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We present the matching coefficient for the quark beam function at next-to-next-to-next-to-leading order
in perturbative QCD in the generalized large N.-approximation, N.~ N> 1. Although several
refinements are still needed to make this result interesting for phenomenological applications, our
computation shows that a fully-differential description of simple color singlet production processes at a
hadron collider at N*LO in perturbative QCD is within reach.
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I. INTRODUCTION

Good understanding of infrared and collinear limits in
perturbative QCD and the ability to use this understanding
for an increasingly accurate description of hadron collisions
is one of the key elements for the success of the future LHC
physics program. Because of that, much of the current
effort in theoretical collider physics focuses on achieving
and advancing such understanding in a number of com-
plementary ways, ranging from fixed-order computations,
to resummations and, finally, to parton showers. Although
for each of these approaches there exists a set of observ-
ables and theoretical quantities to which it is traditionally
applied, there are a few cases which lie at their intersections
and where progress achieved in the context of one approach
has implications for the other ones.

One such theoretical quantity is the so-called beam
function [1,2]. Beam functions describe the dynamics of
incoming partons that slightly deviate from their original
direction by emitting hard quasicollinear radiation before
going into the hard process. For this reason, beam functions
are important ingredients for resummation and factorization
studies that aim to understand differential cross sections in
the quasicollinear region [3-8].
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Two collinearity measures have been discussed in the
literature—the total transverse momentum of the radiated
partons

kj .
1

: (1)

N
pP1L =

J

and the O-jettiness

In Eqgs. (1)-(2), O, , are so-called “hardness” variables for
the initial state partons (see, e.g., [1,9]), p;, are the
momenta of the incoming partons and k; , are the
momenta of on-shell final state partons.

As was shown in Refs. [1,2] using soft-collinear effective
field theory (SCET) [10-14], beam functions are non-
perturbative objects that can be perturbatively matched to
parton distribution functions in case a collinearity measure
exceeds Agcp. Perturbative matching coefficients can then
be used to construct slicing schemes for higher-order
computations as proposed in Refs. [15-18]. Currently,
all matching coefficients for both p | and O-jettiness beam
functions are known through next-to-next-to-leading order
(NNLO) in QCD [19-22].

It is quite interesting to extend the computation of the
matching coefficients to one order higher in the strong
coupling constant a,. Not only will such a computation
stress-test many aspects of our understanding of soft-
collinear dynamics in QCD, as well as many techniques
of perturbative quantum field theory, but it will also provide
an alternative path to next-to-next-to-next-to-leading order
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(N*LO) QCD description of color-singlet production at the
exclusive level. Currently, N°LO QCD corrections to the
inclusive cross section [23-27], as well as to the Higgs
rapidity distribution in Higgs boson production in gluon
fusion are available [28], see also [29]. An extension of
N3LO computations to Drell-Yan-like processes, account-
ing for decays of Z and W bosons to leptons, is very
desirable.

Recently, we have computed loop and phase-space inte-
grals relevant for the so-called triple-real and double-real
single-virtual contributions to the quark-to-quark O-jettiness
matching coefficient, focusing on gluonic final states
[30,31]. When combined with the computation of the
single-real double-virtual splitting function ¢* — gqg
described in Ref. [32], all ingredients required to obtain
the N3LO QCD contribution to the quark-to-quark matching
coefficient Z ,, through leading color become available. In
addition, the results reported in [30,31] allow us to compute
all N°LO contributions that scale as NN ; and N N7, where
N is the number of massless quarks in the theory.

The goal of this paper is to present the N3LO
contribution to the quark matching coefficient in the
approximation N.~ N;> 1, keeping only leading
O(a}N7, 3NNz, aiN7N,) terms. We will refer to it as
the generalized large-N . or leading-color approximation.

We note that our computation of the matching coefficient
7, is restricted to generalized leading-color approximation
since, so far, we have not computed all the required
contributions of final states with additional quark pairs
that are relevant beyond the generalized large-N, limit. In
principle, the required computations are similar to what has
already been done in Refs. [30,31] but, due to proliferation
of integrals required for multiquark final states, the calcu-
lations have not been finalized.

