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1. Introduction

With approximately 8 million tons of plastics entering the ocean each year, the necessity for efficient 

waste disposal as well as the development of degradable polymers becomes obvious.1 An impressive 

amount of 359 million tons of plastics are produced worldwide per year. Undoubtedly, the massive 

variety of different types of plastics has provided the basis for today’s high living standard. Plastics have 

both complemented and replaced conventional materials such as wood, wool, or metals. 39.9% of the 

worldwide plastics are used in packaging, followed by the sectors building & construction (19.8%) and 

automotive (9.9%) (Figure 1).2  

Figure 1. European plastics demand in 2018 by segments.2 

Clearly, this amount and variety of polymers has only been enabled by the use and development of 

suitable catalysts. One of the most important milestones in polymerization catalysis is the initial 

discovery of the polymerization of ethylene with a mixture of TiCl4 and AlEt3 by Ziegler and Natta.3 It 

represents the origin of the field of coordinative and stereoselective polymerization catalysis. Referring 

to coordinative polymerizations, the difference in terminology of initiator and catalyst should be 

addressed shortly. In general, every polymerization reaction is catalytic since certain equivalents of the 

monomer are built up to polymer chains by one initiating molecule. In metal-catalyzed polymerizations, 

the definition is broader since a metal complex can both act as an initiator of the reaction and as catalyst 

via (pre-)activating the monomer.4-5 Catalysts help to minimize energy costs, facilitate the formation of 

the desired product and make novel types of polymers possible, anyway.  

One group of polymers that increasingly gains attention are biopolymers. In the context of bioplastics, 

it must be differentiated between the bio-based and the biodegradable character of a material. A polymer 
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is considered to be biodegradable if it decomposes into water, carbon dioxide and biomass upon 

exposure to suitable environmental conditions. In contrast, a material can have a bio-based origin but is 

not necessarily biodegradable.6 In 2019, 1% of the total plastics production is ascribed to bioplastics 

(bio-based and biodegradable combined). Within the class of biodegradable plastics, the most important 

polymers are starch blends (21%), poly(lactide) (PLA) (14%), and poly(butylene adipate terephthalate) 

(PBAT), commercialized under Ecoflex® (13%, Figure 2). Despite their non-biodegradable nature, the 

production of bio-based polymers is continuously increasing as well. Bio-based polypropylene (PP), for 

instance, entered the market on a commercial scale in 2019 and its production is predicted to sextuple 

by 2024.7 Most of these bioplastics are designed for an application as commodity polymers, mainly 

packaging. Although commodity polymers are not regarded as high-performance polymers, they must 

meet high demands with regard to thermal and mechanical performance.  

Figure 2. Global production of bioplastics in 2019 by material type.7 

A different approach to render chemical syntheses sustainable is the utilization of carbon dioxide as a 

C-1 feedstock. CO2 is a nontoxic, abundantly available and nonflammable feedstock which, on the 

downside, is thermodynamically stable with a Gibbs free energy ΔGf = -394 kJ/mol . To overcome this 

high energy barrier, highly reactive reagents for a possible coupling with CO2 have been explored. The 

utilization of CO2 is already industrially implemented in various processes such as the synthesis of urea 

(146 mt/a), methanol (6 mt/a), salicylic acid (60 kt/a), and cyclic carbonates (40 kt/a). Altogether, these 

reactions only contribute to a conversion of 1% of the total amount of anthropogenic CO2 emission.8-9 

Another encouraging strategy to incorporate carbon dioxide is the coupling of epoxides and CO2 to form 

polycarbonates (Scheme 1).  



Introduction 

3 

Scheme 1. Alternating ring-opening copolymerization (ROCOP) of epoxides and CO2 to polycarbonates and the 

two possible byproducts, cyclic carbonate, and polyether 

CO2-based polycarbonates can generally serve as a valuable feedstock depending on their molecular 

weight. Low molecular weight (MW) polycarbonates in a polyol structure are interesting building blocks 

for polyurethane production whereas the high MW polycarbonates find application as rigid plastics. 

Like most coordinative polymerizations, also the epoxide/CO2 copolymerization is subject to various 

factors and influences. The increasing viscosity of the reaction mixture during polymerization limits 

monomer diffusion and therefore hampers high monomer conversions. Addressing this by diluting the 

polymerization ensures a lowered viscosity but also lets the activities often drop due to a decreasing 

monomer concentration and a spatial separation of active catalyst molecules. The second concern that 

must be considered are side- and chain-transfer reactions (also illustrated in Scheme 1). The consecutive 

insertion of epoxides leads to polyether linkages while a nucleophilic backbiting reaction gives cyclic 

carbonates. Moreover, protic impurities affect a dissociation of the growing polymer chain and the 

catalytic center and produce polymers in reduced molecular weight. All these issues can be met by a 

judicious choice of catalyst and a wise adjustment of the reaction parameters and enable the synthesis 

of different CO2-based polycarbonates, for which the three most important examples are illustrated in 

Figure 3.  

Figure 3. Chemical structure and appearance of the three most important aliphatic polycarbonates: 

Poly(cyclohexene carbonate) (PCHC), poly(propylene carbonate) (PPC), and poly(limonene carbonate) (PLC). 

Poly(propylene carbonate) is regarded as biodegradable and is very promising for large scale 

productions because propylene oxide (PO) is industrially abundant, and the CO2 content of the polymer 

is high (43wt%). Poly(limonene carbonate) is a bio-based material since limonene can be gained from 
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the peel of oranges and is polymerized upon epoxidation with CO2. Different companies continuously 

work on the industrialization of processes to produce CO2-based polymers. Novomer, to only name one 

example, established a 7 kt/a production of poly(propylene carbonate) in 2013.10 Also, Covestro is 

running a pilot-scale production of poly(ether carbonates). The CO2-content in the final polyol, which 

is used for the production of polyurethane foams, can be selectively adjusted and reduces the use of 

fossil fuels by 20%.11-12 
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2. Copolymerization of Epoxides and CO2 to Aliphatic Poly-

carbonates

Aliphatic polycarbonates derived from epoxides and CO2 are often considered to be a possible 

alternative to bisphenol-A polycarbonate (BPA-PC). Although this novel class of polymers shows very 

interesting properties such as biodegradability (for PPC), lightness, high transparency as well as UV 

resistance, their large-scale commercialization has not been realized yet. To further shine light on the 

reasons for its limited industrialization, a detailed discussion about the most important properties is 

presented (Table 1). Starting with the thermal properties, the glass transition temperatures (Tg) of the 

polycarbonates listed in Table 1 differ significantly. While BPA-PC shows a high Tg of around 150 °C, 

only the cyclic aliphatic polycarbonates PCHC and PLC display glass transitions higher than 100 °C.13-14 

PPC has a very low Tg which varies from 20 – 40 °C depending on the molecular weight and the amount 

of ether linkages.15 The second key feature in terms of thermal properties is thermal degradation. It has 

been discussed for a long time since an overall lower decomposition has been observed compared to 

BPA-PC. Generally, thermal decomposition can either occur via random chain scission or via chain 

unzipping (a nucleophile is located at the polymer chain end and causes backbiting to cyclic carbonates). 

Due the very low activation energy for the cyclic carbonate in case of PPC, the thermal stability of the 

polymer is a big issue. Approaches to suppress backbiting mainly focus on end-capping the polymer 

with functional groups which are less prone to promote the cyclic propylene carbonate (cPC) 

formation.16 

Table 1. Comparison of the thermal and mechanical data of BPA-PC with three aliphatic polycarbonates 

The widespread commercialization of BPA-PC is mainly based on its high impact resistance, the glass-

like transparency, a good heat resistance as well as an easy processability. PCHC for example has a 

promising Tg of 115 °C but lacks a sufficient mechanical performance. The low elongation at break of 

approximately 1-2% renders this material very brittle. In contrast, the weak chain interactions of PPC 

cause a low Tg which makes the polymer very soft. Also, the mechanical data strongly depend on the 

molecular weight, the microstructure and traces of cyclic carbonate. It behaves as a rather brittle material 

polycarbonate 
Tg 

[°C] 
Tmax 
[°C] 

Young 
modulus 
[MPa] 

tensile strength 
[MPa] 

elongation at 
break [%] 

BPA-PC13,17 149 365 2400 ± 400 47 ± 4 40 ± 35 

PCHC13,18 115 240 3600 ± 100 43 ± 2 1.7 ± 0.6 

PPC15,19 40 180 831 ± 23 22 ± 2 330 ± 9 

PLC14 130 265 950 55 15 
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below 15 °C but loses strength above 40 °C, too.20 Terpolymerization of cyclohexene oxide (CHO), PO, 

and CO2 is a valuable tool to overcome these adverse properties. Lee et al. used a Co(III) salen complex 

and could tune the glass transition for the terpolymer between 52 °C and 93 °C depending on the 

monomer feed.21 Although the Young modulus of the terpolymer was reduced compared to pure PCHC, 

the elongation at break, however, remained very low.22 Poly(limonene carbonate) recently gained a lot 

of attention after its comprehensive characterization by Greiner and Rieger. A 94% transmission was 

found besides a Tg of 130 °C and promising mechanical data (Young modulus: 950 MPa; elongation at 

break: 15%).14 The glass transition temperature of limonene oxide (LO) based copolymers was increased 

even further by the synthesis of poly(limonene dicarbonate) (Tg = 146 – 180 °C). This was achieved via 

two different routes. Kleij et al. has chosen the way to copolymerize LO and CO2 first and selectively 

oxidize the double bond prior to the formation of the cyclic carbonate with CO2 and 

bis(triphenylphosphin)iminiumchlorid (PPNCl) as a chloride-assisted carboxylation agent.23 Koning 

and coworkers decided to start with limonene dioxide, performed the ROCOP with the help of a 

β-diiminate (BDI) zinc catalyst to poly(limonene-8,9-oxide carbonate) which served as an interesting 

platform for the synthesis of the respective dicarbonate or thiol- and dicarboxylate modified polymers.24 

2.1 Monomer Synthesis 

Among the three introduced epoxides, propylene oxide is by far the most abundant one with a production 

of 7.5 million t/a.25 In the early days, PO was produced through the so called hydrochlorination route. It 

proceeds via the conversion of propylene to propylene chlorohydrin. The latter is then dehydro-

chlorinated to get propylene oxide. For one ton PO, it requires 1.4 t tons of chlorine and 40 t wastewater 

are produced. Later, the styrene oxide/PO route has been established. Ethyl benzene was converted to 

ethylbenzene hydroperoxide which, upon oxidation of propylene, was converted to 1-phenylethanol, a 

useful precursor for the synthesis of styrene. But still, 2.3 t styrene as a byproduct were produced per 

ton PO along with 1.6 t wastewater. By far the most environmentally friendly synthesis is the hydrogen 

peroxide to propylene oxide (HPPO) process. A titanium-doped silicate (TS-1) serves as the active 

catalyst for the direct synthesis of propylene oxide from propylene with H2O2 and water as the only 

byproducts (Scheme  2a). An energy reduction by 35% compared to the other routes is one of the many 

reasons why it has been industrially realized so rapidly.25-26 Cyclohexene oxide often serves as a bench-

mark in ROCOP research but is industrially less relevant than PO. It can be epoxidized with peracids, 

e.g. peroxypropionic acid, in chloroform with a sodium acetate buffer (Scheme 2b).27 Other approaches 

have been reported, such as the direct epoxidation with manganese porphyrins in the presence of 

molecular oxygen.28 (R)-limonene is extracted from the peel of citrus fruits on a 70 kt/a scale. Most 

processes that directly epoxidize (R)-limonene yield a mixture of cis- and trans-(R)-limonene oxide. 

Due to the fact, that most homogeneous catalysts can only polymerize the trans-stereoisomer so far, a 



Copolymerization of Epoxides and CO2 to Aliphatic Polycarbonates 

7 

stereoselective route has been established (Scheme 2c). The conversion of limonene is performed with 

N-bromosuccinimide (NBS) to the endo-cyclic bromohydrin which is readily converted to the epoxide.14 

Scheme 2. Preparation of the epoxide, propylene oxide (a), cyclohexene oxide (b), and limonene oxide (c) 

2.2 Development of Hetero- and Homogeneous Catalytic Systems 

In 1969, Inoue et al. observed the formation of poly(propylene carbonate) by combining diethylzinc, 

water, propylene oxide, and CO2.29-30 Although very low activities were observed, different research 

groups picked up this idea and tried to improve the catalytic performance. The use of Zn(OH)2 and 

various dicarboxylic acids by Soga and coworkers yielded PPC at 60 °C and 30 bar CO2 with a TOF of 

1.1 h-1.31 The cost-effective preparation of the catalyst and the fact that high molecular weight PPC could 

be obtained, classified this approach as an industrially relevant route towards aliphatic polycarbonates. 

In fact, this system is used in the industrial production of PPC since years, although the structural 

elucidation of the zinc glutarate (ZnGA) was incomplete for a long time. Single-crystal diffraction 

studies by Rieger et al. revealed the reason for the higher activity of ZnGA compared to its lower 

homologue containing succinic acid (SA).  

Figure 4. Solid state structure of ZnGA.32 
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Zinc-zinc surface couples (not present in ZnSA) are the prerequisite for activities in the 

copolymerization reaction which runs via a bimetallic mechanism. Within this study an ideal Zn-Zn 

distance of 4.6 – 4.8 Å was reported (Figure 4). Attempts to further increase the catalytic performance 

of the system (ball milling, stirring speed, etc.) did only lead to minor improvements.32-33  

It was again Inoue et al. who presented the first homogeneous catalyst to the ROCOP of an epoxide and 

CO2. A tetraphenylporphyrin ligand bound to an aluminum center yielded PPC in molecular weights of 

3.7 – 27 kg/mol in narrow dispersities.34 Porphyrin-based complexes have been modified regarding the 

metal center (Al, Cr, Co), ligand variations, and the nature of different cocatalysts (PPNCl, 

4-(dimethylamino)-pyridin, Bu4NCl) (Figure 5a).35-36 In the 1990s, a series of zinc phenoxides with the 

general formula (2,6-R2C6H3O)Zn(base)2 was presented by Darensbourg. The effect of ligand 

substitution was investigated and an overall higher activity observed with decreasing substituent size.37-

38 Figure 5 gives an overview of the four most important structures in the field of epoxide/CO2 

polymerization catalysis. The different types of complexes are discussed in the following section. 

Figure 5. Most important catalyst structures in the epoxide/CO2 copolymerization. Metal porphyrins (a), BDI zinc 

complexes (b), metal salen structures and a macrocyclic (c), and a Robson-type complex (d) (X = initiating group). 

A breakthrough in the homogeneous catalysis of epoxides and CO2 was achieved by the group of Coates 

in 1998 which introduced β-diiminate zinc complexes as active catalysts in the ROCOP (Figure 5b).39 

Due to the sterically demanding BDI ligands, bis-ligation is inhibited, and free coordination sites are 

available which are crucial for the catalytic process. In the ROCOP of CHO and CO2, a high ratio of 

carbonate linkages (>95%) in high turn-over frequencies (TOF > 135 h-1) was achieved. From then on, 

β-diiminate ligands were attached to various zinc precursors and structural modifications at the ligand 

structure were found to significantly influence the catalytic activity. Methyl-substituted BDI complexes 

are inactive in the copolymerization whereas the ethyl (Et) and isopropyl (iPr) analogs show very high 

activities (TOF up to 431 h-1). The reason for this reactivity could be found in the monomer-dimer 

equilibrium. BDI complexes preferentially exist as dimers in the solid state. In solution, this equilibrium 

highly depends on steric and electronic factors of the ligand as well as on temperature and concentration. 

High activities in the ROCOP are reached with weakly linked dimers in a favorable Zn-Zn distance. 
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Methyl substituted BDI complex, for instance, form a strong linkage and are therefore inactive in the 

copolymerization. Synthetic modifications at the pentane backbone with electron-withdrawing 

substituents such as cyano and trifluoromethyl groups further enhanced the activity of the complexes 

(TOF = 917 h-1).40  

Another important class of catalysts are metal salens (Figure 5c).41 It is the most investigated system in 

the copolymerization of epoxides and CO2 with a N,N,O,O-tetradentate ligand structure. They overall 

suffer from lower activities in case of PO (TOF = 70 h-1) compared to BDI complexes (TOF = 235 h-1), 

but are able to introduce regioselectivity along with high polycarbonate selectivities (>99%).42-43 On the 

downside, these complexes require the use of a cocatalyst and often contain chromium, a very toxic 

metal. Later, reports concentrated more on the use of cobalt as central metal. Moreover, binary catalysts 

were synthesized where a quaternary ammonium moiety is linked to the salen structure. This hinders 

the backbiting reaction to the cyclic propylene carbonate and enabled the highest TOF for PO/CO2 

copolymerization of 26,000 h-1.44 

The concept of flexibly linking two BDI complexes was taken up by Rieger and coworkers. They 

reported a flexibly tethered dinuclear zinc complex with unprecedented high activity for the ROCOP of 

CHO and CO2 (Figure 6). The two zinc centers seem to have the perfect distance during the CHO/CO2 

coupling which enabled very high TOFs of 23,000 – 155,000 h-1 (depending in the substituents at the 

pentane backbone). 

Figure 6. Structure of the flexibly bridged, dinuclear zinc complexes 1 and 2.

Kinetic studies with mononuclear BDI complexes revealed the ring-opening of the epoxide to be the 

rate-determining step and therefore the epoxide has a reaction order of 1. The same kinetic investigations 

were performed with the dinuclear complex 1 using in situ infrared (IR) spectroscopy. At high carbon 

dioxide pressures (25 – 45 bar), the reaction orders are similar to those obtained for the mononuclear 

complex. But, interestingly, upon reducing the CO2 pressure (5 – 25 bar) the orders with respect to CHO 

and CO2 change, and CO2 becomes rate-determining.  

r = k [CHO]0[CO2]1[cat]1 5 – 25 bar 

r = k [CHO]1[CO2]0[cat]1  25 – 45 bar 



Copolymerization of Epoxides and CO2 to Aliphatic Polycarbonates 

10 

Macrocyclic ligand systems synthesized by the group of Williams used zinc and/or magnesium as central 

metal and bear two major advantages. On the one hand, a very low CO2 pressure of 1 bar still ensures 

high polycarbonate selectivities at moderate activities (TOF for CHO/CO2 = 20 – 620 h-1).45-46 On the 

other hand, the complex is highly tolerant towards protic compounds and is not decomposed rapidly like 

a lot of other transition metal-based complexes. Copolymerization of CHO and CO2 can run with 

10 – 30 eq. of water enabling the tailoring of low-molecular weight PCHC and the generation of polyols 

which can further serve as a valuable feedstock in the polyurethane production.46 Also, these 

macrocyclic ligands turned out to be a valuable group of catalysts to perform terpolymerization reactions 

from a mixed-monomer feedstock with CHO, CO2, and a lactone or an anhydride (see Chapter 5.2). 

The very first example for the successful copolymerization of limonene oxide and CO2 dates back to 

2004. A BDI-Zn-OAc complex serves as an active initiator and is most active between 25 – 35 °C 

(TOF = 37 h-1). Two main insights could be gathered. First, using a commercially available mixture of 

cis- and trans-LO resulted in the exclusive incorporation of the trans monomer. Secondly, at elevated 

temperatures (T = 50 °C) only very little conversion was observed.47 It took 10 years until the 

polymerization of limonene oxide again appeared at the screen of polymer catalysis. Coates et al. 

reported the crystallization of stereocomplexed poly(limonene carbonate).48 In the same year, the group 

of Kleij synthesized an amino(triphenolate) aluminum (III) complex 3 which, upon treatment with a 

suitable cocatalyst, showed activity in the copolymerization of LO and CO2 (Figure 7). The activity was 

lower (TOF = 3 h-1) compared to the BDI complex but due to the use of a cocatalyst both stereoisomers 

were incorporated with a preferential nucleophilic attack at the substituted position of the epoxide.49  

Figure 7. Active catalysts for the LO/CO2 copolymerization: Amino(triphenolate) aluminum 3 and the 

BDICF3-Zn-N(SiMe3)2 4 and its ORTEP style representation with ellipsoids drawn at the 50% probability level.50 

The introduction of two electron-withdrawing groups and the use of a bis(trimethylsilyl)amide initiating 

group rendered complex 4 the most active catalyst for LO/CO2 copolymerization (TOF = 310 h-1). 

Furthermore, complex 4 turned out to be active for a multitude of different epoxides such as CHO, PO, 

LO, octene oxide, and styrene oxide. Within the LO/CO2 coupling, the decrease in activity for LO at 
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elevated temperatures could be addressed with the use of in situ infrared spectroscopy. In case of LO, 

the reverse reaction to the polymerization is the release of LO and CO2 (and not the backbiting reaction 

to cyclic limonene carbonate). At 60 °C, a critical LO concentration is reached at which the equilibrium 

of the reaction shifts to the backformation of LO and CO2. This means that the ceiling temperature of 

PLC is comparably lower than of other aliphatic polycarbonates and the polymerization has to be 

performed at temperatures not higher than 40 °C.50 

2.3 Mechanism of the Copolymerization of Epoxides and CO2 

The copolymerization of epoxides and CO2 is divided into three elementary steps, initiation, 

propagation, and termination. Termination also occurs via a chain transfer of the propagating chain 

through protic impurities or the addition of chain-transfer agents (CTA). Generally, the mechanism can 

proceed via three different pathways, with LnM-X being the homogeneous catalyst. In the monometallic 

pathway, the ring-opening of the precoordinated epoxide takes place through an intramolecular attack 

of the nucleophile X. The second route involves an interaction between the catalyst and a cocatalyst 

such as tetrabutylammonium halides. Within this pathway, the cocatalyst promotes the ring-opening of 

the precoordinated epoxide. In the third, so called bimetallic pathway, two metal complexes 

intermolecularly drive the ring-opening step of the epoxide. Density functional theory calculations 

indicate the chain growth to occur via the attack of a metal-bound carbonate on a metal-bound epoxide.51 

Figure 8. Mechanism of the copolymerization of epoxides and CO2 via initiation, propagation, and termination.52
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All three pathways in common, the coordination of the epoxide at the metal center is a crucial step. 

Without this pre-coordination, the initiating group X and later the growing polymer chain would not be 

nucleophilic enough to promote the ring-opening step. The coordination-insertion mechanism of the 

epoxide/CO2 coupling is displayed in Figure 8.  

The metal complex undergoes a ring-opening of the epoxide according to one of the three pathways and 

forms a metal-carbonate chain-end after the insertion of CO2. The alternating insertion of an epoxide 

and CO2 leads to the formation of the polycarbonate. Two possible side reactions are observed. If 

epoxides are inserted consecutively, polyether linkages result and if the growing carbonate chain is 

prone to backbiting, a cyclic carbonate byproduct is formed. The polymerization reaction is usually 

terminated by the addition of alcohols or water. This protonation of the growing polymer chain can 

either occur due to hydroxyl impurities in the reaction mixture or intentionally for the generation of low 

molecular weight polymers or the incorporation of a chain-transfer agent.8  

For many metal complexes, especially zinc-based systems, the main difference in polymerizing CHO 

or PO with carbon dioxide, is the tendency towards the formation of cyclic carbonate. Usually, higher 

activities and selectivities are observed for CHO. Darensbourg reported the activation energies for both 

monomers in the copolymerization reaction with chromium salen complexes (Figure 9).53 The 

polycarbonate PCHC is synthesized with a 20.7 kJ/mol lower activation energy than PPC. Additionally, 

in case of PO, the energetic difference of the polycarbonate and the cyclic carbonate accounts for only 

33 kJ/mol whereas the energy difference is 86 kJ/mol for CHO. As a result, backbiting is the major 

challenge for propylene oxide and has to be addressed by a precise tuning of the (co)catalyst’s structure 

and reactivity, CO2 pressure and the temperature since high temperatures usually favor cyclic carbonate 

formation.   

Reaction coordinate Reaction coordinate 

Figure 9. Reaction coordinate diagram for the coupling of PO and CO2 (left), and the coupling of CHO and CO2 

(right).53 

The third, very important monomer, limonene oxide, bears an additional methyl group at the epoxide 

moiety compared to CHO. Due to this increased steric hindrance during the copolymerization reaction, 

a deeper understanding of the polymerization mechanism is desirable. Two types of complexes are 
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known to catalyze the LO/CO2 coupling. Amino(triphenolate) aluminum complexes 3 combined with 

PPNCl interestingly showed activities towards the incorporation of both stereoisomers, cis- and trans-

limonene oxide. Surprisingly, the attack of the cocatalyst’s chloride at the sterically hindered carbon 

atom of cis-LO in α-position is energetically favored (Figure 10). Also, for trans LO, the attack on the 

substituted position requires less energy than on the β-position. A nucleophilic attack at the α-position 

results in an inversion of the configuration and trans-PLC is obtained. 

Figure 10. Possible nucleophilic attack at two different positions for cis-LO and trans-LO (left). Initiation of 

the polymerization with amino(triphenolate) Al complexes and PPNCl (right). 

The second class of active catalysts are BDI complexes. To get further mechanistic insight, kinetic 

studies were performed. Thereby, the determination of the reaction orders for all reactive components, 

catalyst, monomer, and CO2, delivers valuable information. Coates reported the following rate law for 

CHO as epoxide and 20 bar CO2 with a BDI-Zn-OAc catalyst: -d[CHO]/dt = k[CO2]0[CHO]1[Zn]1.40 

The same catalyst was used in kinetic studies by Rieger and Greiner in 2016, where they observed a 

significant difference in the rate law for LO: -d[LO]/dt = k[CO2]0[LO]2[Zn]1.14 The order with respect 

to the epoxide changed to the order of 2 for LO. Based on these kinetic investigations, a 

copolymerization mechanism for LO and CO2 was postulated (Scheme 3).  

Scheme 3. Initiation of the copolymerization of limonene oxide and CO2 with a BDI-Zn-OAc complex14 

The bridged zinc catalyst coordinates one LO molecule, but due to the steric hindrance at the epoxide 

unit, the acetate initiating group is unable to achieve a nucleophilic attack on the epoxide. The authors 

rather suppose that it requires the coordination of a second LO molecule to facilitate a monometallic 
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arrangement which is more flexible towards the nucleophilic attack. The insertion of CO2 regenerates 

the dimeric complex and a carbonate chain end is formed, which, upon coordination of a second LO, 

enables the alternating copolymerization. 
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3. Ring-Opening Polymerization of Lactones to Biodegradable

Polyesters

Polyesters are globally produced on a 77 million ton scale mostly via polycondensation of a diacid and 

a diol.54 Although lacking the broad range of easily accessible monomers, ring-opening polymerization 

(ROP) of cyclic esters evolved to a valuable method to gain access to aliphatic polyesters in high 

molecular weights and without the formation of small molecule byproducts. Within the class of novel 

polyesters, two polymers recently gained much attention, namely poly(3-hydroxybutyrate) (PHB) and 

poly(lactide). These two biodegradable thermoplastics can be synthesized via ring-opening of 

rac-β-butyrolactone (BBL) and rac-lactide (LA) with the reduction of the monomer’s ring strain being 

the driving force of the reaction. PHB is naturally produced in its isotactic form by numerous bacteria 

and serves as an intercellular carbon and energy storage.55 The fermentative synthesis gives a perfectly 

isotactic configuration of the chiral methyl groups, which is also the prerequisite for the desired 

degradation of PHB by depolymerases that selectively cleave R,R-linkages at the polymer backbone. 

The biotechnological production of PHB requires multiple synthesis and processing steps and thus, PHB 

continues to be a very expensive material.56-58 

Comparing PHB and isotactic poly(propylene) (i-PP) in terms of mechanical properties reveals 

remarkable characteristics (Figure 11). A good performance regarding oxygen barrier and UV stability 

indicate the potential use of PHB as a packaging material. Moreover, its Young modulus, impact strength 

and temperature resistance seem to be comparable with other commodity polymers such as i-PP. On the 

downside, perfectly isotactic PHB is highly crystalline and therefore behaves as a rather brittle material 

with a low strain elongation. Also, the very high melting temperature of 180 °C is close to the 

decomposition temperature of PHB and impedes the processing via melt extrusion. As a result, the 

synthesis of PHB via stereoselective ring-opening polymerization of BBL is very promising to produce 

PHB in the desired microstructure. It is expected that isotactic-enriched PHB with a lowered crystallinity 

of the polymer results in a reduced melting temperature which would enable enhanced mechanical 

properties and a successful processing of the polymer.15 

Figure 11. Qualitative comparison of the most relevant properties of naturally occurring (R)-PHB and i-PP.15
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β-lactones such as BBL undergo the ring-opening step either via acyl-O cleavage or via alkyl-O cleavage 

leading to an alkoxy and a carboxy chain end, respectively. These two different modes are particularly 

important for the stereospecific polymerization of BBL since the acyl-O cleavage proceeds via retention 

of the methyl configuration whereas the alkyl-O cleavage involves an inversion of the stereocenter. 

Three different microstructures for PHB are depicted in Scheme 4. In the atactic form, the methyl groups 

are randomly oriented, while the orientation of the methyl groups in the isotactic (pointing in the same 

direction) and the syndiotactic (alternating orientation) microstructure allows enhanced polymer 

properties such as crystallinity along with a high melting point. 

Scheme 4. Left: Ring-opening step of BBL via (a) acyl-O cleavage or (b) alkyl-O cleavage. Right: Possible 

microstructures of poly(3-hydroxybutyrate)59 
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The polyesters PHB and PLA have the potential to become particularly attractive if their monomers are 

obtained independent from fossil fuels. Industrially relevant routes offer the possibility to produce BBL 

from CO2 and render the PHB production sustainable (Scheme 5). In a first step, the catalytic 

hydrogenative conversion of carbon dioxide yields methanol, which, in turn, is converted to propylene 

via the methanol-to-propylene (MTP) process.60-62 Then, the oxidation of propylene can be achieved 

with the hydrogen peroxide to propylene oxide technology with H2O2 serving as a clean oxidant.63-64 In 

the last step, propylene oxide is successfully carbonylated to BBL by discrete complexes, e.g. 

[Lewis acid][Co(CO)4].15,65-66 The other lactone, lactide, was isolated for the first time, by Carl Wilhelm 

Scheele in 1780 from sour milk, but it took a few centuries until Pasteur identified lactic acid as a 

fermentation metabolite and no longer as a milk component. Nowadays, starch and corn are used as 

potential starting substrates to synthesize L-(+)-lactic acid by microbial fermentation which gives access 

to polylactide in a microstructure with high crystallinity and a high melting point.67-69 

Scheme 5. Synthesis of BBL starting from CO2 (a) and preparation of LA from corn feedstock (b) 
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The coordinative ring-opening polymerization of lactones was first reported in the 1970s for 

ε-caprolactone (CL), but only a few years later, also the four-membered ring BBL was successfully 

polymerized with aluminum porphyrines.70-72 Although low activities (quantitative conversion within 

15 days) were observed, the living character of the polymerization was demonstrated as well as a narrow 

dispersity (polydispersity (Ð) = 1.11).73 An important step towards a stereospecific polymerization of 

BBL was presented by Spassky and coworkers who used chiral initiators derived from simple metal 

alkyls (ZnEt2, AlEt3) and (R)-3,3-dimethylbutane-1,2-diol (Scheme 6).74 The isotacticity is based on a 

kinetic resolution of the two enantiomers (R)-BBL and (S)-BBL with a ratio of 46% ee of the 

(S)-enantiomer at low conversions. 

Scheme 6. Isospecific ROP of BBL via kinetic resolution 

A breakthrough in the ROP of BBL was achieved by Coates et al. in 2002.75 β-diiminate zinc alkoxides 

have previously been tested in the ROP of LA and the ROCOP of CHO and CO2, and indeed showed 

also high activities for BBL. High conversions (65 – 97%) were observed for 5 within short reaction 

times (5 – 720 minutes) under mild conditions to polymers in adjustable molecular weights and narrow 

dispersities (Ð = 1.06 – 1.20, Figure 12). On the downside, the polymerization did not show any 

stereospecificity and the resulting PHB was atactic. 

Figure 12. Selected catalysts for the ROP of BBL.

In the course of the discovery of BDI complexes, the coordination-insertion mechanism was confirmed 

via end-group analysis. Kinetic studies revealed a first-order dependence of both the monomer and the 

catalyst BDI-Zn-OiPr suggesting a monometallic active species during the polymerization. The 

following mechanism was postulated (Figure 13): A BBL molecule coordinates at the monometallic 

center. The activated monomer gets attacked by the alkoxide and undergoes an acyl-O cleavage which 

in turn regenerates the alkoxide chain end.75 
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Figure 13. Proposed mechanism for the ROP of BBL with BDI-Zn-OR initiators.75

Focusing the original motivation of synthesizing isotactic PHB, Rieger et al. reported the achiral 

chromium salophen complex 6.76 Isotactic-enriched PHB (Pm = 0.66) was realized in high molecular 

weights but in relatively broad dispersities (Ð = 5.2 – 9.6). The degree of isotacticity seemed to be 

promising since perfectly isotactic PHB is very brittle and poorly processible and therefore a Pm of 

0.6 – 0.8 is desired. Carpentier and coworkers tested aminoalkoxy-bis(phenolate) yttrium complexes 7 

in the polymerization of methyl methacrylate (MMA) but found out that this ligand structure at yttrium 

exhibits very high activities in the ROP of BBL as well.77 Syndiotactic PHB (Pr = 0.81 – 0.94) was 

obtained in high yields, predictable molecular weights (23 – 49 kg/mol) and narrow dispersities 

(Ð = 1.03 – 1.18).78 The structural motif of 7 was thoroughly investigated in the following years in terms 

of ligand design, variation of the initiating group as well as the metal center, but no isotactic PHB could 

be isolated.79-84 Nevertheless, these aminoalkoxy-bis(phenolate) complexes were interesting candidates 

for the so called immortal polymerization. In a living polymerization, protic impurities such as water or 

alcohols are prone to quench the propagation. In contrast, immortal polymerizations are resistant 

towards these impurities since the initiating group of the complex is rapidly exchanged with a chain-

transfer agent, e.g. 2-propanol, whose concentration is higher than that of the catalyst molecules. Key 

advantage is the generation of polymers in tunable molecular weights as well as in very narrow 

dispersities.58,85 Very recently, Cui et al. reported rare earth metal salan complexes which showed a 

switching tacticity in the ROP of BBL by altering the substituents at the nitrogen from aromatic to 

aliphatic groups (giving an isotactic and syndiotactic arrangement, respectively).86 Another promising 

approach was presented by Chen and coworkers. Yttrium complexes bearing salcy ligands promote the 

stereoselective polymerization of a racemic mixture of the eight-membered cyclic diolide to a polymer 

with the same chemical structure as PHB. A tuning of the diastereomeric ratio enables a tuning ductility 

and toughness of the material.87 
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4. Rare Earth Metal-Mediated Group Transfer Polymerization

of Nitrogen-Coordinating Monomers

In the 1980s, Webster and coworkers observed a controlled living polymerization of α,β-unsaturated 

esters, ketones and nitriles.88-89 Silyl ketene acetals (SKA) thereby served as an initiator and a Lewis 

acid was added to activate the monomer. Initially, an associative pathway was assumed to take place, 

where the SKA group is transferred from the initiator to the monomer to form a new silyl group 

(Scheme 7). Due to this repeated conjugate addition, the term group transfer polymerization (GTP) has 

been established. Later studies revealed that a dissociative mechanism is present proceeding via a group 

transfer between the two chain ends. The ester-enolate anion thereby undergoes a poly-1,4-addition.90-93 

Scheme 7. Associative and dissociative mechanism for the silyl ketene acetal initiators. R can be HF2
-, F2

2-, cyanide or azide94 

A few years later in 1992, two independent groups reported on metallocene systems catalyzing the living 

polymerization of acrylic monomers. Collins and Ward used neutral and cationic zirconocenes, 

Cp2ZrMe2 and [Cp2ZrMe(thf)][BPh4], as a two-component system for the controlled polymerization of 

MMA.95 Yasuda and coworkers developed a neutral samarocene [(C5Me5)2SmH]2 that showed high 

activity in the polymerization of MMA in a broad temperature range from -95 °C to 40 °C.96 The 

resulting high molecular weight polymer showed a narrow dispersity (Ð = 1.05) and high syndiotacticity 

(>95%). These observations already indicated a controlled manner of polymerization. Based on the 

crystal structure of a Cp2Sm(MMA)2H adduct, a propagation via an ester enolate became evident and a 

monometallic anionic coordination mechanism was postulated (Scheme 8). The hydrido bridged dimer 

is opened after the coordination of MMA and an enolate formation takes place by a 1,4-addition of the 

H ligand to MMA. The second incoming MMA molecule also undergoes a 1,4-addition creating an 

eight-membered cyclic intermediate. Another MMA molecule cleaves off the coordinated ester group 

and thereby regenerates the eight-membered transition state.  
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Scheme 8. Polymerization of MMA via the Yasuda-type mechanism96 

Based on this breakthrough in polymerizing acrylic monomers, rare earth metal-mediated (REM) GTP 

evolved into a valuable method combining both the living anionic and the coordinative polymerization. 

