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Abstract

Product proliferation and changes in demand require that retailers regularly determine how
items should be allocated to retail shelves. The existing shelf-space literature mainly deals with
regular retail shelves onto which customers only have a frontal perspective. This paper provides a
modeling and solution approach for two-dimensional shelves, e.g., for meat, bread, fish, cheese or
clothes. These are categories that are kept on tilted shelves. Customers have a total perspective
on these shelves and can observe units of one particular item horizontally and vertically instead of
just seeing the foremost unit of an item, as is the case of regular shelves.

We develop a decision model that optimizes the two-dimensional shelf-space assignment of
items to a restricted, tilted shelf. We contribute to current literature by integrating the assortment
decision and accounting for stochastic demand, space elasticity and substitution effects in the
setting of such self types. To solve the model, we implement a specialized heuristic that is based
on a genetic algorithm. By comparing it to an exact approach and other benchmarks, we prove
its efficiency and demonstrate that results are near-optimal with an average solution quality of
above 99% in terms of profit. Based on a numerical study with data from one of Germany’s largest
retailers, we were able to show within the scope of a case study that our approach can lead to an
increase in profits of up to 15%. We demonstrate with further simulated data that integration of
stochastic demand, substitution and space elasticity results in up to 80% higher profits.
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1. Introduction

This paper considers the problem of selecting, allocating and arranging products on retail

shelves. Shelf space has been referred to as one of the retailer’s scarcest resources (cf. e.g., Brown

and Tucker [1961], Lim et al. [2004], Reiner et al. [2012], Hübner et al. [2013a], Kök et al. [2015],

Geismar et al. [2015]). Up to 30% more products compete for the limited space than was the case

ten years ago [EHI Retail Institute, 2014; Hübner et al., 2016]. The increasing number of items to

allocate, the shortage of shelf space, narrow margins in retail and the intensity of competition have

greatly magnified the importance of retail assortment and shelf-space planning (cf. Hübner et al.

[2013b]). Furthermore, customer satisfaction is mostly driven by availability of the right products.

In order to achieve superior performance, retailers have to recognize customers’ needs and identify

these as key drivers [A.C. Nielsen, 2004; Eltze et al., 2013].

The selection of items and space allocation of the items to the shelf are interdependent plan-

ning problems when shelf space is restricted. The space available per product is less if broader

assortments are offered and vice versa. Consequently, planning retail shelves involves the tasks of

specifying the product assortments as well determining the space and quantities for selected items.

These decisions are not only based on the margins of the products but also on associated demand

and customer preferences. The more shelf space is allocated to an item, the more it attracts cus-

tomers and the higher its demand. This is referred to as “space-elastic demand.” This topic has

gained a lot of research attention over recent years (see e.g., Hübner and Kuhn [2012], Kök et al.

[2015], Bianchi-Aguiar et al. [2019]). Common characteristics of these models are that demand

depends on the number of facings (= the foremost unit of an item in the front row of the shelf),

and that retail shelves are observed by customers from a frontal direction. This firstly implies that

a customer can only see the facing, and secondly, that two different products can only be positioned

next to but not behind one another. We refer to this shelf type as a “regular shelf” herein. For

example, candies, coffee and tea, canned goods, cleaners and personal care products are presented

on regular shelves.

Not all retail categories are kept on regular shelves. Some products are presented on “tilted

shelves” (like counters, fridges or tables) onto which customers have a total perspective. Examples

of these shelf types are to be found in Figure 1. These two-dimensional shelves types are for

example used for the presentation of fresh food like bakery products and sausages, frozen products

or in fashion retailing and consumer electronics. Many other retail formats fit into these settings,

e.g., products and magazines in kiosks, snacks or electronics in vending machines and display ads

(see also Geismar et al. [2015]). With these shelves items can be arranged more flexibly in the

2
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two-dimensional space, whereas with regular shelves the options are restricted by the shelf levels

and their height. For example, two different products can be positioned next to and behind one

another on two-dimensional shelves.

Figure 1: Examples of categories stored on two-dimensional shelves

There is already a rich literature on the planning of regular shelves. Typically, these models

determine the shelf quantity and the number of facings for each shelf level (e.g., third level of second

shelf). The most commonly used approach is to model the total shelf space via a one-dimensional

shelf length (e.g., Lim et al. [2004]; Martínez-de Albéniz and Roels [2011]; Gilland and Heese [2013];

Bianchi-Aguiar et al. [2016]). The models treat each shelf level with a one-dimensional front row

space where only the front-row facings need to be determined as retailers usually fill up the entire

shelf depth with more units of the respective product. Düsterhöft et al. [2019] propose a model for

regular shelves that consider one-dimensional shelf levels of varying size in height, depth and width.

As these models assume one-dimensional shelf space and defined shelf levels, they cannot be applied

to two-dimensional applications where consumers have a different perspective. In one-dimensional

approaches it is sufficient to determine the number of facings, whereas in two-dimensional problems

the rectangular arrangement of the facings also needs to be determined. Two-dimensional problems

require to compute horizontal and vertical number of facings (e.g., product A with 2 x 3 facings),

the vertical and horizontal positioning of products within the two-dimensional area (e.g., product

A positioned at certain x and y coordinates) and adjacent requirements of items (e.g., products A

and B next to each other and C behind). Furthermore, vertical and horizontal sizes of products and

shelves must be considered. Two-dimensional shelves face additional constraints, too, e.g., facings

of a product need to be arranged in a contiguous rectangular shape, and not in other ways, such

as L-forms.

To summarize, there are two different shelf types which each have their respective modeling
3
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requirements:

1. Regular shelves where items are allocated along an one-dimensional shelf length

2. Two-dimensional shelves where items are allocated to a two-dimensional shelf space and items

need to follow particular arrangement constraints

One-dimensional solutions obtained for regular shelves cannot easily be transferred to two-

dimensional selves as the arrangement of facings also needs to be integrated into decision-making.

Only Geismar et al. [2015] have modeled a related two-dimensional shelf-space problem. Their

model can also be applied to develop two-dimensional shelf plans. However, they assumed a given

assortment, given and known demand and did not factor in substitutions for the assortment deci-

sion space-elasticity for the space allocation. We extend this approach by accounting for assortment

decisions, stochastic and space-elastic demand as well as out-of-assortment and out-of-stock sub-

stitution. We ultimately extend the two-dimensional problem that was introduced by Geismar

et al. [2015] by using a more comprehensive demand function, a tailored solution procedure to the

problem and numerical analysis to derive managerial insights. As such, the model of Geismar et al.

[2015] represents a special variant of our demand model.

The remainder of this paper is organized as follows: Section 2 provides a detailed description

of the setting and planning problem and related literature. Section 3 formulates the optimization

model as a constrained multi-item newsvendor problem with substitutions. We develop a specialized

heuristic to solve the related problem. This is represented in section 4. Numerical results and a

case study are presented in section 5, while section 6 concludes.

2. Setting, planning problem and related literature

This section analyzes the scope (2.1), particularities of planning with two-dimensional shelves

(2.2) and identifies the impact of these decisions on customer demand (2.3). Together, these build

the foundation for the literature review and open research questions (see section 2.4).

2.1. Scope and planning approach

Shelf management comprises two hierarchical levels. One is a store (macro) level, deciding the

space for product types (e.g., beverages, chocolate) and shelf types on a strategic level. The other

a product category (micro) level which allocates individual products within each category on a

tactical level. Our problem is concerned with the micro level, and considers the tactical allocation

of a category of products onto a set of defined shelves. The shelf space available for a category is

limited and determined by preceding decisions regarding store layout planning (cf. Hübner et al.
4
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[2013a]). The ultimate objective is to maximize retailers’ profit which depends on the customer

demand realized. This in turn depends on the positioning and space allocated to the products

on the shelf, the product margins and operational costs. The traditional micro space-planning

instrument of retailers is a planogram, representing an illustration of a shelf plan for a specific

category. A planogram gives detailed information about the product’s vertical and horizontal shelf

position as well as the product’s shelf quantity.

2.2. Particularities of two-dimensional shelves

Distinctive requirements of two-dimensional shelves need particular approaches. These are the

(1) total customer perspective and two-dimensional item arrangement and (2) rectangular facing

arrangements.

(1) Total customer perspective and two-dimensional item arrangement. With the regular shelf on

the left of Figure 2 customers only have a frontal perspective on the items offered. The retailer only

needs to determine the number of facings, e.g., items A and B get one and item C gets three facings.

The right of Figure 2 illustrates a two-dimensional shelf where the customer has a total perspective.

The retailer must determine the total shelf quantity by choosing the shelf representation of an item,

i.e. the number of vertical facings (width dimension) and horizontal facings (depth dimension). For

instance, item F gets a shelf representation of (1 × 2), item G (1 × 4) and item I (2 × 2). Two

products with different sizes can be positioned next to (e.g., F and G) and above one another (e.g.,

F and I). This means that item arrangements also need to reflect a two-dimensional neighborhood.

