
 

Phonon Lifetimes throughout the Brillouin Zone at Elevated Temperatures
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We obtain phonon lifetimes in aluminium by inelastic neutron scattering experiments, by ab initio
molecular dynamics, and by perturbation theory. At elevated temperatures significant discrepancies are
found between experiment and perturbation theory, which disappear when using molecular dynamics due
to the inclusion of full anharmonicity and the correct treatment of the multiphonon background. We show
that multiple-site interactions are small and that local pairwise anharmonicity dominates phonon-phonon
interactions, which permits an efficient computation of phonon lifetimes.
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Thermodynamic material properties are nowadays rou-
tinely accessible from ab initio to meV precision up to
the melting temperature [1–3]. In contrast to such integral
quantities—which are ensemble averages over the phase
space as, e.g., the Gibbs free energy—phonon properties
are spectrally resolved and, therefore, pose a greater chal-
lenge for ab initio simulations. Phonon frequencies and
lifetimes are the key input to thermal conductivity and
among the most sensitive measures of anharmonicity in
solids. Phonon lifetimes have been successfully calculated at
room temperature from the third-order force constant tensors
employing perturbation theory (PT) [4–9] and recently
extended to higher orders [10]. At elevated temperatures,
however, one typically has to accept differences on the order
of a factor of two between state-of-the-art first principles
predictions and measured data [6,11,12].
Experimental determinations of phonon linewidths Γ

(which are inversely related to phonon lifetimes as
τ ¼ 1=πΓ) employ for instance Raman and infrared spec-
troscopy, which are highly accurate but restricted to the Γ
point [13]. Probing the linewidth over the full Brillouin
zone requires to use neutrons or x rays (specifically for
small sample volumes [14]) as probes, where the focus
lies often on electron-phonon scattering [12,15] or defect
scattering [16]. In contrast, investigations of anharmonic

phonon-phonon scattering over large regions of reciprocal
space for unary elements at high temperatures have been
reported up to now only for K [17], Li [18], and Cu [19].
In this Letter we report fully q-dependent phonon

linewidths in Al by means of inelastic neutron scattering
up to the melting point. Within the framework of density-
functional theory (DFT) we perform state-of-the-art first-
order perturbation theory as well as molecular dynamics
(MD) and compare the resulting linewidths. At the here-
investigated elevated temperatures, quantum effects are
small, so that classical MD is expected to capture the
essential physics. In contrast to perturbative approaches,
MD has the advantage to fully include all orders of phonon-
phonon scattering, and, further, that the availability of
the actual spectral function permits a direct comparison
to experiment. We show that a quantitative agreement
between experiment and theory at elevated temperatures
can only be achieved from molecular dynamics since it
probes (i) the full anharmonicity and (ii) naturally occur-
ring contributions due to multiphonon background scatter-
ing. We unveil the dominant mechanism controlling
phonon lifetimes in Al and utilize this knowledge for the
computation of lifetimes including the full anharmonicity at
significantly reduced computational cost.
The inelastic neutron scattering measurements have

been performed at the thermal triple-axis spectrometer
PUMA at the Heinz Maier-Leibnitz Zentrum (MLZ),
Garching [20,21]. For our DFT calculations we employ
VASP [22,23], projector augmented-wave potentials [24],
the generalized gradient approximation (GGA), as well
as the local density approximation (LDA) [25–27] at the
corresponding self-consistent lattice constants. Further, we
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perform perturbation theory calculations as implemented in
PHONO3PY [9,28]. Convergence errors due to DFT related
parameters (e.g., supercell size, k points, energy cutoff,
time step, etc.) have been carefully checked and are
summarized in the Supplemental Material [29].
Our first main result is shown in Fig. 1, where we