Also, the synthesis of block copolymers or the introduction of chain-end functionalities became feasible 

due to its living character. 

In the course of the years, a wide range of possible vinylic monomers turned out to be interesting 

candidates for the REM-GTP (Figure 14). The nitrogen-coordinating monomers 2-vinylpyridine (2VP) 

and 2-isopropenyl-2-oxazoline (IPOx) form a weaker coordination to the metal center than the oxygen-

coordinating monomers methyl acrylate (MA), MMA and dialkyl vinylphosphonates (DAVP). When 

synthesizing block copolymers, the coordination strength plays a major role: Monomers can only be 

polymerized in the order of increasing coordination strength.97-98 

Figure 14. Scope of the most important monomers used in the REM-GTP (Michael-system highlighted).94

Diethyl vinylphosphonates (DEVP) belong to the group of strongly coordinating DAVPs. The polymer 

poly-DEVP (PDEVP) is not accessible via conventional radical or classic anionic polymerization 

methods. Nevertheless, its high biocompatibility combined with a decent water solubility makes it a 

very interesting material.94,99 Simple metallocenes like bis(cyclopentadienyl)ytterbium chloride were the 

first catalysts for a controlled polymerization of DEVP.100 

It was not until 2003, that Carpentier et al. proposed a structurally different catalyst system for REM-

GTP based on a bulky amino-methoxy bis(phenolate) (Figure 15).77 X-ray structures revealed an 

octahedral geometry of the [ONOO]-ligand core including the coordination of the methoxy side arm and 

the remaining thf molecule. The complex displayed poor activity in the polymerization of MMA, but in 

contrast, quantitative conversion was observed for ε-caprolactone within one minute.  
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Figure 15. Illustration of the two most important catalyst structures in the REM-GTP.101

Generally, metallocene based catalysts have not been relevant in the stereospecific polymerization 

except in the case of MMA and their activities in the polymerization of 2VP and IPOx were insufficient. 

Hence, the structural motif of bis(phenolate)lanthanides became interesting and was investigated closer 

in the following years. Rieger et al. used this catalyst structure (Ln = yttrium; initiating group 

R = CH2SiMe3) and screened multiple vinylic monomers: 2VP (TOF = 1,100 h-1), diethyl 

vinylphosphonate (480 h-1), and 2-isopropenyl-2-oxazoline (1,500 h-1) were polymerized in high 

activities to polymers in narrow dispersities (Ð = 1.01 – 1.69) and molecular weights in a very controlled 

manner (initiator efficiency = 0.36 – 0.99). In situ attenuated total reflection IR spectroscopy revealed a 

living monometallic GTP according to the Yasuda-type mechanism. Attempts were undertaken to 

improve the stereospecificity of the polymerization of 2VP to realize highly isotactic poly-2VP (P2VP) 

(Pm = 0.54 – 0.97), e.g. by increasing the steric demand of one of the phenolate moieties.102-104  

Initiator efficiency plays a crucial role in controlling the molecular weight of a catalytic living-type 

polymerization. The higher the initiator efficiency is, the closer the molecular weight gets to the 

theoretical calculated value. Yttrium complexes bearing alkyl initiators do not show satisfying initiator 

efficiencies for some Michael-type monomers especially in case of DEVP.105 It was assumed that 

introducing a different type of initiating group would change the initiator efficiency of the yttrium 

metallocene. Watson et al. came up with the concept of CH-activation in 1983.106 Cp2Ln-CH3 readily 

undergoes a [2σ-2σ]-cycloaddition with 13C labeled methane to Cp2Ln-13CH3. The principle of the 

CH-bond activation was continued by different groups and later applied in the REM-GTP. It basically 

offers two main advantages: First, the initiator efficiency can be improved by replacing alkyl initiators 

through heteroaromatic compounds such as 2,4,6-trimethylpyridine (Scheme 9). Secondly, thanks to the 

living-type mechanism and the fact that the initiating group represents one chain end of the polymer, 

introducing end-group functionality becomes accessible.107-109 
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Scheme 9. CH-bond activation of 2,4,6-trimethylpyridine with Cp2Y(CH2TMS)(thf) and initiation of DEVP via 

eight-membered transition state105,110 
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As part of the discovery of the CH-bond activation in REM-GTP, also the mechanism of the DEVP 

polymerization with unbridged rare earth metal metallocenes was unveiled. Generally, initiation via 

three different pathways is possible. It can either start via the deprotonation of the acidic α-proton 

through alkyl initiators, via a nucleophilic transfer of the initiating ligand to the pre-coordinated 

monomer or via a monomer-induced ligand-exchange reaction. Electrospray ionization mass 

spectrometry analysis indicated an end-group functionalization of oligomeric DEVP with 

(4,6-dimethylpyridin-2-yl)methyl. Combined with the dimeric crystal structure of 

Cp2Y(CH2(C5H2Me2N)) showing a partial double bond character of the activated methyl group that 

enables an eight-membered transition state, the route of the nucleophilic transfer is most likely taking 

place.105,110 

The other vinylic monomer 2VP was polymerized radically in the early years and atactic P2VP was 

obtained. In the 1960s, Natta et al. used magnesium, beryllium and aluminum amides and could produce 

isotactic P2VP.111 But again REM-GTP turned out to be the most valuable method for synthesizing 

P2VP with tailored molecular weight and tacticity. Besides this, also its ability to catalyze 

copolymerizations with other polar vinyl monomers enabled P2VP to serve as an interesting material in 

different applications areas ranging from electrochemistry and medicine, especially drug delivery, but 

also to nano- and membrane technology.112-115 The topic of micelles, in particular, and its extension to 

nanoparticles was intensively studied in the following years. Thereby, P2VP was copolymerized with 

different copolymer partners such as poly(ethylene oxide) or PDEVP. The latter offered the big 

advantage of being water-soluble and thus, the resulting P2VP-co-PDEVP polymers self-assembled to 

form micelles that showed pH sensitivity and a tunable lower critical solution temperature.116-118
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5. Chemoselective Polymerizations from a Mixed-Monomer

Feedstock

Synthesizing block copolymers from monomers that are not accessible via the same polymerization 

mechanism requires the combination of two or more distinct polymerization types. It is driven by the 

motivation of creating enhanced chemical complexity for special applications. Thereby, a controlled 

chain growth is the major prerequisite to interchange between different catalytic cycles. In literature, 

various types of switches are reported. An electrochemical switch was found for copper catalysts in the 

atom transfer radical polymerization by controlling the oxidation state. Multistep intermittent potentials 

switch the polymerization from a dormant to an active state.119 The controlled radical polymerization of 

methyl acrylates could also be activated and deactivated via an external visible light stimulation.120 In 

the ROP of lactones, interesting attempts regarding the on/off-switch of polymerizations were made, 

too. Group 4 metal alkoxides supported by ferrocene-based ligands could be switched between their 

oxidized and reduced form and thereby activated or deactivated towards the ROP of ε-CL and LA.121 

The organo-catalyzed polymerization of ε-CL and trimethylene carbonate was reversibly toggled via the 

absence/presence of CO2.122 Another approach is kinetic control based on the reactivity of the initiator 

towards the monomer. Coates studied the chemoselectivity of BDI complexes in the terpolymerization 

of epoxides, cyclic anhydrides, and CO2. Putting all monomers together in the beginning, he observed a 

selective building of the polyester block before the polycarbonate was built.123 Figure 16 gives an 

overview of the possible pathways based on kinetic control.  

Figure 16. Illustration of the possible types of pathways for copolymerization reactions.123

Sequential monomer addition gives a pure diblock copolymer if the second monomer B is added after 

full conversion of A. One-pot polymerizations highly depend on the nature of the monomer in terms of 

reactivity with complex M-I. In case the rate of monomer A (kA) is considerably higher than kB, also 

diblock structures are built. The situation changes if kA~kB because a statistical or gradient-like reactivity 
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results. To gain a different architecture control and a more diverse combination of monomers, 

bifunctional initiators are employed. They are able to independently incorporate monomers at each metal 

center and the produced blocks are interconnected via the linker I. 

5.1 Terpolymerization of Two Different Epoxides and CO2 

Propylene oxide and cyclohexene oxide clearly represent the two most important epoxides used in the 

copolymerization of epoxides and CO2. A multitude of metal complexes is able to catalyze the coupling 

of CO2 and both epoxides individually. Since the respective copolymers display very contrary properties 

mainly based on their difference in the glass transition of 30 – 45 °C for PPC and 115 °C for PCHC, 

attempts were made to perform terpolymerizations of both epoxides and CO2.13,19 Zinc(II) phenoxides 

were one of the first complexes tested in this terpolymerization reaction. It requires a high CO2 pressure 

(80 bar) and an elongated reaction time of 69 h, but remarkably, the formation of cyclic propylene 

carbonate is suppressed in presence of CHO (Figure 17).124 Later, different catalysts like a salen-type 

cobalt(III) 9 or a chiral tetradentate Schiff-base cobalt(III) complex was employed and higher activities, 

tunable glass transitions and an isotactic-enriched PCHC part were observed.21,125 Sometime later, the 

groups of Rieger and Kleij independently studied the terpolymerization of limonene oxide, CO2, and 

either PO or CHO.50,126 PCHC/PLC terpolymers were catalyzed by an Al(III) amino(triphenolate) 

combined with PPNCl as cocatalyst and the tunable amount of double bonds from PLC was used to get 

cross-linked polymeric networks via thiol-ene click chemistry.  

Figure 17. 8 and 9 are active initiators for the terpolymerization of CHO, PO, and CO2. Dizinc complexes 10-12 

can be employed in the ROCOP of epoxides and anhydrides.   
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Epoxides also display an attractive feedstock for the synthesis of aliphatic polyesters by coupling them 

with anhydrides (Scheme 10). Commercial polyesters are usually produced via condensation 

polymerization. In contrast, synthesizing them via chain-growth polymerization with a suitable metal 

catalyst allows a tailoring of the incorporated monomers, the molecular weights as well as the resulting 

thermal properties.127-129 

Scheme 10. Alternating copolymerization of epoxides and cyclic anhydrides 

Although the ring-opening copolymerization of epoxides and CO2 and the ring-opening polymerization 

of lactones bear mechanistic similarities, only a few catalysts can catalyze both polymerization types. 

Generally, the mechanisms can either be combined via catalysis at the same metal center or via 

successful chain transfer from one to another initiator. Rieger and coworkers developed a flexibly linked 

dimeric chromium salphen complex that was active for the ROP of BBL and the ROCOP of PO and 

CO2. The dimerization of the complex results in an enhancement in activity compared to the 

mononuclear analogous which supports the theory of a bimetallic catalysis of the respective 

polymerizations in case of Cr salophen catalysts.130 Due to the different reaction temperature that is 

required for the two polymerization types, a combination of both was not investigated further. Lu and 

Darensbourg followed the approach of a salen Co(III) catalyzed styrene oxide/CO2 coupling to a 

OH-terminated polymer that served as a macroinitiator for the DBU promoted ROP of lactide.131-132 The 

heterogeneous ZnGA was also found to be active in the PO/CO2/lactone terpolymerization.133-134 

Williams et al. introduced a versatile group of dinuclear macrocyclic zinc complexes 10-12 that 

successfully polymerized epoxides with anhydrides and CO2, respectively, and lactones to multiblock 

copolymer structures. The dizinc complex 10 was first tested towards its activity in the ROP of 

ε-caprolactone and the ROCOP of CHO and CO2. 10 was only able to polymerize ε-CL in presence of 

CHO which inserts into the M-X bond creating an active zinc-alkoxide species.135-136 In the following 

studies, this zinc-alkoxide intermediate served as an active initiator for the ROCOP of epoxides and 

anhydrides, the ROP of a lactone and the ROCOP of the residual epoxides with added carbon dioxide 

(Figure 18).137-138 Such a polymerization pathway involves a double switch in mechanism and enabled 

the synthesis of polymers with tailored functionalities. The incorporation of the monomers is determined 

by the respective reaction rates and could only be successfully performed when adding CO2 in the end; 

otherwise the ROP of ε-CL is inhibited by coordinated CO2. 

5.2 Terpolymerization of Epoxides and CO2 with Cyclic Anhydrides and Lactones 



Chemoselective Polymerizations from a Mixed-Monomer Feedstock 

26 

Figure 18. Combination of ring-opening copolymerization and ring-opening polymerization to pentablock 
copolymers.138 

A further strategy was driven by the motivation of introducing elasticity into semiaromatic polyesters 

to generate thermoplastic elastomers. The three-step synthesis involved the initial ROCOP of CHO and 

phthalic anhydride, followed by the ROP of ε-decalactone and a subsequent diisocyanate coupling of 

the telechelic polymer to increase the molecular weight. The material showed high elasticity of up to 

2450% in a wide temperature range (-20 – 100 °C). The elasticity was maintained over 25 cycles.139  

5.3 Active Systems for Ring-Opening Polymerization and Group Transfer Polymerization 

The combination of ring-opening polymerization and group transfer polymerization is only scarcely 

described in literature. Two very early examples deal with the polymerization of MMA and ε-CL or 

δ-valerolactone by organoaluminum catalysts140 or organolanthanide(III) metallocenes141-142. The latter 

seemed to be more promising regarding polydispersity. The copolymerization of MMA and the lactone 

worked smoothly when MMA was polymerized first, and the lactone added afterwards. The very strong 

coordination of the lactone did not allow a subsequent incorporation of MMA. Rieger and coworkers 

used amino bis(phenolate)yttrium catalysts in the REM-GTP for a multitude of different polar vinyl 

monomers but, interestingly, also in the stereoselective ROP of BBL.82 The combination of both 

mechanisms was investigated, but no copolymer formation could be realized. The idea was that a 

coordinated P2VP chain end serves as macroinitiator for the ring-opening step of the lactone. Indeed, 

conversion of the lactone was observed but two blocks could be easily separated via precipitation 

indicating no copolymer formation. A lot of follow-up reactions were performed to elucidate the reason 

and a deprotonation of the BBL followed by an anionic ROP or chain scission was proposed. In 2018, 

Wang and coworkers developed a one-step approach for CO2-based block copolymers derived from 

epoxides, CO2, and vinyl monomers.143 Aluminum porphyrins promote the coupling of CHO or PO with 

CO2 and then, a trithiocarbonate compound serves as a bifunctional chain-transfer agent which enables 

the reversible addition-fragmentation chain transfer polymerization of vinyl monomers such as MMA 

or styrene. A precise control of the molecular weight and very narrow dispersities (1.09 – 1.14) were 

observed for the PPC-co-PMMA block copolymers. Overall, this method allows the broadening of the 

functionality of aliphatic polycarbonates by the introduction of PMMA or polystyrene blocks. In the 

same year, a bifunctional catalyst has been synthesized bearing a BDI zinc unit attached to an initiating 
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group that is active for RAFT. ROCOP of CHO and CO2 gives the polycarbonate with an end-group 

where living RAFT of styrene and N-isopropylacrylamide enables copolymer formation. A 

thermoresponsive PCHC-co-poly(N-isopropylacrylamide) represents a promising example for 

CO2-based functional nanomaterials.144 
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6. Aim of the Thesis

Aliphatic polycarbonates are known for more than five centuries but despite numerous promising 

properties such as high transparency, biodegradability (PPC) and UV stability, they do not fully meet 

the industrial demands, yet.145 Various kinds of attempts have been made to overcome the two major 

limitations; the low glass transition temperature of poly(propylene carbonate) and the high brittleness 

of poly(cyclohexene carbonate). Blending polycarbonates with other materials, introducing soft units 

via chain-transfer agents or terpolymerizing with other monomers are possible strategies to upgrade 

adverse properties. The first part of this work mainly concentrates on extending the portfolio of PCHC-

containing polymers by combining the ROCOP mechanism with other coordinative mechanisms.  

ROCOP of epoxides and CO2 has previously been coupled with the ROCOP of anhydrides and epoxides 

as a well as with the ROP of lactones such as ε-CL or ε-decalactone. Chemoselective  polymerizations 

from a mixed-monomer feedstock allowed the synthesis of defined copolymers in a block structure. 

Complex 4 was reported for the coupling of CHO and CO2 in 2017 and also similar BDI complexes have 

previously been tested in the ROP of BBL to atactic PHB.50,75 Based on the low glass transition 

temperature of atactic PHB of 5 °C and the behavior as a rather soft material, the combination with the 

brittle PCHC might result in a better mechanical performance. In this work, one-pot polymerizations of 

the three monomers with 4 are investigated (Scheme 11). It is expected that the point of CO2 addition 

regulates the incorporation of the different monomer types. This chemoselective control would enable 

the tailoring of different architectures, particularly a block and a statistical arrangement. After studying 

the possible terpolymerization mechanism, the terpolymers will be investigated toward their glass 

transition temperatures and their mechanical behavior. Moreover, different epoxides such as 

cyclopentene oxide and limonene oxide will be tested. 

Scheme 11. Lewis acidic complex 4 and its application in the terpolymerization of CHO, CO2, and BBL 

In a second approach, the combination of aliphatic polycarbonates with polar polyolefins is examined. 

The rare earth metal-mediated group transfer polymerization of polar vinyl monomers is a valuable 

method for the precise synthesis of functional materials. The polymers exhibit interesting properties 

such as biocompatibility and water-solubility and can show switchable properties when two different 

types of monomers are copolymerized. Since BDI complexes are not known to catalyze the GTP, a 
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bridged bifunctional catalyst is required. We aim for a complex that combines a zinc center which is 

active in the ROCOP of epoxides and CO2 and an yttrium moiety that promotes the polymerization of 

Michael-type monomers (Scheme 12). Bridging the two centers would enable the synthesis of 

copolymers with the two different types of blocks connected to each other via the linking unit. This 

approach would result in copolymers that have not been achieved so far with unexplored properties. 

Scheme 12. Combining the CHO/CO2 coupling with the polymerization of Michael-type monomers requires the 

synthesis of a bifunctional catalyst 

In the second part of the thesis, the established polymerizations of cyclohexene oxide with CO2 and 

limonene oxide with CO2 were put to the test regarding the upscaling of the polymerization, a thorough 

investigation of so far unexplored properties and the terpolymerization of the two epoxides and CO2 was 

performed. The Lewis acidic zinc complex BDICF3-Zn-N(SiMe3)2 shows high activities in the ROCOP 

of various epoxides and CO2 and is therefore best suited for the synthesis of PCHC and PLC. After a 

detailed screening of the reaction parameters in a 50 mL autoclave equipped with in situ IR spectroscopy 

to monitor the progress of the polymerization, it is planned to transfer the synthesis to a 1 L Büchi 

autoclave (Figure 19). It is expected to gain valuable insight into the kinetic of the reaction as well as 

into the purification of the resulting material. An aqueous solution of ethylenediaminetetraacetic acid is 

used in literature to mask the residual Zn(II) and to make the precipitation step more efficient.14  

Figure 19. System for high-pressure polymerization with in situ IR monitoring in 50 mL autoclaves (a). Three-

dimensional plot of wavenumber [cm-1], time [min] and relative intensity [A.U.] (b). Planned upscaling of the 

polymerization to a 1 L Büchi reactor (c) with mechanical stirring and a heating device (d). 

Data for the thermal stability of polymers is often based on thermogravimetric analysis. But with the 

help of this method only the converting of the polymer into volatile compounds is analyzed and no 
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previously occurring chain breaks get detected. Heating polymer samples to certain temperatures and 

analyzing them by gel-permeation chromatography would provide valuable information for designing a 

processing window for PCHC and PLC. Moreover, the evaluation of the mechanical properties of 

aliphatic polycarbonates is of special interest. After finding a suitable method for the preparation of 

polymer specimens, the measurement, interpretation and classification of the data is of high priority. 

This understanding would allow a comparison of the polymer’s properties with other well-established 

materials such as BPA-PC and PMMA. 

Scheme 13. Planned terpolymerization of CHO, LO, and CO2 

Furthermore, complex 4 is tested towards its ability to perform the terpolymerization of CHO, LO, and 

CO2 for the first time (Scheme 13). Due to the very different reaction rates, it is expected that PCHC 

formation is predominant in the beginning of the reaction and PLC is formed after CHO is consumed. 

In situ IR spectroscopy and high-pressure NMR spectroscopy will provide important data on the kinetic 

of the terpolymerization. Besides, the combination of the two blocks might result in an enhanced 

performance of the material. 
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A Lewis acidic zinc complex BDICF3-Zn-(SiMe3)2 turned out to catalyze both the ring-opening 

polymerization of β-butyrolactone and the ring-opening copolymerization of epoxides and CO2. 

Different reaction pathways were developed but all started with a one-pot situation of catalyst, epoxide, 

and BBL in the beginning. A high CO2-pressure of 40 bar fully impeded the ROP of BBL and the 

ROCOP of CHO and CO2 exclusively proceeded with high activity. Once the CO2 was released, the 

conversion of BBL started, creating AB block copolymers. The opposite route also worked with the 

ROP of the lactone in the beginning and the ROCOP starting when carbon dioxide is applied (BA block). 

An interesting third pathway was developed once the carbon dioxide pressure was lowered to 3 bar CO2. 

At this pressure, both mechanisms run with similar speed creating a statistical incorporation of the 

monomers. This difference in the polymer’s architecture had a decisive influence on the properties of 

the novel poly(ester-carbonates). While the polymers in block structure showed two separated glass 

transitions, the ones in the statistical arrangement revealed a mixed Tg. A mechanism for this statistical 

terpolymerization was postulated based on polarimetry and two-dimensional NMR spectroscopy. It was 

shown that the ring-opening of the BBL molecule proceeds via acyl-oxygen cleavage. Additionally, 

HMBC-NMR indicated a coupling of the backbone proton of PCHC with the vicinal carbonyl C atom 

of the ester unit. Putting this together, a zinc-alkoxide intermediate either incorporates BBL or CO2 and 

the zinc-carbonate can only react with a CHO molecule. The three established reaction pathways were 

transferred to cyclopentene oxide as epoxide demonstrating the versatility of this approach. 
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ABSTRACT: Terpolymerizations of (rac)-β-butyrolac-
tone (BBL), cyclohexene oxide (CHO), and carbon
dioxide were realized in one-pot reactions utilizing a
Lewis acid BDICF3-Zn-N(SiMe3)2 (1) catalyst. The type of
polymerization can be regulated and switched between
ring-opening polymerization (ROP) of BBL and CHO/
CO2 copolymerization by the presence of CO2 in the
reaction mixture. Applying 3 bar CO2 to the three-
component system leads to similar reaction rates for
copolymerization and ROP and therefore to a terpolymer
with a statistical composition, whereas 40 bar CO2 affords
exclusive copolymerization of CHO/CO2. Two-dimen-
sional NMR spectroscopy and polarimetry provided a
deeper understanding of the underlying mechanism.
Furthermore, copolymerization of cyclopentene oxide
(CPO) and CO2 was performed, resulting in the highest
reported TOF of 3200 h−1 together with 99% polycar-
bonate selectivity. Terpolymerizations of CPO/CO2 and
BBL were successfully conducted using the established
reaction pathways.

Polycarbonates, derived from epoxides and CO2, and
poly(hydroxybutyrate) (PHB), are promising examples of

thermoplastic polymers that can be synthesized independent of
petroleum resources.1 Both polymerization reactions are
efficiently catalyzed by discrete, homogeneous, and metal-
based complexes;1b,2 however, there are only a few examples of
catalysts that are able to perform both reactions.2a,3 Despite the
high internal strain of the four-membered butyrolactone ring,
BBL seems to be a rather reluctant monomer, as it is less
reactive than lactide (LA) or ε-caprolactone (ε-CL).1b,4 Natural
PHB is commonly strictly (R)-isotactic and is a highly
crystalline thermoplastic material.1a Through metal-catalyzed
ROP of BBL, syndiotactic, atactic, or slightly isotactic enriched
PHB can be obtained, depending on the nature of the
employed catalyst.2a,b,5,6 A key challenge in polymer chemistry
is the realization of polymerizations from a mixed monomer
feedstock and the chemoselective control of the incorporation
of the monomers to regulate the polymer structure and
consequently the thermal and mechanical properties, as
demonstrated by recent reports.7 Until now, terpolymerizations
of ε-CL (or lactide), CHO, and CO2 were realized, leading to
oligomers/polymers with molecular weights in the range 0.9−
42 kg/mol.7 Regarding the copolymerization of CHO and CO2,
a variety of catalysts exist,3b,8,9 but nontoxic zinc catalysts

combine high activities with high poly(cyclohexene carbonate)
(PCHC) selectivity.8c,9 Conversely, poly(cyclopentene carbo-
nate) (PCPC) formation has been only sparsely explored and
the employed complexes show TOFs between 3 and 650 h−1.10

We recently reported a Lewis acid BDICF3-Zn-N(SiMe3)2
complex (1), which can copolymerize various epoxides with
CO2.

9a Herein, we investigate the activity of complex 1 toward
ROP of BBL, copolymerization of cyclopentene oxide (CPO)
with CO2, and terpolymerization of CHO/CO2/BBL or CPO/
CO2/BBL via different reaction pathways (Figure 1).

For the first time, BDICF3-Zn-N(SiMe3)2, catalyst 1, was
tested with respect to its activity toward PHB formation in an
autoclave with in situ IR monitoring (Table S1, entry S1, Figure
S2). Within 4 h, 91% atactic PHB was obtained with 145 kg/
mol molecular weight and a PDI of 1.6. We polymerized
enantiomerically enriched R-BBL (ee > 95%) to determine the
mechanism for this catalyst (Table S1, entry S2). Polarimetry at
365 nm of the isotactic PHB resulted in an [α]25365 of +7.9°
(c = 0.023 g/mL), indicating the retention of configuration

Received: February 7, 2017
Published: May 15, 2017

Figure 1. Copolymerization of CHO/CO2, ROP of BBL, and
chemoselective terpolymerization of CHO/BBL/CO2 by CO2 switch-
ing (40 vs 3 bar).
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(natural origin (R)-PHB: [α]25365 of +7.4°).2a,11,12 Therefore,
acyl-oxygen cleavage is proposed, which is consistent with a
coordination−insertion mechanism (Figure S4).1b,2a,11,12b We
investigated whether CO2 influences the polymerization of
BBL. Pressurizing a mixture of BBL, toluene, and catalyst 1 with
40 bar CO2 resulted in stagnation of the reaction after 17%
PHB formation (Figure S2, Table S1, entry S3). 13C NMR
spectroscopy revealed that CO2 was not incorporated into the
PHB polymer structure (Figure S3) as no carbonato C atoms
were detected. Therefore, the termination of the reaction could
be attributed to CO2 insertion into the Zn−O bond, leading to
a carbonato chain end that is unable to ring-open another BBL
(see Scheme 1). This observation is in agreement with the
literature, as also ε-caprolactone cannot be ring-opened by a
carbonato end group.7a,c A third experiment was conducted
wherein the reaction mixture was pressurized with 40 bar CO2

followed by CO2 release after ∼3 h (Figure S2, Table S1, entry
S4). As 87% PHB was obtained, the stagnation of the reaction
is a reversible process. The presence of small amounts of
residual CO2 (0.8 bar CO2 were detected after few minutes)
presumably causes a lower reaction rate. Finally, CHO was
added to the system (CHO:BBL = 1:1, no CO2) to detect any
side reactions with the epoxide (Table S1, entry S5). The
presence of CHO afforded a higher TOF for PHB formation,
perhaps owing to its suitability as a solvent, and no polyether
formation was observed. Additionally, it is possible that some
catalyst molecules have opened CHO, which is then also an
active initiator of ROP of BBL.1b,2a,9a Though, in both cases the
PHB chain is terminated with an alkoxy-end group coordinated
to the catalyst, that enables CO2 insertion.
Owing to the influence of CO2 on the ROP of BBL, we

conducted a terpolymerization experiment according to
method A1 (Figure 1): A mixture of BBL/CHO/catalyst 1
(500:500:1) and toluene was put in an autoclave with in situ IR
monitoring at 60 °C and no CO2 (Figure S11a). After 66%
consumption of BBL (ν(CO, BBL) = 1830 cm−1), the reaction
mixture was pressurized with 40 bar CO2 to initiate CHO/CO2
copolymerization (Table 1, entry 1). The resulting crude AB
block terpolymer comprised 1:1/PCHC:PHB and a molecular
weight of 76 kDa via GPC and two glass transition
temperatures at 2 and 116 °C due to phase separation were
measured. Interestingly, the amount of homopolymeric PHB
increased significantly, if the reaction proceeds to full
conversion for BBL and CHO (Table S5, entry S1). The
major homopolymeric proportion was effected by catalyst 1 due

to the longer reaction time. It promotes elimination/trans-
esterification reactions at the PHB chain (SI, chapter 15), which
lead to unsaturated crotonate end groups that are not able to
participate in the terpolymerization anymore (Scheme S1).
ABA block terpolymers could be obtained by adding CO2 at ca.
50% PHB conversion. When the yield of PCHC reached 92%,
CO2 was released to activate the ROP of the residual BBL
(Table 1, entry 2, Figure 2). Therefore, CO2 acts as a reversible
switching agent, as previously shown by others in related fields.7

A second route B was investigated to create BA block
terpolymers, which was initiated by pressurizing the original
mixture of BBL, CHO, catalyst 1, and toluene with 40 bar CO2
at 60 °C (Table 1, entry 3). Owing to in situ IR monitoring of
the carbonyl stretching bands of BBL, PHB, and PCHC, we
assume that the polymerization began with the exclusive
formation of PCHC and continued until all the epoxide was
consumed (Figure S11b). This presumption was confirmed by
an aliquot 1H NMR spectrum (Figure S21a). The resulting
PCHC unit has a molecular weight of 128 kDa and a bimodal
mass distribution, which is often found in the literature for

Table 1. Terpolymerization of BBL, Epoxides, and CO2 According to Different Reaction Pathways A, B, and C (Figure 1)a,b

entry
[epoxide]: [BBL]:

[cat]
reaction
pathwayb

CO2
[bar]

time
[h]c

conv. BBL
[%]d

conv. epoxide
[%]d

[PC]:[PHB]e prior
to prec.

[PC]:[PHB]f

after prec.
Tg

[°C]g
Mn (PDI)
[kg/mol]h

1 500 (CHO):500:1 A1 40 1.5 66 77 54:46 56:44 2/116 76 (1.3)
2 500 (CHO):500:1 A1+A2 40 4 96 92 49:51 56:44 2/114 146 (1.2)
3 500 (CHO):500:1 B 40 2 87 90 51:49 64:36 1/118 166 (1.2)
4 500 (CHO):500:1 C 3 2 97 86 45:55i 47:53 36 69 (1.6)
5 650 (CHO):350:1 C 3 0.1 56 81 73:27 76:24 91 34 (1.2)
6 500 (CPO):500:1 A1 40 6 95 84 47:53 48:52 4/88 92 (1.6)
7 500 (CPO):500:1 A1 + A2 40 7 75 82 52:48i 61:39 5/73 143 (1.7)
8 500 (CPO):500:1 B 40 6 93 85 48:52 55:45 8/68 45 (1.8)
9 500 (CPO):500:1 C 3 2 58 47 42:58 42:58 24 68 (1.4)

aReaction conditions: CHO/BBL/CO2, 60 °C; CPO/BBL/CO2, 50 °C; 2.0 g toluene, 40 μmol catalyst 1. bAccording to Figure 1. cComplete
polymerization time followed by in situ ATR-IR. dDetermined by 1H NMR spectroscopy of a crude polymer sample. eDetermined by 1H NMR
spectroscopy of a crude polymer sample. fComposition of terpolymer after precipitation in MeOH (homopolymeric PHB stays in solution).
gDetermined by DSC, heating rate: 5 K/min. hMeasured via GPC in THF. iEntry 4, 8%; entry 5, 4%; entry 7, 2% cyclic carbonate was formed.

