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The Minimal Supersymmetric Standard Model (MSSM) is under intense scrutiny at the LHC and in dark
matter searches. Interestingly, scenarios with light squarks of the third generation remain not only viable, but
alsowell motivated by the observed Standard-Model-likeHiggs bosonmass and darkmatter relic density. The
latter often requires important contributions from squark-pair annihilation. Following up on previous work,
we present in this paper a precision analysis of squark-pair annihilation into quarks at next-to-leading order of
QCD including Sommerfeld enhancement effects. We discuss all technical details of our one-loop, real
emission and resummation calculations, their implementation in the precision tool DM@NLO, as well as the
numerical impact on the annihilation cross section and cosmological relic density in phenomenological
MSSM scenarios respecting, in particular, current LHC constraints. We demonstrate that including these
radiative corrections leads to substantial shifts in the preferred parameter regions by up to 20 GeV.
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I. INTRODUCTION

Strong evidence for the existence of dark matter, along
with the fact that neutrinos are massive, is a compelling sign
of the need for physics beyond the Standard Model. Even
though dark matter still evades direct detection in Earth-
based experiments such as LUX [1] and XENON1T [2],
there is overwhelming evidence from cosmological data such
as the cosmic microwave background that dark matter exists
in the Universe. Moreover, the relic density of cold dark
matter (CDM) has been determined to the unprecedented
precision of

ΩCDMh2 ¼ 0.1200� 0.0012 ð1:1Þ
as measured by the Planck satellite and interpreted within
the ΛCDM cosmological model [3]. The indicated uncer-
tainty corresponds to the 68% confidence level, and h stands
for the present Hubble expansion rate H0 in units
of 100 kms−1 Mpc−1.

The Standard Model does not contain any suitable
candidate for dark matter with the required properties. The
leading candidate therefore remains a weakly interacting
massive particle (WIMP), which leads to the correct relic
density via the freeze-out mechanism. However, alternative
candidates and mechanisms do exist, e.g., in the form of the
freeze-in mechanism [4–7]. The StandardModel is therefore
extended to include new particles which provide the required
dark matter candidate. The new particles are usually pro-
tected fromdecaying by introducing an ad hocZ2-symmetry,
where all new particles are Z2-odd and the Standard Model
particles are Z2-even. One such model, which was actually
not introduced to address the existence of dark matter, is the
Minimal Supersymmetric Standard Model (MSSM), where
the conserved Z2-symmetry is the R-parity. In most MSSM
scenarios, the lightest supersymmetric particle (LSP) is the
lightest neutralino χ̃01, which is stable and interacts only
weakly. The lightest neutralino is an extremely well-studied
candidate for cold dark matter.
The theory prediction for its relic abundance, Ωχ̃0

1
h2, is

related to the number density nχ of the neutralino, which can
be computed by solving the Boltzmann equation [8–10]

dnχ
dt

¼ −3Hnχ − hσannvi½n2χ − ðneqχ Þ2�; ð1:2Þ

where H denotes the (time-dependent) Hubble parameter,
neqχ the number density in thermal equilibrium, and v the
Møller velocity of the annihilating particles [8]. All specifics
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about the interaction of darkmatter with other particles in the
chosen particle physics model are contained in the annihi-
lation cross section σann, which accounts for all possible
annihilation and co-annihilation processes. Its thermal aver-
age can be expressed as

hσannvi ¼
X
i;j

hσijviji
neqi
neqχ

neqj
neqχ

; ð1:3Þ

where the double sum runs over all Z2-odd particles of the
theory. The ratios of the equilibrium number densities are
proportional to

neqi
neqχ

∼ exp
�
−
mi −mχ

T

�
; ð1:4Þ

T being the temperature. From this last equation, it becomes
obvious that annihilations involving particles other than the
lightest neutralino are suppressed if these particles are
heavy compared to the neutralino. On the other hand, co-
annihilations with the next-to-lightest supersymmetric
particle (NLSP) will be important or even dominant if the
mass difference is rather small. Typical examples in the
MSSMare co-annihilations of the neutralinowith a scalar top
quark or a scalar tau lepton. For smaller mass differences
between the LSP and NLSP, even pair annihilations of the
next-to-lightest particle contribute in a sizable manner, and
can even become dominant in the total annihilation cross
section. In case there are more than two almost mass
degenerate particles, (co-)annihilations between all particles
have to be taken into account.
In the present paper,we focus on the casewhere themasses

of one or two squarks, the lightest stop and/or the lightest
sbottom, are close to the neutralino mass. The case of a light
scalar top quark is very well motivated. Scenarios with light
scalar tops satisfy the experimental constraints from LHC
searches and can also contribute to a successful prediction of
the mass of the lightest Higgs boson in the MSSM [11].
The relic density of dark matter in scenarios with a light

stop which is almost mass degenerate with the lightest
neutralino is very sensitive to the mass difference of the two
particles. Any small shift in the predicted relic density can
cause a large shift of the parameter region where the relic
density is compatible with the experimental limits given by
Eq. (1.1). In this analysis we focus on next-to-leading
supersymmetric QCD (SUSY-QCD) corrections to the
corresponding annihilation and co-annihilation cross sec-
tions in scenarios with a light scalar quark. These correc-
tions have the potential to significantly modify the
annihilation cross section and thereby also the relic density.
The impact of such radiative corrections of order αs on the

relic density has been demonstrated for gaugino pair anni-
hilation into quarks [12–15], gaugino-squark co-annihilation
into final states containing a quark [16–18], and squark-
antisquark annihilation into electroweak final states [19].
Moreover, electroweak corrections to neutralino annihilation

have been presented [20–22], leading to similar conclusions
concerning their impact on the relic density.
Including radiative corrections to the total annihilation

cross section not only shifts the parameter regions corre-
sponding to the correct relic density, but it also reduces the
theoretical uncertainty of the relic density prediction. The
theoretical uncertainty from scale and scheme variations on
the annihilation cross section and the neutralino relic
density has been evaluated for specific subclasses of
processes in Ref. [23].
After the work presented in Refs. [12–15,17–19], with

the present paper, we make a first step towards completing
the missing processes sensitive to radiative corrections of
order αs. More precisely, we present such corrections for
squark-squark annihilation into quark-quark pairs. The
discussion of squark-antisquark annihilation into quarks
and gluons is left for forthcoming publications.
In Sec. II, we start by discussing the phenomenological

importance of the processes under consideration in thiswork.
We also present two reference scenarios featuring important
contributions of the processes of our interest. In Sec. III, we
then detail the analytical calculation of the radiative correc-
tions. We discuss, in particular, points that are beyond the
discussion presented in Refs. [12–15,17–19] and analyze the
impact that the radiative corrections have on the correspond-
ing cross sections. The impact of the corrections on the relic
density in the two reference scenarios is presented in Sec. IV.
Our conclusions are given in Sec. V.

II. PHENOMENOLOGY OF
SQUARK ANNIHILATION

The analysis presented in this paper concentrates on the
contributions from squark-pair annihilation to the total
annihilation cross section σann of neutralino dark matter. We
investigate scenarios in the phenomenological MSSM
(pMSSM), where the processes

t̃1 t̃1 → tt; ð2:1Þ
b̃1b̃1 → bb; ð2:2Þ
t̃1b̃1 → tb ð2:3Þ

play an important role. Supersymmetry and the MSSM, in
particular, have been extensively tested by searches at the
Large Hadron Collider (LHC) and at experiments aiming at
the detection of direct signals from elastic collisions of dark
matter with heavy nuclei such as XENON1T. In order to take
into account the most important experimental constraints
from the searches for supersymmetry, we use the results of an
analysis performed by the ATLAS Collaboration in the light
of recent searches at the LHC [24].1 The ATLAS analysis is
performed in the pMSSMwith 19 parameters (defined at the

1A similar study of the pMSSM has been conducted by the
CMS Collaboration [25].
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SUSY scale) and is based on a sample of 5 × 108 parameter
points. Applying constraints from ATLAS SUSY searches,
electroweak precision observables such as Δρ and ðg − 2Þμ,
flavor observables such as b → sγ, and requiring that the
neutralino is the LSP and a dark matter candidate with the
relic density less than2 0.1208 (for details on further con-
straints see Ref. [24]) leads to a subset of about 300 000
viable points. We have analyzed this subset in order to
examine in which regions of parameter space the above
processes contribute significantly.
In order for the contribution from the annihilation of

third-generation squarks to the total dark matter cross
section to be significant, one (or more) scalar quarks have
to be almost mass degenerate with the lightest neutralino.
This is not an unnatural requirement because a light scalar
top quark is necessary to explain the measured mass of the
Standard Model Higgs boson within the MSSM. Moreover,
scenarios where a scalar top is almost mass degenerate with
the lightest neutralino are quite frequent, as the mass
degeneracy gives rise to different topologies in collider
searches, making their testing more challenging and their
exclusion less likely. Another aspect of scenarios where
scalar quarks are the NLSP is that the lightest neutralino is
mostly bino-like. Higgsino-like and wino-like lightest
neutralinos mostly lead to scenarios with other gauginos
being the NLSP. A consequence of the lightest neutralino
being bino-like is that the annihilation of dark matter is
typically not efficient enough for the relic density to reach
the value determined by the Planck Collaboration given in
Eq. (1.1). Therefore, in scenarios with bino-like neutralino
dark matter, some enhancement mechanism is needed for
them to be consistent with the relic density measurements.
As we will discuss below, in the scenarios analyzed here,
the enhancement comes from the presence of LSP-NLSP
co-annihilations as well as NLSP annihilations.