With regular shelves there is a horizontal division represented by the shelf levels. The allocation of

items to shelf levels is therefore restricted by shelf height. For example, a large family pack with

a high box cannot be put at low-rise shelf level where small single-unit items are put. This is not

the case for two-dimensional shelves where items do not necessarily need to be positioned along a

dividing line or within a certain fixed compartment.

Figure 2: Illustration of a regular and a two-dimensional shelf

5
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(2) Rectangular facing arrangements. On two-dimensional shelves retailers usually arrange prod-

ucts in a rectangular shape, see e.g., empirical research in Marketing [Pieters et al., 2010] and

Psychology [Berlyne, 1958]. Figure 3 shows two related arrangement examples for two-dimensional

shelves. This arrangement restriction implies that several facings of one item must be positioned

adjacently and in a rectangular manner. For instance, if the retailer wants to place four facings of

one specific product, these can only be positioned in three ways: (1× 4), (2× 2) and (4× 1).

Figure 3: In-store arrangement examples for two-dimensional shelves

The rectangular requirement may result in “arrangement” and “prime number” defects if one-

dimensional solutions (e.g., 5 facings) are transferred to a two-dimensional shelf setting (e.g., 2× 2

facings). Arrangement defects occur if multiple rectangles (i.e., arrangements of different products)

do not fit into one large rectangular arrangement (i.e., the shelf). Example 1 in Figure 4 shows this

issue where not all facings of the optimal one-dimensional solution can be placed on the shelf such

as to maintain a rectangular shape. We use identically sized items to simplify the illustration. The

total shelf space is 9 for the one- and two-dimensional shelf. The optimal number of facings for the

regular one-dimensional shelf is A = 4 facing, B = 1 facing and C = 4 facing. On one-dimensional

shelves an item with 4 facings is placed in one row (1×4), whereas on two-dimensional shelves it can

be placed in the form of 1×4, 4×1 or 2×2. Figure 4 shows that arranging both items A and C with

4 facings in a rectangular arrangement is not feasible as the total rectangular space is limited. The

number of facings of item A or C therefore need to be reduced as only one item can have 4 facings.

If, for example, item C now only has 3 facings, this may result in demand compensations by other

items, and it may be preferable to list another item that compensates better the demand transfer

between items. Example 2 in Figure 4 presents the prime number defect. Due to the rectangular

requirement, quantities with prime numbers (like 3, 5, 7, 11, . . .) can only be arranged in a row (e.g.,

1 × 3, 3 × 1, 1 × 5, 5 × 1, 1 × 7, . . .). However, if this row is larger than the total horizontal or

6
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vertical space, this is a non-viable solution. The optimal number of facings of product A for a

one-dimensional shelf is 5 in Example 2. Since 5 is a prime number and is greater than the length

or depth of the shelf, the item cannot be displayed in a rectangular manner. The defects can be

expressed formally as follows. Consider S as the total (X × Y )-dimensional space and S̄ its subset

which represents the space currently unoccupied. Further, define the following set Rqi = (x × y)

as the set of all possible rectangular arrangements of the one-dimensional shelf quantity qi of item

i that needs to be assigned. The arrangement defect for an item i occurs if S̄ ∩ Rqi = ∅ and the

prime number defect for an item i occurs if |Rqi | = 0.

Product A:

Product B:

Product C:

Product D:

C C C C

B

A A A A A A

A A

B
Product A:

Product B:

Product C:

Product D:

C C

B

A A A A A

D

D

C C

A A A

A A

Example 1 Example 2

C C

CC

C CCC

C

C

C

C B

Arrangement defect Prime number defect

5 facings of A can neither be arranged on the 

shelf with facings in a row nor as a rectangle 

C can neither be arranged on the shelf 

with facings in one row nor as a rectangle 

A

A

A

A

A

Optimal 1D facings Optimal 1D facings

Figure 4: Characteristics of an arrangement defect (example 1) and a prime number defect (example 2)

Summary. To create a planogram for two-dimensional shelves, a shelf planner needs to make three

simultaneous decisions for each category:

• Item selection: This decision involves determining the assortment of a category.

• Space assignment: This decision includes determining the number of horizontal facings, num-

ber of vertical facings, quantity per facing, and ultimately also the total shelf quantity for

each product. The facings of one product can be arranged horizontally next to each other or

vertically above one another. The total number of facings results from the multiplication of

all vertical and horizontal facings.

• Item arrangement: This determines which vertical and horizontal coordinates are assigned an

item, i.e., its exact location on the shelf. Furthermore, this also includes how different items

are positioned next to each other (e.g., different types of bread next to each other). Finally,

these all need to follow arrangement guidelines so that a rectangular shape is obtained and

adjacent requirements are adhered to.

Two-dimensional shelves are differentiated from regular shelves in terms of the options for

space assignment and item arrangement. For regular shelves it is sufficient to use one-dimensional

models to determine the horizontal number of facings. Two-dimensional shelves require a definition

of horizontal and vertical facings in a rectangular shape. These rectangular shapes however depend
7
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on the arrangement of other items. An integrated approach is therefore required that simultaneously

solves the four subproblems item selection, shelf quantity, space assignment and item arrangement.

Solutions obtained from familiar one-dimensional models cannot be transferred directly to two-

dimensional settings for this purpose as one-dimensional models lack the number of vertical facings

and the item arrangement.

2.3. Related demand effects

All aforementioned decisions, namely item selection, space assignment and arrangement impact

customer demand in three ways (see also Hübner and Schaal [2017a]:

(1) Space-elastic demand. The more facings an item is assigned, the higher its visibility on the shelf

and the greater its demand. This demand effect is called space-elastic demand. Various empirical

studies include tests that quantify space-elasticity effects (cf. Brown and Tucker [1961], Frank and

Massy [1970], Curhan [1972], Drèze et al. [1994], Eisend [2014]). Chandon et al. [2009] show that

the variation of facings is the most significant in-store factor, even stronger than pricing. Desmet

and Renaudin [1998] reveal that space elasticities increase with the impulse buying rate. The

magnitude of this demand increase depends on the item’s space-elasticity factor, which indicates

the percentage increase in demand of an item every time the number of facings goes up by a

given amount. Using a meta-analysis, Eisend [2014] identifies an average demand increase by a

factor of 17%. Cross-space elasticity measures responsiveness in the quantity demand of one item

when the space allocated for another item changes. Eisend [2014] calculates an average cross-space

elasticity of -1.6%. Schaal and Hübner [2018] used numerical studies to show that the low empirical

cross-space elasticity values either do not have or have only very limited impact on optimal shelf

arrangements. We therefore disregard cross-space elasticities in the following. The demand impact

of an item’s position can be neglected for two-dimensional shelves. These positioning effects are

relevant for regular shelves where e.g., eye- vs. knee-level positions have a different demand impact.

The same holds true for large categories where the shopper’s walking path and positions at the

beginning, middle or end of an aisle matter. With two-dimensional shelves, however, the basic idea

is to allow the customer to oversee the total assortment of one (sub-)category at one glance.

(2) Out-of-assortment and (3) Out-of-stock substitution demand. Customers can substitute for

their choice if items are unavailable. For example, Gruen et al. [2002], Kök and Fisher [2007],

Aastrup and Kotzab [2009] and Tan and Karabati [2013] show that between 45% and 84% of

the demand can be substituted. Unavailability of items can result from two scenarios: either

an item is delisted as a consequence of the assortment decision (out-of-assortment, OOA), or it
8
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is temporarily unavailable and currently not available on the shelf (out-of-stock, OOS). In both

situations, customers may replace the unavailable items with other items which results in demand

increases for the respective substitutes.

Substitution rates can be obtained by direct consumer surveys or by transactional data (e.g.,

Kök and Fisher [2007], Tan and Karabati [2013]). A straightforward approach often applied to

obtain substitution rates is to base them on market shares [Hübner and Kuhn, 2012]. This means

that if an item has an overall demand share of 50%, the substitution rate from all products to this

particular product is 50%. Finally, expert workshops can also be used to define substitution rates

by selecting related items and rates.

2.4. Related literature and contribution

Current shelf planning literature focuses on regular shelf types (see also the reviews of Hübner

and Kuhn [2012], Kök et al. [2015]). We will first analyze this stream of literature and divide it into

contributions that assume a given assortment and into contributions that integrate the assortment

decision into shelf planning. This review is mainly used to gain insight into the different approaches

for modeling demand and solution approaches. Secondly, we focus on particular applications to

two-dimensional shelf space problems. This review is used to define open research gaps and specify

our contribution.