Figure 2. Formation of an ABA block terpolymer from BBL/CHO/
CO2, monitored by in situ IR spectroscopy. In step I, ROP of BBL
occurred; afterward (step II), the system was pressurized with 40 bar
CO2 until full conversion to PCHC was achieved. Finally (step III),
CO2 was released to create the last PHB block.
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copolymerization of CHO/CO2 (Table S4, entry S2).8,9

Afterward, ROP of BBL occurred (intensity of carbonyl
stretching bond of BBL decreased) only upon complete CO2
release. A polymer with a high molecular weight, narrow PDI,
and two glass transition temperatures was obtained. The mass
distribution of the terpolymer is again bimodal due to the first
bimodal PCHC unit, so contamination of the terpolymer
through PCHC copolymer is unlikely, but cannot be
completely excluded.
Reducing the CO2 pressure to 3 bar resulted in new

polymerization behavior (Route C). Owing to this low
pressure, the copolymerization reaction rate was much lower
compared to that when 40 bar CO2 was used and was thereby
similar to the rate of the ROP of BBL. Therefore, a statistical
terpolymer (Markov-distribution) was produced, which showed
a mixed Tg of 36 °C (Table 1, entry 4).13 The linkages can be
assigned in the 1H NMR spectrum (Figure 3), indicating that

the ring-opening of BBL under these conditions occurs again
over an acyl-oxygen cleavage (Figure S4), accompanied by CO2
insertion after a BBL unit to enable nucleophilic attack at the
epoxide. The reaction pathway for ROP of BBL was confirmed
by an experiment at 3 bar CO2 with CHO and R-BBL (Table
S2, entry S3, retention of conversion). Via 2D-NMR analysis
(HMBC-NMR), a coupling of the H-2 atom (5.10 ppm) with
the C atom of the carbonate (154 ppm) and of the ester (169
ppm) was observed (Figure S10, assignment of H atoms, Figure
3). Increasing the scan rate of HMBC to 32 scans leads to a
detectable coupling signal for the H-3 atom with the vicinal

carbonyl C atom of the ester (169 ppm). Hence, we propose
the following mechanism (Scheme 1): Initially, e.g., a PCHC
chain grows at the zinc center and the alkoxide chain end
attacks the BBL over an acyl-oxygen cleavage. Afterward, either
ROP of BBL proceeds further or CO2 is inserted into the
alkoxide chain, which attacks the epoxide afterward. Then,
copolymerization of CHO/CO2 is possible or ROP of BBL
occurs again. The carbonato chain end is unable to attack BBL.
Terminating the experiment at 3 bar CO2 at an earlier stage
resulted in the same composition (Table S2, entry S1),
indicating that the polymer is not a gradient terpolymer.
Applying solely 1 bar to the one-pot mixture resulted in the
preferential formation of PHB (72%) (Table S2, entry S2).
Varying the CHO:BBL ratio to 650:350 at 3 bar CO2, effected a
statistical terpolymer (76:24, PCHC:PHB) with a high mixed
Tg of 91 °C (Table 1, entry 5), illustrating that the Tg can be
tuned by varying the ratio of BBL/CHO. We determined
whether the different polymerization procedures can be
transferred to other epoxides. CPO was chosen, as CHO and
CPO have nearly the same ring tension and are supposed to
exhibit similar reactivity. We tested catalyst 1 with respect to its
activity for this copolymerization and produced poly-
(cyclopentene carbonate) with the highest reported TOF of
3200 h−1 (Mn = 122 kDa (1.3), 99% polycarbonate, Table S2,
entry S7). Afterward, we performed terpolymerization experi-
ments with BBL, CPO, and CO2 according to reaction
pathways A, B, and C (Table 1, entries 6−9). AB or ABA
block terpolymers were produced with high molecular weights
and two Tg values. However, pathway B (40 or 50 bar CO2)
afforded small signals for the linkages between PHB/PCPC in
the 1H NMR, indicating that in this case, copolymerization
does not occur exclusively (Table S2, entry S8, Figure S18b).
Therefore, the resulting polymer is a gradient polymer rather
than a block terpolymer. Utilization of 3 bar CO2, resulted
again in the preparation of an almost statistical terpolymer with
a mixed Tg of 24 °C.
In summary, we introduced BDICF3-Zn-N(SiMe3)2 as a

versatile and capable catalyst for ROP of β-butyrolactone and
copolymerization of CPO and CO2. Three different terpolyme-
rization procedures out of a mixed monomer feedstock
comprising BBL/CHO(CPO)/CO2 were established. There
is not only a switch on/off CO2 position possible (block
polymers), but even a third option that leads to statistical
terpolymers with a mixed glass transition temperature. This
feature offers many opportunities in terms of polymer
architecture and tuning terpolymer properties.
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therefore has a reaction order of zero. Lowering the pressure to 3 bar CO2, as in the case for the statistical 

terpolymerization, resulted in a switch in the reaction order with respect to carbon dioxide from zero to 

one, indicating that CO2 gets rate-determining at a reduced pressure. Next, thermal and mechanical 

properties have been investigated closer. Differential scanning calorimetry measurements revealed a 

tunable Tg for the statistical polymers ranging from 44 °C to 73 °C. The incorporation of the soft PHB 

into the brittle PCHC also resulted in a reduced Young modulus compared to pure PCHC. In case of a 
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demonstrating the soft PHB part clearly has an impact on the brittleness of PCHC. This 
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ABSTRACT: Terpolymerization reactions with a mixed-monomer
feedstock of epoxides, CO2, and β-butyrolactone (BBL) at two
different CO2 pressures are presented. The Lewis acidic zinc complex
BDICF3−Zn−N(SiMe3)2 1 is able to catalyze both the ring-opening
polymerization (ROP) of BBL and the ring-opening copolymerization
of epoxides and CO2. The carbon dioxide concentration thereby
displays an attractive tool for the chemoselective tailoring of the
incorporation of both monomer types to either a block or a statistical
configuration. A high CO2 pressure (40 bar) leads to a block
structure, whereas 3 bar CO2 allows the two catalytic cycles, ROP of
BBL and ring-opening copolymerization of cyclohexene oxide and CO2, to proceed with similar rates. This results in a statistical
polymerization behavior. Reducing the CO2 pressure from 40 to 3 bar involves a change in the reaction order of CO2 from zero-
to first-order dependency. The statistical polymerization pathway offers a promising route to terpolymers with one mixed-glass
transition temperature that can be adjusted in a range between 5 and 115 °C. Terpolymers in block structure show two
segregated glass transitions. This phase separation was also confirmed via atomic force microscopy. Referring to the mechanical
behavior of the resulting terpolymers, a decrease of the Young modulus for both the block and the statistical structure compared
to the very brittle poly(cyclohexene carbonate) is observed due to the incorporation of soft poly(3-hydroxybutyrate) (PHB). An
enhanced elongation at break is revealed for the block structure when the molecular weights exceed 100 kg/mol. The biobased
monomer limonene oxide is also successfully terpolymerized with CO2 and BBL. Interestingly, the block structure shows a
tunable stress−strain behavior depending on the amount of PHB in the terpolymer.

■ INTRODUCTION

Chemoselective polymerizations from a mixed-monomer
feedstock offer the chance of synthesizing materials with
tailored properties. Combining two different polymer types
into one copolymer opens the option to overcome adverse
properties of the respective homopolymers and create an
enhanced performance of the copolymer. Block copolymers
consisting of two block units linked together are best studied,
but, nevertheless, the synthesis of block polymers seems to be
unlimited by the choice of different monomers, block length,
or degree of branching.1 This synthetic playground was made
mainly possible by the living anionic polymerization. Trans-
ferring this principle of tailoring the sequence of a polymer to
the area of transition-metal-catalyzed polymerizations is
ambitious. One of the general prerequisites is to have a
metal complex that serves as a catalyst for two different types
of monomer.
Polycarbonates derived from epoxides and CO2 are a

promising class of polymers because they display an attractive
method to use carbon dioxide as a C1-feedstock; however, they
suffer from poor mechanical stability.2−11 Meanwhile, the ring-

opening polymerization (ROP) of cyclic esters, e.g., β-
butyrolactone (BBL), enables the synthesis of polyesters with
defined tacticities and molecular weights.12−16 Both polymer
classes are industrially produced via condensation reactions but
are also accessible via ring-opening of the respective monomers
through a suitable catalyst.17 The predominant class of
catalysts for the copolymerization of epoxides and CO2 and
the ROP of different lactones are homogeneous complexes.
Apart from β-diiminate (BDI) zinc complexes,18 only a few
complexes can catalyze both polymerization processes.19−22

Williams introduced dinuclear zinc complexes as a versatile
class of catalysts for the synthesis of polyester-carbonates.23−26

On the one hand, these catalysts are limited to cyclohexene
oxide (CHO) as epoxide and ε-caprolactone as well as lactide
as cyclic ester. On the other hand, the system only allows the
synthesis of block structures.
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We recently investigated the Lewis acidic BDI zinc complex
1, focusing on the simultaneous polymerization behavior of β-
butyrolactone and epoxides with CO2.

27,28 Poly(cyclohexene
carbonate) (PCHC) shows a glass transition at 115 °C but
behaves as a very brittle material in high molecular weights.29

In contrast, poly(3-hydroxybutyrate) (PHB) is regarded as a
very soft polymer when polymerized with BDI zinc catalysts to
its atactic form.30,31 Thus far, a possible application for atactic
PHB is lacking. Combining both polymers in one so-called
terpolymer offers the chance to overcome adverse properties
and to obtain a polymer with tunable thermal and mechanical
properties. Using complex 1 in a one-pot polymerization of
CHO, CO2, and BBL, a chemoselective combination of the
two catalytic cycles was observed. Applying no carbon dioxide
in the beginning lets the ROP of BBL to start, followed by the
epoxide/CO2 copolymerization when the system is pressurized
with 40 bar CO2. This route gives access to defined block
terpolymers with adjustable compositions and molecular
weights (Figure 1). Further, when the CO2 pressure is lowered
to 3 bar, both catalytic pathways run simultaneously indicating
that the two monomer types become statistically incorporated.
This result opened a promising route to novel terpolymers that
exhibit mixed-glass transition temperatures.
This work studied the reaction kinetics of the copolymeriza-

tion reaction in detail to get a better insight into the
polymerization behavior at 3 bar CO2. In addition, the
terpolymers synthesized via the two different approaches were
investigated closer in terms of their thermal and mechanical
behaviors to figure out if the difference in the architecture gets
reflected in any change of properties. Differential scanning
calorimetry (DSC) was used for glass transition and micro-
phase separation analysis. The latter was also examined via
atomic-force microscopy. Stress−strain measurements allowed
the study of the mechanical behavior of the terpolymers.

■ RESULTS AND DISCUSSION

Kinetic Studies. The reaction orders in CO2, CHO, and
catalyst were determined for a more detailed understanding of
the statistical terpolymerization process. In situ attenuated
total reflection infrared (ATR-IR) spectroscopy provides a
valuable tool for monitoring the reaction progress by a linear
increase of the carbonyl stretching bond (νC=O = 1750 cm−1).
Coates and co-workers revealed the CHO ring-opening step to
be rate-determining for BDI−Zn catalysts, whereas CO2
insertion is a fast step (reaction order zero).32 Connecting
two zinc centers by a flexible BDI bridge resulted in high
activities for the copolymerization reaction because it ensures

the spatial proximity of two catalyst moieties.33 A shift for
carbon dioxide from zero- to first-order dependency was
observed for these dinuclear complexes. The switch in the
reaction order occurs at 25 bar CO2. Carbon dioxide insertion
becomes rate-limiting below this pressure, whereas the ring-
opening of CHO follows a zero-order dependency. This shift
can be explained by a very high copolymerization activity with
these flexible tethered complexes. We were curious if a
mononuclear complex like catalyst 1 also exhibits such a shift
in the order of carbon dioxide. Hence, polymerizations with a
varying CO2 pressure ranging from 2 to 40 bar CO2 were
conducted. The initial slopes were plotted in a double
logarithmic plot against CO2 pressure (Figure 2). A shift of
the rate-determining step became clearly visible between 5 and
10 bar CO2.

Subsequently, the orders with respect to cyclohexene oxide
and the catalyst were determined at two different CO2
pressures (i.e., 3 and 30 bar (Figure 3). In contrast to the
previously mentioned dinuclear zinc catalysts where CHO
become zero-order dependent at low carbon dioxide
concentrations, the order with respect to CHO did not change
for catalyst 1. The order in catalyst was also unaffected by the
CO2 pressure. Hence, catalyst 1 showed a rate-determining
behavior of all three components at a pressure of 3 bar CO2.

Terpolymerization of CHO/CPO, CO2, and BBL.
Terpolymers were synthesized via two different pathways.
Block structure was realized via ROP of BBL, followed by the
addition of 40 bar CO2 and the consequent starting of
copolymerization building the polycarbonate block (cf. Figure
1). The second pathway is called the statistical route.
Accordingly, a reduced pressure of 3 bar CO2 enabled

Figure 1. Illustration of the two selected polymerization routes using complex 1. The statistical route runs at 3 bar CO2, while the block pathway
starts with the ROP of BBL and continues with the copolymerization upon addition of 40 bar CO2.

Figure 2. Determination of the order with respect to carbon dioxide
pressure: plot of the intensity of the carbonyl stretching bond of the
polycarbonate (νC=O = 1750 cm−1) versus time dependent on the
carbon dioxide pressure (2.0−40 bar) (left); double logarithmic
plotting of the initial rate against CO2 pressure (right).
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simultaneously proceeding catalytic cycles for both the ROP
and the copolymerization of epoxides and CO2.
Table 1 lists the results of the performed co- and

terpolymerization experiments. The copolymerization of
CHO and CO2 (Table 1, entry 1) proceeded to high
conversions within 0.2 h. PCHC showed a glass transition
temperature of 116 °C and a molecular weight of 149 kg/mol
(Đ = 1.47). Terpolymerizations in a 50:50 ratio of CHO and
BBL were successfully conducted via both the block and the
statistical pathway to molecular weights in two different ranges
(Table 1, entries 2−5). The synthesized block terpolymers
always showed two segregated glass transitions indicating a
phase-separated behavior. The statistical route enabled the
synthesis of terpolymers with one single mix-Tg. Since ROP of
BBL and copolymerization of epoxides and CO2 run at similar
rates at 3 bar CO2, the initial ratio of BBL and epoxide was
reflected in the composition of the terpolymer. This
composition again defined the glass transition temperature
and can, therefore, be purposely adjusted. Terpolymers to high
contents of soft PHB were prepared (Table 1, entries 6 and 7)
to check if terpolymers with a high elongation at break were
also accessible.
A mixed-Tg can be obtained because of the statistical

polymerization behavior at a CO2 pressure of 3 bar. An atactic
PHB homopolymer exhibits a glass transition temperature of 5
°C,27 whereas the pure copolymer PCHC ranged at 115 °C.
Depending on the composition of the terpolymer, this mixed-
Tg can be tuned, and the desired temperature can be reached
on purpose. It is also shown that the composition does not

significantly change during the polymerization progress,
meaning, e.g., a 50:50 ratio in a 500:500:1 = [CHO]:[BBL]:
[cat] reaction can be observed independently of the conversion
(for further compositions, see Table S4). Figure 4 shows a

linear increase of the glass transition temperature with
increasing polycarbonate content, which clearly demonstrates
that the statistical terpolymerization route gives access to a
group of polyester-carbonates with tunable Tg’s. As early as
1956, T. G. Fox established the correlation of a copolymer’s
glass transition temperature and their respective mass fraction,
later known as the Fox equation.34 Taking the statistical
terpolymer in Table 1, entry 3, as an example, the calculated
mixed-Tg is 0.45 × 116 °C + 0.55 × 2 °C = 53 °C. Compared
to the measured Tg of 57 °C, the calculated value fits well. For
the statistical terpolymer in higher molecular weight (Table 1,
entry 5), the calculated Tg deviates by 10 °C from the
measured one.
Cyclopentene oxide (CPO) was also successfully coupled

with CO2 using complex 1 to poly(cyclopentene carbonate) in
a molecular weight of 202 kg/mol (Đ = 1.37) (Table 1, entry
8). The polymer showed a glass transition at 91 °C. The
lowered Tg compared to PCHC is caused by the less rigid five-
ringed polymer backbone. Block and statistical terpolymers
were synthesized in two molecular weight regimes (Table 1,

Figure 3. Reaction order in cyclohexene oxide (left) and catalyst
concentration (right): plotting the initial slope against the
concentration in a double logarithmic scale.

Table 1. Co- and Terpolymerization of Epxides, CO2, and BBL in Different Reaction Pathwaysa

entry [epoxide]:[BBL]:[cat] pathwayb time (h)c conv. epoxided(%) conv. BBLd (%) [PC]:[PHB]e Tg (°C)
f Mn(Đ) (kg/mol)g

1 1000 (CHO):0:1 − 0.2 91 − 100:0 117 149 (1.47)
2 500 (CHO):500:1 block 1.2 77 66 55:45 2/116 76 (1.33)
3 500 (CHO):500:1 stat. 0.2 62 71 45:55 57 64 (1.20)
4 1000 (CHO):1000:1 block 1.2 84 67 60:40 3/124 115 (1.30)
5 1000 (CHO):1000:1 stat. 0.6 63 56 55:45 58 111 (1.28)
6 150 (CHO):850:1 block 4 68 59 22:78 5 73 (1.55)
7 250 (CHO):750:1 stat. 0.8 66 73 25:75 7 63 (1.90)
8 1000 (CPO):0:1 − 1 64 − 100:0 91 202 (1.37)
9 500 (CPO):500:1 block 4 85 93 55:45 8/68 45 (1.81)
10 500 (CPO):500:1 stat. 2 47 54 63:37 55 53 (1.59)
11 1000 (CPO):1000:1 block 3.2 53 58 54:46 3/88 158 (1.35)
12 1000 (CPO):1000:1 stat. 2 57 67 46:54 40 203 (1.57)

aReaction conditions: CHO/BBL/CO2, 60 °C, CPO/BBL/CO2, 50 °C, 2.0 g of toluene. bPathway according to Figure 1. cPolymerization time
followed by in situ IR spectroscopy. dConversion determined via 1H NMR of a crude polymer sample. In cases of low conversions, the reaction was
quenched at an early stage to check whether the two catalytic cycles run at similar rates or not. eAccording to 1H NMR spectrum of the precipitated
polymer. fDetermined via DSC at a heating rate of 5 K/min. gDetermined via GPC in THF relative to polystyrene.

Figure 4. Dependency of the glass transition temperature (°C) from
the polycarbonate content (%) in the respective terpolymer. A
content of 0% corresponds to a PHB homopolymer whereas 100%
represents the copolymer PCHC (left) and poly(cyclopentene
carbonate) (PCPC) (right), respectively. See Table S4 for detailed
polymerization conditions.
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entries 9−12) showing either two separated Tg’s or one
tunable mixed-Tg (see Figure 4, right).
DSC measurements indicate a phase-separated behavior for

the terpolymers in block structure whereas for the statistical
polymers a mixed-Tg was observed. We were curious if such a
phase separation can be observed via atomic force microscopy.
Dip coating of a dilute chloroform solution of the polymer
onto a polished silicon wafer and consequent drying at 60 °C
for 3 h revealed major differences in the surface character.
Figure 5 shows the AFM topographic images of the

terpolymers in a block structure (left, Table 1, entry 4) and
the statistical configuration (right, Table 1, entry 5). The dark
regions were caused by solvent evaporation and therefore a
tapping onto the Si-wafer without any polymeric surface. In
case of the block structure, the height difference of the surface
was more pronounced where the statistical polymer showed a
rather smooth surface. We suppose that the bright spots in
Figure 5a correspond to the PCHC blocks. The respective
height profile also indicated the change in surface height at the

location of the white spots. Their average size of about 50 nm
matches with the calculated PCHC block length (block
polymer in Table 1, entry 4) of 50−100 nm depending on
the coiling behavior. Performing AFM in tapping mode also
allows the recording of the phase shift signal. The respective
phase images are presented in Figure 5b and d.35−38 In case of
the block structure, the isolated PCHC blocks get visible again.
For the polymer in the statistical structure, the phase shift of
the area around the holes and at the small, homogeneously
distributed spots is more pronounced than expected (Figure
5d). Generally, the phase shift always depends on both the
effective Young modulus and the tip−sample contact area; for
soft materials the latter has a higher influence on the phase
shift.39 In case of the statistical terpolymer, the higher Young
modulus might be a reason why the phase shift became
relatively more intense. The regions around the holes show a
very high phase shift. This is most likely caused by the phase
shift of the tip reaching the Si-wafer and not by a change of the
polymeric surface. Taking this into account when comparing
the two phase images, the one for the statistical terpolymer
may show higher phase shifts at some spots, but in
combination with the topographic images, the phase separation
is much less existent. Nevertheless, we cannot exclude that the
spots with a relatively higher phase shift are little isolated
PCHC parts originating from the statistical terpolymer where
an unusual high number of PCHC repeating units is present.
Bearing in mind that AFM scans only represent a small section
of the polymeric surface, it is concluded that phase separation
in case of the block structure became clearly visible.

Mechanical Properties. Considering our initial motiva-
tion of combining a hard and a soft segment together in one
terpolymer, the polymers were hot-pressed to dog-bone-
shaped specimens and investigated with a stress−strain
machine. A thickness of 0.5 ± 0.1 mm was set for all test
specimens. Poly(cyclohexene carbonate) is regarded as a very
brittle polycarbonate in the literature.29 This has been
confirmed for PCHC with a molecular weight of 149 kg/mol
which showed a Young modulus of 2500 MPa and an
elongation at break of 1% (Table 2, entry 1). The overall aim
was to reduce the brittleness of PCHC by the introduction of
soft PHB units. Terpolymers with a 50:50 PCHC/PHB
composition of both block and statistical structure were tested
(Table 2, entries 2 and 3). Both polymers were considered to
be “low MW” in this context with a MW lower than 100 kg/
mol relative to polystyrene. Interestingly, Young moduli
decreased to 1200−1350 MPa, but the elongation at break
remained low at about 1−2%. No difference was observed
between the block and the statistical structure. The decrease of

Figure 5. AFM images of two terpolymers in a different architecture.
(a) AFM topographic image of a polymer in a block structure (Table
1, entry 4) with phase image (b) and (c) AFM topographic image of
the polymer in a statistical configuration (Table 1, entry 5) with phase
image (d).

Table 2. Mechanical Properties of Different CHO Containing Co- and Terpolymers Measured with Dog-Bone-Shaped
Specimens Obtained via Hot Pressinga

entry structure [PCHC]: [PHB] Mn(Đ) (kg/mol) Young modulus (MPa) tensile strength (MPa) elongation at break (%)

1 − 100:0 149 (1.47) 2500 (±100) 43 (±5) 1 (±0.3)
2 block, low MW 55:45 76 (1.34) 1200 (±50) 17 (±3) 1.3 (±0.3)
3 stat., low MW 45:55 64 (1.20) 1350 (±60) 18 (±3) 1.8 (±0.2)
4 block, high MW 60:40 115 (1.29) 1170 (±50) 26 (±3) 5 (±0.2)
5 stat., high MW 55:45 111 (1.28) 1600 (±100) 23 (±2) 1.5 (±0.3)
6 block, high PHB 22:78 73 (1.53) 261 (±30) 5 (±0.6) 225 (±40)
7 stat., high PHB 25:75 101 (1.37) 150 (±20) 5 (±0.5) 350 (±50)

aThe Young modulus of all polymers is determined at the initial region of the linear stress−strain. Dog-bone-shaped specimens have a thickness of
0.5 ± 0.1 mm and are tested with a strain rate of 5 mm/min.
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the Young moduli clearly indicates an impact of the PHB, but
nevertheless the poor elongation at break is still dominated by
the brittle PCHC part. Doubling the MW of the terpolymers
(“high”MW) revealed an attractive difference between the two
structures (Table 2, entries 4 and 5). While the block
terpolymer exhibited a lower Young modulus (1170 vs 1600
MPa) than the statistical terpolymer, the elongation at break
was remarkably higher (5% vs 1.5%). This finding clearly
demonstrates the impact of the polymers’ architecture on the
mechanical behavior on the one hand and represents an
explicit improvement of the brittleness of PCHC on the other
hand. In the case of the block structure, a coiling of the two
different segments is assumed to be possible more easily,
enabling this enhanced elongation at break.
In the case of increasing the PHB content to 75%, a drastic

decrease of the Young modulus was observed accompanied by
an elongation at break of more than 200% for both
architectures. This behavior can solely be explained by a
predominant influence of the soft poly(3-hydroxybutyrate)
block and gives access to a useful application of atactic PHB.
Co- and terpolymers bearing poly(cyclopentene carbonate)

moieties were also investigated as regards their mechanical
performance (Table S6). PCPC itself behaved like a very rigid
plastic but showed a slightly increased elongation at break
compared to PCHC because of the lower Tg of 91 vs 115 °C.
All the conclusions drawn from the results of Table 2 were
confirmed by the PCPC-containing terpolymers. The incor-
poration of PHB lowered Young moduli, but it took high MW
and the block structure to end up with enhanced properties.
Terpolymerization of LO, CO2, and BBL. Limonene

oxide displays a promising biobased alternative to the
established epoxide monomers, especially cyclohexene oxide
and propylene oxide. The respective polymer poly(limonene
carbonate) (PLC) shows a high glass transition temperature of
130 °C; therefore, it is also represents an interesting candidate
for the terpolymerization with β-butyrolactone.40 First,
copolymerization reactions with limonene oxide and CO2
were conducted to obtain PLC in different molecular weights
(Table 3, entries 1 and 2). BDI complexes are known to only
incorporate trans-limonene oxide; hence, conversions were
indicated based on trans-LO.28,41 Tunable molecular weights
could be obtained in a range suitable for the application as
rigid plastics depending on the catalyst-to-monomer ratio. The
established reaction pathways for the terpolymerization of
epoxides, CO2, and BBL were transferred to limonene oxide.
Applying 40 bar CO2 in the beginning of the reaction
successfully started the coupling of LO and CO2 (Table 3,
entry 3, called pathway B). A complete release of CO2 was

required for the PHB block formation. Figure 6 illustrates the
in situ IR monitoring of the polymerization reaction. The

intensity of the carbonyl stretching bond of PLC increased in
the presence of carbon dioxide. When CO2 was released after
3.25 h, the start of the BBL ring-opening polymerization was
expected, observable with a further increase of the intensity of
vC=O = 1750 cm−1. Surprisingly, a depolymerization of PLC
occurred instead of the initiation of the ROP. Our group
recently investigated the ceiling temperature of PLC and
observed depolymerization at 60 °C at elevated conversions.28

A release of carbon dioxide like that in pathway B strongly
favors depolymerization. The reaction ran for an additional 6 h
and led to a total conversion of LO of 6% and BBL of 7%.
Switching to pathway A means starting with the ROP and
enabling copolymerization by the addition of CO2 after almost
full conversion of BBL. Terpolymerizations were successfully
performed to adjustable compositions (Table 3, entries 4 and
5) bearing two glass transition temperatures due to phase
separation. Selective block formation was verified via aliquot
GPC analysis (Table S5, entry S1, Figure S5).
Attempts were made to realize a statistical incorporation of

both monomer types (Table 3, entry 6), despite the relatively
low ceiling temperature of PLC. An optimum CO2 pressure of
9 bar was applied, where copolymerization and ROP exhibited

Table 3. Co- and Terpolymerization of LO, CO2, and BBL in Different Reaction Pathwaysa

entry [trans-LO]: [BBL]:[cat] pathway time (h)b conv. trans-LOc(%) conv. BBLc (%) [PLC]:[PHB]d Tg (°C)
e Mn(Đ) (kg/mol)f

1 200:0:1 − 7 62 − 100:0 126 80 (1.42)
2 350:0:1 − 8 69 - 100:0 131 244 (1.24)
3 250:250:1 block, B 10 6 7 48:52 n.d. n.d.
4 250:250:1 block, A 6 63 74 46:54 2/126 90 (1.30)
5 375:125:1 block, A 8 74 78 79:21 1/129 149 (1.23)
6 250:250:1 stat. 22 22 26 55:45 53 9 (1.39)
7 400:400:1 block, A 16 65 66 58:42 3/131 211 (1.37)
8 600:200:1 block, A 16 66 60 75:25 1/133 233 (1.34)

aReaction conditions for the different pathways, see the Supporting Information. bComplete polymerization time followed by in situ ATR-IR.
cDetermined by 1H NMR spectroscopy of a crude polymer sample. dAccording to 1H NMR spectrum of the precipitated polymer. eDetermined by
DSC at a heating rate of 5 K/min. fMeasured via GPC in CHCl3 relative to polystyrene standards.

Figure 6. Monitoring of the terpolymerization of LO, CO2, and BBL
via in situ IR spectroscopy. 40 bar CO2 was applied in the beginning
and released after 3.25 h. A decrease of the carbonyl stretching bond
at 1750 cm−1 indicates the depolymerization of PLC.
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the same reaction rates. As expected, conversions were low
because of the possible depolymerization of PLC at low LO/
CO2 concentrations and a lower activity of the ROP of BBL at
40 °C compared to 60 °C. Even an extended reaction time of
22 h only led to conversions of 22% and 26%, respectively.
Additionally, two terpolymers in block structure (Table 3,
entries 7 and 8) were synthesized in different compositions to
high molecular weight polymers for mechanical testing.
Mechanical Properties. PLC displayed a very attractive

property regarding processability because polymer films could
be readily obtained via solvent casting from a polymeric
solution in dichloromethane. The solvent became fully
evaporated without creating any surface irregularities like
bubbles. This marks a very interesting difference from the
terpolymers derived from cyclohexene oxide because they
could hardly be used for solvent casting. The aim was to
produce dog-bone-shaped specimens for further testing in a
stress−strain machine. A thickness of 250 ± 50 μm was set for
all polymer specimens. First, PLC in different molecular
weights (80 and 244 kg/mol) was tested. Independent of the
molecular weight, high Young moduli (2250 and 2350 MPa)
and a similar elongation at break of 6% and 4% were obtained.
Testing the terpolymer in block structure (Table 4, entry 2)

revealed a softer behavior based on the reduced Young
modulus but did not show an enhanced elongation at break.
Indeed, the latter could be improved when molecular weights
were increased (Table 4, entries 4 and 5). The elongation at
break could be successfully tuned from 13 ± 4% to 18 ± 9%
simply via a higher PHB content (Figure 7). This finding again
emphasizes the necessity of high molecular weights and a block
structure to realize enhanced material properties via
terpolymerization.

■ CONCLUSION

The terpolymerization behavior of a Lewis acidic BDI zinc
complex 1 with a mixed-monomer feedstock of epoxide, CO2,
and BBL was reported herein. Two different polymerization
pathways were used to selectively realize polyester-carbonates
in both a block and a statistical configuration. The block
structure was realized by ring-opening polymerization of BBL
in the beginning, followed by the addition of 40 bar CO2 and
the start of the epoxide/CO2 copolymerization. Lowering the
carbon dioxide pressure to 3 bar allowed the two catalytic
cycles to run at similar rates, thereby enabling a statistical
incorporation of both monomer types. A kinetic study of the
pressure-dependent copolymerization of CHO and CO2
revealed a change in the reaction order with respect to carbon
dioxide from zero- to first-order dependency. The switch in the
reaction order occurred at a pressure of 5 bar CO2. Apart from
CHO, cyclopentene oxide and limonene oxide were used as
epoxides in the terpolymerization to both the block and the

statistical structure. The terpolymers were tested in terms of
their thermal and mechanical behaviors using DSC and stress−
strain analysis. The polymers in block structure showed two
glass transitions (i.e., 5 and 115 °C) because of the phase
separation, whereas only one mixed-Tg was observed for the
statistical architecture. AFM images show severe differences in
the height profile between the two structures. The terpolymer
in block structure reveals a rougher surface with phase-
separated PCHC spots. In the case of the epoxides CHO or
CPO, statistical terpolymers were obtained in different
compositions disclosing a tunable glass transition temperature.
The mechanical analysis revealed an overall lower Young
modulus for the terpolymers compared to PCHC because of
the incorporation of soft PHB. To realize an enhanced
elongation at break, high molecular weights (>100 kg/mol)
and a block structure were required. The two polymerization
pathways were transferred to the biobased monomer LO.
PLC−PHB block polymers were then synthesized to high
molecular weights and showed a tunable elongation at break
depending on the amount of PHB incorporation. Overall, this
terpolymerization behavior opens the possibility of modifying
CO2-based polycarbonates specifically depending on the area
of application. Statistical terpolymers are Tg-tunable whereas
the block structure shows enhanced mechanical properties.

■ EXPERIMENTAL SECTION
General. All reactions containing air- and/or moisture-sensitive

compounds were performed under dry argon atmosphere using
standard Schlenk or glovebox techniques. All chemicals were

Table 4. Mechanical Properties of Different Limonene Oxide Containing Co- and Terpolymers Measured with Dog-Bone-
Shaped Specimens Obtained via Solvent Castinga

entry structure [PLC]: [PHB] Mn(Đ) (kg/mol) Young modulus (MPa) tensile strength (MPa) elongation at break (%)

1 low MW 100:0 80 (1.42) 2250 ± 200 58 ± 3 6 ± 1
2 block, low MW 46:54 90 (1.30) 1800 ± 100 44 ± 1 4 ± 1
3 high MW 100:0 244 (1.24) 2350 ± 100 52 ± 2 3.5 ± 0.5
4 block, high MW 46:54 211 (1.37) 1450 ± 100 38 ± 2 18 ± 9
5 block, high MW 79:21 233 (1.34) 1800 ± 200 45 ± 3 13 ± 4

aThe Young modulus of all polymers is determined at the initial region of the linear stress−strain regime. Dog-bone-shaped specimens have a
thickness of 0.25 ± 0.05 mm and are tested with a strain rate of 5 mm/min.

Figure 7. Stress−strain curves of poly(limonene carbonate) speci-
mens with a varying poly(3-hydroxybutyrate) content in the
terpolymer.
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purchased from Aldrich or TCI. Monomers were dried over calcium
hydride or sodium hydride and distilled prior to polymerization.
Limonene oxide used in this work contained 54% trans-LO and 46%
cis-LO. CO2 was purchased from Westfalen (purity 4.6). Dry toluene
was purified with an MBraun MB-SPS-800 solvent purification
system.
NMR (1H and 13C) measurements were recorded on a Bruker

AVIII500 Cryo and an AVHD500 spectrometer. Chemical shifts δ
were reported in ppm relative to tetramethylsilane and calibrated to
the residual 1H or 13C signal of the deuterated solvent. Deuterated
solvents were obtained from Aldrich and dried over a 3 Å molecular
sieve.
In situ IR measurements were performed under argon atmosphere

using an ATR IR MettlerToledo system. Kinetic investigations were
all performed in the same reactor under identical conditions. GPC
was performed on a Varian PL-GPC 50 using THF (HPLC grade)
with 0.22 g L−1 2.6 di-tert-butyl-4-methylphenol and a flow rate of 1
mL/min at 40 °C. Poly(limonene carbonate)-containing polymers
were measured at a Varian PL-GPC 50 using chloroform (HPLC
grade) with a flow rate of 1 mL/min at 25 °C. Polystyrene standards
were used for calibration.
DSC was conducted on a DSC Q2000 instrument. First 3−6 mg of

the polymer was filled into a DSC aluminum pan and heated from
−30 to 170 °C at a rate of 5 K/min. The reported values were
determined with TA Universal Analysis from the second heating
cycle.
Stress−strain measurements were performed on a ZwickRoell

machine with a strain rate of 5 mm/min and analyzed with testXpert
II software. First, the polymer was grinded and dried in vacuo to
constant weight. The solvent-free polymer was checked via 1H NMR.
Specimens (dog-bone-shaped, 50 mm long, 4 mm wide (smallest
point)) were produced by pressing the polymeric powder at a certain
temperature (usually 30 °C above the Tg) at 50−100 bar for 3 h. A
thickness of 0.5 ± 0.1 mm was set. The specimens were checked with
regard to a homogeneous surface. At least three specimens were tested
for all the different polymers investigated in this work. All
poly(limonene carbonate)-containing co- and terpolymers were
solvent-cast from a polymeric solution in dichloromethane. The
solvent was then slowly evaporated overnight, and the film was dried
to constant weight at 80 °C for 1 h. The thickness of the film was 0.25
± 0.05 mm. The dog-bone-shaped specimens were obtained through
a polymer film stamping. AFM measurements were obtained with an
Asylum Research AFM MFP-3D from Oxford instruments in the
tapping mode and analyzed with Gwyddion software.
Synthesis. Both the ligand and the catalyst were synthesized

according to the literature procedures.28,42

Polymerization. All polymerizations were performed with in situ
monitoring using a React-IR Mettler-Toledo system. The 50 mL steel
autoclaves were equipped with a diamond window, a heating device,
and mechanic stirring. The autoclaves were heated to 130 °C under
vacuum overnight prior to polymerization at the desired temperature.
All chemicals were weighed in the glovebox, stored in syringes, and
rapidly transported to the reactor. The reaction was terminated by
adding dichloromethane and a drop of methanol and transferred to a
flask. The consequent removal of the solvent under a reduced
pressure allowed the determination of yield and selectivity via NMR/
weight of the polymer. The dissolved polymer (dichloromethane) was
precipitated in methanol and dried to constant weight. See the
Supporting Information for the detailed polymerization procedures.
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6 ABSTRACT: Terpolymerizations of cyclohexene oxide (CHO), CO2, and
7 the Michael-type monomer 2-vinylpyridine (2VP) are presented. The
8 combination of two distinct polymerization mechanisms was enabled by the
9 synthesis of a heterobifunctional complex (3). Its β-diiminate zinc moiety
10 allows the ring-opening copolymerization of CHO and CO2, whereas the
11 yttrium metallocene catalyzed the rare earth metal-mediated group-transfer
12 polymerization of the polar vinyl monomer. Both units were connected via the
13 CH-bond activation of a pyridyl-alkoxide linker. Matrix-assisted laser
14 desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS)
15 revealed the successful transfer of the linker to the end-group of the respective homopolymers poly(cyclohexene carbonate)
16 (PCHC) and poly(2VP) (P2VP) being the prerequisite for copolymer formation. Aliquot gel-permeation chromatography (GPC)
17 analysis and solubility behavior tests confirmed the P2VP-block(b)-PCHC terpolymer formation via two pathways, a sequential and a
18 one-pot procedure. Furthermore, the versatility of the method was demonstrated by introducing 2-isopropenyl-2-oxazoline (IPOx)
19 as the second Michael-type monomer that yielded the terpolymer poly(IPOx)-b-PCHC.

