for the User Studies in
Chapters 7 and 8

The demographic and group-related questionnaire was presented once to the participants
after finishing both user studies.

1. What is your age? (<18 / 18-24 / 25-34 / 35-44 / 45-54 / >54)

2. What is your gender? (Female / Male / Other / Prefer not to comment)

3. What is your highest qualification? (Master’s degree or higher / Bachelor’s degree
/ High school diploma or equivalent degree / Less than high school diploma)

4. How frequently do you use tourism applications on smartphones or tablets? (such
as Yelp, or Foursquare)? (Daily / Weekly / Monthly / Less than once a month /
Never)

5. How frequently do you interact with public and interactive displays or information
kiosks? (in tourist areas, shopping malls, at train stations, etc.)? (Daily / Weekly
/ Monthly / Less than once a month / Never)

6. How often do you go on holiday per year? (weekend trips, travelling abroad etc.)
(<1 / 1 / 2-3 / 4-5 / >5)

7. How would you categorize your group in this study? (Family / Close friends /
Student fellows / Coworker / Other (specify) / I don’t know this group)
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