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We compute the electric dipole transitions χbJð1PÞ → γϒð1SÞ, with J ¼ 0, 1, 2, and hbð1PÞ → γηbð1SÞ
in a model-independent way. We use potential nonrelativistic QCD (pNRQCD) at weak coupling with
either the Coulomb potential or the complete static potential incorporated in the leading order Hamiltonian.
In the last case, the perturbative series shows very mild scale dependence and a good convergence pattern,
allowing predictions for all the transition widths. Assuming ΛQCD ≪ mv2, the precision that we reach is
k3γ=ðmvÞ2 ×Oðv2Þ, where kγ is the photon energy, m is the mass of the heavy quark and v its relative

velocity. Our results are: Γðχb0ð1PÞ → γϒð1SÞÞ ¼ 28þ2
−2 keV, Γðχb1ð1PÞ → γΥð1SÞÞ ¼ 37þ2

−2 keV,

Γðχb2ð1PÞ → γϒð1SÞÞ ¼ 45þ3
−3 keV and Γðhbð1PÞ → γηbð1SÞÞ ¼ 63þ6

−6 keV.
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I. INTRODUCTION

Electromagnetic transitions are often a significant decay
mode for bottomonium states below the BB̄ threshold
(10.56 GeV), making them a suitable experimental tool
to access lower states. For instance, the first bb̄ states not
directly produced in eþe− collisions were the six triplet-P
states, χbJð2PÞ and χbJð1PÞ, with J ¼ 0, 1, 2, discovered in
radiative decays of the ϒð3SÞ and ϒð2SÞ in 1982 [1,2] and
1983 [3,4], respectively.
Electromagnetic transitions can be classified in terms of

electric and magnetic multipoles. The most important ones
are the E1 (electric dipole) and the M1 (magnetic dipole)
transitions; higher order multipole modes E2, M2, E3, …
appear in the spectrum, but are suppressed. The width of
allowed (hindered) M1 transitions is of order k3γ=m2

(k3γv2=m2) where kγ is the photon energy and m is the
mass of the heavy quark, whereas the width of E1
transitions is of order k3γ=ðmvÞ2, where v, which is much
smaller than 1, is the relative velocity of the heavy quarks in
the quarkonium [5]. Electric dipole transitions happen
much more frequently than magnetic dipole transitions.
The branching fraction for E1 transitions is indeed sig-
nificant for the bottomonium states that we shall study in
this work [6]: Bðχb0ð1PÞ → γϒð1SÞÞ ¼ ð1.94� 0.27Þ%,

Bðχb1ð1PÞ → γϒð1SÞÞ ¼ ð35.0� 2.1Þ%, Bðχb2ð1PÞ →
γϒð1SÞÞ ¼ ð18.8� 1.1Þ%, and Bðhbð1PÞ → γηbð1SÞÞ ¼
ð52þ6

−5Þ%. Even in the χb0 case this is the largest observed
exclusive branching fraction.
Electric dipole transitions are characterized by the fact that

they change the orbital angular momentum of the state by
one unit, but not the spin. Therefore, the final state has
different parity and C-parity than the initial one. Typical
examples of E1 quarkonium decays are the ones mentioned
above: 23PJ → 13S1 þ γ and 21P1 → 11S0 þ γ. Here and in
the following we denote the states as n2sþ1lJ, where n ¼
nr þ lþ 1 is the principal quantum number, with nr ¼
0; 1;… the radial quantum number and l the orbital angular
momentum usually represented by a letter: S for l ¼ 0,P for
l ¼ 1 and so on. The spin is denoted by s and J is the total
angular momentum. We use also the PDG notation, where
χbJð1PÞ identifies the state 23PJ, and hbð1PÞ the state 21P1.
This is to say, in the PDG notation, 1P bottomonia are states
with quantum numbers n ¼ 2 and l ¼ 1.
E1 (and M1) electromagnetic transitions between heavy

quarkonia have been treated for a long time by means of
potential models that use nonrelativistic reductions of
QCD-based quark–(anti)quark interactions (see, for in-
stance, Ref. [7] for a recent application to the bottomonium
system). However, the release in the last decade of a new
large set of accurate experimental data, concerning electro-
magnetic reactions in the heavy quark sector, by B-factories
(BABAR, Belle and CLEO), τ-charm facilities (CLEO-c,
BESIII) and even proton–(anti)proton colliders (CDF, D0,
LHCb, ATLAS, CMS) [8,9] demands for systematic and
model-independent treatments.
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The aim of this paper is to compute the E1 transi-
tions χbJð1PÞ → γϒð1SÞ, with J ¼ 0, 1, 2, and hbð1PÞ →
γηbð1SÞ using potential nonrelativistic QCD (pNRQCD).
Quarkonium is characterized by the hierarchy of energy
scales:

m ≫ p ∼mv ≫ E ∼mv2; ð1Þ

where p is the relative momentum of the heavy quarks,
proportional to the inverse of the size of the quarkonium,
and E is the binding energy. The relative heavy quark
velocity, v, is assumed to be v ≪ 1, which qualifies
quarkonium as a nonrelativistic bound state. pNRQCD is
a nonrelativistic effective field theory that takes advantage
of this hierarchy of scales by systematically computing
quarkonium observables as expansions in v [10,11] (see
Refs. [12,13] for reviews). In the case of radiative tran-
sitions another relevant scale is the photon energy, kγ. The
photon energy is about the energy gap between the initial
and final quarkonium states: for allowed (hindered) M1
transitions it is of the order ofmv4 (mv2), for E1 transitions
it is of the order of mv2. The theory for M1 transitions in
pNRQCD has been developed in [14] and extended to E1
transitions in [15]. Reference [15] provides the theoretical
basis for the present study, which aims at computing E1
transitions from 1P bottomonium states at relative order v2,
i.e., at order k3γ=m2 in the transition width.
The specific details of the construction of pNRQCD

depend on the relative size of the scale mv2 with respect to
ΛQCD. In this paper, we assume that mv2 ≫ ΛQCD.

1

The propagation of a color singlet heavy quark-antiquark
field, S, is described at relative order v2 by the Lagrangian
density:

L ¼
Z

d3rTr

�
S†
�
i∂0 þ

∇⃗2

4m
þ ∇⃗2

r

m
þ ∇⃗4

r

4m3
− V

�
S

�
; ð2Þ

where r is the quark-antiquark distance parametrizing the
color singlet field S and V is the quark-antiquark potential.

The operator −i∇⃗ ∼mv2 is the center of mass momentum
(the derivative acts on the center of mass coordinate), while

−i∇⃗r ∼mv is the relative momentum (the derivative acts on
the distance r). If mv2 ≫ ΛQCD, the potential V may be
computed order by order in perturbation theory and v ∼ αs,
where αs is the strong coupling evaluated at the typical
momentum transfer scale. At leading order in αs, V is given
by the Coulomb potential between static color triplet and

color antitriplet sources: Vð0Þ
s ¼ −4αs=ð3rÞ. According to

the pNRQCD counting Vð0Þ
s ∼mv2. E1 transitions are

encoded in the part of the pNRQCD Lagrangian,
LγpNRQCD, that describes the interaction of the quark-
antiquark field S with the electromagnetic field:

LγpNRQCD ¼
Z

d3rTrfS†r⃗ · eeQE⃗emSþ…g: ð3Þ

The displayed term is the leading order electric dipole
interaction term (eeQ stands for the electric charge of the

heavy quark Q and E⃗em for the electric field), whereas the
dots stand for higher order operators contributing to the E1
transition at relative order v2 (or smaller), whose explicit
expressions can be read off from Ref. [15].
There seems to be a growing consensus in the literature

that the weak-coupling regimemv2 ≫ ΛQCD may indeed be
applied to many physical observables in the bottomonium
sector including n ¼ 2 bottomonium states (for early work
see [16–18], for reviews see [8,9,13], for recent work see
[19,20]). In order to reach this conclusion, it is crucial,
however, to have a proper treatment for the large terms
appearing in the perturbative expansion. As long as αs
remains a perturbative coupling, large terms can be due to
factorially growing coefficients, which may require renor-
malon subtraction, or large logarithms in the renormaliza-
tion scale.
In this work, we adopt methods to deal with both large

corrections, eventually achieving a convergent expansion
with mild dependence on the renormalization scale.
Concerning the renormalon subtraction scheme, we adopt
the one of Ref. [21]. Concerning the resummation of large
logarithms, we rearrange the perturbative expansion of
pNRQCD in such a way that the static potential is exactly
included in the leading order (LO) Hamiltonian. This
expansion scheme has been applied to the computation of
the heavy quarkonium electromagnetic decay ratios in
Ref. [22] and to the determination of M1 transitions between
low-lying heavy quarkonium states in Ref. [23]. The authors
obtain agreement between theory and experiment for the
case of the charmonium and bottomonium ground states and
for the n ¼ 2 excitations of the bottomonium. Very recently,
the same scheme has been applied to the spectrum of n ¼ 2,
l ¼ 1 quarkonium states in [20]. Hence, another motivation
for the present study is to probeweakly coupled pNRQCD in
the context of electric dipole transitions from the spin-triplet
and spin-singlet lowest bottomonium P-wave states.
In Ref. [15], the complete set of relativistic corrections of

relative order v2 with respect to the leading order E1 decay
width has been derived. In the E1 case, differently fromM1
transitions [14,23], the computation of relativistic correc-
tions at relative order v2 is technically complicated: In
addition to the effects due to higher order operators
contributing to the E1 transition [the dots in Eq. (3)],
one needs to calculate order v and v2 corrections to the
initial and final state wave functions due to higher order

1The following computations are valid also for mv2 ∼ ΛQCD.
What changes in this case is, however, the parametrical size of the
nonperturbative corrections, see Sec. II B 2 and comments in the
conclusion.
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potentials.2 This complication has hindered so far complete
numerical computations of the E1 transitions between low-
lying heavy quarkonium states within pNRQCD (for partial
calculations see Refs. [24,25]). The present paper aims to
close this gap.
The paper is structured in the following way. In Sec. II

we discuss the theoretical background of the computation
and display the formulas that we use for the decays. In this
section, we present also results for the electric dipole
transitions when only the LO static potential is incorporated
in the Schrödinger equation. Section III is devoted to
present the same results but incorporating the complete
static potential in the LO Hamiltonian. Renormalon effects
and resummation of large logarithms are also taken into

account in this part. All of this leads to a good convergence
pattern for the studied decay rates and thus to firm
predictions for all of them. We summarize our results
and conclude in Sec. IV.