20 Although the ring-opening copolymerization (ROCOP) of
21 epoxides and CO2 was first reported 50 years ago, it
22 remains a field of intense research.1 The resulting aliphatic
23 polycarbonates display attractive properties, such as biodegrad-
24 ability and high transparency, but the industrial demands in
25 terms of thermal and mechanical performance have not been
26 met yet.2−4 The utilization of discrete, homogeneous transition
27 metal catalysts allowed the precise synthesis of CO2-based
28 polymers in high activities and selectivities.5−8 In order to
29 improve the functionality of epoxide/CO2-based aliphatic
30 polycarbonates, block copolymers have been widely exploited
31 in the last years. First, they were coupled with anhydrides to
32 afford a novel class of polyesters.9,10 Later, different lactones
33 were incorporated as an additional block sequence by
34 combining the ring-opening polymerization of lactones and
35 the ROCOP of epoxides and CO2.

11−20 Only a few catalysts
36 were able to catalyze both reactions simultaneously, mainly β-
37 diiminate zinc and dizinc phenoxide systems. Recently, our
38 group reported the Lewis acidic BDI-Zn-N(SiMe3)2 complex
39 1, which catalyzed the ROP of β-butyrolactone and the
40 ROCOP of cyclohexene oxide and CO2 to terpolymers in a
41 block and statistical configuration, depending on the applied
42 CO2 pressure.

21

43 The current study aimed to investigate the potential
44 combination of aliphatic polycarbonates with polar polyolefins,
45 derived from the polymerization of Michael-type monomers.
46 The group-transfer polymerization (GTP) was initially

47observed by Webster et al. in 1983, where organosilicon
48compounds served as the initiators for the methyl methacrylate
49(MMA) polymerization.22 Since then, GTP of polar
50monomers evolved to a valuable tool for the precise synthesis
51of tailor-made functional materials.23,24 Rare-earth metal
52(REM) mediated GTP thereby plays an important role since
53high activities and the living character of the polymerization
54allow the synthesis of high-performance (co)polymers using
55monomers that range from diethyl vinylphosphonate to MMA
56and 2-vinylpyridine (2VP).25−30 Currently, few studies have
57reported the generation of block copolymers consisting of
58polar polyolefins, such as PMMA and a polyester block from
59the ROP of a lactone.31−34 The groups of Wang and Wu
60reported catalytic systems where the metal center catalyzes
61ROCOP of an epoxide and CO2, and through the introduction
62of a second functional group, the reversible addition−
63fragmentation chain transfer polymerization of vinyl monomers
64was enabled.35,36 Also, a Co(III) salen complex was presented
65that can be switched from radical polymerization to ROCOP
66by applying O2 as an external stimulus.37 But, none of these
67approaches combined GTP and ROCOP. Since BDI

Received: December 30, 2019
Accepted: February 19, 2020

Letterpubs.acs.org/macroletters

© XXXX American Chemical Society
A

https://dx.doi.org/10.1021/acsmacrolett.9b01025
ACS Macro Lett. XXXX, XXX, XXX−XXX

A Hetereonuclear, Monomer-Selective Zn/Y Catalyst Combines Copolymerization of Epoxides and 
CO2 with Group Transfer Polymerization of Michael-type Monomers 

47 



68 complexes are not known to catalyze the GTP of polar vinyl
69 monomers, a heterobifunctional catalyst is required which
70 connects two catalytically active moieties. Thereby, the zinc
71 center would enable the coupling of the epoxide with CO2,
72 while the yttrium metallocene unit would precisely control the

f1 73 REM-GTP (Figure 1).

74 Herein, we report the synthesis of a novel bifunctional
75 catalyst 3 via the CH-bond activation of a BDI-Zn-O-pyridyl
76 and Cp2Y(CH2TMS)(thf). The successful end-group function-
77 alization of the respective homopolymers, PCHC, P2VP, and
78 PIPOx, was confirmed via MALDI-TOF MS. Catalyst 3
79 displayed high activity and chemoselectivity toward the
80 ROCOP of CHO and CO2 and the REM-GTP of 2VP and
81 IPOx to give block copolymers using a sequential and a one-
82 pot procedure. The resulting terpolymers were analyzed via
83 GPC, solubility behavior, and differential scanning calorimetry
84 (DSC).
85 The introduction of a suitable linking moiety was required in
86 order to combine two different, catalytically active centers. As

s1 87 displayed in Scheme 1, the −N(TMS)2 initiating group of 1
88 was successfully replaced by a pyridyl alcohol, yielding 3′,
89 which in turn underwent a σ-bond metathesis between one
90 adjacent methyl group and Cp2Y(CH2TMS)(thf) and afforded

91the dinuclear complex 3. The CH-activation was monitored via
92

1H NMR spectroscopy and was completed after stirring for 4 h
93at rt (Figure S5).
94The homopolymerization of the Michael-type monomer
952VP with complex 3 was performed to check the effect of the
96two transition metal centers on the activity of the complex in
97the GTP which solely proceeded at the yttrium center (Figure
98S7). P2VP was produced and the subsequent MALDI-MS end-
99group analysis of the oligomerization experiment revealed that
100the pyridyl moiety was linked to the polymer (Figure S8). Due
101to the high structural flexibility of the linking unit in 3, the
102isolation of crystals for single-crystal X-ray diffraction failed.
103Although BDI complexes, bearing zinc alkoxide initiators, are
104known to catalyze the coupling of CHO and CO2, complex 3
105 t1was tested in the copolymerization of CHO and CO2 (Table 1,
106entry 1).5 In situ attenuated total reflection infrared spectros-
107copy of the polymerization at 30 bar CO2 disclosed a reaction
108time of 10 h (Figure S9). Compared with the already reported
109complex 1, the bifunctional complex 3 was less active for the
110coupling of CHO and CO2, but full conversion could still be
111achieved (yttrium metallocene 2 did not show conversion for
112the CHO/CO2 coupling, Figure S6).

7 This prolonged reaction
113time could not be explained in detail, but a steric shielding of
114the zinc center and a competing coordination of CO2 at the
115yttrium center was assumed. Electrospray ionization mass
116spectrometry (ESI-MS) and MALDI-MS measurements
117confirmed the presence of the pyridyl initiator as the polymer
118end-group, which was essential for the successful linking of the
119two planned polymer blocks (Figures S10 and S11).
120Complex 3 was first tested in the sequential route with the
121ROCOP of CHO and CO2 in the beginning, yielding PCHC
122in >99% conversion (Table 1, entry 2). Surprisingly, no P2VP
123formation could be observed upon adding 100 equiv of 2VP.
124The reason could be addressed via 1H NMR spectroscopy by
125applying solely CO2 on 3 (Figure S12). Carbon dioxide
126affected the dissociation of the coordinated thf molecule as
127well as the η5-coordination of the Cp ligands. Moreover, the
128signal of the CH2 group resulting from the CH-activation
129disappears, implying that the yttrium moiety was no longer
130bound to the pyridyl linker. GPC analysis of the PCHC block
131revealed a monomodal distribution, although bimodality for
132PCHC is well-known in literature and can be caused by
133catalytic traces of water that act as a chain-transfer agent.38−41

134Considering that such a chain-transfer may generate
135homopolymeric byproducts, the polymerizations with catalyst
1363 were performed under inert conditions and freshly distilled
137monomers are used to prevent this side reaction. The second
138possibility for a sequential route starts with the homopolyme-
139rization of 2VP prior to the addition of CHO and CO2. Indeed,
140conversion both to P2VP and PCHC could be observed
141 s2(Table 1, entry 3). Scheme 2 presents the possible reaction
142pathways for the sequential route and a one-pot procedure.
143In order to confirm that both polymer blocks were
144connected to each other and no homopolymeric byproducts
145were formed, an aliquot was taken before the epoxide was
146added. The absolute molecular weight for the P2VP block was
147determined by GPC analysis in DMF. A good agreement
148between the experimentally determined and theoretically
149expected Mn values indicates a high initiator efficiency of
15070%. GPC analysis of the P2VP aliquot and the final
151terpolymer revealed a shift of the GPC traces to lower
152 f2retention times (Figure 2).

Figure 1. Top: ROCOP of CHO and CO2 with the Lewis acidic zinc
catalyst 1 to PCHC. Middle: REM-GTP of Michael-type monomers
(MM) with the yttrium metallocene complex 2. Bottom: Structure of
a heteronuclear complex 3, bearing both an yttrium and a zinc center
displays the concept for the terpolymerization reaction.

Scheme 1. Replacement of the Initiating Group of 1,
Followed by the CH-Bond Activation of 3′ with
Cp2Y(CH2TMS)(thf), Yielding the Bifunctional Complex 3
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153 Solubility experiments were also performed. PCHC has no
154 solubility in methanol, but the terpolymer consisting of 34%
155 P2VP and 66% PCHC was soluble in methanol, as confirmed
156 by 1H NMR spectroscopy (Figure 2). It was also observed that
157 the composition slightly changed to P2VP:PCHC = 41:59,
158 owing to traces of homopolymeric PCHC. The same solubility
159 test was conducted for an artificial polymer blend, where no
160 PCHC was found in the methanol phase (Figure S13). Next,
161 200 equiv of CHO were added to the reaction mixture after
162 successful 2VP polymerization, and again, a terpolymer was
163 formed (Table 1, entry 4). GPC analysis confirmed the
164 successful block formation (Figure 2). Due to the very high
165 PCHC content, the terpolymer was not soluble in methanol
166 any longer. The insoluble part was characterized via 1H NMR,
167 and the same P2VP:PCHC composition was found, indicating
168 that the P2VP block was connected to the PCHC unit
169 (homopolymeric P2VP is soluble in methanol; Figure S31).
170 Also, for this polymerization, a slight shouldering of the GPC
171 trace is observed that is most likely caused by homopolymeric
172 PCHC. We were curious if the one-pot pathway also yields

173P2VP/PCHC terpolymers. Since CO2 led to the decom-
174position of the yttrium unit, both monomers, 2VP and CHO,
175were mixed with 3 in the autoclave, and after stirring for 4 h,
17630 bar CO2 was applied. The conversion of 2VP decreased,
177probably due to the competing coordination of CHO at the
178yttrium moiety. Nevertheless, a terpolymer with a monomodal
179distribution and a dispersity of 1.30 was obtained (Table 1,
180entry 5). This finding demonstrates that the one-pot procedure
181allows the switch from the REM-GTP to the ROCOP by the
182addition of carbon dioxide. DSC measurements of a P2VP-b-
183PCHC terpolymer revealed a mixed glass transition temper-
184ature (Tg) of 110 °C (Tg,PCHC = 117 °C, Tg,P2VP = 97 °C),
185while thermogravimetric analysis indicated a decomposition
186temperature of Tmax = 280 °C (Figures S33 and S34). In
187addition, IPOx as a second Michael-type monomer was
188selected to test the versatility of the system. ESI-MS end-
189group analysis of the oligomerization experiments showed the
190successful transfer of the pyridyl-initiating group to the PIPOx
191polymer (Figure S35). Terpolymerization attempts were
192conducted in both pathways (Table 1, entries 6 and 7), and
193high IPOx conversions (>77%) in high initiator efficiencies (I
194> 61%) resulted in PIPOx/PCHC terpolymers of equimolar
195composition. Two glass transitions were observed at 125 and
196185 °C (Tg,PCHC = 117 °C, Tg,PIPOx = 174 °C; Figure S36).
197In conclusion, we introduced a bifunctional complex bearing
198a Lewis acidic zinc moiety and an yttrium metallocene unit,
199linked via a pyridyl-alkoxide linker. Terpolymerizations were
200achieved by connecting the ROCOP of epoxides and CO2 at
201the zinc center and the REM-GTP of Michael-type monomers

Table 1. Terpolymerization of CHO and CO2 with 2VP and IPOx, Respectively, Using the Bifunctional Catalyst 3

entry feeda reaction pathwayb conv. Ac [%] Mn (A)
d (Đ)e [kg/mol] If conv. Bc [%] Mn (A-b-BC)

g (Đ) [kg/mol] [A]:[BC]h

1i CHO100 98 28.2 (1.32) 0:100
2 2VP100:CHO100 sequential 0 >99 17.5 (1.20)j 0:100
3 2VP100:CHO100 sequential 58 8.7 (1.16) 0.70 97 20.0 (1.25) 34:66
4 2VP100:CHO200 sequential 57 7.0 (1.33) 0.86 93 37.2 (1.37) 18:82
5 2VP100:CHO100 one pot 30 4.7k (1.13) 0.68 93 17.0 (1.30) 23:77
6 IPOx100:CHO100 sequential 82 14.9k (1.41) 0.61 99 23.0 (1.37) 50:50
7 IPOx100:CHO100 one pot 77 9.7k (1.56) 0.88 97 17.7 (1.40) 41:59

aMonomer feed of the respective monomers, [3] = 8.39 μmol in 1.2 mL toluene. bReaction pathway according to Scheme 2. cConversion
determined via 1H NMR spectroscopy. dAbsolute molecular weight of block A (P2VP) determined via triple detection GPC analysis in DMF as
eluent at 30 °C (dn/dc = 0.149 mL/g). ePolydispersity calculated from Mw,GPC/Mn,GPC determined via GPC in DMF. fInitiator efficiency I =
Mn, theo/Mn(A), Mn, theo = eq (2VP/IPOx) ×Mn (2VP/IPOx) × conversion. gMolecular weight of the final terpolymer determined via GPC analysis
in DMF as eluent at 30 °C relative to PMMA standards. hComposition of the terpolymer after precipitation in pentane determined via 1H NMR
spectroscopy. iPolymerization performed in an autoclave with in situ IR monitoring. jOnly PCHC was produced. kAbsolute molecular weight of
block A determined via 1H NMR spectroscopy.

Scheme 2. Overview of the Two Possible Polymerization
Pathways

Figure 2. GPC traces. Left and middle: shift of signal from P2VP block (blue) to P2VP-PCHC terpolymer (black) for Table 1, entries 3 and 4,
respectively. Right: 1H NMR spectra (right) of a P2VP-PCHC terpolymer (Table 1, entry 3) prior to (black) and after (green) washing with
methanol compared with the spectrum of the insoluble part (red).
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202 at the yttrium side. The resulting two-block terpolymers could
203 be obtained both via a sequential and a one-pot procedure and
204 consist of P2VP-b-PCHC and PIPOx-b-PCHC. This combi-
205 nation of aliphatic polycarbonates and polar polyolefins,
206 therefore, offers many possibilities in terms of synthetic
207 variations and terpolymer properties that are not accessible
208 with the respective homopolymers.
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(18) 309Kröger, M.; Folli, C.; Walter, O.; Döring, M. Alternating
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Content 

Poly(cyclohexene carbonate) is considered as the benchmark system in the context of ROCOP of 

epoxides and CO2 catalyzed by various complexes. In contrast, the novel poly(limonene carbonate) is 

only accessible by two different catalysts. In this study, a BDICF3-Zn-N(SiMe3)2 serves as an active 

initiator for both CHO and LO with CO2. The synthesis of the two copolymers was studied with in situ 

IR spectroscopy to gain valuable information for the upscaling process which was performed in a 1 L 

reactor to yield 125 g PCHC and 45 g PLC. After removal of the catalyst, the polymers were 

characterized regarding thermal stability in a muffle oven and consequent GPC analysis to detect chain 

breaks. Also, the grinded polymer was used for the preparation of round-shaped specimens. Multiaxial 

pressure tests and DMA analysis reveal major differences compared to the commercial polymers 

Makrolon®, Durabio®, and PMMA. The aliphatic polycarbonates turned out to be less brittle than 

PMMA but also less impact resistant than Makrolon® and Durabio®. Additionally, terpolymerization 

reactions with CHO, LO, and CO2 were performed. Polymerization with in situ NMR spectroscopy 

indicate the exclusive polymerization of CHO/CO2 in the beginning and full CHO conversion is reached 

prior to LO/CO2 polymerization. Diffusion-ordered NMR spectroscopy confirmed the presence of a 

terpolymer with one diffusion coefficient.  
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Abstract 

The ring-opening copolymerization (ROCOP) of epoxides and CO2 provides an alternative approach 

towards polycarbonates and due to their aliphatic nature represents an interesting alternative to 

bisphenol-A based polycarbonates. A Lewis acidic BDICF3-Zn-Si(Me3)2 complex 1 is used in the 

ROCOP of CO2 with cyclohexene oxide (CHO) and limonene oxide (LO), respectively. The knowledge 

gained from polymerizations monitored via in situ IR spectroscopy was used to upscale the reaction to 

a 1 L reactor. The two products poly(cyclohexene carbonate) (PCHC) and poly(limonene carbonate)

(PLC) were then characterized via thermal analysis, a multiaxial pressure test, and dynamic mechanical 

analysis and compared with commercial polymers. While PCHC and PLC were both thermally stable at 

150 °C for 20 minutes and only minor decomposition occurred at 180 °C, PLC is prone to cross-linking 

at elevated temperatures. This could be prevented by hydrogenation of the double bond or by the 

addition of an antioxidant. In the mechanical performance, the aliphatic polymers ranged between the 

highly impact resistant Durabio® and the brittle PMMA but broke without a splintering of the material. 

Overall, this study enabled a classification of CO2-based polycarbonates, especially of the novel PLC.

Additionally, complex 1 was active in the terpolymerization of CHO, LO, and CO2. The formation of

an actual terpolymer was confirmed via aliquot gel-permeation chromatography and diffusion-ordered 

NMR spectroscopy. High-pressure NMR techniques reveal an interesting kinetic feature. CHO gets 

copolymerized with CO2 exclusively, and LO incorporation only starts when CHO is fully consumed.  

1. Introduction

When Inoue and coworkers applied carbon dioxide to a mixture of diethylzinc, water and propylene 

oxide in 1969, they produced the aliphatic poly(propylene carbonate) (PPC) for the first time.1-2 

Although the heterogeneous zinc glutarate enabled a small scale industrialization of PPC, research 

focused more on homogeneous systems in the last centuries since they exhibit the highest activities and 

selectivities for the ring-opening copolymerization of epoxides and CO2.3-4 The most important ligand

structures have turned out to be porphyrines,5 salens,6-7 phenoxides,8-9 or β-diiminates (BDI)10-12. The 

copolymerization of cyclohexene oxide (CHO) and CO2 usually serves as a benchmark in catalysis 

research regarding polymerization activity.13-17 Propylene oxide (PO) and the bio-based epoxide 
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limonene oxide (LO) are also studied intensively but overall lower activities are observed. Especially in 

case of limonene oxide, only two catalytic systems are known to promote the coupling with CO2. In 

2004, Coates et al. tested a BDI-Zn-OAc complex for the copolymerization of limonene oxide and CO2 

and observed a TOF of 37 h-1.18 Interestingly, only the trans-isomer was consumed during the 

polymerization. It was not until 2015 that Kleij and coworkers synthesized an amino(triphenolate)

aluminum complex showing a moderate activity of 3 h-1 but the incorporation of both stereoisomers.19 

In 2017, our group reported a BDI zinc complex bearing two electron-withdrawing groups and

an -N(SiMe3)2 initiating group.20 This BDICF3-Zn-N(SiMe3)2 1 showed a TOF of 310 h-1 for the 

copolymerization of LO and CO2 but also a very high activity for other epoxides such as CHO, PO or

the rather exotic octene oxide and styrene oxide.  

Scheme 1. Complex 1 in the copolymerization of CHO and CO2 to poly(cyclohexene carbonate) and limonene oxide and 

CO2 to poly(limonene carbonate). 

In case of poly(cyclohexene carbonate) (PCHC), the material properties including most of the thermal 

and mechanical characterizations have well been reported.21-25 On the contrary, poly(limonene 

carbonate) (PLC) is rather sparsely described in literature and aside from that, not directly compared to 

PCHC.26-29 Thanks to the high activity of complex 1 in the copolymerization of both CHO and LO with 

CO2,  we herein report on the in situ IR monitoring and the scale-up of both copolymerization reactions. 

Based on this, a detailed thermal analysis of the two resulting polymers PCHC and PLC has been 

conducted. Extrusion attempts in a micro-scale twin screw extruder, a multiaxial pressure test and a 

dynamic mechanical analysis were performed. Furthermore, one-pot terpolymerizations with CHO, LO, 

and CO2 were realized and investigated regarding the kinetics of the two different epoxides. 

2. Experimental Section

2.1 Materials

All reactions containing air- and/or moisture sensitive compounds were performed under argon 

conditions using standard Schlenk techniques. All chemicals were purchased from Aldrich or TCI.

Monomers were dried over calcium hydride or sodium hydride and distilled prior to polymerization. 

CO2 was purchased from Westfalen (purity 4.6). Dry toluene was purified with an MBraun MB-SPS-800 

solvent purification system. 
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2.2 Synthesis

Limonene oxide used in this work consisted of 85% trans-LO and 15% cis-LO and was prepared 

according to literature procedures.26 BDI-Zn-NTMS2 complex 1 was prepared according to a literature 

procedure and purified via recrystallization.20,30  

2.3 Characterization Techniques 

NMR (1H and 13C) measurements were recorded on a Bruker AVIII500 Cryo and an AV300 

spectrometer. Chemical shifts δ were reported in ppm relative to tetramethylsilane and calibrated to the 

residual 1H or 13C signal of the deuterated solvent. Deuterated solvents were obtained from Aldrich and 

dried over a 3 Å molecular sieve. In situ IR measurements were performed under argon atmosphere 

using an ATR IR MettlerToledo system. Kinetic investigations were all performed in the same reactor

under identical conditions. GPC was performed on a Varian PL-GPC 50 using THF (HPLC grade) with 

0.22 g L-1 2.6 di-tert-butyl-4-methylphenol and a flow rate of 1 mL/min at 40 °C. Poly(limonene 

carbonate) was measured at a Varian PL-GPC 50 using chloroform (HPLC grade) with a flow rate of 

1 mL/min at 25 °C. Polystyrene standards were used for calibration. DSC was conducted on a DSC 

Q2000 instrument. 3-6 mg of the polymer was filled into a DSC aluminum pan and heated from -30 °C 

to 170 °C at a rate of 5 K/min. The reported values were determined with TA Universal Analysis from 

the second heating cycle. DMA measurements were performed with rectangular specimens 

(10x1x50 mm) on an Anton Parr machine MCR502. A frequency of 1 Hz and a shear deformation of

0.2% in a temperature range from -150 to 180 °C were applied. The multiaxial pressure test was 

conducted with round-shaped specimens with a diameter of 25 mm and a thickness of 1.0 mm on an 

Instron machine 5566. A speed of 1 mm/min was applied. Transmission measurements were carried out 

at a Cary 50 UV-vis spectrophotometer (Varian) in a range from 300–800 nm. Extrusion attempts were 

performed at a DACA Instruments microcompounder. For the thermal stability tests, the polymer 

samples were tempered in a Nabertherm muffle oven at the indicated temperature. The polymers were 

put into the oven and heated to the desired temperature within exact five minutes. Upon reaching the 

temperature, the polymers were heated for 20 minutes, immediately removed from the oven and cooled 

down to room temperature in air. Consequently, GPC measurements were performed to check whether 

the polymer chain is degraded or not. 

3. Results and Discussion

Upscaling. Only a few reports deal with the question how the homogeneously catalyzed lab-scale 

copolymerization of an epoxide and CO2 can be upscaled.21,31 Most importantly, this upscaling should

be performed under economical aspects especially the amount and the synthesis costs of a suitable 

catalyst and the yield of the polymerization. Greiner and co-workers showed one example of the 

copolymerization of limonene oxide and CO2 using a BDI-Zn-OAc catalyst yielding >1 kg PLC.26 The 

authors give only little information on the polymerization parameters like amount of employed catalyst 
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and solvent and on the molecular weight and dispersity of the resulting polymer. In this work, a stepwise 

upscaling was performed for both CHO and LO. Initial polymerization attempts were always performed 

in a 50 mL autoclave with in situ IR monitoring to get further insight into the reaction kinetics (Figure 1). 

Major differences between the two monomers arise from the reaction time and the catalyst-to-monomer 

ratio. Whereas CHO can be coupled with CO2 by 1 in high turn-over frequencies (time <1 h) and high 

catalyst-to-monomer ratios (1:2000), LO behaves as a rather reluctant monomer (time >6 h) (Table 1, 

entries 1 and 2).  

Figure 1. In situ IR monitored copolymerization of CHO/LO with CO2 utilizing 1 under the conditions used in the 

upscaling polymerizations (a) and (b). 1 L Buchi reactor (c) equipped with a heating, a stirring and a pressurization 

device. (e) Plot of the change of vC=O = 1740 cm-1 vs time. 

As a next step, a 1 L Buchi reactor was equipped with a mechanical stirring, a heating device and a 

volumetric dosing unit for carbon dioxide pressure. Kinetic investigations of BDI zinc complexes in the 

copolymerization reactions of CHO and CO2 revealed that at a pressure of 10 bar CO2, the reaction order 

of carbon dioxide is still zero, meaning that the rate-determining step is solely the ring-opening of the 

epoxide.26,32 50 g of the epoxide were employed for the first upscaling step; twenty times the amount 

that is usually polymerized in the in situ autoclave (Table 1, entries 3-5). In case of CHO, again almost 

quantitative conversion was reached within 2 h to poly(cyclohexene carbonate) with a molecular weight 

of  115 kg/mol (Đ = 1.49). An interesting polymerization prerequisite was revealed for limonene oxide. 

Applying the same amount of toluene as solvent for the LO polymerization as in the case of CHO results

very low yields (Table 1, entry 4). The reason can again be attributed to the required catalyst 

concentration in the reaction solution. Mechanistic studies from Rieger et al. revealed a reaction order

of 2 for the monomer limonene oxide.26 This study clearly indicates the reason behind the dilution 

findings reported in Table 1, entry 4. It requires a high concentration of active catalytic centers and 

monomer molecules to enable to ring-opening of the sterically hindered epoxy group at the limonene 

oxide.  

(e) 
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Table 1. Copolymerization of CHO/LO and CO2 in the 50 mL in situ IR autoclave or 1 L Buchi reactora 

entry [epoxide]:[cat] epoxide (g) toluene (g) time (h) 
conv. epoxide 

(%)b 

Mn (Đ) 

(kg/mol)c 

1d 2000(CHO):1 2.5 2.5 0.7 >99 219 (1.23)

2d 350(LO):1 2.5 2.5 7 68 142 (1.41)

3e 2000(CHO):1 50 150 2 >99 176 (1.51)

4e 350(LO):1 50 150 15 10 21 (1.39) 

5e 350(LO):1 50 70 15 71 117 (1.31)

6e 2500(CHO):1 90 250 2 97 275 (1.42)

aPolymerizations of CHO with CO2 were conducted at 60 °C, whereas LO copolymerization were performed at 

40 °C. 40 bar CO2 were applied in a continuous mode. bConversion determined via 1H NMR spectroscopy. 
cDetermined via GPC analysis in THF (in case of PCHC) and CHCl3 (in case of PLC) relative to polystyrene. 

dPolymerization conducted in 50 mL in situ IR autoclave. ePolymerization conducted in 1 L Buchi reactor.  

Lowering the dilution (Table 1, entry 5) enables successful copolymerization of limonene oxide and 

CO2 of 71% conversion within 15 h to PLC with a MW of 117 kg/mol (1.31). A narrow dispersity was 

still guaranteed despite the upscaled polymerization and the prolonged reaction time. Also, molecular 

weights of >50 kg/mol are achieved which are needed to ensure a sufficient mechanical performance. 

PLC of lower MW  (Table 1, entry 4, 21 kg/mol) is a very brittle material. Even solvent casting, usually 

an outstanding property of PLC, failed when low-MW polymer was used. In case of cyclohexene oxide, 

a further upscaling step was applied with 90 g CHO yielding 125 g PCHC after precipitation in methanol 

(Table 1, entry 6). 

Catalyst Removal. Residues of zinc catalysts are known to accelerate thermal degradation of the 

polymer at elevated temperatures.3,24,33 Figure 2 shows the transmission of a polymeric solution of the 

respective aliphatic polycarbonate in chloroform. The β-diiminate ligand shows a strong absorption at 

300-400 nm. The more intense this band, the higher the amount of catalytic residues. Aqueous EDTA 

was used as chelating agent to fully remove zinc residues from the polymeric solution. Since a lower

catalyst concentration was employed for the polymerization of CHO compared to LO, it only takes one 

extraction step with aqueous EDTA whereas for PLC a second extraction step was required. Once the 

polymer was dried to constant weight in vacuo, it was grinded and used as such for all following thermal 

and mechanical characterization methods. 
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Figure 2. Transmission of a polymeric solution of PCHC (left) and PLC (right) in chloroform in the range of

300-800 nm. 

Thermal analysis. Thermogravimetric analysis is a powerful method to study the decomposition of 

polymers. On the downside, only the conversion into volatile compounds can be detected and chain 

breaks to oligomeric decomposition products stay unidentified. Therefore, a different analysis method 

was developed. First, the polymer samples were tempered in a muffle oven at a certain temperature for

20 minutes. Next, the sample was dissolved for GPC analysis and a possible change in molecular weight 

and polydispersity examined. Although, TGA measurements indicate a T5% of 278 °C (PCHC) and

217 °C (PLC), it was assumed that the first decomposition processes take place at much lower

temperatures (Figure SX). The PCHC polymer samples were tempered under air and under argon 

atmosphere in a temperature range from 120 °C to 200 °C and subsequently analyzed via GPC 

(Figure 3). PCHC experiences no degradation at the polymer chain until 150 °C and only a slight 

decrease of the MW accompanied by a little increase of the polydispersity at 180 °C. Increasing the 

temperature further results in a more significant drop of the MW and a substantial broadening of the 

dispersity. Degradation is reduced in case the thermal tempering is performed under argon atmosphere. 

With the Tg of 116 °C in mind, a processing window of at least 40 °C creates a valuable prerequisite for

the extrusion experiments. 
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Figure 3. GPC analysis of tempered polymer samples (PCHC left; PLC, right). Plot of molecular weight 

Mn (kg/mol) and polydispersity Đ against the temperature at which the sample has been tempered in the muffle 

oven. 

The same thermal treatment was applied for PLC and interesting differences were unveiled. 

Poly(limonene carbonate) did not show complete solubility in chloroform (which was necessary for

GPC analysis) once the sample was heated above 160 °C. A partial cross-linking at the double bond was 

assumed to take place, but could not be verified via NMR (no solubility in any solvent even at high

temperatures) nor via IR (concentration of cross-linked parts presumably too low). Irganox® was added 

to check whether this cross-linking can be prevented or not. Indeed, all tempered PLC samples could be 

dissolved completely in chloroform and analyzed via GPC. PLC shows the very first decomposition 

processes taking place at 170 °C. The comparably low ceiling temperature of poly(limonene carbonate) 

is assumed to be the major reason for this slightly lower thermal stability.20 Overall, these thermal 

investigations demonstrate a possible processability of both polymers since a processing window 

spanning at least for 35 °C (for PLC) to 40 °C (for PCHC) from the Tg to the very first decomposition 

is guaranteed. To examine the role of the double bond in more detail, limonene oxide was hydrated with 

H2 and catalytic amounts of PtO2 to the so-called menthene oxide. This novel epoxide was readily 

copolymerized with CO2 to a MW of 37 kg/mol (Đ = 1.16). The product poly(menthene carbonate) was 

also tested towards its thermal stability but besides the fact that no solubility problems and hence no 

crosslinking problems occurred, the decomposition of the aliphatic polycarbonate is neither hampered 

nor accelerated compared to PLC.

Extrusion. A further step towards the processability of a polymer is to test its behavior and stability in

an extruder. The apparatus used in this work is a small, twin-screw microscale batch mixer suitable for

investigating various processing parameters. A mixing volume of 4.5 mL allows the testing of a low

amount of substance (Figure 4a). The grinded polymers were rapidly introduced into the extruder, stirred 

to ensure a homogeneous heating and released through a 1 mm wide nozzle.  
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Figure 4. Twin-screw extruder (a); extruded PCHC at 180 °C (b) and PLC at 175 °C (c) and 165 °C (d). 

First, PCHC was introduced into the mixer at 180 °C and a homogeneous polymer strand with a light 

greyish color was obtained. We performed GPC analysis to check whether the molecular weight of the 

polymer stayed intact, or unwanted decomposition processes took place. Table 2 gives an overview of 

the temperatures screened ranging from 165 to 200 °C and the results of the GPC measurements for  the 

molecular weight analysis and the width of the polydispersity. 

Table 2. Conditions and results of the extrusion experiments of PCHC and PLCa 

entry polymer extrusion temp. (°C) Irganox®b 
Mn (kg/mol) (Ð)c 

original polymer 

Mn (kg/mol) (Ð)c 

extruded polymer 

1 PCHC 180 no 275 (1.42) 239 (1.44)

2 PCHC 200 no 275 (1.42) 110 (1.95)

3 PCHC 180 yes 275 (1.42) 270 (1.42) 

4 PLC 165 no 117 (1.30) 48 (1.95)

5 PLC 175 no 117 (1.30) 23 (1.96)

6 PLC 165 yes 117 (1.30) 41 (1.65) 

aExtrusion attempts conducted in a 4.5 mL twin-crew, microscale batch mixer at 80 rpm. bIrganox® used as 

antioxidant in a concentration of 500 ppm. cDetermined via GPC analysis in THF (in case of PCHC) and 

CHCl3 (in case of PLC) relative to polystyrene. 

Due to the high molecular weight of PCHC, it requires 180 °C for a thorough mixing inside the extruder 

and a constant release of the polymer via the nozzle. GPC measurements indicate a slight degradation 
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of PCHC since the molecular weight decreases from 275 kg/mol to 239 kg/mol (Table 2, entry 1). 

Increasing the temperature to 200 °C, results in a severer decomposition (Table 2, entry 2). Using the 

antioxidant Irganox® at a concentration of 500 ppm, helps the polymer PCHC to remain transparent and 

to fully prevent degradation (Table 2, entry 3). In case of PLC, the temperature was lowered and PLC 

was extruded successfully at 165 °C to slight greyish, but fully homogeneous polymer strands, which 

showed a degradation from 117 kg/mol (1.30) to 48 kg/mol (1.95) (Table 2, entry 4). Increasing the 

processing temperature changed the extruded polymer drastically since severe degradation lead to a 

release of volatile compounds which caused an intense bubbling of the polymer (Table 2, entry 5). 

Again, the use of Irganox® helped the PLC to give a fully transparent extrudate but did not fully prevent 

degradation processes (Table 2, entry 6). 

Mechanical Characterization. Commonly, the mechanical analysis of polymers is performed at a 

stress-strain machine with dog-bone shaped specimens. The preparation of such is prone to create 

surface irregularities and possible cracks on the edges of the specimen. Therefore, a different 

characterization method was chosen where round-shaped samples were tested in a multiaxial pressure 

test. A pin with a diameter of 0.7 mm approached the surface of the polymer and pushed with a rate of

1 mm/min for 300 s. Both the plot of the force against time (Figure 5a) and the fracture patterns 

(Figure 5b) provided important insight into the mechanical behavior of aliphatic polycarbonates in 

comparison with industrially applied aliphatic polymers, in this instance PMMA and Durabio®.  

