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Abstract

Numerical simulations have an inherent sensitivity to input parameters, which in many cases are
not estimated perfectly. By using different parameterizations, an ensemble of simulations is generated
in order to sample from the space of possible outcomes. Investigating every single member of this
ensemble separately is tedious and often not possible, which is why major trends and similarities in the
ensemble members are searched, introducing additional uncertainty by the methods used therefore.
Further, dependencies between different quantities at different forecast times can reveal which errors
propagate in time and where additional measurements might have improved the accuracy of the
simulation. When relating differences in the realizations to initial parameters, metrics have to be

found to compare different simulation outcomes.

Clustering analysis is used to group similar members together; however, its outcome varies depend-
ing on the specific parameters used for the clustering. By sampling systematically in the clustering
space, we create an ensemble of clusterings hinting at sensitivities present. Multiple linked views
support the user in finding a suitable clustering and provide insights into the quality and effects of it.
Summary visualizations show the variability of cluster sizes, cluster-memberships of each data-point
as well as uncertainties in feature visualizations such as contour plots. Specific clusterings or clusters
can be selected and all views are updated interactively. Using these methods, we present a workflow
assisting the user in clustering tasks which is applied exemplary on the forecasts of tropical cyclone
Karl in 2016.

Correlation analysis in the ensemble data gives hints on dependencies between different regions,
quantities and time steps. Appearing correlation patterns are sensitive to the exact locations correlated
to each other, and correspondences between patterns over time-steps have to be established. We
present a grid point clustering algorithm which provides a statistically coherent region to which other
quantities are correlated to. By further clustering spatial structures of high correlation, regions of
coherent features in the ensemble are indicated. Connected correlation structures are automatically
tracked over time by combining optical-flow-based forward and backward tracking. The tracking
quality and confidence is controlled using a split-merge diagram and a color coded swipe-path gives
an immediate overview over a selected tracked structure. In the above mentioned real case, we were
able to relate uncertainties in the exact position of cyclone Karl with the erroneous forecast of a heavy
precipitation event in Norway a few days later.




The impact of changes in initial simulation parameters is important to know especially if the correct
parameterization is not known. When simulations of objects with different size and location such
as growing clouds are compared, correspondences between all simulation elements over different
ensemble members are impossible to find. Instead, the multi-parameter distributions of simulation
elements can be explored. Differences in constructed cumulative distribution functions (CDF) for each
set of simulation elements serve as a comparison measure between them. The combination of multiple
k-Means clusterings of t-SNE projected simulation elements via evidence accumulation finds clusters
of arbitrary shape which can be compared over the ensemble. Clusters are matched using the same
CDF-based measure and weighted accumulated cluster distances quantify the similarity between the
sets. Parallel coordinates are then used to investigate the temporal evolution of matched clusters and
their variability over the ensemble. Ultimately, distance are set into relation with initial parameters
and give insights into their influence on the simulation.

Finally, in ongoing projects we dive into the recently emerging field of deep neural networks, where
two directions are explored in more detail. Weather simulations are frequently run on terrain follow-
ing grids but investigated at certain pressure levels requiring interpolation. In the first project, the
ability of convolutional neural networks to interpolate between levels in physical scalar fields such
as temperature are investigated. In the second, we explore how these networks can construct dense
fields from sparse input, where some of the input is only visible because of the sparsity, which the
network has to learn additionally. We applied this to sparse 3D point cloud renderings, where each
projected point was rendered as a single pixel which could be used later for combining, correcting and
completing meteorological measurements, or for rendering particle based simulations in an efficient

way.
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Zusammenfassung

Numerische Simulationen sind von Natur aus sensitiv gegeniiber Eingabeparametern, welche meist
nur geschétzt sind. Durch wiederholtes Simulieren mit verschiedenen Parametrisierungen wird ein
Ensemble von Simulationen erstellt, um eine Reprasentation des Raums der moglichen Simulation-
sergebnisse zu erhalten. In den meisten Fillen ist es nicht praktikabel und zu zeitaufwiandig, jede
Simulation separat zu untersuchen. Daher wird fiir gewoéhnlich nach Trends und Ahnlichkeiten im En-
semble gesucht, was allerdings zu neuen Unsicherheiten fiihrt. Abhingigkeiten zwischen verschiede-
nen Variablen zu unterschiedlichen Zeitschritten konnen Hinweise liefern, welche Fehler sich {iber die
Zeit ausbreiten und wo zusétzliche Messwerte die Simulation verbessern konnten. Um Unterschiede
ganzer Simulationen zu quantifizieren, werden Metriken bendtigt. Dadurch kénnen Riickschliisse auf

den Einfluss einzelner Anfangsparameter auf die Simulation gezogen werden.

Mit Hilfe von Clustering konnen Ensemble Member gruppiert werden, was jedoch abhéngig von
den genauen Clustering Parametern unterschiedliche Ergebnisse liefert. Durch systematisches An-
dern der Parameter wird ein Ensemble generiert, welches auf bestehende Sensitivititen hinweist.
Mehrere verzahnte Ansichten unterstiitzen den Nutzer bei der Auswahl eines geeigneten Clusterings
und zeigen dessen Qualitit und Eigenschaften. Ubersichtsdiagramme zeigen die Variabilitit in Clus-
tergrofien, Clusterzugehorigkeit aller Datenpunkte und Unsicherheiten in Featurevisualisierungen wie
beispielsweise Konturbdndern. Durch Selektion eines bestimmten Clusters oder Clusterings werden
alle Diagramme interaktiv aktualisiert. Genannte Methoden wurden von uns in einem Arbeitsablauf

zusammengefasst und beispielhaft auf eine Vorhersage des Zyklons Karl im Jahr 2016 angewandt.

Korrelationen weisen auf Abhidngigkeiten zwischen verschienden Regionen, Variablen oder
Zeitschritten hin. Auftretende Korrelationsstrukturen sind dabei abhingig vom initialen Ort, zu
dem korreliert wird. Zudem miissen diese iiber die Zeit einander zugeordnet werden. Durch Clus-
tering von Gridpunkten werden statistisch koharente Strukturen bestimmt, zu welchen anschliel$end
andere Felder korreliert werden. Hinweise auf die Ahnlichkeit von Strukturen im Ensemble an
einem Ort konnen durch Clustering hoch-korrelierter Regionen gefunden werden. Mit Hilfe von
bi-direktionalem optischem Fluss werden Strukturen automatisch getrackt und in einem Split-Merge
Diagramm zusammengefasst. Fiir einen selektierten Pfad mit ausreichend guter Trackingqualitit
wird ein Ubersichtsplot erstellt, der die Struktur mit seiner zeitlichen Anderung in der Doméne

zusammenfasst. Im oben genannten Anwedungsfall konnte eine Beziehung zwischen der Unsicher-
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heit in der Position des Sturms Karl und einem nicht vorhergesagten Starkregenereignis in Norwegen
einige Tage spiter festgestellt werden.

Um geeignete Parametrisierungen zu finden muss der Einfluss einzelner Parametern auf Simula-
tionsergebnisse bekannt sein, wofiir Simulationsobjekte als gesamtes verglichen werden miissen. Da
sich diese rdumlich dndern konnen, versagen ortsabhingige Mal3e, weshalb wir uns stattdessen auf
Multiparameterverteilungen konzentrieren. Unterschiede deren Verteilungsfunktionen im Ensemble
dienen zur Identifikation dhnlicher Strukturen in verschiedenen Membern. Relevante Strukturen wer-
den durch Kombination mehrerer k-Means Clusterings auf t-SNE Projektionen identifiziert. Parallele
Koordinaten dienen zur zeitlichen Darstellung und aufsummierte Differenzen der Verteilungsfunktio-
nen liefern Riickschliisse auf den Einfluss der Anfangsparameter.

In fortlaufenden Projekten beschaftigen wir uns mit Dateninterpolation und Datenvervollstdndi-
gung mit Hilfe von neuronalen Netzen. Wettersimulationen werden oft auf orographiefolgenden Git-
tern berechnet, aber auf Leveln von konstantem Druck analysiert, wofiir Werte interpoliert werden
miissen. Anhand von Temperaturfeldern zeigen wir das Potenzial neuronaler Netze fiir Interpola-
tion auf. In einem zweiten Projekt untersuchen wir, inwiefern neuronale Netze Locher in Daten auf-
fiillen konnen. Dazu korrigieren und vervollstindigen wir in einem ersten Schritt Renderings von 3D
Punktwolken. In einem néchsten Schritt konnten mit der selben Technik meteorologische Messdaten

zusammengefiigt und vervollstindigt werden.
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Introduction

In numerical weather prediction a chaotic system is modeled and simulated. These simulations are
commonly conducted in 3D over many time steps and multiple physical variables such as pressure,
temperature and precipitation, leading to huge data sets. While the predictive power of such models
has tremendously increased over the past decades, these models still can only approximate the real
world. There are many processes involved, which are either not fully understood or are computa-
tionally too expensive to simulate properly, such as micro-physics in clouds. Systems for measuring
physical quantities like temperature can only do so up to a certain precision and measurements can
be missing due to occlusions or the lack of measuring stations. Discretization of continuous effects
and limited simulation resolution additionally hinders more precise predictions. These uncertainties
have to be estimated to better convey the expected quality of a forecast at certain locations.

By using modified initial conditions or assuming different parameterizations, the simulation can
be re-run and alternative outcomes are generated, leading to an ensemble of forecasts, where each
ensemble member predicts one possible future state. Even though the space of all possibilities condi-
tioned on the knowns is under-sampled, the ensemble provides a better understanding of the possible
deviations from a forecast run with the best initial conditions known.

Analyzing every ensemble member by its own is unfeasible; hence, methods to put them into re-
lation have to be used. Starting by computing mean and standard deviations over the ensemble per
grid location, regions of high uncertainty and major trends can be found. By clustering the ensemble
members based on certain regions, similar forecasts can be detected and a more detailed analysis can
be performed on few representative members. For instance, the European Centre for Medium-Range
Weather Forecasts (ECMWF) operationally applies dimensionality reduction on a region defined as

Europe and uses k-Means clustering to provide major trends and cluster representatives [FC11].

Depending on the weather situation, clustering can be sensitive to changing clustering parameters,
such as the exact region used, the accuracy of compression after dimensionality reduction, or the




1 INTRODUCTION

final number of clusters used. Visualizations using resulting variations in clusterings should reveal
how much confidence can be put into single clusters and which members where clustered together
consistently. Also, the fit and benefit of a chosen clustering on different regions has to be considered

as well as uncertainties in feature visualizations introduced by different clustering results.

The ensemble contains different possible outcomes at all locations for all simulation times. Many
quantities influence others at later times, e.g., wind transports moisture over time. Correlation anal-
ysis can hint on dependencies within the ensemble which can indicate dependencies in the real atmo-
spheric dynamics. Ensemble values in one quantity at one location can be correlated to the values at a
second location of another variable. Theoretically, this can be done for all locations making the com-
putation unfeasible. Further, useful patterns still would have to be extracted from all these correlation
values. In meteorology, ensemble sensitivity analysis (ESA) introduced by Ancell and Hakim [AHO07]
and Torn and Hakim [THO8] is used instead, correlating a region of interest to one other quantity
at a time. ESA differs from Pearson’s correlation coefficient by a scaling with the standard deviation
to express correlations in terms of units instead of standard deviations. Now, instead of basing the
correlation analysis on the values at a single grid location, regions are summarized by for example
computing the mean or root-mean-square-error over the grid-points contained. This leads again to a
vector with one value per ensemble member which can be correlated to all locations of the same or
another scalar variable. Since the region of interest, for example a region of high precipitation, is at
a different location in every ensemble member, this one region cannot be perfect for all members at
once; hence, methods for detecting statistically coherent regions are needed which further indicate,
where the analysis is valid. In a next step, this correlation computation can be done for multiple
time steps and areas of high correlation can be tracked over time possibly leading to the origin of
uncertainty for the region of interest. This process has to be repeated for different initial regions,
so an automatic tracking is desirable and the whole time evolution has to be summarized for a first
and fast overview. Further, it is worth knowing whether found correlation regions represent coherent

phenomena in the ensemble.

When relating differences in simulations even further to the initial parameters, different methods
are needed to measure similarities of whole simulations and time steps. By separately simulating
single structures such as a single growing cloud, the exact location and size of the object can change
calling for location invariant methods. Feature extraction and comparison only works if relevant fea-
tures are known. Investigating the distributions of simulated parameter values of simulation elements
instead can serve as an alternative. Either all simulation elements are compared at once or substruc-
tures are searched and compared to those in other time steps or members for a finer comparison.
Suitable measures have to be applied for this comparison and a matching between the structures has
to be performed. Finally, correlations to initial parameters can be computed to reveal the effects of

parameter perturbations on the simulation.




1.1 CONTRIBUTION

Interpolation is constantly used when regridding, slicing through volumes or estimating interme-
diate time steps. Hence, an accurate interpolation method is needed to achieve good results. The
problem of interpolating intermediate frames has been discussed extensively in the context of video
frame interpolation. There, the best results are achieved using deep neural networks, which either
predict the intermediate frame directly, or are based on optical-flow-based warping of the enclosing
frames. We investigate how these methods perform when interpolating vertical levels in numerical
weather forecast data. As scientific data, such as temperature fields, has less pronounced edges than
cars or persons in videos, and further, the value range and distribution change permanently, it is worth
investigating to what extend the same approaches work there.

During data assimilation, occlusion effects lead to missing values, which have to be filled. When
combining measurement data from different sources, inconsistencies in the data occur. In image
processing, the first task is referred to as inpainting, where missing pieces are reconstructed using
the available context data. Convolutional neural network based inpainting approaches offer a more
realistic gap filling than classical approaches by taking pre-trained information from other images
into account as well. Enough realistic training data is important to achieve plausible results, which
is why we explore a slightly different but closely related task first. We render a sparse version of a
3D point cloud as pixel splats and let the neural network fill in the holes and remove points from
occluded objects which only became visible due to the sparsity of the data. The used point clouds
contain scans from historical buildings where each point is attributed with color and the normal of the
surface. This data is potentially better posed than measurements of physical quantities and therefore
is a good starting point to assess how neural networks could contribute there. Both neural network

projects are at the time of writing unpublished and ongoing work with promising first results.

1.1 Contribution

In the context of this thesis contributions for different problems have been made. Clustering is of-
ten used without a proper analysis of its uncertainties. In the context of a workflow, we present
means to compare different clustering results in terms of cluster size, membership and gain from
clustering. Correlation analysis in ensemble forecast analysis is improved by assisting the user in
initial region selection giving interactive feedback on resulting correlations, automated tracking of
correlation structures and overview plots to navigate and summarize correlation structures. Based
on clustering and cumulative distribution functions, we relate whole simulations to their initial pa-
rameters and provide a method to identify similar structures over different time steps and ensemble
members. In unpublished work, we show how neural networks can be used to improve interpolation
between different layers in data. Further, we show their ability to repair and complete erroneous

renderings of 3D point clouds. Proposed methods are tailored to work well for numerical weather
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forecast data, however, most of them are not limited to it. More specifically, structured by publication,

the following contributions were made:

* We present a workflow to assess the confidence which can be put into a clustering. Once an
ensemble of possible clusterings is generated, a cluster-centric robustness display (CRD) con-
veys information about cluster compositions, changes in cluster amount and sizes as well as
to which clusters changing members belonged in other clusterings. A member-centric robust-
ness display (MRD) encodes in one glyph per member the fractions of how often that member
belonged to each cluster. More detailed information is shown in pop-up matrix glyphs and sim-
ilarity queries help finding members with similar member-change characteristics. The variance
reduction achieved by a selected clustering at each grid point is computed and variations in
geographical plots are indicated using texture stippling. A novel contour plot developed by Tost
and Rautenhaus is presented which can be attributed with this stippling as well. An interac-
tive interface enables the synchronization and coupling of all plots, where single clusterings,
clusters, members and manually chosen groups can be selected and all views are updated ac-
cordingly. In a following case study, the tool is used to find a suitable clustering for a data set
forecasting tropical cyclone Karl in 2016, also indicating regions which could not be clustered
well by the chosen algorithm. (see [Kum+18])

As it turned out, the combination of k-Means clustering and MRD with its functionality can
be used to investigate neighborhood stability in ensembles of 2D point clouds in general. (see
[RKW19], not part of this thesis)

* Common practice in ESA is improved by providing a statistically meaningful initial region to a
selected seed-point, to which a second quantity is then correlated. This way, mainly grid points
leading to consistent results are used and shown, and others potentially worsening the analysis
are excluded. Using an automated optical-flow-based forward-backward tracking, correlation
structures are traced over time and summarized in one plot. A split-merge diagram is used
to control filtering of tracked paths by their tracking confidence and to select single tracked
structures. Single correlation structures are clustered into coherent spatial regions to indicate
the extend with similar grid points in the ensemble. In a case study, a link between a heavy
precipitation event in Norway to the uncertainties in the moisture distribution around tropical

cyclone Karl was found. (see [Kum+19])

* We present a distribution based similarity metric to compare sets of simulation elements. By
combining multiple k-Means clusterings on t-SNE projections of a set of simulation elements,
a stable clustering for arbitrarily shaped clusters is achieved. Based on this, relations between
perturbations to initial parameters and differences to a chosen reference data set can be found
and investigated. (see [KSW19])




1.2 LIST OF PUBLICATIONS

* In unpublished work, deep convolutional neural networks such as the U-Net or EnhanceNet
are used to interpolate intermediate levels with higher accuracy than linear interpolation. The
same architectures are able to complete and correct pixel-splat renderings of sparse 3D point

clouds.
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Related work

This section is designed to provide the reader with literature relevant for understanding the context
and methods presented in our papers. While referenced work overlaps with the one presented in our
papers, more detailed descriptions of the contents are given here in order to help the reader determine
which articles to read. For a more exhaustive discussion of literature available in each topic, we refer
to the state-of-the-art reports mentioned.

Uncertainty visualization Uncertainty visualization is used to adequately communicate possible
deviations of data. As this thesis focuses on ensemble data, these methods are constantly used in our
work.

In 2003, Johnson and Allen [JS03] raised awareness for the necessity of visualizing uncertainty by
presenting an overview of uncertainty visualization methods which lead to a better understanding of
the data. Discussed sources for uncertainty are measurement errors, compression for storing, run-
ning models which only imitate the real world, transformations and interpolation, and lastly also the
visualizations themselves.

Not much later, Thomson et al. [Tho+05] gave a thorough updated overview of different sources
and types of uncertainty and present a typology to better describe its characteristics. Griethe and
Schumann [G+06] provide an overview of uncertainty visualization in general together with some
early methods which can be used. Uncertainty can be mapped to unused graphical channels like
color, size, position or transparency. Alternatively, small graphical objects such as glyphs, labels or
error bars can be added to existing visualizations, which is still common practice today. Interactivity
can help the user to browse through the data, while animations show changes in the data with the
disadvantage that the user has to remember previous configurations. Further, the order in which they

are shown changes the perception of the data.




2 RELATED WORK

More recently, Potter et al. [PRJ11] summarized works with the focus on scalar, vector and tensor
data uncertainty, while Bonneau et al. [Bon+14] focus more on the types of uncertainty and offer
guidelines and small examples. Li et al. [Li+07] point out that the visualization of uncertainty should
not occlude and distract from the actual data. They use error bars and ellipsoids to convey uncertainty
present.

Among the most used techniques are box plots presented by Tukey [Tuk77], which are still used
today because of their simplicity. A line in a box marks the median, whereas the upper and lower
boundaries mark the first quartile of the data. The third quartile is included using whiskers and
outliers further away can be included as small dots. Other established methods used for clustered
climate data are discussed by Nocke et al. [NSB04], including ThemeRivers [HHNOO], scatter plot
matrices [TT88] and parallel coordinates [Ins85].

Glyphs, small geometric objects which can encode multiple values, are also suited to encode un-
certainty information. Due to their small size, they can be used in a visualization at multiple places
at once encoding relevant information there. Ropinski et al. [ROP11] summarize existing glyph de-
signs used in medical visualization and give usage guidelines based on their literature review. The
right placement of glyphs is crucial to convey information appropriately. Ward [War02] provides an
overview over existing placement strategies while considering additional constraints such as allowed
overlap, screen space utilization or the option for manual placement adjustment. More recently, Borgo
et al. [Bor+13] summarized many works, with an additional focus on design criteria for glyphs.

Uncertainty of vectors such as gradients can be modeled using mixed Gaussian distributions as done
by Pfaffelmoser et al. [PMW13]. They encode local gradient strength and variability with a diffusion
texture and a multi-bin color scheme. Uncertainties of gradient directions are shown using circular

glyphs.

Ensemble visualization Closely related to uncertainty visualization is ensemble visualization. En-
sembles contain multiple version of the same object, such as the values at a grid location, a feature
or even the whole simulation. On the one hand, these can be used to compute an estimate for the
uncertainty of a simulation element, but can also be interpreted as multiple possible realizations
on the other hand. Different types of objects require different visualization methods. Obermaier
and Joy [0J14] divided the field of ensemble visualization into the two groups of feature-based and
location-based methods, where methods of both groups have been used in the work leading to this
thesis. One example for feature-based ensemble visualization is given by Demir et al. [DKW16], where
they generate screen space silhouettes to visualize an ensemble of iso-surfaces.

Love et al. [LPKO5] recognized the importance of such visualizations and propose techniques to
visualize multi-value data sets, including ensemble data. For data on a 2D domain, basic approaches
as mapping mean values to color, encoding the standard deviation into saturation or a height map, or




using spaghetti plots to show the range of single iso-contours in an ensemble are investigated. Also
other surveys summarize relevant work in the field. While Kehrer and Hauser [KH13] summarize
works depending on their data type, i.e., multi-modal, multi-run and multi-model data, Wang et
al. [Wan+18] focus on recently proposed ensemble visualization techniques and categorize them
according to the analytical task they can be used for.

Rautenhaus et al. [Rau+17] summarized visualization methods used in meteorology, including vi-
sualization tools, uncertainty, ensemble and feature visualization methods. The ensemble tool Met.3D
developed by Rautenhaus et al. [Rau+15a; Rau+15b] is tailored for visualizing ensemble data and
contains many basic visualizations, such as mean and variance computations, feature extraction as
well as cutting edge methods for research analysis such as the detection of weather fronts [Ker+18a]
and jet cores [Ker+18b]. Met.3D provided a suitable infrastructure for comparing clusters [Kum+18]
and investigating correlations [Kum+19], as its pipeline data-management handles caching and data
retrieval to enable interactive exploration.

Many ensemble data sets also contain a time component, which has to be taken into account. Aigner
et al. [Aig+07a; Aig+07b] summarize works focusing on visualizing, summarizing, abstracting and
interacting with time-dependent data. Ferstl et al. [Fer+17] investigate the divergence of clusters in
an ensemble over time, and Leistikow et al. [Lei+19] use function plots to encode the evolution of
members over time. Jarema et al. [JKW16] use multiple linked views to visualize the flow transport
variability in ensembles. By fitting Gaussian mixture models (GMMs) to particle positions seeded at
one location and time in the ensemble and evaluating their similarity using the Mahalanobis distance,
spaghetti plots are color-coded. Small multiples provide an overview for the whole domain and a

cluster split-merge graph depicts the variability of cluster sizes over time.

Coordinated views Especially ensemble data contains lots of information which oftentimes cannot
be displayed in a single visualization. A now common approach is to use multiple visualizations
simultaneously instead, and interconnecting them to visualize different aspects of the same domain
or show context information.

Fofonov et al. [FML16] compare iso-contour similarity by checking for random locations whether
values are within or outside the contour. The resulting binary vector can be compared with others
indicating similarities in location and shape, and further, dimensionality reduction is applied to visu-
alize the spatio-temporal evolution of multiple iso-contours simultaneously. The views are linked to
be able to relate the visualizations with each other. Fonfonov and Linsen [FL18] use aggregated plots
and coordinated views to investigate an ensemble data set. Histograms are used to show value dis-
tributions and data ranges where color encodes how often the ranges occur in other runs. A function
plot shows variation of members over time and and a similarity plot encodes where members diverge

in time. Leistikow et al. [Lei+19] use multiple coordinated views to investigate a time-dependent
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ensemble data set by combining function plots to represent each member as a time-series graph,

multi-run similarity plots to encode iso-surface similarity over time and volume visualizations.

Contour plots Iso-contours are especially important features in meteorology. For example, the
iso-contour in the potential vorticity unit field — a derived variable representing the dynamics in the
atmosphere— marking a level of 2 can be used as a representation of the beginning of the tropopause.
Errors in the weather forecast in the exact shape of this iso-contour are often correlated with the
overall quality of a forecast, which makes it especially useful to investigate [Bau+18]. In the case
of ensembles of 2D scalar fields, iso-contours can be extracted for every ensemble member, leading
to so called spaghetti plots. A different color can be used for every ensemble member, but eventu-
ally the plot becomes confusing and major trends are not visible anymore. Multiple methods have
been proposed to tackle this problem. There is a distinction between parametric and non-parametric
methods, where the non-parametric ones do not assume the lines to underlie a specific distribution.
For example, Sanyal et al. [San+10] proposed the use of confidence ribbons. Regularly spaced cir-
cular uncertainty glyphs with uncertainty mapped to radius are generated along a contour line. By
connecting tangents between adjacent circles, confidence bands are generated. Pfaffelmoser and
Westermann [PW13] visualized the distribution of iso-contours without assuming them to be nor-
mally distributed by computing a spatial cumulative distribution function field over the ensemble.
Contour boxplots introduced by Whitaker et al. [WMK13] are based on band depth measuring the
percentage of contours contained within. Shown confidence regions then use existing contours as
borders. Further, outliers are marked in red to display the maximal deviation present as well. As an
extension, Mizargar et al. [MWK14] proposed curve boxplots which can handle arbitrary curves in-
stead of lines which are either closed or traverse the whole domain such as iso-contours. Parametric
models on the other hand assume certain distributions. Ferstl et al. [FBW16] proposed variability
plots, which transform lines of equal length into lower-dimensional Euclidean space using principal
component analysis (PCA). The lines are then optionally clustered and multivariate normal distribu-
tions are fitted onto them. The median and confidence ellipses at a certain standard deviation level
are then transformed back representing the center and outer contours of the confidence band. In a
subsequent work [Fer+16; Fer16], the method was improved using signed distance fields (SDF) on
the initial iso-contours before the PCA eliminating the restriction to lines having the same length.
Probabilities of lines passing through certain locations conditioned on the passing through a defined

circle is achieved by intersecting slaps in the signed distance space.

