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Abstract—A layered probabilistic shaping (PS) ensemble is
considered, which contains probabilistic amplitude shaping (PAS)
as a practical instance. Layered PS consists of an inner layer for
forward error correction (FEC) and an outer layer for PS. In the
PS layer, message bits are mapped to FEC encoder inputs that
map to channel input sequences in a shaping set. The shaping
set specifies desired properties, for instance, it may consist of
all sequences that have a capacity-achieving distribution for the
considered channel. By random coding arguments, the probability
of encoding failure and decoding failure is analyzed and it is
shown that the layered PS architecture is capacity-achieving for
a discrete input memoryless channel. Practical achievable spectral
efficiencies of the layered PS architecture are discussed.

I. INTRODUCTION

Probabilistic amplitude shaping (PAS) was proposed in [1]
to integrate non-uniform channel input distributions with off-
the-shelf linear forward error correction (FEC) codes. PAS
quickly found industrial application in transceivers for fiber-
optic transmission, e.g., [2]–[4]. Since PAS is not a sample
of the classical random code ensemble (see Remarks 1, 2,
and 3), the calculation of appropriate achievable rates for PAS
is intricate, and several attempts were taken [2, Sec. III.C],
[5], [6]. In [7] and [8, Chap. 10], achievable rates for PAS
are derived using random sign coding and partially systematic
FEC encoding. In this work, we discuss layered probabilistic
shaping (PS), a random code ensemble that was developed
in the line of work [8]–[11]. Layered PS contains PAS as a
practical instance, but is more general, e.g., it also covers the
probabilistic parity bit shaping proposed in [12].

In Sec. II, we define layered PS and derive a general channel
coding theorem. In Sec. III, we show that layered PS achieves
the capacity of discrete input memoryless channels and discuss
practical matched and mismatched decoding metrics.

II. LAYERED PROBABILISTIC SHAPING

Consider a channel with finite input alphabet X and define

m = log2 |X |. (1)

The channel output alphabet can be continuous or discrete.

A. Classical Random Code Ensemble

The classical random code ensemble [13, Ch. 5] for a
channel with input alphabet X and codeword length n symbols
in X is

C =
{
Cn(w), w = 1, 2, . . . , 2nmRfec

}
(2)
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Fig. 1. The layered PS architecture discussed in Sec. II. In PAS [1], the FEC
encoder is systematic and the shaping encoder is realized by a DM [14]–[19]
that shapes the systematic symbols. The shaping encoder of PAS is zero error.

where the entries of the |C| = 2nmRfec codewords are in-
dependently and identically distributed according to PX on
the constellation X . We require 0 ≤ Rfec ≤ 1 so that
mRfec ≤ log2 |X |. By [13, Eq. (5.2.5)], the decoding rule for
a memoryless channel with transition density pY |X is

ŵ = argmax
w∈{1,...,|C|}

n∏

i=1

pY |X(yi|ci(w)) (3)

where yn is the sequence observed at the channel output. The
spectral efficiency (SE) in bits per channel use is SE = mRfec
and the classical random code ensemble achieves

SE∗ = I(X;Y ). (4)

In particular, it achieves the capacity maxPX
I(X;Y ) when

the optimal PX is used.

B. Layered Random Code Ensemble

The layered PS architecture is displayed in Fig. 1. We
consider the random code ensemble

C =
{
Cn(w), w = 1, 2, . . . , 2nmRfec

}
(5)

where the entries of the |C| = 2nmRfec codewords are cho-
sen independently and uniformly distributed on the constella-
tion X . As above, we require 0 ≤ Rfec ≤ 1.

Remark 1. Note that the classical random code ensemble
of Sec. II-A samples the codeword entries according to the
desired channel input distribution PX . In contrast, layered PS
always uses the uniform distribution.
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TABLE I
PS AND FEC OVERHEADS

FEC Shaping Set

Rate Rfec Rss =
log2 |S|

nm
Redundancy 1−Rfec 1−Rss

Overhead in % 100 ·
(

1
Rfec
− 1
)

100 ·
(

1
Rss
− 1
)

Total overhead in % 100 ·
(

1
Rss+Rfec−1

− 1
)

C. Encoding

We consider a general shaping set S ⊆ Xn. Define the
shaping set rate by

Rss =
log2 |S|
nm

. (6)

Note that by the definition of m in (1), 0 ≤ Rss ≤ 1. We
divide the FEC code into 2nSE partitions, so that the number
of codewords in each partition is

2nmRfec

2nSE = 2nm(Rfec− SE
m ). (7)

The PS encoder maps message u ∈ {1, 2, . . . , 2nSE} to a
codeword in the uth partition that is in S. By double indexing
C, the chosen codeword has index w = (u, v) for some
v ∈ {1, 2, . . . , 2nm(Rfec− SE

m )}. An encoding error occurs if the
PS encoder cannot find such a codeword.

Theorem 1 ([11, Theorem 1]). The probability that the PS
encoder cannot map its input to a codeword in S ∩C is upper
bounded by

Pr(PS encoding failure)

≤ exp
(
−2nm[1−(1−Rss)−(1−Rfec)− SE

m ]
)
. (8)

Remark 2. By the theorem, the SE is determined by two
overheads (see Table I), namely the PS overhead and the FEC
overhead. For a desired SE, the overhead allocation is a degree
of freedom that can be exploited in the transceiver design, for
example, a low FEC overhead may be desirable for complexity
reasons. Note that in the classical random coding experiment,
the SE is always equal to mRfec.