A. Reference scenarios

As mentioned above, the numerical part of the present
study will be based on two reference scenarios inspired by

the findings presented in Ref. [24]. More precisely, we will
focus on two pMSSM scenarios, whose most relevant soft-
breaking parameters and particle masses are presented in
Table I. It is to be noted that, although the input soft mass
parameters of the two scenarios are identical to those of two
actual scenarios given in Ref. [24], the resulting physical
masses slightly differ from those associated with the
ATLAS study due to the fact that we are using a different
computational setup. The actual shift in the physical masses
is small so that all experimental constraints are still satisfied
and the phenomenology is not altered.
Both scenarios feature bino-like neutralinos, the bino

mass parameter M1 being smaller than the wino and
Higgsino mass parameters M2 and jμj. The key parameters
of the third-generation squarks of our interest are the “left-
handed” stop and sbottom mass parameter Mq̃L, and the
“right-handed” stop and sbottom mass parameters Mt̃R and
Mb̃R

. In both scenarios, squarks of the first and second
generations, the sleptons, and other electroweak gauginos
are heavier such that they do not influence the phenom-
enology discussed here.
In our setup, starting from the soft-breaking terms

defined at the scale QSUSY indicated in Table I, we obtain
the physical mass spectrum using the spectrum generator
SPheno 3.3.3 [27,28]. The mass spectrum is then handed
over to micrOMEGAS 2.4.1 [29,30] making use of the
SUSY Les Houches Accord 2 [31]. In addition to the actual
value of the relic density, micrOMEGAs also provides the
contributions of all individual channels contributing to σann
given in Table II for the two chosen reference scenarios.
As can be seen, the processes given in Eqs. (2.1)–(2.3)

contribute in a significant manner for both scenarios. More
precisely, in scenario I, the scalar top-pair annihilation is
the second most important process, and together with the
processes previously analyzed in Refs. [17–19], it makes
up more than 45% of the total annihilation cross section. In
this scenario, the mostly “right-handed” scalar top t̃1 is the
NLSP, and the mass difference between the lightest
neutralino and the NLSP is about 20 GeV. Moreover,
the process t̃1 t̃1 → tt is enhanced by the relatively low
gluino mass. Scalar bottom quarks are heavy in this
scenario, such that the corresponding annihilation channels
are negligible. The process t̃1t̃1 → tt amounts to about 30%

TABLE I. Reference scenarios within the phenomenological MSSM for our numerical study. Note that only the parameters which are
relevant for our analysis are given here. All dimensionful quantities are given in GeV.

M1 M2 M3 Mq̃L Mt̃R Mb̃R
At Ab μ mA0 tan β QSUSY

Scenario I 1278.5 2093.5 1267.2 2535.1 1258.7 3303.8 2755.3 2320.9 −3952.6 3624.8 15.5 1784.64
Scenario II 1629.2 3613.4 1720.8 1513.2 3964.9 3871.5 −4434.9 2201.7 2615.4 3451.3 53.1 2447.96

mχ̃0
1

mχ̃0
2

mχ̃�
1

mt̃1 mb̃1
mg̃ mh0 mH0 Ωχ̃0

1
h2

Scenario I 1279.7 2153.6 2153.5 1301.9 2554.2 1495.5 125.8 3625.6 0.1200
Scenario II 1624.4 2606.6 2606.6 1652.0 1654.9 1944.9 127.8 3451.2 0.1200

2The upper limit of 0.1208 stems from a previous publication
of Planck results [26] and has been used in the analysis of
Ref. [24]. Note that all scenarios presented in the present paper
will satisfy the more recent limits given in Eq. (1.1).
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of the annihilation cross section, while neutralino-stop co-
annihilation [17,18] accounts for about 15%, such that our
next-to-leading SUSY-QCD corrections affect almost 50%
of the total annihilation cross section.
The importance of different relevant contributions to the

total annihilation cross section in and around this scenario
is shown in the first four plots of Fig. 1. The part of the
parameter space where the lightest neutralino is not the LSP
and hence also not the dark matter candidate is indicated
in grey. Different shades of green indicate the relative
importance of several NLSP annihilation and LSP-NLSP
co-annihilation processes. We see that, in general, the co-
annihilations are most important when the mass splitting
between the LSP and the NLSP (in our case the lightest
neutralino and the lightest scalar top) is larger, i.e., about
150 GeV, and the dominant contribution shifts to the NLSP
annihilations as the mass splitting gets smaller. The
parameter region where the dark matter relic density is
within 2σ of the experimental value given in Eq. (1.1) is
highlighted in all plots in orange. The neutralino relic
density is computed using micrOMEGAs. For scenarios
which contain lighter neutralinos and lighter stops than the
reference scenario I, the total annihilation cross section is
dominated by the same processes as in the reference
scenario I, and the region where the relic density agrees
with the experimental measurement follows an almost
straight line where the mass splitting is constant. As we
move along the region with the correct relic density towards
scenarios with heavier LSP and NLSP, we reach a point
where the LSP and NLSP are similar in mass to the light
gluino (mg̃ ¼ 1495.5 GeV). In these scenarios, we have
three particles with almost degenerate masses, and gluino

annihilations and co-annihilations with the stop dominate
the total annihilation cross section.
The situation is different for scenario II. Here, the left-

handed mass parameterMq̃L is much smaller than the right-
handed massesMt̃R andMb̃R

, such that the relevant physical

states t̃1 and b̃1 are mainly left-handed with almost
degenerate masses. The mass difference between them
and the lightest neutralino is about 30 GeV. As a conse-
quence, processes containing both t̃1 and b̃1 contribute to
the annihilation cross section σann, as can be seen in
Table II. The three processes of our interest contribute to
more than 50% of the total annihilation cross section. As
we shall discuss later in Sec. II B, the mixed annihilation
t̃1b̃1 → tb dominates as compared to stop-pair or sbottom-
pair annihilation. In the last four plots of Fig. 1, we show
the relative importance of the channels of our interest in
the vicinity of scenario II. Again, the viable region of
parameter space where the relic density is within 2σ
of the experimental value determined by the Planck
satellite closely follows the border between the neutralino
and stop LSP regions. In most scenarios along this
border, the mixture of the contributing processes is similar
to the one presented in Table II. However, around
Mq̃L ∼ 1600 GeV, where the scalar top mass reaches about
half of the heavy Higgs mass (mH0 ¼ 3451.2 GeV), the
composition of the contributing processes changes. The
stop-antistop annihilation processes enhanced by the Higgs
exchange grow in importance. In contrast to the situation
around scenario I, for large masses of the neutralino dark
matter and the scalar top NLSP, the annihilation and co-
annihilation processes are not efficient enough to produce
the required observed relic density, which can be partly
compensated by lowering the mass difference. For even
larger masses the region where the relic density is com-
patible with the Planck measurement features a stop LSP,
such that neutralino dark matter would be excluded
for M1 ≳ 1800 GeV.

B. Leading order

Having shown that the processes in Eqs. (2.1)–(2.3) are
important in large regions around the two scenarios
introduced in the previous section, we now review impor-
tant features of the leading-order cross sections of these
processes. The Feynman diagrams for the processes in
question are shown in Fig. 2. The matrix elements of all
three processes considered here have contributions from t-
channel or u-channel exchanges of strongly interacting
gluinos as well as from electroweak gauginos. Therefore,
the cross sections can be symbolically written as

σ ¼ σsðα2sÞ þ σseðαsαeÞ þ σeðα2eÞ; ð2:4Þ

where σs is the cross section proportional to the square of
the strong coupling constant α2s , σse is the cross section

TABLE II. Dominant annihilation channels contributing to σann
and thus to the neutralino relic density in the two reference
scenarios given in Table I. Here, V ¼ γ, Z0,W� and ϕ ¼ h0, H0,
A0, H�. Further contributions below 1% are omitted.

Contributing processes Scenario I Scenario II

t̃1 t̃1 → tt 30.5% 8.8%
b̃1b̃1 → bb ��� 7.4%

t̃1b̃1 → tb ��� 34.0%

χ̃01χ̃
0
1 → qq̄ ��� ���

χ̃01 t̃1 → tg 9.3% ���

χ̃01 t̃1 → qV; qϕ 5.8% ���

χ̃01b̃1 → qV; qϕ ��� ���

t̃1 t̃�1 → gg 38.7% 9.8%
t̃1 t̃�1 → qq̄ 5.1% 2.4%
t̃1b̃

�
1 → qq̄0 ��� 4.0%

b̃1b̃
�
1 → qq̄; gg ��� 8.1%

χ̃01g̃ → X 3% ���

g̃ g̃ → X ��� ���

DM@NLO current analysis 30.5% 50.2%
DM@NLO total [12–15,17–19] 45.6% 50.2%
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FIG. 1. Contribution of selected processes to the total annihilation cross section σann in the M1 −Mt̃R or M1 −Mq̃L plane around
reference scenarios I or II, respectively. The orange band indicates the parameter region in agreement with the Planck limit given in
Eq. (1.1) at the 2σ confidence level. The green levels indicate the relative importance of the processes that can be corrected by
DM@NLO (first and fifth plots) and of selected individual processes (remaining plots). The grey region corresponds to mt̃1 < mχ̃0

1
. The

red dots indicate scenarios I and II of Table I.
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originating from the interference of the strong and electro-
weakly interacting parts of the scattering amplitude, and σe
is the purely electroweak cross section proportional to the
square of the electromagnetic coupling constant α2e.
The decomposition of the total cross section into con-

tributions from different channels and interferences of the
three processes under consideration here is shown in Fig. 3.

The cross sections for t̃1 t̃1 → tt and b̃1b̃1 → bb in the top
left, top right and bottom right panels in Fig. 3 show the
expected hierarchy, in which the gluino t-channel and
u-channel exchanges dominate the cross section and are
about an order of magnitude larger than the next largest
contribution, which is the interference of the gluino
exchange with the electroweak t- and u-channels.

FIG. 2. Tree-level Feynman diagrams associated with the squark-pair annihilation into quark pairs for the case of squarks of identical
(upper row) or different (lower row) types.