In our work [Kum+18], Bianca Tost and Marc Rautenhaus developed contour probability plots,
which are based on a field showing the grid-point wise probability of exceeding an iso-value in the
ensemble. Iso-contours at different probability levels then represent the confidence regions’ borders.

Uncertainty in the position of the confidence bands, when an ensemble of spaghetti plots is available,
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can be visualized by encoding the variance in probabilities using texture stippling.

Clustering and cluster analysis in meteorology Clustering can be used to group objects together
according to a similarity criteria. It has been applied to numerous disciplines, including meteorology,
where a general overview of statistical methods and clustering algorithms used can be found in the
book of Wilks [Wil05]. Hereinafter, the most relevant techniques to our work are summarized.

Agglomerative hierarchical clustering [War63] builds up a clustering hierarchy by successively
merging close objects into the same group until only one cluster remains. When stopping after a cer-
tain similarity value, multiple clusters with a minimal distance greater than the value are obtained.
Ferstl et al. [FBW16] transform streamlines of equal length, or streamlines represented as signed
distance fields [Fer+16], with principal component analysis first, and then cluster in the transformed
space with hierarchical clustering. In subsequent work [Fer+17] they generate contour plot visualiza-
tions of clusters found in the last time step, stack them vertically for different time steps and display
cluster merge events for earlier time steps—identified by cluster distances falling below a threshold-
using a split-merge diagram. Recently, Kern et al. [KW19] compare different clustering approaches for
line clustering and evaluate which method leads to a good representation of line features contained
in a cluster.

While hierarchical clustering algorithms are especially useful for finding elongated structures, the
results can be very sensitive to changing data. Additionally, convex cluster structures are better han-
dled by k-Means. Lloyd’s k-Means algorithm [Llo82], which aims at placing a predefined number of
cluster centers in a way that the sum of squared distances of all objects to their center is minimized,
is one of the most commonly used. Numerous improvements of it have been proposed, such as k-
Means++ [AV07] using an improved seeding strategy by better distributing seed cluster centers, or
k-Medians, were the cluster center is the median of the points contained, which is more robust to
outliers.

Frame et al. [Fra+11] for example use k-Means to cluster jet wind profiles which are then com-
pared to 23 years extended winter climatology. Most relevant to the clustering part in our first pa-
per [Kum+18] is the work by Ferranti and Corti [FC11]. They use k-Means clustering to group en-
semble members into major trends based on a region defined as Europe. More details are given in
Section 3.1.5.

All clustering algorithms have in common that their results depend on the input parameters and
data, and already small perturbations thereof can lead to significantly different results. There are two
approaches to deal with this. A clustering algorithm should always find a result close to its optimal
clustering criteria. Hence, a clustering can be both optimal but sensitive to the chosen parameters.
Our first work aims at visualizing these sensitivities to make the user aware of possibly different

outcomes and leave it to the user to decide whether and which clustering to use [Kum+18].
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When it is clear that a single clustering cannot capture all clusters correctly, as it is the case of
clustering in t-distributed stochastic neighbour embeddings (t-SNE) [KSW19], clustering multiple
times instead and combining these can lead to the desired final clustering. Strehl and Ghosh [SG02]
discuss how to combine the results of different clustering algorithms into a final one. More recent
techniques are discussed by Vega-Pons and Ruiz-Shulcloper [VR11]. The technique we use is close to
the work of Fred and Jain [FJO5], who use evidence accumulation by applying single-link or average-
link hierarchical clustering on the co-association matrix. In contrast, we apply greedy region growing

on cliques of similar data-points concerning their cluster memberships.

We chose the indirect clustering step using t-SNE projections [MHO08] beforehand to make use of its
objective to preserve local neighborhoods of points. However, also other algorithms such as density
based clustering, e.g., DBSCAN by Ester et al. [Est+96] could be used but did not lead to the same
quality of results. Another possibility is offered by Molchanov and Linsen [ML18a; ML18b], who
cluster arbitrarily shaped clusters by subdividing the multi-dimensional parameter space successively
into bins. Bins with density below a predefined threshold are ignored to remove noise and speed
up the algorithm. All neighboring bins without a gap are considered as a cluster. By successively
increasing the noise threshold, connections break as bins are removed and a cluster hierarchy is
generated. To lighten the impact of chosen bin sizes, interpolation is used to increase the number of

high-dimensional sample points.

Dimensionality reduction High-dimensional data comes with several disadvantages. With every
additional dimension, distances become harder to distinguish, memory requirements increase and
visualization becomes more challenging. Several algorithms exist for mapping data into a lower-
dimensional space, each having different benefits. Principal component analysis, explained in detail
in the book by Jolliffe [Jol10], applies an orthogonal linear transformation to the original data to
maximize the data’s variance in one dimension after the other. It can be implemented efficiently
using singular value decomposition. By neglecting all dimensions but the first k in the transformed

space, the data is projected by preserving the maximal amount of variance possible.

T-distributed stochastic neighbour embedding (t-SNE) presented by Maaten and Hinton [MHO8]
aims at preserving local neighborhood information by computing neighborhood probabilities in the
high-dimensional space based on normal distributions. Measuring the similarity in low-dimensional
space using a Student t-distribution and minimizing the Kullback-Leibler divergence with gradient
decent leads to the final projection. A random initial configuration is used on which this method
depends, which is why for different random fields different projections are achieved, in contrast to the
fully deterministic PCA. Other projection algorithms such as Multi Dimensional Scaling [KW78] are
summarized in a survey by Sorzano et al. [SVM14]. To improve the quality of a projection, Molchanov

and Linsen [ML14] let the user steer the projection by moving control points and optimizing iteratively
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an overdetermined least squares problem. The user can slide through the optimization steps and stop

at any point, while star coordinates are shown to help understand the changes made.

In our work, we apply PCA [Kum+18] and use the variation in t-SNE to extract arbitrarily shaped
clusters [KSW19] in high-dimensional data. Together with Reinbold et al. [RKW19], we investigated
the stability of 2D point sets, which can also originate from dimensionality reduction.

Distribution analysis Distributions can be used to model uncertainty or compare different sets.
Numerous works fit distributions per grid-location to model variation in ensemble data. The mean
and standard deviation [LPKO5] are easy and fast to compute and completely describe a normal

distribution, however, they model the data only roughly in most cases.

A common enhancement is modeling distributions using GMMs. Liu et al. [Liu+12] fit GMMs to
compress the ensemble vector at every grid location, reducing the values to store to the GMM param-
eters. Wang et al. [Wan+17] compute histograms per block and model the grid-points contained in

each bin using GMMs. Using Bayes’ rule, values at locations can be reconstructed.

Jarema et al. [Jar+15] model variations in vector field ensembles by mixtures of probability density
functions and map them onto vector glyphs. Dutta and Shen [DS15] identify structures by fitting
GMNMs to blocks of the data using expectation maximization. Under the assumption that distributions
in the same region only change slightly over time, only parameters of some Gaussians are replaced at
successive time-steps instead of re-estimating the whole GMM. Assuming the background distribution
to stay similar, changing parameters indicate features passing through the blocks and are then used

for the tracking of such.

When no assumption about values following a certain distribution should be made, non-parametric
models are used. To represent these, Chambers et al. [Cha+83] visualize the distribution of values as
a continuous line and Hintze and Nelson [HN98] combine box plots and trace plots to violin diagrams.
Hazarika et al. [HBS17] use copulas to model distributions and dependencies of the distributions of
nearby grid points, which are common in scientific data. In following work [Haz+19], they use copula

functions to efficiently compress data and demonstrate its use in an in situ environment.

For more basic representations such as empirical distributions, histograms or kernel density es-
timates, Péthkow and Hege [PH13] extend existing feature extraction techniques, and show their
benefit on level crossing probabilities amongst others. Athawale et al. [ASE15] explore the extrac-
tion of iso-surfaces on fields with non-parametric distributions. Demir et al. [DDW14] create many
side-by-side color-coded bar-histograms to encode value distributions of different spatial areas in en-
semble data. The order of the histograms is determined by a space filling curve in the data set and
3D context is retained by linking brushed histograms with highlights in the spatial view. The spatial

bin size for the histograms can be adjusted to get a more detailed analysis of the value distributions.
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Correlation analysis and correlation clustering Analyzing and visualizing correlations in 3D scalar
field ensembles is challenging due to the huge amount of correlation values which can be computed,
using for example Pearson’s correlation coefficient. Visualizing them in correlation matrices only
works for small data sets. When it is still feasible to compute them, clustering on the correlation
matrix is used to reduce the data complexity, for which various algorithms exist. Bansal et al. [BBC04]
cluster graphs maximizing pair-wise similarities— which can be positive correlations— while minimizing
dissimilarities within clusters. While their approach is restricted to the values {+1,—1}, Demaine
and Immorlica [DI03] extend the idea to arbitrary weights and propose an approximation algorithm
using region growing. Recently, Liebmann et al. [IWS18] proposed to use hierarchical clustering on
distances of correlation data which was transformed onto hyperspheres.

While these approaches work for arbitrary correlation relations, methods operating on grid data
are more relevant for our work in [Kum+19]. In early work, Jen et al. [Jen+04] explore correlations
between two 3D scalar fields at the same location by using 2D slices and mapping one variable to
height and the other to color. Additionally, values along trajectories are displayed in a line chart.

Oftentimes, values in a certain region are interpreted as a sample of a random variable, or in case of
ensembles, the ensemble values at a single grid location. Sauber et al. [STS06] focus on the visualiza-
tion and navigation through correlation fields, where correlations at the same location but different
subsets of the ensemble are considered. Correlations between locations, different variables and time
steps are investigated by Sukharev et al. [Suk+09]. They further cluster time-activity curves [Fan+07]
using k-Means to reveal patterns in the data.

To reduce the number of correlation calculations, Chen et al. [Che+11] present a sampling based
approach operating on importance maps provided by domain scientists. For every sample, a corre-
lation volume is computed. The distance between those volumes is then estimated by comparing
histograms of correlation values contained using the Jensen-Shannon divergence measure [Lin91].

Pfaffelmoser and Westermann [PW12] cluster regions of high correlation without requiring domain
knowledge. Grid points are sorted according to the size of the connected region around them with
positive correlation values above a threshold. The highest ranked point defines the largest region
which is the first cluster. Iteratively, successive largest regions define further clusters with the addi-
tional constraint of disjointness of points contained, clustering the 2D domain into non-overlapping
clusters. Clusters are further subdivided using the same algorithm. The effectiveness of the method
is demonstrated on an 2D scalar field ensemble.

Recently, Antonov et al. [Ant+19] presented a tool to interactively investigate teleconnections of
correlations in climate simulations. By iteratively searching for strongest anti-correlations between a
starting grid point and all others, a line-strip is generated to show correlation teleconnections in the
domain. At each point of the line-strip, region growing is used to partition the domain into correlation

areas. Coordinating this view with a projected view of the line strip, an interactive tool is presented.
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In our approach [Kum+19], cliques of points with high pair-wise auto-correlation in the ensemble
are determined for a user-selected location. The values of these points are then summarized, e.g.,
by taking the mean or mean-squared-error from a given measurement, resulting in one scalar value
per ensemble member. This vector is then correlated to all locations of a selected second variable
at a specific time, and highly correlated regions are again clustered into disjoint cliques as described
before by starting with the location showing highest correlation. The initial clique provides a region
of points leading to similar correlation patterns and guides the user by showing for which region the
analysis is valid. The clustering of correlation structures in the second variable gives hints about the

regional consistency of patterns in the ensemble.

Tracking of structures and optical flow When the same structures appear over multiple time
steps, they can be matched using tracking algorithms. While tracking in computer vision is often
based on symmetries and edges, tracking in visualization focuses more on the regions to track as a
whole. Only works of the latter are discussed in the following.

Samtaney et al. [Sam+94] track features extracted from 3D volumetric data sets based on similar
mass, distance of center, or spatial overlap— also used by Silver and Wang [SW97], or Sohn and
Bajaj [SBO6]—, which requires a high temporal resolution of the data to work properly. As an abstract
representation for tracked structures, Bremer et al. [Bre+11] construct a tracking graph similar to
ours, mapping attributes to nodes and offer the selection of single nodes. Sliders are used to filter
structures to be shown based on, e.g., their minimal volume.

A well-arranged tracking graph minimizing crossings between lines can help to better understand
the connections between structures. Even though it was not necessary in our case, let us refer to
Widanagamaachchi et al. [Wid+12] for an efficient method to restructure a tracking graph.

A more elaborate tracking strategy is presented by Saikia et al. [SSW15; SW17], who track regions
defined by merge trees. In the early work, they establish correspondence based on the L,-norm
on histograms of values contained in a feature. As an extension, all sub-tree pairs of two successive
time steps are compared by weighting their overlap and value similarity computed by the Chi-Squared
histogram distance [PW10]. They also experimented with the Earth Mover’s Distance [PW09] instead,
as Ji and Shen [JS06] do, however, this proved to have less discriminative power in their case. Finally,
tracking is performed using Dijkstra’s shortest path algorithm over all time steps to optimize the
tracked paths globally.

Optical flow based methods additionally take into account the general directions in which struc-
tures are moving. First, the flow between successive fields is estimated, then the whole field or
features are advected and structures are then finally matched according to some similarity criterion.
An easy way to approximate the flow is by extrapolating existing tracks of already matched structures

linearly or quadratically. Once tracks between two initial time steps are established, Muelder and
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Ma [MMO09] first translate features with their extrapolated track between feature centers and then

apply the matching.

Using a dense pixel-wise estimation of the optical flow [Far03], Doraiswamy et al. [DNN13] and
Valsangkar et al. [Ani+18] track cloud and cyclone structures performing an overlap test of advected
regions to establish correspondence. Tracked regions are then blended onto each other with black

outline contours and arrows between tracked cloud system centers.

As optical flow based tracking relies substantially on an accurate flow estimation, lots of research
has been conducted to improve its estimation. Vanishing, changing and appearing structures espe-
cially complicate the task. Early methods were presented by Horn and Schunk [HS81] and Lucas and
Kanade [L+81], whereas in [Kum+19], we use the more recent method of Farnebéck [Far03] imple-
mented in openCV [BKOO]. Optical flow methods are mostly designed to track structures which do
not change too much over time in contrast to scientific data, where value ranges and distributions of
the same structure can change and commonly no sharp borders are present. Nevertheless, the chosen
algorithm performed well on our correlation structures.

Recently, deep neural network based flow estimation approaches have gained importance. FlowNet
by Dosovitskiy et al. [Dos+15] uses an encoder-decoder U-Net [RFB15] architecture and FlowNet
2.0 by Ilg et al. [Ilg+17] improves it by applying multiple networks successively and optimizing the
data scheduling for training. PWC-Net by Sun et al. [Sun+18] is smaller in size and outperforms
FlowNet2.0 according to the authors. This is achieved by computing partial cost volumes, embedding

them as layers into the network and refining the final flow by exploiting contextual information.

The optical flow can not only be used to track features but also to interpolate between frames in
videos, or between slices in scalar fields (see Section 3.6). Many frame interpolation frameworks rely

on a good optical flow map and then warp one or both images into the interpolated one.

Frame interpolation The generation of an intermediate frame using enclosing frames is an active
field of study. It is used to increase the frame-rates in videos or computer games. In our project,
we investigate how neural network based approaches known to perform well on videos work on
scientific scalar fields, such as temperature or pressure in numerical weather forecasts. The abilities
of neural networks on scientific data are already demonstrated by Weiss et al. [Wei+19], who present
a super-resolution approach using a residual network architecture (see [He+16]) to improve iso-
surface renderings. Rasp and Lerch [RL18] showed that post-processing with neural networks can

improve 2-m temperature forecasts.

There are three main approaches to interpolate intermediate layers. One can either interpolate
between two enclosing frames, e.g., using linear interpolation, and let the network improve the in-

terpolation based on the enclosing frames. The second approach aims at predicting the intermediate
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frame directly without prior interpolation, while the third estimates the optical flow between the ex-
isting frames and warps each pixel to the intermediate time-step. Without going into much detail,
the most relevant approaches inspiring us are briefly mentioned here. More comprehensive literature
reviews to frame interpolation can be found in the respective papers. The use of the correct loss func-
tions is crucial for obtaining good results; however, this is out of the scope of this thesis. For details,
we again refer to the descriptions in the papers mentioned below.

Niklaus and Liu [NML17] use a U-Net architecture [RFB15] followed by four small convolutional
sub-networks to predict the intermediate frame directly. In another approach [NL18], they estimate
the optical flow between frames with the pre-trained PWC-Net [ Sun+18], warp both enclosing frames
and their context maps to an intermediate frame and use GridNet [Fou+17] to predict the final frame.
Unfortunately, this network architecture proved to be difficult to train in our case.

Super SloMo by Jiang et al. [Jia+18] applies two U-Net networks successively, where the first is
used to generate a rough estimate of the optical flow between the two enclosing frames, while the
second U-Net refines it based on additionally added bi-linearly interpolated flows as well as forward
and backward warped images to the intermediate time point. The outputs of the whole network are
then refined flows to the intermediate frame as well as visibility maps correcting for occluded pixels.
The advantage of this approach over others is that multiple intermediate frames can be generated
with the flow afterwards.

A task related to interpolation is inpainting, where missing parts of an image have to be filled con-
ditioned on the remaining context. Encoder-decoder networks are suited for this task, as they can
incorporate context from a wide range of the image. Nazeri et al. [Naz+19] address the issue of over-
smooth results in encoder-decoder networks by first completing and predicting edges in the image,
before the actual colors are filled in. Liu et al. [Liu+18] use a U-Net architecture with partial con-
volutions instead. Partial convolutions deactivate neurons operating on missing values and therefore
prevent them from spilling into the image.

Our task of improving sparsely rendered 3D point clouds is closely related to inpainting, as holes
have to be filled based on surrounding pixels. Classical methods to visualize point clouds without
constructing triangular meshes are discussed by Linsen [Lin01]. Due to the sparseness of point clouds,
also structures behind objects can be visible in such renderings. The network has to detect and discard
these. We achieved promising results by combining the ideas of Super SlowMo of two successive U-
Nets. The first U-Net is used to predict which pixels of the sparse rendering are indeed visible while

the second functions as an inpainting network.
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Fundamentals and methods

The papers leading to this thesis contain contributions to different topics. This section is designed to
provide some background information on the most important techniques used and additional details

about our realizations are given.

3.1 Clustering analysis

The task of grouping objects based on a similarity criterion is called clustering. Representations of
objects include geometric features, relationships, or coordinates in R". A metric quantizes their sim-
ilarity and rules for grouping objects lead to the final result. Numerous clustering algorithms exist,
all with strengths and weaknesses of their own. An introduction to the topic is given in the book of
Everitt et al. [Eve+11], together with the most commonly used techniques. In this chapter, the ones

most relevant for our work will be discussed briefly.

3.1.1 k-Means clustering

One of the most used clustering algorithms for points in R" is k-Means. It aims at placing a predefined
number of cluster centers in the domain minimizing the sum of squared distances of all points to their

closest cluster center, i.e., minimizing
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where k is the predefined number of clusters and {i; the mean of all points in cluster Cl;, Cl =
{Cl4,...,Cl}. Obtaining the minimum of the objective function of k-Means is known to be NP
hard [MNV09]. One of the most used algorithms was introduced by Lloyd [Llo82], starting with
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random cluster centers and then in each iteration, assigning every point to its closest center and re-
computing the center as the mean of all points assigned. Since this algorithm terminates in local
minima, it is re-run multiple times and the best result is taken.

Variants of this algorithm have been developed to speed up convergence. For instance, k-Means++
introduced by Arthur and Vassilvitskii [AV07] improves quality and convergence speed by a special
placement of initial seed cluster centers. After randomly choosing the first center, successive centers
are chosen with a probability proportional to the squared distances to the closest cluster center. A more
even distribution of cluster centers is obtained which potentially improves convergence. Nevertheless,
we used the Lloyd’s algorithm in our paper [Kum+18]. The computational overhead for choosing the
initial cluster centers exceeded its benefits since for this data only few iterations were needed for
k-Means to converge to a local optimum. For accurate results, we re-ran k-Means multiple million
times, especially for k > 6.

If cluster representatives are needed, either the point closest to its cluster center can be taken or the
algorithm k-Medians can be used instead, where cluster centers have to resemble points of the data
set. However, finding the median in a multi-dimensional data set is again a hard problem, leading to
additional difficulties.

3.1.2 Hierarchical clustering

Hierarchical clustering algorithms create a hierarchy in which data points are combined to groups.
For agglomerative hierarchical clustering, initially, all data points are assumed to lie in different clus-
ters and the most similar clusters are merged successively until only one cluster remains. Contrary,
divisive clustering starts using one cluster and divides it successively. Stopping this process at a certain
similarity threshold or a predefined number of clusters leads to the final clustering result. Different
metrics such as Euclidean distance or the Manhattan distance can be used to determine the similarity
between points, while the linkage criterion decides on the actual clusters being merged. Common
linkage criteria are complete or single linkage. This criteria defines which points of two clusters de-
fine their distance, i.e., the most distant or the closest points based on the chosen metric. The most
similar clusters are then merged.

One advantage of hierarchical clustering is that it is deterministic. Outliers fall into their own cluster
but few ill-placed points can lead to merges of clusters, which is why single-linkage often results in

chainlike clusters, while complete linkage tends to break big clusters apart [Oel+14].

3.1.3 Density based clustering

A third group of clustering algorithms create clusters based on the density of points in the domain. The
standard algorithm for this is Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
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developed by Ester et al. [Est+96]. It is based on two parameters, namely the size ¢ of a neighborhood
region and the minimal number of points MinPts, which have to be contained within the neighborhood

to consider it a dense region.

The algorithm starts by selecting a random point and checking the number of neighbors in its e-
neighborhood. If it is below MinPts, the point is considered to be noise, otherwise all points contained
are added to a list. For each point in the list, the same test is applied and new neighbors are added
to it. Points on which the neighborhood query has been performed are removed from the list. Once
the list is empty, the procedure is repeated with the next unprocessed point. The lists are numbered,
and each point ever contained in the list is assigned its number as cluster ID. Further, every point is

only processed once, but still counted in neighborhood searches.

The algorithm is almost deterministic. Points on the border of clusters can change cluster mem-
bership or even be considered noise when processed in a different order, but the overall clusters stay
the same. By requiring only one pass through the data with a neighborhood search for a limited area
around each point, it scales well for large data sets as long as searches for neighbors are implemented
efficiently and only a small portion of all data points lie in the same area. The latter can be enforced
by running LEADERS clustering [VMS04; VP06] in a pre-process and perform DBSCAN on the LEAD-
ERS cluster only. The result of this rough DBSCAN [VB09] is not as exact as when performing only
DBSCAN, but the overall structures stay the same.

3.1.4 Clustering ensembles

The field of clustering ensembles addresses the combination of information contained in multiple
clusterings on the same data. The rational is that objects found to be similar in most clusterings truly
belong together. Again, two tasks have to be performed: measuring the similarity of objects and com-
bining them to clusters. The similarity of objects can be represented using a so called co-association
matrix counting how often each pair of points falls into the same cluster. Clustering in this matrix
can then lead to the final clustering. Fred and Jain [FJO5] create the clustering ensemble by running
the k-Means algorithm multiple times to counteract its tendency to terminate in local minima. Under
the assumption that data points which are clustered together in most clusterings indeed belong to the
same cluster, they create the co-association matrix and apply hierarchical clustering by interpreting it

as a distance matrix in order to generate final clusters.

As clustering ensembles are based on common consent on cluster membership, it is important to
keep in mind that they are not necessarily superior to classical clustering, if a suitable algorithm is
known for the data. In [Kum+18] we created an ensemble of clusterings but did not combine them, as
k-Means is already used operationally by the ECMWF [FC11] and provides good results. However, we

offer the option to highlight members with similar cluster change characteristics, which corresponds
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to one similarity query in clustering ensembles. In contrast, when it is known that a single clustering
is only of limited quality, e.g., when it depends on uncertain dimensionality reduction with known
inaccuracies as in [KSW19], clustering ensembles are superior to single clusterings. We project a
multi-dimensional point set multiple times into 2D using t-SNE, and cluster each projection once
with k-Means and a fixed number of clusters. Instead of applying hierarchical clustering on the co-
association matrix, we first compute cliques of points with high pair-wise similarity, and combine
these greedily to clusters. The rational behind the usage of cliques is that each point has to be similar
to multiple others in the cluster, leading to a better separation of clusters than when using standard

hierarchical clustering.

3.1.5 Clustering application

Before clustering can be applied, data has to be represented in a way that distance metrics can be
applied to it. In order to cluster ensemble members of numerical weather forecasts based on a certain
region, each member can be represented as a high-dimensional point, where each grid point lies in its
own dimension. Hence, in the case of the operationally used ECMWF clustering, 51 ensemble mem-
bers lead to 51 high-dimensional data-points, whose dimensionality is reduced by applying principal
component analysis and only considering the first dimensions representing at least 80% of the data’s
variance. k-Means is then run on the projected point set for 2 to 6 clusters and the optimal number of
clusters is determined by running a Monte Carlo-based significance test against normally distributed
random points in the principal component space.

When clustering parameters are fixed and only few grid-points for the high-dimensional member
representation are changed, the clustering results can already change significantly, as we noticed
when choosing a slightly different region over Europe than the one defined by the ECMWE While
these changes for k-Means were more pronounced when grid-points with high ensemble variance
were added or removed, hierarchical clustering proved to be especially sensitive to variations to the
data, while k-Means seems to be more robust and changing gradually in that case; for this reason,
k-Means was used in [Kum+18]. The influence of changing variance contained in the data could also
be observed when altering the number of principle components used for representing the data.