II. NUMERICAL ANALYSIS IN PNRQCD
AT WEAK COUPLING: FIXED

ORDER CALCULATION

A. Decay width

We aim at computing electric dipole (E1) transitions
from 1P bottomonium states at order k3γ=m2 under the
conditionmv2 ≫ ΛQCD. The formulas for the decay widths
have been derived in Ref. [15]. They read

Γðn3PJ → n03S1 þ γÞ ¼ Γð0Þ
nn0

�
1þ RS¼1

nn0 ðJÞ −
kγ
6m

−
k2γ
60

Ið0Þ5 ðn1 → n00Þ
Ið0Þ3 ðn1 → n00Þ

þ
�
JðJ þ 1Þ

2
− 2

��
−ð1þ κemQ Þ kγ

2m
þ 1

m2
ð1þ 2κemQ Þ I

ð1Þ
2 ðn1 → n00Þ þ 2Ið0Þ1 ðn1 → n00Þ

Ið0Þ3 ðn1 → n00Þ

��
; ð4Þ

Γðn1P1 → n01S0 þ γÞ ¼ Γð0Þ
nn0

�
1þ RS¼0

nn0 −
kγ
6m

−
k2γ
60

Ið0Þ5 ðn1 → n00Þ
Ið0Þ3 ðn1 → n00Þ

�
; ð5Þ

where RS¼1
nn0 ðJÞ and RS¼0

nn0 include the initial and final state
corrections due to higher order potentials (see Sec. II B 1)
and possibly higher order Fock states (see Sec. II B 2). The
remaining corrections within the curly brackets are the
result of taking into account additional electromagnetic
interaction terms in the Lagrangian suppressed by Oðv2Þ
[the dots in Eq. (3)]. For completeness, we have displayed
in the formulas terms proportional to the anomalous
magnetic moment, κemQ . These terms will, however, not
be considered in the numerical analyses because they are at
least of order αsk3γ=m2 and thus beyond our accuracy.
The LO decay width, which scales like k3γ=ðmvÞ2, is

Γð0Þ
nn0 ¼

4

9
αeme2Qk

3
γ ½Ið0Þ3 ðn1 → n00Þ�2; ð6Þ

with αem the electromagnetic fine structure constant, eQ the
charge of the heavy quarkQ in units of the electron charge,
and kγ the photon energy determined by the kinematics
shown in Fig. 1:

kγ ¼ jk⃗j ¼ M2
H −M2

H0

2MH
¼ ðMH −M0

HÞ þO
�

k2γ
MH

�
: ð7Þ

The LO decay width follows from the LO electric dipole
interaction in the pNRQCD Lagrangian shown in Eq. (3).

All other terms in Eqs. (4) and (5) are of relative order v2

with respect to the LO decay width. In particular, the
function

IðkÞN ðnl → n0l0Þ ¼
Z

∞

0

dr rNR�
n0l0 ðrÞ

�
dk

drk
RnlðrÞ

�
ð8Þ

is a matrix element that involves the radial wave functions
of the initial and final states. From r ∼ 1=p ∼ 1=ðmvÞ it
follows that it scales like ðmvÞ2þk−N .
Under the assumptionmv2 ≫ ΛQCD we can compute the

quarkonium potential in perturbation theory, i.e., as an
expansion in αs. The wave functions are then the solutions
of the Schrödinger equation

FIG. 1. Kinematics of the radiative transition H → H0γ in the
rest frame of the initial-state quarkonium H.

2Higher order Fock states become relevant only if ΛQCD is of
the same order as mv2 or larger.
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Hð0Þψnlmðr⃗Þ ¼ Enψnlmðr⃗Þ; ð9Þ
where Hð0Þ contains the (perturbative) quark-antiquark
static potential. More specifically, in this section we take
the leading order Hamiltonian as

Hð0Þ ¼ −
∇⃗2

r

m
þ Vð0Þ

s ðrÞ; ð10Þ

where −∇⃗2
r=m is the (nonrelativistic) kinetic energy in the

center of mass frame and

Vð0Þ
s ðrÞ ¼ −

4αs
3r

: ð11Þ

This means that we include in the static potential only the
LO potential in αs, which is the Coulomb potential times
the Casimir of the fundamental representation in SU(3),
i.e., 4=3. A different choice will be analyzed in Sec. III.
With the choice (11), ψnlmðr⃗Þ and En can be taken from the
hydrogen-atom and read

ψnlmðr⃗Þ ¼ RnlðrÞYlmðΩrÞ
¼ Nnlρ

l
ne−

ρn
2 L2lþ1

n−l−1ðρnÞYlmðΩrÞ; ð12Þ

En ¼ −
4mα2s
9n2

; ð13Þ

where ρn ¼ 2r=ðnaÞ is a dimensionless variable and
a ¼ 3=ð2mαsÞ is the Bohr-like radius. The functions
L2lþ1
n−l−1 and Ylm are the associated Laguerre polynomials

and the spherical harmonics, respectively. The normaliza-
tion reads

Nnl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

2

na

�
3 ðn − l − 1Þ!
2n½ðnþ lÞ!�

s
: ð14Þ

Finally, if not differently specified, here and in the rest of
the paper, αs is understood evaluated at the renormalization
scale ν∶ αs ≡ αsðνÞ. Hence the potential, the Bohr-like
radius and, through it, the wave functions depend on ν.

B. Relativistic wave function corrections

The LO wave function (12) gets corrections due to
higher order potentials and possibly to higher order Fock
states. Corrections due to higher order potentials contribute
at relative order v2, and therefore have to be included in the
analysis to reach a precision of order k3γ=m2. These
corrections will be outlined in the next Sec. II B 1.
Corrections due to higher order Fock states will be
discussed in Sec. II B 2.

1. Corrections due to higher order potentials

To account for Oðv2Þ corrections to the decay width due
to higher order potentials, we need to consider the
Hamiltonian

H ¼ −
∇⃗2

r

m
þ VsðrÞ þ δH: ð15Þ

The quark-antiquark static potential up to next-to-next-to-
leading order (NNLO) is given by

VsðrÞ ¼ Vð0Þ
s ðrÞ

�
1þ

X2
k¼1

�
αs
4π

�
k
akðν; rÞ

�
; ð16Þ

where the coefficients of the OðαsÞ and Oðα2s Þ radiative
corrections to the LO static potential are

a1ðν; rÞ ¼ a1 þ 2β0 lnðνeγErÞ; ð17Þ

a2ðν; rÞ ¼ a2 þ
π2

3
β20 þ ð4a1β0 þ 2β1Þ lnðνeγErÞ

þ 4β20ln
2ðνeγErÞ; ð18Þ

with a1 ¼ −8þ 5β0=3 and a2 ¼ 100n2f=81− nfð1229=
27þ 52ζ3=3Þ þ 4343=18þ 36π2 − 9π4=4þ 66ζ3. The co-
efficients βi are the coefficients of the β-function with β0 ¼
11 − 2nf=3 and β1 ¼ 102 − 38nf=3; nf is the number of
massless flavors. The OðαsÞ correction was computed in
Ref. [26] and theOðα2s Þ one in Ref. [27]. In this section, we
consider higher order corrections to the static potential as
perturbations around the leading order solution of Sec. II A.
Hence, the order αs correction contributes to the transition
width at relative order v in first order quantum mechanical
perturbation theory and at relative order v2 in second order
quantum mechanical perturbation theory, whereas the
order α2s correction contributes at relative order v2 in first
order quantum mechanical perturbation theory. On the
other hand, the Oðα3s Þ correction, which is also known
from Refs. [28–30], would give a contribution to the E1
decay rate of relative order v3, which is beyond our
precision. Therefore, we will not includeOðα3s Þ corrections
in this part of our analysis.
The term δH contains relativistic corrections to the

potential and to the kinetic energy. They can be organized
as an expansion in the inverse of the heavy quark mass,
m. At the order we are interested in, such an expansion
includes all the 1=m and 1=m2 potentials and, at order
1=m3, the first relativistic correction to the kinetic energy:

δH ¼ −
∇⃗2

4m
−

∇⃗4
r

4m3
þ Vð1Þ

m
þ Vð2Þ

SI

m2
þ Vð2Þ

SD

m2
: ð19Þ

At order 1=m2, we have distinguished between spin-
independent (SI) and spin-dependent (SD) terms:

Vð2Þ
SI ðrÞ ¼ Vð2Þ

r ðrÞ þ 1

2
fVð2Þ

p2 ðrÞ;−∇⃗2
rg þ Vð2Þ

L2 ðrÞL⃗2; ð20Þ

Vð2Þ
SDðrÞ ¼ Vð2Þ

LSðrÞL⃗ · S⃗þ Vð2Þ
S2
ðrÞS⃗2 þ Vð2Þ

S12
ðrÞS12; ð21Þ

where S⃗ ¼ S⃗1 þ S⃗2 ¼ ðσ⃗1 þ σ⃗2Þ=2, L⃗ ¼ r⃗ × ð−i∇⃗rÞ and
S12 ¼ 3ðr̂ · σ⃗1Þðr̂ · σ⃗2Þ − σ⃗1 · σ⃗2; f; g stands for the

SEGOVIA, STEINBEIßER, and VAIRO PHYS. REV. D 99, 074011 (2019)

074011-4



anticommutator. The above potentials read at leading
(nonvanishing) order in perturbation theory (see, e.g.,
Ref. [12]):

Vð1ÞðrÞ ¼ −
2α2s
r2

; Vð2Þ
r ðrÞ ¼ 4π

3
αsδ

ð3Þðr⃗Þ;

Vð2Þ
p2 ðrÞ ¼ −

4αs
3r

; Vð2Þ
L2 ðrÞ ¼ 2αs

3r3
;

Vð2Þ
LSðrÞ ¼

2αs
r3

; Vð2Þ
S2
ðrÞ ¼ 16παs

9
δð3Þðr⃗Þ;

Vð2Þ
S12
ðrÞ ¼ αs

3r3
: ð22Þ

All these potentials contribute through first order quan-
tum mechanical perturbation theory at relative order v2 to
the E1 width.