Figure 5. Multiaxial pressure test on round-shaped specimens with a pin of 7.0 mm diameter and a rate of 

1 mm/min. (a) Plot of the force (MPa) versus time (s) and (b) fracture pattern of the tested polymers. 

Durabio® displayed a high-impact resistance behavior whereas PMMA severely splintered in three 

stages releasing all the polymeric material with about the size of the pin. The two aliphatic 

polycarbonates showed a performance in between the mentioned benchmarks. They both were not able 

to fully absorb the energy but did also not splinter and show a rather homogeneous uptake of the exposed 

force. The green curve in Figure 5 represents PLC and shows a lower force with which the polymer tries 

to resist the approaching pin compared to PCHC. This clearly indicates a lower modulus of PLC. 
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Mechanical spectroscopy experiments like the dynamic mechanical analysis (DMA) helped to find an 

explanation for the high ductility of the bisphenol-A based polycarbonate Makrolon®. First, DMA is 

the most sensitive technique for the determination of the glass transition temperature. A large drop in 

the storage modulus combined with a clear peak in the loss modulus indicates the transition from the 

glassy to a rubbery state at 155 °C (Figure 6). 

 

Figure 6. Dynamic mechanical analysis of Makrolon®, PCHC, and PLC in the range of -150 °C to 180 °C. 

Besides the glass transition, sub-Tg relaxations, often called β- and γ-transitions, are crucial for the 

toughness of a material. Generally, these transitions result from the onset of the motion of side chains.34 

In early studies, the relaxations at low temperatures were assigned to the rotation of the phenylene rings 

and the carbonate group of BPA-PC.35-36 They allow the material to absorb energy below the Tg. Looking 

at the storage and loss modulus of PCHC and PLC, a similar curve but with some important differences 

can be observed. The aliphatic polycarbonates, PCHC and PLC, both show a lowered Tg of 120 °C and 

132 °C, respectively, which are in good agreement with the values measured via DSC (Figure SX). 

Besides, they also exhibit a low temperature transition which is shifted towards higher temperatures 

compared to the one of BPA-PC. Also, the magnitude is lower than for the classical polycarbonate. 

Based on this, it is assumed that the main chain of PCHC and PLC is less flexible than the one of 

BPA-PC. In 2001, Koning et al. investigated the role of the cyclohexyl rings and the entanglement 

density on the stiffness of the polymer.21 They postulated that the sub-Tg relaxation corresponds to chair-

chair transitions of the cyclohexyl rings. However, these cyclohexyl rings are regarded as side groups 

and can therefore not contribute to the toughness of the material. Comparing the loss modulus of PCHC 
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and PLC reveals that the amplitude for PLC is slightly enhanced indicating a higher flexibility of the 

polymer chain. 

Terpolymerization of CHO, LO, and CO2. 

Since BDICF3-Zn-NTMS2 1 is able to catalyze the copolymerization of both CHO and LO with CO2 to 

aliphatic polycarbonates, we were curious if 1 can serve as an active initiator for the terpolymerization 

of CHO, LO and CO2. A one-pot attempt gave a polymer consisting of 66:34 PCHC:PLC (Table 3, 

entry 1). A second polymerization experiment revealed an interesting kinetic property regarding the 

polymerization rate of the respective epoxides (Table 3, entry 2). Running the reaction for 1 h, lead to 

the exclusive coupling of the CHO molecule with CO2. No conversion of LO was observed within one 

hour. This observation rose the question if it requires full CHO conversion before limonene oxide gets 

consumed.  

Table 3. Terpolymerization of CHO, LO, and CO2 with complex 1 

entry 
(CHO):(trans-

LO) :(cat)
time (h) 

conv. CHO

(%)b 

conv. LO 

(%)b 
(PCHC):(PLC)c Mn (Đ) (kg/mol)d 

1 300:200:1 15 >99 60 66:34 316 (1.48)

2 250:250:1 1 36 0 100:0 38 (1.32) 

3 150:350:1 15 >99 70 40:60 300 (1.40)

aTerpolymerizations of CHO, LO, and CO2 were conducted at 40 °C in a 50 mL in situ IR autoclave. 40 bar CO2 

were applied in a continuous mode. bConversion determined via 1H NMR spectroscopy. dDetermined via GPC 

analysis in CHCl3 relative to polystyrene.  

High-pressure NMR tubes allowed a detailed monitoring of the reaction progress (Figure 7). Generally, 

due to the lack of stirring and a reduced carbon dioxide pressure of 9 bar, a higher catalyst loading was 

employed and the reaction time is prolonged. Indeed, quantitative conversion of CHO is taking place 

prior to the start of the copolymerization of limonene oxide and CO2. After 7 h reaction time, CHO is 

fully consumed, and the ring-opening of limonene oxide starts. LO is sterically more hindered than CHO 

by the additional methyl group, and thus the ring-opening step on the epoxy group is hampered. Hence, 

this terpolymerization reaction can be considered as an in situ-controlled block copolymerization driven 

by the reaction kinetics of the respective monomers. 

Aliphatic Polycarbonates Derived From Epoxides and CO2: A Comparative Study of Poly(cyclohexene 
carbonate) and Poly(limonene carbonate) 

63 



Figure 7. NMR spectra of the terpolymerization of CHO, LO, and CO2 performed in a high-pressure NMR tube 

at the respective reaction time. 

With the kinetic insight in hand, it remained to be proven if both types of polymer are chemically linked 

with each other and an actual terpolymer was produced. GPC traces of PCHC regularly show a 

bimodality due to the in situ formed cyclohexene diol acting as a chain-transfer agent. Hence, a bimodal 

distribution by itself does not indicate the presence of individual polymers as a blend. Aliquot GPC 

analysis and DOSY NMR experiments were performed to confirm the terpolymer’s architecture. After

40 min reaction time, CO2 was released from the reactor, an aliquot was taken, and the system was 

repressurized with 30 bar CO2. Comparison of the aliquot’s GPC trace with the one of the final polymer 

revealed a shift in molecular weight from 86 kg/mol to 127 kg/mol (Figure SX).  

Figure 8. DOSY NMR spectrum of the PCHC-PLC terpolymer (Table 3, entry 1) (left) and DOSY NMR spectrum 

of an artificial blend of PCHC and PLC.
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DOSY NMR spectroscopy of the final terpolymer showed that all the signals have the same diffusion 

coefficient. An artificial blend consisting of two copolymers of comparable molecular weights exhibits 

the presence of two separated species owing to two different diffusion coefficients.

4. Conclusion

The use of a BDICF3-Zn-N(SiMe3)2 catalyst allowed the ring-opening copolymerization of CO2 with 

CHO and LO, respectively. An upscaling of the reaction in a 1 L reactor provided access to the polymers 

poly(cyclohexene carbonate) and poly(limonene carbonate), which were used for further

characterizations. Thermal analysis indicated only minor decomposition upon tempering the polymers

to 180 °C for 20 minutes. Multiaxial pressure tests and dynamic mechanical analysis enabled a 

comparison of the two CO2-based polycarbonates with commercial plastics in terms of mechanical 

performance. Also, terpolymerizations of CHO, LO, and CO2 were successful. High-pressure NMR 

spectroscopy revealed the exclusive incorporation of CHO in the beginning of the one-pot 

polymerization, and LO is only incorporated when CHO is fully consumed. In total, this study provides 

important data regarding upscaling and the thermal and mechanical performance of PLC. Moreover, the 

PCHC/PLC terpolymers represent a promising approach to combine the properties of the respective 

copolymers.  
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Abbreviations 

BDI β-diiminate 

BPA-PC Bisphenol-A polycarbonate 

CCU  Carbon capture and utilization 

CHO  Cyclohexene oxide 

Đ Polydispersity index

DFT  Density functional theory 

DMAP  4-(Dimethylamino)pyridine 

HPPO  Hydrogen peroxide to propylene oxide 

LO Limonene oxide 

MW Molecular weight 

NBS  N-bromosuccinimide 

PCHC  Poly(cyclohexene carbonate)  

PLC  Poly(limonene carbonate) 

PO Propylene oxide 

PPC  Poly(propylene carbonate) 

PPNCl  Bis(triphenylphosphine)iminium chloride 

TMS  Trimethylsilyl 

TOF  Turn-over frequency 

TPP  Tetraphenylporphyrine 

ZnGA  Zinc glutarate 

ZnSA  Zinc succinate 

1. Introduction

In light of its increasing concentration in the atmosphere and its industrial emergence, carbon 

dioxide is clearly a topic of intense research. Carbon dioxide capture and utilization (CCU) deals

with the aim of using industrially produced CO2 as a C1-feedstock for high-quality chemical 

products. Since carbon dioxide is chemically rather inert, high energy barriers must be 

overcome.[1] The coupling of CO2 with an epoxide offers the possibility of using carbon dioxide 

for the preparation of cyclic carbonates or polycarbonates. Cyclic carbonates are applied as 

electrolytes in lithium ion batteries or as high boiling aprotic polar solvents.[2-3] Depending on 

their molecular weight (MW) and their kind of end-groups, polycarbonates are used in the 

polyurethane production (low MW, hydroxyl terminated) or in the fabrication of rigid plastics 
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(high MW) as a possible alternative to bisphenol-A polycarbonate (BPA-PC).[4] Polycarbonates 

derived from epoxides and CO2 offer promising properties such as high transparency, UV 

stability and high Young’s moduli.[5] The coupling of propylene oxide (PO) and CO2 offers the 

most promising polymer poly(propylene carbonate) (PPC) since PO is industrially available in 

large quantities and a higher CO2 content is generated compared to other aliphatic 

polycarbonates (Figure 1a). The widespread commercialization of PPC although was hindered 

due to the low glass transition temperature of 30 - 40 °C. Polyurethane foams from Bayer based 

on poly(ether carbonates) made of PO and CO2 proof the potential use of carbon dioxide in large 

scale polymerizations.[6] The industrial feasibility of such processes always depends on the 

activity of the employed catalyst. Since the initial discovery in 1969 of diethylzinc and water 

serving as a heterogeneous catalyst in the synthesis of PPC, much research has been made on 

the question of how the activity of the catalysts can be improved.[7] Efforts mainly concentrate 

on homogeneous systems and often initially use cyclohexene oxide (CHO) as it can be 

copolymerized more easily due to its ring-strain to poly(cyclohexene carbonate) (PCHC) 

(Figure 1b). Poly(limonene carbonate) (PLC) was reported for the first time in 2004, but gained 

attention only very recently (Figure 1c).[8] The bio-based origin of limonene oxide (LO) and the 

polymers’ very promising properties expand the class of the well-known aliphatic polycarbonates 

PPC and PCHC. This review gives an overview of the catalytic copolymerization of various 

epoxides and CO2 and focuses on the latest findings especially in the field of poly(limonene 

carbonate). 

Figure 1. Alternating copolymerization of CO2 with (a) propylene oxide, (b) cyclohexene oxide, and (c) 

limonene oxide. 
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2. Aliphatic polycarbonates

2.1 Synthesis of the monomers 

During recent decades, several processes for the production of propylene oxide have been 

established, starting with the hydrochlorination route in 1930.[9] Due to the high costs of the 

starting materials and arising by-products, the preparation has been improved several times. 

The hydrogen peroxide to propylene oxide (HPPO) process works with the aid of a titanium-

doped silicalite catalyst and produces water as the only by-product.[10] 7.5 mio. t/a PO were 

produced this way in 2015.[11]  

Despite the industrial abundance of propylene oxide, cyclohexene oxide is often used in an initial 

attempt at testing a catalyst. Due to the ring strain of the cyclohexane ring, this epoxide can be 

ring-opened more easily after coordination to a suitable catalyst. Cyclohexene oxide itself is 

usually prepared through epoxidation with peracids or even catalytically with manganese 

porphyrins and oxygen.[12-13]  

Carbon dioxide used in the copolymerization process in academic research is usually taken from 

gas bottles in high purity. Williams and coworkers reported in 2015 whether CO2 from a nearby 

power station can be copolymerized with epoxides using established catalysts.[14] Three 

homogeneous dinuclear Zn/Mg systems showed a high tolerance towards gaseous impurities. 

Polyols from CHO and CO2 were obtained in a controlled manner, demonstrating the possibility

to apply industrially emitted carbon dioxide without further purification. 

The third type of epoxide discussed in this chapter is limonene oxide. It is obtained via the 

epoxidation of limonene. One enantiomer, (R)-limonene, can be found in orange peels and gets 

extracted at a volume of 70 kt/a.[15] Categorized as a cyclic monoterpene, limonene bears one 

chiral C-atom and two unsaturated carbon bonds prone to chemical modification. This

renewable non-food resource represents a promising class of feedstock because the 

1,2 epoxidation products displays an auspicious candidate for the copolymerization with CO2.[16] 

In addition, it shows strong resemblance to the well-studied epoxide cyclohexene oxide. The 

topic of sustainable epoxide/CO2 copolymerization was summarized by Darensbourg et al. in 

2017.[17] Limonene oxide is commercially available in a 46:54 cis:trans mixture usually obtained 

via acid-catalyzed oxidation of (R)-limonene (Figure 2a).[18] Due to the fact that the most active 

catalysts almost exclusively polymerize the trans diastereomer, a route towards a higher 

trans-content was established in 2016 by first treating limonene with N-bromosuccinimide (NBS) 

to enable the more selective ring closure in the second step (Figure 2b).[16] 
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Figure 2. Oxidation of (R)-limonene via two different routes to different trans-(R)-limonene oxide 
contents.[16, 18] 

2.2 Mechanistic aspects of the copolymerization of epoxides and CO2 

The process of the CO2/epoxide copolymerization can be divided into three catalytic steps, 

namely initiation, propagation, and termination (Scheme 1). During initiation, either carbon 

dioxide or the epoxide inserts into the M-X bond, creating a metal-carboxylate or a metal-

alkoxide species. The nature of the catalyst decides which of the two monomers is more likely

to be inserted in the first step. The alternating incorporation of CO2 and epoxide marks the period 

of propagation, in which the metal alkoxide and the metal carbonate are interconverted. There 

are two important side reactions during propagation that occur to a varying extent, which 

depends on the type of epoxide and the catalyst as well as the general polymerization conditions 

like reaction temperature or CO2 pressure. The consecutive insertion of two (or more) epoxide 

molecules results in the formation of polyether units. In contrast to that, the so-called backbiting 

reaction to a 5-membered carbonate ring is the thermodynamically favored product. It is the 

predominant side reaction for the copolymerization of propylene oxide and CO2.  

For most catalysts, the copolymerization reaction can be described as an immortal reaction. On 

the one hand, this allows the synthesis of polymers in well-defined molecular weights since an 

inverse relationship exists between the catalyst concentration and the resulting molecular 

weight. On the other hand, this living character also enables the formation of block copolymers 

by the addition of a second type of epoxide. The polymerizations are usually terminated by the 

addition of a protic compound like methanol. The underlying mechanism is a chain-transfer 

reaction between the polymeric chain end and the proton. This chain-transfer can also occur 
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during the polymerization if any protic impurities like water are present in the reaction mixture. 

This automatically leads to polymers of lower molecular weight. In case of cyclohexene oxide 

chain-transfer also explains the often observed bimodal molecular weight distribution due to the 

in situ formed cyclohexanediol that again acts as a chain-transfer agent. 

 

 

Scheme 1. Copolymerization of CO2 and epoxides in three elementary steps. Initiation, propagation, and 

termination. 

Applying the same reaction conditions for the two epoxide types, CHO and PO, in the 

copolymerization with CO2 results in a major difference regarding reactivity and selectivity. The 

reason was investigated more closely by the group of Darensbourg in 2003 using a chromium 

salen catalyst.[19] Activation energies were determined by in situ IR kinetic measurements 

showing that, for both monomers, the respective cyclic product requires a higher activation 

energy than the polycarbonate (Figure 3). However, the decisive difference is the smaller energy 

gap between the two products in the case of PO (33 kJ/mol), explaining the lower selectivity for 

polycarbonate formation at elevated temperatures. 
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Figure 3. Reaction coordinate diagram for the coupling of (a) CHO and (b) PO with CO2 using a chromium 

salen catalyst. Reproduced with permission from [19], Copyright © 2003 American Chemical Society. 

 

2.3 Thermal stability and possible degradation pathways 

 

Processability of polymers is always strongly linked to the question of thermal stability. A 

multitude of works is dealing with the thermal degradation of aliphatic polycarbonates, especially 

poly(propylene carbonate).[20-25] Two main decomposition pathways have been observed 

thereby. On the one hand, the intramolecular backbiting reaction to cyclic carbonates is 

facilitated by OH-end groups (Scheme 2a). These hydroxy end groups are usually obtained if 

the catalytic copolymerization is terminated by the addition of acidified methanol. On the other 

hand, chain unzipping occurs if a nucleophile is located at a polymer chain end (Scheme 2b). 

Catalyst residues accelerate the backbiting reaction severely in the temperature range of 

150-180 °C.[26] At higher temperatures (~200 °C) random chain scission has been mostly 

observed leading to the splitting of a polymer chain with the release of CO2. 

 

Scheme 2. Degradation mechanism for PPC: chain scission (a) and backbiting (b).[24] 

Decomposition temperatures reported in the literature are difficult to compare due to varying 

conditions, the type of analysis, and the kind of polymer. Most publications indicate 180 °C as 

the upper processability limit for PPC. Different attempts have been made to further increase 
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the thermal stability of aliphatic polycarbonates. The backbiting reaction can be prevented to 

some extent via an endcapping of the polymer chain ends.[24] Anhydrides seem to be the most 

promising candidates along with acetates and chlorophosphates as they are less reactive than 

the hydroxy functionality.   

Thermogravimetric analysis of poly(limonene carbonate) revealed a T5% of 225 °C, meaning 

that, at 225 °C, 5% of the sample was converted to volatile compounds.[16] Endcapping with 

maleic anhydride further increased the decomposition temperature to a T5% of 240 °C. GC-MS 

measurement of a hydroxy-terminated PLC sample heated to 230 °C for 20 minutes did not 

show any cyclic limonene carbonate, exhibiting instead a variety of different decomposition 

products including limonene oxide.[16] This circumstance was transferred to the base-initiated 

depolymerization of PLC by Koning et al.[27] A similar base-assisted depolymerization was 

previously observed for poly(cyclopentene carbonate) yielding both the epoxide and the cyclic

carbonate.[28] In the case of PLC, the strong organic base triazabicyclodec-5-ene leads to the 

deprotonation of the hydroxyl polymer chain end enabling fast backbiting to limonene oxide and 

CO2 at 110 °C. The controlled depolymerization of aliphatic polycarbonates represents an 

interesting approach in terms of recyclability and sustainability. 

2.4 Mechanical properties 

Figure 4 illustrates the three copolymers derived from CO2 and the respective epoxide. The main 

advantages and disadvantages are clearly visible: While PCHC struggles with brittleness and 

PPC exhibits a soft, deformable property, PLC is best suited for solvent casting along with a 

high transmission of the polymer film. 

Figure 4. Poly(cyclohexene carbonate) (a), poly(propylene carbonate) (b), and poly(limonene 

carbonate) (c). 
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Similar to the determination of the thermal stability of aliphatic polycarbonates, mechanical 

properties cannot be easily compared since they are strongly dependent on the respective 

microstructure, the molecular weight, and cyclic carbonate impurities. In the case of 

poly(propylene carbonate) the glass transition temperature is highly dependent on the molecular 

weight of the polymer and ranges between 30 - 40 °C. PPC with a Tg of 30 °C exhibits Young’s 

moduli of 200 – 1000 MPa, whereas the polymer with a higher Tg shows an increased stiffness 

of 700 – 1400 MPa.[5, 26, 29] Aliphatic polycarbonates are often compared with the aromatic 

bisphenol-A based polycarbonate. Apart from a Young’s modulus of 2400±400 MPa, the 

aromatic polymer shows an elongation at break of 40±35%, opening up a multitude of different 

areas of application. PCHC is a much stiffer material than PPC and resembles BPA-PC in some 

aspects. The main disadvantage of PCHC thus far arises from its brittleness reflected in a 

Young’s modulus of 3600±100 MPa and an elongation at break of 1.7±0.6%.[30]  

Efforts to overcome the main problems in terms of material properties for both PPC and PCHC 

were made by using a second type of epoxide in the polymerization. The so-called 

terpolymerization enables the synthesis of polymers in an adjustable composition and hence in 

a tunable glass transition temperature.[31] Terpolymerization of CHO, PO, and CO2 was thought 

to improve the brittleness of PCHC, but it only resulted in a reduced E-modulus (2100 MPa) with 

an otherwise unchanged elongation at break.[32] Other epoxides like hexene oxide or styrene 

oxide were also successfully polymerized with the established monomers PO and CHO.[33-34] 

The mechanical behavior of poly(limonene carbonate) was tested for the first time in 2016.[16] 

Hot-pressed polymer specimen could be produced at a thickness of 300 µm and tested using a 

stress-strain machine. A Young’s modulus of 950 MPa, a tensile strength of 55 MPa, and an 

elongation at break of 15% were obtained. These promising properties indicate that PLC is a 

possible alternative to BPA-PC. 

 

3. Catalyst systems for the CO2/epoxide copolymerization 

 

Like for other classes of polymerization, early catalytic attempts started with heterogeneous 

systems. Although the number and the kind of active sites is difficult to determine for such 

systems, they have already been industrially applied for centuries in PPC production.[26, 35-36] In 

contrast, homogeneous catalysts are the subject of intense research due to their solubility, 

tunability, and the possibility of determining the underlying mechanism in situ. The viscosity of 

the polymerization solution plays an important role regarding polymer processability and activity. 

A low amount of solvent enables high activity but reduces diffusion of the monomer, whereas 
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an increased dilution lowers the activity, to some extent due to spatially separated metal centers, 

but allows higher yields and improved processability.[37] 

 

3.1 Heterogeneous catalysts  

 

The development of catalysts that are active in the copolymerization of epoxides and CO2 has 

been excellently reviewed by a number of groups.[37-47] Following a brief historical overview of 

the most important milestones in the catalysis of copolymerization, the focus of this chapter will 

be on the possibility for the terpolymerization of epoxides with other types of monomers. In 

addition, the coupling of limonene oxide and CO2 giving the fully bio-based polymer 

poly(limonene carbonate) will be discussed in detail. The copolymerization of carbon dioxide 

and epoxides was observed for the very first time when Inoue et al. mixed diethylzinc and water 

with propylene oxide and CO2 in 1969.[7, 48]. Despite the low activity of 0.12 h-1 as well as low 

molecular weights, this finding marks the beginning of an intensively studied research field. Soga 

et al. changed to a system of Zn(OH)2 and various dicarboxylic acids and in this way created 

the first well-defined heterogeneous catalyst.[49] Glutaric acid turned out to be the most active 

partner to Zn(OH)2, enabling an activity of 1.1 h-1. The easy preparation along with the 

nontoxicity of zinc made this system industrially relevant for the preparation of poly(propylene 

carbonate). Nevertheless, the reaction mechanism remained unknown for a long time. 

Single-crystal X-ray spectroscopy revealed a tetrahedral coordination of four carboxylic groups 

around the zinc center, which prevents monomer diffusion, thus limiting the catalyst’s activity.[50] 

Attempts to increase the ZnGA (zinc glutarate) surface area by ball milling, modification of the 

stirring procedure, or the use of additives such as SiO2 did not lead to significantly higher 

activity.[51-53]  

 

Figure 5. Representation of part of the repeating unit in two different zinc carboxylates: (a) zinc succinate  

and (b) zinc glutarate. Reproduced with permission from [51], Copyright © 2011 American Chemical 

Society. 

Aliphatic Polycarbonates Derived from Epoxides and CO2 

78 

  



11 

In 2011, Rieger and coworkers demonstrated the importance of the Zn-Zn distance by varying 

the chain length of the carboxylic acid ranging from succinic acid (C4) to pimelic acid (C7).[51] 

Interestingly, zinc succinate (ZnSA) indeed showed nearly no activity in the copolymerization of 

PO and CO2, whereas ZnGA, zinc adipate, and zinc pimelate exhibited similar activity. The 

reason could be addressed by measuring the solid-state structures, indicating a Zn-Zn distance 

only for the latter three systems of 4.6-4.8 Å, whereas ZnSA did not show such a defined spatial 

proximity (Figure 5). This principle of two interacting zinc centers was later transferred to the 

development of homogeneous catalysts. 

3.2 Overview of the homogeneous catalytic systems 

Although heterogeneous catalysts display numerous advantages, including sufficient activities 

in the copolymerization, defining the active sites in these systems is challenging. As a result, 

improvements to the catalyst’s structure as well as the study of reaction kinetics are difficult to 

address. Regarding polymer chemistry, the variety of active sites also causes broad 

polydispersity indices (Đ) with severe effects on thermal and mechanical properties. In 1978, 

Inoue et al. was again first in developing an aluminum tetraphenylporphyrin (TPP) complex (1a, 

M = Al, X = OMe).[54-56] By using EtPh3PBr as a cocatalyst, the complex successfully catalyzed 

the CHO/CO2 and PO/CO2 polymerization. Figure 6 illustrates the four main complex structures 

used in the copolymerization of CO2 and epoxides. 

Figure 6. Types of homogeneous catalysts active in the copolymerization of CO2 and epoxides.[4] 

When Kruper and Dellar used chromium as the central metal for porphyrin based complexes in 

combination with the cocatalysts 4-(dimethylamino)pyridine (DMAP) and 

bis(triphenylphosphine)iminium chloride (PPNCl), they observed mostly cyclic carbonate 

formation both for cyclohexene oxide and propylene oxide.[57] In contrast, switching to cobalt 

(1a, M = Co, X = halide) led to a decrease in activity due to the reduced Lewis acidity of the 

metal, but it yielded high polycarbonate selectivities, especially for PO/CO2 (99% polycarbonate, 
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turn-over frequency (TOF) = 188 h-1).[58] Various porphyrin-based catalysts were synthesized 

and tested in the copolymerization of propylene oxide and CO2.[59-66] 

The first aryl-oxide zinc complex paved the way for a novel class of catalysts, namely the 

phenoxide system (1b) bearing the advantage of being soluble, and as a result more easily

characterized and improved.[67] Their activity in the copolymerization reaction is mainly

dependent on the aryl ligand framework and the base ligand at the metal center.[68] Substituents

in ortho position were screened systematically, which show the trend of increased activity along 

with decreasing substituent size and increasing electronegativity (F>Cl>Br, X = thf).[69] Apart 

from one of the first successful terpolymerizations from CHO, PO and CO2, this class of catalysts

also indicated that epoxide activation is more decisive for high activities than the carbon dioxide 

insertion step.[30, 34, 70] 

A breakthrough in the copolymerization of epoxides and CO2 was achieved by Coates in 1998 

with the complexation of a β-diiminate (BDI) ligand to zinc (1c).[71] A variety of modifications were 

performed at the pentane backbone as well as at the aniline moieties and the nucleophilic 

initiating group.[39, 72-75] Having a closer look at the reaction kinetics again a bimetallic mechanism 

was observed with a reaction order of [Zn]tot = 1.73.[76] The complexes are usually in a monomer-

dimer equilibrium and form these dimeric species via a bridging of the initiating group. Scheme 3 

shows the ring-opening step of CHO in a bimetallic transition state and the consecutive insertion 

of CO2 into the metal alkoxide bond. 

Scheme 3. Proposed copolymerization mechanism for BDI-Zn catalysts (left) and  transition state of the 

epoxide ring-opening step (right).[39, 76] 
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The synthetic realization of a flexibly tethered bimetallic catalyst was done by Rieger and 

coworkers (Figure 7). In the copolymerization of CHO with CO2, the bimetallic catalyst showed 

a TOF of 23,000 h-1 at 100 °C and 30 bar.[77] Further increasing the Lewis acidity at the zinc

center by introducing CF3-groups at the pentane backbone even increased the activity to the 

highest reported TOF for CHO with 155,000 h-1.[77] The two zinc centers seem to have the perfect 

distance for enabling a rapid CHO coordination and ring-opening. The reaction orders have been 

determined for catalyst 2a and a switch in der rate-determining step observed.[78] At CO2 

pressures below 25 bar, the insertion of CO2 becomes rate-limiting whereas the insertion of 

CHO is no longer bearing the reaction order of 1, but shows zero-order dependency.  

Figure 7. Flexibly tethered bimetallic zinc complex.[77] 

Applying catalyst 2a in the copolymerization of propylene oxide and CO2 resulted in very low 

activities and selectivities towards polycarbonate formation.[79-80] Density functional theory (DFT) 

calculations indicate a thermodynamically stable six-membered transition state consisting of an 

alkoxide-terminated chain end, the catalyst, and a carbonate moiety with 104.8 kJ/mol to be 

overcome in the case of propylene oxide as epoxide. The incorporation of a carbon dioxide 

molecule in the polymerization of CHO as epoxide is less hindered explaining this discrepancy 

in the activity for both epoxides. A great deal of efforts was put into the modification of dimeric 

complexes, but no major improvements were achieved for propylene oxide. Returning to the 

mononuclear structure and introducing two electron withdrawing CF3-groups at the pentane 

backbone revealed an ‘all-rounder’ for the copolymerization of various epoxides and CO2 

(Figure 8).[81] In the case of CHO high turn-over frequencies (TOF = 5520 h-1) were again 

observed. In addition, however, challenging epoxides like PO (TOF = 53 h-1), styrene oxide 

(TOF = 26 h-1), or the less explored limonene oxide (TOF = 310 h-1) were copolymerized to high 

molecular weights (Mn = 21.0-134 kg/mol) in a controlled manner (Đ = 1.2-1.8). A more detailed 

overview of the copolymerization of limonene oxide with CO2 is presented in Chapter 3.4. 
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Figure 8. Structure of the β-diiminato-zinc-NTMS2 complex 3 and its ORTEP style representation with 

ellipsoids drawn at the 50% probability level. Reproduced with permission from [81], Copyright © 2017 

Royal Society of Chemistry. 

The most intensively studied system for the copolymerization of epoxides and CO2 is the metal 

salen system (1d). It has been excellently reviewed by a number of groups and will only be 

discussed briefly within this chapter.[41-42, 82] Although suffering from overall lower activities than 

BDI complexes, salen ligands coordinated to a suitable transition metal (Cr, Co, etc.) allow high 

polymer selectivity under mild conditions and the introduction of regioselectivity. The first cobalt 

salen complex was published by Coates et al. in 2003.[83] For the coupling of PO and CO2 high 

polymer selectivities (>99%) for polymerization temperatures between 15 - 40 °C and molecular 

weights of up to 21.7 kg/mol were achieved. The N,N,O,O-tetradentate ligand structure has 

been optimized but, also the cocatalyst plays an important role. The axial X group at the metal 

center should be an electrophile of poor leaving ability (e.g. 2,4-dinitrophenoxy or halide), 

whereas bulky nucleophiles with low coordination ability are good candidates for a cocatalyst 

(e.g. Bu4NCl, PPNCl). Head-to-tail connectivities of >95% were able to be realized.[84] Based on 

these results, the salen systems have been improved in terms of activity, stereo- and 

regioselectivity.[85-88]    

A series of bimetallic complexes supported by a macrocyclic ligand system based on 

diphenolates were prepared by Williams et al. (Figure 9).[89] The complexes were active in the 

copolymerization of CHO and CO2 even at very low pressures (pCO2 = 1 bar) with the 

polycarbonate selectivity remaining high. The introduction of defined equivalents of H2O acting 

as chain-transfer agents allowed the synthesis of polyols in controlled molecular weights. These 

polyols represent an interesting group of candidates for the production of polyurethanes.[90] 

Synthetic modifications both at the metal center and at the nucleophilic leaving group led to 

improvements in terms of activity and selectivity.[91-94]  
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Figure 9. Macrocyclic diphenolate complexes with Zn or Mg as central metal.[90-91, 95-96] 

3.3 Terpolymerization pathways 

The class of macrocyclic diphenolate complexes was also able to catalyze the ring-opening 

polymerization of other types of monomers such as lactones and anhydrides in combination with 

epoxides. In a first example, terpolymers from CHO, CO2 and ε-caprolactone were synthesized 

to ABA block copolymers consisting of polyester and polycarbonate units. The catalyst 

exclusively initiated the copolymerization of CHO and CO2, followed by the ring-opening 

polymerization of ε-CL only after releasing CO2 completely from the reaction atmosphere.[95] In 

this case, CHO served as an situ formed alkoxide initiator enabling ring-opening step of the 

lactone. The monomer scope was even extended to anhydrides, allowing the chemoselective 

synthesis of copolyesters and copolyester-carbonates.[97] Using mixtures of three different 

monomers limits the synthesis of polymers to ABA block copolymers.[98] Pentablocks were 

realized by activating a similar dizinc catalyst with cyclohexanediol.[96] The diol enables the in 

situ formation of two alkoxide initiators, allowing the combination of three different catalytic 

cycles in a one-pot polymerization of four different types of monomer, namely phthalic

anhydride, ε-decalactone, CHO, and CO2. Another approach for the combination of different 

catalytic cycles was presented by Wang et al. in 2018.[99] The terpolymerization of CO2, epoxides

and vinyl monomers by a porphyrin aluminum complex is presented. The advantage of this 

catalyst is its compatibility with the reversible addition-fragmentation chain-transfer (RAFT) 

polymerization, which enables the synthesis of PPC-b-PMMA copolymers to Mn = 11.9-

21.6 kg/mol in narrow dispersities (1.09-1.14). The switch in the catalytic cycle was realized by

a bifunctional chain-transfer agent.  A different approach was done by our group in order to 

realize both consecutively and simultaneously proceeding catalytic cycles.[100] BDI-Zn-NTMS2 
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complex 3 shows high activity for both the ring-opening polymerization of β-butyrolactone and 

the copolymerization of CO2 and epoxides.[81, 101] CO2 controlled AB and BA block copolymers 

were able to be prepared in one-pot polymerizations. Specifically, the polymerization procedure 

starting with the copolymerization of CO2 and CHO ran in a highly selective manner since no 

incorporation of BBL was observed at that stage, and the ROP of BBL did not start until the 

excess of the carbon dioxide pressure was released. By lowering the CO2 pressure to 3 bar, 

similar reaction rates for the two types of polymerization led to a statistical composition of the 

terpolymers. Molecular weights between 34 kg/mol and 166 kg/mol were obtained. Interestingly, 

the block copolymers exhibit two glass transition temperatures (Tg, PHB ~ 2 °C, Tg, PCHC ~ 115 °C) 

due to phase separation, whereas the mix-Tg of the statistical terpolymer ranges between 36-

91 °C. Mechanistic insights could be gained using in situ IR spectroscopy, 2D NMR 

spectroscopy and polarimetry, thus suggesting two zinc-alkoxide intermediates that can 

coordinate either BBL or CO2 (Figure 10). Following carbon dioxide insertion the respective zinc-

carbonate facilitates the ring-opening of CHO. 

 

Figure 10. Postulated mechanism for the terpolymerization reaction of BBL, CHO and CO2 under 3 bar 

CO2 pressure with catalyst 3. Reproduced with permission from [100], Copyright © 2018 American 

Chemical Society. 