Density based clustering is impacted a lot by changing distances between data-points, which can
be caused by scaling effects or changing embeddings after dimensionality reduction as was the case
when applying it on t-SNE projected data.

For future work, it would be worth investigating the stability of fuzzy clustering instead of k-Means
for clustering weather forecast ensemble members and adapt the existing visualizations to convey this
information. Also allowing one or several outliers in the k-Means clustering by not considering them
for the mean computation would be worth investigating. The number of outliers could be determined

by the number of members with low co-association values.
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3.2 Correlation

Correlation is used to measure how dependent or independent two random variables X and Y are.
When a sample (x,y) is drawn from two highly correlated random variables, it is likely that both
values are either high or low, whereas negative correlation indicates that a high value of x is likely
associated with a low value of y and the other way around. Correlation values lie in a range of [—1,1],
where 1 (—1) indicates perfect positive (negative) correlation.

When multiple data values for the same simulation element, e.g., a grid point, are available, it is
often assumed that these values are samples from a random variable following a certain distribution.
The correlation between two simulation elements can then be calculated using different methods, such
as Pearson’s or Spearman’s correlation coefficient. In the following, Pearson’s correlation coefficient

and some properties of it will be briefly explained.

Pearson’s correlation coefficient can be calculated by

cov(X,Y)
oxoy

Pxy = (3.1

where cov(X,Y) is the co-variance between random variables X and Y, and oy denotes the standard

deviation of X. For a discrete sample of size n, this translates to
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The mean () and sample standard deviation (s.) of every simulation element can be cached to ac-
celerate later calculations. It is important to note that this correlation coefficient is not transitive,
ie.,

Pxy >0 AN py;>06#px;>6.

However, it can be deduced (see Appendix 8) that

Pxz Z PxyPyz — \/1 - (PXY)Z\/l —(pyz)?.

This inequality shows that even for simulation elements which are highly correlated to another ele-

23



3 FUNDAMENTALS AND METHODS

ment, one can not assume that these elements are also highly correlated among each other. For this
reason, we use a clique clustering algorithm in [Kum+19] to find groups of pair-wise highly correlated

elements.

In meteorology, a variation of Pearson’s correlation coefficient is used for Ensemble Sensitivity Anal-
ysis (ESA). A formal introduction can be found in the articles by Ancell and Hakim [AHO7] and Torn
and Hakim [THO8]. While Pearson’s correlation coefficient is normalized using the standard devia-
tions, ESA scales again with the standard deviation to relate changes in one variable with changes
in the other in terms of units instead of standard deviations. Changes in units are relevant as one is
more interested in, e.g., by how many degrees the temperature forecast was affected by uncertainties

of another variable at another time step.

At this point it is important to note that correlation is not the same as causality. High correlation
values can originate from dependencies to unknown variables or even from chance. When many

correlation values are computed, it is likely that at least some of them show spurious high correlation.

Confidence tests This is why confidence tests are performed. A correlation value ry with a confi-
dence level of 95% means, that under the assumption that the samples are distributed according to
an assumed distribution, less than 5% of all correlation values higher than r, are spurious. As already
the first assumption assuming a specific distribution is often violated (but nevertheless made), and
commonly only a small portion of all simulation elements are highly correlated (5% of all simulation
elements are suddenly quite a lot), such tests are nevertheless helpful as a sanity check.

When assuming correlation values to be normally distributed, for which the values of the simu-
lation elements have to be normally distributed as well, a Student t-test can be applied to compute
the level of significance for each correlation value and a given sample size. It tests against the null
hypothesis that the correlation is not significantly different from zero. This test is commonly used be-
cause of its simplicity and Edgell et al. [EN84] summarized evidence in 1984 that the t-test is robust
against violations of the normality assumption, which makes it applicable in many cases. A thorough
introduction into t-tests can be found for example in the book of Hogg et al. [HMC19].

In short, assuming correlation values to be normally distributed with a population mean of 0, the
standard error of the mean follows a X'2-distribution. By dividing the sample correlation coefficient
by its standard error, the t-statistic

(n—2)
1—r2

t=r

is derived, which follows a t-distribution with n — 2 degrees of freedom. Solving this equation for r,

t2
r= _
\J t24+n—2

ie.,
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and plugging in the value at the 95% quantile of this t-distribution, a correlation value is computed
which has to be exceeded in order to be significant with a confidence of 95%.

3.3 Dimensionality reduction

Working with high-dimensional data is challenging. With increasing dimensions, more disk space is
needed to store the data and data-points become harder to discriminate using euclidean distances.
Computer displays can only show information in 2D or at most 3D, which also limits the possibilities
for visualizations. Hence, dimensionality reduction is used to transform a data matrix X € R™P, with
n observations (e.g., ensemble members) in a p-dimensional space (e.g., each grid point represents a
dimension), into X € R™, where the dimensionality of the data was decreased from ptok, k<p.
There are many approaches to achieve this. One can simply neglect dimensions (which corresponds
to an orthogonal projection), perform a transformation with PCA prior to projection and thereby
minimizing the loss of variation in the data, or optimize the projection according to a criteria such as

preservation of local neighborhood relations in t-SNE.

3.3.1 Principal component analysis

PCA corresponds to a linear transformation of the original space in a way that the variance of the
data-points is maximized along one axis after the other. As these directions correspond to the eigen-
vectors of decreasingly sorted eigenvalues, the transformation can be computed using a singular value
decomposition.

After subtracting the mean of each dimension in X, singular value decomposition decomposes X
into

X =UAVT,

with VT € R™P representing the transformation of the original coordinate system into the new one
using the eigenvectors of X, U € R™" containing the n data-points in the new coordinate system, and

A € R™" containing the singular values of X, corresponding to the square root of the absolute value

of its eigenvalues. The explained variance eVar; of each dimension j is calculated by
2
gJ’J’
n
S

i=1

5

eVar =

where &;; is the i™ diagonal entry of A. To reduce the dimensionality of the data, one can use only

the first k dimensions, i.e.,

>

X =UAVT,
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where X € R™P is the compressed version of X, U € R™* A e R**k and VT e RF*P,

Some key aspects of PCA are that it preserves the maximal variation possible using only the defined
number k of dimensions. Further, it is deterministic and can be computed for relatively large data
sets. However, while the original dimensions could be interpreted as attributes or grid points in
the data, the transformed dimensions represent weighted combinations of them and therefore, the
intuitive meaning of each dimension is lost. Nevertheless, the first principal component(s) can often
be associated with interpretable properties in the data, such as the different position and strength of
a storm in the ensemble [Kel+11], which in that case was the cause for most variance. A detailed
discussion of PCA techniques in general is given by Jolliffes [Jol10] and Hannachi [Han04] explains

it in the context of meteorology, where it is referred to as Empirical Orthogonal Functions (EOF).

3.3.2 t-distributed Stochastic Neighbor Embedding

t-SNE introduced by Maaten and Hinton [MHO08] is a technique well suited for visualizing data, as
its projections into 2D are visually pleasing and at the same time preserve many local neighborhood
relations of the original high-dimensional data. It is closely related to Stochastic Neighbor Embedding
(SNE) [HRO3] but leads to better results by using symmetric probabilities between two points and
targeting a Student t-distribution for projected points instead of a Gaussian distribution. In the fol-
lowing, a sketch of the algorithm is presented. A detailed description and justification for the different

steps can be found in the original reference.
Similarity in the high-dimensional space is defined using conditioned normally distributed proba-

bilities p;);, describing the probability of point x; choosing x; as its neighbor. It is computed by

exp (—llx; — x;1*/207)
Zk# exp (—|lx; _xk||2/20-i2)'

Pjii =

A user defined perplexity value is used to find o; in

—ij\i 1082Pj\i
Perp=2 J .

using binary search, where the exponent corresponds to the Shannon entropy. Since pj; # p;);, the

joint probability is computed by
Pjli + Pij
pbij = on (3.2)
In the lower-dimensional target space, probabilities are computed using a Student t-distribution to

relax an overcrowding problem originating from many high-dimensional points with similar pairwise
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distances. The probabilities are computed by

L+ 1y =y~

= ) (3.3)
DL+ 1y =yl

dij

Minimizing the Kullback-Leibler divergence between equation (3.2) and (3.3)
p P
KL(PIIQ) = > py log >
i ij

on a random initial point configuration in the low dimensional leads to the final projection.

Not all neighborhood relations can be preserved perfectly as only n + 1 points can have the same
pair-wise distance in n dimensions. This and the fact that gradient descent only converges to local
minima leads to varying final projected point configurations, which motivated us to employ clustering

ensemble techniques to k-means clusterings on different runs of t-SNE [KSW19].

3.4 The visualization tool Met.3D

Met.3D is being developed under the lead of Marc Rautenhaus [Rau+15a; Rau+15b]. Originally, it
was tailored to visualize time-dependent ensemble weather forecasts, but its functionality has grown
over the years. By separating the front-end, the rendering (performed by actors on the GPU) and a
pipelined data-processing (performed by data sources), data can be requested while rendering stays
interactive and the user interface does not freeze. Requests are processed in parallel and intermediate

results such as mean fields are cached to reduce hard drive access and re-computations.

Our clustering module in Met.3D [Rau+15a; Rau+15b] uses the library cluster 3.0 [Hoo+04] which
offers C implementations for k-Means and hierarchical clustering with various distance metrics and
linkage criteria. The seeding strategy for k-Means++ was added to investigate its performance as well.
For creating clustering ensembles, options to automatically move, shrink or enlarge the clustering
domain, or increase the number of clusters or principal components are provided. For iso-contour
clustering, signed distance field based clustering is available as well. Clusterings can be loaded and
compared as described in [Kum+18]. Diagrams to display the differences in clusters and cluster
change characteristics of members proved to be useful for clustering ensembles in general, which is
why this part was extended in [KSW19] to perform the clique based clustering ensemble technique

presented there. All cluster visualizations can be used for externally generated clusterings as well.

In our correlation implementation into Met.3D, correlation values can be calculated over time or
over the ensemble of scalar fields. The physical fields for variable X and Y can be chosen on run-time.

The correlation r can be computed and displayed, where x; denotes the i grid point in the field

Xi5Yi
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X (y; respectively). Alternatively, one vector of values from X is correlated to all grid points of Y.
The vector from X can either be the values over the ensemble or over time at a single location, or,
summarized over a region per ensemble member using for example the mean. These regions can
be selected manually or using correlation cliques (c.f. [Kum+19]). We added connected component
labeling as well; components for a negative and positive threshold can be extracted simultaneously

and center of mass computations are available per slice or in 3D.

Operations for summarizing multiple correlation fields by computing their mean, maximum or
minimum values are selectable. Tracking using optical flow is also hightly customizable, with options
to only advect structures, or tracks based on the centers of structures. The recommended setting is
summarized in our paper [Kum+19]. Forward and backward tracking can be used independently or
combined. Several options are implemented to consider a point being matched. After advection, it
either falls withing a structure, is less than one grid point or a user selected multiple of its optical
flow away from a structure in the field to match to. Tracking paths can be displayed and arrows as
well as the swipe-path can be colored with a transfer function to encode tracking time. These flexible
options allow a user to perform different and sophisticated correlation analyses without the need of

changing the code, making it applicable for domain experts after only a short introduction to the tool.

3.5 Correcting and inpainting sparse data using neural networks

In this at the time of writing unpublished project we investigate the ability of neural networks to
improve renderings of 3D point clouds as recent publications show the potential of neural networks
on inpainting tasks. A practical application in meteorology could be the combination and correction
of measurement data acquired from LiDAR sensors and dropsondes. This is an ongoing project and
many things will be changed for the final solution, which is why this section rather presents the
overall approach and experiences gained than highly optimized training scores. As only high level

descriptions are given, basic knowledge about deep neural networks is assumed.

The 3D point clouds used here were obtained by the scanning of historical buildings such as castle
Neuschwanstein (courtesy of 3D RealityMaps). Each point is attributed with its 3D position (x, y,2),
RGB color and surface normals, which were computed in a post-process after the point cloud gener-

ation.

With classical approaches, these points can be rendered onto the screen by representing every point
as a one pixel splat (see Fig. 3.1 first column). If multiple points fall onto the same pixel, only the
one closest to the camera is rendered. Depending on the number of points, the screen resolution and
the distance between camera and object, not all pixels are filled and 3D points of occluded structures
can become visible.
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Figure 3.1: Two successive U-Nets applied to a pixel-splats-rendered 3D point cloud. The first U-Net creates a
mask to determine which pixels are indeed visible while the second performs the final correction and inpainting.
Blended circular splats are used as reference, where the radius was optimized manually. Yellow color in depth
channel images encodes absence of points. Inlets show a zoom-in on the center.

By rendering circular splats with a suitable radius in object space instead (see Fig. 3.1 last column),
most holes can be avoided. This radius can either be determined experimentally or by the resolution
of the scan, which should be uniform everywhere. The splats can now overlap. By rendering them
with decreasing opacity from their center and blending splats lying within a certain depth interval,

high quality renderings are achieved.

To generate a training data set imitating a less dense point cloud, we randomly remove a large
portion of the initial points (approximately 99%) and render the remaining ones using pixel splats.
The high-resolution high quality circular splats rendering is used as the ground truth. Even then,
some holes remain (see Fig. 3.1, 3rd column), so the target is not perfect. Additionally to color, the
depth and screen-space surface normals are stored to provide the network with additional information

about the orientation location of points. For rendering, the camera is moved on a sphere around the
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whole castle, where the front and side were used for training and the rear side for testing and Fig. 3.1.

When navigating around the object in 3D, the distance between points of structures closer to the
camera is wider than for structures far away. Hence, a network architecture with a large perceptional
field has to be chosen. Our experiments are based on the U-Net [RFB15] (see Fig. 3.2) since it
has been applied successfully for other inpainting tasks [Liu+18]. For early tests on point clouds
generated from the ShapeNet data set [Cha+15], where the point distribution was uniform over the
whole rendering without big holes, EnhanceNet [SSH17], without its last upsampling layer, lead to
superior results. Since it is based on 10 successive residual blocks, it can only fill holes if the points
are not much further than 10 pixels apart, so it failed for the more challenging Neuschwanstein data
set.

The U-Net was able to reliably fill holes and reconstruct the outlines of the building structures for
Neuschwanstein. However, we noticed some spilling of pixels of occluded structures, for example
the green color of trees from the inner courtyard was spilled onto the walls. Inspired by the network
structure of Super SlowMo [Jia+18], we combined two U-Nets consecutively, where the first’s task
was to only predict a mask predicting whether a rendered pixel is visible in the ground truth or not.
This mask is then passed as an additional channel to the second U-Net, so the whole network could
still be trained end-to-end. More precisely, an additional sigmoid layer was added after the first U-Net
to push values towards O or 1. Additionally, the learned mask is then masked to 0 where no pixels are
rendered in the input image. Both U-Nets use C = 32 channels, a depth of i = 6, 3x3 2D convolutional
kernels except for the first block (5x5) and only one convolution per layer (see Fig. 3.2 without the
red blocks).

As input we use three channels for RGB, three for screen normals and one for depth, all obtained
by the pixel splats rendering of the thinned-out point cloud. As target, circular splats rendering
was used for RGB (0.5xL1-loss + perceptual-loss + texture-loss) and screen normals (cosine-loss +
0.5xL1-loss), but pixel splats for the depth (L1-loss), since the correct depth values are needed to
learn a good depth mask (L1-loss + binary-cross-entropy-loss). For perceptual loss, kernels conv_1 to
conv_16 of VGG-19 [SZ15] with weights normalizing the effect of the channels were used. Texture
loss [GEB16] was used with kernels conv_1, conv_3 and conv_5.

The results shown in Fig. 3.1 were achieved using a batch size of 6 with a resolution of
256x256 (random non-empty patches from the rendered 1024x1024 images), Adam optimizer
(B =(0.5,0.999)) with an initial learning rate of 1e-3, a decay of factor 0.8 every 50 epochs and 720
epochs of training on 103 batches. For evaluating the loss, a border of 16 pixels around the patches
was removed.

The network is able to inpaint missing parts while retaining sharp edges of the structures. The
normals as well as the depth are a bit blurry, but the RGB prediction contains more details than the

classical high quality splats rendering.
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Sangram Gupta experimented in his Master’s thesis (Inpainting sparse Point Cloud Renderings using
Convolutional Neural Networks) with replacing the standard convolutional kernels by partial convo-
lutions [Liu+18], to avoid spilling of invalid pixels, and deformable convolutions presented by Dai et
al. [Dai+17] and Zhu et al. [Zhu+19] to account for the non-regularity of point samples. Exploring
this further and also changing the distance of the camera to the scene would be worth investigating.
Also a lighting correction could be applied to the point clouds. Since the scanning process takes some
time, lighting conditions change, e.g., due to moving clouds. Correcting the lighting on the fly while
rendering as proposed by Kanzok et al. [KLR12] could therefore further improve the training process.

Once the best combination of architecture and kernels, loss-functions and data representation is
known, the insights gained in this project can be used to complete and correct measurement data as
already mentioned. For this purpose, new training data has to be generated to train the model on it.

Another possible application could be the rendering of particle simulations.

3.6 Slice interpolation using neural networks

The second neural-network-based project addresses the problem of interpolating intermediate levels
or time steps based on enclosing ones. Most work published addresses this issue for videos, where
optical flow based approaches seem to lead to the best results.

More precisely, we explore the method by Niklaus and Liu [NL18]. After estimating the optical flow
with the PWC-Net [Sun+18] between the enclosing frames, they warp both images as well as context
images to the intermediate time-step. These eight channels are then fed into a GridNet predicting the

final image. As we had troubles achieving a stable training of the GridNet, we replaced it by a U-Net.

Setting The training data set is generated from a COSMO ensemble simulation over Germany, where
we create non-overlapping patches from the temperature field. The patch size is 300 x 300 grid-points
and we randomly skip between O to 3 vertical levels between the lower (input level 1), middle (target)
and upper slice (input level 2). The differing distance between levels is ignored in this setting to avoid
interpolated values for the training data.

The optical flow between the enclosing levels is then estimated using PWC-Net [Sun+18]. There-
fore, the values of both input layers are standardized to follow a normal distribution with mean 0 and
standard deviation 1 each. This step is necessary since the mean temperature as well as the variability
of it changes significantly across levels. Thereafter, both input layers are normalized into a range of
[0, 1] using the minimum and maximum value over both fields as PWC-Net is only trained for values
in the range [0, 1]. After warping, all channels are denormalized again and the warped ones are re-
scaled to have linearly interpolated mean and standard deviation of the enclosing levels. For training,

all these levels are then normalized with the same values to make different patches comparable.
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Additionally, a context map is generated by the response of the first convolutional layer of ResNet-
18 [He+16], with adapted stride 1 to preserve the resolution. These are warped with the same flow
as the original levels and again, all four context maps are normalized simultaneously for training.
Data augmentation is performed by training on random crops of size 256 x 256, flipped x and y
coordinates and the order of the enclosing levels.

For the example shown in Fig. 3.3, a U-Net including the red operations in Fig. 3.2 and an additional
1x1 2D convolution directly after the input is used, with C = 10 channels, i = 4 downsampling levels,
a batch size of 12, standard L1-loss, Adam optimizer ( = (0.5,0.999)) with learning rate of 2e-4
with a decay of factor 0.7 every 20 epochs and 320 epochs of training. The EnhanceNet shown was
trained with C = 15 channels, batch size of 25 and the same loss, optimizer and learning rate. Using
more channels did not improve the networks further. For training, 18000 patches are used.

Evaluated over 1995 validation files, the mean error reduction compared to linear interpolation
was 46.7% with a standard deviation of 54.0. Compared to the warped layers, the error was reduced
by 39.8% (33.9%) when warping the lower (upper) level. The discrepancy is probably caused by the
richer details in levels closer to the surface. In inference mode, the interpolation took roughly 2.3
milliseconds on a NVIDIA GTX 1070.

The EnhanceNet in Fig. 3.3 performed slightly worse, the mean error reduction compared to linear
interpolation was 41.8% but with a lower standard deviation of 51.3. The mean error reduction
compared to the warped levels was 30.9% and 22.5%. Inference took 3.3 milliseconds.

These preliminary results show that neural networks indeed can help to improve interpolation for
scientific data. As some single cases also showed worse results than linear interpolation, a criteria to
ensure a certain quality of interpolation should be included in future work.

Sukanya Raju explored in her Master’s thesis (Scientific Data Interpolation Using Convolutional Neu-
ral Networks) the capabilities of the network architecture used for Super SlowMo [Jia+18], where
in a first U-Net a rough estimation of the optical flow is generated while the second one improves it.
Additionally, visibility maps are generated to account for occlusions of pixels in one of the two frames.
The intermediate frames are then generated by warping enclosing frames. This approach allows to
interpolate an arbitrary number of intermediate frames and leads to slightly better results than the
direct U-Net-based prediction and would therefore be worth to be investigated in more detail.
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U-Net architecture
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Figure 3.2: Neural network architectures used. Operations are performed on the arrows, while the red opera-
tions were optional. The number of channels is indicated in each box, where Inp(Out) refers to the number of
input (output) channels and the number of channels C in the network has to be set. Our adapted EnhanceNet
does not perform upsampling in the final layer.
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Figure 3.3: The U-Net and EnhanceNet applied to interpolate the intermediate level of a scalar temperature
field. 7 levels were skipped between input level 1 and input level 2. Shown is a region over southern Germany
including parts of the Alps. The first row shows the temperature while the second shows the two context maps
(in red rectangle) and the absolute difference to the target. The mean error compared to linear interpolation
was reduced by 74.3% by the U-Net (67.8% EnhanceNet) and compared to the warped input level 1 by 59.8%
(49.6% EnhanceNet). A border of 16 pixels is excluded from the loss calculation.
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Paper A: Visualizing Confidence in Cluster-based Ensemble

Weather Forecast Analyses’

Abstract of paper In meteorology, cluster analysis is frequently used to determine representative
trends in ensemble weather predictions in a selected spatio-temporal region, e.g., to reduce a set of
ensemble members to simplify and improve their analysis. Identified clusters (i.e., groups of similar
members), however, can be very sensitive to small changes of the selected region, so that clustering
results can be misleading and bias subsequent analyses. In this article, we —a team of visualization
scientists and meteorologists— deliver visual analytics solutions to analyze the sensitivity of clustering
results with respect to changes of a selected region. We propose an interactive visual interface that
enables simultaneous visualization of a) the variation in composition of identified clusters (i.e., their
robustness), b) the variability in cluster membership for individual ensemble members, and ¢) the un-
certainty in the spatial locations of identified trends. We demonstrate that our solution shows meteo-
rologists how representative a clustering result is, and with respect to which changes in the selected
region it becomes unstable. Furthermore, our solution helps to identify those ensemble members
which stably belong to a given cluster and can thus be considered similar. In a real-world applica-
tion case we show how our approach is used to analyze the clustering behavior of different regions
in a forecast of “Tropical Cyclone Karl”, guiding the user towards the cluster robustness information

required for subsequent ensemble analysis.

Contribution The method development and implementation was done by the first author. The plain
version of contour probability plots was developed by Bianca Tost and Marc Rautenhaus, insights of
the case study were contributed by Marlene Baumgart and Michael Riemer. Parts of the background

1©2017 IEEE. Reprinted, with permission, from Alexander Kumpf, Bianca Tost, Marlene Baumgart, Michael Riemer,
Riidiger Westermann, and Marc Rautenhaus, IEEE Transactions on Visualization and Computer Graphics, January 2018
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infrastructure was also implemented by Bianca Tost. Discussions with Riidiger Westermann, Marc

Rautenhaus and the other co-authors led to the final paper.
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Paper B: Visual Analysis of the Temporal Evolution of Ensemble

Forecast Sensitivities®

Abstract of paper Ensemble sensitivity analysis (ESA) has been established in the atmospheric
sciences as a correlation-based approach to determine the sensitivity of a scalar forecast quantity
computed by a numerical weather prediction model to changes in another model variable at a different
model state. Its applications include determining the origin of forecast errors and placing targeted
observations to improve future forecasts. We—a team of visualization scientists and meteorologists—
present a visual analysis framework to improve upon current practice of ESA. We support the user in
selecting regions to compute a meaningful target forecast quantity by embedding correlation-based
grid-point clustering to obtain statistically coherent regions. The evolution of sensitivity features
computed via ESA are then traced through time, by integrating a quantitative measure of feature
matching into optical-flow-based feature assignment, and displayed by means of a swipe-path showing
the geo-spatial evolution of the sensitivities. Visualization of the internal correlation structure of
computed features guides the user towards those features robustly predicting a certain weather event.
We demonstrate the use of our method by application to real-world 2D and 3D cases that occurred
during the 2016 NAWDEX field campaign, showing the interactive generation of hypothesis chains to

explore how atmospheric processes sensitive to each other are interrelated.

Contribution The method development and implementation was done by the first author, while the
evaluation was done by Marc Rautenhaus and Michael Riemer. Discussions with the co-authors led

to the final paper.

2©2018 IEEE. Reprinted, with permission, from Alexander Kumpf, Marc Rautenhaus, Michael Riemer, and Riidiger
Westermann, IEEE Transactions on Visualization and Computer Graphics, January 2019
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Paper C: Cluster-based Analysis of Multi-Parameter Distributions

in Cloud Simulation Ensembles®

Abstract of paper The proposed approach enables a comparative visual exploration of multi-
parameter distributions in time-varying 3D ensemble simulations. To investigate whether dominant
trends in such distributions occur, we consider the simulation elements in each dataset—per ensem-
ble member and time step—as elements in the multi-dimensional parameter space, and use t-SNE to
project these elements into 2D space. To find groups of elements with similar parameter values in
each time step, the resulting projections are clustered via k-Means. Since elements with similar data
values can be disconnected in one single projection, we compute an ensemble of projections using
multiple t-SNE runs and use evidence accumulation to determine sets of elements that are stably clus-
tered together. We build upon per-cluster multi-parameter distribution functions to quantify cluster
similarity, and merge clusters in different ensemble members. By applying the proposed approach
to a time-varying ensemble, the temporal development of clusters, and in particular their stability
over time can be analyzed. We apply this approach to analyze a time-varying ensemble of 3D cloud
simulations. The visualizations via t-SNE, parallel coordinate plots and scatter plot matrices show
dependencies between the simulation results and the simulation parameters used to generate the en-
semble, and they provide insight into the temporal ensemble variability regarding the major trends

in the multi-parameter distributions.