FIG. 3. Upper part: Leading-order cross section σv as a function of the center-of-mass momentum pcm into different subchannels
according to Fig. 2 in the two pMSSM scenarios I and II of Table I. In the legend, σTree denotes the total tree-level cross section, the
subscripts g, χ and gχ correspond to gluino exchange squared, gaugino exchange squared, and gluino-gaugino interference. The
superscripts indicate the squared t-channel (T), the squared u-channel (U), the sum of both (Tþ U), and the t − u interference
contributions (TU). For the gaugino exchange, the superscript “Int” refers to the sum of all involved diagrams. Lower part: Contributions
relative to the total tree-level result σTree.
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The contribution from the interference between the gluino
exchange diagrams and the gaugino exchange diagrams is
yet another order of magnitude larger than the purely
electroweak contribution. As argued before, in scenarios
where the processes in Eqs. (2.1)–(2.3) are important, the
lightest neutralino is bino-like and the gluino mass is
relatively small. These facts imply that the neutralino-
squark-quark coupling and the gluino-squark-quark cou-
pling differ mainly by the coupling constant. Therefore, the
hierarchy observed in Fig. 3 is simply due to the ratio of the
different coupling constants αsð ffiffiffiffiffiffiffiffiffiffiffiffiffimt̃1mt̃2

p Þ=αeðmZÞ.
The only process where this hierarchy is not present is

the annihilation t̃1b̃1 → tb. Here the hierarchy observed in
the other two processes is modified due to a few factors.
First, there is no gluino u-channel exchange. Then, the
gluino mass in this scenario is larger, and this process
proceeds also through a chargino u-channel exchange. The
larger gluino mass, together with the missing u-channel,
suppresses the gluino contribution compared to the other
two processes. Moreover, in the case of the Higgsino-
like chargino exchange, the Yukawa component of the
chargino-squark-quark coupling is not suppressed as in the
case of the bino-like neutralino. The combination of these
effects results in the interference between the gluino and the
chargino exchange being suppressed with respect to the
pure gluino contribution only by a factor of about 2. In
addition, the electroweak contribution is comparable to the
gluino-chargino interference.

C. Color decomposition

Another important aspect of the processes we investigate
is the fact that both initial and final state particles carry
color. The color structure of the initial and final state will be
extremely relevant later in the discussion of the next-to-
leading SUSY-QCD corrections and their resummation.
Both scalar quarks in the initial state (and also the quarks in
the final state) transform under the fundamental represen-
tation of the SUð3Þ group (denoted here as 3 due to the
dimensionality of the representation). The two-particle
system, however, transforms under a tensor product of
the corresponding representations 3 ⊗ 3 which can be
decomposed via a Clebsch-Gordan decomposition into
SUð3Þ-invariant subspaces as

3 ⊗ 3 ¼ 3̄ ⊕ 6: ð2:5Þ

In order to construct a color basis adapted to our matrix
element, we can use the Clebsch-Gordan coefficients of the
decomposition

Cf3̄g
αa1a2 ¼

1ffiffiffi
2

p ϵαa1a2 ; α ¼ 1; 2; 3; ð2:6Þ

Cf6g
αa1a2 ¼

1

2
ðδα1a1δα2a2 þδα1a2δα2a1Þ; αi¼ 1;…;6; ð2:7Þ

where the indices a1;2 can take the values 1 to 3 (for details
see Ref. [32]). The basis is constructed by considering that
SUð3Þ color symmetry is an exact symmetry of the theory,
so the color is conserved between the initial and final states.
That means if a pair of initial state particles transforms in an
irreducible representation of the SUð3Þ group, the pair of
final state particles must transform in the same representa-
tion. After proper normalization, we can combine the
Clebsch-Gordan coefficients into the following basis rel-
evant for our processes:

Cf3̄;3̄g
a1a2a3a4 ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NcðNc−1Þp ðδa1a3δa2a4 −δa1a4δa2a3Þ ð2:8Þ

and

Cf6;6g
a1a2a3a4 ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NcðNcþ1Þp ðδa1a3δa2a4 þδa1a4δa2a3Þ: ð2:9Þ

The matrix element can be expanded in this basis as

Mstij ¼ M3̄C
f3̄;3̄g
stij þM6C

f6;6g
stij ; ð2:10Þ

where s, t, i and j are the color indices of the incoming and
the outgoing particles. Given the orthonormality of the
basis, the triplet and sextet parts of the amplitude can be
determined as

M3̄ ¼ MstijC
f3̄;3̄g
stij ; M6 ¼ MstijC

f6;6g
stij : ð2:11Þ

In the case of the annihilation process t̃1t̃1 → tt or
b̃1b̃1 → bb, the triplet and the sextet matrix elements are
a linear combination of the gluino and gaugino t-channel
and u-channel exchanges. At tree level the explicit expres-
sion for the triplet part of the matrix element is

M3̄ ¼
ðN2

c − 1Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NcðNc − 1Þp ð−Mt

g̃ þMu
g̃Þ

þ NcðNc − 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NcðNc − 1Þp ðMt

χ̃ −Mu
χ̃Þ: ð2:12Þ

Analogously, the sextet part of the matrix element is

M6 ¼
ðN2

c − 1Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NcðNc þ 1Þp ðMt

g̃ þMu
g̃Þ

þ NcðNc þ 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NcðNc þ 1Þp ðMt

χ̃ þMu
χ̃Þ: ð2:13Þ

The same decomposition can be performed for the process
t̃1b̃1 → tb, and the explicit results given in Eqs. (2.12) and
(2.13) can be used after settingMu

g̃ ¼ 0 and interpretingMu
χ̃

as the u-channel chargino exchange. The squared ampli-
tude is then, in all cases, given simply by
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jMj2 ¼ jM3̄j2 þ jM6j2; ð2:14Þ

where due to the orthonormality of the color basis, there is
no interference between the triplet and the sextet matrix
elements.
The leading-order triplet and sextet cross sections for

the relevant processes are shown in Fig. 4. The general
behavior of the color decomposed cross sections for the
processes t̃1 t̃1 → tt and b̃1b̃1 → bb is very similar. Both
processes contain identical particles in the initial state
and are symmetric with respect to their interchange.
Given that the color basis vector Cf3̄;3̄g is antisymmetric
with respect to the same interchange, the partial wave of
the triplet cross section is a p-wave, making its con-
tribution to the relic density subdominant. For these two
processes only the sextet color combination contributes.
In the case of the last process t̃1b̃1 → tb, the symmetry
argument does not apply, and both color combinations
contain an s-wave and contribute equally to the relic
density.

III. NEXT-TO-LEADING ORDER

In this section wewill discuss the details of our analytical
calculation of the full SUSY-QCD corrections to squark-
pair annihilation into a pair of quarks. We first concentrate
on the virtual corrections and treatment of the UV diver-
gencies in the case of squark-pair annihilation. We continue
with the discussion of the treatment of IR divergencies.
Finally, we address the Sommerfeld enhancement, and its
treatment and impact on the full SUSY-QCD correction to
the squark-pair annihilation.
Before we discuss specific details of the next-to-leading-

order calculation, we will address the systematics of SUSY-
QCD corrections to processes which at leading order have
both strong and electroweak contributions [see Eq. (2.4)]. If
we consider any radiative corrections (SUSY-QCD or
electroweak) to the processes in question, the cross section

including the next-to-leading-order corrections can be
symbolically written as

σNLO ¼ σTree þ ΔσNLOs ðα3sÞ þ ΔσNLOse ðα2sαeÞ
þ ΔσNLOe ðαsα2eÞ þ ΔσNLOee ðα3eÞ: ð3:1Þ

The SUSY-QCD corrections contribute to the ΔσNLOs ,
ΔσNLOse and ΔσNLOe parts of the NLO cross section, whereas
the electroweak corrections would contribute to the ΔσNLOse ,
ΔσNLOe and ΔσNLOee parts. Both classes of corrections, the
SUSY-QCD and the electroweak, are ultraviolet and infra-
red finite and gauge independent by themselves, making
them formally consistent.
The first and leading term in the NLO correction is

ΔσNLOs ðα3sÞ which receives contributions only from SUSY-
QCD corrections. In particular, these are the SUSY-QCD
corrections to the gluino exchange diagrams interfered with
the gluino tree-level contribution. These corrections are the
main result of this analysis.
The following term ΔσNLOse ðα2sαeÞ receives contributions

from three sources—from the interference of the SUSY-
QCD corrected gluino exchange with the electroweak
gaugino exchange, from the interference of the SUSY-
QCD corrected electroweak gaugino exchange with the
gluino diagrams, and lastly from electroweak corrections to
the gluino exchange interfered with the gluino tree level.
The last contribution is not included in this analysis, and
even though it is formally of the same order, due to the
small size of the electroweak corrections which are typi-
cally a factor 10 smaller than SUSY-QCD ones, this last
contribution is the smallest of the three. In this way our
analysis also provides the leading corrections in the
term ΔσNLOse ðα2sαeÞ.
The third term ΔσNLOe ðαsα2eÞ contains the interference of

the SUSY-QCD corrected electroweak gaugino exchange
with the leading-order electroweak gaugino diagrams as
well as electroweak corrections to both parts of the

FIG. 4. Upper part: Decomposition of the leading-order cross section into the color basis in typical pMSSM scenarios for identical
(left) and nonidentical (right) incoming particles. The superscripts 3̄ and 6 refer to the respective color representation. Lower part:
Contributions relative to the total tree-level cross section σTree.
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interference between the gluino and the electroweak
gaugino exchange.
The last term ΔσNLOee ðα3eÞ is not considered here as it

contains only electroweak corrections to the electroweak
parts of the cross section.
The analysis presented here does not consider electro-

weak corrections as they are, for the most part, subleading
and contribute about 1% to 3% correction [21,22]. In some
instances, however, the electroweak corrections, and spe-
cifically the Yukawa corrections, can become important
[33]. Even though we do not calculate electroweak cor-
rections in this analysis, the leading effects of the enhanced
Yukawa corrections are taken into account as described in
[17]. In particular, these become relevant in the case of
chargino exchange in scenario II (neutralino exchanges are
not as enhanced due to the lightest neutralino being a pure
bino in both scenarios).
As the discussion below shows, the SUSY-QCD correc-

tions presented here are the dominant corrections even in
scenarios with large tan β and are even more dominant
owing to the presence of the Sommerfeld enhancement.