Nevertheless, we believe that the generalized large-N,
N3LO contribution to the quark-to-quark matching coeffi-
cient is an interesting intermediate result since, at variance
with our previous publications [30,31], it explicitly demon-
strates how different pieces combine to produce a well-
defined physical quantity at next-to-next-to-next-to-leading
order in perturbative QCD. It also shows that such high-order
computations, in spite of their significant complexity, appear
to be doable with current computational technologies.

The rest of the paper is organized as follows. In Sec. II we
describe how the computation of the perturbative matching
coefficient is set up. In Sec. III we discuss how the various
required ingredients are obtained. We present the result for
the matching coefficient in the generalized large-N,
approximation in Sec. IV and conclude in Sec. V. A number
of useful formulas can be found in the Appendix.

II. PERTURBATIVE MATCHING COEFFICIENT

In this section we explain how the perturbative
matching coefficient is computed. The starting point is

the relation between beam functions and parton distribution
functions

Bi(t,z,u) = ZIik(LZvﬂ)§J~€k(Z’ﬂ)’ (3)
k
where the sign @, stands for the convolution'

F@)®(2) = /0 o f(2)9(2)5( — 21z). (4)

Z

The proportionality coefficients between the beam func-
tions and the parton distribution functions, Z;.(z,z, ) in
Eq. (3), are the matching coefficients. The sum in Eq. (3)
runs over all species of partons that are found in the proton
for a particular value of the factorization scale p. The
parameter ¢ is the so-called transverse virtuality, which is
related to the O-jettiness variable 7 in Eq. (2) and will be
defined below in Eq. (14).

For \/t > Aqcp, the matching coefficient Z;; can be
calculated in perturbative QCD. To this end, we replace the
nonperturbative parton distributions with their perturbative
counterparts, calculate the partonic beam function and
extract the matching coefficient by comparing the two
sides of Eq. (3). Similar to parton distribution functions,
this can be done for any combination of an incoming parton
j and the parton i that eventually goes into the hard
scattering. We therefore write

Bi(t.zp)= > Tult.2.)®f (). (5)

ke{q.q.9}

In contrast to Eq. (3), all quantities in Eq. (5) admit an
expansion in the strong coupling constant ;. Writing

fij= Z (Z_;r) ”fg;,)’ (6)

)
ij
5,;6(1)3(1~z), T0) =5,,6(1)5(1~z) and 1) =5,,6(1~z),
we solve Eq. (5) to express the matching coefficients
through the partonic beam function. We find

and defining the leading-order quantities through B

'We have used the program MT [33] to compute the z-
convolutions required for the matching coefficient computation.
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Perturbative parton distribution functions in various
orders in @, are obtained as iterative solutions of the
Altarelli-Parisi equation

d S
MZdlefij(Z) = ;_zk:Pik(Z)?fkj(z)v (8)

with the boundary condition given above. We note that
since in Eq. (3) the parton distribution functions are the MS
ones, the perturbative parton distribution functions that we
need can only contain poles in the dimensional regulari-

zation parameter e. Explicit results for f E},2,3)
the splitting functions P;; are given in the Appendix.

Equation (7) allows us to iteratively compute the
matching coefficients once the perturbative beam functions
become available. However, a beam function computed
directly from the quasicollinear limits of the relevant
scattering amplitudes is what one refers to as a bare beam
function, because it contains both soft and collinear
divergences. Soft and soft-collinear divergences must be
removed by a dedicated MS-subtraction that, schematically,
is given by the following formula [1]

in terms of

Byj(1.2) = Zi(t, ) @By (1. 2, ). ©)

In Eq. (9) the convolution with respect to ¢ is defined by the
equation

10®9(0) = [ dndsf(t)g()o =1~ ). (10)

To compute the quark-to-quark matching coefficient, we
require the renormalization constant Z,. Similar to other
renormalization constants, Zq satisfies a renormalization
group equation [1]

d
/,{@Zq(l‘,//l) = _Zq(tvﬂ)qu(t’:u)’ (11)

where the anomalous dimension reads

t
ralt) =300 = Mol 5). (1)