Contribution The method development, their implementation and application were done by the
first author. Josef Stumpfegger implemented the Parallel Coordinate tool. Discussions with Riidiger

Westermann led to the final paper.

3This article was published in Vision, Modeling and Visualization, Alexander Kumpf, Josef Stumpfegger, Riidiger West-
ermann, Cluster-based Analysis of Multi-Parameter Distributions in Cloud Simulation Ensembles
©2019 The Author(s) Eurographics Proceedings ©2019 The Eurographics Association.
Reproduced by kind permission of the Eurographics Association
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Conclusion

In the work associated with this thesis we investigate how information retrieved from ensemble data
can be used and be visualized to gain a deeper understanding of the data presented. Starting from
exploring sensitivities when clustering ensemble members, we continue using the ensemble data to
reveal sensitivities between locations, time steps and variables, and finally provide means to relate
differences in whole simulations to their initial simulation parameters. Early results of current projects

demonstrate the usefulness of deep neural networks for interpolating and completing scientific data.

We provide means to efficiently find a suitable clustering when clustering ensemble members and at
the same time provide information on its stability. We hope that our work motivates authors to justify
and discuss the choice of the explicit clustering used in their work. Further, experiments performed for
the project presented in [RKW19] show the potential of the abstract member and cluster visualizations

to investigate ensembles of 2D points in general.

The interactive correlation method in Met.3D improves upon common practice of ensemble sensi-
tivity analysis by providing reasonable region selections with automated tracking and overview plots.
The modular realization in Met.3D makes the methods applicable for other correlation analyses as

well, utilizing caching mechanisms to optimize performance.

The identification of structures by their multi-parameter distributions allows for a comparison of
data sets or parts of data sets independent of their exact spatial size and shape to draw conclusions
about relations to initial parameters. In an ongoing project, we extend this by combining multiple
linked views to select parameter ranges and compare ensemble members based on their value distri-
butions.

Meteorology provides a rich pool of visualization problems which are yet to solve. Working together
with domain experts is crucial as they develop a good understanding of the data over the years which
can be incorporated into the methods. It seems that in many domains the current state-of-the-art
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7 CONCLUSION

visualization methods are not used yet in their full extend which makes their application and adap-
tion to the specific problems worthwhile. As each specific case provides obstacles on its own, also the
development of new techniques can be inspired by this. In this context, the project Waves to Weather
was the perfect opportunity to get in contact with the experts, discuss their problems and aims and
while gaining some understanding of their field through numerous meetings and presentations, col-
laborations and the combination of at first seemingly unrelated methods lead to major advancements

in understanding their data.
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Appendix - Dependency between two Pearson’s correlation

coefficients

In the following we will briefly derive the relationship between Pearson’s correlation coefficients be-
tween pairs of three points X,Y and Z. Assuming that the sample mean of each variable has already
been subtracted, Pearson’s correlations coefficient computation reduces to calculating the cosine of

the angle between x and y, i.e.,
DX Yi
S i=1 _ (X,)’>
X,y n 1 T 1

where (-,-) denotes the scalar product. Since (x,y) = ||x]|||y|| cos<«<(x, y), it follows that

J

_ cos<(x,y)
" Veos<(x, x)v/cos <(y, ¥)

r = cos<x(x, y).

For correlation values r, , and r, , close to one, each angle is below 90°. Since cos (&) is monotonically

X’y
decreasing for & € [0°,180°], for a := X(x, y), B :=<X(y,2) and y := <x(x, 2),

y<a+pf = cos(y)>cos(a+p).

Using cos(a + ) = cos(a) cos(f8) — sin(a) sin(f) and replacing sin(-) = 4/1 — cos2(-) and cosines by
correlation coefficients, this finally leads to

Tyz = rx,yry,z - \/1 - (rx,y)z\/l - (ry,z)2-
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Visualizing Confidence in Cluster-based
Ensemble Weather Forecast Analyses

Alexander Kumpf, Bianca Tost, Marlene Baumgart, Michael Riemer, Rudiger Westermann, and Marc Rautenhaus
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Fig. 1: (a) Analysis of the variation in cluster membership over 81 different clusterings of the case “Tropical Cyclone Karl”, an
ensemble of 51 potential vorticity fields. Circular elements represent ensemble members, colors distinguish clusters (member 45 is
enlarged: color of inner circles denotes reference cluster, surrounding pie-charts show how often the member was grouped into
another cluster). Dashed outlines highlight cluster representative members. Member 26 is picked, for all members with similar
cluster membership variation “variability matrix plots” (squared elements encoding cluster membership of all 81 clusterings) pop up.
(b) A “contour probability plot” (CPP, different greens show probabilities for contour line occurrence) shows the variability of an
iso-contour within a selected cluster. Overlaid stipple pattern shows the spatial variation of the plot with respect to the 81 clusterings.

Abstract— In meteorology, cluster analysis is frequently used to determine representative trends in ensemble weather predictions in a
selected spatio-temporal region, e.g., to reduce a set of ensemble members to simplify and improve their analysis. Identified clusters
(i.e., groups of similar members), however, can be very sensitive to small changes of the selected region, so that clustering results
can be misleading and bias subsequent analyses. In this article, we —a team of visualization scientists and meteorologists— deliver
visual analytics solutions to analyze the sensitivity of clustering results with respect to changes of a selected region. We propose an
interactive visual interface that enables simultaneous visualization of a) the variation in composition of identified clusters (i.e., their
robustness), b) the variability in cluster membership for individual ensemble members, and c) the uncertainty in the spatial locations of
identified trends. We demonstrate that our solution shows meteorologists how representative a clustering result is, and with respect to
which changes in the selected region it becomes unstable. Furthermore, our solution helps to identify those ensemble members which
stably belong to a given cluster and can thus be considered similar. In a real-world application case we show how our approach is used
to analyze the clustering behavior of different regions in a forecast of “Tropical Cyclone Karl”, guiding the user towards the cluster
robustness information required for subsequent ensemble analysis.

Index Terms—Uncertainty visualization, ensemble visualization, clustering, meteorology

+

INTRODUCTION

In operational weather forecasting and atmospheric research, cluster
analysis of ensemble weather prediction data is frequently used as a tool
to analyze forecast uncertainty. Applied to scalar fields of the members
of an ensemble forecast, cluster analysis groups together members with
similar spatio-temporal development not known in advance [70]. One
core objective in such analyses is the determination of representative
weather scenarios, i.e., the trends, within a given region of the atmo-
sphere. This region can be selected based on its geographic location
(e.g., the operationally computed clustering by the European Centre for
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Medium-Range Weather Forecasts (ECMWF) uses a European-Atlantic
region [13]), or such that it contains a specific weather event of interest,
e.g., a trough or a cyclone. Analysis of the computed clusters enables
scientists and operational forecasters to distinguish between likely (i.e.,
forecast by many ensemble members), and unlikely trends. At the
same time, by restricting to few representative scenarios, a subsequent
analysis can often be sped up significantly.

Before using the cluster information as a basis for further analyses,
however, an important question to be resolved is how much confidence
can be put into the clustering result. Relying on a determined clustering
introduces two major sources of uncertainty: a) The clustering cannot
well identify the major trends in the ensemble. A possible cause can be
that a region may have been chosen such that the atmospheric features of
interest are not entirely covered by this region in all ensemble members,
while at the same time features not of interest may be covered that
consequently affect the clustering result. Another cause can be that the
chosen number of clusters is not sufficient to capture all major trends.
This raises the question (Q1) how much “value” is contained in the
identified clusters in terms of the similarity of members within a cluster
and the distinctness between the different identified clusters. b) The
clustering may be sensitive to small changes in the selected region. This
requires to answer the question (Q2) how robust (i.e., representative)

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.
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the clustering is with respect to changes of the region, i.e., how strongly
do clusters vary when the region is changed. Without resolving these
questions, any analysis based upon the obtained clustering cannot be
assumed reliable. In the context of ensemble forecasts, however, we
are not aware of studies that address these questions in a scientifically
rigorous way. Often a merely tacit assumption is made that a “useful”
clustering result has been computed and that it is safe to interpret
subsequent analyses based on this clustering.

If it is found that a clustering is not robust, the domain expert needs
to analyze the variation to understand its cause and to judge its “severe-
ness” to find out if the clustering still contains useful information. By
considering cluster membership of single members over multiple clus-
tering results obtained from small changes of the region and identifying
members with similar membership variations, sub-clusters with similar
behavior as well as robust trends can be identified. The “severeness” of
the cluster assignment instability can be judged by investigating its ef-
fect on per-cluster quantities (e.g., the cluster mean) that are interpreted
in a subsequent analysis. Finally, the domain expert can interpret the
obtained confidence information by using additional domain knowl-
edge concerning the physical models and processes represented by the
ensemble, and investigate the causes of observed cluster variations,
inter-cluster relations, and member similarities and variations.

1.1 Contribution

We introduce novel visual analytics solutions for evaluating the con-
fidence of an obtained clustering result; an overview of the proposed
workflow is provided in Sect. 3 and Fig. 2. An artificial data set with
known characteristics is used to motivate and introduce the visual
encodings and interaction techniques we propose with regard to the
requirements of the application task (Sect. 4). We apply our solutions
to analyze a real-world ensemble forecast that predicted “Tropical Cy-
clone Karl” in 2016, and demonstrate that the visualization content we
provide generates new and important insights (Sect. 5).

To resolve Q1, we provide a combination of abstract cluster-centric
views with a linked map (Fig. 2¢). The displays enable comparative
visualization of the similarity of ensemble members within an identified
cluster and the similarity of the members in the unclustered ensemble.
In particular, we display where geographically the standard deviation
(STDEV) of the clustered ensemble is reduced compared to the STDEV
of the unclustered ensemble.

To resolve Q2 and the follow-up robustness analysis, we provide a
set of interactive and linked cluster-centric, member-centric, and spatial
views (Fig. 2d). A “cluster-centric robustness display” (CRD) visual-
izes changes of the clusters relative to a reference clustering (e.g., the
clustering result for the initially chosen region). This view shows at a
glance whether a clustering is stable or whether it changes significantly
when the region is changed. Furthermore, the CRD communicates how
many members change their cluster membership, and into which clus-
ters these members change. The CRD is linked to a “member-centric
robustness display” (MRD). It uses circular pie-chart diagrams for each
ensemble member, arranged in a 2D coordinate system spanned by the
first two major principal components (PCs) of the ensemble (Fig. 1a).
We focus in particular on the requirement to visualize the cluster mem-
bership variation for each ensemble member when the clustering region
is changed, so that the frequency of membership changes per member
can quickly be perceived. The user can pick a member in the MRD
to let the interface generate a matrix plot for this member in which
the changes in cluster membership for each chosen region are shown.
Simultaneously, matrix plots of all members having a similar cluster
membership variation are displayed. This provides a very intuitive
mechanism to instantly find sub-clusters of ensemble members that
behave in a similar way.

Finally, we propose a cluster-centric view combining a variation of
contour boxplots [68] and contour variability plots [15] with an overlaid
stipple pattern. These “contour probability plots” (CPPs) (Fig. 1b)
indicate the point-wise probability that within a selected cluster an
isovalue is exceeded; stippling is used as a distinct visual channel to
emphasize variations due to changes in the clustered region.

http://dx.doi.org/10.1109/TVCG.2017.2745178

2 RELATED WORK

Clustering analysis is a well established statistical tool to identify
groups of samples in a dataset that are similar with respect to a similarity
measure. General introductions to data clustering are provided in the
books by, e.g., Everitt et al. [12] and Gan and Ma [21]. For the presented
work, related topics of particular relevance are the application of cluster-
based analysis in meteorology, cluster-based ensemble visualization,
and visual methods to judge the robustness of clustering results.

2.1 Cluster-based analysis in meteorology

A general overview of common clustering techniques and their appli-
cation was provided by Wilks [70], a number of cluster visualization
techniques for clustered climate data (no ensembles) were discussed
by Nocke et al. [45]. In weather forecasting, clustering is commonly
used in a static, pre-defined way. A representative example is the
operational clustering of ensemble members at ECMWF [13], where
forecast scalar fields of geopotential height are clustered in three differ-
ent time windows for a static data region covering the ECMWF member
states. Results are visualized in static matrix plots containing small
forecast maps of the cluster representatives [13]. In meteorological
research, ensemble cluster analysis has been used to improve under-
standing of various aspects of atmospheric predictability. For example,
weather-regime related predictability was studied by using k-means
clustering of jet wind profiles and comparing identified forecast regime
transitions to observed climatological probability [17]. Clustering of
leading PCs was used to study forecast scenarios in relation to tropical
cyclones [1,22,30] and a heat wave that occurred in 2010 [53].
Clustering results were sometimes displayed by color-coded points
in 2D PC plots [22, 53]. Different forecast scenarios were illustrated
by cluster mean [1,22] or by representative cluster members [30, 53].
Harr et al. [22] provided subjective criteria for the optimal number
of clusters based on a discussion of the underlying meteorological
charts. The sensitivity of the analysis to the number of PCs used in
clustering is briefly discussed based on (subjective) changes in the
cluster mean. Sensitivities with respect to the choice of the analysis
domain are not discussed. In case of bifurcation-type behavior, clusters
are often defined ad-hoc, for example as “good” and “bad” forecasts
(e.g., [41,66]). Statistically significant differences in the cluster mean of
meteorological variables are sought to explain the forecast bifurcation.

2.2 Cluster-based ensemble visualization

With respect to visualization research, our approach is related to tech-
niques for ensemble visualization — a sub-field of uncertainty visualiza-
tion, for which a number of surveys exist [3,40,48,52]. Uncertainty
in scientific data is often estimated by means of ensembles — a set
of representative realizations of a simulated phenomenon, obtained
from simulations with different initial conditions and/or physical mod-
els. Such data is typically spatiotemporal, multivariate, and multival-
ued [29,37], making the analysis and visualization processes difficult.
Several methods have been proposed to reduce this complexity, e.g.,
by visualizing statistical summaries including mean and STDEV with
color maps, contours, surface deformation, opacity, and variations of
boxplots [11,25,37,49,51].

Clustering is another approach to reduce the complexity of ensemble
data. Bordoloi et al. [4] proposed realization- and distribution-based
hierarchical clustering to reduce the amount of information to be vi-
sualized. Bruckner and Moller [6] used density-based clustering to
identify similar volumetric time sequences in physically-based ensem-
ble simulations. Beham et al. [2] used hierarchical clustering to group
similar geometric shapes. Reh et al. [58] clustered similar pores in
industrial XCT data into mean objects (Mobjects) and then visualized
the per-voxel probability of belonging to an Mobject using transfer
functions. Hummel et al. [26] clustered using Minimum Spanning
Trees for trend analysis, to compare the material transport in flow en-
sembles. Other techniques have used clustering to group iso-contours
in scalar fields [8,64] or streamlines in flow fields [47]. Bruckner and
Moller [5] proposed the use of signed distance functions to analyze
different iso-contours of the same scalar field, Rathi et al. [55] used
such functions for shape analysis, and Ferstl et al. [14,15] demonstrated
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This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

@ Input

ensemble of 51

@ Initial data inspection

@ Evaluation of number of clusters and PCs

http://dx.doi.org/10.1109/TVCG.2017.2745178

@ Robustness visualization

scalar fields

mean / STDEV

spaghetti plot

‘ initial region, #clusters, #PCs ‘

_ -~
cluster split / merge : elbow plot stability /
% i . ccommpoomippi | TODUStNESS

T o 3
.%;:}'{ i". member
.9’.,f . 1:% oun stability
[ ] o
E = stability of
i derived
- S - per-cluster
separation T STDEYV reduction statistics
‘ picking, linking ‘ picking, linking
user interaction f

Fig. 2: Method overview. (a) Input is an ensemble of 2D scalar fields, which is (b) first inspected using statistical summaries and spaghetti plots.
The user selects the region to be clustered and (c¢) uses different visualizations to interactively select a suitable number of clusters and of principal
components to be used for clustering. Finally, (d) by means of linked views in which specific clusters and ensemble members can be selected, the
value in a specific clustering and the robustness of clusters with respect to changes in the input region are analyzed.

the use of clustering to find visual abstractions for conveying the major
trends in ensembles of trajectories and iso-contours. Recently, Ferstl
et al. [16] proposed the use of clustering to detect similarities in the
temporal variation of ensemble members.

2.3 Quality and robustness of clustering results

Common techniques to judge the quality and robustness of clustering
results are surveyed in the book by Everitt et al. [12, Ch. 9]. Graphical
depictions include banner plots, silhouette plots, and stripes plots (the
latter are also used in our workflow). Garcia-Escudero et al. [20] review
robust clustering methods.

For the visualization of single clusterings, a number of standard
techniques are known, including dendrograms to show hierarchical
clusterings, heatmaps and clustergrams [61, 69], 2D principal com-
ponent plots [44], and graph-based visualization techniques. Most
commonly, clusters are visualized by giving each data point a location
in a 2D map, so that similar data points are grouped together. For
high-dimensional data, dimensional reduction is typically used to find
appropriate locations [7,24,39]. Another option is to display clusters
by means of parallel coordinates [23,27]; a number of techniques have
been proposed to extend parallel coordinates towards the visualiza-
tion of clusters [19, 38, 50, 72], including the combination with heat
maps [46] and radial tree displays [2,32]. Lex et al. [36] introduce the
Caleydo Matchmaker technique to visualize clusterings of subgroups
of data using special parallel coordinate plots. This framework can also
be used to compare different clustering strategies.

Only few approaches, to the best of our knowledge, combine the
output of several clusterings into one; examples include the “cluster en-
sembles” by Strehl and Ghosh [62]. They applied different methods to
obtain different clustering outcomes, and generated a single clustering
from all outcomes. The probability accumulation by Wang et al. [67]
aggregated multiple clustering outputs into a new one.

3 WORKFLOW OVERVIEW

Our proposed visual analytics solution enables meteorologists to in-
teractively analyze the confidence in clustering results obtained from
a selected spatial region. Fig. 2 shows an overview of the proposed
workflow. Input (Fig. 2a) is a set of scalar forecast fields representing
physical quantities including air temperature and potential vorticity (PV,
a quantity computed from vorticity and stratification of an air mass; fre-
quently employed to analyze the dynamics of weather systems). In this
work, we consider scalar field data from the ECMWF Ensemble Predic-
tion System (ENS; e.g., [35]). The ensemble comprises 50 perturbed
members and an unperturbed control forecast (that is started from the
“best” initial conditions). Past forecast data is available from the TIGGE
archive [63] on a regular longitude-latitude grid in the horizontal; in
the vertical, data is available on levels of constant pressure.

The user first inspects the data by means of non-cluster-based visual-
izations of the ensemble data (Fig. 2b). We provide maps of ensemble
mean and STDEV, and spaghetti plots of relevant features including
isocontours. This initial inspection is used to select the data region
over which the clustering should be performed. Additionally, the user
defines a range of numbers of clusters that are subsequently evaluated.

Following common practice in meteorology (cf. the operational
ECMWEF clustering [13] and research studies [1,22]), our meteorologi-
cal collaborators have explicitly requested the application of principal
component analysis (PCA; e.g., [28]) to reduce input data dimensional-
ity and k-means clustering. For the user-selected parameters, different
types of diagrams facilitate determination of the optimal number of clus-
ters suitable for separating major trends in the data (Fig. 2c). Cluster
split-merge diagrams (CSMD) and “elbow plots” [65] indicate the num-
ber of clusters beyond which no significant gain in the cluster-specific
objective function is achieved. “Stripes plots” [34] and displays of the
reduction of STDEV achieved by a clustering convey how well clusters
are separated and how well similar members have been identified (to
resolve Q1).

For the determined number of clusters and the corresponding clus-
tering (the “reference clustering*), a further CSMD visualizes changes
in the clusters relative to the reference clustering when the number
of used principal components (PCs) is changed. By default, as many
PCs are used as to explain 80% of the variance of the data (default
at ECMWEF [13]; yielding on the order of 5 to 15 PCs), yet to judge
robustness with respect to the number of PCs, the user is concerned
with finding the smallest number of PCs that explain sufficient variance
such that the clustering result does not change if more PCs are added.

Finally, with the selected region, number of clusters, and number of
PCs, linked cluster- and member-centric views facilitate investigation
of Q2, the robustness of the clustering with respect to changes in the
selected region (Fig. 2d). If the clustering is found to be not robust,
the user can focus on a particular cluster or ensemble member and
visually analyze variation in cluster composition and membership to
investigate the questions of: (Q3a) Which clusters are robust and which
are not robust, and under which region changes are ensemble members
changing cluster assignment? (Q3b) Which ensemble members are
robust and which are changing ensemble assignment, and are sub-
groups of ensemble members changing in a similar way? (Q4) What are
the effects of these changes on per-cluster quantities that are interpreted
in a subsequent analysis?

4 VISUALIZATION TECHNIQUES

We motivate and introduce details of our interactive visual analysis
workflow using a synthetic dataset that illustrates data characteristics
that our users need to be able to analyze. This dataset with known
clustering allows, e.g., to intentionally perform robust and non-robust
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Fig. 3: The synthetic dataset. (a) Each member contains two dipoles
(hedged) and in between each one a monopole. The polarities for all
4 poles are randomly chosen for each member. Neither (b) ensemble
mean (contour lines) and STDEV of geopotential height in meters
(color) nor (c) spaghetti plot of the thick black contour line in (b)
indicate the dataset’s features or a suitable number of clusters. The
green box is chosen as clustering region.

parameter changes in order to demonstrate correct identification by our
methods.

4.1 Synthetic dataset as guiding example

The synthetic 2D dataset was generated with the same data modality as
the real-world ECMWF ENS forecasts, comprising 51 members. We
use a horizontal grid-spacing of 1° in longitude and latitude. Fig. 3a
illustrates the patterns contained in the dataset. The individual ensemble
members contain a wave-like pattern (the same in all members) that
mimics the wave-patterns typically encountered in atmospheric data.
In each member, noise is added to slightly distort the waves.

Clustering information is added by constructing features that
uniquely group the members but are not discernible in plots of en-
semble mean, STDEV or in spaghetti plots. Four independent features
—two dipoles and two monopoles— are added to each member with a
randomized polarity for each feature and member. The dipole located
in the western part adds a stronger disturbance to the background wave
than the eastern dipole. It is hence expected to dominate the cluster-
ing result when covered by the clustering domain. The uncorrelated
monopoles are centered between the northern and southern parts of
each dipole to further disturb the field so that an increased number of
clusters can be identified.

In total, 16 different cases are generated, randomly distributed over
the 51 members. However, due to the dominance of the western dipole
and the high degree of non-correlation between the features, fewer
clusters are expected to be detected by clustering. For instance, if both
dipoles are covered by the cluster region, it is unlikely that a clustering
result can separate both signals.

Figs. 3b, ¢ show ensemble mean and STDEYV, as well as a spaghetti
plot for the initial data inspection. In the ensemble mean field, the
features average out; the ensemble STDEV does not separate distinct
features (Fig. 3b). The spaghetti plot of a contour line shows high un-
certainty but gives no indication for the existence or number of clusters
(Fig. 3c). Based on these plots, a user may choose the cluster region
shown in Fig. 3b, covering the region containing high uncertainty.

4.2 \Visualizing clustering “value”

Fig. 4 shows the interactive linked views we provide to determine the
most suitable number of clusters by judging the value of the computed
clusterings for different numbers (Q1). Here it is important that quanti-
tative (about the number of members per cluster) and qualitative (about
the spread of the members per cluster) information is provided, so
that the domain expert can analyze which ensemble members belong
robustly to a certain trend, and how representative the trend indicated
by a certain cluster is. This information allows judging which clusters
can be relied upon in the following meteorological application (Q4).
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Fig. 4: Visualizations to judge clustering value for the synthetic case.
(a) Cluster split-merge diagram (CSMD) for increasing number of clus-
ters. (b) Elbow plot. (c) Stripes plot showing separation of clusters
for the clustering selected in (a) (highlighted by green bar). (d) Reduc-
tion (blue) in fraction of STDEV (red, in meters) for four clusters is
significantly improved compared to (e) three clusters.

An abstract CSMD (Fig. 4a) shows how clusters split as the number
of clusters is increased and depicts where members change into different
clusters. Each cluster is visualized by a vertical bar with constant width
and unique color. A bar’s height represents the number of ensemble
members contained in the corresponding cluster. Connecting bands
between bars in subsequent clusterings indicate the number of ensemble
members that stay in the same cluster or leave a cluster and merge
into a different one. The view is augmented by an elbow plot (cf.
Thorndike [65]), a simple plot of how the objective function minimized
by the clustering algorithm decreases as the number of clusters is
increased (Fig. 4b). The elbow plot indicates a suitable number of
clusters; the point of the strongest “bend” in the curve can be interpreted
as a trade-off between a small number of clusters and a small objective
function. Unfortunately, the shape of the curves do not always allow
this bend to be unambiguously identified.

For the synthetic use case (Fig. 4), we compute clusterings using
k=2,...,10 clusters. Evaluation of the elbow plot indicates 4 clusters.
The CSMD shows that for 5 clusters only the first cluster is split and
all other clusters stay the same. For even more than 5 clusters we judge
the further decrease of the objective function to be insufficient. So, we
choose 4 clusters and keep in mind that the first cluster could be split
into two if it does not show a clear trend.