Using quantum-mechanical perturbation theory, we
compute the first and, for one term, the second order

correction, induced by δV ¼ ðVs − Vð0Þ
s Þ þ δH, to the wave

function ψnlmðr⃗Þ≡ hr⃗jnlmi of energy En. The second
order correction to the wave function is only needed when
the perturbation is given by the next-to-leading order
(NLO) term in the static potential, i.e., the one proportional
to a1ðν; rÞ. The (normalized) corrections to the wave
function are at first order

jnlmið1Þ ¼
X

n0≠n;l0;m0

hn0l0m0jδVjnlmi
En − En0

jn0l0m0i; ð23Þ

and at second order

jnlmið2Þ ¼
X

k1≠n;l1;m1

� X
k2≠n;l2;m2

hk1l1m1jδVjk2l2m2ihk2l2m2jδVjnlmi
ðEn − Ek1ÞðEn − Ek2Þ

−
hk1l1m1jδVjnlmihnlmjδVjnlmi

ðEn − Ek1Þ2
�
jk1l1m1i

−
1

2

X
k2≠n;l2;m2

jhk2l2m2jδVjnlmij2
ðEn − Ek2Þ2

jnlmi: ð24Þ

The operator
P

n0≠n;l0;m0
jn0l0m0ihn0l0m0j

En−En0
appearing in the Eqs. (23) and (24) can be rewritten as

lim
E→En

� X
n0;l0;m0

jn0l0m0ihn0l0m0j
E − En0

−
X
l0;m0

jnl0m0ihnl0m0j
E − En

�
≡ 1

ðEn −HÞ0 ; ð25Þ

and it can thus be identified with the pole-subtracted Coulomb Green function. In coordinate space, it reads

G0
nðr⃗1; r⃗2Þ≡ hr⃗1j

1

ðEn −HÞ0 jr⃗2i ¼ lim
E→En

�
Gðr⃗1; r⃗2Þ −

Xn−1
l¼0

Xl
m¼−l

ψ�
nlmðr⃗1Þψnlmðr⃗2Þ

E − En

�
; ð26Þ

where Gðr⃗1; r⃗2Þ is the Coulomb Green function [31,32]:

Gðr⃗1; r⃗2Þ ¼ −
X∞
l¼0

2lþ 1

4π
Plðr̂1 · r̂2ÞGlðr1; r2Þ; with Glðr1; r2Þ ¼

X∞
ν¼lþ1

m
2
a2
�
ν4

λ

�
Rνlðρλ;1ÞRνlðρλ;2Þ

ν − λ
; ð27Þ

E≡ −4mα2s=ð9λ2Þ and ρλ;i ¼ 2ri=ðλaÞ. In calculations it may be useful to set λ ¼ n=
ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p
, since in this way we have

E ¼ Enð1 − ϵÞ and E → En for ϵ → 0. Therefore, the first order and second order corrections to the expectation values of an
arbitrary operator O may be written as (note that, for the sake of simplicity, only initial state corrections are shown herein,
but the same corrections affect also the final state):

hn0l0m0jOjnlmið1Þ ¼
Z

d3r1 d3r2 ψ�
n0l0m0 ðr⃗2ÞOðr⃗2ÞG0

nðr⃗2; r⃗1ÞδVðr⃗1Þψnlmðr⃗1Þ; ð28Þ

hn0l0m0jOjnlmið2Þ ¼
Z

d3r1d3r2d3r3ψ�
n0l0m0 ðr⃗3ÞOðr⃗3ÞG0

nðr⃗3; r⃗2ÞδVðr⃗2ÞG0
nðr⃗2; r⃗1ÞδVðr⃗1Þψnlmðr⃗1Þ

−δEð1Þ
V

Z
d3r1d3r2d3r3ψ�

n0l0m0 ðr⃗3ÞOðr⃗3ÞG0
nðr⃗3; r⃗2ÞG0

nðr⃗2; r⃗1ÞδVðr⃗1Þψnlmðr⃗1Þ

−
1

2

Z
d3rψ�

n0l0m0 ðr⃗ÞOðr⃗Þψnlmðr⃗Þ
Z
d3r1d3r2d3r3ψ�

nlmðr⃗3ÞδVðr⃗3ÞG0
nðr⃗3; r⃗2ÞG0

nðr⃗2; r⃗1ÞδVðr⃗1Þψnlmðr⃗1Þ;

ð29Þ
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where δEð1Þ
V is the first order correction to the energy:

δEð1Þ
V ≡ R

d3rψ�
nlmðr⃗ÞδVðr⃗Þψnlmðr⃗Þ.

As a final remark we note that, although in (19) we have

included the center of mass kinetic energy, −∇⃗2=4m, this
term does not contribute at our accuracy.3 The reason is
that, even if the center of mass kinetic energy scales like a
term of relative order v2, nevertheless, its contribution
vanishes at first order in quantum mechanical perturbation
theory, Eq. (23), as the states are eigenstates (in fact simple
plane waves) of the center of mass momentum.

2. Corrections due to higher order Fock states

The LO correction to E1 transitions due to higher
order Fock states comes from diagrams in which a heavy
quark-antiquark color singlet state is coupled to a heavy
quark-antiquark color octet state via emission and reab-
sorption of gluons whose energy and momentum are of
order mv2 or ΛQCD. The coupling of the color singlet
field S with the color octet field O is encoded in the
pNRQCD Lagrangian in a chromoelectric dipole inter-
action term:

R
d3rTrfS†r⃗ · gE⃗Oþ H:cg. The relevant

Feynman diagrams in pNRQCD are shown in Fig. 8
of Ref. [15]: they are diagrams corresponding to the
normalization of the initial and final state wave functions,
diagrams accounting for the corrections to the initial and
final state wave functions due to the presence of octet
states, and a diagram representing an electric dipole
transition mediated by an intermediate octet state.
According to the power counting of pNRQCD, those
diagrams contribute to relative order αsv2 if the gluons
carry an energy and a momentum of order mv2. They
contribute to relative order Λ2

QCD=ðmvÞ2 or Λ3
QCD=ðm3v4Þ

if the gluons are nonperturbative and carry an energy and
a momentum of order ΛQCD. In the first case, their
contribution is smaller than v2 by a factor αs and hence
beyond our accuracy. In the second case, it is also smaller
than v2 if mv2 ≫ ΛQCD, which is what we have assumed.
It should be remarked, however, that it suffices mv2 ∼
ΛQCD for the nonperturbative contributions to be of the
same relative order, v2, as the ones coming from higher
order potentials.

C. Numerical analysis

We specify, first, the parameters that enter in the
determination of the bottomonium E1 transition widths.
We have4

nf ¼ 3; eb ¼ −
1

3
;

αemð400 MeVÞ ¼ e2

4π
≈

1

136.032212
; ð30Þ

where nf is the number of massless flavors,5 eb is the
electric charge of the bottom quark in units of the electron
charge e and αem is the electromagnetic fine structure
constant.
The masses of the initial and final quarkonium states are

chosen to be the ones reported by the PDG [6], listed in
Table I. The photon energies are determined by the
kinematics of the two body decay, Eq. (7), and are given by

kγ ¼

8>>><
>>>:

391.1 MeV for χb0ð1PÞ → ϒð1SÞ þ γ;

423.0 MeV for χb1ð1PÞ → ϒð1SÞ þ γ;

441.6 MeV for χb2ð1PÞ → ϒð1SÞ þ γ;

488.3 MeV for hbð1PÞ → ηbð1SÞ þ γ:

ð31Þ

Our reference value for the strong coupling constant is

α
ðnf¼3Þ
s ð1 GeVÞ ¼ 0.480. We obtain this value by using the

RUNDEC package [34] to run down from α
ðnf¼5Þ
s ðMZ ¼

91.19 GeVÞ ¼ 0.118 at four-loop accuracy. We then run αs
to the typical scales of the bound state.
We fix the bottom quark pole mass using the exper-

imental mass of the ϒð1SÞ state and the leading order
binding energy. This means that if

Mexpðϒð1SÞÞ ¼ 2m −
4mα2s
9

þOðα3s Þ; ð32Þ

the bottom mass is

m ¼ Mexpðϒð1SÞÞ
2

�
1þ 2α2s

9
þOðα3s Þ

�
; ð33Þ

which is the expression that goes into the wave function.
Higher order terms are beyond our accuracy. Indeed, even
the Oðα2s Þ term given above is beyond our accuracy if used
for higher order corrections in the 1=m expansion. For
those corrections we set the bottom quark mass to be

m ¼ Mexpðϒð1SÞÞ
2

: ð34Þ

TABLE I. Masses in GeVof the bottomonium states involved in
the electric dipole transitions considered in this work, from the
PDG [6].

Notation ηbð1SÞ ϒð1SÞ hbð1PÞ χb0ð1PÞ χb1ð1PÞ χb2ð1PÞ
n2sþ1lJ 11S0 13S1 21P1 23P0 23P1 23P2

Mass [6] 9.399 9.460 9.899 9.859 9.893 9.912

3Potentials depending on the center of mass momentum
contribute, instead, at relative order v2 to M1 transitions [14].

4The value of αemð400 MeVÞ, where 400 MeV is a reference
value for the photon energy in a typical n ¼ 2, l ¼ 1 bottomo-
nium E1 transition, has been computed using the ALPHAQED
package [33].