(1) Applications for regular shelves. Most shelf-space optimization models assume deterministic

demand and optimize the number of facings for items with space-elastic demand to be assigned to

limited shelf space. Respective approaches help retailers solve the trade off between more shelf space

(and thus demand increases due to a higher number of facings) for certain items and less available

space (and thus demand decreases due to a lower number of facings) for other items. One of the

first models goes back to Hansen and Heinsbroek [1979] who formulate a shelf-space model that

accounts for space elasticity and solve it using a Lagrangian heuristic. Corstjens and Doyle [1981]

develop a shelf-space model that accounts for space and cross-space elasticities which is solved via

geometrical programming. Zufryden [1986] presents a dynamic programming approach with space-

elasticity effects. Lim et al. [2004] present a model that considers space and cross-space elasticities

for which they develop various extensions, e.g., for product groupings. A specialized heuristic

and the combination of a local search and a metaheuristic approach are used to solve it. Hansen

et al. [2010] develop a formulation with space and cross-space elasticities for which they compare

the performance of various heuristic and meta-heuristic algorithms. The model also differentiates

between horizontal and vertical shelf positions. Bianchi-Aguiar et al. [2015] use a mixed-integer

programming approach to formulate a deterministic model that considers product-grouping and
9
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display-direction constraints and incorporates merchandising rules. Hübner and Schaal [2017b]

formulate the first stochastic shelf-space model that is solved with specialized heuristics. They

account for space and cross-space elasticity as well as vertical positioning effects. The model

assumes a given assortment and does not incorporate substitution effects. In summary, the shelf-

space models mentioned assume a given assortment and optimize the number of facings. They do

not take into account substitutions for unavailable items.

We further investigate contributions that integrate assortment decisions into their models in the

following. Hübner [2011] develops a mixed-integer model for shelf-space planning that also takes

assortment decisions into account. OOA situations are considered, but because the model assumes

deterministic demand, OOS is ignored. Irion et al. [2012] use a piecewise linearization technique to

solve a deterministic shelf-space model that accounts for space and cross-space elasticities. Although

the model accounts for the assortment decision by setting facings to zero additional demand for

OOA substitution is neglected. Hübner and Schaal [2017a] proposed the first integrated assortment

and shelf-space optimization model that accounts for stochastic demand, substitution and space

elasticity. To the best of our knowledge, they present the most comprehensive demand model.

They showed that assortment and shelf planning are interdependent when shelf-space is limited. A

heuristic was developed to address large-scale problems. The heuristic approach was modeled as

an iterative MIP algorithm that uses recalculated precalculations for each step to circumvent the

non-linear problem. The integrated approach outperforms alternative approaches, e.g., a sequential

planning approach that first picks assortments and then assigns shelf space.

(2) Applications for two-dimensional shelves. Solutions obtained from one-dimensional regular shelf

settings, such as the above, cannot be transferred to two-dimensional shelves due to arrangement

and prime number defects. Only Geismar et al. [2015] have developed a model and solution approach

for two-dimensional shelves. They assume multiple shelves that are called cabinets. Each cabinet

can have a distinct number of columns and rows. The capacity (or number of slots) of a shelf

can be calculated by multiplying the columns and rows. Each product must have all of its units

displayed within a single cabinet, and those units have to be displayed in a contiguous rectangle. All

units need to have standardized unit sizes. To formulate the model in a more realistic and flexible

manner, Geismar et al. [2015] did not divide cabinets into subsections to reduce the solution space

or rather the complexity. Their formulation makes it possible to apply all the different dimensions

of the product presentation within one cabinet according to the restrictions mentioned. In contrast

to the majority of existing shelf-space models, the objective is to maximize revenues rather than

profit. Moreover, demand effects such as substitution or space elasticity were neglected. Apart

10
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from that, the demand is assumed to be deterministically known. However, the demand is affected

by the effectiveness of a row. Each row can have a distinct effectiveness value. Due to the fact that

the MIP approach did not find a solution within a two-week time limit, they broke the problem into

two subproblems. First, the products are assigned to the cabinets. Secondly, the units are arranged

within the cabinets. The evaluation of observed data revealed an average revenue improvement of

3.7%.

Table 1: Related literature on assortment and shelf-space optimization

Demand effects

Contribution D
ec
is
io
ns

1

Sp
ac
e-
el
as
tic

de
m
an

d

St
oc
ha

st
ic

de
m
an

d

O
O
A

de
m
an

d

O
O
S
de

m
an

d
Perspective Items2 Solution approach

One-dimensional shelves
Hansen and Heinsbroek [1979] S X Frontal 6,443 Specialized heuristic
Corstjens and Doyle [1981] S X Frontal 5 Geometrical programming
Zufryden [1986] S X Frontal 40 Dynamic programming
Lim et al. [2004] S X Frontal 100 Specialized heuristic
Hansen et al. [2010] S X Frontal 100 Meta-heuristic, simulation
Hübner [2011] A/S X X Frontal 250 MIP
Irion et al. [2012] A/S X Frontal 50 Piecewise approximation
Bianchi-Aguiar et al. [2015] S X Frontal 240 Specialized heuristic
Hübner and Schaal [2017b] S X X Frontal 200 MIP
Hübner and Schaal [2017a] A/S X X X X Frontal 2,000 Specialized heuristic

Two-dimensional shelves
Geismar et al. [2015] S/I Frontal 579 Subproblem decomposition
This paper A/S/I X X X X Total 2,000 Specialized heuristic

1 A = Assortment; S = Space assignment; I = Item arrangement (i.e., vertical and horizontal coordinates on the shelf)

2 Maximum number of items considered in numerical tests

Summary. Table 1 gives an overview of the main contributions. The demand models and solution

approaches for regular one-dimensional shelves have gradually been refined. Hübner and Schaal

[2017a] present the most comprehensive model by integrating assortment and space allocation and

taking relevant demand effects into account, i.e., space-elasticity, OOA and OOS substitutions.

Previous literature suffers from one or more of the following drawbacks. First of all, only isolated

optimization of either assortments or shelf-space, ignoring the interdependence of both decisions.

Secondly, limited consideration of relevant demand effects. Thirdly, applicability in practice is

constrained by the limited assortment sizes that can be solved. None of the one-dimensional shelf

models integrate the vertical and horizontal arrangement of items. Geismar et al. [2015] presented

the first extension for two-dimensional problems and define the position of products. However, they
11
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apply a very restricted demand model and do not optimize assortments.

We will base our extensions on the contributions of Geismar et al. [2015] and Hübner and

Schaal [2017a]. We contribute a new and more general approach by integrating assortment, space

allocation and item arrangement decisions in a two-dimensional shelf-space setting. We further

extend the demand model via space-elastic demand and substitutions. This also includes the

modeling of stochastic demand. Integrating demand volatility is relevant for retail settings (see

e.g., Agrawal and Smith [1996] or Hübner et al. [2016]), particularly for categories with perishable

products (see e.g., Kök and Fisher [2007]). This becomes even more important for two-dimensional

shelves as the majority of products kept on these shelves are perishable, e.g., fresh products like

produce, products with limited sales periods like fashion and electronics. Finally, we relax the

assumption of identical unit sizes as this does not hold true in most practical applications.

3. Development of the decision model

This section develops the Two-Dimensional Stochastic Capacitated Assortment and Shelf-space

Problem (2DSCASP) in three steps: First, the decision model is formulated in section 3.1 which

is then supplemented with the demand model in section 3.2. Finally, section 3.3 determines the

arrangement and shelf space constraints. Table 2 shows the notation used.

3.1. Modeling the decision problem

The retailer must assign products of a particular category to a two-dimensional shelf limited

in size. That means considering a set of items N with N = |N| and optimizing the profit by

simultaneously deciding

• which products to list at all (item selection),

• how much shelf space to allocate to the items listed (space assignment),

• how the total item quantity is presented through horizontal and vertical facings in a rectan-

gular shape, e.g., 4×1 or 2×2, and where the product is positioned, i.e., x- and y-coordinates

of the shelf space (item arrangement).