To further evaluate a specific clustering, the user can select this
clustering, i.e., by moving the green vertical line in the split-merge-
diagram to this clustering. Upon movement, a linked stripes plot
(Fig. 4c) is updated and displays specific information for this clustering.
The stripes plot provides an abstract view on cluster separation; it
has been proposed by Leisch [34] and shows the distance of each
member to its cluster center and the distance to its second closest
cluster center. If those two distances differ only little, the clusters are
poorly separated, indicating that a different number of clusters may
yield better results. The stripes plot, which notably does not provide
any robustness information, indicates good separation for all numbers
of clusters in the synthetic case, so in this case, it does not argue against
any. For real world cases, clusters are usually less separated (e.g.,
clusters 1 and 5, Fig. 13). Linked spatial map views (Fig. 4d, e) provide
further information on spatial characteristics of a selected clustering,
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Fig. 5: Visualizations of cluster robustness. (a) Rand index and (b)
CSMD visualizing the robustness with respect to changes in the number
of principal components (PCs). For the synthetic case, using more than
4 PCs does not lead to further changes. (¢) Rand matrix shows high
sensitivity (red) to translations of the region to the east.

i.e., about the spread of the members in one cluster. A central quantity
in our workflow is the reduction of STDEV per model grid-point [60],
providing direct information about the average compactness of a cluster
(Fig. 4d, e). STDEYV reduction represents the ratio of STDEV within
each cluster to the STDEV of the entire ensemble, thereby summarizing
how much the identified clustering has grouped similar members into
clusters. It can be computed for individual clusters and for the set of all
clusters; in our workflow we display the total reduction of all clusters.
STDEV reduction is computed as

Ji(7)
re=1- (1)
VA
where fj. is the same as the k-means objective function
\ 2
W)=Y Y =l {S1.....5} €S, )
i=1xes;

which is the sum of the intra-cluster sums of the squared errors. S;
denotes the set of all members in cluster i, x a member in cluster S;, U;
the mean of cluster S;. . is the set of all disjoint partitions of members
{1,...,n} into k clusters. The k-means algorithm minimizes Eq. 2
globally, it hence makes sense to use this measure for per-grid-point
calculations as well. However, other measures exist which can be used
for different clustering algorithms [31].

For the synthetic use case, STDEV reduction confirms four clusters
to be appropriate (Fig. 4d); it is significantly improved compared to
three clusters (Fig. 4e) but only marginally worse compared to five
clusters (not shown).

4.3 Visualizing clustering robustness

Figs. 5 and 6 show the visualizations we provide to judge the robustness
of the obtained clustering (Q2). In a first step, for the determined
number of clusters and the corresponding clustering (the reference
clustering), a plot of the Rand index [54] and a CSMD (Fig. 5a, b)
are used to visualize changes in the clusters relative to the reference
clustering when the number of used PCs is changed. The Rand index
is a central summary measure to compare clusterings with differing
input parameters; it measures agreement and disagreement of all pairs
of members in two partitions. An index of 1 implies identical, an index
of 0 maximally distinct clusterings. An index of 0.5 already indicates
large changes; we clamp the transfer function at this value. Wu et
al. [71] compared external clustering validity measures for k-means
and recommended the use of the Rand index among others. For the
synthetic case, 4 PCs are sufficient since more do not lead to changes
in the cluster assignment anymore.

Next, the user can analyze the robustness of the identified clusters
(Q3a, cluster-centric visualization), the robustness of the per-member
assignment to specific clusters (Q3b, member-centric visualization),
and the robustness of statistical quantities (including spatial fields, Q4)
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4

clusterings from sensitivity analysis linearized using Rand index.
Fig. 6: Cluster-centric robustness display (CRD). The size of the bars
represents cluster size, colors represent membership in reference clus-
tering (black background bar). In clusterings (+,++), the blue and green
clusters exchange members; in clusterings (+++), cluster 4 changes
almost completely. Turquoise background bar corresponds to turquoise
clustering in Fig. Sc.

derived per-cluster to summarize cluster statistics. The latter includes
robustness of cluster mean and STDEYV, and the robustness of trend
plots including CPPs.

For the synthetic case we evaluate the robustness of the clustering
result with respect to domain translations up to 8° in each cardinal
direction, using a 9 x 9 grid of 2° translations. Fig. 5c shows an
example of the Rand index color-mapped to a 2D matrix representing
these horizontal and vertical translations. The matrix highlights those
region translations which strongly affect the clustering result (Q3a).
The Rand matrix shows that for small perturbations the clustering is
very robust; in fact, it hardly changes at all. For larger translations
towards the east, however, the clustering changes significantly. This
change could be caused by outliers, or it can indicate a new feature
not captured in the initially selected region that starts to dominate. In
the following, we introduce an additional type of diagram to further
analyze the changes in clustering results due to region translations.

4.3.1 Cluster-centric robustness display

To provide to the user an overview of cluster changes for different
region translations relative to the reference clustering (Q3a), we provide
a cluster-centric robustness display (CRD; Fig. 6). The CRD is linked
to the Rand matrix, to let the user select a clustering by picking on
the corresponding matrix entry, and highlighting the corresponding
information in the CRD. The CRD depicts on the horizontal axis the
different clusterings for all possible region translations. Cluster sizes
are indicated by the height of the bars, the colors show which proportion
of which cluster of the reference clustering is contained in the selected
clustering. To reduce overlap, the clusters are centered and the total
space used by the bars in vertical direction can be adjusted.

To fit two-dimensional parameter changes into this view, a simple
linearization of the clustering, or alternatively, an ordering minimizing
the number of cluster membership changes, can be selected. To com-
pute this ordering, all permutations of all clusterings are tested, which
works well for up to 10 clusters. For more clusters, the Kuhn-Munkres
algorithm [33] can be used, for which efficient implementations exist
with a runtime complexity of &(n?). When reducing the horizontal
size of the bars, connections between them become visible which show
where and how many members changed from one cluster to another
(e.g., in Fig. 5b). Further, any realization can be selected in the CRD
and all connected views automatically update using the selected real-
ization. In Fig. 6, it can be seen that many translations do not affect the
clustering at all, followed by some only affecting the orange and blue
clusters. For extreme translations to the east, completely new cluster
compositions arise, indicating that a new feature is starting to dominate.
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Fig. 7: The member-centric robustness display (MRD) shows a pie-
chart for each ensemble member, each encoding robustness information.
Stable and unstable members can be identified by means of cluster
membership information encoded in the pie-chart. Matrix pop-ups
show cluster membership changes with respect to region translations,
arranged as in Fig. Sc.

(a (b (c

Fig. 8: Possible glyph designs for the MRD. (a) Spherical arrangement
of membership information. (b) Membership information represented
by a pie-chart, with reference cluster information surrounding the chart.
(¢) As (b) but reference cluster information in the chart center.

4.3.2 Member-centric robustness display

A further important task is the analysis of the changes in cluster mem-
bership of the ensemble members (Q3b). Such an analysis, in particular,
has the purpose to identify members that remain together in the same
cluster when region translations are performed or the number of clusters
or PCs are changed. To visualize this member-centric information, we
propose a member-centric robustness display (MRD) using a separate
glyph for every member (see Fig. 7 for the synthetic use case).

In the design of the MRD the following criteria were considered:
a) Each glyph needs to show simultaneously different types of infor-
mation, i.e., the cluster of the member in the reference clustering, the
member’s unique ID, the frequency of changes in cluster membership
for the performed region translations, and a detailed view of the relation
between cluster membership and region translations. b) A large number
of glyphs, i.e., one for each ensemble member, needs to be shown at
once to enable a comparative study of members. Due to b), our first
design decision was to separate the visual encoding of the latter type
of information in a) from the others, to avoid visual overloading and
clutter. Our second design decision was with respect to the glyphs
shape and structure. In Fig. 8, we show possible circular (to mini-
mize coverage) glyph designs, of which the third one is the design we
propose.

In our design, each member is represented by an inner circle and
a surrounding pie-chart. The color of the inner circle indicates the
reference cluster of the member, and the member ID is shown in the
inner circle. The pie-chart shows how often member i was in cluster j,
with the frequency sorted decreasingly —but always starting with the
reference cluster— and displayed counter-clockwise. If the member is
the cluster representative in the reference clustering, a dashed border
around the outer circle is added. When looking at the two alternative
designs, one can clearly observe the following: In design 8a, where
the pie chart is replaced by circular rings depicting the membership
variations, the inner circle and rings might become so small and thin
that the important information cannot be perceived clearly any more. In
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Fig. 9: MRD layouts based on (a) the first two PCs, (b) as (a) but
squeezed and without overlap, (c) a force directed graph layout.

design 8b, the member ID obscures some of the pie-slices, and the outer
ring encoding the reference cluster can become too thin to be clearly
observable (under the constraint that the glyph cannot be arbitrarily
large and the pie-cart needs sufficient space).

A click on a pie-chart opens a matrix plot giving a detailed view of
the member-specific relation between cluster membership and region
translations. Color in the displayed matrix indicates the member’s clus-
ter assignment in all clusterings. Double-clicking on a pie-chart opens
matrix plots for all members with similar cluster change characteristics,
which can immediately reveal similar patterns across multiple members.
The pop-ups are placed around the convex hull of the already drawn pie
charts to avoid occlusions. In case the closest pop-up position leads to
overlap with another pop-up, it is translated to the next closest position
without producing overlap.

For the placement of pie-charts on the 2D canvas, we use the mem-
bers’s locations in the 2D coordinate system spanned by the 1st and
2nd PCs (Fig. 9a). Despite more PCs being used for the clustering
in most cases, the first two components provide the most separation
between members and, thus, yield least overlap when glyphs are drawn.
Nevertheless, overlaps can occur, requiring strategies to avoid them.

A force-directed graph layout as proposed by Fruchtermann and
Reingold [18] can be used to enforce that members of the same clusters
are placed close to each other. Here, the members are initially placed
on a circle, then “pulled” together by using their clustering distance
measure as a force. In the resulting plot, the members are placed
very homogeneously in the 2D image (Fig. 9c). On the downside, the
visual separation of the clusters which is present in Fig. 9a gets lost.
Due to this, we perform a different placement strategy, which tries to
resolve the overlaps that are introduced by the initial approach. First,
the distance between the two pairwise closest members is determined,
and these two members are then considered being processed. All
remaining members are successively moved in the direction of the
processed members until their distance to them is approximately the
same as the minimum distance. After all glyphs are shrunk together,
the domain is rescaled to fit the available space. The result is shown
in Fig. 9b. In the MRD in Fig. 7, there are multiple entirely stable
members in the blue and green cluster (e.g., member 0), indicating
stable sub-clusters. When picking member 35, the pop-ups display 4
members also changing only for extreme eastward translations. Those
4 members are always clustered together forming a stable sub-scenario.

4.3.3 Robustness of per-cluster summary statistics

Finally, we provide information on the robustness of per-cluster sum-
mary statistics, including plots of major-trends and cluster mean and
STDEV. To visualize major trends, variability plots [15] and contour
boxplots [68] are well suited, however, since they do not show point-
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Fig. 10: We propose (a) “contour probability plots” (CPPs), lobes enclosed by iso-contours of constant probability of a set of members exceeding
the threshold value for which the lobe is shown. The lobes have similar shape as (b) contour boxplots [68] (50% inner lobe) and (c) variability
plots [15] (1.5 STDEV) but are more straightforward to interpret when overlaid with robustness stippling.

wise quantitative information that can be overlaid by clustering ro-
bustness information, we propose a variation, which we call “contour
probability plots” (CPP). A CPP depicts lobes which indicate the prob-
ability that a contour line is locally contained in the lobe. CPPs are
generated by grid-point-wise computation of the probability that the
considered isocontour threshold is exceeded in the ensemble. Isocon-
tours of this probability field are then used to construct the lobes, e.g.,
the 25% and 75% isocontours enclose the 50% band. The example
in Fig. 10a displays lobes indicating bands for the inner 50%, and
outer 15% and 10% on each side. When CPPs for multiple clusters
are overlaid, a reduced set of lobes is beneficial to avoid cluttering.
A distinct advantage of CPPs is that the sensitivity, calculated as the
STDEYV of this probability over different clusterings, can be interpreted
as the average translation of the contour plot borders. This allows the
user to see right away how the contours of a cluster might change when
using a different clustering region.

To visualize the robustness of a cluster, i.e., its variation in terms of
membership changes, a distinct visual channel that can be combined
with CPPs is required. Retchless and Brewer [59] investigated different
types of overlays to depict uncertainty in climate variables. Following
their study, we use stippling since it can be clearly distinguished from
the colored underlay and does not interfere with other communication
channels. Our rendering technique follows the texture-based approach
presented by Maskey and Newman [42].

Fig. 1b shows the sensitivity of a CPP, Fig. 11 that of STDEV
reduction plots via stippling. In Fig. 1b, the stippling shows a large
area where the STDEV of the probability is on the order of 0.1-0.2,
indicating, e.g., that the lobes could well extend into the white region if
the selected region is changed. The displayed cluster characteristics are
hence very uncertain. In Fig. 11, a high uncertainty is visible throughout
the initially clustered area, indicating that for translated domains the
geographical areas in which variance is reduced by clustering also
change. For instance, when considering a clustering region translated
to the east (Fig. 11b), we see a very different area being clustered
“well”. Here, the two eastward dipole features were detected. The
contour probability plots clearly confirm this detection of the distinct
features by different cluster regions (Fig. 11c and d).

5 RESULTS

All visualization techniques, as well as PCA and clustering methods,
have been implemented in the open-source meteorological ensemble
visualization tool “Met.3D” [43,57]. Met.3D provides a suitable infras-
tructure that already included an ensemble data processing pipeline and
visualization functionality for meteorological maps. Stippling function-
ality, as well as all abstract and linked charts presented in this article,
have been added in the context of this work. Clustering is implemented
using the library “Cluster 3.0 [9].

To compensate for the denser geometric grid-point spacing towards
the poles in the regular longitude—latitude grid, each grid-point needs
to be weighted by the size of its grid-cell. We follow Ferranti and
Corti [13] and weigh each grid point with the cosine of its latitude
prior to applying PCA to the data. Clustering and cluster matching for
different realizations require most computing resources; on an Intel®
Xeon CPU E5-1650 v2 with 6 cores @ 3.50GHz, each cluster run took
from a few seconds up to two minutes depending on the data. Cluster
runs are executed in parallel, for the presented case study clustering

Fig. 11: (a) Reduction (blue) in fraction of ensemble STDEV (red, in
meters) for the synthetic case, overlaid with robustness due to region
translations (stippling shows STDEV of reduction). The intense stip-
pling indicates that region translations can cause clusterings to reduce
ensemble STDEYV in different regions. (b) STDEV reduction caused
by a region shifted eastward. (¢, d) CPPs 85% bands of the respective
regions indicate that different features dominated the clusterings.

and cluster matching required on the order of 20 minutes. Once the
data are clustered, visualization performance is interactive.

5.1 Tropical Cyclone Karl

To demonstrate the application and value of our method, we discuss
a real-world forecast issued during the North Atlantic Waveguide and
Downstream Impact Experiment (NAWDEX [10]), a field campaign in
which three of the authors have been involved. Tropical Cyclone Karl
crossed the North Atlantic in late September 2016 and was associated
with heavy precipitation in Norway. A number of days prior to mea-
surement flights it posed significant difficulties in forecasting due to
high uncertainty in the forecasts. A major objective of the data analysis
activities of the campaign is an investigation of ensemble behavior and
determination of the physical processes that caused the uncertainty.

We consider the ECMWF ENS forecast from 00:00 UTC 22 Septem-
ber 2016 (data are at 1° horizontal resolution, on pressure levels in the
vertical and at 6-hourly time steps) and focus on the development of
Karl in subsequent days. In this ensemble, very different developments
for Karl were predicted. Of critical interest for the analysis of the
situation is the interplay between upper-level PV (of particular interest
is the 2-PV-units (PVU) isosurface used to represent the tropopause, the
boundary between the troposphere and stratosphere), the upper-level jet
stream (strong winds in the vicinity of the tropopause), lower-level tem-
perature and moisture fields, and Warm Conveyor Belts (airstreams that
lift warm and moist air from near the surface to the upper troposphere;
c.f. [56]). In the analysis presented here, we —the meteorological do-
main experts in the author team— are interested in whether we can
determine distinct scenarios (i.e., clusters) in the upper-level PV field to
investigate the relationship between PV and lower-level developments,
e.g., the low-level potential temperature field.
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Fig. 12: Case study. A clustering region is chosen based on (a) ensemble mean (black contours) and standard deviation (color in PVU) of potential
vorticity at 250 hPa, and (b) a spaghetti plot of the 2-PVU isocontour. Shown is the ECMWF ENS forecast from 00:00 UTC 22 September 2016,
valid at 00:00 UTC 26 September 2016. Thick blue contour shows ground-truth observation; red, green and yellow boxes represent clustering
regions. (¢) STDEV reduction (blue) when clustering the red region. There is almost no STDEYV reduction in the yellow region. (d) Clustering
the yellow region leads to only little STDEV reduction. (e) CPP (85% bands) of the 2-PVU isocontour showing clusters of the yellow clustering
region. No particularly different scenarios have been identified. (f) When clustering the green region, distinct scenarios for the ridge are identified.
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Fig. 13: (a) CSMD and (b) stripes plot (for five clusters) showing weak
separation of clusters 1 and 5 (+). The CSMD shows the creation of a
robust cluster 5 when increasing the number of clusters from four to
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Fig. 14: Case study. (a) Rand index and (b) CSMD for changes in the
number of PCs; more than 11 PCs do not change the result. (¢) Rand
matrix shows high sensitivity to translations of the domain in particular
at the northern and southern edges.

For initial data inspection (Fig. 2b), we consider PV at an elevation
of 250 hPa at 00:00 UTC 26 September 2016 (96 hours lead time).
Fig. 12a shows the ensemble mean PV field, the ground-truth 2-PVU
isocontour that was observed later, and the ensemble STDEV computed
from all members. The corresponding spaghetti plot of the 2-PVU line
is shown in Fig. 12b. Over the North Atlantic, the STDEV field shows
high uncertainty in the vicinity and to the north of the tropopause. We
are in particular interested in the formation of the ridge (the northward
undulation of the 2-PVU line) to the south of Iceland and Greenland
and the local tropopause depression over Southern Greenland (which is
particularly hard to discern in Fig. 12b).

Based on Fig. 12a and b, we choose the large red clustering region
shown in Fig. 12b, encompassing both features. To determine the num-

ber of clusters, a rather smooth curve of the elbow plot does not provide
particularly strong visual guidance (not shown), we hence investigate
the difference between the clusterings containing four, five, and six
clusters in the corresponding CSMD and stripes plots (Fig. 13). At the
transition from four to five clusters, a rather robust and substantially
sized cluster 5 (light green) is formed. With six clusters, only a very
small new cluster is formed (Fig. 13a). While the stripes plot shows
that clusters 1 and 5 have only limited separation, STDEV reduction
is further improved with five clusters compared to four clusters in the
region of meteorological interest, i.e., along the tropopause in which
most variability occurred (only shown for the five-cluster realization in
Fig. 12¢). The optimal number of PCs is found to be 11 (Fig. 14).

Interestingly, while the STDEYV is reduced along the ridge, there is
virtually no reduction in the vicinity of the local tropopause depression
(Fig. 12¢). We conclude that the ridge feature dominates the clustering
but re-configure our method to use two smaller regions centered on the
ridge (green region) and on the local depression (yellow region) for
confirmation and to determine if we can obtain a useful clustering of
the depression region. Both regions cluster best with five clusters. The
green region yields slightly better separated clusters for the ridge, the
STDEV reduction largely resembles that of the red region (not shown).
Clustering the yellow region, however, still only leads to marginal
STDEV reduction even though it is now centered on the depression
(Fig. 12d). The stripes plot confirms that identified clusters are not well
separated (not shown). Similarly, the CPP displaying the scenarios of
the 2-PVU line shows neither well separated trends in the depression
region nor in the ridge region (Fig. 12e). We conclude that data in this
region cannot be well clustered.

We focus on the clustering obtained from the green region. Fig. 12f
shows the corresponding CPP, showing the 2-PVU trends identified by
this clustering. Cluster 2 (orange) most closely matches the observation;
however, none of the cluster means represents the observation very well.
The scenarios differ with respect to amplitude and orientation of the
ridge. While the strongest ridge is represented by cluster 2 (orange),
cluster 3 (blue) represents the cluster with the weakest ridge. In terms of
ridge orientation the largest difference is found between cluster 4 (pink)
and 3 (blue). Clusters 5 (light green) and 1 (dark green) are very similar
to each other. This is confirmed by the CSMD and stripes plot, they are
not strongly separated and cluster 5 contains a large number of members
that in the four-cluster realization belong to cluster 1. We perform a
robustness analysis for region translations from 2° to 8° in 2° steps in all
four cardinal directions. The resulting Rand matrix and CRD are shown
in Figs. 15 and 14c. While the clustering result is rather robust for east-
west translations, a high sensitivity can be observed for translations in
the north-south (N/S) direction. In particular for translations by more
than 4° N/S the results change strongly. A closer inspection reveals,
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( size of cluster

clusterings from sensitivity analysis linearized using Rand index.
Fig. 15: Case study CRD for region translations. The green clusters (1
and 5) exchange many members (+) and in extreme cases, clusters 3
and 4 change completely (++, +++).

-

Fig. 16: (a) The CPP of the 2-PVU isocontour at 250 hPa for the pink
cluster 4 is very sensitive to changes in the selected region (stippling
shows STDEV of probability). (b) It becomes much more robust if the
north-south region translations by 6°and 8° are omitted (cf. Fig. 14c).
(c) Cluster means for cluster 4 and (d) cluster 1 (dark green) of potential
temperature at 850 hPa (stippling shows STDEV of potential temper-
ature with extreme north-south translations omitted) show distinctly
different scenarios.

however, that the dominant feature (the variability associated with the
strong PV gradient along the tropopause) of the cluster region is more
or less removed by these translations. The high sensitivity related to
these translations is thereby plausible from a physical viewpoint.

The CRD (Fig. 15) shows that members often change between clus-
ters 1 and 5 when translating the cluster region — this is plausible due
to their weak separation. The MRD (Fig. 1a) reveals the members
that are switching cluster assignment. Less intuitive are exchanges
between the blue and pink clusters indicated in both CRD and MRD,
as the CPP shows these two clusters to represent quite different trends
(Fig. 12f). Selection of the corresponding realizations in the CRD
reveals that these exchanges occur for the extreme N/S translations; in
these translated regions the two clusters seem to be more similar.

For further analysis, we are interested in cluster summary statistics
as well as individual members that robustly remain within a given
cluster. For the sake of brevity, here we only consider upper-level PV
and lower-level potential temperature. The MRD (Fig. 1a) shows that
for the orange cluster, the members in the upper left region of the plot
appear to be robust. Inspection of further robustness details (we have
selected member 26; our system also shows further members with the
same robustness characteristics) reveals that these members indeed are
robust with respect to E/W translations; changes occur only for N/S
shifts. As a contrary example, member 50 (pink cluster) is particularly
unstable (Fig. 8) and is therefore to be used with caution.

With respect to cluster summary statistics, Fig. 16 shows CPPs of
the 2-PVU line at 250 hPa for cluster 4 and cluster means of potential
temperature at 850 hPa for clusters 4 and 1. The variability of the
respective fields due to clustering robustness is encoded as stippling.
Confirming the above findings of CRD and MRD, the cluster summary
statistics become much more robust when the physically unreasonable,
extreme translations in the N/S directions are not considered (Fig. 16a

http://dx.doi.org/10.1109/TVCG.2017.2745178

vs. b). This increased robustness strongly increases our confidence in
the subsequent physical interpretation. Clusters 1 and 4 differ with
respect to the longitudinal position of the ridge maximum (cf. Fig. 12f),
and also, the corresponding potential temperature fields (Fig. 16¢ vs. d)
show distinct structure differences similar to the structure differences of
the upper-level ridges. This similarity yields evidence for a baroclinic
nature of the evolution, i.e., a strong coupling between the evolutions
at upper and lower levels.

We conclude by noting that our preliminary analysis provides the
key insight that there are robust and physically-meaningful forecast
scenarios associated with the evolution of Karl in the region that was of
interest during the NAWDEX campaign. Future analysis will consider
in more detail the processes that lead to the divergence of the forecasts
into these scenarios and the ramifications to the heavy precipitation
event in Norway a few days later. Compared to methodology previously
applied in the meteorological community, the method proposed here
greatly facilitates the analysis and provides at the same time unprece-
dented quantification and visual representation of cluster robustness.

6 SUMMARY AND CONCLUSIONS

We have proposed a novel visual analysis workflow to visualize the
value and, in particular, the robustness of cluster-based analyses of
ensemble weather forecasts. This information is required for analysis
and interpretation of the obtained clusters, however, it has been largely
neglected in the context of ensemble cluster analysis in the past.

Our approach enables the user to identify a suitable number of clus-
ters by visualizing how clusters split, are separated, and reduce an
ensemble’s STDEV. To investigate the robustness of a clustering, its
sensitivity to changes in the selected clustering region and the number
of PCs used for data reduction can be visualized. Cluster-centric and
member-centric views show the stability of clusters and how members
change cluster assignment when region or PCs are changed; linked visu-
alizations of per-cluster summary statistics are augmented by overlays
that indicate the sensitivity of the displayed quantities.

We have developed our methodology in a team of visualization and
atmospheric scientists, integrated it into the open-source meteorological
ensemble visualization software Met.3D for straightforward application
by users, and have demonstrated its benefit with a real-world case study
taken from ongoing work aimed at improving the accuracy of numeri-
cal weather prediction. Compared to methodology previously applied
in the meteorological community, the method proposed here greatly
facilitates the analysis and provides at the same time unprecedented
quantification and visual representation of cluster robustness. In the
near future, the method will actively be used in data analysis activities
related to the NAWDEX campaign. Except for the region translations
and meteorological views, we believe that the proposed workflow and
the CRD and MRD can be used in other domains than meteorology as
well. The extension to other deterministic clustering algorithms such as
hierarchical clustering would only need small adoptions such as the use
of dendrograms. Investigation of its extensibility to further clustering
parameters, to time-dependent data, and to further clustering methods
including fuzzy clustering would in our opinion be beneficial to the
atmospheric community; it is left as an open issue for future work. A
further limitation is the current brute-force computation of the cluster-
ing realization to obtain robustness information; here, approaches that
can estimate this information based on fewer clustering runs would be
beneficial.
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Visual Analysis of the Temporal Evolution of
Ensemble Forecast Sensitivities

Alexander Kumpf, Marc Rautenhaus, Michael Riemer, and Ridiger Westermann
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Fig. 1: Analysis of the ensemble sensitivity of forecast variable precipitation (top left) to moisture flux (bottom left) over Norway.
(a) A high precipitation event is picked and a stochastically coherent clique is computed. (b) Sensitivity regions are extracted. Color
shows sub-regions with high mutual correlations. (¢) For a time sequence, sensitivity regions are matched between time steps and
tracked over time. A “swipe-path” colors (time in h) all locations covered by a selected sensitivity region over time according to the
first time of coverage. Stippling covers statistically insignificant regions. (c1) The proposed workflow operates on 2D and 3D data.