5At the typical momentum transfer inside the bb̄ system the
charm quark decouples [17].
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1. χ bJð1PÞ → γϒð1SÞ with J = 0, 1, 2

We begin the numerical analysis of the electric dipole
transitions χbJð1PÞ → γϒð1SÞ, with J ¼ 0, 1, 2, focusing
on the contributions that appear in Eq. (4) and come from
higher order electromagnetic operators in the pNRQCD
Lagrangian. As one can see in Fig. 2, the leading order
decay width depends strongly on the renormalization scale
ν. This is due to the scale dependence of the Bohr-like
radius that enters the wave functions. The effects from
higher order electromagnetic operators are small. The
correction to the LO decay width is at most ≈1%, ≈2%
and ≈5% when the initial state is a χb0, χb1 and χb2,
respectively. This can be understood analyzing each con-
tribution separately: The contributions almost cancel for
J ¼ 0 but this is not the case for J ¼ 1 and J ¼ 2.
The radiative corrections to the LO static potential [the

terms in the sum of Eq. (16)] lead to first order and second
order quantum-mechanical corrections to the decay widths.
These terms are proportional to (soft) logs [like lnnðνrÞ]
and thus one expects a significant scale dependence of the
resulting matrix elements. This is indeed the case as shown
in Fig. 3.6 The plotted matrix elements, M, stand for the

first order and second order corrections to the matrix
elements of the specified potentials, according to
Eqs. (28) and (29). The left and middle panels refer to
the first order initial and final wave function corrections
coming from a1ðν; rÞ and a2ðν; rÞ, respectively. The right
panel refers to the second order correction due to the
a1ðν; rÞ term of the static potential. Among the features
shown by the panels, the following are of particular interest:
(i) The matrix elements clearly exceed the value of the LO
one. To some extent, this is due to the factors stemming
from the β-function in Eqs. (17) and (18) that are large.
(ii) The matrix elements depend strongly on the scale ν,
especially for small ν. A similar behavior shows up in some
matrix elements contributing to the M1 transitions [23].
(iii) The zero crossing in some of the matrix elements
comes from the logarithms in the Eqs. (17) and (18). The
scale where this effect occurs is ν ≈ 1.2 GeV. (iv) Initial
and final state corrections partially cancel each other, order
by order.
The corrections to the matrix element of the LO electric

dipole operator (3), due to the relativistic corrections to
the bottomonium wave functions discussed in Sec. II B 1,
are shown in Fig. 4. These corrections contribute to the
term RS¼1

21 ðJÞ in Eq. (4). As one can see, most of the
contributions are small, except for the final state correction
induced by Vð1Þ and the correction due to VS2 . The overall

1.0 1.5 2.0 2.5 3.0
10
20
30
40
50
60
70
80

[GeV]

[k
eV

]

1.0 1.5 2.0 2.5 3.0
10
20
30
40
50
60
70
80

[GeV]

[k
eV

]

1.0 1.5 2.0 2.5 3.0
10
20
30
40
50
60
70
80

[GeV]

[k
eV

]

FIG. 2. For the electric dipole transitions χbJð1PÞ → γϒð1SÞ, with J ¼ 0 (left panel), J ¼ 1 (middle panel) and J ¼ 2 (right panel), we
show the leading order decay rate (solid blue curve) and the decay rate obtained including the contributions in Eq. (4) that stem from
higher order electromagnetic operators (dashed orange curve).
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FIG. 3. Matrix elements of the one and two loop corrections to the static potential contributing to the decay width χbJð1PÞ → γϒð1SÞ.
In all panels, the solid blue line indicates the LO (no loop corrections) matrix element, the dashed orange line indicates the initial state
correction and the dotted green line indicates the final state correction. Left panel: First order correction to the decay width due to the
NLO static potential [the term proportional to a1ðν; rÞ]. Middle panel: First order correction to the decay width due to the NNLO static
potential [the term proportional to a2ðν; rÞ]. Right panel: Second order correction to the decay width due to the NLO static potential. The
additional dot-dashed red line corresponds to a matrix element with a first order correction to both the initial and final states. The matrix
elements do not depend on J.

6Since these are central potentials, the matrix elements do not
depend on the spin s or the total angular momentum J and thus
the result is the same for all P-wave to S-wave transitions.
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dependence on the scale ν is weak in all cases but a slight
trend toward larger values by decreasing scale can be
observed.
We sum the matrix elements that include radiative

corrections to the static potential (see Fig. 3) and higher
order relativistic corrections to the potential and kinetic
energy (see Fig. 4) at each order and the result is shown in
Fig. 5, first row. The corresponding decay widths are
displayed in the second row. From both plot sequences
we can see that each LO, NLO and NNLO contribution
depends strongly on the renormalization scale and also that
subleading contributions may be of similar size to the
leading one. Moreover, the overall impact of the correc-
tions decreases with increasing total angular momentum:

For J ¼ 0 the NLOþ NNLO curves exceed for some ν the
LO curve, for J ¼ 1 they touch each other and for J ¼ 2
they stay slightly below. The kink, visible in the NNLO
matrix element (and subsequently also in the NLOþ
NNLO matrix element) at about 1.2 GeV, can be traced
back either to the zero crossing or to the maximum in the
matrix elements of Fig. 3. Also the NLO and NNLO matrix
element sums show a zero crossing, and the combined
NLOþ NNLO matrix element has a clear maximum. The
zero crossings yield vanishing contribution to the respec-
tive decay widths, as visible in the second row.
The results that follow from summing up all previous

corrections, i.e., those that contribute to the term RS¼1
21 ðJÞ in

(4) (we recall that these are radiative corrections to the static
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FIG. 4. For the electric dipole transitions χbJð1PÞ → γϒð1SÞ, with J ¼ 0 (first column), J ¼ 1 (second column) and J ¼ 2 (third
column), we show the matrix elements contributing to the decay widths induced by the LO electric dipole operator (3) when the
bottomonium wave functions include relativistic corrections due to higher order potentials and kinetic energy in the 1=m expansion, see
Sec. II B 1. First row: Matrix element at LO, i.e., without relativistic corrections, (solid blue), and at NNLO: Including relativistic
corrections due to the Vð1Þ potential (dashed orange and dotted green lines for initial and final state corrections, respectively) and due to
the Vð2Þ

r potential (dot-dashed red line for final state correction). Second row: Matrix element at LO (solid blue), and at NNLO: Including

relativistic corrections due to the Vð2Þ
L2 potential (dashed orange for initial state correction), due to the Vð2Þ

LS potential (dotted green for

initial state correction), due to the Vð2Þ
S2

potential (dot-dashed red for final state correction), and due to the Vð2Þ
S12

potential (dashed violet
and dotted brown for initial and final state corrections, respectively). Third row: Matrix element at LO (solid blue), and at NNLO:

Including relativistic corrections due to the Vð2Þ
p2 potential (dashed orange and green for initial and final state corrections, respectively),

and due to the kinetic energy term −∇⃗4=4m3 (dotted red and violet for initial and final state corrections, respectively).
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potential, due to the one and two loop corrections in (16),
and higher order relativistic corrections to the potential and
the kinetic energy, due to (19); their combined effect to the
E1 transition width is shown in Fig. 5) and those that
contribute to the terms other than RS¼1

21 ðJÞ in (4) (these are
due to higher order electromagnetic operators in the
pNRQCD Lagrangian (3); their effect to the E1 transition
width is shown in Fig. 2), are shown in Fig. 6. The
renormalization scale dependence of the decay widths is
reduced as the NLO and NNLO corrections are included.
For instance, varying the renormalization scale from 1 GeV
to 3 GeV for the J ¼ 1 case, the LO spans over the range
ð17–74Þ keV, incorporating the NLO contribution shrinks

the range to ð35–75Þ keV, and adding the NNLO correc-
tions results in a range of ð32–79Þ keV. Although a slight
shift toward higher upper bounds is noticeable, the whole
range and thus the overall scale dependence somewhat
decreases from the LO.
Another feature of the panels in Fig. 6 is that by setting

the terms proportional to a1ðν; rÞ and a2ðν; rÞ to zero, the
decay width exhibits a different ν-dependence in the low ν
region (dotted green curve). This suggests that the terms
proportional to the logs in Eqs. (17) and (18) give rise to
non-negligible contributions, whose dependence on the
renormalization scale needs to be treated carefully, as we
shall see in the next section.
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FIG. 5. Sums of the matrix elements shown in Figs. 3 and 4, and decay widths at different orders for the E1 transitions
χbJð1PÞ → γϒð1SÞ. The three panels in each row refer to the three cases J ¼ 0, 1, 2, respectively. First row: Sum of the matrix elements
at (not up to) LO (solid blue), NLO (dashed orange), NNLO (dotted green) and NLOþ NNLO (dot-dashed red). Second row: Decay
widths at (not up to) LO (solid blue), NLO (dashed orange), NNLO (dotted green) and NLOþ NNLO (dot-dashed red).
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FIG. 6. Decay widths of the electric dipole transitions χbJð1PÞ → γϒð1SÞ. The three panels refer to the three cases J ¼ 0, 1, 2,
respectively. In each panel, the dashed blue curve is the LO decay width, the dot-dashed orange one incorporates LOþ NLO corrections
and the solid black curve incorporates LOþ NLOþ NNLO corrections coming from higher order electromagnetic operators, radiative
corrections to the static potential and higher order relativistic corrections to the potential and the kinetic energy. The dotted green curve is
similar to the black one but it omits all corrections to the decay width due to radiative corrections of the static potential (one and two
loops). We take our central value at ν ¼ 1.25 GeV, whereas the gray band indicates the associated uncertainty. The scale setting and the
uncertainty estimate are explained in the text.
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The convergence of the perturbative series is poor.
This can be seen by looking at the difference between
the LO and NLO, and between the NLO and NNLO results.
Also the strong scale dependence in the range 1 GeV ≤
ν ≤ 3 GeV is a consequence of having large higher
order corrections. As a consequence, it is difficult (if not
impossible) to get a reliable result using fixed order
perturbation theory. Nevertheless, in the following we will
produce a first rough determination of the 1P bottomonium
dipole electric transitions, with a large error reflecting the
large uncertainty. We will overcome this difficulty and
provide a reliable determination with a small uncertainty in
the next section.
We choose to set the central value of the decay widths at

the renormalization scale that self-consistently solves the
Bohr-like radius equation:

1

a
¼ 2mαsð1=aÞ

3
: ð35Þ

This scale is ν ¼ 1=a ¼ 1.25 GeV.7

We estimate the uncertainty associated to the central
value in a twofold way: (i) First, we vary the renormaliza-
tion scale from 1 GeV to 3 GeV, which is a conservative
interval including the lowest scale where perturbation
theory may be still applicable and more than twice the
inverse of the Bohr radius. (ii) Second, we estimate the
uncertainty associated with truncating the perturbative
series at NNLO and the fact that the series is poorly
converging by taking one half of the maximum difference
between the LO and the NNLO decay width. For the final
error we choose the largest of these two values, which is
indicated in the plots by a gray band. Further sources of
uncertainties are given by the input parameters, these being
the masses of initial and final states, and the value of αs. If
we assume that these quantities are accurate within
≲ð1–3Þ%, their uncertainty is largely inside the final error.
Hence, a fixed order determination at NNLO gives for

the E1 transition widths of the χbJð1PÞ:

Γðχb0ð1PÞ → γϒð1SÞÞ ¼ 45þ20
−18 keV; ð36Þ

Γðχb1ð1PÞ → γϒð1SÞÞ ¼ 54þ25
−22 keV; ð37Þ

Γðχb2ð1PÞ → γϒð1SÞÞ ¼ 55þ27
−24 keV: ð38Þ

As anticipated, the errors are large, reflecting the poor
convergence of the perturbative series. In Sec. III, we will
see how resumming the known terms of the perturbative

expansion of the static potential into the wave func-
tions will enormously improve the above determinations
providing convergent expansions with tiny theoretical
uncertainties.