compare our raw experimental spectra at 900 K for selected
scattering vectors to DFT perturbation theory: for some
cases, the experimental spectra (empty circles) are signifi-
cantly broader than the spectra predicted by perturbation
theory (blue lines). We note that also for copper—which is
more anharmonic than Al [3]—experimental linewidths
have been reported to be twice as large as calculations using
first-principles perturbation theory [6]. To analyze the
discrepancies found in Al, it is desirable to go beyond
the perturbative treatment to account for the full set of
anharmonic interactions which become important at
elevated temperatures.
The systematic inclusion of higher orders in perturbation

theory is, however, a significant numerical challenge for
first principles and only very recently the effects of four-
phonon scattering on phonon lifetimes have been inves-
tigated [10]. In contrast, molecular dynamics calculations
capture the full set of phonon-phonon interactions, but
have the drawback of increased computational demands.
Consequently, previous studies on phonon lifetimes
employing MD had to resort to empirical potentials
[32,33] that are typically not optimized for reproducing
the anharmonic characters of atomic interactions, which is
the key quantity controlling phonon broadening.
In this study, we perform extensive ab initioDFTMD for

bulk aluminium and extract for every relevant q vector in
the Brillouin zone the phonon frequency ν0 and linewidth Γ
(full width at half maximum—FWHM) from the corre-
sponding power spectral density (PSD)—also known as

scattering function or power spectrum (exemplary spectra
are illustrated in Fig. 1). Conventionally, this is done by
first computing the scattering amplitude Aðq; tÞ as the
projection of the atomic displacements onto the normal
mode coordinates of the respective phonons

Aðq; tÞ ∝
X

j

½rjðtÞ − reqj �pe−iqr
eq
j ; ð1Þ

where rjðtÞ is the position of atom j at time t during the
simulation run, reqj is its ideal position on the lattice and p is
the phonon polarization vector [33]. Fourier-transforming
the absolute-squared amplitude [Eq. (1)] over time then
gives the power spectrum.
For harmonic interactions, a single phonon’s contribu-

tion to the spectral function is a delta peak, while
anharmonic interactions broaden the frequency response.
Specifically in perturbation theory, the resulting spectral
density is that of a damped harmonic oscillator [4]

SðνÞ ¼ 1

π

ν20Γ
ðν2 − ν20Þ2 þ Γ2ν2

: ð2Þ

This is also the functional form we use for fitting the peak
frequencies and broadenings of the simulated MD spectra.
In neutron scattering experiments, the spectral density

for a given scattering vector Q is directly probed. Here, the
scattering amplitude in the classical setting is given by

AðQ; tÞ ∝
X

j

e−iQrjðtÞ: ð3Þ

In the scattering community, expanding the phase factors
in the absolute-squared amplitude around the equilibrium
positions is known as phonon expansion, as the Nth-order

PT
1-ph. MD
   -ph. MD
Exp.
N

0 1 2 3
0

2000

4000

6000

8000

10 000

MD ≈ PT

Q = (¼,2,0)
⇒ q = (¼,0,0)

transv. pol.

0 1 2 3 4 5 6 7
0

200

400

600

800

1000

MD

PT

Q = (½,½,½)³
⇒ q = (½,½,½)

transv. pol.

0 2 4 6 8 10 12 14 16 18
0

50

100

150

200

N-ph. MD

1-ph. MD
PT

Q = (3,0,0)
⇒ q = (1,0,0)

long. pol.