Abstract—Ensemble sensitivity analysis (ESA) has been established in the atmospheric sciences as a correlation-based approach to
determine the sensitivity of a scalar forecast quantity computed by a numerical weather prediction model to changes in another model
variable at a different model state. Its applications include determining the origin of forecast errors and placing targeted observations to
improve future forecasts. We—a team of visualization scientists and meteorologists—present a visual analysis framework to improve
upon current practice of ESA. We support the user in selecting regions to compute a meaningful target forecast quantity by embedding
correlation-based grid-point clustering to obtain statistically coherent regions. The evolution of sensitivity features computed via ESA
are then traced through time, by integrating a quantitative measure of feature matching into optical-flow-based feature assignment,
and displayed by means of a swipe-path showing the geo-spatial evolution of the sensitivities. Visualization of the internal correlation
structure of computed features guides the user towards those features robustly predicting a certain weather event. We demonstrate the
use of our method by application to real-world 2D and 3D cases that occurred during the 2016 NAWDEX field campaign, showing the
interactive generation of hypothesis chains to explore how atmospheric processes sensitive to each other are interrelated.

Index Terms—Correlation, clustering, tracking, ensemble visualization.
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1 INTRODUCTION

Ensemble sensitivity analysis (ESA) has been established in meteo-
rology as an ensemble-based approach to estimate the sensitivity of
a scalar forecast quantity J (in meteorology referred to as “forecast
metric”’) computed from numerical weather prediction (NWP) model
output to changes in the same or another model variable at an earlier
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state. ESA has been introduced by Ancell and Hakim [1] and Torn and
Hakim [42]. It is a correlation-based approach which considers the
variations of physical quantities at different domain locations relative
to each other.

ESA has been used in a number of applications, including identifi-
cation of the origins of forecast errors (e.g., [23]), investigation about
relations between specific atmospheric processes to other processes of
interest in an NWP model (e.g., [43]), and planning of “targeted obser-
vations” aiming at improving future forecasts by increasing observation
density in critical regions of the atmosphere (e.g., [24]). The use of
ESA, however, is associated with a number of challenges.

One major challenge (C1) is how to assess the confidence that can be
put into the computed sensitivities. The metric J is commonly obtained
by manually selecting a spatial region in which a certain weather event
has been identified, and by using a single representative measure for the
entire region (e.g., mean or root-mean-squared error of corresponding
meteorological parameter) to compute J for every ensemble member.
This approach can become a major source of uncertainty, since a single
measure does not consider the distribution of values over a region and,
thus, might not sufficiently capture the event of interest in all members.
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Furthermore, the stochastic stability of the event in the selected
region, i.e., the likelihood of variations in the predictions relative to
each other, cannot be inferred from a single measure. Thus, the chance
of occurrence of the selected event might be very low.

Once a metric J has been defined, ESA computes the correlation
between J (the target parameter) and the ensemble data of another
model variable (the source parameter) at every point in the domain
(cf. [42]). In the resulting correlation field sensitive regions can be
identified. Then, another challenge (C2) is to infer the geographical
origin of forecast errors from the temporal evolution of theses sensi-
tivities (e.g., [23,47]). Since the manual tracking of sensitive regions
(e.g., [47]) becomes tedious especially if many parameters are of inter-
est, addressing C2 entails the development of automatic approaches for
tracking sensitive regions in a reliable way. Furthermore, it needs to
be analyzed whether determined regions exhibit sufficient stochastic
stability (C3) regarding the variation of model parameters across these
regions. If this is not the case, it is very likely that the corresponding at-
mospheric structure will fall apart over time, so that conclusions drawn
from ESA have to be carefully evaluated.

Another challenge (C4) put forward by our collaborators from
meteorology was the application of ESA to analyze sensitivities in
three-dimensional space. In existing meteorological workflows ESA
is solely applied to analyze the sensitivity between field variables on
two-dimensional atmospheric levels (e.g., [23,43]). To the best of our
knowledge, there is no study that applied ESA in full three-dimensional
space, even though such an extension would be very beneficial to in-
vestigate the interrelations of atmospheric processes as well as the
structure of related weather events in the inherently three-dimensional
atmosphere.

1.1 Contribution

We introduce a novel visual analysis workflow for addressing C1 to
C4; an overview of this workflow is provided in Sect. 3 and Fig. 2.
We demonstrate its application by analyzing weather systems observed
during the 2016 North Atlantic Waveguide and Downstream Impact
Experiment (NAWDEX, [37]), an atmospheric research field campaign
in which two of the authors were involved. The NAWDEX research
on predictability of weather investigates how different physical pro-
cesses can play different roles in cyclone evolution; our presented ESA
approach aims at facilitating insights into sensitivities of the weather
evolution related to Tropical Cyclone “Karl” in September 2016.

To address C1, we provide options to determine sub-regions with low
stochastic variation in the region in which the selected weather event
occurs. Therefore, the user can pick a location at which the event has a
significant occurrence, and via correlation clustering—adapted from
Pfaffelmoser and Westermann [27]—the set of locations (including the
picked one) with mutual correlations above a threshold is determined.
A region comprised of such locations is said to be coherent with respect
to the predicted event, and we call such a region a correlation clique.
By repeating this process, multiple coherent regions can be determined,
and the most representative one can be selected and used to restrict the
computation of J to its locations.

We address C2 by letting the user, in the source parameter field,
interactively select connected components of superlevel sets, i.e., the
set of locations at which a threshold in the normalized sensitivity field
is exceeded, and track these components over time. Furthermore, and
to address C3, we provide an indication of the robustness of the ESA
result by visualizing correlation clusters in a selected superlevel set.
Computed clusters indicate low or high stochastic variation of model
parameter values across the selected region, letting the user infer the
structural coherence in the corresponding weather event.

To track a selected feature, i.e., a superlevel set, we use an area-
weighted optical flow based approach. To match features in two suc-
cessive time steps, for all locations covered by a feature in the current
time step, we vote using an uncertainty-aware correspondence measure
whether these locations again belong to a feature in the next time step.

We account for uncertainties in a feature’s boundary by assigning
target locations close to a boundary, yet outside a feature, to the closest
location inside that feature so that correspondence is established. Ad-
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ditionally, since the features we consider can vary significantly in size
over time, the optical flow is used in forward and backward direction
in combination with correspondence statistics to obtain a measure that
better takes into account the size of matched features.

To effectively convey sensitivities between events at different atmo-
spheric levels as well as the temporal changes these events undergo
(C4), we have designed a system comprised of two linked views: An
abstract view displaying a graph structure showing split and merge
events, and a single track visualization using a so called swipe-path
in multi-dimensional space. These visualizations enable the user to
shed light on the robustness of tracked events over time as well as their
temporal changes in shape, size, and location at different atmospheric
levels.

2 RELATED WORK

ESA has been introduced by Ancell and Hakim [1] and Torn and
Hakim [42]. It has been used in various meteorological publications
with a prominent use case being the estimation of the impact of ad-
ditional observations on forecast accuracy [42]. Although alternative
sensitivity analysis techniques are available and used in meteorolog-
ical applications (an overview is provided e.g., by [24]), due to the
widespread use of ESA, and in particular its use by our meteorological
partners, we focus exclusively on this method in the current work.

With respect to visualization research, our approach is related to
techniques for ensemble visualization, and in particular correlation visu-
alization and region-based tracking in time-varying multi-dimensional
scalar fields. A thorough overview of ensemble visualization techniques
in meteorology can be found in the recent survey article by Rautenhaus
et al. [29].

Finding a suitable visual representation of non-local statistical quan-
tities such as correlation structures is one of the most challenging tasks
in visualization. Visualizing the correlation matrix directly is unfea-
sible for large datasets and cannot show spatial relationships. Global
correlation structures were determined by Bansal et al. [3] via corre-
lation clustering, which groups objects based on pair-wise similarities
(positive correlation) and dissimilarities (negative correlation) using
graph partitioning. Liebmann et al. [21] clustered correlations based
on distances on hyperspheres. Paffelmoser and Westermann [27] intro-
duced correlation-based region growing to determine clusters in which
the degree of dependency between the data at the cluster centroid and
the cluster locations does not fall below a threshold. In contrast, in our
approach we search for clusters of locations for which the mutual data
correlations are above a threshold, to ensure that the stochastic stability
of the entire cluster is high.

Paffelmoser and Westermann [28] derived a model to represent local
anisotropic correlation structures and used this model to distinguish
between correlations along and orthogonal to isosurfaces in 3D scalar
fields. By using this approach they analyzed the possible variations
of isosurface structures in uncertain scalar fields. Other approaches
restricted the analysis to the correlations between the data values at
the same location in different datasets [16,36], or they analyzed the
data variations at the same locations over time, often via variants of
time-activity curves [9,40]. Chen et al. [6] used a sampling-based
approach to summarize temporal correlations between voxels in multi-
variable and time-varying datasets with 3D spatial references. Recently,
Zhang et al. [46] developed a temporal multi-variable structure that can
express temporal information at a location in multi-dimensional space.
This was combined with a dissimilarity-preserving cluster algorithm
that characterizes time-varying patterns and spatial locations.

In visualization, a number of techniques have been developed to
track regions over time, i.e., to establish the correspondence between
regions from one time step to the next. In its simplest form, such
methods track the connected components of regions where the data
values are entirely below or above a given threshold [35, 38], yet
also more sophisticated global feature analysis based on scalar field
topology and statistics has been used [2,5,7,34,39,45].

The correspondence between regions can either be found using
overlap calculations [35, 38] or by matching attributes that describe
specific properties of each region [31,33,35]. When data with high
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Fig. 2: Method overview: (a) Input are two ensembles of 2D (3D) scalar fields, one of them resolved over time. (b) In the input field of parameter
J, a point of interest is picked. A stochastically coherent clique around this point is computed. ESA is then used to compute sensitivity values
at every domain point to this clique. (c) Sensitivity fields are displayed, and selected regions can be further analyzed by means of correlation
clustering. Selected regions are tracked over time, and (d) different visualizations like split-merge diagrams and swipe-paths are computed and

used to analyze sensitivity tracks.

temporal resolution is given, region overlap methods require only a
matching function which measures the degree of similarity of regions
in different time steps. In early work this was done using area/volume
of the overlap region, yet more advanced matching functions using
the Earth Mover distance [17] or the Jaccard distance as isosurface
similarity metric have been employed recently [12,34]. However, since
these metrics do not consider the size of the overlap regions relative to
the features’ spatial extent, the matching result can be misleading; for
instance, if a large feature splits into multiple very small features.

When data with low temporal resolution is given and features vary
strongly in shape and position over time, as it commonly occurs in
our meteorological use cases, overlap-based approaches face an addi-
tional problem: Before analyzing the overlap, the direction into which
the feature has moved needs to be predicted. Muelder and Ma [26]
addressed this problem by predicting a feature’s next location from
previous locations using trajectory extrapolation, and then computing
the overlap between the shifted and a target feature. Doraiswamy et
al. [7] and Valsangkar et al. [2] used the optical flow [15,22] between
brightness temperature and pressure fields, respectively, to obtain an
initial guess of the location of a cloud or cyclone feature in the next
time step. Two features are matched if there is at least one hit between
these features, i.e., a location in the region of the source feature is
connected to a location in the region of the target feature.

In meteorological and climate research tracking is often reduced
to single points like extremum points in pressure or precipitation
fields [14], and these points are then connected together across time
to form tracks. A popular method to find corresponding points in suc-
cessive time steps is the first-guess method [44], which predicts the
location of a selected point in the next time steps by linear continuation
and then searches for the closest feature point in the next time step.
Gambheer and Bhat [13] tracked clouds by considering the overlap
of closed feature contours across time steps. More recently, Fiolleau
and Roca [11] considered the time-varying two-dimensional input as a
three-dimensional volume, and tracked clouds by tracking seed points
within this volume.

3 METHOD OVERVIEW

Given an ensemble of forecast runs, our proposed visual analysis work-
flow enables meteorologists to interactively analyze the sensitivity of
a selected model parameter, e.g., precipitation, to another one, e.g.,
moisture flux. Fig. 2 shows an overview of the proposed workflow.
We consider scalar field data from the ECMWF Ensemble Prediction
System (ENS; e.g., [20]). The ensemble comprises 50 perturbed mem-
bers and an unperturbed control forecast (that is started from the “best”
initial conditions). Past forecast data is available from the TIGGE

archive [41] on a regular longitude-latitude grid in the horizontal; in
the vertical, data is available on levels of constant pressure.

The user first inspects the dependent parameter for which the sensi-
tivity shall be analyzed. Following common practice in meteorology,
we show a 2D map of ensemble values, e.g., the point-wise mean or
maximum values (Fig. 2a). In workflows from past meteorological
publications (e.g., [24,43]), users select a target region enclosing a
significant weather event for which ESA is performed. The parameter
values in the selected region are then used to compute the single value J
per ensemble member, e.g., a mean value or a root-mean-squared error.
Then, at every domain location the sensitivity of these values to the
ensemble values of the independent parameter at these locations are
computed.

It is here were we place our first improvement of the workflow:
We let the user determine a representative region in which an event is
coherently predicted, i.e., a correlation clique (cf. Sec. 4.1). Therefore,
the user selects a seed location, and the system computes instantly a
correlation clique to this location (Fig. 2b, Fig. 3). The size of this
clique and its strength, i.e., the strength of the mutual dependencies
between the data values at the locations covered by the clique, indicate
the expected reliability of the ESA results (C1). The user can inter-
actively select different seed locations to find the largest or strongest
clique, or abort the process if no such clique is found. For computing
the metric J, the parameter values are then condensed only over the
selected clique.

The sensitivity values computed by ESA (cf. Sec. 4.1) are plotted in
a separate map (Fig. 2¢). To highlight regions which can be deemed
a significant influence on the target region, the superlevel sets with
respect to a sensitivity threshold—selected based on a significance
test—are visualized. To address C2, the user selects a region, and the
system automatically tracks this region over time by matching against
regions in successive time steps (Fig. 2d). Prior to tracking, however,
our second improvement comes into play to address C3. By means
of correlation clustering it is indicated whether the parameters in the
selected superlevel set show low or high stochastic variation (Fig. 2d).
If, for instance, two large clusters with inverse correlation to each other
exist, the corresponding weather event might be unstable and, thus,
rather unsuited for a temporal evaluation.

The tracking process (cf. Sec. 4.3) is guided by the optical flow to
predict the percentage of area of one region that overlaps with another
region in the next time step. By using the optical flow forward and
backward in time, we detect split and merge events, which are encoded
in an abstract split-and-merge tree (Fig. 2d) that is linked to the spatial
view. This allows for an interactive inspection of detected events,
by picking objects in the tree and visualizing them in their spatial
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surrounding. For a selected region we compute a so-called swipe-
path (Fig. 2d), to reveal the spatial and geometric variations a region
undergoes over time. A swipe-path shows in one image the temporal
evolution of a region, including all split and merge events by coloring
and blending all single time states together (Sec. 4.3.2).

To address C4, all components of our proposed visual analysis
workflow can be performed optionally using 2D or 3D data (see inlets
in Fig 2). To ease navigation, region selection is always performed
on 2D maps, and in a synchronized view the 3D region is shown
simultaneously. When 3D data is used, direct volume and isosurface
rendering via GPU raycasting is used to visualize extracted regions and
show their tracks over time.

4 ENSEMBLE SENSITIVITY ANALYSIS

We introduce details of our proposed interactive visual analysis work-
flow for using ESA, and we demonstrate its outcome and derived
hypotheses on a real-world dataset. We elaborate specifically on the ad-
ditional indications and suggestions that our workflow offers compared
to the common use of ESA in meteorology.

4.1 Statistically coherent input regions

The ESA approach diagnoses statistically the sensitivity of a selected
forecast quantity (the input metric) for a target location to another
quantity at other locations and prior times (the initial condition state
variable). ESA determines these statistical relations using correlation
measures. In particular, the sensitivity (dJ/ds) of the target forecast
metric J to a selected state variable s is computed at all points in the
model domain. This sensitivity relationship can be expressed as

dJ _ cov(/,s) . 1
s o) with  cov(/,s) =

n
Y V=) (s —3).
n—1/4=

Here J and s are n-dimensional data vectors, with n being the en-
semble size, and the covariance (cov) and standard deviation (o) are
computed over all ensemble members. Thus, the sensitivity measure is
the Pearson correlation coefficient multiplied by the standard deviation
of the state variable o(s) at a certain location.

As the data values in regions exhibiting very low correlation can
be assumed independent of each other, the effect of uncertainty on
a feature in such a region is to a large extent arbitrary. Since o (s)
can be seen as a measure of the ensemble uncertainty in the state
variable at a certain location, points with both high correlation and high
uncertainty are emphasized, causing weaker structures to be filtered out.
The underlying rational is that changes in terms of standard deviations
to grid points with small uncertainty will influence the outcome of a
weather prediction system only slightly.

Using the ESA measure, so called hypothesis chains between physi-
cal events can be generated to identify physical processes that poten-
tially cause uncertainty in the forecast. The combination of meteorolog-
ical fields for the input metric and state variable (e.g., precipitation and
moisture flux) generates the ensemble that is analyzed to quantify the
contribution to uncertainty induced by the state variable with respect
to the natural variability estimated from the meteorological models.
Critical to the sensitivity analysis is the selection of a suitable input
region over which the metric J is considered.

Using the input metric ensemble values at a single location and
computing sensitivities of these values to the state variable ensemble
values at other locations is highly sensitive to the chosen location.
Hence, in practice a region that contains a significant weather event, i.e.,
a meteorological process of interest like heavy precipitation, is selected,
and for each ensemble member a single measure for the entire region is
computed and used as input metric J. Also more sophisticated selection
procedures exist, for instance, which split manually the selected region
into coherent sub-regions with respect to orography or texture, yet all
these approaches require profound meteorological knowledge to select
a meaningful set of input locations. Furthermore, as indicated by Fig. 4,
computed sensitivities are highly sensitive to the selected input region.

We determine automatically a statistically coherent set of locations
over which the input metric is computed, by computing correlation
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Fig. 3: 24 hours ensemble maximum precipitation over Norway, com-
puted between 27 - 28 September 2016, 18:00 UTC. Comparison of
correlation cliques computed from different seed locations.

cliques. A correlation clique is defined as the set of locations (including
a user-selected seed location) with pair-wise correlations between the
data values at these locations above a threshold. A clique can consist
of multiple connected components. The input metric J is then com-
puted ensemble-member-wise over these locations, and the sensitivity
is computed to the resulting ensemble of values of J. In this way, only
locations that show a statistically similar data distribution and that are
likely to deviate into the same direction in data space are considered.
Averaging over regions with completely different statistical character-
istics is avoided. Fig. 3 shows correlation cliques for 5 different seed
locations that were selected in the depicted precipitation field. It can be
seen how strongly the cliques can vary, and how few locations of the
high precipitation event they can cover.

Figure 4 shows sensitivities computed by ESA for J computed over
two manually selected rectangular regions and a correlation clique.
Since the orography over Norway is vastly different for every grid-
point, it is difficult to select a rectangular region covering a coherent
region. The use of an automatically adapted correlation clique can
alleviate this problem.

4.1.1 Computation of correlation cliques

To compute a correlation clique, the user first selects a domain location
(seed location) at which a significant weather event is predicted, e.g.,
a location with high precipitation. Given this location, the clique is
computed via Algorithm 1.

input:X, %, o
Xe=£X=Xi=0;
sort X w.r.t. decreasing corr(s(x;),s(xc)), xj € X;
while i < |X| do
X =X\{xjlcorr(s(xc),s(xj)) < a, xj € X}
Xe = Xi+15
i=i+1;
end
return X;

Algorithm 1: Our algorithm for computing a correlation clique, with
X containing all locations (i.e., grid points) in the domain, £ the seed
location, x; the i element in X, s(x;) the value vector at location x;,
and o the selected correlation threshold.

To perform the computation efficiently, we first determine all lo-
cations with a correlation to the seed location that is greater than or
equal to the threshold, sort these locations with respect to decreasing
correlation to the seed location, store the sorted sequence, and proceed
as follows: As long as there are locations in the sequence, we select
the one with highest correlation to the seed location, and remove all
locations from the sequence with a correlation to the selected one below
the selected threshold. This procedure is successively applied until all
locations have been processed, and the remaining locations belong to
the computed correlation clique. The correlation threshold has a signif-
icant effect on the size of the cliques; the lower (higher) it is, the more
(less) locations will be assigned to a clique. From a number of experi-
ments we have found empirically that a threshold around 0.7 usually
leads to plausible cliques. In particular, we have observed that slight
variations around 0.7 often do not cause any significant changes, and
that resulting cliques were considered representative for the considered
event by our partners from meteorology.
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Fig. 4: (a) As in Fig. 3, together with the different input regions (framed in black) that were used to compute the ESA metric J. (b)-(d) Sensitivities
are computed with respect to moisture flux at 18:00 UTC 28 September 2016, corresponding to the time right after a high precipitation event over
Norway. Hence, high sensitivities are expected mostly east (downstream, blue circle) of the high precipitation region. Rectangular input regions
(b), (c) show weaker signals than the region that was automatically determined via a correlation clique (d), especially east of the event.

Upon computing a correlation clique, it is displayed as an isocon-
tour in the scalar field of input metric J. Locations, i.e., grid points,
belonging to the clique are set to one, while all others are set to zero,
and the isocontours are extracted from the resulting binary field to the
threshold 0.5. The same procedure is applied in 3D, yet the cliques are
displayed as isosurfaces in the 3D domain.

4.2 Coherent sensitivity regions

With a selected correlation clique, at every domain point ESA is used
to compute the sensitivity between the state variable s at that point and
the input metric J. Of special interest are regions of high sensitivity,
i.e., superlevel sets to a selected sensitivity threshold, displayed by
their enclosing level set. These regions are considered to be coherent
with respect to sensitivity, and they are used to indicate where the
prediction of J can be improved, i.e., by assimilating additional data
from measurements. However, it can be conjectured that measurements
placed in a region with high statistical variance will not be able to
improve the prediction. Instead, a separate measurement for each
statistically coherent region should be preferred.

To further shed light on the statistical variance within a selected
region of high sensitivity, one possible solution is to show the cor-
relation matrix for all locations belonging to that region. In general,
however, this is unfeasible because the correlation matrix is too large
and structures between the values at different locations cannot easily be
identified from it. To overcome this limitation, we utilize the algorithm
for computing correlation cliques to partition the region into multiple
disjoint cliques, with all positive correlations between the data values
at locations in one clique.

4.21

Algorithm 2 describes the procedure for computing a set of correlation
cliques that densely cover a selected superlevel set. Our goal is to de-
termine regions with low internal yet high mutual stochastic variation.
Multiple cliques with low mutual stochastic variation indicate a rather
unstable weather event that may fall apart over time, hinting towards
regions where the meteorological models tend to produce different
predictions. Especially sub-regions with very low or even negative cor-
relations to the initial clique should be treated separately in subsequent
analyses.

The algorithm first computes a correlation clique in the field of state
variable s to the seed location with highest sensitivity to J. Next, a
second clique is computed, that also has high correlations between the
data values at assigned locations, but with low correlation to the first
clique. Therefore, we compute the member-wise means of the state
variable over the initial clique and select from the remaining locations
the one with the minimum correlation to the mean values as seed point
for the second clique. This process is then repeated with the second
clique as initial clique until all locations in the superlevel set have been
assigned.

The resulting partition shows the size and location of cliques with
strongly correlated data values, yet with positive and negative mutual
correlations. For different scenarios this is demonstrated in Fig. 5.
Even though inverse correlations between cliques within one single

Correlation clustering

input:X, %, «
X=X;i=0;
clique, = correlation_clique(X, £, a);
X = X\{x|x € cliquey };
while (X! =0) do
s¢ = compute_metric(clique;);
x; = argmin,z (corr(s(x),sc));
clique; | = correlation_clique(X,x;, );
X =X\{x|x € clique;  };
i=i+1;
end
Algorithm 2: Correlation clustering splits a selected region X into
sub-regions with high interior correlation but low mutual correlation.
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Fig. 5: Partition of superlevel sets using correlation clustering (Alg. 2).
Level set in ESA between (a) precipitation and moisture flux and
(b) geopotential height error and geopotential height. Many small
clusters (different colors) in (a) indicate high stochastic variability.
Large clusters (b) indicate large statistically coherent regions. (c,d)
Correlation of first cluster to all others in the region. Even negative
correlations (red) appear.

region with high sensitivity seem surprising at first, such structures
can nevertheless occur because the Pearson’s correlation coefficient
underlying ESA is not transitive.

4.2.2 Significance of sensitivity

To test whether an extracted region of high sensitivity is significant,
a two-tailed t-test is commonly applied to the correlation values in
a selected region ( [47]). For the 51 member ensembles used in our
work, values higher than 0.276 can be deemed significant with 95%
confidence. This, however, can only be seen as a rough indicator, since
for every fixed J the t-test assumes normally distributed values for s,
which cannot be guaranteed in general. Therefore, we use the test
solely to remove regions with low significance. Once a region has
significant parts, it is considered as a whole in the upcoming analysis.
In our visualizations, we use an additional visual channel to show
the significance of the sensitivity values over the domain. According
to Retchless and Brewer [32] we use stipple patterns as overlays to
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depict the significance. In particular, we use a point stipple pattern with
constant point density to indicate regions with medium significance,
i.e., between 50% and 94%, and a line stipple pattern with constant line
spacing to indicate very low significance, i.e., below 50%. The overlays
are generated by mapping textures filled with the stipple patterns over
the entire domain, and fading out a texture’s contribution where the
significance values are not in the corresponding interval. The different
types of stipple overlays we use are demonstrated in Fig. 1c.