2. hbð1PÞ → γηbð1SÞ
We apply now the former analysis to the electric dipole

transition hbð1PÞ → γηbð1SÞ. Figure 7 shows the LO decay
rate and its correction due to higher order electromagnetic
operators in the pNRQCD Lagrangian. In comparison with
the χbJ radiative transitions, the LO transition width and the
correction induced by higher order operators are larger in
this case. This is because the photon energy, kγ, is larger
for increasing J in the χbJð1PÞÞ → γϒð1SÞ transitions
and even larger in the hbð1PÞ → γηbð1SÞ transition, see
Eq. (31). The fact that the photon energy enters with the
third power in the expression of the decay width explains
then the overall increasing effect. The correction due to
higher order operators is about 10%.
The corrections to the decay width due to the radiative

corrections to the static potential (16) are the same as the
ones shown in Fig. 3. As already mentioned, this is so
because none of these potentials depends on either the spin
s or the total angular momentum J.
Figure 8 shows the corrections to the matrix element of

the LO electric dipole operator (3), due to the relativistic
corrections to the bottomonium wave functions discussed
in Sec. II B 1. These corrections contribute to the term RS¼0

21

in Eq. (5). Since the initial and final states in the transition
are now spin-singlet states, corrections to the wave func-
tions due to the spin-orbit, spin-spin, and tensor potentials
are absent. This has a major impact on the total NNLO

matrix element because the correction induced by the Vð2Þ
S2

potential is zero now, whereas in the χbJ case it is large
(and negative) especially in the low ν region.
The left (middle) panel of Fig. 9 shows for each order the

sum of all matrix elements (decay widths) including
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FIG. 7. For the electric dipole transition hbð1PÞ → γηbð1SÞ, we
show the decay rate at leading order (solid blue curve) and
including the contributions in Eq. (5) that stem from higher order
electromagnetic operators (dashed orange curve).

7This is the typical momentum transfer inside n ¼ 1 botto-
monia and the largest, most relevant, scale in the E1 matrix
elements. In particular, it is larger than the typical momentum
transfer inside n ¼ 2 bottomonia. The possibility for a renorm-
alization scale as low as 1 GeV is accounted for in the
uncertainties.
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radiative corrections to the static potential (see Fig. 3) and
higher order relativistic corrections to the potential and
kinetic energy (see Fig. 8). The kink, visible in the NNLO
and thus in the NLOþ NNLO matrix elements at about
1.2 GeV, can be traced back to the zero crossing or
maximum in the matrix elements that account for the
radiative corrections to the static potential. The absence of
several negative contributions at NNLO yields a stronger
dependence on the scale ν for values ν≲ 1.5 GeV than in
the χbJ case. In this region of ν, the NLOþ NNLO matrix
element and the subsequent decay width clearly exceed the
leading order ones.
The result that follows from summing up all previous

corrections, i.e., those that contribute to the term RS¼0
21 in

(5), shown in the first two panels of Fig. 9, and those that
contribute to the terms other than RS¼0

21 in (5), shown in
Fig. 7, is shown in the right panel of Fig. 9. The
renormalization scale dependence of the decay width is
reduced when the NLO and NNLO corrections are

included: by varying the renormalization scale from
1 GeV to 3 GeV the LO decay width spans over the range
ð27–114Þ keV, incorporating the NLO contribution shrinks
the range to ð64–115Þ keV, and incorporating the NNLO
correction shrinks further the range to ð97–127Þ keV.
This comes at the cost of an even worse convergence
pattern of the perturbative series than in the χbJ case. We
observe again a slight shift towards higher upper bounds,
but the whole range and thus the overall scale dependence
decreases.
Omitting the corrections to the decay width induced by

the radiative corrections to the static potential results in a
curve (green-dotted curve in the right panel of Fig. 9) that is
quite close to the LO one at large values of ν and whose
ν-scale dependence is weaker than the complete result at
low values of ν. This is in contrast with the effect observed
for the χbJ states, but understandable since several addi-
tional contributions appear in the χbJ case that are not
present here.
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FIG. 8. For the electric dipole transition hbð1PÞ → γηbð1SÞ, we show the matrix elements contributing to the decay width induced by
the LO electric dipole operator (3) when the bottomonium wave functions include relativistic corrections due to higher order potentials
and kinetic energy in the 1=m expansion, see Sec. II B 1. Left panel: Matrix elements at LO (solid blue), and at NNLO: including
relativistic corrections due to the Vð1Þ potential (dashed orange and dotted green lines for initial and final state corrections, respectively)
and due to the Vð2Þ

r potential (dot-dashed red line for final state correction). Middle Panel: Matrix element at LO (solid blue), and at

NNLO including relativistic corrections due to the Vð2Þ
L2 potential (dashed orange for initial state correction). Right panel: Matrix element

at LO (solid blue), and at NNLO: including relativistic corrections due to the Vð2Þ
p2 potential (dashed orange and green for initial and final

state corrections, respectively), and due to the kinetic energy term −∇⃗4=4m3 (dotted red and violet for initial and final state corrections,
respectively).
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FIG. 9. Sum of the matrix elements shown in Figs. 3 and 8, and decay width at different orders; also final decay width according to
Eq. (5), for the E1 transition hbð1PÞ → γηbð1SÞ. Left panel: Sum of the matrix elements at (not up to) LO (solid blue), NLO (dashed
orange), NNLO (dotted green) and NLOþ NNLO (dot-dashed red). Middle panel: Decay width at (not up to) LO (solid blue), NLO
(dashed orange), NNLO (dotted green) and NLOþ NNLO (dot-dashed red). Right panel: Description as in Fig. 6.
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We choose to set the central value of the decay width at
ν ¼ 1.25 GeV, following the same prescription discussed
for the χbJ case. The main differences in comparison to the
χbJ transition width curves in Fig. 6 are the overall weaker
scale dependence, the worse convergence of the perturba-
tive series, and the shape of the curve for large values of
the renormalization scale ν. Assigning the error to the
transition width as in the χbJ → γϒð1SÞ case discussed
above, a fixed order determination at NNLO gives for the
E1 transition width of the hb:

Γðhbð1PÞ → γηbð1SÞÞ ¼ 125þ42
−42 keV: ð39Þ

In the following Sec. III, we will see how to improve also
this determination by resumming the known terms of the
perturbative expansion of the static potential into the wave
function.

III. NUMERICAL ANALYSIS IN PNRQCD AT
WEAK COUPLING WITH RESUMMATION OF

THE STATIC POTENTIAL

A. Log resummation and renormalon subtraction

We have seen in the previous section that the electric
dipole transitions from the lowest-lying P-wave bottomo-
nium states are not reliably described by fixed order
calculations. The reason is that, even if these states are
weakly coupled and the potential computable in pertur-
bation theory, considering them at LO as Coulombic
bound states is inadequate. Indeed, expanding around

the Coulomb potential, Vð0Þ
s , has led to a poor convergence

of the perturbative series, resulting in a strong depen-
dence on the renormalization scale and large theoretical
uncertainties.
We deal with this problem by rearranging the pertur-

bative expansion in pNRQCD in such a way that the
static potential is exactly included in the LO Hamiltonian.
One motivation for this reorganization of the perturbative
series is the observation, originating from Ref. [35] (for
more recent studies see, for instance, [36]), that, when
comparing the static potential with lattice perturbation
theory at short distances, the inclusion of higher order
corrections is necessary to get a good agreement. An
accurate treatment of the potential is particularly impor-
tant for those observables, like the electric dipole
transition widths, that are sensitive to the precise form
of the wave function.
The new expansion scheme was applied in Ref. [22] to

study electromagnetic decays of heavy quarkonium, and in
Ref. [23] to compute magnetic dipole transitions between
low-lying heavy quarkonia. The effect of the new rear-
rangement was found to be large. In particular, the exact
treatment of the soft logarithms of the static potential made
the renormalization scale dependence much weaker. We
proceed herein to apply the same scheme to the electric

dipole transitions under study. Like in the magnetic dipole
transition computation performed in Ref. [23], an improve-
ment in the convergence of the perturbative expansion is
expected. The perturbative expansion will consist of just
two terms: A leading order term, incorporating exactly the
static potential, and a term incorporating the remaining
corrections coming from higher order electromagnetic
operators, and higher order relativistic corrections to the
wave functions.
We follow the same setup of Ref. [23]. The leading order

Hamiltonian reads now:

Hð0Þ
exactVs

¼ −
∇⃗2

m
þ VsðrÞ; ð40Þ

where the static potential is ideally summed to all orders in
perturbation theory. In practice, it is only known up to order
α4s , hence we take8

Vsðνus; rÞ ¼ Vð0Þ
s ðrÞ

�
1þ

X3
k¼1

�
αs
4π

�
k
akðν; νus; rÞ

�
: ð41Þ

The analytical expressions of a1ðν; rÞ and a2ðν; rÞ have
been given in Eqs. (17) and (18), respectively. The term
a3ðν; νus; rÞ is known from Refs. [29,30]:

a3ðν;νus; rÞ ¼ a3 þ a1β20π
2 þ 5π2

6
β0β1 þ 16ζ3β

3
0

þ ð2π2β30 þ 6a2β0 þ 4a1β1 þ 2β2 þ 144π2Þ
× ln ðνeγErÞ þ ð12a1β20 þ 10β0β1Þln2ðνeγErÞ
þ 8β30ln

3ðνeγErÞ þ δaus3 ðν;νusÞ; ð42Þ

where β2 ¼ 2857=2 − 5033nf=18þ 325n2f=54, a3 may be
read from the original literature or, for instance, from [32],
and δaus3 ðν; νusÞ, encoding the subtraction of ultrasoft
corrections from the static potential, is taken [28]

δaus3 ðν; νusÞ ¼ 144π2 ln

�
νus
ν

�
: ð43Þ

Ultrasoft corrections to the static potential are due to gluons
carrying energy and momentum of order αs=r; the scale νus
is the factorization scale separating the ultrasoft energy and
momentum region from higher ones. We will not resum
here ultrasoft logs, like the one appearing in (43), although
the result is known at leading [37] and next-to-leading
accuracy [38]. The reason is that their numerical effect is
small with respect to other sources of error.