N
eu

tr
on

 c
ou

nt
s

)zHT( ycneuqerF)zHT( ycneuqerF)zHT( ycneuqerF

FIG. 1. Inelastic neutron spectra (circles) along with theoretical spectral densities according to perturbation theory (blue lines), one-
phonon MD [dashed red lines—Eq. (1)] and N-phonon MD spectral densities [solid red lines—Eq. (3)] of Al at 900 K. The chosen
spectra are representative for the cases where either PT is adequate (left panel: q ¼ ð0.25; 0; 0Þ with dominant transversal contribution),
where it severely underestimates anharmonic broadening (middle panel: L point with dominant transversal contribution), or where the
N-phonon background appreciably affects the resulting spectrum (right panel: X point with longitudinal polarization). Note that the
theoretical spectra have been convolved with the experimental resolution as detailed in the Supplemental Material [29], corresponding to
Gaussian kernels with FWHMs of 0.37, 0.22, and 0.34 THz in the left, middle, and right panels, respectively.
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expansion term can be interpreted as being responsible for
scattering events between the probe quanta and N inde-
pendent phonons at once [34]. Thus the linear term,
corresponding to one-phonon scattering, gives just the
previously introduced Eq. (1) with pkQ, where the reduced
position in reciprocal space q follows from the actual
scattering vector Q by translating it into the first Brillouin
zone via a reciprocal lattice vector G. While momentum
and energy conservation are responsible for the peaked
shape of the one-phonon spectra, the additional degrees of
freedom in N-phonon scattering events result in a con-
tinuously varying background. These higher-order terms
are particularly relevant at large Q—and therefore in
the higher Brillouin zones probed in neutron scattering
experiments—and at elevated temperatures with larger
atomic displacements. Note that these issues are distinct
from the peak broadening introduced by anharmonic
phonon-phonon interactions—also a harmonic crystal
would exhibit an appreciable background intensity in the
spectral densities at high temperatures for large Q.
In Fig. 1 we now compare the power spectra obtained

from classical DFT perturbation theory (blue lines) to the
one-phonon spectral functions according to DFT MD
(dashed red line) obtained using Eq. (1) and the full
expression [solid red line—Eq. (3)] evaluated at the
scattering vector Q of the experiment. We see that already
with respect to the one-phonon MD spectra, the damped

harmonic oscillator curves according to perturbation theory
typically miss low-frequency weight, and can lead to very
different anharmonic broadenings (difference blue shaded).
Further, specifically for phonons at large Q and high
frequencies, the inclusion of the N-phonon background
can result in modifications (red shaded) to the spectra of
comparable significance, so that in general only the
molecular dynamics spectra evaluated according to
Eq. (3) give a satisfactory agreement between calculations
and experiment.
While Fig. 1 was concerned with the spectral densities’

shapes including contributions from all scattering channels,
we now proceed to a quantitative analysis of phonon
lifetimes as reflected in a broadening of the one-phonon
contribution. Thus, we use Eq. (1) to compute the one-
phonon spectra from our DFT MD runs and subsequently
fit a damped harmonic oscillator model as given by Eq. (2)
to obtain frequencies ν0 and linewidths Γ. We do the same
for the experimental spectra taking into account multi-
phonon background and experimental resolution as
detailed in the Supplemental Material [29].
Figure 2(a) shows the q dependence of the phonon

linewidths at 900 K according to perturbation theory, full
MD, and experiment. The qualitative difference between
the smoothly varying MD linewidths (red symbols) and the
rather jagged perturbation theory results (blue lines) is
obvious. Comparing to experiment (gray symbols) settles
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FIG. 2. Experimental phonon linewidths Γ for Al (gray symbols) in comparison to perturbation theory (PT) using the third-order force
constant tensors (blue lines) and results from DFT MD (GGA) in 3 × 3 × 3 and 4 × 4 × 4 fcc supercells [red symbols—Eq. (1)]. Here
(a) shows the q dependence at 900 K for all branches and (b) the temperature dependence for selected q points, where in addition the
linewidths according to TU-TILD [35] (green crosses) and LA [3] (green diamonds) are shown. The temperature variation in PT is due to
both the (trivial) scaling with T as well as a quasiharmonic interpolation of the force constants evaluated at 300 K and 900 K.
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the discrepancy in favor of MD, with a satisfactory
qualitative agreement conceding an underestimation of
calculated linewidths by some 30%. On the other hand,
the underestimation particularly of the low-frequency
modes at the Brillouin zone boundary in perturbation
theory is drastic. We further analyze the temperature
dependence of the linewidth Γ at selected q points in
Fig. 2(b) which—due to the adapted scale—highlights the
discrepancies between perturbation theory and MD assess-
ments including the full anharmonicity (blue shaded).
This constitutes direct evidence that the inclusion of all
orders of phonon-phonon interactions is indispensable at
elevated temperatures and can result in significant correc-
tions with nontrivial behavior. Specifically, the rich q
dependent structure of perturbation theory linewidths
resulting from high-dimensional integrals over reciprocal
space and reminiscent of van Hove singularities [5] seems
to be completely smoothened by anharmonicity (see the
Supplemental Material [29] for further arguments).
As has been noted, considering the full anharmonicity