4.3 Tracking sensitive regions

In the majority of meteorological workflows for ensemble analysis
today, tracking of regions in which significant weather events are pre-
dicted is performed via animation and manual matching of correspond-
ing regions in successive time steps. One of the reasons is that the
predictability of regions associated with high-impact weather events,
which are often the regions of interest, is low, and predicted events tend
to undergo major changes in shape and location over lead time. To
support the automatic tracking of regions over time also in this situation,
we propose an improved tracking algorithm using the optical flow in
forward and backward direction.

4.3.1

Given a sequence of 2D or 3D time-varying scalar fields, e.g., precip-
itation, the optical flow (OF) [15,22] estimates the apparent motion
of precipitation patterns in two successive fields, the source and the
target field. The main idea behind the OF algorithm is to minimize
a global cost function that represents the rate of change of the scalar
quantity from the source to the target, under the assumption that the
metric does not change during a sufficiently small duration. The result
is a displacement field, which indicates for every spatial location and
given data value at that location to which location this value should be
moved such that the transformed field matches the target field. In our
workflow we use the implementation of the Farneback algorithm [10]
that is provided by OpenCV [4], with a window size of 12 in either
dimension, pyramid scale of 0.4, polynomials of degree 8, 2 iterations,
and a smoothing factor of 1.2.

To establish a correspondence between regions in the ESA field
at different time steps, which are defined as superlevel sets to the
correlation threshold, we apply forward and backward OF between
these fields (see Fig. 6). In the forward pass, the OF field is used to

Bidirectional OF-based matching
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Fig. 6: Forward (a) and backward (b) OF between sensitivity fields at
two consecutive time steps. (¢) Forward OF tracking with 25% filtering
matches a single region (orange outline, yellow interior) to the picked
region (green outline, yellow interior). (d) Bidirectional OF tracking
using the same filtering matches two additional regions, one of them a
major split event visible in Fig. 1c.

estimate at which location in the local surrounding of every source
location a similar ESA value is found in the next time step. This
leads to the predicted motion of the ESA field over the corresponding
time period. In principle, this motion field can already be used to
establish a correspondence between regions in successive time steps:
Correspondence between a source and target region is established if
there is at least one location in the source region where the motion
vector points at a location in the target region [2]. As manually validated
by our domain experts, however, this approach has led to a number of
falsely matched regions as well as missed connections in our specific
scenario.

http://dx.doi.org/10.1109/TVCG.2018.2864901

To weaken this limitation, we have modified the OF-based matching
procedure in two ways: Firstly, for every target location that is indicated
by the motion vector, we test whether this location is sufficiently close
to a target region. This indicates that the location belongs to that region
with high probability. In particular, we test for a distance less than the
size of one cell of the grid structure at which the ESA values have been
computed. The total number of matches from the source to the target
region, as well as the percentage of points of the source region that are
matched to a certain target region is stored. The number of matches is
used in the split-merge diagram described below to indicate the size of
matched regions, and the percentage of matched locations is used to
filter out region pairs that are only connected weakly.

Secondly, we use the OF, now oriented backward in time, to estimate
from where in the source field a physical quantity was moved over the
current time step. We could do this via a semi-lagrangian advection
step known from fluid simulation, where the motion vectors in the
target field are simply reversed, yet the explicit backward step using
OF enables us to employ a bidirectional matching according to the
distribution of the values in both fields. The result of the backward step
is used in the following way: Firstly, we establish a new link in exactly
the same way as in the forward step, and we store the number and
percentage of matched locations. The computed links are now filtered
with respect to a prescribed percentage threshold: If for a given pair of
matched regions in both the forward and the backward step this thresh-
old could not be reached, the link is disconnected. Fig. 7 illustrates
these two scenarios. Our partners from meteorology liked in particular
the possibility to interactively change the percentage threshold and see
immediately the resulting matches in the spatial view (see below). By
this, it was easy for them to explore all suggested pathways of weather
events and select those in best agreement with their domain-specific
assumptions.

Forward tracking

0 O|o
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Fig. 7: Schematic illustration of bidirectional OF-based region tracking.
Matches (indicated by arrows) identified between regions in time step
t; (green circles) and #;11 (orange circles) are shown for forward and
backward OF tracking. Arrow width indicates number of matched
locations. Dashed lines indicate weak matches which are filtered out.
Final result is the union of remaining matches.

Resulting connections
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Backward tracking

4.3.2 Visual encoding of region tracks

The computed matchings between source and target regions over the
entire simulation time are displayed in a split-merge diagram, where
every sensitivity region is represented as a node and edges between
nodes are established if a match has been established (Fig. 8b). The
number and percentage of matched locations for a selected region is
used to adjust the width of edges in this graph (Fig. 8b). The diagram
orders all extracted regions along the horizontal time axis, yet the re-
gions in one single time step are drawn along the vertical axis in an
unordered way. It is clear that this can lead to significant changes in
the edge orientations from time step to time step. However, since the
split-merge diagram is solely used as an additional support tool for
selecting a region that can then be tracked in the spatial view, we did
not focus on improving its visualization. Improved layouting strategies
for such diagrams are discussed by Widanagamaachchi et al. [45]. In
the split-merge diagram time decreases along the horizontal axis. The
resulting unusual ordering of time steps was specifically requested by
our collaboration partners from meteorology. Since relevant sensitivity
structures are defined close to the selected event and then traced back-
ward in time, our partners wanted to see the same temporal evolution
in the diagram.

In the diagram the user can now pick a time step and let all extracted
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Fig. 8: (a) ESA sensitivity between precipitation and moisture flux
(color). Stippling covers regions with less than 95% significance. The
region with positive ESA close to the user-placed pole (red dot) is
selected for tracking, which is performed towards the initial time of the
simulation with increasing time-difference to the precipitation event.
(b) The split-merge graph with 10% filtering shows that the selected
region can be traced back (orange path) to the initial time step. There
is a merge event which connects two major tracks (black arrow).

regions in that time step being displayed in the linked spatial view.
Furthermore, we let the user select a region in the spatial view, and
show all regions that were merged with this region or which emerged
due to a split of this region. From this set of regions, i.e., the connected
component C in the diagram containing the selected region, a so-called
swipe-path is generated in the spatial view. The swipe-path encodes the
spatio-temporal evolution of the selected region, by assigning to every
location that was overlaid by a region in C a scalar value indicating
the first time this location was covered. In this way, the evolution of
a region is encoded in a scalar field, which can then be visualized by
isocontouring, 2D color plots, or direct volume rendering in 3D (see
Figs. 11c and 1c). We do not smooth the resulting spatial structure
to keep the grid resolution visible, which was also requested by our
partners from meteorology. When mapping scalar values to colors,
gradually changing colormaps are beneficial since neighboring time
steps can be identified while the whole evolution remains clearly visible.

Even though a swipe-path, conceptually, is a rather simple visual
representation of the temporal evolution of selected regions, especially
its use for depicting the motion of 3D regions was very well received by
our partners from meteorology. For the first time ever, meteorologists
could investigate the vertical movement of sensitivity regions, including
the geometric changes these regions undergo over time. The domain
experts argued explicitly against the use of glyphs for depicting the
temporal evolution of a selected region, to be able to directly read both
the spatial and temporal changes a region undergoes.

5 RESULTS AND EVALUATION

All components of the proposed visual workflow have been inte-
grated into the open-source meteorological visualization tool “Met.3D”
[25,30]. The existing data processing pipeline of Met.3D, as well as
existing visualization functionality for meteorological maps and direct
volume rendering, provided a suitable pre-existing infrastructure. Also,
integration into an existing tool eases promulgation of our approach
into the meteorological community.

Firstly, we demonstrate the use of the workflow to investigate sensi-
tivities in weather forecasts related to the extratropical transition (ET)
of tropical cyclone “Karl” in late September 2016. The case is a fo-
cus of current NAWDEX analyses, aiming at identifying atmospheric
processes that may have caused deficiencies in the predictability of
the subsequent weather evolution (cf. [37]). In the days considered,
Karl moved into the middle latitudes, merged with a pre-existing weak
extratropical cyclone, rapidly re-intensified during this extratropical
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transition and thereby impacted the jet stream over the North Atlantic
and northern Europe. This period was characterized by large forecast
errors. Visualization methods to investigate further aspects of the case
were already presented by Kumpf et al. [19] and Kern et al. [18]. We use
data from the ECMWEF ensemble prediction system (ENS; e.g., [20]);
all results are produced from data on a regular latitude—longitude grid
with a grid spacing of 0.5°(1° for precipitation), using levels of constant
pressure in the vertical.

We consider an extreme precipitation event that occurred along the
Norwegian coast at the end of Karl’s life cycle on 28-29 September
2016. In some places, more than 116 mm of rain fell in less than
24 hours. A large-scale and a smaller-scale perspective are analyzed,
yielding first insights into the atmospheric processes involved.

5.1

Fig. 9 shows the forecast error (the difference between forecast and
subsequently observed values) of 300 hPa geopotential height (gravity-
adjusted height above sea level) of the ensemble control forecast at
00:00 UTC 28 September 2016, valid at six days lead time from the
forecast initialized at 00:00 UTC 22 September 2016, as well as the
ensemble mean absolute forecast error of the same date. Contour lines
of geopotential height show two key features: A large gradient over
the North Atlantic indicates the jet stream, a low-gradient region over
eastern Europe indicates the remnants of a high-pressure system over
Scandinavia that dominated northern European weather in the days
before. The decay of this structure (referred to as “block’) enabled
the jet over the Atlantic to extend over Scandinavia, which steered
the cyclone that developed in the wake of Karl into Norway, causing
extreme precipitation.

Large-scale perspective: Geopotential height error

Fig. 9: (a) Geopotential height error (m) of control forecast, and (b)
geopotential height mean absolute error (m), at 300 hPa with a lead
time of 144h. Contours show geopotential height of control run (a) and
analysis (b).

Of interest are forecast errors over northern Europe associated with
the decay of the block and the jet impinging on Norway. The error field
exhibits very different structure in different members of the ensemble
(not shown), yet still in the ensemble mean of the absolute errors, errors
associated with this jet are very large, with a maximum over Scotland
(Fig. 9b). It is a natural choice to first consider this error maximum;
we hence aim at investigating the sensitivity of errors in this region to
geopotential at earlier forecast times.

The user selects a seed location at 300 hPa over Scotland, at 00:00
UTC 28 September 2016, and the system computes an extended corre-
lation clique with low stochastic variation (see Fig. 10) It captures the
error region over Scotland and extends vertically throughout the entire
atmosphere but does not include the southern Scandinavian region.
The ESA signal (sensitivities) at the selected time (Fig. 10b) show a
distinct dipole correlation pattern indicating that members with smaller
forecast errors have lower (higher) geopotential height north (south)
of the large gradient. Furthermore, the dipole pattern extends to the
east of the large gradient. This pattern indicates that the actual jet was
stronger and extended farther to the east than in the ensemble mean.
The sensitivities, however, quickly vanish as we trace them backwards
in time (illustrated in Fig. 10c for the positive ESA signal north of
the large gradient). Evidently, the error maximum within the largest
gradient is thus not associated with geopotential features at previous
times earlier than 12-24h and no meaningful insight is gained into
which earlier processes may have caused the error. As the region of
large errors is located in a region of a strong gradient, however, the
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Fig. 10: (a) Correlation clique of geopotential height error, seeded at
300hPa over Scotland (pole and white cut). (b) ESA at 300hPa, using
the clique from (a). (¢) 3D swipe-path of sensitive region north of Great
Britain (black arrow in (b)). The sensitivity signal vanishes after 18 h.

considered error maximum may be dominated by uncertainties in the
north-south location of the jet.

Our interest here, however, is rather on the zonal extent of the jet
and thus to investigate the situation further, we consider the lower-
gradient region at the eastern end of the jet. A correlation clique in
this region, centered at 300 hPa over Denmark (Fig. 11a), also yields a
very coherent spatial structure, both in the horizontal and in the vertical,
similar in this respect to the one associated with the error maximum
discussed above. The ESA signal now exhibits a “tripole” structure
with an elongated region of strong negative correlations overlapping the
clique and positive correlations to the north and south. Hence, members
with smaller forecast errors exhibit a stronger and more northerly jet
and a stronger block to its east than the ensemble mean, and in addition
more pronounced wave breaking over the western Mediterranean.

Fig. 11c shows the 3D swipe-path obtained from tracking the nega-
tive (red) ESA feature. The sensitivity pattern can be traced up- (west-
wards) and downstream (eastward ) in time, respectively, with notably
faster speed “upstream” than “downstream”. This error pattern in the
large-scale flow therefore has both an upstream component, as well as
a more local “block” component. Importantly, the sensitivity pattern
gets gradually more confined to the upper troposphere when tracing
back in time, which emphasizes the importance of the jet structure over
the North Atlantic two days before the development over Scandinavia.
Focusing on this upstream propagation of the ESA feature, we find that
the statistically-significant signal is lost at 18:00 UTC 25 September
2016 in the ridge over the western North Atlantic. This is the time at
which the extratropical transition of Karl started to impact the ridge
development ( [37]). Inspecting the ESA map at this time (at 300 hPa,
Fig. 12a), we note a statistically-significant positive signal near the base
of the trough upstream of the ridge. Going further back in time reveals
that this signal highlights persistently the region between the tropical
cyclone Karl and the upstream trough in the preceding 24 h (illustrated
at 12:00 UTC and 00:00 UTC 25 September 2016, Fig. 12b,c). This
signal is consistent with the high sensitivity of the outcome of the ex-
tratropical transition to the occurrence of the tropical cyclone and the
upstream trough [8].

Our approach facilitates the intuitive building of hypothesis chains.
As one example, it is now of interest if the error identified in the ridge
is indeed associated with tropical cyclone Karl during its extratropical
transition. To this end, we select a clique of geopotential errors from the
center of the negative ESA signal in the ridge at 00:00 UTC 26 Septem-
ber 2016 and investigate its correlation with low-level features (using
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Fig. 11: (a) As Fig. 10a, but seeded over Denmark (pole). (b) ESA
between geopotential height error and geopotential height at 300hPa
using root mean square error of clique (turquoise) from (a) as input
metric. Blue contours show mean pressure of geopotential height,
stippling covers statistically insignificant regions to black contours
marking 95% confidence. The red region indicated by a black arrow
was later tracked. (¢) Swipe-path of sensitivity feature over Denmark
to correlation clique (a) seeded at dark red pole. Color changes in 6
hourly steps. Darker color indicates earlier valid times. Blue colors in
the east show that the initial feature must have split before the second
time step.

925hPa geopotential). At this time, the ridge error is associated with a
statistically significant dipole in 925hPa geopotential elongated in the
direction of Karl’s track (not shown), indicating that ridge errors corre-
late with the position of Karl. This dipole pattern can be traced back
for 96h (Fig. 13), using the positive part of the signal, until the start of
the forecast. The signal, however, is statistically significant only in the
first and last 24h of the considered time period. Still, Fig. 13b indicates
that errors in the track of Karl lead to errors in the ridge formation
over the North Atlantic, which in turn leads to errors in the large-scale
flow over Scandinavia two days later. Application of our method thus
greatly facilitates building a hypothesis chain that ultimately relates
the extreme precipitation event in southern Norway to the evolution of
tropical cyclone Karl. It is a promising task for future work to further
elaborate on this hypothesis.

5.2 Smaller-scale perspective: Moisture flux

The second perspective focuses more directly on the extreme precipita-
tion event, aiming at identifying the sensitivity of the forecast precipita-
tion amount to uncertainties in the forecast moisture flux (the product
of humidity and wind) at earlier times. When selecting a square target
region enclosing a significant weather event, as in common meteorolog-
ical workflows, a rather weak ESA signal is computed (see Fig. 4b,c).
By using our workflow, the user has picked different seed locations
(see Fig. 3), until a coherent correlation clique (Fig. 1a) yields clear,
significant ESA signals (Fig. 4d). The interpretation of the signal is
rather straightforward: The positive signal over southern Norway and
upstream (to the west) reveals that stronger precipitation is associated
with stronger antecedent moisture flux. Interestingly, our case does
not exhibit a dipole pattern close to the region of extreme precipitation,
which indicates sensitivity to the location of antecedent moisture flux
and has often been found in other studies. Here, instead, the sensitivity
is to the magnitude of the moisture flux over a relatively broad area.
The automated tracking clearly traces the signal back to the be-
ginning of Karl’s extratropical transition approximately 4 days earlier
(Fig. 1c). The split-merge graph (Fig. 8b) and the mean tracking vectors
in Fig. Ic indicate that the signal undergoes several merge and splitting

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
http://dx.doi.org/10.1109/TVCG.2018.2864901

The final version of record is available at

N
(&\ o
N Q)
R mant s ) &:\\\\\ >

1 \\S

DEEX-LU )
AN
_—

-

AR

o

Fig. 12: ESA to clique over Denmark (cf. Fig. 11). (a) The last significant part of the tracked red region vanishes. A new significant signal is
detected close to Karl. (b,c) It appears in earlier time steps as well, indicating a link between the error over Denmark and the early stage of Karl.
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Fig. 13: (a) Sensitivities between geopotential height error at 300hPa
(clique marked in turquoise) and geopotential height at 925 hPa. (b)
Swipe path for the positive (green) sensitivity feature marked by the
arrow in (a).

events during this time. In particular before 00:00 UTC 26 Septem-
ber 2016, the sensitivity regions are of relatively small scale before
they merge into a spatially more coherent pattern (Figs. 8b, 1c). By
inspecting the individual ESA maps we visually verified the automated
tracking. The ESA signal found in the moisture flux thus corroborates
the hypothesis chain developed using the geopotential correlations, i.e.,
that the extreme precipitation event in Norway is sensitively linked to
the evolution of tropical cyclone Karl.

Finally, it is important to note that the statistically coherent struc-
tures in the moisture flux field are relatively small compared to the ones
in the geopotential height field (Fig. 5), i.e., the moisture flux region
exhibits more nontrivial smaller-scale structures. Hence, more atmo-
spheric observations are required to adequately sample the sensitive
moisture flux region. If targeted observations were collected to reduce
the uncertainty in the forecast of the extreme precipitation event, the
analysis suggest that it might be more efficient to sample the sensitive
geopotential height region using less observations. Depending on the
forecast horizon, the observations should be collected in the region be-
tween Karl and the upstream trough, to improve the forecast of Karl’s
track, or directly within the ridge after the completion of the ET.

5.3 User discussion

We discuss our first experiences with the method from the point of
view of the meteorological domain experts in the author team. To
our knowledge, this is the first interactive end-to-end workflow for
ESA (providing guidance from selecting the region for J to tracking
of sensitivities, including guidance on robustness of results and pos-
sibly further locations of interest, i.e., supporting hypothesis chain
building). Compared to our current script-based workflow, ESA is
therefore greatly facilitated during all necessary steps of the analysis.
Definition of a suitable region for J using correlation cliques greatly
facilitates selection of a meaningful (in a statistical sense) region. In our
script-based workflow, region selection was guided by meteorological
intuition. Now, the selection of the initial point is guided by intuition,

the region is proposed by the automated method. The user can check if
the proposed region contains the event of interest.

Tracking of sensitivity features and subsequent depiction of a swipe-
path provides a quick, succinct overview of the evolution of the sen-
sitivities, thus enabling fast judgement if further investigation of the
sensitivities should be conducted. If yes, attention of the investigation is
directed to the “end” (in a backward tracking sense) of the swipe-path,
which can be the starting point of any further sensitivity analysis (in the
context of building hypothesis chains). In particular, the 3D depiction
of the swipe-path provides unprecedented insight into the evolution of
the 3D structure of the sensitivities. The split-merge diagram provides
guidance for the robustness of the signal. If many split and merge
events are present, the user needs to evaluate the sensitivities carefully
to judge their physical relevance; few, distinct events, on the other hand,
may indicate physically meaningful evolutions. For example, the lack
of split events between 28 and 26 September in the orange curve in
Fig. 8b is guidance to interpret the track as physically meaningful back-
ward propagation of the sensitivity signal from the initially selected
weather event of interest to the Western Atlantic near Karl.

6 CONCLUSION

We have proposed a novel visual analysis workflow to facilitate an
interactive analysis of sensitivities of a forecast metric J on another
forecast field. Our workflow enables the user to interactively identify
regions of intercorrelated grid points from which J is computed, and to
automatically track features of high sensitivity through time. A “swipe-
path” visualization showing the track of a sensitivity feature in time
has been proposed that allows the user to immediately see geographical
regions from which sensitivities originated. Swipe-paths are generated
from user-selected features and can be displayed both in 2D and 3D.
In particular, the novel interactive sensitivity tracking in 3D opens the
door to analyses considering all spatial dimensions, as not possible with
existing 2D meteorological workflows.

The workflow has been integrated into the open-source software
Met.3D. Its benefit has been demonstrated with a real-world case study
taken from ongoing analyses of the NAWDEX atmospheric field cam-
paign. Compared to script-based tools commonly applied in the mete-
orological community, the workflow proposed here greatly simplifies
ensemble sensitivity analysis by providing an interactive end-to-end
workflow that encapsulates all steps required for sensitivity analysis in
a single framework. At the same time, important information about the
reliability of the results is provided, and a fully 3D analysis is facilitated.
In the near future, the method will actively be used in further data anal-
ysis activities related to the NAWDEX campaign. Future work might
include detailed statistics of sensitivity structures, a manual correction
tool for the tracking and further enhancement of the swipe-path using
glyphs to compensate for occlusion.
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Figure 1: Visual analysis of a time-varying multi-parameter cloud ensemble. (a) Iso-surfaces of liquid water content (L, green), ice (I, blue),
and graupel (G, red). (b) Parallel coordinates plot rendered on black background of per-voxel parameter values including attribute density
histograms. (c) Voxel clusters determined via ensemble clustering using multiple k-Means clustered t-SNE projections. Voxels in the same
cluster but separated in the t-SNE embedding are connected via lines. (d) Distribution-based matching of clusters over lead time, starting
from 6 hours forecast. Colored curves show the matching error for different matching strategies and error metrics. (e) Selected cluster at 6
hours lead time (orange) and clusters matched to it at 4 and 2 hours lead time are highlighted in the parallel coordinates plot.

Abstract

The proposed approach enables a comparative visual exploration of multi-parameter distributions in time-varying 3D ensem-
ble simulations. To investigate whether dominant trends in such distributions occur, we consider the simulation elements in
each dataset—per ensemble member and time step—as elements in the multi-dimensional parameter space, and use t-SNE to
project these elements into 2D space. To find groups of elements with similar parameter values in each time step, the resulting
projections are clustered via k-Means. Since elements with similar data values can be disconnected in one single projection,
we compute an ensemble of projections using multiple t-SNE runs and use evidence accumulation to determine sets of ele-
ments that are stably clustered together. We build upon per-cluster multi-parameter distribution functions to quantify cluster
similarity, and merge clusters in different ensemble members. By applying the proposed approach to a time-varying ensemble,
the temporal development of clusters, and in particular their stability over time can be analyzed. We apply this approach to
analyze a time-varying ensemble of 3D cloud simulations. The visualizations via t-SNE, parallel coordinate plots and scatter
plot matrices show dependencies between the simulation results and the simulation parameters used to generate the ensemble,
and they provide insight into the temporal ensemble variability regarding the major trends in the multi-parameter distributions.

1. Introduction

Ensemble weather forecasting is well established in meteorology
to estimate the uncertainty that is present in numerical weather

possible future states of the atmosphere. Analysis of the temporal
evolution and variability of an ensemble forecast is then used to
estimate the likelihood of certain weather events.

predictions. Ensemble methods perform multiple simulations using Ensemble methods are also used to analyze the effect of simula-
perturbed initial conditions or different forecast models, to predict tion parameters on the simulated weather events, by systematically
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perturbing these parameters and running the simulation again us-
ing the perturbed configurations. The analysis, then, requires more
than detecting similarities and differences between pairs of simula-
tion results. Beyond that, coherent predictions, localized or over the
entire domain, across many results need to be determined and put
into relation to the input parameter values that have caused these
situations. For an improved assessment of these predictions, they
need to be quantified and visualized in context to each other.

We propose a visual analysis approach to help addressing this
task, and use this approach to analyze an ensemble of time-varying
3D cloud simulations [WBJ*18]. Each simulation is carried out on
a regular voxel grid, and for each voxel a 12D parameter vector
containing quantities like water, ice, graupel, and hail content is
simulated. As we seek to compare clouds of different size, shape
and position, location-based approaches, i.e., computing statistical
measures over the values at a single voxel, are not useful. For in-
stance, if a cloud does not change with respect to its physical com-
position but simply moves in space, similarity measures invariant
under such transformations need to be used.

Parallel coordinate (PC) plots can, in principle, be used for this
purpose, by drawing one line strip for each voxel. However, it is
difficult to reveal lower-dimensional manifold structures via PC
plots, and the visualization becomes quickly cluttered when many
elements are drawn simultaneously. Clustering, on the other hand,
can determine sub-groups of elements with similar parameter val-
ues, providing a condensed data representation that facilitates a
distribution-based analysis. Clustering in high-dimensional (HD)
parameter space, however, becomes difficult due to the inherent
sparsity of the data space and the difficulty to select an appropri-
ate clustering algorithm and its parametrization.

Dimensionality reduction techniques can be used to address
these problems. For instance, t-Distributed Stochastic Neighbor
Embedding (t-SNE) [MHOS] tries to preserve locality by placing
similar elements close to each other in a low-dimensional sub-
space. Since lower-dimensional manifold structures in the original
data are preserved, especially density-based clustering algorithms
like DBSCAN [EKS*96], which focus on “reachability” rather than
distance, show very good results if the right parametrization is used.
However, since the parametrization needs to be adapted for every
projection, in our current scenario the application of DBSCAN is
not feasible.

1.1. Contribution and method overview

The proposed approach detects stable clusters of data points in a
HD parameter space. It uses this information to enable a cluster-
based analysis of the variability of ensembles of multi-parameter
simulations, and to reveal dependencies of the simulation results
on the initial simulation parameters. An overview of this approach
is given in Fig. 2. By variations of a set of input parameters T;, an
ensemble of multi-parameter simulations is computed. Simulation
elements are interpreted as data points in the multi-dimensional pa-
rameter space, and they can be visualized using standard visualiza-
tion techniques like volume rendering and PC plots.