8To keep the notation simple, we will not explicitly write the
dependence on the scale for quantities where this is due only to
the truncation of the perturbative expansion.
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The perturbative expansion (41) does not converge due
to factorially growing terms that, once Borel resummed,
give rise to singularities in the Borel plane, known as
renormalons. The leading order renormalon affecting the
static potential, Vs, cancels against twice the pole mass m
[39–41]. To make this cancellation explicit one adds/
subtracts the same renormalon contribution from twice
the pole mass/the static potential ensuring that both are
expressed in series of αs to the same power and at the same
scale, e.g., ν:

m ¼ mX þ δmX;

VsðrÞ ¼ Vs;XðrÞ − 2δmX; ð44Þ

where δmX ¼ νf
P

3
k¼0 δm

ðkÞ
X ðνfν Þαkþ1

s ðνÞ encodes the pole
mass renormalon contribution, νf is the renormalon fac-
torization scale and X stands for the chosen renormalon
subtraction scheme. For the renormalon subtraction scheme
we use here the RS0 scheme [21],9 which amounts at
choosing

δmð0Þ
RS0 ¼ 0; δmð1Þ

RS0

�
νf
ν

�
¼ Nm

β0
2π

Sð1; bÞ; ð45Þ

δmð2Þ
RS0

�
νf
ν

�
¼ Nm

�
β0
2π

��
Sð1; bÞ 2d0ðν; νfÞ

π
þ
�
β0
2π

�
Sð2; bÞ

�
; ð46Þ

δmð3Þ
RS0

�
νf
ν

�
¼ Nm

�
β0
2π

��
Sð1; bÞ3d

2
0ðν;νfÞ þ 2d1ðν;νfÞ

π2
þ
�
β0
2π

�
Sð2; bÞ3d0ðν;νfÞ

π
þ
�
β0
2π

�
2

Sð3; bÞ
�
; ð47Þ

where

Sðn; bÞ ¼
X2
k¼0

ck
Γðnþ 1þ b − kÞ
Γð1þ b − kÞ ; dkðν; νfÞ ¼

βk
21þ2k ln

�
ν

νf

�
; ð48Þ

with b ¼ β1=ð2β20Þ and

c0 ¼ 1; c1 ¼
β21 − β0β2
4β40b

; c2 ¼
β41 þ 4β30β1β2 − 2β0β

2
1β2 þ β20ð−2β31 þ β22Þ − 2β40β3

32β80bðb − 1Þ : ð49Þ

The mass that we are using for the bottom quark is
mb;RS0 ðνf ¼ 1.0 GeVÞ ¼ 4.859 GeV. It can be translated
into the MS-mass: mbðmbÞ ¼ 4.19 GeV [42]. Our refer-
ence value for Nm is Nm ¼ 0.574974 (for three light
flavors) from Ref. [21].10 As in the previous section, our

reference value for αs is α
ðnf¼3Þ
s ð1 GeVÞ ¼ 0.480, and, like

there, the running is implemented with four-loop accuracy.
We set νus ¼ νf. This choice is motivated by the fact that
νus has to be smaller than the typical momentum transfer
scale, i.e., νus < p ∼ 1=a ¼ 1.25 GeV on the one hand, and
νus has to be larger than the scale where perturbation theory
breaks down, say 0.7 GeV. Varying νus from 0.7 GeV to

1.25 GeV induces a change from þ4% to −2% in the
coefficient δaus3 ðν; νusÞ. The numerical impact of this
change in the three loop coefficient of the static potential
is negligible with respect to the dependence on the scale ν.
This is not surprising as ultrasoft corrections are beyond the
accuracy of the present study.
In the short range, it is possible to further improve the

static potential by resumming potentially large logs of the
type lnðνrÞ by setting the scale ν ¼ 1=r and yet achieve
renormalon cancellation order by order in αsð1=rÞ (see
[35]). Following [23], we finally define our renormalon
subtracted static potential in the RS0 scheme as

Vs;RS0 ðν; νf; νr; rÞ ¼
(

Vs þ 2δmRS0 jν¼1=r ≡P
3
k¼0 V

ðkÞ
s;RS0α

kþ1
s ð1=rÞ if r < ν−1r ;

Vs þ 2δmRS0 jν¼ν ≡P
3
k¼0 V

ðkÞ
s;RS0α

kþ1
s ðνÞ if r > ν−1r :

ð50Þ

9We have checked against the RS [21] and the potential subtracted (PS) [41] schemes that the LO matrix element depends only mildly
on the adopted renormalon subtraction scheme.

10In the literature, there is an updated value, Nm ¼ 0.563126, from Ref. [43], as well as other recent determinations, like Nm ¼
0.535� 0.010 from Ref. [44]. Since we have verified that these different determinations vary our results well inside the final errors, we
will neglect in the following the uncertainty of Nm.
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The scale νr separates short distances, where logs are
resummed in the coupling (r < 1=νr), from long distances,
where the coupling is evaluated at the fixed scale ν
(r > 1=νr). If νr ¼ ∞, this is equivalent to compute with
a fixed scale over all distances; if νr ¼ 0, this is equivalent
to compute the coupling at 1=r over the full distance range.
The renormalon factorization scale, νf, must be chosen

low enough that the subtracted mass, δmRS0 , does not
jeopardize the power counting, i.e., δmRS0 must be of order
mv2 or smaller, but also large enough that δmRS0 encom-
passes the renormalon, i.e., the renormalon subtracted
series converges, and perturbation theory holds. In our
analysis, we observe that we can use the rather low value
νf ¼ 1.0 GeV and yet achieve renormalon cancellation.
Other choices of νf are possible, but, given the above
constraints, the allowed range of variation for νf is even
more restricted than for νus. In Refs. [20,23] the effect of
taking νf ¼ 0.7 GeV has been considered. The impact on
the bottomonium mass is at most 1%. We consider this to
be a reasonable upper limit also for the transition widths.
The uncertainty coming from the scale νf (as well as the
one from the scale νus considered before) is, therefore,
negligible with respect to the one coming from the scale ν,
which is, on the overall, the largest theoretical uncertainty
in our computation.
We can look at the effects on the leading order transition

width, i.e., the matrix element of the leading order E1
operator (3), when incorporating the static potential (50) at
different perturbative orders into the exact solution of the
Schrödinger equation. Differently from the previous sec-
tion, now the Schrödinger equation with the potential (50)
can be solved, beyond LO, only numerically. We provide
some details on the numerical solution of the Schrödinger
equation in Appendix.
Let us consider, as an example, the transition χb1ð1PÞ →

γϒð1SÞ; the other transitions at leading order follow from

this one just by rescaling all the curves by the constant
factor ðkγ=423 MeVÞ3, which corrects for the photon
energy. The left panel of Fig. 10 shows the leading order
transition rate when the coupling in the static potential is
computed at the fixed scale ν, corresponding to the case
νr ¼ ∞ in Eq. (50). Solving the Schrödinger equation with
only the Coulomb-like term in the static potential gives
back the same LO result as in Sec. II. This decay rate (solid
blue curve) depends strongly on the renormalization scale:
It ranges from 18 keV to 72 keV when running ν from
1 GeV to 3 GeV. However, the ν-scale dependence becomes
mild as NLO (dashed orange curve), NNLO (dot-dashed
green curve) and NNNLO (dotted red curve) radiative
corrections to the static potential are added to the
Schrödinger equation. Indeed, the decay rate changes only
of about 4 keVover the considered ν-range, when the three
loop static potential is considered. Moreover, the conver-
gence of the perturbative series has improved with respect
to the fixed order case. Convergence tends to worsen only
for low ν.
The right panel of Fig. 10 shows the same quantity when

the coupling in the static potential is computed at the scale
1=r for r<1.0GeV−1 and at the scale ν for r > 1.0 GeV−1,
corresponding to the case νr ¼ 1.0 GeV in Eq. (50). The
perturbative series appears to converge over the whole
range 1 GeV ≤ ν ≤ 3 GeV, and in particular for low ν. As
for the curves in the left panel, also for the curves shown in
the right panel the dependence on the renormalization scale
becomes mild with increasing order: At NNNLO the decay
rate changes by less than 8 keV when ν goes from 1 to
3 GeV, which is slightly more than for the corresponding
NNNLO decay rate in the left panel.

B. Numerical analysis

We are now in the position to discuss the final determi-
nations of the electric dipole transitions χbJð1PÞ → γϒð1SÞ
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FIG. 10. Leading order decay rate of the electric dipole transition χb1 → γϒð1SÞ. The renormalon subtracted static potential is
included at different orders in the Schrödinger equation, which is solved exactly by numerical methods: LO Coulomb-like potential
(solid blue), potential up to NLO (dashed orange), potential up to NNLO (dot-dashed green) and potential up to NNNLO (dotted red).
The left panel shows the case where the coupling in the static potential is computed at the fixed scale ν [case νr ¼ ∞ in Eq. (50)], while
the right panel shows the case where the coupling in the static potential is computed at the scale 1=r at short distances [case νr ¼
1.0 GeV in Eq. (50)].
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with J ¼ 0, 1, 2 and hbð1PÞ → γηbð1SÞ. We use wave
functions obtained from the solution of the Schrödinger
equation with the full static potential (50). The static
potential is taken at three loops, Eq. (41), including ultrasoft
effects. The leading order renormalon is subtracted accord-
ing to the RS0 scheme defined in Eqs. (45)–(49). The
relevant factorization scales are set to be νus ¼ νr ¼
νf ¼ 1.0 GeV. Higher order corrections of relative order
v2 come from higher order electromagnetic operators in
the pNRQCD Lagrangian, terms in (4) and (5) other than
RS¼1
21 ðJÞ and RS¼0

21 , respectively, and from higher order
relativistic corrections affecting initial and final states, terms
contributing toRS¼1

21 ðJÞ andRS¼0
21 in (4) and (5), respectively,

and stemming from Eq. (19).