A. Virtual corrections and renormalization

The class of processes considered here—the squark-pair
annihilation to a pair of quarks—includes strongly interact-
ing particles in the initial state, in the final state, and even in
the intermediate state (in the case of the gluino t- and u-
channel exchanges). As a consequence, the next-to-leading-
order SUSY-QCD corrections include contributions from

vertex corrections, propagator corrections, and box
corrections. The corresponding diagrams are displayed in
Figs. 5–7, respectively. The next-to-leading-order correc-
tions to the squark-pair annihilation contain one-loop
diagrams which are ultraviolet (UV) and infrared (IR)
divergent. The UV divergencies are canceled by renormal-
ization of the parameters of the theory and the fields. In order
to cancel the IR divergences, one has to properly define an
infrared-safe cross section, which is done by also including
2 → 3 processes with an additional gluon being radiated
(see Fig. 8).
All one-loop diagrams have been calculated in the

SUSY-invariant dimensional reduction scheme (DR)
[34,35] where, similar to the minimal subtraction scheme
(MS), the number of space-time dimensions is set to D ¼
4 − 2ε in order to regularize otherwise divergent loop
integrals. We have used the standard Passarino-Veltman
reduction [36,37] in order to reduce the tensor loop
integrals in the one-loop amplitudes to only a few scalar
integrals which have then been evaluated using well-known
results, e.g., Refs. [38,39]. Our analytical calculations were
performed and verified with the help of publicly available
tools FeynArts [40], FeynCalc [41], and FORM [42].
In order to cancel UV divergencies of the one-loop

amplitude, we renormalize the MSSM by introducing
counterterms to the relevant parameters and fields.
Because we consider SUSY-QCD corrections to a process
involving scalar quarks, quarks and intermediate gluinos,
the relevant parameters are the ones that receive corrections
proportional to the strong coupling constant αs. Every

FIG. 5. Gluino self-energy diagrams relevant for the gluino mass and wave-function renormalization.

FIG. 6. Vertex corrections diagrams associated with the squark-pair annihilation into quark pairs depicted in Fig. 2.
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renormalization scheme is characterized by a careful
selection and definition of its input parameters. In a series
of previous analyses [17,18], we have put forward a
renormalization scheme which combines the advantages
of both on-shell and DR renormalization schemes and
consistently treats the renormalization of the quark and
squark sectors. In these sectors the input parameters are
chosen to be the on-shell masses mt, mt̃1 , mb̃1

, mb̃2
, the

mass of the bottom quark mb, and trilinear couplings of the
third generation At and Ab. The last three parameters are
defined in the DR renormalization scheme. We define our
renormalization scale as μR ¼ QSUSY ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffimt̃1mt̃2

p . In the
following, we will comment on new aspects of the
renormalization relevant for our analysis presented here
such as the renormalization of the mass of the gluino and its
wave function.

1. Gluino mass and wave-function renormalization

In all our analyses we adopt a convention where not only
should the complete next-to-leading-order corrections to
the cross section be rendered UV finite, but also all building
blocks such as the n-particle irreducible Green’s functions

should be UV finite as well. This choice requires us to
introduce wave-function renormalization constants not
only to the fields that correspond to the initial and final
state particles but also to fields that give rise to internal
propagators. In our case, the only strongly interacting
particle that appears in a propagator in our amplitude is
the gluino which has not yet been treated within the
DM@NLO analysis.
In the case of the gluino, both wave function and mass

have to be renormalized in order for the vertex corrections
and propagator corrections to be separately UV finite. To
this end, we introduce counterterms to the gluino wave
function δZL;R

g̃ and the gluino mass δmg̃ as

ψ g̃ →

�
1þ 1

2
δZL

g̃ PL þ 1

2
δZR

g̃ PR

�
ψ g̃; ð3:2Þ

mg̃ → mg̃ þ δmg̃: ð3:3Þ
All gluino counterterms are determined by considering the
gluino two-point Green’s function. The one-loop contri-
bution to the two-point Green’s function is given by the
gluino self-energy diagrams shown in Fig. 5. This con-
tribution can be parametrized as

FIG. 7. Box diagrams associated with the squark-pair annihilation into quark pairs depicted in Fig. 2.

FIG. 8. Real gluon radiation diagrams associated with squark-pair annihilation into quark pairs depicted in Fig. 2.
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ΠðkÞ ¼ =kðPLΠLðk2Þ þ PRΠRðk2ÞÞ
þmg̃ðPLΠSLðk2Þ þ PRΠSRðk2ÞÞ; ð3:4Þ

where ΠL;Rðk2Þ and ΠSL;SRðk2Þ are form factors which
receive contributions from the corresponding self-energy
diagrams.
Even though the gluino is not an external particle in the

processes considered in this analysis, we still require that
the residue of the propagator at one-loop order is set to
unity. This condition fixes the wave-function renormaliza-
tion constant using the form factors as

δZL=R
g̃ ¼ −ΠL=Rðm2

g̃Þ þ
1

2
ðΠSL=SRðm2

g̃Þ
− ΠSR=SLðm2

g̃ÞÞ −m2
g̃ð _ΠL=Rðm2

g̃Þ þ _ΠR=Lðm2
g̃Þ

þ _ΠSL=SRðm2
g̃Þ þ _ΠSR=SLðm2

g̃ÞÞ; ð3:5Þ

where _Πiðm2
g̃Þ ¼ ∂

∂k2 Π
iðk2Þjk2¼m2

g̃
. Using the gluino wave-

function counterterm renders both the propagator and
vertex corrections separately UV finite. Moreover, given
that the gluino is not an external particle, renormalization of
its wave function is not necessary for UV finiteness of the
full next-to-leading-order amplitude, so the full amplitude
is independent of the gluino wave-function counterterm.
This constitutes another consistency check of our analytical
calculation.
The mass counterterm is determined from the on-shell

condition which requires that the gluino mass mg̃, which is
an input parameter, is identical to the position of the pole of
the gluino propagator. It is given as

δmg̃ ¼
1

2
mg̃ ReðΠLðm2

g̃Þ þ ΠRðm2
g̃Þ þ ΠSLðm2

g̃Þ
þ ΠSRðm2

g̃ÞÞ: ð3:6Þ

2. Some remarks on the renormalization
of the squark sector

Even though we have discussed the details of the
renormalization of squark parameters in Ref. [17], we
would like to remark here on one feature of the renorm-
alization scheme relevant for evaluating the results of this
analysis. As discussed in Ref. [17], we use the relation
between the nondiagonal squark mass matrices for up-type
and down-type squarks,

Uq̃

�
m2

LL m2
LR

m2
RL m2

RR

�
ðUq̃Þ† ¼

�m2
q̃1

0

0 m2
q̃2

�
; ð3:7Þ

where

m2
LL ¼ M2

Q̃
þ ðI3Lq − eqs2WÞ cos 2βm2

Z þm2
q; ð3:8Þ

m2
RR ¼ M2

fŨ;D̃g þ eqs2W cos 2βm2
Z þm2

q; ð3:9Þ

m2
LR ¼ m2

RL ¼ mqðAq − μðtan βÞ−2I3Lq Þ; ð3:10Þ
to relate the input parameters in the whole squark sector,
which are defined in different renormalization schemes. In
the next step, we determine the dependence of the soft
supersymmetry-breaking squark mass parameters M2

Q̃
and

M2
fŨ;D̃g of the three on-shell masses mb̃1

, mb̃2
, mt̃1 and the

input parameters contained inm2
LR (Aq,mq). In the sbottom

sector the parameters M2
Q̃

and M2
D̃

are contained in the

matrix elements m2
b̃;LL

and m2
b̃;RR

, which are given by the

on-shell masses as

m2
b̃;LL

¼ 1

2
ðm2

b̃1
þm2

b̃2
Þ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

b̃1
−m2

b̃2
Þ2 − 4m4

b̃;LR

q
;

m2
b̃;RR

¼ 1

2
ðm2

b̃1
þm2

b̃2
Þ ∓ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

b̃1
−m2

b̃2
Þ2 − 4m4

b̃;LR

q
:

ð3:11Þ
One notices that there are two possible values for the
parametersM2

Q̃
andM2

D̃
and consequently also for the third

parameter M2
Ũ
which can be found in one of the diagonal

elements of the nondiagonal scalar top mass matrix and is
related to the first two parameters through

m2
t̃;RR ¼ 1

m2
t̃;LL −m2

t̃1

ðm2
t̃1
m2

t̃;LL −m4
t̃1
þm4

t̃;LRÞ: ð3:12Þ

The parameter M2
Q̃
is common to both elements m2

b̃;LL
and

m2
t̃;LL. Given the freedom to choose from two possible

solutions for the squark soft supersymmetry-breaking mass
parameter, we can end up with two possibly very different
mass matrices and two different sets of mixing matrices
(three out of four masses of the squarks would be the same
in both cases as they are used as input). In order to ensure a
naturally small correction to the mixing matrices when
changing between our scheme and the DR renormalization
scheme, we always select the solution which preserves the
hierarchy between the mass matrix elements in the scalar
top quark sector m2

t̃;LL and m2
t̃;RR which was present in the

pure DR scheme.

B. Real corrections

After treating the ultraviolet divergencies and removing
them by renormalization, we are left with the IR divergen-
cies in the one-loop amplitude. The IR divergencies are also
regularized by performing calculations in a general dimen-
sion D ¼ 4 − 2ε and are subsequently removed by con-
sidering an IR-safe observable, which in our case is a cross
section with one additional gluon in the final state. The
corresponding diagrams are depicted in Fig. 8.