12
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Table 2: Notation

Indices and sets
i, j Item indices
N Total set of items
N+ (N−) Set of listed (delisted) items
R Total set of rectangles
Parameters
βi Space elasticity of item i

γOOAji (γOOSji ) Share of demand of item j that gets substituted by item i in the event that item j is out-of-
assortment (out-of-stock)

δ̂i Total expected demand of item i

δmini (fδmin
i

) Minimum demand of item i (corresponding density function)
δspi (fδsp

i
) Space-elastic demand of item i (corresponding density function)

δOOAi (δOOSi ) Out-of-assortment (out-of-stock) demand of item i

ci Unit cost of item i

di (wi) Item depth (width) per unit of item i

f∗i Demand density function for i, generic form
Ki Maximum number of facings of item i

nij Binary parameter indicating whether item i has to be a neighbor of item j (=1) or not (=0)
N Total number of items
pi Sales price for one unit of item i

si Penalty cost for one unit of item i

Swidth(Sdepth) Total shelf width (depth) available
vi Salvage value for one unit of item i

Decision variables
qxi (qyi ) Integer number of facings of item i assigned in x-dimension (y-dimension)
qti Integer number of units of item i that are stacked behind one facing
coorxi (cooryi ) Integer location coordinate of item i in the x-dimension (y-dimension)
lij (bij) Binary variable denoting whether item i is arranged on the left of (below) item j (=1) or

not (=0)
Auxiliary variables
ki Number of facings assigned to item i, with ki = qxi · qyi
qi Shelf quantity assigned to item i, with qi = qxi · qyi · q

t
i

zi Binary variable indicating whether item i is selected in the assortment (=1) or not (=0)
Di (Wi) Space of item i occupied in a depth (width) dimension

We introduce various decision and auxiliary variables to express these decisions. We allow the

shelf quantity qi to be zero (qi = 0) to account for delisting of items. The retailer must arrange

the number of facings ki, i = 1, 2, . . . , N for each item N in a contiguous rectangular shape on

the two-dimensional shelf. The number of facings for the x-dimension is expressed by the integer

decision variable qxi and by qyi for the y-dimension. The total number of facings ki is therefore

computed by ki = qxi · q
y
i . Since it is possible to stack each item, the entire shelf quantity qi is

computed by qi = ki · qti where qti denotes the number of units of item i that are stacked behind

each facing ki, including the facing itself. We assume that there is no backroom storage which

implies that all products listed have to fit onto the available shelf space. The retailer objective is

13
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to maximize total profit Π which is the sum of the item profits πi of all items i ∈ N:

maximize Π(q̄) =
∑
i∈N

πi(qi) (1)

The item profit πi depends on the shelf quantity qi for each item i ∈ N that is available for

demand fulfillment. Items can be sold at the sales price pi and are purchased for the unit costs

ci which incorporate all purchasing and processing costs (e.g., for replenishment). If the expected

demand Di for item i is greater than the shelf quantity qi, the excess demand is lost and the retailer

suffers the shortage costs si. Conversely, if items remain in stock at the end of the period, they

need to be disposed of at a salvage value vi and the retailer incurs a loss, because vi < ci.

The profit for each item is calculated as shown in Equation (2) and consists of the following

elements: The first term represents the overall purchasing costs, the second and fourth term cal-

culate the expected revenues, the third term represents the expected revenues from leftover items

sold for the salvage value, and the fifth term calculates the penalty costs in the event of stockouts.

This generic form of the item profit πi corresponds to the profit calculation in newsvendor problems

and can therefore also be found in many other assortment related decision models (e.g., Smith and

Agrawal [2000], Kök and Fisher [2007], Hübner et al. [2016]). The difference always stems from the

demand that is taken into account which is represented by the density function f∗i . This probabil-

ity density function f∗i in Equation (2) accounts for the relevant total demand distribution which

must be quantified in accordance with the assumed customer behavior. In our case the density

function must take into account OOA and OOS substitution as well as the space-elastic demand.

We investigate the related demand function in more detail below.

πi(qi|qi=qxi ·qyi ·qti ) = −ci·qi+pi·
∫ qi

0
yf∗i dy+vi·

∫ qi

0
(qi−y)f∗i dy+pi·

∫ ∞
qi

qif
∗
i dy−si·

∫ ∞
qi

(y−qi)f∗i dy (2)

The model does not force the user to completely fill the available shelf space. It is permitted

to leave free spaces due to penalty costs for oversupply. In constellations with large shelves, low

demand and high oversupply costs, for example, there could be situations where the full space is

not used. However, this is assumed to be rather a hypothetical situation due to general space

constraints in retail stores.

3.2. Modeling the demand function

The probability density function f∗i of the standard newsvendor formulation needs to be enriched

in order to consider different demand effects. Because items can be delisted, we divide the set of
14
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all items N into listed items (N+) and delisted items (N−) in the following, such that N+,N− ⊆ N,

N+ ∪ N− = N and N+ ∩ N− = �. The total expected demand δ̂i of an item i consists of three

elements (see Equation (3)). The first is space-elastic demand δspi which is driven by the number

of facings. Next is the OOA demand δOOAi which depends on whether the items j, for which i is

a substitute (j , i) are listed (qj > 0) or not (qj = 0). The third is OOS demand δOOSi which

depends on the available shelf quantity q of the other items j (j , i). We elaborate on the three

demand components below.

δ̂i = δspi + δOOAi + δOOSi i ∈ N (3)

Space-elastic demand. Customer demand for an item grows with the number of facings assigned for

this item. The magnitude of the demand increase depends on the space elasticity βi, the number

of facings ki and the minimum demand δmini . The space-elastic demand is denoted by δspi (ki) and

calculated corresponding to Equation (4). The corresponding density is denoted by fδspi .

δspi (ki|ki=qxi ·qyi ) = δmini · kβii i ∈ N (4)

The space-elastic demand grows with a diminishing rate with kβii for k > 1. The minimum

demand δmini is equal to the demand of an item if it were represented with one facing (ki = 1), i.e.,

δmini = δspi (ki = 1) (cf. Hansen and Heinsbroek [1979], Corstjens and Doyle [1981], Urban [1998],

Hansen et al. [2010], Irion et al. [2012], Bianchi-Aguiar et al. [2015], or Hübner and Schaal [2017a]).

The space-elastic demand for an item i with ki = 0 mathematically results in no demand as

δspi (ki = 0) = δmini ·0βi = 0. This does not hold true since some customers would still want to buy the

item even if it was not shown on the shelf anymore. To factor in this effect, we assume the identical

minimum demand for a product with no facings as if it had exactly one facing. In other words,

the demand with one facing is described as the minimum demand even if a product is delisted. In

cases of ki = 0, this means we assign space-elastic demand by applying δspi (ki = 0) = δmini . The

corresponding density function for the minimum demand is denoted by fδmini
.

Out-of-assortment demand. OOA demand for a listed item i (i ∈ N+) occurs if another item j is

delisted (j ∈ N−) and customers substitute this item j with item i. We assume that if item j is

delisted, customers substitute a certain share γOOAji of the minimum demand δminj of item j with

item i, because some customers will still want to buy item j, even if it is not listed. The maximum

quantity that can be substituted of item j cannot be higher than the minimum demand of the item

j. This is first due to the aforementioned assumption that the space-elastic demand in the event of

15
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k = 0 corresponds to the minimum demand, and secondly because we follow the usual assumption

that substitution takes place over one round only (cf. e.g., Ryzin and Mahajan [1999], Smith and

Agrawal [2000], Gaur and Honhon [2006], Kök and Fisher [2007], or Hübner et al. [2016]). This

simplification is common across most assortment literature (cf. Kök et al. [2015]). If consumers

want to substitute their first choice by a product that is not available, the demand is lost as a

result. There is no attempt to model individual consumer decisions. Instead, an exogenous model

is applied that is capable of capturing aggregated consumer demand. The resulting model is cruder

than some other substitution models but has the advantage of being much easier to analyze and

requiring less data. That also means that demand is uniform across time. To summarize, this

implies that demand is lost if a substitute is not available either. Therefore, if an OOA item is a

substitute for another non-available item, the additional substitution demand for the OOA item

would only occur if it was available. The OOA demand of an item i is calculated as follows:

δOOAi =
∑

j∈N−,j,i
δminj · γOOA

ji i ∈ N (5)

The density function for OOA demand for item i is calculated by Equation (6). Since we assume

that the distributions of the minimum demand of two items i and j, i , j, are independent, the

convolution – represented by the operator ~ – can be used to calculate the distribution of the sum

of the demand of the two items (cf. Hübner et al. [2016]). Equation (6) convolutes the (minimum)

demand distribution functions of all delisted items and therefore accounts for the fact that the

OOA substitution demand for item i depends on all delisted items j ∈ N−. To simplify, we have

omitted the γOOAji parameters in the equation.

~j ∈ N− fδj =
∫
· · ·
∫
R+,n

0 ,j∈N−
fδminj

dτ . . . dυ (6)

Out-of-stock demand. OOS demand for a listed item i (i ∈ N+) occurs if another listed item j

(j ∈ N+) is temporarily out-of-stock, i.e., if demand for item j exceeds the available shelf quantity

of item j. In this case, we assume that customers substitute a certain share of the shortage quantity

of item j with item i. The shortage quantity of item j is calculated via (δj − qj |δj > qj) and the

substitution share denoted by γOOSji . Equation (7) shows the OOS demand calculation (also see

e.g., Rajaram and Tang [2001], Kök and Fisher [2007], Hübner et al. [2016]):

δOOSi =
∑

j∈N+,j,i

[(δj − qj)|δj > qj ] · γOOS
ji i ∈ N (7)

Equation (8) depicts the density function for OOS demand for item i. As above, we use the
16
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convolution to account for the fact that OOS demand for an item i depends on the expected

shortage of all temporarily unavailable items other than item i.

~j ∈ N+ fδj =
∫
· · ·
∫ ∞
qj ,j∈N+

fδjdτ . . . dυ (8)

3.3. Modeling the arrangement and space constraints

Before we specify the constraints of our problem, we give a broader context on the modeling of

the arrangement constraints which also impacts the solution approach later on.