D. Decoding

We consider a generic FEC decoder with a decoding metric
q. For an observation yn, the metric assigns to each sequence
xn ∈ Xn a non-negative score q(xn, yn) (see [11, Sec. V.A]
for the definition and detailed discussion of non-negative
scores). The FEC encoder maps a message w to a codeword
cn(w). For an observed output yn, the decoder outputs as
its decision the message that maps to the codeword with the
maximum score, i.e,

ŵ = argmax
w∈{1,...,|C|}

q (cn(w), yn) . (9)

Theorem 2 ([11, Theorem 2]). Suppose the codeword
Cn(w0) = xn is transmitted, let yn be a channel output

sequence, and let q be a non-negative decoding metric. Define
the empirical cross-entropy

x(q, xn, yn) = − 1

n
log2

q(xn, yn)∑
an∈Xn q(an, yn)

. (10)

The probability that the decoder (9) does not recover the index
w0 from the sequence yn is bounded from above by

Pr(Ŵ 6= w0|Cn(w0) = xn, Y n = yn)

≤ 2
−nm

(
1−Rfec− x(q,xn,yn)

m

)
. (11)

Note that in Fig. 1, if the index decision Ŵ is correct, then
the shaping decoder can error-free recover the message u0
from Ŵ . That is, Pr(Ŵ 6= w0) upper bounds Pr(Û 6= u0).

E. Channel Coding Theorem

We now consider a memoryless channel

pY n|Xn(yn|xn) =
n∏

i=1

pY |X(yi|xi) (12)

and memoryless decoding metrics

q(xn, yn) =

n∏

i=1

q(xi, yi). (13)

Furthermore, we require that most sequences in the shaping
set S have the distribution PX , so that with high probability

x(q,Xn, Y n) ≈ E [x(q,X, Y )] =: X(q,X, Y ) (14)

where X(q,X, Y ) is a cross-entropy. By Theorems 1 and 2,
following the line of arguments in [20] (leaving out the εs and
δs) we arrive at the following channel coding theorem.

Corollary 1. For a shaping set with distribution PX , an
achievable spectral efficiency allowing for successful encoding
and decoding with high probability is

SE∗ = [mRss − X(q,X, Y )]
+ (15)

where [·]+ = max{0, ·} ensures non-negativity.

Note that (15) is the same as [11, Eq. (1)] with slightly
different notation.

III. DECODING METRICS

We now instantiate the achievable SE in (15) for vari-
ous shaping sets and decoding metrics. See Table II for an
overview.

A. Capacity-Achieving Symbol-Metric

We use as shaping set S all sequences with distribution PX .
For sufficiently large n, we have Rssm ≈ H(X). With the
decoding metric PX|Y , the achievable SE becomes equal to
the mutual information I(X;Y ), which shows that the layered
PS architecture is capacity-achieving.
Remark 3. Note that the classical random code ensemble
achieves capacity with a maximum likelihood (ML) rule on
a codebook of size 2nSE while layered PS achieves capacity
with a maximum a posteriori (MAP) rule on a codebook of
size 2n(SE+m(1−Rss)), which is larger.
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TABLE II
IMPORTANT DECODING METRICS

mRss q X∗(q,X, Y ) SE∗

symbol-metric mRss PX|Y H(X|Y ) [mRss − H(X|Y )]+

+ capacity-achieving H(X) PX|Y H(X|Y ) I(X;Y )

bit-metric mRss
∏m

i=1 PBi|Y
∑m

i=1 H(Bi|Y )
[
mRss −

∑m
i=1 H(Bi|Y )

]+

H(X)
∏m

i=1 PBi|Y
∑m

i=1 H(Bi|Y )
[
H(X)−∑m

i=1 H(Bi|Y )
]+

mismatched metric mRss q mins>0 X(qs, X, Y ) maxs>0 [mRss − X(qs, X, Y )]+

B. Bit-Metric

Bit metric decoding uses an m-bit label B = B1B2 . . . Bm
of the channel input alphabet and a bit-metric

q(b, y) =

m∏

i=1

qi(bi, y). (16)

Table II shows achievable SEs when qi = PBi|Y . By defining
the L-value Li = logPBi|Y (0|Y )/PBi|Y (1|Y ), the conditional
entropy sum can also be written as
m∑

i=1

H(Bi|Y )=
m∑

i=1

E [log2{1 + exp [−(1− 2Bi)Li]}] . (17)

C. Mismatched Metrics

For s > 0, the non-negative metric q and the metric qs

implement exactly the same decision rule. Consequently, their
error probability is the same. This allows us to tighten the
error bound in Theorem 2 and thereby the achievable SE in
Corollary 1. The tightened cross-entropy is

X∗(q,X, Y ) = min
s>0

X(qs, X, Y ). (18)

For uniform distributions PX , the mismatched achievable SE
recovers the generalized mutual information (GMI) in [21].
For non-uniform PX , it is different from the GMI, because
in [21], the classical random code ensemble of Sec. II-A is
considered.

IV. CONCLUSIONS

We defined layered probabilistic shaping (PS) and derived
achievable rates. In particular, we showed that layered PS
is capacity-achieving for a particular shaping sets and de-
coding metrics. Several differences between layered PS and
the classical random code ensemble were pointed out. The
achievable rates of layered PS are directly applicable for
probabilistic amplitude shaping (PAS). An interesting future
work is the study of finite length error exponents for layered
PS, accounting for the distribution spectrum of the sequences
in the shaping set.
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