The anomalous dimensions qug and F?usp are known through
O(a}) [2,34-36]. Here, Ly(t/pu?) is the modified plus-
distribution Ly(7/p*) = u=2[u?/1],. with the (regularized)
singularity at #/u*> = O rather than at /> = 1. In practice,
we construct the renormalization constant Z, in the MS-
scheme from Eq. (11) by expanding the various quantities
in the strong coupling constant, see e.g., Eq. (A7), and
inserting an ansatz for Z, in terms of f-distributions. The
ansatz is constructed following an observation that Z, must
have the same r-dependence as the bare beam function in
order to cancel the soft and soft-collinear divergences.
We then use Eq. (9) to obtain the renormalized partonic
beam function from the bare one. Finally, we employ
Eq. (7) to derive the desired matching coefficient. Explicit
formulas for various steps described above are given in the
Appendix.

We note that since the partonic PDFs are singular in the

€ — 0 limit, fl(-f) ~ 7", it follows from Eq. (7) that the

l(jl %) need to be known to higher

powers in the dimensional regularization parameter €. The
relevant computation was performed in Ref. [37] and we
borrow the results from there.

It remains to discuss the computation of the bare beam
function. We do that in the next section.

matching coefficients 7

III. COMPUTATION OF THE BARE 0-JETTINESS
QUARK BEAM FUNCTION

It is clear that the major challenge for computing
matching coefficients through third order in perturbative
QCD is the calculation of the bare beam functions. We
can obtain the bare quark beam function from any
physical process that features a quark in the initial state,
by extracting the leading collinear-enhanced contributions.
Since leading collinear singularities factorize into
products of universal splitting functions and hard matrix
elements, one can organize the calculation in a process-
independent way.

Indeed, in physical gauges, collinear splitting functions
can be obtained by considering QCD radiation off a single
external line [38], for example the incoming quark line in
our case. It is important that the emissions, both real and
virtual, that originate from any other incoming lines, do not
contribute to leading collinear singularities and, for this
reason, can be ignored. The splitting functions so obtained
must be integrated over the particular phase space for real
emission(s) that is constrained in such a way as to keep the
momentum fraction z and the transverse virtuality ¢ of the
incoming quark that goes into the hard scattering process
fixed [39].

The bare quark beam function at N°LO is then computed
by adding such collinear-enhanced contributions with up to
three real partons in the final state, with the number of
virtual loops required to provide the O(a?) correction to the

114034-3



ARND BEHRING et al.

PHYS. REV. D 100, 114034 (2019)

leading-order transition ¢ — ¢. Hence, we need to consider
a tree-level contribution where a quark splits into a virtual
quark that goes into a hard process and three real partons, a
one-loop correction to a process where a quark splits into a
virtual quark and two real partons and a two-loop correc-
tion to the ¢ — ¢* + g splitting.

Since in this paper we focus on the generalized large-N
contribution to the quark beam function, where the number of
colors and the number of flavors are taken to be large
N.~ Ny > 1, it is sufficient to consider gluons in the final
state as well as quarks that exclusively originate from a final-
state gluon splitting. Other final states are subleading in the
generalized large-N,. approximation. Figure 1 illustrates
which types of quark-antiquark final states have been included
and which types have been excluded from our calculation.

We schematically write the O(a?) contribution to the
bare beam function of a quark in the following way

b,(3)

B — Bb (R3V0)

b.(R2V1)

+Bb b.(R1V2)

+Bgg 7, (13)

where the label RngVny refers to processes with ny real
partons and ny virtual loops. The quantities B)~"*""" read

b,RngxVn 1
BOF Y (1, 2) ~ /Hdk <2p-knR—E>

x5<2p’sk"'e-(1—z)>

x P ™) (p, b, {k:}), (14)

FIG. 1. Top: example of a triple-real emission amplitude with a
quark-antiquark pair in the final state which contributes to the
bare beam function in the leading-color approximation and
therefore has been included in our computation. Bottom: example
of a similar amplitude which is subleading in N and therefore is
not included in our computation. The box labeled H denotes the
hard scattering process.