General modeling approach. Our problem belongs to the class of Two-Dimensional Knapsack Prob-

lems. These problems deal with the selection and arrangement of a set of rectangles r ∈ R to

a capacitated two-dimensional rectangular container S with a certain width (Swidth) and depth

(Sdepth). In our case, the rectangle r represents not the item i itself but its facings ki and the

corresponding width dimension Wi, depth dimension di, as well as its profit value πi. Selected

rectangles need to be orthogonally placed in the container and are not allowed to overlap the con-

tainer limits [Bortfeldt and Winter, 2009]. Different constraints are applicable to this problem.

First, with regard to the number of reproductions of each rectangle, our problem belongs to the

Single-Constrained Knapsack Problems (c.f. Beasley [2004]; Bortfeldt and Winter [2009]). In our

case, each rectangle represents a certain facing number and its arrangement of a certain item that

needs to be allocated to a single container. We need to apply an upper limit that restricts the

maximum size of a rectangle but the item selection included ensures that no lower bound is set

(as for doubly-constrained Knapsack problems). The second constraint type is the orientation con-

straint that determines whether a rectangle can be rotated by 90 degrees to fit onto the container

or not (c.f. Lodi et al. [1999]). In our case, the dimension of a rectangle is dictated exogenously

because the rotation of the rectangles is not allowed (e.g., because product labels need to be legible

and the display is defined). A final differentiation is the guillotine cutting constraint that can

be applied to divide the total solution space into parts. A container is divided into sections by

using guillotine cuts. Guillotine cuts can be made horizontally or vertically and from one side to

the opposite (“edge-to-edge”) of the container, whereas one item can only belong to one container

(=subsection). Each resulting subsection is considered separately and may be cut again. This

procedure reduces the solution space as less combinatorial options are possible. Figure 5 depicts a

guillotine and non-guillotine approach applied to a two-dimensional shelf. Our application does not

allow guillotine cuts as this would reduce the degrees of freedom for how facing and arrangement

options can be chosen within the container. The variable dimensions of the rectangle would also

not allow meaningful cuts. According to the typology of Wäscher et al. [2007] the 2DSCASP is a
17
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Single Large Object Placement Problem that is transformed by the item consolidation to a Single

Knapsack Problem.
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Figure 5: Guillotine cutting patterns

Specification of arrangement and space constraints for 2DSCASP. We use the relative arrange-

ment formulation of Pisinger and Sigurd [2007] as it meets the requirements of our application

summarized above. This ensures proper arrangement of the selected items with their correspond-

ing dimensions. We introduce the auxiliary variable zi for the assortment decision to simplify the

notation with zi =


1 for qi ≥ 1

0 else
∀i ∈ N .

The two boolean decision variables lij and bij(i , j) ∈ {0, 1} ∀i, j ∈ N determine whether or not

item i is arranged to the left of item j (lij) and/or below (bij) within the shelf space. Equation

(9) ensures that all selected items have a position relative (left or/and below) to one another. The

binary parameter nij indicates whether or not item i has to be a neighbor of item j. This allows

the definition of joint positioning for related products within a category (e.g. rye bread belongs to

the category bread). Equation (10) to (12) define required neighborhood constraints accordingly.

Restriction (10) prevents diagonal neighborhoods, whereas restrictions (11) and (12) ensure that

the borders of the item quantities qi and qj have adjacent edges for a certain stretch.

The two-dimensional shelf-space limits are represented by Swidth for the width (x-dimension)

and Sdepth for the depth (y-dimension). Due to the fact that the dimensions of one item only

represent the space occupied by the rectangle (rectangularly shaped quantity of one item) in the

special case qi = 1, we introduce the auxiliary variables Wi and Di in restriction (13) and (14)

that represent the space occupied. The parameters for width wi and depth di represent the space

occupied by all units of the item i. The decision variables for the coordinates that indicate the lower

left position of the item’s display are denoted by coorxi for the x- and cooryi for the y-coordinate.

Equations (15) and (16) ensure that the items N do not overlap each other within the shelf space.

18
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Restrictions (17) and (18) guarantee that no item i crosses the border of the shelf space. In equation

(19) a maximum facing limit of item i is set. This gives retailers the opportunity to ensure a variety

of different products on their shelves by setting the parameterKi. Equations (20) define the domain

of the variables.

lij + lji + bij + bji ≥ zi + zj − 1 ∀i, j(i , j) ∈ N (9)

lij + lji + bij + bji ≤ 3− nij · zi − nij · zj ∀i, j(i , j) ∈ N (10)

coorxi +Wi − coorxj ≤ Swidth(1− lij · nij) ∀i, j(i , j) ∈ N (11)

cooryi +Di − cooryj ≤ S
depth(1− bij · nij) ∀i, j(i , j) ∈ N (12)

Wi = wi · qxi ∀i ∈ N (13)

Di = di · qyi ∀i ∈ N (14)

coorxi +Wi ≤ coorxj + Swidth(1− lij) ∀i, j(i , j) ∈ N (15)

cooryi +Di ≤ cooryj + Sdepth(1− bij) ∀i, j(i , j) ∈ N (16)

0 ≤ coorxi ≤ Swidth −Wi ∀i ∈ N (17)

0 ≤ cooryi ≤ Sdepth −Di ∀i ∈ N (18)

Ki ≥ ki ∀i ∈ N (19)

lij , bij , zi ∈ {0, 1}; qxi , q
y
i , q

t
i , qi, ki, coor

x
i , coor

y
i ∈ Z+

0 ∀i, j(i , j) ∈ N (20)

4. Heuristic Approach

The 2DSCTSP is compounded by the NP-hard two-dimensional Knapsack Problem (see Beasley

[2004]; Kellerer et al. [2004]; Pisinger [2005]; Pisinger and Sigurd [2007]) and the NP-hard assign-

ment problem (see Kök and Fisher [2007]; Hübner et al. [2016]). The combinatorial complexity of

the latter increases very rapidly with the number of items being considered, N , and the shelf-space

size S. The total number of possible allocations (Y ) to a one-dimensional container can be cal-

culated as expressed by Y (N,S) =
(N+S−1

S

)
= (N+S−1)!

S!(N−1)! . For example, an instance of N = 5 and

S = 10 results in 1,001 and an instance of N = 50 and S = 100 in 6.7 · 1039 possible solutions.

The two-dimensional problem is even more complex. Here, one obtains up to NS combinations

without any arrangement rules (rectangle, coherent). In the first example the number of combina-

tions increases to 9,765,625 and in the second example to 7.9 · 10169 combinations. Furthermore,

the demand characteristics result in a profit function πi for each item i (Equation (2)), which is

non-linear with respect to the decision variables. A metaheuristic approach is therefore developed

– a genetic algorithm (GA) suitable for solving real world problems sufficiently and efficiently. We
19
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propose a GA paired with a one-dimensional start solution and a bottom-left fill (BLF) heuristic.

Structure and notation. We will use the general algorithmic-related terms “container” and “rectan-

gle”. A set of small rectangular pieces has to be allocated to a larger rectangle, known as a container.

In our application, the container is equal to a shelf and a rectangle represents certain facing and

arrangement options of a certain item. The algorithm is developed with object-oriented program-

ming standards to avoid a complex de-/encoding of the solution of each individual object. Instead

of complex encryption to represent the different rectangles with their corresponding attributes, the

references of the objects are taken into account to execute genetic operations. This ensures that no

information is lost while performing the operations and all attributes are accessible at any time.

The decoding is implemented as an object function that invokes the operation that arranges the

rectangles onto the container and calculates the fitness of the individual. Extensive en-/decoding

to or of a binary, a permutation or a value notation are not necessary. We refer to Keijzer et al.

[2002], Krishnamoorthy et al. [2002] and Zhang and Wong [2015] for similar implementations of

object-oriented evolutionary algorithms. The necessary components for the implementation are

detailed in the Appendix with the help of Unified Modeling Language (UML).

Pseudo Code. Algorithm 1 summarizes the sequential, procedural program flow. This is a special-

ized heuristic tailored to our problem and based on a genetic algorithm. We apply different settings

for the various steps of the algorithm as summarized in Table 3.

Algorithm 1 Genetic algorithm for 2DSCTSP
Require: N , Swidth, Sdepth, termination criterion
Ensure: fittest individual over all generations
1: possibleArrangements ← generateArrangements(N , Swidth, Sdepth)
2: population ← generateStartPopulation(possibleArrangements)
3: allocateProducts(population)
4: formerFittestIndividual ← calculateFitness(population)
5: while (termination criterion False) do
6: population ← selectAndDuplicateFittest(population)
7: population ← crossoverOperation(population)
8: population ← mutationOperation(population)
9: allocateProducts(population)
10: currentFittestIndividual ← calculateFitness(population)
11: population ← elitismOperation(currentFittestIndividual, formerFittestIndividual)
12: formerFittestIndividual ←saveFittestIndividual(formerFittestIndividual, currentFittestIndividual)
13: end while
14: printFittest(formerFittestIndividual)

The algorithm starts with input of the set of items N , shelf dimensions Swidth and Sdepth, and

the termination criterion. The objective is to find the fittest individual across all generations, which

contains the container with the most profitable rectangles.