from ab initio is computationally demanding for spectrally
resolved quantities. Consequently, the question arises
whether there are alternate approaches able to accurately
predict phonon properties up to highest temperatures while
keeping computational demands low. Only recently we
have shown that anharmonic contributions to thermody-
namic quantities such as the free energy can be obtained
from DFT up to the melting temperature and to meV
accuracy by computing merely a few DFT structures [3,35].
Here, to obtain spectrally resolved phonon quantities, we
apply (i) an optimized interatomic potential fitted according
to the “two-stage upsampled thermodynamic integration
using Langevin dynamics” (TU-TILD) [35] method and
(ii) the “local anharmonic” (LA) approximation [3]. For the
former, we utilize an embedded-atom method (EAM)
Hamiltonian fitted to a short DFT MD of Al containing
1500 snapshots at 900 K using the MEAMfit code [36]. On the
other hand, the main idea of the LA approach is to map the
anharmonicity of local pair interactions at T ¼ 0 K by
performing displacements similar to the finite displacement
method but with significantly larger magnitudes to accu-
rately reproduce the asymmetric character of the local
potential, modeled as a Morse potential [3]. In the imple-
mentation used here only nearest-neighbor pairwise forces
are probed by the LA approximation. We obtain the
dominant longitudinal anharmonic Morse pair interaction,
augmented by the transversal harmonic force constant in
(001) direction, from two DFT configurations at T ¼ 0 K
per considered lattice constant [37]. Results on the achiev-
able accuracy for thermodynamic quantities can be found in
Refs. [3,38]. Having the optimized EAM or LAHamiltonian
at hand we perform MD and evaluate the power spectral
densities as introduced above.
In Fig. 2(b) we compare the TU-TILD and LA model

Hamiltonian phonon linewidths (green crosses and

diamonds) to DFT (red squares). We find both approaches
in very good agreement with our DFT MD results (as well
as with experiment) for all probed temperatures. We note
that these phenomenological models make it possible to
probe much larger supercells for increasing q resolution
(see Supplemental Material [29]).
Since the current LA implementation only considers

nearest-neighbor pair interactions and has a single anhar-
monic degree of freedom this suggests that the major part
of phonon-phonon scattering in Al is captured by local
pairwise terms as opposed to terms involving multiple sites.
To quantify this hypothesis we write the general anhar-
monic potential as a Taylor series in terms of the displace-
ment uαðlÞ of the atom l from its equilibrium position along
the Cartesian dimension α [5]

ϕ ¼ ϕ0 þ
X

K≥2

1

K!
ϕα1;…;αK ðl1;…; lKÞ

YK

i¼1

uαiðliÞ ð4Þ

and parametrize the potential coefficients up to quartic
order K ≤ 4 for compact clusters of atoms at sites li by the
forces encountered during the MD runs for DFT and LA.
The resulting decomposition of the forces according to the
configuration of the participating atoms li is given in Fig. 3.
Considering first the DFT results, we observe that among

the quadratic interactions the nearest-neighbor term is
strongest by far. This behavior carries over into the higher
orders: also here the nearest-neighbor pair interactions
dominate over terms involving atoms at greater separations,
and surprisingly also over all multiple-site terms, e.g., the
nearest-neighbor triangles (A-B-C). By construction, LA
obviously does not contain any interactions involving three
or more atomic sites (as A-B-C or A-B-B-C etc.), nor
beyond nearest neighbors A-B (which are equivalent to A-C

LA

1s
t 

or
d.