where p is the four-momentum of the incoming parton, p is
the complementary collinear direction, s = 2p - p, [dk;] =
d¥k;/ ((27z)d‘12kl(-0)) is a single-parton phase-space
element, k, = >_'%, k; and P&mYmY) denotes the ny-loop
contribution to the collinear splitting functions that
describes the ¢ — ¢*+ g, +---+g,, process or, if
ng>2, the g — ¢ +q +q +g3+---+g,, process.
We note that the functions By "*""™ (¢, z) scale uniformly
with the transverse virtuality, i.e.,

By """ (12) ~ 1B (@), (15)

This observation will be important for the discussion below
where we describe the computation of the double-virtual
single-real contribution BX'"2,

The calculation of the triple-real and double-real single-
virtual contributions BZ’qRSVO and 32§2V1 was discussed in
Refs. [30,31], respectively. We will briefly summarize these
discussions here.

Although, as we already said, the collinear splitting
functions in Eq. (14) are universal objects, they are not
available in closed form beyond NNLO. Since, as shown in
Eq. (14), our goal is not only to construct the splitting
functions, but also to integrate them over the real-emission
phase space, it is important to have an algorithm that allows
us to perform both of these tasks in a concerted way. We
achieve this by following the procedure outlined in
Ref. [38] that describes how to extract splitting functions
by considering emissions off a single external line and by
employing relevant projection operators. An important
ingredient in this construction is the use of physical gauges
for both virtual and real gluons that, unfortunately, com-
plicates the computations significantly. In Ref. [38] this
procedure was used to explicitly construct all tree-level
splitting functions at NNLO in QCD. Here, we just use this
procedure to find a suitable expression for the collinear
splitting functions PX"*"")(p p {k;}) that may involve
unintegrated momenta of both real and virtual gluons. Once

such a representation for PA"®"") (p. p. {k;}) is available,
we apply reverse unitarity [40] to map phase-space inte-
grals onto loop integrals. We then use integration-by-parts
technology [41,42] to express each particular contribution
to Bgzre in terms of master integrals and to derive the
differential equations that these integrals satisfy [43—46].

A detailed discussion of how the master integrals are
computed from the relevant differential equations can be
found in Refs. [30,31]. Here, we just note that the use of
physical gauges makes their computation much more
difficult, in that it introduces additional propagatorlike
structures that arise from polarization sums of real and
virtual gluons. Unfortunately, this leads to a proliferation of
integrals that need to be calculated. Another interesting
point is that the master integrals, that describe triple-real
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emissions, are initially written as linear combinations of
generalized polylogarithms of a complex-valued variable

:—1+ +- \/ —2), (16)

which arises during the rationalization of the differential
equations, see Ref. [31]. Curiously, as we will see from the
final result, the dependence on x disappears once the
complete triple-real emission contribution to the beam
function is constructed.

In principle, one can compute the Bb RIV2 contribution to
the beam function using a similar approach. This would
require the calculation of the two-loop correction to the
process ¢ — ¢* + ¢ in a physical gauge; such computation
is, currently, not available. Fortunately, there is a way
out. The contribution we are interested in can be extracted
from the two-loop amplitude of the process ¢(p)g(p) —
V + g(k) in the limit when the gluon is emitted along the
direction of the incoming quark ¢. To see this, consider the
Mandelstam variables T = (p — k;)?, U = (p — k;)? and
S =2p - p that are needed to describe this process. Then,
from the phase-space constraints in Eq. (14), we find
T = —t/z, U= —s(1 —z). Therefore, we can obtain the
required splitting function by studying the 7 — 0 limit of
the NNLO QCD contribution to the amplitude squared for
the process ¢(p)g(p) — V + g(k;), and by extracting the
contribution with the appropriate 7-'~2¢ scaling.® The
calculation of the 0 — ggVg scattering amplitude in

the 7 — 0 limit is available [32], so that the splitting

function Pg;lvz) can be extracted from that reference. An

analytic continuation is required to obtain the initial-state
splitting function from the final-state one; this can be done
following the discussion in Ref. [32]. For the correct
regularization of the soft limit z — 1 it is important to
keep also factors of (1 —z)™% unexpanded in e, which
fortunately is the case in that reference. Finally, we note
that the remaining integration over the single-gluon phase
space is straightforward since the phase-space constraints
restrict the gluon kinematics to a point that, in fact, no
nontrivial integration is needed. The integration over the
singular limits of the single-real emission phase space
introduces up to two additional powers of ¢! so that, in
order to correctly obtain the €’ term of the bare beam
function, the first six orders of the expansion in € of the
splitting function have to be known. Reference [32] con-
tains the first five orders of the splitting function, but the
sixth order is only necessary for the soft limit z — 1, so that