Step 1 generates the set of possible rectangles for each item, i ∈ N . It takes into account the
20
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Table 3: Configuration settings of the genetic algorithm

Steps and methods Possible Settings

Step 2: Start solution Random Adapted one-dimensional solution
Step 3: Rectangle allocations Bottom-left fill heuristic
Step 5: Termination criterion RunTime Number of Populations Solution Quality
Step 6: Selection Wheel Tournament Rank
Step 7: Crossover Fixed Random
Step 8: Mutation Probability rate and Variance configurable
Step 11: Elitism Injection rate of the previous fittest solution

shelf dimensions Swidth and Sdepth. The number of maximum facings Ki (i ∈ N) is denoted by the

shelf dimensions. The possible arrangement options for each item are generated as a result of the

maximum quantity in each visible shelf dimension (Swidth/wi ≥ qxi , Sdepth/di ≥ qyi ) and exclusion

of arrangement options that result in prime number defects.

Following Step 2 generates a start population. We implemented two different options. In the

simple case, a random start solution (RSS) is applied. In the advanced version, an adapted one-

dimensional start solution (ASS) is generated using the model and solution approach of Hübner

and Schaal [2017b]. They develop an iterative heuristic that solves a MIP for the assortment

and space allocation problem in the first step and, in the subsequent step, updates the demand

calculation according to the shelf configuration of the first step. This procedure is repeated until a

solution-quality-related termination criterion is met. We extend this approach by using a constraint

in the MIP to directly eliminate the prime number facings that exceed one Swidth or Sdepth. The

arrangement issue that items cannot be allocated to the shelf because of their particular dimensions

cannot be included in Hübner and Schaal [2017b]. The computed one-dimensional quantities are

subsequently transformed to two-dimensional feasible arrangements.

Step 3 allocates the rectangles to containers. So far, the algorithm is composed of a population

of individuals where each individual consists of a single container that contains one or multiple

rectangles and where each rectangle has an item reference. We use the bottom-left fill (BL-F) pack

heuristic to fill up the containers. Hopper and Turton [2001] identified the BL-F as an efficient

approach for the two-dimensional packing problem. The BL-F is a modified version of the bottom-

left (BL) pack heuristics. The BL algorithm starts with placing each rectangle in the top right

corner of the container. From there the rectangle slides as far as possible (without crossing another

item) to the bottom and then as far as possible to the left of the container. This movement process

is repeated until the rectangle can no longer be moved, i.e., the rectangle collides with another

rectangle or the frame of the container. This makes full use of the rectangle. The disadvantage of

the BL algorithm is the empty space within the container. In contrast to this, the BL-F algorithm
21
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seeks the lowest left position in the container that the rectangle can fit into. This approach

makes it possible to occupy what were previously empty spaces but also leads to a higher runtime.

Furthermore, Hopper and Turton [2001] show computational benefits if the rectangles are sorted

and filled by size (Wi ·Di) in descending order. Note that the algorithm is not forced to completely

fill up the shelf space. It may be better to leave free spaces within the shelf due to penalty costs

for oversupply in the objective function.

After this, rectangles are allocated and the fitness of each individual is evaluated in Step 4. The

algorithm is terminated based on maximum runtime, number of populations or solution quality

improvements. If the termination criterion in Step 5 is met, the fittest individual is displayed.

Otherwise, the loop of Steps 6 to 11 is executed until the termination criterion is met.

Steps 6 to 8 describe the GA operator’s selection, crossover, and mutation. The selection

operation in Step 6 intensifies the average fitness of a population through duplication of the fittest

and disposal of the weakest individuals. We use different approaches. In Wheel Selection (WS) the

selection probability of an individual is calculated by dividing the fitness of a selected individual by

the total cumulative fitness of all individuals. This approach ensures that stronger individuals are

more likely to be included in the adapted population than weaker ones. Tournament Selection (TS)

is based on the comparison of two randomly picked individuals of a population. The individual with

the higher fitness score is selected for the adjusted population. All chosen or not chosen individuals

remain in the basic population and can be selected again. Rank Selection (RS) reevaluates the

fitness of each individual depending on the fitness ranking. The technique takes the rank of the

fitness value and not the nominal value into account. A common approach is to rate the worst as

fitness 1, the second worst as fitness 2 and so on. The best is rated as N , where N equals the

number of individuals considered.

The crossover operation in Step 7 is a method for interbreeding the individuals of the selected

population to form a new offspring population. Crossover is performed with a specified probability

rate. The crossover operation can be executed with a fixed number or randomly generated amount

of crossover points. The points are most evenly divided depending on the quantity of items, i.e., to

build equal sized crossover parts the length of the individual is divided by the amount of crossover

points, whereby the last part contains the size of the modulo value. All items between the crossover

points alternately remain part of the individuals or swap between the individuals. In the mutation

operation in Step 8, small segments of the individuals of the new offspring are randomly modified.

The purpose of this is to preserve diversity across generations. The mutation probability rate and

the variance of the modification can be chosen. During the execution, the new quantity of the item

is also randomly transferred to feasible two-dimensional spaces.
22

This article is protected by copyright. All rights reserved. 



A
cc

ep
te

d
 A

rt
ic

le
In Steps 9 to 12, all rectangles within each individual are allocated and evaluated. Crossover

and mutation operations modify individuals so much that there is a high probability of losing the

fittest individual across the following generations. Hence, an elitism method is applied to preserve

the fittest individual across the next generations. The overall fittest individual is saved and injected

into a population if the fittest individual of this population is not at least as fit as the fittest overall.

The fittest individual of this generation is compared with the individual that is fittest overall to

determine the new individual that is fittest overall. Then the algorithm returns to Step 5.

5. Numerical results

In this section we first describe the test setting before then conducting various numerical anal-

yses with simulated data and data from a case study and different variants of the model. We grad-

ually increase the complexity to demonstrate the efficiency of the models and solution approaches

step by step. Section 5.2 investigates the error range if the solutions of an one-dimensional model

(1DSCASP) are transferred to a two-dimensional problem (2DSCASP). The heuristic approaches

are analyzed and compared in terms of runtime and solution quality in section 5.3. Section 5.4

assesses the impact of demand effects and correctly accounts for stochastic demand, space elasticity,

and substitution on profit as well as facing changes. Finally, we apply our model to a case study

in section 5.5. Table 4 gives an overview.

Table 4: Overview of numerical tests

Section Purpose Models Demand included Problem Solution approaches
Space
elast.

Subst. sizes

5.2 Transfer of 1D solutions to 2D
problems

1DSCASP,
2DSCASP

X small exact: full enumeration

5.3 Efficiency analysis of heuristics
5.3.1 Comparison of GAs vs. exact

approaches
2DSCASP X small exact: full enumeration;

heuristic: GA variants
5.3.2 Comparison of GAs 2DSCASP X large heuristic: GA variants
5.3.3 Comparison of GAs 1DSCASP,

2DSCASP
X X large heuristic: GA variants,

Hübner and Schaal
[2017a]

5.4 Effect of combining space elas-
ticity and substitutions

2DSCASP X X large heuristic: GA variants;
ex-post evaluation

5.5 Case study 2DSCASP X X large heuristic: GA variants;
ex-post evaluation
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5.1. Data generation and test setting

To generalize our analysis, all input parameters are randomly generated within sections 5.2 to

5.4. We generated parameter values within reasonable ranges derived from literature or from the

cooperation with a retailer. There are either sources from empirical studies (e.g., Gruen et al.

[2002], Campo et al. [2004] or Aastrup and Kotzab [2009] for the range of substitution rates; Drèze

et al. [1994], Desmet and Renaudin [1998] or Eisend [2014] for space-elasticity effects) or from other

comparable modeling approaches (e.g., Kök and Fisher [2007], Hübner et al. [2016] for the ranges of

profits and over-/undersupply costs). In generating our data sets we thus used conventional practice

and followed the suggestions of previous literature. We made the data available at GitHub. These

are equally distributed and satisfy the following rules. Each item i ∈ N has a positive profit

ri > ci, a positive salvage value vi and positive shortage costs si. The ratio pattern between the

parameters is defined as ri ≥ ci ≥ vi ≥ si with r ∈ [20; 25], c ∈ [4; 9], v ∈ [4; 9] and s ∈ [1; 3]. Hübner

et al. [2016] reveal that continuous demand distributions serve as good approximations of discrete

demand distributions. It is assumed that demand is normally distributed with an average minimum

demand of µi ∈ [7; 25] and a corresponding coefficient of variation CVi ∈ [1%; 40%]. Modeling

demand volatility with CVi ensures that negative demand cannot occur. The space elasticity β

is assumed to vary between 0 ≤ β ≤ 0.40 (cf. Eisend [2014]). According to Campo et al. [2004]

the OOA substitution rates are suitable for providing approximations for OOS substitution rates.