SQUARK-PAIR ANNIHILATION INTO QUARKS AT NEXT-TO-LEADING … PHYS. REV. D 99, 095015 (2019)

095015-11



The cross section for the radiation of an additional gluon
cannot be calculated analytically. On the other hand, the
cancellation of the IR divergencies between the virtual
corrections and the real radiation cross section has to be
performed analytically.One of themethods for how to extract
the IR divergencies out of the real radiation cross section is
the phase-space slicing method [37,43,44]. This method is
based on the fact that the infrareddivergence is connected to a
specific configuration of the momentum of the gluon. The
soft infrared divergence arises when the additional gluon’s
energy vanishes, whereas the collinear infrared divergence
arises when the additional gluon is radiated collinearly to the
momentum of an external massless particle. The phase-
space slicing method uses kinematical cuts to divide the
three-particle phase space into regions where either one or
both of the aforementioned configurations of the gluon
4-momentum occur and the remainder where the cross
section is IR finite. In the singular regions the full matrix
element is replaced by an approximation which can be
integrated analytically making the IR divergence explicit.
In the nonsingular region the full matrix element can be
integrated numerically without any obstacles.
In our case all external particles are massive, so the

2 → 3 cross section contains only a soft IR divergence. In the
singular region where the gluon’s energy is smaller than an
arbitrarily small cutoff ΔE, we use the soft gluon approxi-
mation which factorizes the differential cross section as

�
dσ
dΩ

�
soft

¼ F ×

�
dσ
dΩ

�
Tree

; ð3:13Þ

where F contains the integral over the phase space of the
gluon,

Iab ¼ μ4−D
Z
jk⃗j≤ΔE

dD−1k
ð2πÞD−4

1

k0
ða:bÞ

ðk:aÞðk:bÞ ; ð3:14Þ

and therefore also the divergence. Here, k is the
4-momentum of the gluon and a and b are 4-momenta of
two external particles which can emit a gluon. These
integrals are given in Refs. [37,45].
The cutoff ΔE introduced to separate the singular from

the nonsingular region in the three-particle phase space
enters into the calculation of the soft-gluon radiation as well
as into the integration of the 2 → 3 cross section over the
nonsingular phase space. In principle, the dependence on
this cutoff should disappear in the sum of the contributions
from both phase-space regions, but in practice, the inde-
pendence on the cutoff is limited by the numerical stability
of the integration over the nonsingular region. We have
investigated the dependence on the cutoff and found
that the integration in our case is stable and independent
of the cutoff for a relatively large interval of cutoffs
around ΔE ¼ 10−5

ffiffiffi
s

p
.

The complete result after we have included all virtual
corrections, the counterterms and the real radiation 2 → 3
cross section is UVand IR finite. In contrast to the leading-
order result which consists of a cross section with two
particles in the final state and is implemented in
micrOMEGAs, the complete result is a consistent combi-
nation of a one-loop corrected cross section with two
particles in the final state and a leading-order cross section
with three particles in the final state. In DM@NLO, the
complete result replaces the leading-order result of
micrOMEGAs.

C. Sommerfeld resummation

When calculating the relic density in our case, an
important contribution comes from the annihilation of
squarks moving with nonrelativistic velocities. If annihi-
lating, nonrelativistic particles couple to much lighter
force mediators which in our case are the gluons, the
annihilation cross section is modified due to the well-
known Sommerfeld effect [46]. The reason for this modi-
fication is that the exchange of n gluons between the initial
state squarks (see Fig. 9) contains a correction proportional
to ðαs=vrelÞn. This correction becomes significant and can
spoil the perturbative expansion when the relative velocity
of the squark pair vrel is comparable to the strong coupling
constant αs. In such a case these contributions have to be
resummed to all orders leading to the Sommerfeld effect.
Small relative velocities occur naturally in the freeze-out

regime,Ekin ∼ TFO ∼mχ̃0
1
=25, and therefore the Sommerfeld

resummation is expected to be relevant in the case of dark
matter annihilation in general and in our case in particular. As
for our processes of interest, q̃iq̃0j → qq0, the cross section is
dominated by the s-wave component (see Fig. 4). We can
factorize the resummed cross section as

ðσvÞresum¼ S0;½3̄�ðσvÞTreeq̃ q̃→qq;½3̄� þS0;½6�ðσvÞTreeq̃ q̃→qq;½6�; ð3:15Þ

wherewehave split the leading-order cross section according
to its color contribution to the triplet and sextet configura-
tions (see Sec. II C). Here S0;f½3̄�;½6�g indicate the correspond-
ing s-waveSommerfeld factors,whose evaluationwediscuss
in the following. In the nonrelativistic limit, the resummation
of the gluon exchange diagrams as shown in Fig. 9 amounts
to solving the Schrödinger equation with the corresponding
Coulomb potential. The Coulomb potential including gluon

FIG. 9. Ladder diagram for a LO Coulomb potential.
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loops at next-to-next-to-leading order was evaluated in [47]
and extended by fermion loops in Ref. [48]. In the MS
scheme, the Coulomb potential reads [49]

V ½R�ðrÞ ¼ C½R� αsðμ½R�
C Þ
r

×

�
1þ αsðμ½R�

C Þ
4π

½2b0ðlnðμ½R�
C rÞ þ γEÞ þ a1�

�
;

ð3:16Þ

with γE ¼ 0.5772 being the Euler-Mascheroni constant.
Furthermore, we have defined

b0 ¼
11

3
CA −

4

3
Tfnf; ð3:17Þ

a1 ¼
31

9
CA −

20

9
Tfnf; ð3:18Þ

where b0 corresponds to the one-loop β-function coefficient
withCA ¼ 3 andTF ¼ 1=2.We treat the top as the onlymas-
sive quark, such that we set the number of massless quarks to
five (nf ¼ 5). The Coulomb potential, given in Eq. (3.16),
describes the interaction of any nonrelativistic colored
particles transforming in general SUð3Þ-representations
R1 andR2. The color structure of such a scattering process
can be decomposed as

R1 ⊗ R2 ¼ R0 ⊕ R00: ð3:19Þ

The color factor C½R� is given in terms of the quadratic
Casimir operators of the relevant SUð3Þ representations as

C½Ri� ¼ Ta
1T

a
2 ¼

1

2
½ðTa

1 þ Ta
2Þ2 − ðTa

1Þ2 − ðTa
2Þ2�

¼ 1

2
ðCRi

2 − CR1

2 − CR2

2 Þ
where Ri ¼ R0;R00: ð3:20Þ

In the case considered here, the two squarks in the initial state
both transform under the fundamental representation of
SUð3Þ, and the color decomposition is 3 ⊗ 3 ¼ 3̄ ⊕ 6.
Using the quadratic Casimir operators for the fundamental
and the sextet representations, we obtain [50]

C3̄ ¼ −
1

2

�
1þ 1

Nc

�
¼ −2=3; ð3:21Þ

C6 ¼ 1

2

�
1 −

1

Nc

�
¼ 1=3: ð3:22Þ

The Sommerfeld factors are then obtained by solving the
Schrödinger equation

�
−

2

mred
∇2 þ V ½R�ðrÞ − ð ffiffiffi

s
p þ iΓt̃1Þ

�
G½R�ðr; ffiffiffi

s
p þ iΓt̃1Þ

¼ δð3ÞðrÞ ð3:23Þ

with the reduced mass mred ¼ ðmq̃mq̃0 Þ=ðmq̃ þmq̃0 Þ of the
two annihilating particles q̃ and q̃0. The solution of the
Schrödinger equation with the NLO Coulomb potential
defined in Eq. (3.16) is given by the Green’s function
G½R�ðr;EþiΓt̃1Þ¼G½R�ðr;r0¼0;EþiΓt̃1Þ. The Sommerfeld
factor which is used to correct the cross section in
Eq. (3.15) is given by a ratio of two Green’s functions at
the origin (r ¼ 0) [51,52],

S0;½R� ¼
Im½G½R�ð0; Eþ iΓt̃1Þ�
Im½G0ð0; Eþ iΓt̃1Þ�

; ð3:24Þ

where the Green’s function G0ð0; Eþ iΓt̃1Þ stands for the
solution of the Schrödinger equation without any Coulomb
potential. The solution to Eq. (3.23) at the origin is well
known [53], and we consider here all terms up to NLO,

G½R�ð0; ffiffiffi
s

p þ iΓt̃1Þ ¼
im2

redvs
π

þ C½R�αsðμ½R�
C Þm2

red

π

×
�
gLO þ αsðμ½R�

C Þ
4π

gNLO

�
; ð3:25Þ

where the LO and NLO contributions are given by

gLO ¼ L − ψ ð0Þ; ð3:26Þ

gNLO ¼ β0½L2− 2Lðψ ð0Þ− κψ ð1ÞÞþ κψ ð2Þ þ ðψ ð0ÞÞ2
− 3ψ ð1Þ− 2κψ ð0Þψ ð1Þ þ 44F3ð1;1;1;1;2;2;1− κ;1Þ�
þa1½L−ψ ð0Þ þ κψ ð1Þ�: ð3:27Þ

In Eqs. (3.26) and (3.27) and in the following, we use the
short-hand notation

κ ¼ iC½R�αsðμ½R�
C Þ

2v
; ð3:28Þ

vs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s

p þ iΓt̃1 − 2mavg

2mred

s
; ð3:29Þ

L ¼ ln
iμ½R�

C

4mredvs
: ð3:30Þ

Moreover, ψ ðnÞ ¼ ψ ðnÞð1 − κÞ is the nth derivative
of ψðzÞ ¼ γE þ d=dz lnΓðzÞ with the argument (1 − κ),

4F3ð1; 1; 1; 1; 2; 2; 1 − κ; 1Þ a hypergeometric function,
and mavg ¼ ðmq̃ þmq̃0 Þ=2 the average mass of the two
incoming particles. Note that in the case of identical initial
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state particles, the parameter vs in Eq. (3.29) is the non-
relativistic velocity of one of the incoming particles and
should not be confused with vrel ¼ 2vs, the relativistic,
relative velocity of the two annihilating particles. In order
to calculate the Sommerfeld factor inEq. (3.24),we also need
the Green’s function that solves the system without any
potential term in Eq. (3.23), which is given by

Im½G0ð0; Eþ iΓt̃1Þ� ¼
m2

redvs
π

: ð3:31Þ

Finally, we need to fix the scale μC that appears in the
potential and has an impact on the evaluation of αs in the
Sommerfeld factor.We followhere the treatment presented in
Ref. [50] and set

μ½R�
C ¼ max f4mredvs; μ

½R�
B g; ð3:32Þ

where 4mredvs is motivated by the typical momentum
exchange of the gluons in the ladder diagram and the scale