 P
T

35
2

A-B-B-B

A B E H

JFCD

G I

31
6

28

A-B-B-C

21 9

A-B-C-D

11

39

A-B-B-E

19 22

A-B-C-E

16

69
4

A-B-B

69
7

20

A-B-C

9 8

A-B-E

2 11

A-E-E

0

26

A-B-F

2 11

A-E-F

2

97
0

A-B

10
54

91

A-E

4 10
1

A-F

2 17

A-G

2

45

A-H

0 8

A-I

0 14

A-J

2

K

K

K

 = 2

 = 3

 = 4

quadratic

cubic

quartic

FIG. 3. Root-mean-squared forces in units of meV/Å acting on
a given atom at 900 K for DFT (red) and LA (blue) according to
Taylor expansion of the potential up to quartic order, grouped into
terms according to relative coordinations of participating atoms.

PHYSICAL REVIEW LETTERS 123, 235501 (2019)

235501-4



and A-D), and so the corresponding terms should be exactly
zero. The reported nonzero values are therefore spurious
effects due to the truncation of the fitted Taylor series. In
DFT, the quadratic interactions beyond nearest neighbors,
while still weak, are noticeably stronger than the spurious
values in LA, and thus very likely real. Indeed, it has been
known for a long time that interactions beyond first
neighbors are important for describing experimental pho-
non dispersions satisfactorily [39]. On the other hand,
higher-order interactions beyond nearest neighbors are
hardly above the numerical noise as evidenced by LA.
Contrary to the prevailing opinion, we see that cubic

and quartic contributions are of similar magnitude, which
explains why perturbation theory—which in its most
common implementations considers only interaction terms
up to K ¼ 3—fails to explain phonon linewidths in the case
of Al at high temperatures. Further, at high temperatures the
contributions due to higher orders of the nearest-neighbor
pair interactions are much larger than those due to lower
orders of configurations of three atoms, or even harmonic
interactions over larger separations. This implies that also
in a prototypical metal such as Al, it is the short-range
repulsion due to closed shells that is primarily responsible
for anharmonicity and thus derived effects such as thermal
expansion and phonon heat conductivity. These findings
explain the success of the LA method, which considers
only pair interactions between neighboring sites, and imply
that the shape of its pair potential, being given by only four
parameters (three axial anharmonic and one transversal
harmonic), captures the physical reality exceedingly well.
In contrast, approaches that aim to evolve the potential
energy surface by systematically expanding multiple-site
interactions over large separation distances are not opti-
mally suited to describe the dominant higher-order pair
coefficients which govern phonon-phonon interactions.
In summary we have obtained phonon lifetimes in Al

from experiment and ab inito calculations and have
compared methods of different accuracy and computational
effort. We did provide direct evidence of qualitative
differences in phonon linewidths between the full MD
and perturbative approaches at elevated temperatures and,
more importantly, have shown that the full MD is a
prerequisite for computationally reproducing actual exper-
imental spectra. Using the LA approximation we have
identified the dominant mechanism that controls phonon
lifetimes in Al at high temperatures and traced it back to the
strongly anharmonic local pair interactions between neigh-
boring atoms. Analyzing the forces in the MD runs, we
have shown that multiple-site interactions—which have a
central role in perturbative approaches—are an order of
magnitude smaller than pair interactions even for higher
orders in the perturbation expansion. Based on these
insights we have demonstrated how to derive accurate
potentials from DFT, which are applicable up to highest
temperatures and thus can significantly contribute to our

understanding of atomic-scale dynamics from experiment
and theory alike.
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