Without compromising the general applicability of our model, we assume that the substitution

rates for OOA and OOS are the same, i.e. γOOAji = γOOSji , ∀i, j ; j , i. To simplify, we denote

the probability that an unavailable item i gets substituted by the aggregated substitution rate λi
and assume that this rate is split equally among all other items such that γOOAji = γOOSji = λi

N−1 ,

∀i, j ; j , i. To focus on the core demand effects, we assume that all items have a uniform size

with an identical depth and width of di = wi = 1 and a shelf stock per facing of qti = 1. If not

stated otherwise, we considered 100 randomly generated instances for each problem setting. For

all instances of a problem setting the assortment size N and shelf size Swidth × Sdepth are assumed

to be identical. All numerical tests were conducted on a Windows Server 2012 R2 64-bit with two

Intel Core E5-2620 processors and 64-GB memory. The tests are implemented in VB.net (Visual

Studio 2015) and GAMS 24.1.

5.2. Transfer of one-dimensional solutions to two-dimensional problems

The one-dimensional solution is easier to obtain, but it may not be a feasible solution due to

arrangement and prime number defects (also see section 2). This analysis serves to assess the

error impact of transferring solutions obtained by models that are based on one-dimensional shelf
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space to settings with two-dimensional shelf space. The best case would show that one-dimensional

solutions are a good approximation for the two-dimensional problems. We solve the following three

models exactly: 1DSCSP includes prime numbers, 1DSCSPex-prim excludes prime numbers and

2DSCSP. Six test problem settings are defined with a varying total number of items (N), quadratic

shelf sizes with Swidth = Sdepth and an upper limit on the facings (Ki=Swidth × Sdepth). The

randomly generated demand of each item is set to [1; 6] for sets 1 to 4 and [1; 9] for sets 5 to 6.

These problem sizes ensure computationally tractable runtimes. For each problem 100 instances

are randomly generated by using the data ranges provided above.

Frequency of defects. Table 5 reveals the occurrence of defects. The arrangement and prime number

defect of the one-dimensional solution appear in all settings. Arrangement defects can be found in

14% and prime number defects in 32% of the cases. In some cases both defects exist. Consequently,

one or both defects occur in 41% of cases.

Table 5: Analysis of arrangement defects of 1D solutions, average of 100 instances

Number of items N 4 5 6 7 6 6
TotalTotal shelf space

(Swidth × Sdepth)
3 x 3 3 x 3 3 x 3 3 x 3 4 x 4 5 x 5

Arrangement defect [%] 15 9 14 2 18 24 14
Prime number defect [%] 27 29 23 26 56 33 32
Total cases with defect/s [%] 37 32 31 28 66 51 41

Profit impact of defects. Table 6 summarizes the profit impact due to the required arrangements

on a two-dimensional shelf. It compares the exact solutions of the 2DSCSP with the 1DSCSP. The

latter do not consider the rectangular arrangement and prime number requirements, whereby 41%

of 1DSCSP solutions are non-viable solutions for the 2DSCSP. These additional requirements in the

two-dimensional problem lower the profit by 0.8% on average. Hence, this expresses the total profit

impact caused by the rectangular arrangement and prime number constraint. In other words,

theoretically the feasible solution yields 0.8% lower profit compared to the non-viable solution

without prime number and arrangement constraints.

Table 6: Profit comparison of 2DSCSP vs. 1DSCSP, 100 instances

Number of items N 4 5 6 7 6 6
TotalTotal shelf space

(Swidth × Sdepth)
3 x 3 3 x 3 3 x 3 3 x 3 4 x 4 5 x 5

Average profit1 0.991 0.989 0.992 0.994 0.992 0.997 0.992
1 Calculation: 2DSCASP profit / 1DSCASP profit
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Arrangement and prime number defect. To quantify the individual profit impact for each type of

defect, we compare the 1DSCSP and the 1DSCSPex-prime where prime numbers are excluded. The

results in Table 7 depict that the prime number defect leads on average to a 0.5% lower profit.

Hence, imposing the arrangement constraints results in 0.3% lower profits.

Table 7: Profit comparison of exact solutions: 1DSCSPex-prime vs. 1DSCSP, 100 instances

Number of items N 4 5 6 7 6 6
TotalTotal shelf space

(Swidth × Sdepth)
3 x 3 3 x 3 3 x 3 3 x 3 4 x 4 5 x 5

Average profit 1 0.995 0.991 0.996 0.995 0.995 0.999 0.995
1 Calculation: 1DSCSPex-prime profit / 1DSCASP profit

Summary. The one-dimensional solution is easier to obtain, however, it is not a feasible solution

due to arrangement and prime number defects. These requirements impact optimal allocation. The

optimal item quantities of the two-dimensional problem differ from those of the one-dimensional

problem. Due to the additional constraints in the 2DSCSP, the total profit will always be equal or

below the 1DSCSP. Corresponding one-dimensional solution approaches are not readily appropriate

methods for solving two-dimensional problems. It has to be considered that in cases where the one-

dimensional solution does not fit onto the two-dimensional shelf space, quantities of items need to

be adjusted. It is not obvious which item quantities have to be increased or decreased to achieve

the best feasible solution (e.g., via simple rounding or greedy heuristics). The decision process

becomes even harder when substitution effects in the model are considered due to the demand

interdependencies between the items. The consequence of this is that the loss in solution quality

would be significantly higher if using the one-dimensional model.

5.3. Efficiency analysis of heuristics

5.3.1. Comparison of heuristics with space elasticity vs. exact approaches

This section examines the efficiency of the heuristic developed. To validate the GA it is com-

pared to a full enumeration (FE) applied to smaller problem sizes. The GA is executed as described

in section 4 with a random start solution and the selection methods WS, TS and RS. The random

crossover operation and the elitism operation are applied. Mutation operations are not reason-

able and can be neglected due to the small size of problem instances. Pretests have shown that a

termination criterion of 100 seconds is more than sufficient to return the best solution.

Runtime. Table 8 summarizes the computation time. For the FE it shows that the median runtime

increases between four to ten times if the set is extended by only one additional item. A similar
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magnitude is recognizable when the space is extended gradually. For the different implementations

of the GAs the runtime is significantly lower and the increases for extended problem sizes are much

lower. Furthermore, the runtimes of the WS and TS are below 4 seconds on average in all instances.

The smallest median execution time across all 600 problem instances was achieved via the TS, and

is over 120 times faster than the FE.

Table 8: Median runtime of different approaches, in seconds, 100 instances

Number of items N 4 5 6 7 6 6
TotalTotal shelf space

(Swidth × Sdepth)
3 x 3 3 x 3 3 x 3 3 x 3 4 x 4 5 x 5

FE Median 0.728 2.530 22.593 135.332 72.136 134.920 19.988
GA WS Median 0.171 0.327 0.547 1.028 2.106 3.117 0.788
GA TS Median 0.036 0.087 0.130 0.220 0.376 0.710 0.164
GA RS Median 1.362 2.661 4.049 6.506 13.919 36.471 5.425

Solution quality. The solution quality of the GA methods compared to the optimal solutions is

shown in Figure 6. The boxplots show that the median is 100% in all three variants. Additionally,

the data evaluation reveals that the average solution quality exceeds 99% in all cases. The first

quantile is equal to 100% for the WS, and is greater than 97% for the TS as well as the RS.

Solution quality of the genetic algorithm
Compared to the exact solution

0.00

0.90

0.92

0.94

0.96

0.98

1.00

Tournament Selection (TS)Wheel Selection (WS) Rank Selection (RS)

Figure 6: Solution quality of different selection operations in comparison to the exact solution

In reference to the solution quality the WS is slightly better than the TS and the TS is slightly

better than the RS. To figure out what selection method is better suited for more extensive problem

settings the execution time as a ratio of the solution quality achieved is examined more precisely.

Problems five and six of Table 8 are considered which together consist of 200 problem instances.

Figure 7 shows the median solution quality of the best individual solutions achieved up until the

time shown on the x-axis. The curve of the RS obviously increases more slowly than the curves of

the other selection methods and the solution quality of the TS increases slightly faster compared
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to the WS. In conjunction with the results of Table 8 that have been discussed RS does not appear

to be a suitable selection approach.
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0.88

3.00
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1.500.00 0.50

0.96

1.00

0.00

0.98

Execution time
Seconds

Median solution quality of genetic algorithm
Compared to Optimal Solution

Tournament Selection (TS) Rank Selection (RS)Wheel Selection (WS)

Figure 7: Median Solution Quality depending on Execution Time

Summary. The results show that the median runtime for the full enumeration increases exponen-

tially as the number of items N and shelf space Swidth×Sdepth increase. In comparison, the runtime

of the GAs is lower and increases only very moderately. Furthermore, they achieved a close to op-

timal average solution quality of at least 99.1% in all three cases. In terms of runtime and solution

quality the TS is the most promising approach for larger problem settings. This is due to three

facts. First, the runtime increase of the TS is lower compared to the other selection operations.