μ½R�
B corresponds to twice the inverse Bohr radius rB. It is

defined via

μ½R�
B ≡ 2=rB ¼ 2C½R�mredαsðμ½R�

B Þ: ð3:33Þ

In order to obtain μ½R�
B , we solve Eq. (3.33) iteratively. One

important remark should be made here. In the case of a
repulsiveQCDpotential, theSommerfeld correction causes a
large reduction of the annihilation cross section which for
extremely small velocities should vanish. In order to prevent
unphysical results such as negative cross sections,wemodify

the definition of the scale μ½R�
C as the smallest scale where the

cross section is positive for v ¼ 0. In our specific case a scale

defined in this way is only about 2% larger than the scale μ½R�
C

defined through Eq. (3.32).
As the box diagrams in the full NLO calculation also

contain the velocity-enhanced part of the one-gluon
exchange, which is at the same time already included in
the Sommerfeld resummation, we have to subtract this
contribution in order to avoid any double counting.
To isolate the velocity-enhanced term from the box

contribution, we expand the box contribution in the relative
velocity (for details see the Appendix). We then construct
the subtracted cross section ðσvÞsubNLO based on the expanded
matrix element of the box diagrams given in Eq. (A9). The
leading velocity-enhanced term of the subtracted cross
section is

ðσvÞsubNLO ∼
X
R

�
αsðμRÞπ
vrel

�
C½R�
boxðσvÞRTree: ð3:34Þ

Comparing Eq. (3.34) with the next-to-leading-order part of
the Sommerfeld resummation, which arises from the
imaginary part of gLO, namely gsubLO ¼ iπ=2, and reads

ðσvÞNLOresum ¼
X
R

�
C½R�αsðμ½R�

C Þπ
2vs

�
ðσvÞRTree; ð3:35Þ

we see that, given C½R� ¼ C½R�
box and vs ¼ vrel=2, the two

expressions differ in the scale at which the strong coupling
constant is being evaluated. While in the perturbative NLO
calculation αs is evaluated at the renormalization scale
μR ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffimq̃mq̃0

p , in Sommerfeld resummation the character-
istic scale μC is used. By choosing to use Eq. (3.34) to avoid
the double counting, we make use of the fact that the
natural scale used in the description of the interaction
between incoming particles at small velocities is μC. This is
consistently used to all orders in the resummed cross
section ðσvÞresum given by Eq. (3.15). The full next-to-
leading-order cross section, consistently including also the
Sommerfeld resummation, reads

ðσvÞfull ¼ ðσvÞNLO þ ðσvÞresum − ðσvÞsubNLO: ð3:36Þ

The Sommerfeld enhancement of the annihilation cross
section can be caused not only by the multiple exchanges of
gluons but also by the exchanges of photons or even gauge
or Higgs bosons.
Coincidentally, in the processes considered in this

analysis, the Sommerfeld enhancement from the photon
exchange has the same effect on the cross section as the
Sommerfeld enhancement from the exchange of gluons. In
the case of photons, the Sommerfeld effect leads to a
reduction of the cross section for the processes with same-
sign particles in the initial state such as t̃1 t̃1 → tt and
b̃1b̃1 → bb. If the electric charges of the particles in the
initial state have different sign, e.g., t̃1b̃1 → tb, the electro-
magnetic interaction is attractive and the Sommerfeld effect
causes an enhancement of the cross section. Given that the
photon exchanges are suppressed with respect to the
exchanges of the gluons by a factor αEWðμCÞ=αsðμCÞ,
we neglect their effect in this analysis.
Because of the large trilinear couplings in both scenarios,

it might be interesting to study the Sommerfeld enhance-
ment coming from the exchange of Higgs bosons [54–59].
In the regime of Sommerfeld enhancement, bound state
formation can also potentially occur, giving rise to new
annihilation channels and thus altering the relic density
prediction. This has been previously studied for stop-
antistop annihilation for both gluon [60] and Higgs
exchange [61]. Such studies, however, are far beyond
the scope of this work and are left for future analyses.

D. The NLO cross section results

In this section we present the first result of our analysis,
which is the impact of SUSY-QCD next-to-leading-order
corrections on the annihilation cross sections of scalar top
or bottom pairs. Apart from the cross section (or more
precisely σv) we also show in arbitrary units the Boltzmann
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distribution function which is involved in the calculation of
the thermal average hσvi at the freeze-out temperature
(grey shaded area). It should serve as a reminder that the
cross section contributes to the determination of the relic
density only in a limited range in the center-of-mass
momentum pcm.

1. Scenario I

In the first scenario introduced in Sec. II, the mass
splitting between the lightest neutralino and the lightest
stop quark is relatively large. As a result the dark matter
annihilation cross section receives important contributions
not only from the stop-pair annihilation into top quarks but
also from the neutralino-stop co-annihilation into a top
quark and a gluon and other final states. The results of
SUSY-QCD corrections for these processes are shown in
Fig. 10. As described in the previous section, the next-to-
leading-order cross section consists of vertex corrections,
propagator corrections, box corrections, counterterm con-
tributions and the real radiation cross section, which has to
be added to render the prediction infrared finite. The
corrections from each contribution are not shown in

Fig. 10 due to the cancellations of the ultraviolet and
infrared divergencies between the contributions, which
make each contribution on its own ill defined. In addition
to the NLO cross section, we also include the enhanced
higher-order contributions stemming from the nonrelativ-
istic Coulomb correction.
In the case of the annihilation of a pair of scalar top

quarks, both initial particles are colored, and in the limit of
vanishing relative velocity of the squark pair, the Coulomb
corrections dominate the full corrected cross section. The
origin of these corrections is the exchange of multiple
gluons between a pair of slowly moving squarks in the
initial state, and the details were discussed in Sec. III C.
The effect of the Coulomb corrections strongly depends on
the color multiplet, in which the pair of squarks transform.
Based on the color decomposition presented in Sec. II C,
the annihilation cross section t̃1t̃1 → tt in scenario I is
dominated by the contribution where the squark pair forms
an SUð3Þ-sextet (see Fig. 4). In this representation the
multiple exchange of the gluons can be described by a
repulsive nonrelativistic QCD potential, as discussed in
detail in Sec. III C. That is why the Coulomb corrections in

FIG. 10. Annihilation cross section σv for the stop annihilation into top quarks (first panel) and neutralino-stop co-annihilation (three
remaining panels) for scenario I, computed using the micrOMEGAs tree-level calculation (MO), our leading-order calculation (Tree),
our fixed-order NLO calculation (NLO, only first panel), our fixed-order NLO calculation without the velocity-enhanced part of the box
contributions (NLOB, only first panel), and our full NLO calculation including resummation (F). The lower part shows various relative
cross sections according to the second part of the legend.
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this case cause a reduction of the cross section. As already
discussed in the previous section, the next-to-leading-order
cross section contains the one-loop contribution also
included in the Coulomb enhancement. This one-loop
contribution can be traced back to all box diagrams in
Fig. 7, where one gluon is exchanged between the incom-
ing squarks. The contribution from this class of diagrams
dominates the one-loop cross section for small velocities
and is so large that it causes the cross section with one-loop
corrections to be negative (see the green dashed line in
Fig. 10). As discussed in Sec. III C, in order to prevent
double counting, we remove the part of the box contribu-
tion which is already included in the Coulomb resumma-
tion. This allows us to quantify the pure one-loop correction
to the annihilation cross section without any enhancement
(red dash-dotted line in Fig. 10). We see that the one-loop
correction without the enhancement is a large positive
correction of about 30%–40% over a large range of pcm.
Comparing the result for the nonenhanced NLO

cross section with the full result, which is the sum of the
nonenhanced NLO cross section and the Sommerfeld
corrections, shows that the latter are important for all
relevant values of pcm. Starting at the largest value of pcm ∼
600 GeV which is still relevant for the determination of the
relic density, we observe that the Coulomb corrections
already reduce the constant 30% NLO correction by a few
percent. For smaller relative velocities corresponding to
pcm ∼ 150 GeV, the NLO correction is fully canceled by
the Coulomb corrections, and for very slow velocities the
Coulomb corrections take over and the overall correction is
large and negative. For almost vanishing velocities the total
cross section vanishes completely. This is due to the fact that
the dynamics of the squark pair in the regimewhenCoulomb
corrections are very large (meaning for vanishing velocities)
correspond to a motion of the pair in a highly repulsive QCD
potential. This in turn means that large repulsive forces repel
one squark from the other, reducing the probability of
annihilation and thereby reducing the cross section.
In summary, we can conclude that SUSY-QCD correc-

tions to t̃1t̃1 → tt are sizable either through the one-loop
corrections for large pcm or the enhanced Coulomb
corrections for small pcm.
The co-annihilation processes important in this scenario

were discussed in detail in Refs. [17,18]. In Fig. 10 we also
show the effect of the SUSY-QCD corrections on the co-
annihilation cross sections in scenario I. We see that the
next-to-leading-order corrections in the case of co-annihi-
lations are substantial, ranging from −30% in the case of
the co-annihilation into the top quark and Higgs-boson
final state to þ50% in the case of the top gluon final state.
There are a few substantial differences such as the fact that
the corrections are negative in the case of co-annihilations
with electroweak bosons or Higgs bosons in the final state
or that there is a large difference between our leading-order
result and the micrOMEGAs result for the co-annihilations
with electroweak and Higgs bosons, which can be traced to

a different definition of underlying parameters in our
renormalization scheme. The next-to-leading-order correc-
tion with respect to the micrOMEGAs result is largely
reduced to at most −10%. Given that our leading-order
prediction for the co-annihilations into the top quark and a
gluon coincides with the micrOMEGAs prediction, the
large next-to-leading-order correction also gives directly
the correction with respect to the micrOMEGAs result.