3.4 Limonene oxide: Recent advances in catalysis and mechanism elucidation 

 

The bio-based limonene oxide was successfully copolymerized with CO2 by Coates et al. in 2004 

using the Lewis acidic zinc catalyst 5 (Figure 11).[8] This catalyst bears one electron-withdrawing 

CF3-group in the pentane backbone and an acetate moiety serving as a nucleophilic initiating 

group. A maximum TOF of 37 h-1 was achieved at  a reaction temperature of 25 °C. Surprisingly, 

the activity decreased drastically for temperatures above 35 °C. The reason for this was later 
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explained by a relatively low ceiling temperature of PLC in the presence of a catalyst.[81] The 

second interesting observation was the exclusive incorporation of the trans-limonene oxide into 

the polymer even though the initial monomer consisted of a 46:54 cis:trans mixture. This fact 

renders the synthesis of PLC with BDI-Zn catalysts economically unfriendly. One approach was 

achieved by the group of Kleij with the introduction of an amino-triphenolate aluminum complex

6 with PPNCl as cocatalyst.[102] Based on DFT calculations, it was shown that a precoordinated 

LO is prone to a nucleophilic attack by the chloride of PPNCl. This ring-opening step of the 

epoxide can occur on both positions of the oxirane ring. Surprisingly, the attack on the α-C-atom 

(position of methyl-group) requires the lowest energy but overall, both diastereomers are 

incorporated into the polymer. In the same year, Coates changed the nucleophilic initiating group 

of system 5 from acetate to a trimethylsilylamide group.[103] The crystal structure of a 1:1 mixture 

of amorphous poly(R-limonene carbonate) and poly(S-limonene carbonate) indicate a 

semi-crystalline nature of the packed polymer chains.[104] 

Figure 11. Active initiators for the copolymerization of CO2 and limonene oxide: BDI-Zn-OAc 5 and the 

amino-triphenolate aluminum complex 6.[8, 102]  

A second approach was demonstrated by Greiner and Rieger:[16] The stereoselective 

epoxidation route from (+)-limonene with N-bromosuccinimide enables the synthesis of 90% 

trans-limonene oxide allowing the use of BDI-Zn catalysts in a more economic way. In addition, 

higher molecular weights (> 100 kDa) were achieved, and the most important thermal, optical 

and mechanical properties were determined. A glass transition temperature of 130 °C along with 

a transmission of a polymer film of 97% and a Young’s modulus of 0.95 GPa with an elongation 

at break of 15% demonstrate the high potential of PLC for use as a rigid plastic alternative. 

Within this work, the reaction orders were determined for the polymerization with a BDI-Zn-OAc 

catalyst, and a possible mechanism could be postulated. In the case of CHO as an epoxide the 

overall rate equation is -d[CHO]/dt = k∙[CO2]0∙[CHO]1∙[Zn]1 for the same catalyst.[76] This

demonstrates that the coordination of CHO is the rate-determining step, whereas the 

incorporation of CO2  is very fast. The decisive difference in the rate law for limonene oxide was

observed for the order with respect to limonene oxide: -d[LO]/dt = k∙[CO2]0∙[LO]2∙[Zn]1. Due to 
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the higher steric demand of the limonene oxide molecule, it is assumed that a nucleophilic attack 

of the acetate group is not possible within the first step (Figure 12). It rather requires the 

coordination of a second LO molecule to spatially separate the two zinc centers. After a 

rearrangement, the initiating group can finally successfully ring-open the epoxide, and the 

alternating addition of carbon dioxide and limonene oxide can take place. 

 

Figure 12. Postulated mechanism for the copolymerization of limonene oxide and CO2 with BDI-Zn-OAc. 

Reproduced with permission from [16], Copyright © 2016 Royal Society of Chemistry. 

Modifying the BDI structure by the introduction two electron withdrawing groups and an NTMS2-

initiating group led to the highest activity in the copolymerization of LO and CO2 at a TOF of 

310 h-1.[81] In this work, the reason for low conversions at elevated temperatures was addressed 

in more detail. As previously observed by Coates, the polymerization to PLC hardly reaches 

high conversions and actually results in lower yields when polymerized at 60 °C instead of at 

40 °C. It was assumed that either cis-LO that stays in the reaction mixture and is not polymerized 

or the double bond of LO might act as catalyst poison preventing the polymerization from 

proceeding to high conversion. Both using 99% trans-LO and fully hydrated LO, also called 

menthene oxide, indeed showed the same polymerization behavior and no increase in yield at 

60 °C. Using in situ IR spectroscopy, a deeper insight into polymerization activity at certain 

temperatures could be gained indicating a relatively low ceiling temperature at 60 °C for LO 

concentrations of 3.5 mol/L.[81] Until now, a multitude of different synthetic modifications were 

performed and possible applications investigated.[27, 105-110] Kleij et al. developed a stepwise 

approach to poly(limonene dicarbonate) via PLC followed by the epoxidation of the isopropenyl 

group that again can be transformed into the respective carbonate with the help of CO2 and 

PPNCl.[111] Glass transition temperatures of up to 180 °C were obtained for molar masses of 

15 kg/mol (Đ = 1.31). The group of Koning also investigated the synthesis and use of 
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poly(limonene-8,9-oxide carbonate).[112] They obtained this aliphatic epoxy polycarbonate 

through the alternating copolymerization of limonene dioxide and CO2 with a BDI-Zn-NTMS2 

catalyst. The epoxy group opens a magnitude of possibilities for post-modification: Thiols, 

carboxylic acids or CO2 again afford functional polymers for different areas of application like 

epoxy resins or non-isocyanate polyurethanes. 

4. Conclusion

Aliphatic polycarbonates have been known for more than 50 years but remain highly interesting 

in a variety of research areas. While poly(propylene carbonate), derived from propylene oxide 

and CO2, has already found its industrial application in small scale processes, poly(cyclohexene 

carbonate) continues to serve as an academic bench mark for catalysis research. Although 

heterogeneous systems dominate the industrial PO/CO2 copolymerization, with homogeneous 

catalysts dramatic improvements become possible in the last decade. β-diiminate zinc systems 

seem to be the most active catalysts for the copolymerization of cyclohexene oxide and CO2. 

Besides BDI complexes, macrocyclic diphenolate systems allow the coupling of CO2 and 

epoxides as well as the incorporation of another type of monomer like cyclic esters or 

anhydrides. These one-pot terpolymerizations can be nicely controlled via the carbon dioxide 

pressure. The combination of various polymerization cycles by a single catalyst represents an 

interesting tool for chemoselectively building up block copolymers with different features. BDI 

complexes also enable the coupling of the bio-based epoxide limonene oxide and CO2 to the 

very promising material poly(limonene carbonate). Intense research in recent years has 

revealed possible areas of application for PLC: In addition to the use as a non-isocyanate 

building block in polyurethane production or in coating applications, the detailed determination 

of its thermal, optical and mechanical properties has made it a potential rigid plastic alternative 

to bisphenol-A polycarbonate. However, turnover numbers still need to be increased for 

limonene oxide, and it will be very interesting to see whether this limitation can be solved in the 

near future in order to make an industrial process possible. 
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12. Excursus: Synthesis of Novel Epoxy Monomers and Their

Copolymerization with CO2

12.1  Monomers for the Synthesis of High Refractive Index Polymers (HRIP) 

In the past few centuries, optical devices such as eye glasses, sensors and display devices have 

experienced a tremendous change. For quite a long time, all eyeglass lenses were made of glass. Within 

the discovery and development of synthetic plastics, glass lenses were more and more replaced. PMMA 

was one of the first polymers used to produce eyeglasses followed by poly(allyldiglycol carbonate) and 

Makrolon® (Figure 20). Synthetic HRIP bear some outstanding advantages. Injection molding allows 

the mass production of the polymers at low costs to materials which withstand high mechanical stress. 

Due to the lowered density compared to glass, the material has a reduced weight. Most importantly, the 

refractive index (nD) of synthetic polymers can be tuned via the introduction of suitable side groups or 

heavy metal elements. The remaining challenges for HRIPs in high-performance applications are a high 

chemical resistance, a good thermal stability as well as an improved scratch resistance.147-148  

Figure 20. Development of commercial high-refractive index polymers.148

The patent of the synthesis of polythiourethanes by Mitsui Chemical Inc. in 1987 fueled the discussion 

about introducing heteroatoms into the polymeric network to generate HRIPs.149 The use of sulfur 

containing polymers was not only restricted to polyurethanes but also polycarbonates have been closely 

investigated. (Salen)CrCl complexes display high activities in the copolymerization of episulfide and 

CS2 and in the coupling of CHO and CS2 to polythiocarbonates.150-152 In this respect, the introduction of 

silicon was considered to be a valuable alternative approach to the generation of HRIPs.  

Scheme 14. Epoxidation of vinyltrimethylsilane and its coupling with CO2 

The structural motif of poly(propylene carbonate) was chosen and a silicon moiety was planned to be 

attached instead of the methyl group (Scheme 14). Epoxidation of vinyltrimethylsilane with meta-
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chloroperbenzoic acid (mCPBA) yielded trimethylsilyloxirane which, upon treatment with CO2 and 

complex 4, did not yield the desired polycarbonate structure but the cyclic carbonate instead.    

12.2  Terpene-Based Epoxides 

The synthesis of sustainable polymers can be generally classified into two approaches, namely a polymer 

approach (natural polymers are used) and a monomer approach, where natural monomers are 

polymerized. Within the latter group, hydrocarbon-rich biomass as for instance terpenes represent an 

interesting renewable feedstock. α- and β-pinenes are the most abundant natural terpenes and can be 

obtained from non-edible parts of plants. The very high steric hindrance of α-pinene makes its 

polymerization very difficult (Figure 21). In contrast, polymers derived from β-pinene are a lot more 

accessible via cationic or radical polymerization methods and aliphatic cycloolefins can be obtained.153 

Another bicyclic monoterpene is 3-carene. Its chemical structure bears similarities to the well-known 

limonene with a dimethylcyclopropyl ring instead of the isopropenyl group.  

Figure 21. Terpenes as a possible feedstock for epoxidation (left). trans-selective epoxidation of 3-carene (right). 

Since BDI complexes are known to only incorporate the trans monomer in the copolymerization of 

limonene oxide and CO2, also for 3-carene the trans-selective epoxidation route was chosen. The 2-step 

reaction yielded 3-carene oxide in 100% trans-selectivity. After drying over NaH, the freshly distilled 

monomer was added to complex 4 and pressurized with CO2. No conversion to the polycarbonate nor 

to the cyclic by-product could be observed in the 1H NMR spectrum. 
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13. Summary

The ring-opening copolymerization of epoxides and CO2 is a valuable method for the synthesis of 

aliphatic polycarbonates (Scheme 15). Carbon dioxide is used as a non-toxic, abundant C1-feedstock to 

produce polycarbonates independent of fossil fuels. In this work, a Lewis acidic zinc complex was used 

as a catalyst for the polymerization of carbon dioxide with cyclohexene oxide and limonene oxide, 

respectively. 

Scheme 15. Ring-opening copolymerization of epoxides and CO2 with the Lewis acidic zinc complex 4. 

In the first part of the thesis, two approaches for the combination of the ring-opening copolymerization 

of epoxides and CO2 with other mechanisms were investigated. This allowed for the introduction of an 

additional type of monomer into the polymer structure. The so-called terpolymerization is expected to 

serve as a promising method for the synthesis of polymers with an enhanced portfolio of properties. The 

first approach was based on the catalytic activity of the BDICF3-Zn-N(SiMe3)2 4 for ROCOP of CHO 

and CO2 but also for the ROP of lactones such as β-butyrolactone. One-pot polymerizations consisting 

of CHO, BBL, CO2, and catalyst were studied towards block formation and the influence of CO2 on 

the incorporation of the respective monomers. In total, three pathways were established (Figure 22). 

Adding no CO2 in the beginning resulted in polyester formation with consequent polycarbonate 

polymerization upon CO2 addition (AB block, route A). When 40 bar CO2 are added at the start, 

exclusive polycarbonate formation was observed, and the polyester block was only formed by the time 

carbon dioxide was completely released from the autoclave (route B). An interesting third route has 

been developed by lowering the pressure to 3 bar CO2 (route C). Due to similar reaction rates of 4 for 

ROCOP and ROP, both monomer types (CHO/CO2 and BBL) were polymerized to a statistical 

polymer. A possible mechanism for this statistical polymerization was postulated based on 

polarimetry measurements of PHB and two-dimensional NMR spectroscopy. Taking a closer look at 

the reaction orders of the ROCOP by varying the carbon dioxide pressure revealed an interesting shift. 

While CO2 is not rate-limiting (reaction order zero) in the CHO/CO2 copolymerization at a pressure of 

40 bar, the reaction order changed to a first-order dependency at lower CO2 concentrations. The 

change in polymer architecture (block vs statistical) also severely influenced thermal and mechanical 

characteristics. PHB/PCHC terpolymers in block structure showed two separated glass transition 

temperatures due to phase 
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separation (PHB block ~5 °C; PCHC block ~115 °C) whereas those in statistical structure exhibited a 

mixed Tg which was tunable depending on the polymer composition. 

Figure 22. Illustration of the three possible polymerization pathways. 

Additionally, the terpolymers were characterized towards their mechanical performance through hot-

pressing into dog-bone shaped specimens and their stress-strain analysis. The overall goal was to 

overcome the brittleness of PCHC (Young modulus: 3600 MPa, elongation at break: 1.7%13) by the 

introduction of soft PHB blocks. Terpolymers in statistical structure showed reduced Young moduli but 

a similar elongation at break. Switching to PCHC/PHB polymers in high molecular weight 

(Mn, rel.>100 kg/mol) revealed an improved performance of the material (1170 MPa, 5.0%) compared to 

pure PCHC. Subsequently, the established reaction pathways were tested towards different types of 

epoxides, namely cyclopentene oxide (CPO) and limonene oxide. In case of CPO, a very similar 

reactivity behavior was observed, and all three polymerization routes yielded the desired terpolymers. 

Pure poly(cyclopentene oxide) showed a reduced Tg of 91 °C compared to PCHC due to the change in 

the ring size of the epoxide. The resulting terpolymers again revealed a phase separated behavior in case 

of the block structure and a tunable Tg when polymerized at 3 bar CO2. An interesting reactivity change 

was disclosed when using limonene oxide. Applying CO2 in the beginning of the polymerization 

successfully led to the formation of PLC, but upon releasing carbon dioxide to enable the polyester 

formation, the depolymerization of PLC started. The BDI zinc catalyzed copolymerization of LO and 

CO2 was studied in detail in 2017.50 Thereby, the depolymerization of the polycarbonate was found to 

become predominant at elevated temperatures at moderate to high conversions. Now, also the carbon 

dioxide pressure was found to be crucial for the polymerization-depolymerization equilibrium. As a 

result of this depolymerization, the second route starting with the polyester formation followed by the 
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poly(limonene carbonate) formation was chosen and yielded the PHB/PLC terpolymer in a block 

structure (route A). The latter showed very promising mechanical data. Adjusting the PHB/PLC 

composition gave materials with a varying elongation at break. Pure PLC with a Young modulus of 

2350 MPa usually got destroyed at an elongation at break of 4 – 6 %. Incorporating soft PHB in a ratio 

of 20% and 50% let the Young modulus drop to 1800 MPa and 1450 MPa and the specimens endured 

13% and 18% elongation, respectively.  

In the second approach of combining different mechanisms, the aim was to couple the ring-opening 

copolymerization of epoxides and CO2 with the rare earth metal-mediated group transfer 

polymerization. Since the BDI zinc complex 4 did not show any activity for the polymerization of 

Michael-type monomers such as 2-vinylpyridine and 2-iso-propenyl-2-oxazoline, a different concept 

has been established. Instead of performing the polymerization at one metal center, two metal centers 

are planned to be linked via a flexible linking unit (Figure 23). The initiating group of the established 

BDI complex was exchanged with a pyridyl alcoholate. The latter was then used to couple it with an 

yttrium metallocene via CH-bond activation. This heteronuclear complex 14 was tested towards the 

terpolymerization of CHO, CO2, and 2VP. Previous MALDI-TOF-MS measurements confirmed the 

linking unit attached to the respective homopolymer PCHC and P2VP being the premise for a successful 

connection of the two different polymer blocks.  

Figure 23. Ring-opening copolymerization of epoxide and CO2 (a), rate earth metal-mediated group transfer 

polymerization of vinyl monomers (b), and the idea of linking two metal centers to create a heterobifunctional 

catalyst for the terpolymerization of epoxides, CO2, and vinyl monomers (c). 
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Mixing complex 14 with CHO and CO2, yielded PCHC but upon addition of 2VP, no P2VP was 

observed. The reason for this behavior could be addressed with NMR spectroscopy by applying CO2 on 

complex 14. The yttrium moiety lost its functionality because carbon dioxide afforded a dissociation of 

the coordinated thf molecule along with a change at the CH2-Y bond, indicating that the pyridyl was no 

longer bound to yttrium. The second pathway started with the REM-GTP of 2VP and the addition of 

CHO and CO2 after four hours. Indeed, conversion to P2VP and PCHC could be observed. To proof a 

successful block formation, aliquot GPC analysis and solubility behavior tests were conducted. A shift 

in the retention time of the P2VP/PCHC terpolymer relative to the P2VP aliquot was revealed. Also, 

solubility of a terpolymer consisting of 34% P2VP and 66% PCHC in methanol confirmed a linking of 

the two blocks because pure PCHC is insoluble in methanol. Additionally, one-pot polymerizations were 

accessible when 2VP and CHO were mixed with the catalyst in the beginning and carbon dioxide was 

applied at a certain 2VP conversion. The versatility of the method could be demonstrated by successfully 

introducing IPOx as a second type of Michael type monomer. Overall, this approach gives access to a 

group of terpolymers that could not be synthesized before. In future studies, properties such as thermal 

and mechanical performance should be investigated in more detail. Moreover, P2VP copolymers are 

often used in creating temperature and pH dependent micelles, but no polycarbonate units have been 

tested so far. 

In the second part of the thesis, a thorough investigation of the two polymers, poly(cyclohexene 

carbonate) and poly(limonene carbonate) was performed. In situ IR spectroscopy provided a valuable 

method to optimize polymerization parameters and to gain insight into the kinetics of the reactions 

(Figure 24).  

Figure 24. Monitoring of the ROCOP of carbon dioxide with CHO and LO, respectively (νC=O = 1745 cm-1).

Two important parameters regarding the polymerization of LO have been revealed. A previous study 

already reported a reaction order with respect to limonene oxide of two (in contrast to one in case of 

CHO).14 That implies, that it requires a certain concentration of active catalytic centers and monomer 
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molecules to enable the coordination-insertion mechanism to proceed. First, the catalyst-to-monomer 

ratio could not be increased higher than 1:500 while CHO was polymerized in 1:2500. Therefore, a 

significant amount of catalyst is needed for upscaling reactions in case of limonene oxide. Secondly, the 

amount of solvent could also not be increased arbitrarily because this also lowers the concentration of 

active centers.  Usually, polymerizations were conducted in a 50 mL autoclave. Upscaling the reaction 

in a 1 L Buchi reactor was successful and gave access to an amount of polymer that was later used in 

characterizing the polymer. The thermal stability of the two polymers was tested by tempering them at 

certain temperatures for 20 minutes and consequently analyzing them via GPC analysis. Both PCHC 

and PLC were stable at 150 °C and only little degradation was observed at 180 °C. Thermally induced 

cross-linking of poly(limonene carbonate) occurred at elevated temperatures but could be prevented by 

adding 500 ppm Irganox®. Multiaxial pressure tests revealed mechanical performance which ranges 

between the two used commercialized polymers PMMA and Durabio®. PCHC and PLC are rather brittle 

materials but did not show a splintering of the material. Dynamic mechanical analysis allowed the 

determination of the glass transition temperatures and the examination of low-Tg transitions. Since 

catalyst 4 shows polymerization activity for both CHO and LO, terpolymerizations of CHO, LO, and 

CO2 were performed. A successful formation of a terpolymer was confirmed via aliquot GPC analysis 

and DOSY NMR spectroscopy. An interesting kinetic feature was revealed using pressure NMR 

techniques, too. CHO is incorporated in the beginning and it takes full CHO conversion before LO 

polymerization starts. All in all, these comprehensive characterizations allow a better understanding of 

the novel CO2-based polymers and facilitate a comparison with commercialized plastics.  
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14. Zusammenfassung

Die Copolymerisation von Epoxiden und CO2 ist eine wertvolle Methode zur Herstellung von 

aliphatischen Polycarbonaten (Scheme 16). Kohlenstoffdioxid dient als ungiftiger, großtechnisch 

verfügbarer C1-Rohstoff, um Polycarbonate unabhängig von fossilen Energieträgern herzustellen. In 

dieser Arbeit diente ein Lewis azider Zinkkomplex als Katalysator für die Polymerisation von CO2 mit 

Cyclohexenoxid bzw. Limonenoxid.  

Scheme 16. Copolymerisation von Epoxiden und CO2 mit dem Lewis aziden Zinkkomplex 4. 

Im ersten Teil der Arbeit wurden zwei Methoden der Kombination der Copolymerisation von Epoxiden 

und CO2 mit anderen Mechanismen getestet. Eine solche Kombination würde das Einführen einer 

zusätzlichen Art von Monomer in die Polymerstruktur erlauben. Es wird erwartet, dass diese sogenannte 

Terpolymerisation eine vielversprechende Methode zur Herstellung von Polymeren mit einem 

verbessertem Eigenschaftsportfolio darstellt. Der erste Ansatz basiert auf der katalytischen Aktivität von 

BDICF3-Zn-N(SiMe3)2 4 für die Copolymerisation von CHO und CO2 und der Ringöffnungs-

polymerisation von Lactonen, wie beispielsweise β-Butyrolacton. Eintopf-Polymerisationen bestehend 

aus CHO, BBL, CO2 und Katalysator 4 wurden hinsichtlich der Blockbildung und des Einflusses von 

CO2 auf den Einbau der jeweiligen Monomere untersucht. Insgesamt wurden drei verschiedene 

Reaktionsrouten etabliert (Figure 25). Wird zu Beginn der Reaktion kein CO2 angelegt, so kam es zur 

Bildung des Polyesterblocks. Auch der Polycarbonatblock wurde erfolgreich gebildet, sobald CO2 

angelegt wird (AB Block, Route A). Im Gegensatz dazu kommt es zur ausschließlichen Polycarbonat-

Bildung, wenn CO2 bereits zu Beginn der Reaktion zugeführt wird. Der Polyesterblock wird erst 

gebildet, nachdem Kohlenstoffdioxid vom Autoklaven abgelassen wurde (Route B). Eine weitere 

interessante, dritte Route wurde durch eine Verminderung des CO2-Drucks auf 3 bar gefunden 

(Route C). Hierbei werden beide Monomertypen (CHO/CO2 und BBL) aufgrund ähnlicher 

Reaktionsraten des Katalysators 4 für die Copolymerisation und die Ringöffnungspolymerisation zu 

einem statistischen Polymer eingebaut. Ein möglicher Mechanismus für diese statistische 

Polymerisation wurde basierend auf Polarimetriemessungen von PHB und zweidimensionaler NMR-

Spektroskopie postuliert. Ein näherer Blick auf die Reaktionsordnungen der Copolymerisationsreaktion 

offenbarte einen interessanten Wechsel in der Reaktionsordnung von CO2. Während CO2 in der 
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CHO/CO2 Copolymerisation bei hohen Drücken (40 bar) nicht ratenlimitierend ist (Reaktionsordnung 

0), ändert sich die Reaktionsordnung zu einer Abhängigkeit erster Ordnung bei niedrigerer CO2- 

Konzentration. Der Wechsel der Polymerarchitektur (Block vs statistisch) hat entscheidenden Einfluss 

auf die thermischen und mechanischen Eigenschaften. PHB/PCHC Terpolymere in Blockstruktur 

zeigten zwei getrennte Glasübergangspunkte aufgrund von Phasenseparation (PHB-Block ~5 °C, PCHC 

Block ~115 °C), wohingegen jene in statistischer Struktur einen Misch-Tg aufweisen, welcher je nach 

Polymerzusammensetzung einstellbar ist. 

Figure 25. ÜÜberblick über die drei möglichen Reaktionsrouten.

Außerdem wurden die Terpolymere hinsichtlich ihres mechanischen Verhaltens getestet, indem sie in 

hundeknochenförmige Prüfkörper verpresst und mittels einer Zugdehnungsmaschine analysiert wurden. 

Das Gesamtziel dabei war die Sprödigkeit von PCHC (E-Modul: 3600 MPa, Bruchdehnung: 1.7%13) 

durch den Einbau des weichen PHB-Blocks zu verbessern. Terpolymere in statistischer Struktur zeigten 

ein verringertes E-Modul, jedoch weiterhin eine sehr geringe Bruchdehnung. PCHC/PHB Polymere in 

Blockstruktur und hohen Molekulargewichten (Mn, rel.>100 kg/mol) hingegen zeigten ein verbessertes 

mechanisches Verhalten (1170 MPa, 5.0%) verglichen mit reinem PCHC. Daraufhin wurden die 

etablierten Reaktionsrouten auf weitere Epoxide, Cyclopentenoxid (CPO) und Limonenoxid, getestet. 

Im Falle von CPO wurde ein sehr ähnliches Reaktionsverhalten zu CHO beobachtet und alle drei 

Reaktionswege führten zu den gewünschten Terpolymeren. Reines Poly(cyclopentencarbonat) zeigt 

einen verringerter Tg von 91 °C im Vergleich zu PCHC aufgrund des Ringgröße des jeweiligen Epoxids. 

Die resultierenden Terpolymere zeigten wieder ein phasensepariertes Verhalten im Falle der 

Blockstruktur und einen einstellbaren Tg als bei 3 bar CO2 polymerisiert wurde. Ein interessanter 

Reaktivitätswechsel wurde bei der Verwendung von Limonenoxid enthüllt. Das Anlegen von CO2 zu 
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Beginn der Reaktion führte zur Bildung von PLC. Nach Ablassen des CO2, um die Polyesterbildung zu 

ermöglichen, wurde die Depolymerisation von PLC beobachtet. Eine detaillierte Studie der 

Copolymerisation von LO und CO2 mit BDI Zinkkatalysatoren erfolgte 2017.50 Dabei wurde die 

Depolymerisation des Polycarbonats bei erhöhten Temperaturen und moderat hohen Umsätzen als 

vorherrschend bestimmt. Nun zeigt sich, dass der CO2 Druck ebenfalls entscheidend für das 

Polymerisations-Depolymerisationsgleichgewicht ist. Als Ergebnis dieser Depolymerisation wurde die 

zweite Reaktionsroute A gewählt, um beginnend mit der Polyesterbildung gefolgt von der PLC-Bildung 

PHB/PLC Terpolymere in Blockstruktur herzustellen. Letztere zeigten vielversprechende mechanische 

Eigenschaften. Eine verändernde PHB/PLC Zusammensetzung ergibt ein Material mit 

unterschiedlichen Bruchdehnungen. Reines PLC zeigt ein E-Modul von 2350 MPa und versagt meist 

bei einer Bruchdehung von 4-6%. Der Einbau von weichem PHB in einem Verhältnis von 20% bzw. 

50% bewirkt eine Verringerung des E-Moduls auf 1800 MPa bzw. 1450 MPa und die Probenkörper 

widerstehen einer Dehnung von 13% bzw. 18%.  

In der zweiten Methode der Kombination verschiedener Mechanismen war das Ziel die 

Copolymerisation von CO2 und Epoxiden mit der seltenerdmetallkatalysierten Gruppentransfer-

polymerisation zu koppeln. Da der BDI Zinkkatalysator 4 keine Aktivität in der Polymerisation von 

Michael-Monomeren wie zum Beispiel 2-Vinylpyridin und 2-Isopropenyl-2-oxazoline zeigte, wurde ein 

anderer Ansatz verfolgt.  

Figure 26. Copolymerisation von Epoxiden und CO2 (a), seltenerdmetall-katalysierte Gruppentransferpoly-

merisation von vinylischen Monomeren (b) und die Idee der Überbrückung zweier aktiven Zentren zur Herstellung 

eines bifunktionellen Katalysators frü die Terpolymerisation von Epoxiden, CO2 und vinylischem Monomer (c). 
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Anstelle einer Polymerisation an einem Metallzentrum, ist geplant zwei Metallzentren mit einer 

flexiblen Verbindungseinheit zu überbrücken (Figure 26). Ein Pyridylalkohol ersetzt die 

Initiatorgruppe am bekannten Zinkkomplex 4 und der entstehende Zinkalkoxid Komplex wird mittels 

CH-Bindungsaktivierung an ein Yttrium Metallocen gekoppelt. Der heteronukleare Komplex 14 wurde 

hinsichtlich seiner Aktivität in der Terpolymerisation von CHO, CO2 und 2VP getestet. Vorherige 

MALDI-TOF-MS Messungen bestätigten, dass die Verbindungseinheit als Endgruppe erfolgreich auf 

die jeweiligen Homopolymere PCHC und P2VP übertragen wurde. Diese Endgruppe wiederrum ist 

die Voraussetzung für eine erfolgreiche Verbindung der beiden verschiedenen Polymerblöcke in der 

folgenden Terpolymerisation. Wird Komplex 14 mit CHO und CO2 versetzt, bildete sich PCHC, nach 

Ablassen von CO2 und Zugabe von 2VP jedoch kein P2VP. Der Grund für dieses Verhalten konnte 

mittels NMR-Spektroskopie adressiert werden, indem Komplex 14 mit CO2 bedrückt wurde. Dabei 

zeigte sich, dass die Yttrium Einheit ihr Funktionalität verlor, weil CO2 eine Dissoziation des 

koordinierten THF Moleküls und eine Änderung der CH2-Y Bindung bewirkt, die zeigt, dass das Pyridyl 

nicht mehr am Yttrium gebunden ist. Der zweite Reaktionsweg startete mit der REM-GTP von 2VP und 

der Zugabe von CHO und CO2 nach vierstündiger Reaktionszeit. Tatsächlich konnte Umsatz sowohl zu 

P2VP als auch PCHC beobachtet werden. Um die erfolgreiche Blockbildung zu beweisen, wurden 

Aliquot GPC Messungen und Löslichkeitstests durchgeführt. Eine Verschiebung der Retentionszeit des 

P2VP/PCHC Terpolymers relativ zum P2VP Aliquot liefert einen ersten Hinweis für eine Verbindung 

beider Blöcke. Außerdem zeigt das Terpolymer bestehend aus 34% P2VP und 66% PCHC vollständige 

Löslichkeit in Methanol während reines PCHC in Methanol unlöslich ist. Des Weiteren waren 

Eintopfreaktionen erfolgreich, wenn 2VP und CHO zu Beginn der Reaktion mit Komplex 4 versetzt 

wurden und CO2 nach einem bestimmten 2VP Umsatz zugegeben wird. Die Vielseitigkeit dieser 

Methode zeigte sich durch das Einführen von IPOx als alternatives Michael Monomer. Insgesamt 

ermöglicht diese Methode Zugang zu einer Gruppe von Terpolymeren, die vorher synthetisch nicht 

zugänglich waren. In zukünftigen Arbeiten werden thermische und mechanische Eigenschaften im 

Detail untersucht. Außerdem werden P2VP Copolymere oft in der Herstellung von temperatur- und pH-

abhängigen Mizellen verwendet, dabei bisher aber keine Polycarbonatblöcke getestet.  

Im zweiten Teil dieser Arbeit erfolgte eine intensive Untersuchung der beiden Polymere 

Poly(cyclohexencarbonat) und Poly(limonencarbonat). In situ IR Spektroskopie stellte dabei eine 

wichtige Möglichkeit dar, die Reaktionsbedingungen zu optimieren und Einsicht in die Kinetik der 

Reaktion zu gewinnen (Figure 27). Für die Polymerisation von LO und CO2 konnten zwei wichtige 

Bedingungen gefunden werden. Vorherige Studien zeigten bereits eine Reaktionsordnung für LO von 

zwei (im Gegensatz zu eins im Falle von CHO).14 Dies bedeutet, dass es eine bestimmte Konzentration 

katalytisch aktiver Zentren und Monomer Molekülen erfordert, um den Koordination-Insertions-

Mechanismus ablaufen zu lassen. Erstens kann das Katalysator-zu-Monomer Verhältnis nicht über 

1:500 gesteigert werden, wohingegen CHO in Verhältnissen von 1:2500 polymerisiert werden kann. 

Demzufolge ist für Hochskalierungsreaktionen eine große Menge Katalysator im Falle von 
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Limonenoxid notwendig. Zweitens kann die Menge an Lösemittel nicht beliebig erhöht werden, da auch 

dies eine Verringerung der Konzentration aktiver Zentren zur Folge hat. Gewöhnlich wurden die 

Polymerisationen in 50 mL Autoklaven durchgeführt. Die Reaktion konnte erfolgreich in einem 

1 L Büchi Reaktor hochskaliert werden, um eine große Menge an Polymer einer Charge für spätere 

Charakterisierungen des Materials herzustellen. 

Figure 27. Spektroskopische Verfolgung der Copolymerisation von CO2 und CHO bzw. LO (νC=O = 1745 cm-1).

Die thermische Stabilität der beiden Polymere wurde durch Tempern bei bestimmten Temperaturen 

für 20 Minuten und folgender Analyse mittel GPC untersucht. Sowohl PCHC als auch PLC sind stabil 

bis 150 °C. PCHC weist lediglich einen geringen Abbau bei 180 °C auf, wohingegen PLC thermisch-

induziertes Quervernetzen bei erhöhten Temperaturen zeigt. Dies konnte aber durch Zusatz von 500 

ppm Irganox® verhindert werden. Multiaxiale Drucktests offenbaren ein mechanisches Verhalten 

zwischen den beiden kommerziellen Polymeren PMMA und Durabio®. PCHC und PLC sind relativ 

spröde Materialien, brechen aber ohne ein Splittern des Polymers. Die Bestimmung der 

Glasübergangstemperaturen und der sub-Tg Übergänge war mittels dynamisch-mechanischer Analyse 

möglich. Aufgrund der Aktivität von Komplex 4 hinsichtlich CHO und LO wurden Terpolymerisation 

bestehend aus CHO, LO und CO2 durchgeführt. Die erfolgreiche Bildung des Terpolymers konnte mit 

Aliquot GPC Analyse und DOSY NMR Spektroskopie überprüft werden. Eine erstaunliche kinetische 

Eigenschaft konnte mittels Hochdruck-NMR Techniken entdeckt werden. In der Eintopf 

Polymerisation wird zu Beginn ausschließlich CHO eingebaut, und es erfordert vollen CHO Umsatz, 

bevor Limonenoxid eingebaut ist. Insgesamt erlauben diesen umfassenden Charakterisierungen ein 

besseres Verständnis der neuen CO2-basierten Polymere und erleichtern einen Vergleich mit 

kommerziellen Kunststoffen. 

in situ IR Spektroskopie 
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ABSTRACT: Three novel aminotroponiminate (ATI) zinc complexes I−III
(I = [(Ph2)ATI]Zn−N(SiMe3)2, II = [(C6H3-2,6-C2H5/Ph)ATI]Zn−
N(SiMe3)2, and III = [(C6H3-2,6-CH(CH3)2/Ph)ATI]Zn−N(SiMe3)2)
were synthesized and tested in the ring-opening polymerization of the
lactones β-rac-butyrolactone (BBL) and rac-lactide (LA). The ligands, with
two of them literature unknown, were readily obtained via a three-step
synthesis from tropolone. Forming a five-membered metallacycle with zinc,
the complexes were further structurally examined via single-crystal X-ray
analysis and compared with that of the established, 6-ringed β-diiminate
(BDI) complex IV ([CH(CMeNPh)2]Zn−N(SiMe3)2). The influence of the
varying metallacycle ring size on the polymerization was evaluated. In situ IR
measurements indicate a higher catalytic activity of the novel ATI complexes
I−III for BBL compared with the BDI system IV. The activity and degree of
control were further improved by an in situ generated alkoxy initiating group
generated after the addition of 2-propanol. An enhanced initiator efficiency allowed the synthesis of polymers with controlled
molecular weights and narrow polydispersities. Furthermore, II and III exhibited a high activity in the ring-opening
polymerization of rac-LA. Hereby, reaction time and initiator efficiency could also be optimized at a higher temperature or by
the addition of 2-propanol.