1. χ bJ(1P) → γϒ(1S) with J = 0, 1, 2

The decay width for the χb0ð1PÞ → γϒð1SÞ transition is
shown in Fig. 11. The leading order (full Vs) nonrelativistic
decay rate is the dashed blue curve, the dot-dashed orange
curve includes relativistic contributions stemming from
higher order electromagnetic operators and the solid black
one includes both contributions from higher order electro-
magnetic operators and relativistic corrections to the wave
functions of the initial and final states.
The leading order decay width depends weakly on the

renormalization scale: It varies from Γ ≈ 26 keV at ν ¼
1 GeV to Γ ≈ 31 keV at ν ¼ 3 GeV. This feature is
preserved when higher order electromagnetic operators
are included and also in the final result. In fact, the
ν-dependence of the final result, which is about 3 keV,
is weaker than that of the leading order result and also
weaker than that obtained from including only higher order

electromagnetic operators. A variation of 3 keV over a
central value of about 28 keV represents an uncertainty
of about 11% in our determination of the decay rate.
Moreover, higher order electromagnetic operators and
relativistic corrections to the initial and final states provide
relatively small changes to the LO transition width.
The gray error band accounts for the uncertainty due to

the unknown higher order terms in the perturbative expan-
sion. This is computed, here and in the following plots, by
taking the largest between the variation of the result with
the scale and one half of the maximum difference between
the leading order and the final result, as described in the
previous section after Eq. (35).
An interesting feature of Fig. 11 is that the corrections

induced by higher order electromagnetic operators dimin-
ish the LO decay rate, whereas relativistic corrections to
the initial and final states increase it. As a result, at the
renormalization scale ν ¼ 1.25 GeV, the value of the decay
width Γðχb0ð1PÞ → γϒð1SÞÞ turns out to be very similar
to the LO result. This will not be the case for the other
transitions.
We have performed the same analysis for the electric

dipole transitions χb1ð1PÞ → γϒð1SÞ and χb2ð1PÞ →
γϒð1SÞ in Figs. 12 and 13, respectively. Similar features,
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FIG. 12. Decay width, according to Eq. (4), for the transition
χb1ð1PÞ → γϒð1SÞ. Description is as in Fig. 11.
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FIG. 11. Decay width, according to Eq. (4), for the transition
χb0ð1PÞ → γϒð1SÞ in the scheme discussed in the text. The
dashed blue curve is the leading order decay rate, the dot-dashed
orange curve includes contributions stemming from higher order
electromagnetic operators in the pNRQCD Lagrangian and the
solid black curve is the final result including both contributions
from higher order electromagnetic operators and relativistic
corrections to the wave functions of the initial and final states.
We take our final value at ν ¼ 1.25 GeV and the gray band
indicates the associated uncertainty.
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FIG. 13. Decay width, according to Eq. (4), for the transition
χb2ð1PÞ → γϒð1SÞ. Description is as in Fig. 11.
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as the one observed in the χb0ð1PÞ → γϒð1SÞ case, are
seen here, too. However, we notice that the effect due to
relativistic corrections to the initial and final states is a
factor 2–3 larger in these cases. We also observe that the
final decay rates for χb1ð1PÞ → γϒð1SÞ and χb2ð1PÞ →
γϒð1SÞ show a weaker dependence on the renormalization
scale than for χb0ð1PÞ → γϒð1SÞ. The scale variation for
χb1ð1PÞ → γϒð1SÞ is ≲8%, and the scale variation for
χb2ð1PÞ → γϒð1SÞ is ≲5%. Finally, we remark that for the
decay width Γðχb2ð1PÞ → γϒð1SÞÞ, the LO result at the
renormalization scale ν ¼ 1.25 GeV is outside the final
result error band.

2. hbð1PÞ → γηbð1SÞ
Figure 14 shows the results for the hbð1PÞ → γηbð1SÞ

transition. The corrections to the decay width induced by
higher order electromagnetic operators are very similar to
the ones obtained in the previous cases. Their effect is to
reduce the LO decay rate by about 2–3 keV. However, the
effect due to relativistic corrections to the initial and final
state wave functions is larger for the hbð1PÞ → γηbð1SÞ
transition than for the three transitions considered before.
In particular, the decay width changes from about 52 keV
(dot-dashed orange curve) to about 63 keV (solid black
curve) at ν ¼ 1.25 GeV. This is because the initial and final
state bottomonia in the transition are spin-singlet states and
thus many corrections to the wave functions, like those
induced by the spin-orbit, spin-spin and tensor potentials,
are absent. In the case of the χbJ states, since they are spin-
triplets, these corrections appear and tend to compensate
other relativistic corrections due to different relative signs.
Similarly to the case of the χb1ð1PÞ and χb2ð1PÞ electric

dipole transitions, also the decay width of the hbð1PÞ →
γηbð1SÞ transition displays a very weak dependence on ν.
The rate varies by a mere 1 keV along the whole range of
the renormalization scale studied herein. For this reason
and for the one given in the paragraph above, the hbð1PÞ →
γηbð1SÞ decay width appears to be a well suited observable
for studying relativistic corrections to the heavy quarko-
nium wave function. However, the uncertainty due to

possible higher order corrections in the perturbative expan-
sion, estimated by looking at one half of the maximum
difference between the leading order and the final result,
is about six times larger than the one coming from the
scale variation in the transition. It is also larger than in the
case of the χbJ transitions. This reflects in a larger final
theoretical uncertainty. A related feature is that for the
decay width Γðhbð1PÞ → γηbð1SÞÞ, the LO result is outside
the final result error band for ν ¼ 1.25 GeV. As in the
previous section, we choose to set the central value of
the decay widths at the scale that self-consistently
solves the Bohr-like radius equation (35). This scale
is ν ¼ 1=a ¼ 1.25 GeV.

C. Summary and comparisons

Our final results for the electric dipole transitions
χbJð1PÞ → γϒð1SÞ, with J ¼ 0, 1, 2, and hbð1PÞ →
γηbð1SÞ, at relative order v2 in the counting scheme
adopted in this section that consists in treating the whole
static potential as a leading order contribution, read

Γðχb0ð1PÞ → γϒð1SÞÞ ¼ 28þ2
−2 keV; ð51Þ

Γðχb1ð1PÞ → γϒð1SÞÞ ¼ 37þ2
−2 keV; ð52Þ

Γðχb2ð1PÞ → γϒð1SÞÞ ¼ 45þ3
−3 keV; ð53Þ

Γðhbð1PÞ → γηbð1SÞÞ ¼ 63þ6
−6 keV: ð54Þ

Because of the very mild dependence on the renormaliza-
tion scale, and the good convergence of the perturbative
series, the results appear solid and their associated uncer-
tainties are small. The uncertainties correspond to the gray
bands shown in Figs. 11–14, and have been computed as
described after Eq. (35). In the plots, the errors have not
been rounded.
We compare our results with those obtained in several

other theoretical approaches in Table II. These are a
nonrelativistic constituent quark model (CQM) [7], a
relativistic quark model (R) [45], a study based on the
Godfrey–Isgur model (GI) [46], a study based on the
Buchmüller–Tye potential model (BT) [47], a light-front
quark model (LFQM) [48], and a screened potential model
with zeroth-order wave functions (SNR0) and first-order
relativistically corrected wave functions (SNR1) [49].
Reference [47] does not provide a prediction for the
hbð1PÞ → γηbð1SÞ width, whereas Ref. [48] is restricted
to the study of the hbð1PÞ → γηbð1SÞ transition only. Our
results agree well with those of other approaches for the
χb0ð1PÞ → γϒð1SÞ and χb1ð1PÞ → γϒð1SÞ transitions. In
the case of the χb2ð1PÞ → γϒð1SÞ transition our result is
slightly larger than the bulk of the other predictions,
whereas in the case of the hbð1PÞ → γηbð1SÞ transition
it is significantly larger. The reasons for the differences may
be diverse, and follow from the theoretical approaches
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FIG. 14. Decay width, according to Eq. (5), for the transition
hbð1PÞ → γηbð1SÞ. Description is as in Fig. 11.
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listed in Table II being, to various degrees, phenomeno-
logical models that neither include QCD corrections in a
systematic way, nor derive their parameters from QCD.
Hence, they differ from our model independent determi-
nation in more than one way. For example, Refs. [7,46] do
not include spin-independent 1=m and 1=m2 potentials,
while Refs. [47,49] miss the 1=m potential.
Our final results (51)–(54) are predictions, as the

bottomonium P-wave E1 transition widths have not been
measured so far. In fact, for these electromagnetic tran-
sitions only the branching fractions are known, while there
are no measurements of any of the total decay widths of the
χbJ, with J ¼ 0, 1, 2, and hb states. Nevertheless, we can
use the branching fractions given by the PDG [6] and our
results for the decay rates of the electric dipole transitions to
predict the total decay widths of the χbJð1PÞ and hbð1PÞ
bottomonia. The results are given in Table III, where the
errors are obtained via standard Gaussian uncertainty
propagation. The Belle collaboration has reported an upper
limit on the total decay width of the χb0ð1PÞ at 90% con-
fidence level [50]: Γðχb0ð1PÞÞ < 2.4 MeV, which is com-
patible with our prediction.

IV. CONCLUSION

We have computed the electric dipole transitions
χbJð1PÞ → γϒð1SÞ, with J ¼ 0, 1, 2, and hbð1PÞ →
γηbð1SÞ, within potential nonrelativistic QCD, assuming

that the typical binding energy scale, mv2, is much larger
thanΛQCD, wherem is the mass of the heavy quark and v its
relative velocity. Consequences of this assumption are that
n ¼ 2, l ¼ 1 bottomonia are taken as weakly coupled
bound states, and that nonperturbative effects are smaller
than the accuracy reached in the calculation. This
assumption would not be suited for n ¼ 2, l ¼ 1
charmonia.
The precision that we have reached in this paper is

k3γ=ðmvÞ2 ×Oðv2Þ, kγ being the photon energy. At relative
order v2 we have included higher order electromagnetic
interactions in the pNRQCD Lagrangian and higher order
relativistic corrections to the initial and final state botto-
monia, due to 1=m and 1=m2 potentials, and 1=m3

relativistic corrections to the kinetic energy. Concerning
radiative corrections to the static potential, we have
included them in two different counting schemes: in
Sec. II, perturbatively, counting higher order corrections
as perturbations of the leading order Coulomb-like poten-
tial, and, in Sec. III, nonperturbatively, counting all known
terms in the perturbative expansion of the static potential as
leading order and including them in the numerical solution
of the Schrödinger equation for the initial and final state
wave functions.
We summarize the main conclusions drawn from the first

scheme. (i) The decay widths show a strong dependence on
the renormalization scale ν. At leading order, the strong
dependence is due to the running of αsðνÞ, which affects
primarily the Bohr-like radius entering the initial and
final state wave functions. At higher orders a significant
ν-dependence persists, due to the corrections to the initial
and final state wave functions induced by the radiative
corrections of the static potential. The static potential
contains terms proportional to powers of lnðνrÞ that
become large at low values of ν. (ii) Most of the corrections
to the decay rates induced by the 1=m and 1=m2 potentials
are relatively small and do not change much as a function of
the renormalization scale ν. The largest contributions come
from the 1=m potential and the spin-spin one, especially
for low values of the scale ν. (iii) The convergence of
the perturbative series for all the studied electric dipole
transitions is poor. This indicates that bottomonium 1P

TABLE II. The column LO lists our leading order results (blue dashed curves in Figs. 11–14) and the column
NNLO our final results (solid black curves in Figs. 11–14), both taken at ν ¼ 1.25 GeV. We compare them with
those reported by a nonrelativistic constituent quark model (CQM) [7], a relativistic quark model (R) [45], a study
based on the Godfrey–Isgur model (GI) [46], a study based on the Buchmüller–Tye potential (BT) [47], a light-front
quark model (LFQM) [48], and a screened potential model with zeroth-order wave functions (SNR0) and first-order
relativistically corrected wave functions (SNR1) [49]. All decay widths are given in units of keV.