2. Scenario II

In the second scenario, the choice of parameters such as
tan β and the gaugino and squark mass parameters causes
the masses of the lightest neutralino, and the lightest scalar
top and bottom quarks to be almost degenerate. This leads
to different processes contributing significantly to the total
dark matter annihilation cross section. The smaller mass
difference renders co-annihilations ineffective, and the fact
that three particles are mass degenerate leads to a larger
number of annihilations. Moreover, the large value of tan β
enhances the gaugino exchange in the case of the stop-
sbottom annihilation, and this, together with a different
color structure, makes this annihilation dominant in the
case of scenario II.
The full next-to-leading-order results for three dominant

processes are shown in Fig. 11. The processes t̃1t̃1 → tt and
b̃1b̃1 → bb have very similar features to the annihilation of
a pair of scalar top quarks in scenario I. The main difference
in this scenario is the process t̃1b̃1 → tb, which has an
entirely different decomposition of the leading-order cross
section in terms of the t- and u-channel exchanges
combined with a different color decomposition, which is
essential in explaining the behavior of the NLO cross
section. Similar to the already discussed case of t̃1t̃1 → tt,
the NLO correction contains a velocity-enhanced term,
which is already resummed in the Sommerfeld correction.
In order to avoid double counting, we define again the
nonenhanced NLO correction σNLOB

where we subtract the
term which is already accounted for by the Sommerfeld
resummation (red dash-dotted curve in Fig. 11). As one can
see in Fig. 11, the nonenhanced NLO correction is
substantial in all processes in scenario II. In the case of
stop-pair or sbottom-pair annihilations, this NLO correc-
tion is compensated by a large and negative Sommerfeld
correction which is derived here from a repulsive QCD
potential. The color decomposition of the t̃1b̃1 → tb shows
(see Fig. 4) that in contrast to the other processes, the cross
section here is dominated by the part where the initial stop
and sbottom quarks transform as an SUð3Þ triplet. In this
color configuration a pair of slowly moving squarks
experiences an attractive strong force, which leads to a
large enhancement of the annihilation cross section.
Comparing the full result (solid blue line in Fig. 11)
with the result containing just the nonenhanced NLO
corrections, we see that the Sommerfeld enhancement is
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important over the whole region in pcm that is relevant for
the calculation of the relic density.
It is worthmentioning that due to the large value of tan β in

scenario II and to the fact that the chargino u-channel
exchange gives an important contribution to the cross section
t̃1b̃1 → tb, the Yukawa corrections to the chargino exchange
can give a non-negligible contribution.We have included the
tan β dependent Yukawa corrections even beyond next-to-
leading order in the full result, and we show their effect
separately in Fig. 11 (yellow dashed line). Even though the

Yukawa corrections are non-negligible, they are small
(about 3%) compared to the remaining SUSY-QCD correc-
tions or to the Sommerfeld enhancement.
The full correction to t̃1b̃1 → tb is larger than 50% over

the whole relevant range of pcm and can even exceed 100%
(without threatening perturbativity as this correction origi-
nates from a resummation). Wewill show in the next section
that using the fully corrected annihilation cross sections in
scenario II has a large impact on the relic density.

IV. IMPACT ON THE NEUTRALINO
RELIC DENSITY

We finally come to the discussion of the impact of the
corrections presented in Sec. III on the neutralino relic
density Ωχ̃0

1
h2. To this end, we have implemented the

corrections into the numerical code DM@NLO, which is
used as an extension to micrOMEGAs. In practice, this
means that the Boltzmann equation is still integrated using
the latter, while the cross section calculation of the relevant
processes (see Table II) is performed by DM@NLO instead
of CalcHEP.
In the following, we will illustrate the impact of the

corrections by comparing the relic density obtained using
the full DM@NLO NLO calculation to the values obtained
using the tree-level calculation of micrOMEGAs/CalcHEP.

A. Scenario I

We start by examining the impact of NLO corrections in
the vicinity of scenario I, where we compare the relic
density obtained from the micrOMEGAs calculation to the
one obtained using our full NLO result as presented in
Sec. III. The impact is illustrated in Fig. 12, where we show
the corresponding viable regions of parameter space in the
M1-Mt̃R plane. As can be seen, the favored parameter
region where the calculated relic density satisfies the
experimental constraint, Eq. (1.1), is shifted towards
smaller mass parameters in order to compensate the
increased annihilation cross section. It is important to note
that this shift is larger than the width of the band which
corresponds to the Planck 2σ uncertainties.
The situation changes for higher masses, where

the processes discussed in this work and corrected at the
NLO level are less relevant. The corrections of the
remaining processes relevant in this part of parameter
space are left for future work.
In Fig. 13, we show the same results in the vicinity of

scenario I, but this time projected onto the plane of the
physical neutralino and stop masses. Note that, here, the
variation of the physical masses solely stems from varying
the parametersM1 andMt̃R , respectively, while all other soft
parameters, including those that, in general, may influence
the neutralino and stopmasses, are kept fixed to the values of
Table I. FromFig. 13, we see that the cosmologically favored
region of parameter space is shifted by about 7 GeV in both
the neutralino and the lighter stop mass.

FIG. 11. Same as Fig. 10 for the three quark-annihilation
processes relevant in scenario II. In the last panel, we show, in
addition, the cross section for chargino u-channel exchange with
β-enhanced Yukawa corrections (σΔMb

).
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These results lead to the conclusion that the corrections
presented in this work are relevant when performing an
extraction of either physical masses or fundamental model
parameters from cosmological data. Let us note that this
conclusion is the same as for the previous analyses of other
processes entering the calculation of Ωχ̃0

1
h2 [12–15,17–19].

In order to get a better understanding of the impact of the
different contributions to the annihilation cross section σann,

and consequently to the relic density Ωχ̃0
1
h2, we have

performed a one-dimensional scan along the region where
micrOMEGAs predicts the correct relic density, varying
simultaneously the parameters M1 and Mt̃R . The result of
this scan is shown in Fig. 14 as a function of both
parameters, while all other parameters are fixed to the
values given in Table I.

FIG. 12. Parameter regions compatible with the Planck limits given in Eq. (1.1) presented in theM1 −Mt̃R plane around scenario I and
in the M1 −Mq̃L plane around scenario II. The orange band corresponds to the micrOMEGAs calculation, while the blue band stems
from the full DM@NLO one-loop calculation. The right panel corresponds to a zoom into the left panel around scenario I (or scenario
II), which is indicated by the red dot. Grey regions are excluded due to stop LSP.

FIG. 13. Same as Fig. 12, but projected into the plane of the physical neutralino and stop masses.
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First, it can be noticed that our tree-level prediction differs
from the micrOMEGAs result. This is a direct consequence
of the corresponding difference in the annihilation cross
sections, as discussed in Sec. II B and shown, e.g., in
Fig. 10. Taking into account the corrections discussed in
Sec. III, it can be seen that the total correction is split into
two parts associated with the relevant classes of processes,
namely t̃1t̃1 → tt and χ̃01 t̃1 → qg, qV, qϕ. Figure 10 shows
that the correction to the relic density in scenario I is
dominated by the corrections to the co-annihilation proc-
esses even though at leading order these processes contribute
about a factor 2 less than t̃1t̃1 → tt. This is a consequence of
the Sommerfeld suppression of the annihilation cross section
as discussed in Sec. III D. Moreover, we see that for lower
bino/squark mass parameters M1=Mt̃R , the correction to the
co-annihilation processes is numerically more important
than for large mass parameters. This is explained by the
fact that the relative importance of the co-annihilation
processes is higher in this region of parameter space (see,
e.g., Fig. 1). Moving towards higher values of M1, the
relative importance of the stop-pair annihilation increases
and, consequently, the associated correction to the relic
density becomes more important.
Overall, the relic density obtained using our full (i.e.,

NLO including resummation) calculation is about 6%
smaller than the one obtained by using micrOMEGAs.
Again, we emphasize that this shift is more important than
the uncertainty given by the Planck measurement, which is
at the 2σ confidence level of about 2%.

B. Scenario II

Let us now focus on scenario II, where not only is
t̃1 t̃1 → tt relevant, but the related processes b̃1b̃1 → bb and

t̃1b̃1 → tb also give sizable contributions to the annihilation
cross section σann. Therefore, they also need to be corrected
at the NLO level including the resummation, as discussed
in Sec. III.
Again, we start by depicting the parameter region

compatible with the measured values for the relic density
(see the second row of plots in Fig. 12) in the vicinity of
scenario II—in this case, in the M1 −Mq̃L plane—which
are the relevant neutralino and squark mass parameters.
Similar to scenario I, as discussed above, the viable regions
with respect to the relic density are shifted towards lower
masses. Here, the shift is again more important than the
uncertainty and is much larger than in scenario I. It
corresponds to a shift of about 17 GeV in the bino mass
parameter M1 and about 15 GeV in the left-handed squark
mass parameter Mq̃L.
In terms of physical masses, shown in Fig. 13, this

corresponds to a shift of about 17 GeV for the neutralino
mass and of about 15 GeV in the lighter stop mass. Once
more, these findings underline the importance of the
presented corrections in the light of precision cosmology.
It is to be noted that for this part of the analysis, only M1

and Mq̃L have been varied, and the results have been
projected on the so-obtained plane of the physical neu-
tralino and stop masses, while all other parameters have
remained fixed to the values given in Table I.
In order to decompose our full NLO prediction for the

relic density into the contributions from different proc-
esses, we show in Fig. 14 the NLO corrected contribu-
tions to the relic abundance from individual processes
along the region where micrOMEGAs predicts the correct
relic density, simultaneously varying the parameters M1

and Mq̃L . We see that using our tree-level annihilation

FIG. 14. Upper part: Neutralino relic density Ωχ̃0
1
h2 along the parameter region satisfying the experimental constraints on the relic

abundance. Both the bino mass parameterM1 and the squark mass parameterMt̃R (orMq̃L ) are shown around scenario I (or scenario II).
In both plots we show the values obtained using micrOMEGAs (ΩMOh2), our tree-level calculation (ΩTreeh2), and our full one-loop
calculation including the resummation (ΩFh2). For scenario I, we also show the value obtained by correcting only neutralino-stop co-
annihilation (Ωχ̃0

1
t̃1h

2), and the value obtained by correcting only stop-pair annihilation (Ωt̃1 t̃1h
2). Similarly, for scenario II, we show the

effect of correcting only the stop and sbottom-pair annihilations (Ωq̃1q̃1h
2) and the stop-sbottom annihilations (Ωt̃1b̃1

h2). Lower part:
Impact of the different contributions relative to the relic density obtained by using micrOMEGAs.
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cross section with differently defined input parameters
shifts the relic density by a few percent (black dashed
line). In all remaining contributions we use our tree-level
annihilation cross section for all relevant processes.
Starting from our tree level, a very small correction of
about 1% in the whole region comes from including NLO
corrections only to the t̃1t̃1 → tt and b̃1b̃1 → bb. It is
important to point out that the reason for this extremely
small correction is the Sommerfeld enhancement, which
in this case in fact suppresses the cross section. This is
due to the repulsive nature of the dominant SUð3Þ-sextet
contribution. Even if the full correction to the cross
section is large and negative for small pcm (see Fig. 11),
interestingly the correction to the thermal averaged cross
section is still positive, leading to a drop in relic density.
The largest contribution comes from the annihilation
cross section of t̃1b̃1 → tb. The first reason is the large
contribution of this process to the total annihilation cross
section already at tree level (see Table II). The second
reason is the large Sommerfeld enhancement emerging
from the attractive potential of the dominant SUð3Þ-triplet
contribution, which in this case makes the full correction
to the cross section extremely large. We see that depend-
ing on the dominant contribution of the color decom-
position, SUð3Þ-sextet or SUð3Þ-triplet, the Sommerfeld
correction either suppresses or enhances the cross section
such that the total SUSY-QCD correction to the relic
density over the whole range is about 25%. This results
in the visible shift of the preferred parameter region,
which is much larger than the experimental uncertainty
given in Eq. (1.1).