■ INTRODUCTION

Polyesters, particularly poly(hydroxybutyrate) (PHB) and
poly(lactide) (PLA), can be produced by the ring-opening
polymerization (ROP) of lactones. These aliphatic polyesters
represent a valuable group of polymers with a great range of
thermo-mechanical properties along with a renewable origin of
quite a number of cyclic esters.1 PHB, initially identified in
Bacillus megaterium by M. Lemoigne, serves as a bacterial
storage material.2 In nature, the polymer is produced in its
strictly isotactic form; however, controlling the microstructure
via synthetic approaches has been attempted for decades. Ring-
opening polymerization of β-rac-butyrolactone (BBL) offers
the most promising way of controlling the microstructure with
different metals such as aluminum,3 zinc,4 chromium,5 and
yttrium.6 Thereby, β-diiminate (BDI) zinc complexes4d by
Coates et al., yielding atactic PHB, and amino-alkoxy-
bis(phenolate) yttrium complexes6a by Carpentier et al., giving
a syndiotactic microstructure, were introduced as highly active
catalysts. In contrast to PHB, the synthesis of PLA is
industrially already more applied, making it the leading
bioderived polymer. It is usually obtained from lactic acid
through condensation reaction or, more promising, from

lactide via ring-opening polymerization. The access via ROP
enables the production of polymers with high molecular
weights, narrow dispersities, and stereoselectivity.7 Pioneering
works using chiral salen aluminum complexes in the polymer-
ization of rac-LA showed high isoselectivity.8 Since then, a
variety of ligands were coordinated to different central metals
to realize either hetero- or isotactic-enriched PLA.9 Figure 1
gives an overview of catalysts used in ROP of rac-LA starting
with a β-diiminate zinc complex4c producing heterotactic-
enriched PLA and ending with the most active and isoselective
systems using zinc, yttrium, or indium.
Because the development of new and efficient initiators for

this type of polymerization is still an ongoing challenge, the
catalytic behavior of a novel type of ligands, the amino-
troponimines (ATIHs), was investigated.
Aminotroponimines are a well-known class of ligands

initially discovered in 1960. After the insertion of tetrafluoro-
ethylene into cyclopentadiene, the fluorinated cycloheptadiene
is subsequently converted into the corresponding ATIHs via
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condensation reaction with primary amines.10 Deprotonated
ATIHs act as anionic, bidentate ligands with a delocalization of
the negative charge over the 7-membered ring, giving a 10π-
electron backbone. A wide range of main group, transition, and
f-block elements11 have been introduced as central metal, but
Roesky et al. were the first to bring aminotroponiminate (ATI)
ligands into the coordination sphere of zinc.12 A vast variety of
ATI ligands with different amines were converted to zinc
complexes and tested in intramolecular hydroamination
reactions.13 However, to the best of our knowledge, they
have not been used in ROP.
Recently, we showed that BDI complexes bearing two

electron-withdrawing trifluoromethyl groups in the pentane
backbone show enhanced activity in the ring-opening
polymerization of lactones when compared with BDI-ZnEt.14

This can be attributed to an increased Lewis acidity at the
metal center. Thus far, the influence of substituted anilines, the
pentane backbone, and the initiating group on the catalytic
activity was systematically investigated.4c,d,15 Nevertheless, the
6-membered ring structure around the zinc center was not

modified yet. It is expected that changing the ring size will have
a decisive influence in terms of catalytic activity of the
corresponding complexes (Figure 2).
In this work, we report on the synthesis of three novel,

aromatic aminotroponiminate complexes I−III. Two of the
ligands have not been previously reported. The complexes
were structurally compared with the BDI model complex IV
via single-crystal X-ray diffraction (SC-XRD), and the catalytic
activity in ring-opening polymerization of BBL and rac-LA was
examined.

■ RESULTS AND DISCUSSION
Synthesis. Aromatic aminotroponimine ligands were

obtained via a 3-step synthesis starting from tropolone. First,
trifluoromethanesulfonyl was introduced as a good leaving
group for the following cross-coupling. The palladium-
catalyzed Buchwald−Hartwig-like coupling converts the
triflatotropone to the aminotropones 1a−3a. This readily
works for sterically hindered anilines substituted in the 2,6-
position.16 After activation with Meerwein’s salt, the resulting

Figure 1. Active complexes for ROP of rac-LA with a focus on zinc as central metal.4c,9b,c,d,g

Figure 2. BDI zinc complexes established in polymerization catalysis by Coates (left); introduction of electron-withdrawing groups at the pentane
backbone (center); realization of a five-membered metallacycle by synthesis of aminotroponiminate complexes (right).14,15a

Inorganic Chemistry Article
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vinylogous ether was converted by aminolysis to the respective
aminotroponimines (1b−3b).13 Thus, bidentate, N-donor
ligands bearing two different rests (2: R = CH2CH3; 3: R =
CH(CH3)2) at the 2,6-positions of one of the anilines were
obtained (Scheme 1). In order to realize symmetrical, 2,6
disubstituted ATIHs, the aim was to introduce another triflate
leaving group at the aminotropone 2a and subsequently couple
this with a 2,6 disubstituted aniline. The reduction of the
carbonyl unit with lithium diisopropylamide was unsuccessful,
most likely, because of the conjugated system at the amide.
Therefore, only unsymmetrical ATIHs were accessible via this
synthesis route.
BDI complexes bearing bis(trimethylsilyl)-amido (NTMS2)

initiators coordinated to the zinc center show high activities in
the ring-opening polymerization of lactones.17 Therefore, 1b−
3b were treated with Zn(NTMS2)2 to obtain ATI zinc amido
complexes. Recently, Roesky et al. reported the complexation
of aminotroponimines with ZnMe2 and ZnEt2. Depending on
the substituents of the amines, either the desired complex with

the general formula [(R2)ATI]Zn-Alkyl (R = cyclohexyl, 1-
ethylpropyl) or the corresponding homoleptic complex
[(R2)ATI]2Zn (R = Ph, Me, iPr) was obtained.20 Complex-
ation of the symmetric, unsubstituted ligand 1b with
Zn(NTMS2)2 at room temperature resulted in the formation
of two different products (Scheme 2): The target structure I
was only formed to an amount of 50%, whereas the homoleptic
byproduct constituted the remaining 50%. Metal−organic
complexes used in polymerization catalysis usually bear a
nucleophilic group that serves as an initiator for the ring-
opening step. Although there are some systems of homoleptic
complexes which are active in polymerization, it is assumed for
ATI-based complexes that an initiating group is necessary.1d,18

Hence, I′, in contrast to I, might be inactive in ROP of
lactones (tested for BBL polymerization, result shown in Table
1, entry 13). In order to overcome this high amount of
homoleptic byproduct I′, different temperatures were applied
and the influence on the complexation behavior was
investigated (Table S1): Performing the complexation reaction

Scheme 1. Synthesis Route toward Aminotroponimine Ligands 1b−3b

Scheme 2. Complex Synthesis with Ligands 1b−3b and Zn(NTMS2)2
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at 100 °C resulted in the formation of 59% homoleptic
complex I′. Lower temperatures, in this case 0 °C, result again
in an equal 50/50 mixture of I and I′. 1H NMR spectroscopy
still shows the presence of unreacted ligand 1b. Thus, a
temperature of 25 °C for 24 h was chosen as the best condition
for the complexation reaction of 1b. Treatment of ligands 2b
and 3b, bearing substituents at the 2,6-positions of the aniline,
with the zinc precursor led to the exclusive formation of the
desired structures [(C6H3-R2/Ph)ATI]Zn−NTMS2 II−III.
This clearly shows that the steric demand of the ligand plays
a decisive role in the complexation reaction.
The mixture of I and I′ was separated based on the different

crystallization behavior: Diffusion of pentane into a saturated
solution of I and I′ in dichloromethane at −35 °C selectively
led to the crystallization of I′, whereas I remained in solution.
Thus, aminotroponiminate complexes derived from aromatic
anilines with the general formula [Ph2ATI]Zn−initiator were
isolated for the first time. Crystals suitable for single-crystal X-
ray diffraction analysis were obtained via recrystallization of a
saturated solution of I in pentane at −35 °C.
It is of interest to compare the molecular structure and the

activity of the novel ATI complexes with the established BDI
complexes. Via acid-catalyzed condensation reaction of aniline
and acetylacetone, BDI ligand 4a was obtained19 and readily
converted to the respective zinc−NTMS2 complex IV by
stirring the ligand 4a with Zn(NTMS2)2 in toluene at 60 °C

for 16 h (Scheme 3). Recrystallization from toluene at −35 °C
afforded colorless crystals that were suitable for X-ray
diffraction.
Figure 3 shows the ORTEP style representations of I and

IV. Both metal cores adopt a trigonal-planar geometry. Because
I and IV are iminate-derived ligands without any substituents
at the anilines, the 5- and 6-ringed structures can be directly
compared to investigate the influence of the ring size on the
molecular structure. The N1−Zn1−N2 angle was 82.41(7)° in
the 5-ringed structure and 98.59(7)° in the 6-membered ring.
The angle Zn1−N1−C6 also differs (123.67(5) for I and
117.73(4) for IV), indicating a larger space in I for a possible
monomer coordination. A shortening of the Zn1−N3 bond
was observed for the ATI−Zn−NTMS2 I (1.8653(16)) with
respect to the BDI−Zn−NTMS2 IV (1.8832(16)).
Crystals suitable for SC-XRD were obtained via diffusion of

pentane into a saturated solution of II and III in dichloro-
methane. Their molecular structures are depicted in Figure 4.
The substituents in the 2,6-position of the aniline showed little
influence over the molecular structure compared with I. Again,
a trigonal-planar coordination geometry and very similar Zn1−
N3 distances (I. 1.8653(16) Å, II. 1.865(4) Å, and III.
1.8631(17) Å) were observed. The substituted phenyl moieties
were almost perpendicular to the coordination plane.

Polymerization Results. The catalytic activity of I−IV
was tested in the polymerization of BBL and rac-LA under

Scheme 3. Synthesis of β-Diiminate Zinc Complex IV. Reaction of BDI Ligand 4a with the Zinc Precursor

Figure 3. ORTEP style representation of I (left, CCDC 1837008) and IV (right, CCDC 1837010) with ellipsoids drawn at a 50% probability level.
Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg): I. Zn1−N1 1.9659(16), Zn1−N2 1.9707(17), Zn1−N3
1.8653(16), N1−Zn1−N2 82.41(7), Zn1−N1−C6 123.67, and Zn1−N2−C14 124.19; IV. Zn1−N1 1.9460(16), Zn1−N2 1.9530(16), Zn1−N3
1.8832(16), N1−Zn1−N2 98.59(7), Zn1−N1−C6 117.73, and Zn1−N2−C10 119.46.
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different conditions (Tables 1 and 2). The polymerization of
BBL was conducted with a catalyst/monomer ratio of 1:600 at
60 °C in an autoclave with in situ IR monitoring. The three
ATI-based complexes I−III were active initiators for the ring-
opening of BBL, and the ligands had a different influence on
the activity of the respective catalysts.
According to in situ IR spectroscopy (Figure 5), complex I

(Table 1, entry 1) showed the highest activity of all the
catalysts used with an induction period of about 30 min. The
obtained polymer has a molecular weight of 129 kg/mol and a
narrow polydispersity index (Đ) of 1.22. The more sterically
demanding complexes II and III (Table 1, entries 2 and 3) also
exhibited good activity along with a molecular weight of 75 kg/
mol using II and 122 kg/mol with III. Different conditions
such as temperature, addition of an external alcohol,

concentration, and THF as solvent were tested using complex
III. At first, polymerizations at 25 °C (Table 1, entry 4) and 80
°C (Table 1, entry 5) were performed. Activity and initiator
efficiency at room temperature were low for III, leading to 4%
conversion and a molecular weight of 36 kg/mol. Higher
temperatures resulted in increased activity of III and the same
initiator efficiency as for 60 °C. A plot of the in situ IR
spectroscopy versus reaction time for the three temperatures is
shown in Figure S1. The influence of adding an external
alcohol, in this case, 1.0 equiv of 2-propanol, on complex III
was studied via 1H NMR spectroscopy. After 10 min reaction
time, −OiPr is bonded to the metal center, creating an alkoxy
initiating group by a release of HNTMS2 (see Figure S2). This
in situ formed catalyst was subsequently tested in ROP of BBL
at 60 °C (Table 1, entry 6), revealing a higher activity

Table 1. Ring-Opening Polymerization of BBL Using Catalysts I−IVa

entry cat. T [°C] time [h] conv.b [%] Mn,calc
c [kg/mol] Mn,exp

d [kg/mol] Đe Pm
f

1 I 60 8 >99 52 129 1.22 55
2 II 60 15 >99 52 75 1.28 56
3 III 60 8 >99 52 122 1.16 55
4g III 25 20 4 2 36 1.22 53
5 III 80 3.5 >99 52 116 1.15 54
6h III 60 7 95 49 53 1.05 54
7i III 60 3 98 5 7.5 1.02 53
8j III 60 8 97 17 56 1.13 54
9k III 60 8 96 33 65 1.51 53
10g,l III 25 20 7 3.6 29 1.33 54
11l III 60 14 61 31 58 1.78 55
12h I 60 4.5 93 48 49 1.07 55
13 I′ 60 20 2 n.d. n.d. n.d. n.d.
14m I′ 60 12 1 n.d. n.d. n.d. n.d.
15 IV 60 16 76 39 84 1.05 47

aAll polymerizations were performed with nLA = 17.4 mmol in a BBL/cat. ratio of 600 in 5.0 g of toluene in an autoclave with in situ IR monitoring
under an argon atmosphere; polymerizations in entries 7−10 were performed in preheated glasses with magnetic stirring under anargon
atmosphere, with the equivalents of BBL indicated. bConversion determined by 1H NMR spectroscopy. cMn,calc [kg/mol] = 0.01·conv.·86 g/mol·
equiv. dMn,exp determined by GPC in THF vs polystyrene standards. eĐ = Mw/Mn.

fDetermined by 13C NMR spectrum of the carbonyl C atom of
PHB (Figure S5). gNot precipitated. h1.0 equiv of iPrOH was added. i10 equiv of iPrOH was added. j200 equiv of BBL was used. k400 equiv of
BBL was used. lTHF as solvent. m2.0 equiv of iPrOH was added.

Figure 4. ORTEP style representation of II (left, CCDC 1837009) and III (right, CCDC 1837007) with ellipsoids drawn at a 50% probability
level. Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg): II. Zn1−N1 1.970(4), Zn1−N2 1.961(4), Zn1−N3
1.865(4), N1−Zn1−N2 82.61(16), Zn1−N1−C6 123.53, and Zn1−N2−C14 125.05; III. Zn1−N1 1.9547(17), Zn1−N2 1.9553(17), Zn1−N3
1.8631(17), N1−Zn1−N2 82.80(7), Zn1−N1−C6 122.75, and Zn1−N2−C14 124.48.
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compared to III without the addition of iPrOH (Figure S3).
Most importantly, the initiator efficiency of the in situ formed
alkoxy group is higher, enabling the synthesis of controlled
molecular weights and narrow polydispersities. This worked
also for 10 equiv of iPrOH, producing PHB with 7.5 kg/mol
(Table 1, entry 7). By variation of the monomer-to-catalyst
ratio, polymers with different chain lengths were accessible in
still good conversions (Table 1, entries 8 and 9). Polymer-
ization experiments using THF as coordinating solvent (Table
1, entries 10 and 11) were successful, although lower
conversions were observed compared to toluene as solvent.
The use of THF did not influence the stereoselectivity of the
reaction. In all polymerizations, atactic PHB was obtained. As
mentioned, complex I showed an induction time of about 30
min. This can be overcome by adding 1.0 equiv of iPrOH prior
to monomer addition (Table 1, entry 12). An immediate start
of the polymerization as well as controlled molecular weights
could be observed. The homoleptic complex I′ with the
general formula [(Ph2)ATI]2Zn was also tested (Table 1, entry
13) in the polymerization. I′ did not show significant activity,
demonstrating that the catalyst requires a nucleophilic leaving
group to start the ring-opening of the monomer. Complex I′
was treated with 2.0 equiv of iPrOH to check if an active
complex can be formed by the addition of an alcohol. No
conversion to PHB could be observed after a reaction time of

12 h at 60 °C. This clearly demonstrates that no active
complex could be formed by the addition of 2-propanol.
Once the behavior of the ATI complexes in the polymer-

ization of BBL was evaluated, they were compared with the
BDI complex model system, in this case, exemplary with
complex IV: Both I and IV have the same initiating group and
were synthesized from unsubstituted anilines, allowing a direct
comparison of the influence of the 5- vs 6-membered ring
around zinc. BDI complex IV showed lower activity in
polymerization compared with I, yet the molecular weight (84
kg/mol) and Đ (1.05) were still in a good range. There may be
various steric and electronic effects involved; thus, the reason
for the higher activity is difficult to address. According to the
molecular structures of I and IV, revealing a larger Zn1−N1−
C6 angle for I compared to IV (I. 123.67(5)°, IV. 117.73(4)°),
steric reasons seem to be more decisive rather than electronic
effects.
As an example, catalyst II was tested in the ring-opening

polymerization reaction to assess the possible living-type
character (Figure 6). The conversion−time plot is shown on
the left. Molecular weights, as well as the polydispersity indices
as a function of the conversion, show a linear increase,
indicating a living-type character of the polymerization.
Coates et al. investigated the influence of the initiating group

of BDI zinc complexes in the ROP of LA. In that work,
−N(SiMe3)2 substituted complexes show slightly lower activity
than the −OiPr substituted analogue but maintained a good
control of the molecular weight with a moderate Đ of 2.95.4b

Catalysts I−IV were also tested in the ROP of rac-LA under
different conditions (Table 2).
Both II and III (Table 2, entries 2 and 3) were active

initiators at room temperature, producing PLA in high
conversion and very high molecular weight, whereas catalyst
I had a very poor activity, resulting in a low conversion of 12%
after 16 h. The obtained molecular weights indicate a rather
low initiator efficiency of II and III at room temperature. It can
also be concluded that ATI complexes with a higher steric
demand of the ligand had better activity in the rac-LA
polymerization. To get a closer insight why complex I showed
such a low activity, the stability of I and III was investigated in
different solvents (toluene-d8 and dichloromethane-d2, 15 min
and 12 h) via 1H NMR spectroscopy and 1H DOSY NMR. In
both solvents, I and III remained stable and showed a single
diffusion coefficient for all resonances. Hence, the reason for
this activity difference might be caused by the steric demand of
the aniline rests. The substituted complexes II and III likely
enable a better coordination of rac-LA, thus accelerating the

Figure 5. Polymerization of BBL with catalysts I−IV under the same
conditions monitored by in situ IR spectroscopy (νC=O, PHB = 1750
cm−1).

Figure 6. Polymerization of BBL with catalyst II. Plot of PHB conversion (%) vs time (h) (left), and PHB molecular weight ■ (Mn, exp vs
polystyrene standard in THF) and polydispersity index ▼ as a function of conversion (right).
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monomer ring-opening step. Due to a low initiator efficiency,
polymerizations using II both at higher temperature and with
the addition of an external alcohol were performed. Molecular
weights are determined by GPC in THF and corrected with a
factor of 0.58.1d,18 Increasing the temperature from 25 to 40
°C (Table 2, entry 4) already enhanced the initiator efficiency
by a factor of 4 to a molecular weight of 41 kg/mol. The
addition of 2-propanol decisively influenced the reaction time
and the obtained molecular weights: Polymerizing rac-LA at
room temperature in the presence of 1.0 equiv of iPrOH
(Table 2, entry 5) led to full conversion within 1.5 h,
compared to 16 h when no external alcohol was used. The
obtained molecular weights are in good range with the
theoretical values. Performing the polymerization at 40 °C in
the presence of 2-propanol (Table 2, entry 6) led to the same
reaction time of 1.5 h and a comparable control over the
molecular weight. Additionally, polymerization experiments
with different monomer-to-initiator ratios (Table 2, entries 7
and 8) and with tetrahydrofuran as coordinating solvent
(Table 2, entries 9 and 10) were conducted. Because both the
substituents at the ligand and the nature of the solvent
influence stereoselectivity, the polymer microstructure was
examined via homo-decoupled 1H NMR spectroscopy. It has
been reported that increased heterotacticity can be observed
for complexes bearing bulkier ligands.1d,18 This trend was also
observed for the ATI complexes II−III, although Pr is
generally lower when compared to BDI complexes. Complex
II exhibited higher heterotacticity when a higher temperature
(40 °C) was applied. The use of THF had no decisive
influence on the tacticity of the PLA. BDI model catalyst IV
also allowed the polymerization of rac-LA in 16 h with a 94%
yield (Mn = 101 kg/mol, Đ = 1.43). The living-type character
was assessed for rac-LA polymerization with III (Figure S7).

■ CONCLUSION

Three novel zinc complexes I−III were synthesized from
aminotroponimine ligands, two of which were literature
unknown. The ligands were obtained via a three-step synthesis
starting from tropolone. The molecular structures were
compared with the established β-diiminate model system IV
via SC-XRD. Catalysts I−IV were tested in the ring-opening
polymerization of the cyclic esters, rac-BBL and rac-LA. In situ
IR spectroscopy revealed a higher activity for the ATI

complexes I−III in the production of PHB than the BDI
model system IV. This clearly demonstrates that the ring size
of the metal core decisively influences the catalytic behavior of
the complexes. The bulkier complexes II−III were also highly
active initiators in the ring-opening polymerization of rac-LA.
For both monomers, an optimization of the reaction
conditions regarding reaction time, concentration, influence
of the solvent, and the addition of an external alcohol was
carried out. The addition of 2-propanol generated a zinc-alkoxy
initiator group showing higher activity and initiator efficiency
in the ring-opening polymerization. This allowed the synthesis
of polymers with controlled molecular weights and narrow
polydispersities. Further modifications of the ligands’ structure
may improve the activity and the stereospecificity of the
polymerization.

■ EXPERIMENTAL SECTION
General. All reactions containing air- and/or moisture-sensitive

compounds were performed under an argon atmosphere using
standard Schlenk or glovebox techniques. All chemicals, unless
otherwise stated, were purchased from Aldrich and used as received.
Dry toluene, dichloromethane, and pentane were obtained from an
MBraun MB-SPS-800 solvent purification system. 2-Propanol was
dried over molecular sieves.

β-Butyrolactone was treated with BaO to remove crotonic acid
contaminants. After checking the purity via 1H NMR spectroscopy,
BBL was dried over calcium hydride and distilled prior to
polymerization. NMR spectra were recorded on Bruker AVIII-300
and AVIII-500 Cryo spectrometers. 1H NMR spectroscopic shifts are
reported in ppm relative to tetramethylsilane and calibrated to the
residual proton signal of the deuterated solvent. The deuterated
solvents were obtained from Aldrich and dried over 3 Å molecular
sieves. The following abbreviations are used to describe the peak
patterns when appropriate: s (singlet), d (doublet), dd (doublet of
doublets), t (triplet), m (multiplet), and br (broad). In situ IR
measurements were performed under an argon atmosphere using an
ATR-IR MettlerToledo system with mechanical stirring. Gel
permeation chromatography analysis was performed with a Varian
PL-GPC 50 using THF (HPLC grade) with 0.22 g L−1 2.6 di-tert-
butyl-4-methylphenol and a flow rate of 1 mL/min at 40 °C.
Polystyrene standards were used for calibration. Molecular weights of
PLA were corrected with a Mark−Houwink factor of 0.58.20

Elemental analysis was performed at the microanalytic laboratory of
the Department of Inorganic Chemistry at the Technical University of
Munich. Mass spectra were recorded with an Agilent Technologies
Mass Hunter Spectrometer (EI, 70 eV). Single-crystal X-ray

Table 2. Ring-Opening Polymerization of rac-LA Using Catalysts I−IVa

entry cat. T [°C] time [h] conv.b [%] Mn,calc
c [kg/mol] Mn,exp

d [kg/mol] Đe Pr
f

1g I 25 16 12 3.5 7.5 1.28 n.d.
2 II 25 16 91 26 168 1.63 50
3 III 25 16 97 28 125 1.89 54
4 II 40 8 97 28 41 1.69 60
5h II 25 1.5 90 26 26 1.23 50
6h II 40 1.5 97 28 30 1.74 60
7i II 40 16 99 56 68 2.05 55
8j II 40 16 94 84 111 1.83 57
9k II 25 16 62 18 109 2.43 47
10k II 40 8 86 25 70 1.81 53
11 IV 25 16 94 27 101 1.43 62

aAll polymerizations were performed, except otherwise indicated, with nLA = 0.8 mmol in a rac-LA/cat. ratio of 200 in 2.65 mL of dichloromethane
under an argon atmosphere. bConversion determined by1H NMR spectroscopy. cMn,calc [kg/mol] = 0.01·conv.·144 g/mol·equiv. dMn,exp
determined by GPC in THF vs polystyrene standards; Mn,exp values are corrected with a 0.58 factor for PLA. eĐ = Mw/Mn.

fDetermined by homo-
decoupled 1H NMR spectroscopy considering the methine region of PLA (Figure S6). gNot precipitated. h1.0 equiv of iPrOH was added. i400
equiv of rac-LA was used. j600 equiv of rac-LA was used. kTHF as solvent.

Inorganic Chemistry Article

DOI: 10.1021/acs.inorgchem.8b01060
Inorg. Chem. 2018, 57, 9931−9940

9937

Publications Beyond the Scope of the Thesis 

110 

  



crystallography was performed at the SCXRD laboratory of the
Catalysis Research Center.
Ligands. 2-Triflatotropone. This compound was synthesized

according to a modified literature procedure.21 2-Hydroxycyclohep-
ta-2,4,6-trienone (tropolone) (2.50 g, 20.5 mmol, 1.00 equiv),
triethylamine (2.17 g, 21.5 mmol, 1.05 equiv), and N-phenyltriflimide
(7.68 g, 21.5 mmol, 1.05 equiv) were dissolved in dry dichloro-
methane and stirred for 48 h at r.t. After extraction with water (20
mL) and dichloromethane (2 × 20 mL), the main product was
concentrated in vacuo and purified via silica gel column chromatog-
raphy (hexane/ethyl acetate = 2:1, TLC Rf = 0.3) yielding a brownish
oil (86%). 1H NMR (500 MHz, CDCl3, 298 K): δ (ppm) = 9.07 (br
s, OH), 7.42−7.22 (m, 4H, HAr), 7.07 (t, J = 10.2 Hz, 1H, HAr).

13C
NMR (126 MHz, CDCl3, 298 K): δ [ppm] = 178.5 (s), 156.4 (s),
141.2 (s), 137.6 (s), 136.4 (s), 130.7 (s), 128.6 (s), 121.4 (1JCF = 323
Hz).
Aromatic 2-Aminotropones (1a−3a). In a preheated Schlenk

flask, 2-triflatotropone (1.20 g, 4.72 mmol, 1.00 equiv), cesium
carbonate (2.15 g, 6.61 g, 1.40 equiv), rac-2,2′ -bis-
(diphenylphosphino)-1,1′-binaphthalene (29.4 mg, 47.2 μmol, 0.01
equiv), tris(dibenzylideneacetone)dipalladium (21.6 mg, 23.6 μmol,
0.005 equiv), and the respective aniline (6.14 mmol, 1.30 equiv) were
dissolved in toluene and heated to 90 °C for 24 h.16 The crude
product was filtered, concentrated in vacuo, and purified via silica gel
chromatography (hexane/ethyl acetate = 20:1, TLC Rf = 0.2).
2-(Phenylamino)tropone 1a. 1H NMR (500 MHz, CDCl3, 298

K): δ (ppm) = 8.84 (br s, 1H, NH), 7.53−7.19 (m, 9H, HAr), 6.88
(dd, J = 7.1 Hz, J = 8.9 Hz, 1H, HAr).
2-(2,6-Diethylphenylamino)tropone 2a. 1H NMR (500 MHz,

CDCl3, 298 K): δ (ppm) = 8.47 (br s, 1H, NH), 7.36−7.23 (m, 5H,
HAr), 7.07 (t, J = 10.3 Hz, 1H, HAr), 6.73 (t, J = 8.9 Hz, 1H, HAr), 6.26
(d, J = 10.3 Hz, 1H, HAr), 2.55−2.42 (m, 4H, −CH2−), 1.14 (t, J =
7.6 Hz, 6H, −CH3).

13C NMR (126 MHz, CDCl3, 298 K): δ [ppm] =
176.5, 155.6, 142.1, 137.5, 136.7, 133.9, 129.8, 128.4, 127.0, 123.6,
110.2, 24.7, 14.9. Anal. Calcd for C17H19NO: C, 80.60; H, 7.56; N,
5.53. Found C, 80.67; H, 7.64; N, 5.46. MS (EI, 70 eV): 253.2 m/z
[M+].
2-(2,6-Diisopropylphenylamino)tropone 3a. 1H NMR (500

MHz, CDCl3, 298 K): δ (ppm) = 8.42 (br s, 1H, NH), 7.41−7.26
(m, 5H, HAr), 7.07 (t, J = 10.3 Hz, 1H, HAr) 6.73 (t, J = 9.8 Hz, 1H,
HAr), 6.27 (d, J = 10.3 Hz, 1H, HAr) 2.94−2.85 (m, 2H, −CH−), 1.13
(dd, J = 20.3 Hz, J = 6.9 Hz, 6H, −CH3).

13C NMR (126 MHz,
CDCl3, 298 K): δ [ppm] = 176.4, 156.5, 146.9, 137.7, 136.4, 132.4,
130.0, 128.9, 124.4, 123.8, 110.7, 28.6, 24.6, 23.5. Anal. Calcd for
C19H16N2: C, 81.10; H, 8.24; N, 4.98. Found C, 81.10; H, 8.47; N,
4.74. MS (EI, 70 eV): 281.2 m/z [M+].
N,N′-Disubstituted Aminotroponimines (1b−3b). Triethy-

loxonium tetrafluoroborate (0.47 g, 2.48 mmol, 1.05 equiv) was
dissolved in a preheated flask in dry dichloromethane and added to a
solution of the respective 2-aminotropone 2a−c (2.36 mmol, 1.00
equiv) and dichloromethane. After stirring for 3 h at r.t., aniline (1.10
g, 11.4 mmol, 5.00 equiv) was added and the resulting solution was
stirred for 48 h. The crude product was extracted with a NaOH
solution (1M, 10 mL) and dichloromethane (2 × 10 mL). A dark
brownish oil was obtained after silica gel column chromatography
(hexane/ethyl acetate = 30:1, TLC Rf = 0.6).
N-Phenyl-2-(phenylamino)troponimine 1b. 1H NMR (500 MHz,

CDCl3, 298 K): δ (ppm) = 9.18 (br s, 1H, NH), 7.40 (t, J = 7.9 Hz,
4H), 7.16−7.12 (m, 6H), 6.84 (d, J = 10.4 Hz, 2H, HAr), 6.73 (t, J =
10.3 Hz, 2H, HAr), 6.34 (t, J = 9.2 Hz, 1H). 13C NMR (126 MHz,
CDCl3, 298 K): δ [ppm] = 152.0, 145.3, 133.6, 129.6, 124.1, 122.7,
122.2, 115.0. Anal. Calcd for C19H16N2: C, 83.79; H, 5.92; N, 10.29.
Found C, 83.95; H, 6.00; N, 10.23. MS (EI, 70 eV): 273.2 m/z [M +
H].
N-Phenyl-2-(2,6-diethylphenylamino)troponimine 2b. 1H NMR

(500 MHz, CDCl3, 298 K): δ (ppm) = 9.10 (br s, 1H, NH), 7.41 (t, J
= 7.8 Hz, 2H), 7.18−7.13 (m, 6H), 6.88 (d, J = 10.9 Hz, 1H), 6.73
(dd, J = 10.6 Hz, J = 9.5 Hz, 1H), 6.66 (dd, J = 10.6 Hz, J = 9.5 Hz,
1H), 6.28 (t, J = 9.5 Hz, 1H), 6.14 (d, J = 10.6 Hz, 1H), 2.53−2.39
(m, 4H), 7.54 (t, J = 7.5 Hz, 6H). 13C NMR (126 MHz, CDCl3, 298

K): δ [ppm] = 152.8, 151.0, 144.9, 141.9, 137.6, 133.6, 133.5, 129.6,
126.5, 125.1, 124.0, 122.9, 121.3, 115.4, 113.1, 24.8, 14.6. Anal. Calcd
for C23H24N2: C, 84.11; H, 7.37; N, 8.53. Found C, 83.83; H, 7.60; N,
8.24. MS (EI, 70 eV): 329.2 m/z [M + H].

N-Phenyl-2-(2,6-diisophenylamino)troponimine 3b. 1H NMR
(500 MHz, CDCl3, 298 K): δ (ppm) = 9.16 (br s, 1H, NH), 7.46
(t, J = 7.9 Hz, 2H), 7.28−7.17 (m, 6H), 6.93 (d, J = 11.0 Hz, 1H),
6.77 (dd, J = 10.7 Hz, J = 9.6 Hz, 1H), 6.69 (dd, J = 10.7 Hz, J = 9.6
Hz, 1H) 6.31 (t, J = 9.6 Hz, 1H), 6.19 (d, J = 10.7 Hz, 1H), 2.97−
2.89 (m, 2H), 1.20 (dd, J = 11.1 Hz, 6.9 Hz, 12H). 13C NMR (126
MHz, CDCl3, 298 K): δ [ppm] = 151.3, 145.4, 142.6, 140.0, 133.5,
133.5, 129.6, 125.7, 123.9, 123.8, 122.8, 121.3, 115.1, 113.9, 28.5,
24.2, 23.5. Anal. Calcd for C25H28N2: C, 84.23; H, 7.92; N, 7.86.
Found C, 84.24; H, 8.29; N, 7.57. MS (EI, 70 eV): 357.3 m/z [M +
H].

N-(Phenylimino)pent-2-en-2-yl)aniline (4a). The ligand was
synthesized by a modified literature procedure.19 A solution of 2,4-
pentadione (5.00 g, 49.9 mmol, 1.00 equiv) and aniline (9.18 g, 100
mmol, 2.00 equiv) was treated with concentrated hydrochloric acid
(4.90 g, 49.9 mmol) at 0 °C. After stirring the mixture for 24 h, the
precipitate was filtered, washed with hexane, and dissolved in a
solution of CH2Cl2 (4 mL), H2O, and triethylamine (10.0 mL). The
crude product was recrystallized from ethanol. 1H NMR (500 MHz,
CDCl3, 298 K): δ (ppm) = 12.7 (s, 1H, NH), 7.29 (m, 4H, HAr), 7.06
(t, J = 7.4 Hz, 2H, HAr), 6.97 (d, J = 8.5 Hz, 4H, HAr), 4.89 (s, 1H,
CH), 2.01 (s, 6H, CH3).