2According to Eq. (15), the N3LO contributions to the beam
functions scale as t~!73¢. In case of the double-virtual single-real
term BYX'V2, this scaling is obtained from the r~'~2¢ scaling of the
virtual amplitude squared and the ¢ scaling of the single-gluon
phase space.

it can be reconstructed from the soft current calculated in
Ref. [47], see Ref. [32] for more details.

In addition to the two-loop virtual corrections to the ¢ —
q* + g process, the square of the one-loop correction to the
single-gluon emission process has to be included into the
calculation of BjX'V2, We obtained this contribution by
adapting the computation of the NNLO QCD bare beam
function to higher orders in dimensional regularization
parameter e, as reported in Ref. [37].

IV. RESULT FOR THE
MATCHING COEFFICIENT

We are now in a position to present the N’LO contri-
bution to the quark matching coefficient in the generalized
large-N . approximation. To this end, we write the O(a?)
contribution to the matching coefficient, as defined in
Eq. (6), in the following way

- (g

where L (t/p?) = 1/p*[In*(t/u?)/(t/u?)] . Furthermore,
it is useful to isolate the so-called soft contributions in

V() +8(nF (). (17)

F ((5"> (z). These contributions contain 5(1 — z) and the plus-
distributions Dy (z) = [In*(1 — z)/(1 — z)]..; all other terms

in F ((5") (z) are referred to as “hard”. We therefore write

2n—1
F'(z) = CUa(1-2) + Y C"Dy(z) + FS(z).  (18)

As we already mentioned, the NLO and NNLO contribu-
tions to the matching coefficient Ifllq)’(z) are fully known
[20,22]. Recently, in Ref. [9], it was shown how to extract the

soft contributions to N®LO matching coefficient described

by the constants CE{S), k= —1,...,5 from known results in
the literature [8,28,48-51]. Also, by using the renormaliza-
tion group equations for the matching coefficient, all

functions Ff’” (z) were calculated in that reference.
These results, especially the ones for the soft constants,
provide an important check on the correctness of our
computation. Indeed, we have verified that our results

reproduce the constants C,(f), k=-1,...,5 and the func-

tions F <3’k)( ) reported in Ref. [9] in the limit N, ~ N > 1.

The new result of this paper is the contribution of hard
collinear gluons to the function Fj () (z) in the generalized
large-N, limit. The result turns out to be remarkably
simple. It is expressed in terms of harmonic polylogarithms
of the variable z of up to weight five. To present the result in
a compact form, we use a notation for harmonic poly-
logarithms (HPLs) introduced in Ref. [52] and extended in
Ref. [53]. To this end, we explicitly list the rightmost zeros
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of an HPL index but, starting from the first nonvanishing
entry, we do not display trailing zeros in an index anymore.
Instead, we add one to the absolute value of the index entry
per trailing zero and continue doing so until the next
nonzero entry is reached. For example, in the formulas
below, H,;o means H(1,0,1,1,0,z) whereas H,; is
H(0,0,0,1,1,z) etc. Armed with this understanding, we

present the result for the hard contribution to 7. ,(13q)(t, z) in

the generalized large-N, approximation. To this end, we
write

F§) = N3N T3F| + N N2TpF, + N3F;,  (19)
where Tr = 1/2. We note that all other contributions are
subleading either in N, or in N, and are thus neglected. The

three functions read

64 32 16
Fl(Z) :—9(1572_41) +ﬁ(llz_ I)Hl +—(4Z+ I)Hl,l +?(Z+ 1>H1,l,1 —E(Z‘F l)ﬂzHl