V. CONCLUSION

Scenarios in the MSSM with light stops are still very
appealing due to their potential to address many problems
that the MSSM with heavy particles might have. In such
scenarios, squark-pair annihilations into quarks are often
very important processes that govern the annihilation of
dark matter, which is typically the lightest neutralino.
We have analyzed two such example scenarios, which

pass all current experimental constraints. We focused on
the SUSY-QCD corrections to squark-pair annihilations
into quarks. We have reviewed the details of the one-loop
calculation and of the Sommerfeld enhancement. We
have shown that the one-loop corrections of the cross
sections are sizable even without the Sommerfeld
enhancement. The Sommerfeld corrections are shown
to cause two different effects depending on the nature
of the strong force between the pair of incoming scalar
quarks. In the case of annihilations between the same
type of squarks, the enhancement turns into a reduction
of the cross section as here the squarks experience a
strong repulsive force. If the scalar quarks are different,
however, the cross section is strongly enhanced due to
the attractive strong force. Finally, we have investigated

the impact of these corrections on the predicted relic
density. We have demonstrated in our typical scenarios
that even with the Sommerfeld reduction, the corrections
are larger than the experimental uncertainty. In case of an
enhancement, the corrections cause a 25% shift in the
preferred parameter region where the relic density sat-
isfies the experimental constraints.
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APPENDIX: SMALL VELOCITY EXPANSION
OF THE BOX CONTRIBUTION

In order to subtract the velocity-enhanced part of
the NLO contribution that is already included in the
Sommerfeld resummation, we expand the corresponding
contribution of the box diagrams in the relativistic relative
velocity [63]

vrel ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;m2

1; m
2
2Þ

p
s −m2

1 −m2
2

; ðA1Þ

with λða; b; cÞ ¼ a2 þ b2 þ c2 − 2ab − 2ac − 2bc.
All box diagrams that contain the velocity-enhanced

contribution feature an exchange of a massless gluon
between the incoming pair of scalar quarks. A generic
diagram showing the masses of internal and loop particles
is shown in Fig. 15. The matrix element contains tensor
coefficients

FIG. 15. Box diagram corresponding to the gluon exchange.
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1;M

2
2;M

2
3Þ

¼ Diðm2
1; m

2
3; m

2
4; m

2
2; ti; s; 0; m

2
1;M

2
2; m

2
2Þ; ðA2Þ

where ti are the Mandelstam variables t or u depending
on the box diagram. The velocity-enhanced terms
in the box contribution are contained in the scalar
4-point integrals D0ðm2

1; m
2
3; m

2
4; m

2
2; ti; s; 0; m

2
1;M

2
2; m

2
2Þ

[38]. The full enhanced box matrix element consisting
of box diagrams, where different gauginos with mass mχ

are exchanged, can be written using the corresponding
color decomposed tree-level matrix element [see
Eq. (2.10)] as

Mbox ¼
X
ti

X
χ

Mχ;ti
box

¼ ðC½3̄�
boxM

Tree;χ;ti
3̄

Cf3̄;3̄g
stij þ C½6�

boxM
Tree;χ;ti
6 Cf6;6g

stij Þ
× 2

αs
4π

ðs −m2
1 −m2

2Þðti −m2
χÞD0; ðA3Þ

where the tensor integral has the arguments as in Eq. (A2)

with M2 ¼ mχ and the color factors C½R�
box are given as

C½3̄�
box ¼ −

Nc þ 1

2Nc
; C½6�

box ¼
Nc − 1

2Nc
: ðA4Þ

The scalar integral for the specific arguments from
Eq. (A2) can be written as

D0 ¼
x13

m1m2ðti −m2
χÞð1 − x213Þ

�
2 lnðx13Þ

�
−
cϵ
ϵ
− ln

�
μmχ

m2
χ − ti

�
þ lnð1 − x213Þ

�

þ ln2ðx12Þ þ ln2ðx23Þ þ Li2ðx213Þ þ
X

k;l¼�1

Li2ðx13; xk12; xl23Þ −
π2

6

�
: ðA5Þ

The generalized polylogarithm in Eq. (A5) is defined as [38]

Li2ðx1;…; xnÞ ¼ Li2

�
1 −

Yn
i¼1

xi

�
þ
�
ln

�Yn
i¼1

xi

�
−
Xn
i¼1

lnðxiÞ
��

ln

�
1 −

Yn
i¼1

xi

�
− θ

�				Yn
i¼1

xi

				 − 1

�

×

�
ln

�
−Yn

i¼1

xi

�
− 1

2
ln

�Yn
i¼1

xi

�
−
1

2

Xn
i¼1

lnðxiÞ
��

: ðA6Þ

Thevariables xij are defined using the loopmassesMi andMj aswell as the invariant combinations of 4-momentap2
ij, as given

in Eq. (A2), as

xij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4MiMj

p2
ij−ðMi−MjÞ2

r
− 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4MiMj

p2
ij−ðMi−MjÞ2

r
þ 1

: ðA7Þ

In our case the only velocity dependent xij is x13, which for M1 ¼ m1, M2 ¼ mχ and M3 ¼ m2 gives

x13 ¼ −
2ðs −m2

1 −m2
2Þ − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;m2

1; m
2
2Þ

p
4m1m2

¼ −
ð1 − vrelÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2rel

p ; ðA8Þ

having used the relative velocity as defined in Eq. (A1). Given that the color factors C½R�
box are independent of the exchanged

gaugino, we can simplify the enhanced matrix element as

2ReðMboxM
†
TreeÞ ¼

X
ti;tj

X
χ;χ0

2ReðMχ;ti
boxðM

χ0;tj
TreeÞ†Þ ¼

X
ti;tj

X
χ;χ0

ðC½3̄�
boxðMχ;ti

Tree;3̄
ðMχ0;tj

Tree;3̄
Þ†Þ þ C½6�

boxðMχ;ti
Tree;6ðM

χ0;tj
Tree;6Þ†ÞÞ2ReðFχ;ti

boxÞ;

ðA9Þ

where Fχ;ti
box is given by
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Fχ;ti
box ¼

αs
π

ðs −m2
1 −m2

2Þ
2m1m2

x13
ð1 − x213Þ

×

�
2 lnðx13Þ

�
−
cϵ
ϵ
− ln

�
μmχ

m2
χ − ti

�
þ lnð1 − x213Þ

�

þ ln2ðx12Þ þ ln2ðx23Þ þ Li2ðx213Þ

þ
X

k;l¼�1

Li2ðx13; xk12; xl23Þ −
π2

6

�
: ðA10Þ

We first expand the expression in the relative velocity vrel
retaining just the leading term. The prefactor can be
expressed in terms of the relative velocity using

ðs −m2
1 −m2

2Þ
2m1m2

x13
ð1 − x213Þ

¼ −
1

2vrel
: ðA11Þ

Taking the real part of the Fχ;ti
box factor results in

2ReðFχ;ti
boxÞ ¼ −

αs
π

1

vrel
Re

�
ln2ðx12Þ þ ln2ðx23Þ þ Li2ð1Þ

þ
X

k;l¼�1

Li2ð−1; xk12; xl23Þ −
π2

6

�
: ðA12Þ

This expression seems to be implicitly dependent on the
mass of the gaugino mχ through the variables x12 and x23.
However, this dependence vanishes after a more careful
analysis, making the factor 2ReðFχ;ti

boxÞ generic for all under-
lying hard processes.
We will show the universality explicitly for a simple case

wherem1 ¼ m2 (i.e., x12 ¼ x23) and where all xij are purely
real. In such a case Li2ð−1; xk12; xl23Þ reduces to a simple
polylogarithm Li2ð1þ xkþl

12 Þ. The factor then reduces to

2ReðFχ;ti
boxÞ ¼ −

αs
π

1

vrel
Ref2ln2ðx12Þ þ 2Li2ð2Þ

þ Li2ð1þ x212Þ þ Li2ð1þ x−212 Þg; ðA13Þ

which can be simplified using [64]

Li2ðzÞ ¼ −Li2
�

z
z − 1

�
−
1

2
ln2ð1 − zÞ z < 1: ðA14Þ

The use of this identity eliminates all dependence on x12, and
the factor greatly simplifies to

2ReðFχ;ti
boxÞ ¼ −

αs
π

1

vrel
π2: ðA15Þ

Even though we have derived this particularly simple result
in a special case, the same can be obtained in themost general
case as well. With such a universal factor the one-loop
contribution to the squared matrix element from the
enhanced box contribution is just

2ReðMboxM
†
TreeÞ ¼

�
−

αs
vrel

π

�
ðC½3̄�

boxjMTree
3̄

j2

þ C½6�
boxjMTree

6 j2Þ: ðA16Þ

This expression is compatiblewith the next-to-leadingpart of
the Sommerfeld enhancement after we realize that in the
nonrelativistic case the relative velocity can be easily related
to the velocity used in the Sommerfeld enhancement for
identical incoming particles [see Eq. (3.29)] as vrel ¼ 2vs.
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