Complexes. The ligands 1b−3b (0.610 mmol, 1.00 equiv) were
dissolved in a Schlenk flask in 10 mL of toluene. Zn(NTMS2)2 (0.670
mmol, 1.10 equiv) was added to the solution and stirred for 3 h
(ligand 3a for 24 h in the case of 0 °C/25 °C and 72 h at 100 °C) at
room temperature; then the solvent was removed in vacuo. Complexes
II and III were obtained by recrystallization in CH2Cl2/pentane at
−35 °C. Complexation of 1b yielded 50% homoleptic and 50%
heteroleptic complex. Recrystallization of a saturated solution in
CH2Cl2/pentane resulted in the exclusive crystallization of the
homoleptic complex, whereas the heteroleptic one remains in solution
and can be successfully separated.

I. 1H NMR (300 MHz, CDCl3, 298 K): δ [ppm] = 7.46 (t, J = 9.6
Hz, 4H, HAr), 7.22 (t, J = 7.3 Hz, 2H, HAr), 7.14 (dd, J = 7.4 Hz, J =
1.1 Hz, 4H, HAr), 7.07 (m, 3H, HAr), 6.72 (m, 2H, HAr), −0.18 (s,
18H, Si−CH3).

13C NMR (126 MHz, CDCl3, 298 K): δ [ppm] =
160.3, 159.7, 149.4, 148.1, 135.2, 134.8, 129.9, 129.8, 124.8, 124.5,
124.1, 122.3, 117.6, 116.2. Anal. Calcd for C25H33N3Si2Zn: C, 60.40;
H, 6.69; N, 8.45. Found C, 60.09; H, 6.79; N, 8.59.

II. 1H NMR (500 MHz, CDCl3, 298 K): δ (ppm) = 7.46 (t, J = 7.9
Hz, 2H, HAr), 7.25−7.00 (m, 9H, HAr), 6.57 (t, J = 9.2 Hz, 1H, HAr),
6.53 (d, J = 11.2 Hz, 1H, HAr), 2.55−2.37 (m, 4H, −CH2−), 1.15 (t, J
= 7.6 Hz, 6H, −CH3), −0.25 (s, 18H, Si−CH3).

13C NMR (126
MHz, CDCl3, 298 K): δ [ppm] = 159.5, 159.0, 147.8, 143.7, 137.2,
135.1, 135.0, 129.7, 126.2, 125.2, 125.0, 124.7, 121.8, 117.2, 116.7,
23.9, 14.0, 4.65. Anal. Calcd for C29H41N3Si2Zn: C, 62.96; H, 7.47; N,
7.60. Found C, 62.63; H, 7.43; N, 7.30.

III. 1H NMR (500 MHz, CDCl3, 298 K): δ (ppm) = 7.46 (t, J =
7.9 Hz, 2H, HAr), 7.26−6.97 (m, 7H, HAr), 7.07 (t, J = 10.7 Hz, 1H,
HAr), 6.99 (t, J = 10.5 Hz, 1H, HAr), 6.55 (t, J = 9.4 Hz, 2H, HAr), 2.87
(m, 2H, CH), 1.22 (d, J = 6.8 Hz, 6H, CH3), 1.04 (d, J = 6.8 Hz, 6H,
CH3), −0.23 (s, 18H, Si−CH3).

13C NMR (126 MHz, CDCl3, 298
K): δ [ppm] = 160.7, 159.0, 147.6, 142.6, 142.3, 135.2, 134.8, 129.8,
125.9, 125.1, 124.8, 124.4, 122.0, 118.5, 116.9, 28.4, 25.4, 24.3, 4.78.
Anal. Calcd for C31H45N3Si2Zn: C, 64.06; H, 7.80; N, 7.23. Found C,
63.96; H, 7.79; N, 6.96.

Ligand 4a (0.68 mmol, 1.0 equiv) was dissolved in 5.0 mL of
toluene. Zn(NTMS2)2 (0.82 mmol, 1.2 equiv) was added to the
solution and stirred for 20 h at 80 °C; then the solvent was removed
in vacuo. Complex IV was obtained via recrystallization in toluene at
−35 °C. IV. 1H NMR (500 MHz, CDCl3, 298 K): δ (ppm) = 7.33
(m, 4H, HAr), 7.15 (t, J = 7.4 Hz, 2H, HAr), 6.98 (d, J = 8.2 Hz, 4H,
HAr), 4.91 (s, 1H, CH), 1.95 (s, 6H, CH3), −0.33 (s, 18H, Si−CH3).
13C NMR (126 MHz, CDCl3, 298 K): δ [ppm] = 167.8, 148.7, 128.9,
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125.2, 124.7, 96.2, 23.9, 4.53. Anal. Calcd for C23H35N3Si2Zn: C,
58.15; H, 7.43; N, 8.84. Found C, 58.18; H, 7.28; N, 8.69.
General Polymerization Procedure for BBL. The polymer-

izations performed in the in situ IR autoclave were performed in the
following way: The corresponding catalyst I−IV (1.00 equiv) was
dissolved in dry toluene (5.0 mL) and placed in a syringe. BBL was
stored in a second syringe. The two filled syringes were transported to
an in situ IR autoclave with mechanical stirring. The autoclave was
pretempered to a certain temperature under an argon atmosphere,
and the solution of the catalyst in toluene and BBL were transferred
into the reactor. After full conversion, an aliquot was taken to
determine the conversion via 1H NMR spectroscopy. The amount of
toluene was reduced under vacuum prior to precipitation of the
polymer in 100 mL of pentane/diethyl ether (1:1). The polymer-
izations without IR monitoring were carried out in glass vials with
magnetic stirring under an argon atmosphere under the same
conditions as in the autoclave. In the case of using 2-propanol as
external alcohol, the catalyst was dissolved in toluene and treated with
the respective amount of iPrOH. This solution was stirred for 10 min
prior to monomer addition. Conversion was determined via 1H NMR
spectroscopy, and the polymers were precipitated in 100 mL of
pentane/diethyl ether (1:1).
General Polymerization Procedure for rac-Lactide. rac-LA

was dissolved in dry dichloromethane (2.65 mL), and the respective
catalyst (4.00 μmol, 1.00 equiv) was added. After stirring for a certain
time, an aliquot was taken to determine the conversion via 1H NMR
spectroscopy. In the case of using 2-propanol as external alcohol, the
catalyst was dissolved in dichloromethane and treated with the
respective amount of iPrOH. This solution was stirred for 10 min
prior to monomer addition. The polymeric solution was precipitated
in 60 mL of pentane/diethyl ether (1:1); then the resulting polymer
was dried in vacuo to constant weight.
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Abstract 

A series of pyrazine-containing heteroaromatic yttrium-bis(phenolate) complexes were synthesized and 

tested in the ring-opening polymerization of racemic β-butyrolactone and (-)-menthide. Besides the two 

homopolymers, AB and BAB copolymers were produced consisting of poly((-)-menthide) (PM, block 

A) and poly(3-hydroxybutyrate) (block B) in a sequential addition pathway. The synthesis of BAB 

copolymers was enabled by the introduction of a bifunctional pyrazine initiator which allowed 

polymerization in two directions. The influence of the block formation was investigated via thermal 

analysis, X-ray diffraction, small-angle X-ray scattering, and stress-strain experiments. A microphase 

separation of the semicrystalline BAB materials was revealed. Stress-strain measurements render the 

syndiotactic PHB less brittle than natural PHB. The incorporation of PM in the polymer architecture led 

to a reduced Young modulus and an increased elongation at break was observed. 

 

 

 

 

 

 

 

 

 

 

F. Adams planned and executed all experiments and wrote the manuscript. T. M. Pehl, M. Kränzlein and S. A. 

Kernbichl helped with measurements and proofreading of the manuscript. J.-J. Jhen and C. K. Papadakis performed 

and evaluated SAXS measurements. All work was supervised by B. Rieger.   



CO2-Controlled One-Pot Synthesis of AB, ABA Block, and 

Statistical Terpolymers from β-Butyrolactone, Epoxides, and 

CO2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 

115 

16. Appendix 

16.1  Supporting Information: CO2‑Controlled One-Pot Synthesis of AB, 

ABA Block, and Statistical Terpolymers from β‑Butyrolactone, 

Epoxides, and CO2 



Appendix 

116 



Appendix 

117 

  



Appendix 

118 

  



Appendix 

119 

  



Appendix 

120 

  



Appendix 

121 

  



Appendix 

122 

  



Appendix 

123 

  



Appendix 

124 

  



Appendix 

125 

  



Appendix 

126 

  



Appendix 

127 

  



Appendix 

128 

  



Appendix 

129 

  



Appendix 

130 

  



Appendix 

131 

  



Appendix 

132 

  



Appendix 

133 

  



Appendix 

134 

  



Appendix 

135 

  



Appendix 

136 

  



Appendix 

137 

  



1 
 

Sebastian Kernbichl‡, Marina Reiter‡, Josef Mock§, Bernhard Rieger*, ‡ 

1. Polymerization Procedure

2. Kinetic investigation of the copolymerization of CHO and CO2

3. DSC analysis of PCHC/PCPC-containing terpolymers

GPC traces of PCHC/PCPC-containing terpolymers

5. Terpolymerizations with different [epoxide]:[BBL] ratios

6. Investigation towards the block structure via GPC

7. DSC analysis of PLC-containing terpolymers

8. GPC traces of PLC-containing terpolymers

9. Mechanical properties of different CPO containing co- and terpolymers

10. NMR spectra of PLC containing terpolymer in block structure (Table 3, entry 7)

11. NMR spectra of PLC containing terpolymer in block structure (Table 3, entry 6)
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16.2 Supporting Information: Terpolymerization of β-Butyrolactone,   

Epoxides, and CO2: Chemoselective CO2-Switch and its Impact on 

Kinetics and Material Properties 
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1. Polymerization Procedure 

Copolymerization of epoxide and CO2. 

Block pathway. 1

1

Statistical pathway. 1

CHO/CO2/BBL

CPO/CO2/BBL.

LO/CO2/BBL.
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2. Kinetic investigation of the copolymerization of CHO and CO2 

Table S1.
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Figure S1

Table S2
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Figure S2

Table S3.
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3. DSC analysis of PCHC/PCPC-containing terpolymers
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Figure S3.  
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4. GPC traces of PCHC/PCPC-containing terpolymers
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Figure S4.   
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5. Terpolymerizations with different [epoxide]:[BBL] ratios 

Table S4.
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6. Investigation towards the block structure via GPC 

Table S5.

Đ

Figure S5.
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Figure S6
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7. DSC analysis of PLC-containing terpolymers 

Table 3, entry 2 

Table 3, entry 4 
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Table 3, entry 6 

 

Figure S7.  
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8. GPC traces of PLC-containing terpolymers 
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Figure S8.
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9. Mechanical properties of different CPO containing co- and terpolymers 

Table S6.

Đ
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10. NMR spectra of PLC containing terpolymer in block structure (Table 3, entry 7) 
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11. NMR spectra of PLC containing terpolymer in statistical structure (Table 3, entry 6) 
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2 

 

1. Synthesis procedures 

General 

All reactions containing air- and/or moisture sensitive compounds were carried out under dry argon 4.6 

(99.996%, Westfalen AG) using standard Schlenk or glovebox techniques. Toluene was dried with a 

solvent purification system (SPS) MB SPS-800 of the company M. Braun and stored over molecular 

sieve under argon atmosphere. Commercially available chemicals were purchased from Sigma-Aldrich, 

ABCR, TCI Chemicals or the central administration of materials of the Technical University of Munich 

and, unless otherwise specified, used without further purification. The compounds 1,1 3-((2,6-

dimethylpyridin-4-yl)oxy)propan-1-ol2 and Cp2Y(CH2TMS)(thf)3 were synthesized according to 

procedures from literature. Monomers were dried and purified prior to polymerization. Cyclohexene 

oxide was dried over NaH and purified by distillation. The monomers 2-vinylpyridine and 2-

isopropenyl-2-oxazoline were dried over CaH2 and purified by distillation. NMR-measurements (1H, 

13C) were carried out on the spectrometers AV-400 and AV-500 Cryo of the company Bruker. 

Deuterated solvents were purchased from Sigma-Aldrich and for substances susceptible to hydrolysis 

stored over molecular sieves and under argon. The chemical shifts (δ) are given in parts per million 

(ppm) and are calibrated to the signals of the deuterated solvents. Mass spectra were carried out either 

on a Varian 500-MS with electron spray ionization (ESI) in acetonitrile using positive ionization mode 

at 70 eV or on a Bruker Daltonics ultraflex TOF/TOF with matrix assisted laser desorption ionization 

(MALDI). For MALDI-MS measurements the polymer sample is dissolved in dichloromethane and 

mixed with a saturated solution of α-cyano-4-hydroxycinnamic acid in a 0.1 vol% solution of 

trifluoroacetic acid in water/acetonitrile. The instrument has been calibrated with a protein standard in 

the same matrix as the sample prior to use. Gel permeation chromatography experiments were carried 

out at a PL-GPC 50 of the company Agilent with DMF (HPLC grade, 2.17 g/L LiBr) as solvent and 

PMMA calibration standards. Absolute molar masses of P2VP aliquots were determined via 

concentration measurement with a two-angle light scattering, viscosimetry and refractive index 

detection (dn/dc = 0.149 mL/g). Elemental analysis measurements were performed by the 

microanalytical laboratory of the Inorganic-chemical Institute of the Technical University Munich. In 

situ ATR-IR measurements were performed under argon atmosphere using a Mettler Toledo MultiMax 

Pressure system. 

(1) Reiter, M.; Vagin, S.; Kronast, A.; Jandl, C.; Rieger, B., A Lewis acid β-diiminato-zinc-complex as 

all-rounder for co- and terpolymerisation of various epoxides with carbon dioxide. Chemical Science 

2017, 8 (3), 1876-1882. 

(2) Wang, Q.; Chen, S.; Liang, Y.; Dong, D.; Zhang, N., Bottle-Brush Brushes: Surface-Initiated Rare 

Earth Metal Mediated Group Transfer Polymerization from a Poly(3-((2,6-dimethylpyridin-4-

yl)oxy)propyl methacrylate) Backbone. Macromolecules 2017, 50 (21), 8456-8463. 

(3a) Hultzsch, K. C.; Voth, P.; Beckerle, K.; Spaniol, T. P.; Okuda, J., Single-Component 

Polymerization Catalysts for Ethylene and Styrene:  Synthesis, Characterization, and Reactivity of Alkyl 

and Hydrido Yttrium Complexes Containing a Linked Amido−Cyclopentadienyl Ligand. 
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Organometallics 2000, 19 (3), 228-243; (b) Salzinger, S.; Soller, B. S.; Plikhta, A.; Seemann, U. B.; 

Herdtweck, E.; Rieger, B., Mechanistic Studies on Initiation and Propagation of Rare Earth Metal-

Mediated Group Transfer Polymerization of Vinylphosphonates. J Am Chem Soc 2013, 135 (35), 13030-

13040. 

 

Synthesis of catalyst 3’ 

In a glovebox 52.1 mg (288 µmol, 1.0 eq.) 3-((2,6-dimethylpyridin-4-yl)oxy)propan-1-ol are dissolved 

in 1.0 mL toluene and a solution of 200 mg (288 µmol, 1.0 eq.) 1 in 1.0 mL toluene is added. Immediate 

precipitation of a light-yellow solid can be observed, which is separated from the supernatant solution 

by decantation. Complex 3’ in form of a light-yellow solid is dried under vacuum (yield: 61%). 

 

 

Figure S1. 1H NMR spectrum of complex 3’ in benzene-d6. 
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Figure S2. 13C NMR spectrum of a saturated solution of complex 3’ in benzene-d6 (due to the low solubility of the complex the signals of Pyr-

CAr-Me, Pyr-CAr-O, CF3, BDI-CAr, C-CF3, CH-C-CF3 and CH2-O are not visible in the spectrum). 

 

 

EA: [%] calculated: C 58.79, H 5.78, N 5.88 

found: C 60.06, H 6.13, N 5.67 
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Synthesis of catalyst 3 

In a vial 6.00 mg (8.39 µmol, 1.0 eq.) 3’ and 3.18 mg (8.39 µmol, 1.0 eq.) Cp2Y(CH2TMS)(thf) are 

suspended in 1.2 mL toluene and stirred at room temperature for four hours. The resulting solution of 

the dinuclear complex 3 is used directly for a polymerization reaction. 

 

 

Figure S3. 1H NMR spectrum of complex 3 in benzene-d6. 

TMS 
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Figure S4. 13C NMR spectrum of complex 3 in benzene-d6. 

 

 

EA: [%] calculated: C 58.54, H 5.82, N 4.18 

found: C 57.45, H 5.48, N 4.17 
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2. NMR spectra of CH-bond activation 

 

 

 

Figure S5. 1H NMR spectra of the CH-bond activation of complex 3’ over four hours in benzene-d6. 
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3. Mononuclear catalysts in P2VP and PCHC polymerization 

Cp2Y(thf)(CH2TMS) in the copolymerization of cyclohexene oxide/CO2  

In the glovebox 40.8 µmol (1.0 eq.) Cp2Y(thf)(CH2TMS) are dissolved in 4.0 g toluene and transferred 

into a handheld autoclave together with 20.4 mmol (500 eq.) cyclohexene oxide. The reaction mixture 

is pressurized with 30 bar CO2 and stirred at 40 °C. After 17 hours no generation of PCHC product could 

be observed. 

 

 

Figure S6. 1H NMR spectrum of the reaction of CHO and CO2 with catalyst 2 after 17 hours with no visible polymerization in benzene-d6. 
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Catalyst 3’ in the polymerization of 2-vinylpyridine 

In a glovebox 2.80 µmol (1.0 eq.) 3’ are dissolved in 1.2 mL C6D6 and mixed with 280 µmol (100 eq.) 

2-vinylpyridine. The reaction mixture is stirred at room temperature for five hours without observable 

generation of P2VP product.  

 

Figure S7. 1H NMR spectra of the reaction of 2VP with 3’ after over five hours without polymerization in benzene-d6. 

 

  

catalyst signals 
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4. MALDI-MS of oligomeric P2VP synthesized with catalyst 3 

 

 

Figure S8. MALDI-MS of oligomeric P2VP synthesized with catalyst 3. 

 

= [I+n*M+H]+  for  n = 9 - 29 

= [I+n*M+Na]+  for  n = 12 - 29 

Appendix 

168 

  



11 

 

5. Polymerization procedures 

Sequential terpolymerization of cyclohexene oxide, and CO2 with 2-vinylpyridine or 2-

isopropenyl-2-oxazoline 

In a glovebox 8.39 µmol (1.0 eq.) 3’ is used for the CH-bond activation with 8.39 µmol (1.0 eq.) 

Cp2Y(thf)(CH2TMS) in 1.2 mL toluene. After four hours the reaction mixture is transferred into a 

handheld autoclave together with 2-vinylpyridine or 2-isopropenyl-2-oxazoline and stirred again for the 

respective time at room temperature. Cyclohexene oxide is added, the reaction mixture is pressurized 

with 30 bar CO2 and stirred at 40 °C. The CO2 pressure is released and the resulting product is 

precipitated from n-pentane and dried under vacuum. 

 

One-pot terpolymerization of 2-vinylpyridine or 2-isopropenyl-2-oxazoline, cyclohexene oxide, 

and CO2 

In a glovebox 8.39 µmol (1.0 eq.) 3’ is used for the CH-bond activation with 8.39 µmol (1.0 eq.) 

Cp2Y(thf)(CH2TMS) in 1.2 mL toluene. After four hours the reaction mixture is transferred into a 

handheld autoclave together with 2-vinylpyridine or 2-isopropenyl-2-oxazoline and cyclohexene oxide 

and stirred at room temperature. After conversion of the Michael-type monomer, the reaction mixture is 

pressurized with 30 bar CO2 and stirred at 40 °C. The CO2 pressure is released and the resulting product 

is precipitated from n-pentane and dried under vacuum. 
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6. In situ ATR-IR spectrum of the CHO/CO2 copolymerization with catalyst 3

In a glovebox 20.4 µmol (1.0 eq.) 1 is dissolved in 4.0 g toluene and transferred into a steel autoclave 

together with cyclohexene oxide. The reaction mixture is pressurized with 30 bar CO2 and stirred at 

40 °C with in situ IR monitoring. 

In a glovebox 9.38 µmol (1.0 eq.) 3’ is used for the CH-bond activation with 9.38 µmol (1.0 eq.) 

Cp2Y(thf)(CH2TMS) in 2.0 mL toluene. After four hours the reaction mixture is transferred into a steel 

autoclave together with cyclohexene oxide. The reaction mixture is pressurized with 30 bar CO2 and 

stirred at 40 °C with in situ IR monitoring. 

Figure S9. Relative intensity of the absorption of the C=O stretching bond in PCHC at 1750 cm-1 measured via in situ ATR-IR spectroscopy 

during the CHO/CO2 copolymerization with catalysts 1 (black) and 3 (red). 
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7. ESI- and MALDI-MS of oligomeric PCHC synthesized with catalyst 3 

 

 

 

 

 

Figure S10. ESI-MS of oligomeric PCHC synthesized with catalyst 3 (signals at 74.1 and 124.1 m/z are artefacts from the spectrometer). 

 

 

Figure S11. MALDI-MS of oligomeric PCHC synthesized with catalyst 3. 

  

= [I+n*M+H]+  for  n = 2 - 13 

= [I+n*M+Na]+  for  n = 2 - 13 
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8. NMR spectrum of catalyst 3 pressurized with CO2 

 

 

 

 

Figure S12. 1H-NMR spectra of complex 3 prior and after pressurization with 9 bar CO2 in benzene-d6. 
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9. GPC traces of P2VP/PCHC and PIPOx/PCHC terpolymers 

Table 1, entry 1 

 

 

Figure S13. GPC trace of a PCHC copolymer (table 1, entry 1). 

 

 

Table 1, entry 2      

 

Figure S14. GPC trace of a PCHC copolymer (table 1, entry 2). 
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Table 1, entry 3      

 

 

Figure S15. GPC traces of a P2VP aliquot (table 1, entry 3). 

 

 

Figure S16. GPC traces of a P2VP/PCHC terpolymer (table 1, entry 3). 

 

 

Figure S17. GPC traces (RI) of a P2VP aliquot (blue) and the corresponding P2VP/PCHC terpolymer (black, table 1, entry 3). 
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Table 1, entry 4       

 

 

Figure S18. GPC traces of a P2VP aliquot (table 1, entry 4). 

 

 

Figure S19. GPC traces of a P2VP/PCHC terpolymer (table 1, entry 4). 

 

 

Figure S20. GPC traces (RI) of a P2VP aliquot (blue) and the corresponding P2VP/PCHC terpolymer (black, table 1, entry 4). 
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Table 1, entry 5 

Figure S21. GPC traces of a P2VP aliquot (table 1, entry 5), the absolute molar mass was calculated via 1H NMR spectroscopy. 

Figure S22. GPC traces of a P2VP/PCHC terpolymer (table 1, entry 5).  

Figure S23. GPC traces (RI) of a P2VP aliquot (blue) and the corresponding P2VP/PCHC terpolymer (black, table 1, entry 5). 
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Table 1, entry 6      

  

Figure S24. GPC traces of a PIPOx aliquot (table 1, entry 6), the absolute molar mass was calculated via 1H NMR spectroscopy. 

 

 

Figure S25. GPC traces of a PIPOx/PCHC terpolymer (table 1, entry 6). 

 

 

Figure S26. GPC traces (RI) of a PIPOx aliquot (blue) and the corresponding PIPOx/PCHC terpolymer (black, table 1, entry 6). 
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Table 1, entry 7     

 

Figure S27. GPC traces of a PIPOx aliquot (table 1, entry 7), the absolute molar mass was calculated via 1H NMR spectroscopy 

 

 

Figure S28. GPC traces of a PIPOx/PCHC terpolymer (table 1, entry 7). 

 

 

Figure S29. GPC traces (RI) of a PIPOx aliquot (blue) and the corresponding PIPOx/PCHC terpolymer (black, table 1, entry 7). 
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10. NMR after extraction/washing of an artificial P2VP/PCHC blend with methanol 

 

Figure S30. 1H NMR spectra in chloroform-d of the methanol phase (1) and the remaining solid (2) of an artificial P2VP/PCHC blend 

(Mn(P2VP) = 22 kg/mol, Mn(PCHC) = 33 kg/mol) after extraction/washing with methanol. 
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11. NMR after extraction/washing of a P2VP/PCHC terpolymer with methanol 

 

 

Figure S31. NMR spectra of a P2VP/PCHC terpolymer (table 1, entry 4) prior (4) and after washing with methanol (3–1) in chloroform-d. 
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12. GPC after extraction/washing of a P2VP/PCHC terpolymer with methanol 

 

 

black:    

orange:  

green:    

Figure S32. GPC traces (RI) of a P2VP/PCHC terpolymer (table 1, entry 4) prior (black) and after washing with methanol (orange, remaining 

solid and green, methanol phase). 
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13. DSC Analysis of P2VP/PCHC terpolymer 

 

 

Figure S33. DSC measurement of PCHC (1), P2VP (2) and a P2VP/PCHC terpolymer (table 1, entry 3) (3). 
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14. TGA of P2VP/PCHC and PIPOx/PCHC terpolymers 

 

Figure S34. TGA of a P2VP/PCHC (table 1, entry 3) and a PIPOx/PCHC terpolymer (table 1, entry 6). 
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15. ESI-MS of oligomeric PIPOx synthesized with catalyst 3 

 

 

Figure S35. ESI-MS of oligomeric PIPOx synthesized with catalyst 3 (the signal at 112.15 m/z is the mass of the protonated monomer). 

 

16. DSC Analysis of PIPOx/PCHC terpolymer 

 

 

Figure S36. DSC measurement of PIPOx homopolymer (1) and of a PIPOx/PCHC terpolymer (table 1, entry 6) (2).  

= [I+n*M+H]+  for  n = 2 - 9 

(1) 
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17. NMR spectra of P2VP/PCHC and PIPOx/PCHC terpolymers 

 

Figure S37. 1H NMR spectrum of a P2VP/PCHC terpolymer (table 1, entry 5) in chloroform-d. 

 

Figure S38. 13C NMR spectrum of a P2VP/PCHC terpolymer (table 1, entry 5) in chloroform-d. 
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Figure S39. 1H NMR spectrum of a PIPOx/PCHC terpolymer (table 1, entry 6) in chloroform-d. 

 

 

Figure S40. 13C NMR spectrum of a PIPOx/PCHC terpolymer (table 1, entry 6) in chloroform-d. 

3 
1 

10 
9 

2 5 6 
8 

7 

4 

toluene 

toluene 

pentane 
grease 

toluene 

4 3 

3 1+2+5+6 

toluene 

Appendix 

186 

  



Aliphatic Polycarbonates Derived From Epoxides and CO2: A Comparative 

Study of Poly(cyclohexene carbonate) and Poly(limonene carbonate)  

Sebastian Kernbichl, and Bernhard Rieger 

WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Technical  University 

Munich, Lichtenbergstr. 4, 85748 Garching, Germany 

 

Content 

 

1. Polymerization Procedure ............................................................................................................ 2 

2. Cross-linking of PLC ..................................................................................................................... 3 

3. In situ IR monitoring of the terpolymerization of CHO, LO, and CO2 ................................... 4 

4. GPC traces of co- and terpolymers .............................................................................................. 5 

5. Aliquot GPC analysis for the proof of block formation ............................................................. 5 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 

187 

16.4 Supporting Information: Aliphatic Polycarbonates Derived From 
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1. Polymerization Procedure 

Copolymerization of CO2 with CHO and LO, respectively:  

50 mL autoclave: The polymerizations were performed with in situ monitoring using a React-

IR/MultiMax four-autoclave system (Mettler-Toledo). The 50 mL steel autoclaves are equipped with a 

diamond window, a mechanic stirring and a heating device. The autoclaves were heated to 130 °C under 

vacuum overnight prior to polymerization. Complex 1 was dissolved in the amount of toluene. In a 

second syringe, the amount of epoxide was stored. Both syringes were rapidly transferred to the 

autoclave by attaching the syringes to a vial with an injection septum. The reactor was pretempered to 

the desired temperature under argon atmosphere and the syringe is given into the reactor. 40 bar CO2 

were applied. The product was dissolved in dichloromethane and transferred to a flask. Consequent 

removal of the solvent under vacuum allowed the determination of yield and selectivity via NMR/weight 

of the polymer. The dissolved polymer was precipitated in methanol and dried under vacuum. 

1 L Buchi reactor: The amount of complex 1 was dissolved in toluene in a glovebox. The amount of 

epoxide was filled in a second preheated flask. Both flasks were rapidly transported to the reactor and 

cannulated into the preheated reactor under argon atmosphere. 40 bar CO2 were applied for the desired 

time. The polymeric mixture could be released via a valve at the bottom of the reactor. The product was 

dissolved in dichloromethane and transferred to a flask. Consequent removal of the solvent under 

vacuum allowed the determination of yield and selectivity via NMR/weight of the polymer. The 

dissolved polymer (dichloromethane) was precipitated in methanol and dried under vacuum. 

Terpolymerization of CHO, LO, and CO2:  

The terpolymerizations were performed with in situ monitoring using a React-IR/MultiMax four-

autoclave system (Mettler-Toledo). Complex 1 was dissolved in the amount of toluene. In a second 

syringe, the amount of both epoxides was stored. Both syringes were rapidly transferred to the autoclave 

by attaching the syringes to a vial with an injection septum. The reactor was pretempered to the desired 

temperature under argon atmosphere and the syringe is given into the reactor. 40 bar CO2 were applied. 

The product was dissolved in dichloromethane and transferred to a flask. Consequent removal of the 

solvent under vacuum allowed the determination of yield and selectivity via NMR/weight of the 

polymer. The dissolved polymer (dichloromethane) was precipitated in methanol and dried under 

vacuum. 

Catalyst removal:  

In a first attempt, the dissolved polymer was precipitated in methanol and dried to constant weight. The 

polymer was again dissolved in dichloromethane extracted with a saturated aqueous EDTA-solution. 

This procedure was repeated until the UV-Vis spectrum of solution of the polymer in chloroform did 

show high transmission in the range from 200 to 800 nm. 
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2. Cross-linking of PLC 

 

Figure S1. IR spectrum of PLC (top) and thermally treated, insoluble PLC (bottom). 

 

 

Figure S2. Mixing the polymer with chloroform. PLC(left) is no longer soluble while PLC with Irganox® (middle) 
and PMC are well soluble (right). 
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3. In situ IR monitoring of the terpolymerization of CHO, LO, and CO2 
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4. GPC traces of co- and terpolymers 

 Table 1, entry 1      Table 1, entry 2 

 

 

 

 

 

 Table 1, entry 3      Table 1, entry 4 

 

 

 

 

 

Table 1, entry 5       Table 1, entry 6 
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 Table 3, entry 1     Table 3, entry 2 

 

 Table 3, entry 3  
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5. Aliquot GPC analysis for the proof of block formation

Figure S3. GPC traces of the PCHC aliquot (blue) and the resulting PCHC/PLC terpolymer (red). 
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16.6   Experimental Section for Chapter 12 

General Information. Moisture sensitive reactions were performed under standard Schlenk techniques 

in argon atmosphere (purity 4.6) in preheated glassware or in a glovebox LABmaster 130 of M. Braun 

Inertgas-Systeme GmbH (Garching, Germany). The synthesized monomers were stirred over CaH2 or 

NaH and freshly distilled prior to use. All commercially available reagents were supplied by 

Sigma-Aldrich (St. Louis, USA) and TCI (Tokyo, Japan) and used without further purification. Dry 

solvents were obtained via purification with an MBraun MB-SPS-800 solvent purification system. 

NMR. 1H and 13C NMR measurements were performed on a Bruker AV-500C spectrometer. Chemical 

shifts were reported in ppm relative to tetramethylsilane and calibrated to the residual 1H or 13C signal 

of the deuterated signal. Deuterated solvents were purchased from Sigma-Aldrich. The following 

abbreviations were applied: s (singlet), d (doublet), dd (double doublet), dt (double triplet), t (triplet), 

m (multiplet). 

CDCl3: 1H-NMR:  δ [ppm] = 7.26 (s) 

13C-NMR: δ [ppm] = 77.16 (t) 

GC-MS. Mass spectra were recorded with an Agilent Technologies Mass Hunter Spectrometer (EI, 

70 eV). 

2-Trimethylsilyloxirane. 4.00 g (39.9 mmol, 1.00 eq.) vinyltrimethylsilane is dissolved in 100 mL 

dichloromethane and stirred at 0 °C. 12.2 g meta-chloroperoxybenzoic acid (77wt-%, 59.8 mmol, 

1.50 eq.) is also dissolved in 100 mL DCM and slowly added to the reaction mixture under vigorous 

stirring. After one hour, the ice bath is removed, and the solution stirred overnight. A white solid 

precipitates after a few minutes which corresponds to the side product meta-chlorobenzoic acid. The 

precipitate is filtrated off and the solution is washed five times with 5% Na2CO3 solution. The product 

is distilled at reduced pressure to yield the product as a colorless liquid.  

1H NMR (500 MHz, CDCl3, 298 K): δ (ppm) = 2.93 (t, 3J = 5.7 Hz, 1H, CH), 2.58 (dd, 3J = 5.7 Hz, 
2J = 4.1 Hz, 1H, CH), 2.22 (dd, 3J = 5.7 Hz, 2J = 4.1 Hz, 1H, CH), 0.09 (s, 9H, SiMe3). 

3-Carene oxide. 3-Carene oxide was prepared according to a modified literature procedure.14 

10.0 g 3-carene (73.4 mmol, 1.00 eq.) is dissolved in 38.0 ml acetone and 8.00 mL H2O. 

13.6 g N-bromosuccinimide (76.6 mmol, 1.05 eq.) is added slowly under stirring at 0 °C. The solution 

is stirred for another hour. Acetone and water are removed under vacuum and the organic phase diluted 

with diethyl ether. The organic phase is washed with water before the ether gets removed again. The 

crude bromohydrin is directly converted to the epoxide via addition of 17.0 mL 6 M NaOH solution. 

The reaction mixture is stirred at room temperature for 2 h. The alkaline solution is removed, the crude 

product is diluted with ether and extracted with a NaHCO3 solution and water. After evaporating the 
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solvent, the product is obtained as a yellowish liquid. Fractional distillation (15 mbar, 80 °C) allowed 

the isolation of 3-carene oxide in high purity (determined via GC-MS analysis). 

1H NMR (500 MHz, CDCl3, 298 K): δ (ppm) = 2.84 (s, 1H, epoxy-H), 2.31 (ddd, J = 16.4 Hz, 8.9 Hz, 

2.0 Hz, 1H, CH), 2.15 (dd, J = 16.4 Hz, 8.9 Hz, 1H, CH), 1.65 (dt, J = 16.4 Hz, 2.2 Hz, 1H, CH), 1.50 

(dd, J = 16.2 Hz, 2.2 Hz, 1H, CH), 1.27 (s, 3H, Me), 1.02 (s, 3H, Me), 0.74 (s, 3H, Me), 0.50 (m, 2H, 

CH). 

13C NMR (500 MHz, CDCl3, 298 K): δ (ppm) = 58.2 (s), 55.8 (s), 29.1 (s), 24.8 (s), 23.9 (s), 19.8 (s), 

18.3 (s), 17.5 (s), 17.3 (s), 14.7 (s).    

MS (EI, 70 eV): 153.1 m/z [M+H] 

Polymerization procedure. In the glovebox, 8.76 mmol (100 eq.) of the respective epoxide 

(trimethylsilyloxirane, 3-carene oxide) is stored in one syringe. In a second one, 87.6 µmol of complex 4 

(1.00 eq.) is dissolved in 1.00 mL toluene. The syringes are rapidly transported to a high-pressure 

autoclave and pressurized with 30 bar CO2 for 16 h at rt. The polymerization is quenched with the 

addition of DCM and analyzed via 1H NMR spectroscopy. 
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