Then, dimensionality reduction via t-SNE projects the data
points into 2D. In this way, many of the local neighborhoods in the

data are preserved and sub-manifolds in HD space become con-
nected structures in 2D space. To avoid the shortcomings of DB-
SCAN in the current scenario, the projected points are clustered
using k-Means, and the resulting clusters are put into relation using
their variability over the ensemble.

Dimensionality reduction techniques like t-SNE, however, some-
times need to split a connected subgroup to compute the 2D embed-
ding. Where these splits occur depends on the specific parametriza-
tion of the used technique. For instance, t-SNE is often used with
random initial locations of projected objects as its seed configura-
tion which are considered by gradient descent optimization. There-
fore, when t-SNE is run with different input parameterizations, con-
nected subgroups can be split in many different ways.

On the other hand, similar points should be placed close to each
other most of the time over all projections, regardless of the spe-
cific initial parametrization. Thus, we compute many projections
using different parameterizations and merge the clusterings which
are obtained via k-Means into one final clustering. To visualize sta-
ble subgroups, the projection representing best the final clustering
is picked, and cluster membership information per data point is en-
coded via colors. Additionally, some of the points are connected
via lines to indicate where clusters were cut in the selected projec-
tion but can be assumed connected over all projections. To further
analyze the distribution of parameter values in a cluster, they are
displayed via PC plots, augmented by per-parameter distributions
and overlayed representatives for selected clusters. Per-cluster dis-
tributions are then represented via cumulative distribution functions
(CDF), and the differences in their integrals are used as similarity
measure. This enables to match different clusters and find simi-
larities across time steps and ensemble members. The similarity
between ensemble members is put in context with the initial simu-
lation parameters via scatter plot matrices.

In particular, the following contributions are made:

e A method to determine stable clusters in multi-parameter data
sets, using t-SNE and k-Means-based ensemble clustering.

e A distribution-based similarity metric for clusters of multi-
parameter data points.

e The application of cluster-based analysis of multi-parameter dis-
tributions to a time-varying multi-parameter 3D cloud ensemble,
hinting on the effect of simulation parameters on weather fore-
cast variability.

On a technical side, we provide a highly efficient GPU implementa-
tion of PC plots with embedded line and density histograms capable
of plotting millions of multi-parameter data elements per second,
including instant color variations to highlight selected clusters. In
the 2D t-SNE view, multiple interaction possibilities are available
to select and display single clusters, similar data elements, etc., over
different projections, time steps, and ensemble members.

2. Related work

In our scenario, each ensemble member is comprised of a set of
simulation elements with multiple parameter values. These HD
data points are projected into 2D using t-SNE [MHO08]. Some re-
cent surveys [KH13; LMW*16] give thorough overviews of visu-
alization techniques for multi-parameter data. In combination with
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Figure 2: Proposed workflow for analyzing an ensemble of 3D multi-parameter simulations, each simulation parameterized by input param-
eters T;. (a) Upon using standard visualization techniques like volume rendering and PC plots, (b) k-Means clusterings on multiple t-SNE
projections are combined to obtain a stable clustering of data points in a single 3D data set. The best embedding is determined for visual-
ization. (c¢) For all ensemble members and time steps, clusters are matched based on their CDFs. A scatter plot matrix indicates relations
between input parameters and multi-parameter distributions. (d) Visualization of the (temporal) variability of simulations using clustered

t-SNE, cluster bar charts, PC plots, histograms, and line charts.

dimensionality reduction, clustering is often used to identify groups
of points lying close together in the low-dimensional space or form-
ing coherent structures in this space. Wenskovitch et al. [WCR*18]
discuss the combination of dimensionality reduction and clustering
techniques and provide recommendations for their concurrent use.

Since our technique analyzes an ensemble of 2D point sets (af-
ter multi-parameter simulation elements have been projected into
2D), it is related to ensemble visualization techniques. Most works
in ensemble visualization address ensembles of physical fields, or
features derived from such fields, with the focus on the extraction
and visual encoding of their variability. To the best of our knowl-
edge, visual analysis techniques for ensembles of 2D points are not
existing, yet a number of techniques have addressed aspects related
to ensembles that are also relevant in our work. Parametric statisti-
cal distributions and distribution shape descriptors for scalar-valued
ensembles were presented by Love et al. [LPKOS]. Different vari-
ants of confidence regions were introduced to represent the ma-
jor geometric trends in ensembles of iso-contours and streamlines
[WMK13; MWK14; FBW16; FKRW16]. Demir et al. [DJW16]
proposed a closest-point representation to convey the central ten-
dency of an ensemble of multi-dimensional shapes. In a number
of works, scalar- and vector-valued ensemble fields were modeled
via mixtures of probability density functions to compactly clas-
sify complex distributions and their evolution over time [LLBP12;
JDKW15; DS15; WLW#*17]. Demir et al. [DDW 14] visualize dis-
tributions of linearized 3D data points with bar-charts. Hummel et
al. [HOGJ13] analyze the spread of particle trajectories in an en-
semble of vector fields to reveal the transport variability. Poethkow
and Hege [PH13] and Athawale et al. [ASE15] use location-wise
estimators of non-parametric distributions from ensemble members
to estimate the spread of surface and vector field features. Recently,
Hazarika et al. [HBS17; HDSC19] presented a copula-based frame-
work for large multivariate datasets, where they partition the do-
main and compute statistical quantities over those parts.

Alternatively, clustering has been used to group ensemble
members regarding similar data characteristic [BM10; OLK*14;
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FBW16]. While these techniques compare ensemble members to
each other, our approach aims at finding groups of elements in
each member which remain "close" to each other in all mem-
bers, and then match different clusterings to each other. Strehl and
Ghosh [SGO02] apply different clustering techniques to one single
ensemble, and combine the results into a single clustering. Differ-
ent clustering ensemble techniques, i.e., techniques that combine
multiple clusterings of one data set into a single clustering, are dis-
cussed by Vega-Pons et al. [VR11]. From multiple k-Means clus-
terings, Fred and Jain [FJO5] generate a co-association matrix, con-
taining the fraction of times two points were placed into the same
cluster. Applying clustering on this matrix leads to the final result.
Kumpf et al. [KTB*18] use multiple k-Means clusterings on en-
semble data, where they vary the clustering domain to generate a
clustering ensemble. Ferstl et al. [FKRW17] cluster different time
steps of the same ensemble in a hierarchical way to convey the
change of clusters over time. For the clustering of genomic data,
Lex et al. [LSP*10] introduce extended PC plots to compare differ-
ent clusterings and analyze the quality of cluster assignments.

Related to our approach are also techniques which aim to find
projections that best represent the structures in HD data, by using
quality measures for projections [FT74; HA85]. Even though the
goal of these techniques is different to ours, as we do not attempt
to find the best projection for a given dataset, proposed measures
indicate the (dis-)similarity between projections and might be used
for robustness analysis as well. Examples include vector distance
measures for HD feature descriptors [BvLBS11] and feature vec-
tors derived from point-wise distance matrices [JHB*17], as well as
measures using matrix norms to quantify the dissimilarity of mul-
tivariate projections invariant to affine transformations [LT16].

3. Data

We apply our cluster-based approach to analyze the multi-
parameter distributions in a numerical simulation of a growing
thunderstorm cloud [WBJ*18]. The data set comprises an ensem-
ble of 100 simulation runs of a single convective cloud in the 3D
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atmosphere, simulated over a time span of 6 hours in time steps of
15 minutes. 4 members have been excluded due to corrupted val-
ues resulting in a total of 96 members. At each 3D position, 12
parameters—such as water content, ice-water content, number of
water particles, number of ice particles—are given. The numeri-
cal simulation depends on 6 input parameters such as wind-sheer,
which influence the outcome of the simulation.

Due to computational reasons, only every 4" value in the two
spatial coordinates x and y, and every 3 value in the vertical is
used, resulting in roughly 10000 data points per time step. Values
of each attribute are normalized to the range of [0, 1] excluding the
ones with norm smaller 0.1 in order to shift the focus of the anal-
ysis away from almost empty voxels. No restrictive assumptions
about the structure of clusters are made. Further, since quantities
within clouds transition smoothly between states, as water slowly
starts to freeze with decreasing temperature, elongated structures
are expected at the least.

4. Dimensionality reduction and k-Means clustering

For dimensionality reduction, the method t-SNE (Fig. 4a) is used.
Note that while variants such as Hierarchical Stochastic Neighbor
Embedding [PHL*16] can be used as well, deterministic dimen-
sionality reduction techniques like principal component analysis
(PCA) are not suitable in the current scenario. Points can be mis-
placed due to variation in others than the principal components sub-
space used for projecting. Re-running PCA would not change that.
Multi-dimensional scaling [KW78], on the other hand, seeks at pre-
serving distances over the whole domain, thus making it difficult to
maintain local structures in the generated 2D embeddings.

In a single projection, the distances between data points can be
significantly distorted depending on the parametrization of the used
projection technique. The reason is that dimensionality reduction
techniques need to cut manifold structures in the HD space to em-
bed them into 2D. For instance, when projecting a sphere there is
no 2D embedding that can avoid placing non-neighboring points
close together or flattening the sphere so that neighboring points
become distant to each other. This problem can be addressed by
running t-SNE many times with different parameters or random ini-
tialization, so that cuts are introduced at different locations and the
neighborhood relations are maintained in most projections. Each
projection can be clustered individually, and the clustering results
can be further analyzed to extract sets of data points that are coher-
ently assigned to the same cluster. In addition, however, the indi-
vidual clusterings need to create consistent results for different en-
semble members and time steps, to allow for a later comparison of
these results. It is clear that this cannot be achieved by tweaking the
parameters of each individual clustering. Due to this requirement,
density-based clustering approaches (e.g., DBSCAN [EKS*96])
are not suitable in the current application. The clustering results
of these algorithms are rather sensitive to variations in the distances
between projected data points, which, as described before, can hap-
pen to a certain extent in different t-SNE projections. It is worth
noting that the same problem occurs when clustering is applied to
the original HD data point, as shown in Fig.3a.

The clustering algorithm k-Means, on the other hand, always

@ T (b)©

Figure 3: (a) High-dimensional DBSCAN clustering with parame-
ters € = 0.04 and N = 30 color coded on t-SNE projected points.
The blue cluster and noise in black dominate the clustering. (b)
Matched clusters of k-Means clustered t-SNE projections. Each
column represents one clustering, the height of the bar encodes the
number of points contained in a cluster.

generates a predefined number of clusters. Though, the clusters
are convex and can hence put two independent elongated structures
into the same cluster or cut them at an arbitrary location. However,
in different projections these cuts are introduced at different loca-
tions; furthermore, if these structures are not adjacent in the original
data, a different t-SNE projection is likely to place them far apart
from each other in the computed 2D embedding. Therefore, only
points that are neighbored in the HD space should be in the same
cluster in most of the projections, thus overcoming the convexity
requirement of k-Means clusters.

Due to the aforementioned issues, we use t-SNE, with default
perplexity of 30, and k-Means, with k = 16 clusters, in our analy-
sis. The perplexity parameter controls the size of the local neigh-
borhood that should be preserved. In all of our experiments, the re-
sulting projections looked reasonable, showing frequent yet spuri-
ous variations that support our envisioned consistency analysis. The
number of clusters for k-Means has to be set in relation to the num-
ber of projections used. The higher the number of different t-SNE
projections, the more clusters can be used to obtain more detailed
results. The same parameters are used for all ensemble members
and time steps in order to preserve comparability.

4.1. Combination of clusterings

The ensemble of clusterings that is generated by clustering multiple
t-SNE projections separately is aggregated to obtain a final cluster-
ing. Points that are stably clustered together are extracted by using
the so-called co-association matrix C [FJ05]. Each entry, C;; counts
how often point p; and p; are in the same cluster, finally normalized
by dividing through the number of clusterings. For every point, the
clique of points with high mutual similarity is searched in C. The
similarity threshold is set to o0 = 0.9, meaning that every pair of
points in the same clique is clustered together in at least 90% of
the single k-Means clusterings. For clique construction, we use al-
gorithm 1 as proposed in Kumpf et al. [KRRW19]. In a final step,
illustrated in Fig. 5, points are merged based on their cliques in a
greedy-like manner using region growing. Starting with the point
with the largest clique, recursively, all points therein and in their
cliques are merged. Once no more points can be added, a cluster
is formed and recursive merging is continued with the remaining
points, starting again with the one with the largest clique.

© 2019 The Author(s)
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Figure 4: (a) 2D t-SNE projection of voxels. Connected structures motivate the use of clustering. (b-c) Final clustering resulting from the
combination of 100 k-Means clustered t-SNE projections. Lines connect distant points in clusters, points of the same cluster have the same
color, with noise in black. The projections with shortest line sums were chosen for the 2D embedding. Time steps (b) 2:00h (¢) 4:00h are
shown. (d) Each column represents a clustering of one time step starting with the latest, where height encodes the cluster size.

input: i), C, @  output: L
i=ip; I={0,...,n}; L={};
while (|L| < |I|) do
L=LU{i}; 1=1\{i};
I={jellC;j>a}; i=argmax;c;C;;
end
Algorithm 1: Generation of point clique for p;, (similar
to [KRRW19]) using the co-association matrix C using a pair-
wise similarity threshold o. Resulting cliques contain points with
mutual similarity greater than o.

The merging algorithm depends on the order in which points are
traversed. However, using random initial points has lead to simi-
lar results in all our experiments. To better understand the merg-
ing process, k-Means clusters can be matched as in [KRRW19]
over all projections using the Kuhn-Munkres algorithm [Kuh55]
(Fig. 3b). Single clusters can be selected and their position is dis-
played over different t-SNE projections. Fixing the projection and
showing clusters from other projections is available as well, reveal-
ing neighboring points in other projections which were placed apart
in the current one. Furthermore, one can search for points which
were always assigned to a selected cluster or highlight points which
were almost always together in the same cluster, which greatly
helps understanding the effect of the merging threshold o. These
interactions help understanding the quality and variance of the clus-
tering ensemble and can be performed before comparing datasets.
Later, it can be used to see the evolution of single clusters or under-
stand why certain structures fall into different clusters.

The final obtained clusters represent points which lie in the same
structure in the t-SNE plot and are therefore expected to form struc-
tures in HD parameter space. An example is given in Fig. 1c. Note
that the number of clusters can now exceed 16. Points are colored
according to their cluster ID, using black for noise. Additionally,
lines between points, and in the color of these points, are drawn if
the points are far apart. Short lines can be filtered out interactively.

Lines connecting adjacent points but located far away from each
other in the current projection are generated as a byproduct during
the merging step. Whenever points are merged, lines from the par-
ent to all children are saved and used later in the final clustering.
This facilitates the identification of clusters which were torn apart
in the currently selected projection and attenuates the problem of
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finding a sufficiently large number of distinguishable cluster colors,
i.e., clusters that are far apart from each other and not connected are
different regardless their assigned color.

To visualize the cluster information, one projection has to be se-
lected as a representative 2D embedding of the data points. We use
a projection instead of other cluster visualizations, since these pro-
jections preserve the spatial relationships between points and clus-
ters. Following the intuition that points in clusters should be located
close to each other, we select the projection with the minimal sum
of filtered line-lengths between the data-points. The final clustering
result is then investigated further using PC plots, i.e., to compare
different time steps and ensemble members.

4.2. Matching and comparing clusterings

A relation between final clusters of different ensemble members is
established by comparing the distributions of their parameter val-
ues. For each parameter, a CDF is constructed [HDSC19]. To com-
pare two clusters, for each parameter the area between their CDFs
is computed (see Fig. 6) and summed up. Since this similarity mea-
sure depends only on the distribution of the parameter values, it
can be used to compare clusters with vastly different size. Since
this could become as extreme as matching two points to the biggest
clusters, we penalize differences of a factor 10 and higher by adding
a linear factor of
penalty,, ;. = max (O, (w — 10) ~0.01> ,

CEAREA)

to the cluster distance. Here, |c/;| denotes the size of cluster i. This
similarity measure can be used to determine the similarity between
two data sets, i.e., two ensemble members or different time steps of
the same member, and to compare two clusters.

Exemplary summary clustering with threshold @ = 5/7
pu_ clique(po) = cp = {Po, P2}
p]_ clique(py) = ¢y, = {p1,P2,P3}
!Iz_ clique(p,) = ¢p, = {p2, o} =
o R 110 = .= s
IR 1. - - 7

cluster; = ¢, +¢p, + Cpy = {Po, P1, P2 P3}
=y, +Cp, +Cp, + 0y

cluster, = ¢, = {ps}

Figure 5: Clustering to combine the clustering ensemble. Color de-
notes the cluster ID for each point p; for 7 clusterings. Note that
clique(p;) does not contain p; as sim(pg, p;) < 5/7. For this ex-
ample only, the clique threshold was set to o = 5/7.
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Figure 6: (a) Construction of a Cumulative Distribution Function
(CDF) based on 6 sample points. (b) Comparison of the parameter
distribution of 2 clusters (red and blue) by constructing a CDF. The
area between the lines defines the distance between the clusters.

Clusters are then matched using either the Kuhn-Munkres-
algorithm [KuhS55], resulting in a one-to-one matching between
min(|cl;|,|cl;|) clusters, or alternatively, in a one-to-many match-
ing, where each cluster of one clustering is matched to the best
fitting cluster of the other clustering. For single clusters, the results
match most of the time as can be seen by the green and yellow line
in Fig. 1d. However, mismatches can lead to significantly higher
differences, which is why we favor the one-to-many matching.

Summing over the In(|cl;|)-weighted differences between clus-
ters and normalizing them by the summed weights serves as a sec-
ond distance measure for data sets (Fig. 1d,red). When multiple
clusterings are matched to one reference (Sec. 4.4), the sizes of the
clusters in the reference clustering are used. Cluster sizes are not
important to us. However, since the number of clusters should not
affect the measure significantly, less weight is given to smaller clus-
ters to prevent them from dominating the measure. Alternatively,
only the x largest matched clusters can be used to compute the dis-
tance measure. In our experiments, both strategies are used, where
in the latter clusters with less than 25 points are not matched.

4.3. Parallel Coordinates

Based on the matching errors, the sizes of clusters over time (see
Fig. 4d), and by using PC plots, data sets can be compared to each
other and similarities in parameter distributions can be investigated.

PC plots offer a direct visualization of HD data points. Our im-
plementation uses the Vulkan graphics API, to enable the efficient
visualization of huge numbers of multi-parameter data points. On
our target architecture, an NVIDIA GTX 1070, up to 5 million 12D
data points can be drawn per second. Basic functionality like blend-
ing and the reordering of axes can be used to get a first impression
of the data. Histograms per displayed cluster on the coordinate axes
ease the comparison of value distributions. Optionally, lines can be
smoothed to better show densities. Mean and median lines can be
drawn instead of whole clusters to avoid visual clutter.

4.4. Selection of reference

The presented analysis requires a reference dataset as starting point,
to which others are compared to. Commonly, the simulation gener-
ated with best guessed initial parameters is used for that purpose,
which is unfortunately not know for this dataset. Instead, the sim-
ulation generated with the median of all initial parameter config-
urations is investigated first. All initial parameter configurations
are displayed in a scatter-plot-matrix (Fig. 8) were their distribu-
tions can be seen. The matching distances to the selected reference
are displayed in color indicating which parameter changes lead to
larger distances between the data sets. To gain an understanding

Figure 7: Reducing the merging threshold o to 0.8 creates connec-
tions between the clusters which leads to a merge.

for the data set, different members can be selected as reference to
further investigate dependencies with initial parameters.

5. Use case

In the following, we describe the application of our approach to
analyze the multi-parameter cloud ensemble described in Sec. 3. At
the beginning, multiple time steps of a single ensemble member are
visualized using iso-surfaces in single parameter fields (Fig. 1a).
Despite the inherent occlusion effects, the overall structure of the
clouds can already been observed: While wet quantities like liquid
water (green, L) or rain (yellow, R) dominate in the lower altitudes,
frozen quantities like ice (blue, I), graupel (red, G) and hail (brown,
H) dominate in the upper atmosphere levels.

The shapes of the clouds change significantly over time, and they
move over the domain, so that location-wise computation and com-
parison of data statistics is no option. Instead, we abstract from
the 3D shape and perform the analysis using the distribution of
parameter values as described. Firstly, PC plots are generated to
obtain an initial estimate of the parameter distributions (Fig. 1b).
By looping through the plots of all time steps of a selected ensem-
ble member, the distribution variability over time is conveyed. The
distributions seem to stay similar over all time steps, with the ex-
ception of strong hail (H), which is present only in later time steps.
This is expected since ice-particles need some time to grow within
the cloud. However, it is difficult to see whether the cloud fore-
casts are comprised of individual structures. To analyze this, the
data is projected using t-SNE (Fig. 4a). The projections of simu-
lation elements into 2D reveal many band structures and clusters
of elements, yet it is impossible to conclude on which structures
belong together and which are separated. After generating a stable
clustering (explained in Sec. 4 and 4.1), clearly separated clusters
appear (color coded in Fig. 1c). Connecting lines highlight where
these structures where not cut in other projections, e.g., the rose
cluster. Furthermore, small blue clusters of almost the same color
can be differentiated, none of them connected via lines.

To investigate which clusters might merge due to a different
merging threshold o, points can be picked interactively on the
boundary between clusters and the effect of varying o can be seen
(Fig. 7). When points from both sides pop-up, the clusters would
merge. In this way, the cluster ensemble step and the degree of
dissimilarity between clusters can be better understood. Further in-
teraction mechanisms, e.g., selection and tracing of clusters, are
provided as additional options to the user.

By using the proposed approach, points of specific clusters can
be directly emphasized in the PC plot (Fig. 1e). For every quantity,
there are two axes showing the weight and number of particles of
that quantity in the corresponding simulation element. Elements in
the orange cluster contain mostly ice (I), snow (S) and graupel (G).
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Figure 8: Matching distances to median simulation based on whole
data set and on clusters, color coded on initial parameters, with
low-to-high in blue-to-red. The data set- and cluster-based distance
measures reveal correlations with Bg or CCN respectively.

Next, we cluster all time steps of the selected ensemble mem-
ber and match clusters to the last by using the proposed many-to-
one matching (see Sec.4.2). The matching errors (Fig. 1d) indicate
that until time step 2:00h the distributions are very similar and the
matching works well. For earlier time steps, the errors grow. Closer
inspection of the worst matched clusters reveal that precipitation
parameters are differently distributed in earlier time steps. When
looping through the colored t-SNE plots—with matched clusters,
similar structures can be observed over different time steps (Fig. 4).
Caused by the many-to-one matching, some clusters become empty
when no matching partner could be found (Fig. 4d). By focussing
on the orange cluster to which two clusters were matched at time
step 2:00h (Fig. 4b), its time evolution can be displayed using PC
plots (Fig. le). The median or mean lines (blue lines) as well as a
histogram bar per cluster and axis can be selected as well. It can be
observed that the distribution of the cluster stays mainly the same,
while the number of simulation elements decreases over time.

A similar analysis can be performed over all ensemble members.
The proposed metrics can be used to find similar and dissimilar
members. First results can be seen in Fig. 8, where matching dis-
tances are color coded on the initial parameters. A correlation be-
tween temperature (0p) and the distance between the whole data
sets is directly visible and highlighted in green. When using the
cluster based measure, correlation with cloud condensation nuclei
(CCN), highlighted in yellow, becomes visible. This indicates that
09 changes the overall distributions while CCN changes the struc-
tures in the parameter space. Since all initial parameters were per-
turbed simultaneously, multi-dimensional dependencies have to be
considered as well, which is left for future work.

Computation time: Performance is measured on an Intel®
Xeon CPU 6 cores @3.5GHz. Preparing each data set takes around
35s, 70s for each t-SNE projection, and 0.5s for k-Means, all per-
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formed on one core. Combining the cluster ensemble takes 240s
using all cores and cluster matching around 15s per dataset on one
core. These pre-computations can be parallelized over the datasets.

6. Discussion and conclusion

Many steps of the proposed approach are dependent on parameters,
albeit most of them are rather uncritical when kept constant over
the whole analysis. Together, the number of k-Means clusters and
projections define the granularity of the approach. More projections
allow more k-Means clusters, the ratio of 100 projections to 16
clusters resolved the structures quite well in the presented data set.
Multiple k-Means clusterings per projection could further reduce
the number of projections needed.

The most critical parameter is the matching threshold . Its im-
pact can be seen in Fig. 7, where reducing o from 0.9 to 0.8 would
merge the structure. A smaller threshold leads to bigger clusters.
We advice to chose and fix this parameter once in the beginning
after fixing all other parameters. That way, the merging stays con-
sistent for all data sets. Further, the many-to-one matching corrects
some undesired cluster splits. Matching successive time steps in-
stead of to the last makes immediate changes visible. However,
errors would propagate over time leading to a loss of overall con-
text. Further, the approach relies on t-SNE’s ability to project ad-
jacent HD points close to each other most of the time. Sufficient
variation in t-SNE projections and k-Means clustering is needed
to extract structures of arbitrary shape. Alternatively to clustering
voxels, one could cluster directly in the parameter space using sub-
space clustering methods. Optimally, those algorithms find clus-
ters in all parameter-dimension combinations. Analyzing, compar-
ing and matching those clusters would be a challenging task.

With the proposed method we were able to gain first insights
into the parameter-value distributions of a time-dependent cloud
ensemble data set. Cluster ensemble techniques on k-Means clus-
tered t-SNE plots proved to be a valid way for extracting structures
from that data set, which could be found in other time steps as well
using a CDF based distance measure. While the clouds are growing
over time, apart from outliers and the hail quantity, their main value
distributions do not change significantly. Correlations of initial pa-
rameters with the distances to the median member were found. A
more detailed analysis based on different reference members and
revealing higher-dimensional dependencies to initial parameters is
planned for future work. Further, the application of the workflow
on other data sets could lead to interesting insights.
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