Mode LO NNLO CQM R GI BT LFQM SNR0=1

χb0ð1PÞ → γϒð1SÞ 28.5 28.4 28.1 29.9 23.8 25.7 � � � 26.6=24.3
χb1ð1PÞ → γϒð1SÞ 36.0 37.4 35.7 36.6 29.5 29.8 � � � 33.6=30.0
χb2ð1PÞ → γϒð1SÞ 41.0 44.8 39.2 40.2 32.8 33.0 � � � 38.2=32.6
hbð1PÞ → γηbð1SÞ 55.2 63.2 43.7 52.6 35.7 � � � 37.5 55.8=36.3

TABLE III. Predicted total decay widths of the χbJð1PÞ and
hbð1PÞ bottomonium states (column Γ), following our determi-
nations of the bottomonium E1 transition widths (column Γi) and
the experimental branching fractions reported by the PDG
(column Bi ¼ Γi=Γ) [6]. The errors are obtained via standard
Gaussian uncertainty propagation.

Mode Bi ¼ Γi=Γ Γi Γ

χb0ð1PÞ → γϒð1SÞ ð1.94� 0.27Þ% 28þ2
−2 keV 1.46þ0.2

−0.2 MeV
χb1ð1PÞ → γϒð1SÞ ð35.0� 2.1Þ% 37þ2

−2 keV 107þ9
−9 keV

χb2ð1PÞ → γϒð1SÞ ð18.8� 1.1Þ% 45þ3
−3 keV 238þ21

−21 keV
hbð1PÞ → γηbð1SÞ ð52þ6

−5 Þ% 63þ6
−6 keV 121þ18

−16 keV
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states are difficult to accommodate in this scheme, an
observation that led us to adopt for our final analysis the
second scheme.
In the second scheme, the Schrödinger equation is solved

at leading order with all known terms of the perturbative
static potential included, i.e., up to three loops. Further, we
subtract to the static potential the leading order renormalon
and resum at short distances potentially large logs of the
type lnðνrÞ. The main effects are: (i) The leading order
decay rates depend weakly on the renormalization scale and
this is also so when higher order electromagnetic operators
and relativistic corrections to the initial and final states
are taken into account at relative order v2. (ii) Both Oðv2Þ
corrections do not change much as functions of the
renormalization scale and produce corrections to the lead-
ing order decay widths that are relatively small. (iii) The
corrections induced by higher order electromagnetic oper-
ators tend to diminish the leading order decay rates,
whereas the opposite effect is found for the relativistic
corrections to the initial and final state wave functions.
These observations support our initial assumptions on the
nature of the 1P bottomonia. Because the perturbative
series appears convergent and only mildly dependent on the
renormalization scale, the final results are affected by small
uncertainties.
If the most critical of our assumptions, mv2 ≫ ΛQCD,

is relaxed to mv2 ∼ ΛQCD, then nonperturbative correc-
tions may become as large as the Oðv2Þ corrections
considered above. Since the uncertainties on our final
results have been chosen to include one half of the
Oðv2Þ corrections, the effect of assuming mv2 ∼ ΛQCD

would be (at least) to double our final errors. A challenging
alternative is to compute the nonperturbative contributions
listed in Ref. [15].
Finally, for ease of reference, we quote here again our

final predictions for the 1P bottomonium electric dipole
transitions:

Γðχb0ð1PÞ → γϒð1SÞÞ ¼ 28þ2
−2 keV; ð55Þ

Γðχb1ð1PÞ → γϒð1SÞÞ ¼ 37þ2
−2 keV; ð56Þ

Γðχb2ð1PÞ → γϒð1SÞÞ ¼ 45þ3
−3 keV; ð57Þ

Γðhbð1PÞ → γηbð1SÞÞ ¼ 63þ6
−6 keV: ð58Þ

We have used the experimental branching fractions given
by the PDG and the above theoretical results to predict the
total decay widths of the χbJð1PÞ, with J ¼ 0, 1, 2, and
hbð1PÞ bottomonia:

Γðχb0ð1PÞÞ ¼ 1.46þ0.2
−0.2 MeV; ð59Þ

Γðχb1ð1PÞÞ ¼ 107þ9
−9 keV; ð60Þ

Γðχb2ð1PÞÞ ¼ 238þ21
−21 keV; ð61Þ

Γðhbð1PÞÞ ¼ 121þ18
−16 keV: ð62Þ

These numbers could be of interest for future experimental
determinations, for instance, at Belle II.
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APPENDIX: SOLVING THE SCHRÖDINGER
EQUATION

In a generic central potential, VðrÞ, the Schrödinger
equation for the reduced wave function, unlðrÞ ¼ rRnlðrÞ,
has the form

−
1

m
d2unlðrÞ

dr2
þ
�
VðrÞ þ lðlþ 1Þ

mr2

�
unlðrÞ ¼ EnlunlðrÞ;

ðA1Þ

in the case of two particles of mass m. This is a one
dimensional Schrödinger equation, which has significance
only for positive values of r, and must be supplemented by
a boundary condition at r ¼ 0. We require that the radial
function RnlðrÞ remains finite at the origin, which implies
that unlð0Þ ¼ 0.
If close to the origin the potential VðrÞ has the form

VðrÞ ¼ rpðb0 þ b1rþ…Þ; b0 ≠ 0; ðA2Þ

where p is an integer such that p ≥ −1, we can expand the
solution unlðrÞ in the vicinity of the origin as

unlðrÞ ¼ rs
X∞
k¼0

ckrk; c0 ≠ 0: ðA3Þ

Equation (A1) requires that sðs − 1Þ − lðlþ 1Þ ¼ 0, so
that s ¼ lþ 1 or s ¼ −l. The choice s ¼ −l corresponds
to irregular solutions that do not satisfy the boundary
condition unlð0Þ ¼ 0. The other choice s ¼ lþ 1 corre-
sponds to regular solutions that are physically allowed, and
are such that
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unlðrÞ ∼r→0rlþ1: ðA4Þ

Since we are interested in finding bound states, we also
impose that

unlðrÞ ∼r→∞e−kr; ðA5Þ

where k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mjEnlj

p
is the wave function number.

In numerical applications we introduce short- and long-
distance cutoffs, denoted by rin and rfi, respectively, for
which we require

unlðrinÞ ¼ rlþ1
in ; ðA6Þ

unlðrfiÞ ¼ e−krfi : ðA7Þ

The dependence of physical observables on the short
distance cutoff is quite sensible, and it can hinder the
numerical search of the ground state and its excitations due
to the dominance of the irregular solutions at very small
values of r. In order to improve on this, we can use, for two
different energies Enl ≠ En0l, the orthogonality relation
between their bound state wave functions:

u0nlðrinÞun0lðrinÞ − unlðrinÞu0n0lðrinÞ

¼ mðEnl − En0lÞ
Z

∞

rin

dr unlðrÞun0lðrÞ; ðA8Þ

which follows from multiplying Eq. (A1) by un0lðrÞ and
later subtracting the same equation, but with n and n0
exchanged. The regularity condition at the origin
unlðrinÞ ¼ 0 for rin → 0 makes the states automatically
orthogonal in the rin → 0 limit. We can further enforce
orthogonality also for finite rin by requiring

u0nlðrinÞ
unlðrinÞ

¼ u0n0lðrinÞ
un0lðrinÞ

; ðA9Þ

for any two states, meaning that the logarithmic derivative
at short distances becomes independent of the principal
quantum number. This condition has many advantages,
such as the possibility of working with singular potentials
at r ¼ 0, like r2VðrÞ ¼ �∞ for r → 0. Moreover, in order
to avoid pollution from the irregular solutions, we can use
Eq. (A9) to match at an intermediate distance rme the
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FIG. 15. Radial wave functions, RnlðrÞ, for different values of
n, l, and ν as a function of r. RnlðrÞ is the (numerical) solution of
the Schrödinger equation for the potential (50).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

ν=1.25 GeV

R
21

(r
) 

(G
eV

3/
2 )

r (fm)

Full

Coulomb

FIG. 17. As in Fig. 16, but for the radial wave function, R21ðrÞ,
of the lowest P-wave state.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.2  0.4  0.6  0.8  1

ν=1.25 GeV

R
10

(r
) 

(G
eV

3/
2 )

r (fm)

Full

Coulomb

FIG. 16. Radial wave function, R10ðrÞ, of the lowest S-wave
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shows the (numerical) solution of the Schrödinger equation for
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the Schrödinger equation for the leading order Coulomb
potential (11).
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solutions of the one dimensional Schrödinger equation
obtained when integrating it from rin to rme, with boundary
(A6), and from rme to rfi with boundary (A7). Finally,
Eq. (A9) is ideal to find excited states because, as we
remarked, the logarithmic derivative at short distances
becomes independent of n. For further details we refer
to Ref. [51].
In order to solve the differential equation (A1) for the

potential (50), we use the fourth order Runge–Kutta

algorithm with adaptive step size implemented in
FORTRAN77. This implementation automatically takes care
of convergence and numerical accuracy. The numerical
implementation of the Green function, Eqs. (26) and (27),
involves a sum over intermediate states. We compute as
many intermediate states, and include them, until we see
convergence. Solutions for the radial wave functions,
RnlðrÞ, are shown in the Figs. 15–17, where we also
compare with the leading order Coulomb wave functions.
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