32 80
72 27
1 32 1
=22 (4922 - 327+ 34)H, | +—— |2
+1—z 81(9z 32z +34) 0]+1_Z{

81
64

32
27

16 16
——(133z2 =60z + 97)Hy +ﬁﬂ2(1612 -9z + 3)} +— {——(z2 +

64
(16Z2 - 9Z + 13>H2 - ﬁ<4zz - 3Z + 4)H1’0

1 32 64
1)H; _3(12 +1)H;,

1-z2 3

32 32 32 368
—5(12 +1)H; —5(12 +1)H, —3(12 +1)H 1 —5(22 + 1)H, 09— == (2> + 1)Hg 0

27

16 64
+5 (D2 Hy + - (22 +2)85 (20)
9 27
Fy(z) = ! (96373 — 401039z) + ! (2075 —214337)H 2 (1301z + 215)H 8(67 +37)H
2% - 2916 . 162 < 27 2 L1779 < LL1
—@( +1)H +L L(33155 2 — 25816z +27301)H,
3 z LLLL T 77 1762 Z z 0
1 2 5 2 5
+ T2 |51 (6683z% — 42547 + 5375)H, + 31 (3845z% — 3048z +3917)H
-z
o, 5 1 [4 ) 4 )
+ 27,3” (—6389z% + 3606z — 307)| + T—:1lo (273z* =73z +209)H; + ) (206z* — 83z + 185)H, ;
—z ,
4 2 4 2 4 2
+ ﬁ(SZIz — 168z +461)H, + 5(1571 —63z+ 164)H,, + 9 (1172 =49z + 110)H 1
8 2
+5 (176z> — 54z + 185)H o + > (14772% = 249z + 922)Hy ¢
1 2 4
+55 (—38772 + 162z + 65)n*H; — > (31922 — 94z + 234)2H,) — 5 (22572 — 767 — 108){;3
1 [2 5 8 5 8 5
+ T— 1o (319z° + 12z + 193)H, + 5(241 + 17)H; +§ (622" — 3z +38)H3;
4 2 4 2 4 2 8 2
+ g (312 + 2Z + 27)H22 + § (91Z + 73)H2’1.1 + 6 (79Z - 6Z + 55)H2,1.0 + § (292 + 20)H2'0’0
356 344 248 232
+T(Zz +1)H, 3 +T(z2 +1)H, +7(z2 +1)H; 50 +7(Zz +1)H, 1,
64 116 172 2
+ ?(Zz +1)H 10+ T(Zz +1)H, 100 + T(Zz +1)H, 000 + ) (2012% + 19)H 000
2 2 244
- 5 (41Z2 + 2Z + 37)7[2H2 — E (79Z2 - 59)7Z2H1’1 - 7 (Z2 + l)ﬂzHlyo
2 4 2
~ 57 (188z2 + 67 + 125)712H0,0 ) (7lz2 —47)(3H, — 5 (223z2 — 367+ 109)3H,
1 1 2
— (3912 - 42 22)7* —— (845673 — 1295372 + 10077z — 5634)H, |, 21
+405( z 7+ )ﬂ}+(1_1)2[ 81( J4 =+ z JHo 0 (21)
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and

1 35 181 1
F3(2) = g7 (7155652 197242) + <o (6982 = 69)H) + = (312 + 1)H 1 + 5 (14032 + 662)H 1

2916
+ g (32Z + 23)H1’1_1’1 + 60(2 + )H] 1L,1,1,1 + |:648 ( 217440Z + 1910222 - 186085)H0
1 1 1
b | —— (5217422 + 38784z — 38101)H, + — (=32914z% + 294157 — 33625)H
1—-z]|162 162 '

1 1 1
——(508487> — 347347 — 1747 —— |- (—4800z% + 1759z — 3599)H
+972( 4 2 ) }—’_l—z[lS( 7+ z )H;

1
+ g (738432 + 20247 — 3645)H, + Q (—835722 + 3903z — 8099)H,

1 2
g (170427 7957~ 1793)H, 5 — 5 (55422 = 277 + 541)H 19

!
54

1
+108 (444272 — 2067z — 243)n°H, + 1— (613922 — 23567 + 4431)7*H,

13
(=703322 4 2574z — T429)H, 0 — —7 (40722 — 962 + 185)Hy 0.0

1 (1
o (158982 —53137,—10099)53] —[18( ~365322 + 726z — 1559)H,

1
(=5727%> + 186z — 327)H;; + 5 —(—1388z2 + 477z — 656)H3

wll\)uu»—n ul —

1
(1942% = 352 + 132)Hy 5 + 5 (- 11632 +324z—803)H211+9( —94122 + 270z — 548)H,

| -

( 1369Z + 270Z - 679)H200 + 192522 - 36Z - 1757)H1’3

18(
5 8
1015Z + 294Z - 1027)H| 21— §(143Z - 24Z + 143)H1 20— § (91Z - 9Z + 82)H1 1.2

AOO

1 1
(99Z —29Z+97)H1]10+18( 749Z +122—629)H1100+ ( 9372 —4322—793)H1000

_‘W|N©|>—>—

1 1
+ 15 (=21662% + 351z + 43)H 000 + m (53127 — 121z + 383)7°H, + 5 (511z% =72z — 284)7°H | |

1 1
+ ﬁ (27232 ~ 4322 + 2555)2°H 1  + 155 (447827 — 9602 +2195)2° Hy,

1
+35 L 09722 — 1802 — 769)2,H, + 5 (16902% — 4892 +745)(3 Hy + 2525 (=92772 + 63187 — 2287)x*

3240

1 1 1 2 4
+ =0 (=177 = 23)Hs + 3 (=387 —157)H, ; — 3 (1472 +59)Hy o — 3 (772> + 38)H3,

4 4 1
—2(5522 +31)H; ., - 3 (652° +36)H3,1 0 — 3 (492% +26)H3 0 + 3 (=2352% = 161)H) 3

2 8
- § (14922 + 101)H2’2.1 - 5(2722 + 19)H2’2‘0 - 2(4122 + 29)H2‘1’2 - 12(722 + 5)H2,1,1,1

2 1 226
~3 (10322 +73)Hy 110 + g(—14312 — 101)Hy 1 o0 + (=292% = 27)Hy 9 — = (224 1)H, 4
220
—104(z* 4+ 1)H 5, — 86(z* + 1)H; 509 — 3 (224 1)H 5, —78(z* + 1)H 5

160 230
—64(z% + 1)H 210 —46(2* + 1)H 200 —T(Z +1)H, 3 —T(Z +1)H, 154
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160
—56(z* 4+ 1)H| 120 —T(Z +1)H; 12—

1
—10(z2 4+ 1)H{ 1 000 — 36(z* + 1)H} 0000 + 5 5

( 812 —23)H00000 +

86

52(z + 1)H 1110 —?(Zz +1)H 1100

1 2 4
260 (782727 — 81)z*H,

1 1
+——(=12967> — 785)x 4H0+9(101z +50)7 2H3+3(58z +41)x 2Hz,l+§(161z2+97);r2H2,0

540
152

9

(323 —36322)

128 259
+—o(Z+ Dz 2H12+ (1192 - 115)x 2H111+T(Z + D)a*Hy 0+~ (&2 + 1)a*Hy

18

1 178
(972° +5)m*Hop0 + 5 3 (2692° + 179)C3H, + 2(372> = 45)C3H, ) + T(Zz +1)83H o
(2872% + 545)

O\Ir—* O\\P—‘

(40922 +47)¢3H o + 13

+# !
(1-2z)* 324

We note that the NLO, NNLO and N3LO contributions
to the matching coefficient Z ,, can be found in Ref. [54]. In

addition to the functions F(123)(z), also the functions

Fgf’m(z) and constants C,(f) can be found there, in a
computer-readable form.

V. CONCLUSIONS

In this paper, we presented the NLO matching coef-
ficient for the O-jettiness quark beam function in the large-
N large-N; approximation. We have compared our results
for the matching coefficient Z,, with the results in the
literature [9] and found perfect agreement for all terms that
are available. The new result of this paper is the hard
contribution to the matching coefficient Z,, given in
Egs. (20)—(22). The full matching coefficient with soft
terms and 7-dependent plus-distributions can be found in an
ancillary file provided with this article.

Although our large-N . large-N result is, perhaps, not
quite suitable for phenomenology per se, we believe it is an
important milestone in the computation of beam functions
through N°LO QCD. Indeed, it clearly shows that compu-
tations of complete matching coefficients for quark and
gluon beam functions at N3LO are within reach. In fact,
although only planar Feynman diagrams are needed for
computations in the large-N . limit, we already have all the
ingredients for gluonic final states to go beyond this
approximation. We are in the process of computing all
relevant integrals to describe ¢ — ¢* + qg(+g) transitions;
once these integrals are obtained, going beyond the gener-
alized large-N, approximation will be quite straightforward.
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APPENDIX: RENORMALIZATION

In this Appendix, we present explicit intermediate
formulas required to express the matching coefficient
through the partonic bare beam function.

First, we show how to construct an MS parton distribu-
tion function in perturbation theory. The starting point is the
Altarelli-Parisi equation, Eq. (8), and the perturbative
expansion of the splitting functions

S <;_;>"p§;?>(z).

n=0

Pij(2) (A1)
To construct the parton distribution functions f;;, we
integrate the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
equation using the evolution equation for the strong
coupling constant

) = pla) = ), (A2)
plas) = =Gobo—h + 0@, (A3)

with the boundary condition f l(l(]-))(z) = 6(1 — z) using the
following formulas for the S-functions
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11
3

o 4
473

20
3
We write the result for the partonic PDFs as

1
=P

Po = TrNy,

pr="C-

3 =c,+ 4CF> TpN;.

(A4)

(0)

l]’

s
1

P
2¢

Po
fl] 22§:sz®ij+ P - ij
(0)
o

i_po
1263

ZPlk ®ij)
ZP,k ®ij —|——P

Z ik ®ij

where the dependency of f;;’s and P;;’s on z has been
suppressed.

p0 _ 10

PO (49)

122 Py

Next, we write the relations between bare B®(t,z) and
renormalized beam functions B(7, z, u) at various orders in
a,. Writing the relevant a -expansions

= ag\" b(n

B =) () Bea. )
> A - n

Zi () =) (@) z;'"(w. (A7)
n=0

and using the boundary conditions BE’I.(O) (t.2)=6;;6(1)6(1-2)

and Z;' (t u) = 6(¢) in conjunction with Eq. (9), we
obtain
1 b(1 -101
ng) = Bi]( )+ 5;0(1 = 2)Z; v,
(2 _ pb(2) 1(1) & pb(1) -1(2)
Bij _Bij @B,‘j +5ij5(1_z)zi ’

B =B + 7,V @B
t

DB 1+ 6,601 - 27", (A8)
t

The relevant renormalization coefficients for i = ¢ read

_ 4 (1 4 3
e fus) (s3]
_ 16, 16 12 8 12 1/(9 4z%\ 1/ 3
z;'®=c2 -L N4+ S+ 5 - )+ (-S4 22 -12
"=l () =) (48) r0 (G5 G e ()
f 22 134 2x 111/ 35 722\ 1/ 1769 1z
Lo(— S =+t ) - (- +20
+CACF[ °<M2>< 32 (9 3 >>+ ()(€3+62 18+3> e( 108 18 C*))]
‘ 8 40 4 2 1(/121 27
and
ey s [32 (1 64 48 t £) (32,48, 1 1672
7, = |=E L (=) - (5+= L) + Lo 1
q F[es 2</42 €4+€3 1 > +Lo 12 St= 4 3
1 32 24 1 1622\ 1/ 3 208
— (=3 447> — 48 1 18 + —(-=
62( e CS)) ()< 3 S T < 3 >+e3< 2 3 >
179 1/ 29 , 68 8z* 167%;
+€2<4 3 +36§3>+€( T o T 80Cs
1 176 1 (1072 167> 1\ /220 1/ 136
CiCA L (5 -=5+5 [ —— Lo(5) (S5 4= (-——+4x
et Gp) (e o (55 + () G s (57 +47)
(w15 4 +805)) + 50 4410227 42\ 1 (3853 1927
e\ 271 9 ’ S f\9 3 S\ 54 3
1 /1835 56972 92¢; 4x*\ 1/ 151 205z> 844(, 247x* 8
- - S E LN I - — 27285 — 40
+e2<36 s~ 3 o )te\lTa a7 o 405 o A%
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t 64 320 t
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The NLO and NNLO coefficients agree with Ref. [39].
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