Second, Table 8 shows that the TS has the shortest average computation times over all problem

settings. Third, the median of the solution quality of TS is equal to WS, and the solution quality

of TS compared to WS increases slightly faster.

5.3.2. Efficiency analysis of heuristics with space elasticity for extensive problem settings

Three more extensive problem settings of practice-relevant size are tested. The number of

products and shelf space are increased in steps and the number of facings is increased to Ki = 30.

The positive demand of an item has a uniform distribution within [1; 30]. All other parameters are

applied as above. The maximal runtime is bound to 500 seconds. Here we use the random start

solution (RSS) and adapted start solution (ASS) which are described in section 4. The ASS uses

the one-dimensional solution of Hübner and Schaal [2017b].

Runtime. Table 9 once again shows that the TS is faster than the WS (GA WS vs. GA TS) for the

smaller instances with 20 items. If the median runtime is close to the limit applied of 500 seconds,

it means that in many cases the best solution has not yet been found due to the termination

criteria. This means that the GA would still improve the solution with longer runtimes. This is
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the case for all GA WS applications and for the larger GA TS applications with 50 and 100 items.

However, a significant runtime improvement can be obtained by applying the ASS. This makes it

possible to obtain solutions within a few seconds, even for larger problems. Where the ASS TS has

significantly shorter runtimes than the ASS RS.

Table 9: Median runtime for larger problems, in seconds, 100 instances, rum time limit 500 seconds

Number of items N 20 50 100
TotalTotal shelf space (Swidth × Sdepth) 15 x 15 20 x 20 25 x 25

GA WS Median 430 412 466 441
GA TS Median 117 480 482 466
GA ASS WS Median <1 2 5 2
GA ASS TS Median <1 1 3 1

Solution quality. There is no exact solution available that can be generated in reasonable com-

putation time. We therefore use a benchmark. We use the solutions of the 1DSCASPex-prime

problem which exclude non-viable prime numbers but might be still an infeasible approach in

terms of the arrangement options. Our calculations in Tables 6 and 7 allow the conclusion that the

1DSCASPex-prime is a suitable upper bound. For small instances the gap compared to the 2DSCSP

is 0.3% on average. Scatterplot 8 shows the efficiency of the ASS methods. The ASS methods met

the benchmark in almost all of the 300 test instances. The 300 test instances belong to the three

test settings shown in Table 9 in ascending order of the problem size and are equally split (1-100,

101-200 and 201-300). The ASS TS method only missed the optimal solution in 3 cases. WS and

TS with a random start solution demonstrate much lower performance for the larger test instances

(201 to 300), as here the solution quality suffers from a deficit in runtime.

0.80

200

0.50

0
0.00

100 300

0.60

0.70

0.90

1.00

Data set
N=600

Solution quality of genetic algorithm
Compared to benchmark solution

WS ASS WSTS ASS TS

Figure 8: Profit levels of GA variants, in % of benchmark approach, across all 300 extensive problem settings

Summary. The FE only has acceptable runtimes for very small problem sizes. This means it is not

an appropriate procedure for real-world problems. The GA configured with the selection operation
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WS and TS performs well for small and medium problem sizes. For more extensive problem settings

the GA with a random start solution also leads to unsuitable runtimes. The increasing number

of products and larger shelf space generate higher degrees of freedom. This results in greater

opportunities for allocating the optimal item quantities onto the shelf space. As a result the GA

mostly only faces the prime-number defects in more extensive problem settings which makes the

ASS an appropriate approach for solving them.

5.3.3. Efficiency of heuristics with space elasticity and substitutions

In this section the model is extended by the substitution effects. To obtain a first indication

that the GA is suitable to account for substitution effects GA TS and GA ASS TS are compared

to the heuristic approach AMIOAS (Algorithm for Mixed-Integer Optimization of Assortment- and

Shelf-space problems) of Hübner and Schaal [2017a]. Since this approach is only appropriate for the

1DSCASP with substitution, the GA is also applied to this setting with large problem settings. A

second comparison with the GA TS and the GA TS ASS is applied to the two-dimensional problem.

Algorithm suitability test for substitution effects. Tables 10 and 11 summarize runtime and the

solution quality of the GA TS for the 1DSCASP. The model of Hübner and Schaal [2017a] is

therefore a special case as it only yields feasible one-dimensional solutions as it does not take

into account two-dimensional shelf space. The median solution quality of GA TS compared to

AMIOAS is 99.2% and ranges between 97% to 99.9%. Despite the higher runtime and slightly lower

solution quality for most problem settings, the GA TS has demonstrated appropriate performance

for addressing substitution effects.

Table 10: Runtime of GA TS for 1DSCASP, in seconds, 100 instances

Number of items N 20 50 100
TotalTotal shelf space

(Swidth × Sdepth)
225 x 1 400 x 1 625 x 1

Average 535 1,208 2,153 1,301
Median 471 1,138 1,998 1,173
Min 120 441 1,773 119
Max 1,683 1,973 3,589 3,589

Algorithm with a refined start solution to meet substitution effects. Due to the fast convergence

times of Hübner and Schaal [2017a]’s algorithm, we will use an adjusted version of ASS in which

the AMIOAS results are used as a start solution. Table 12 presents the percentage variance of

the solution quality between the GA TS ASS and the GA TS after the limited runtime of 1,000

seconds. It shows that the GA TS ASS has achieved a 15.7% higher median on average for the
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Table 11: Median solution quality GA TS vs. AMIOAS for 1DSCASP, 100 instances

Number of items N 20 50 100
TotalTotal shelf space

(Swidth × Sdepth)
225 x 1 400 x 1 625 x 1

Average1 0.997 0.992 0.969 0.986
Median1 0.999 0.993 0.970 0.992
Min1 0.984 0.978 0.942 0.942
Max1 1.000 0.999 0.986 1.000

1 Calculation: GA TS profit / AMIOAS profit

most extensive problem setting. The difference between the two approaches is in evidence with

a closer look at the time at which the best solution was found. The average median time of the

smallest problem setting in Table 10 is 471 seconds for the GA TS, compared to 11 seconds for the

GA TS ASS.

Table 12: Profit difference between GA TS ASS and GA TS for 2DSCASP, in %, 100 instances

Number of items 20 50 100
TotalTotal shelf space

(Swidth × Sdepth)
15 x 15 20 x 20 25 x 25

Average 0.3 1.9 15.6 5.9
Median 0.3 1.8 15.7 1.8
Min -1.2 -0.6 6.6 -1.2
Max 1.6 3.8 24.7 24.7

1 Calculation: (AMIOAS / GA TS profit profit -1) × 100

Summary. The numerical results with the integration of substitution effects has shown that the

heuristic developed is suitable for addressing these effects. The second analysis has shown that an

intelligent start solution is advisable with substitution effects, too.

5.4. Effect of combining stochastic demand, space elasticity and substitution

Because this is the first integrated stochastic model for two-dimensional shelf spaces that ac-

counts for space elasticity and substitution, this section illustrates the difference vis-à-vis the exist-

ing two-dimensional model of Geismar et al. [2015] who do not account for demand effects. Total

profits and shelf quantity assignments are compared. The parameters CV and β cover the values 0

and 0.35 with an interval of 0.05. The substitution rates considered range between 0 and 0.7 in 0.1

increments. All resulting combinations of the three parameters are evaluated. To investigate the

impact of ignoring stochastic demand, space elasticity and/or substitution, a retailer is considered

who makes assortment and facing decisions by assuming CV = β = λ = 0, while in reality there

are CV > 0, β > 0 and λ > 0. To do so, we first run the model with CV = β = λ = 0 and
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evaluate ex-post the results with the actual demand effects with CV > 0, β > 0 and λ > 0. This

result is compared with an optimization run where the actual values of CV , β and λ are directly

applied. This allows to compute the impact of incorrect demand assumptions on assortment and

facing decisions as well as the profit.

Figure 9 shows that the retailer gains up to 78% more profit on average (i.e., when β = 0.35,

λ = 0.80 and CV = 0.35). Additionally, Figure 10 shows that up to 100% of all items get different

facing quantities if stochastic demand, substitution and space-elasticity effects are correctly taken

into account. It becomes clear that all three demand effects need to be considered jointly.
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Figure 9: Profit Changes

5.5. Case study

After having shown that 2DSCASP can be efficiently solved to near-optimal results within very

short runtimes, it will be applied on a real data set in this section. The daily sales data of an

assortment of 21 varieties of bread roll were collected at one of Germany’s largest retailers. Substi-

tution rates between the items were identified using customer surveys. We interviewed n = 2, 412

customers and asked them which substitute they would purchase if their first choice were unavail-

able. Asking customers whether the product they bought was really their first choice also captured
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Figure 10: Share of Facing Changes

substitute purchases for items that are actually unavailable. The substitution rates between two

items i and j were then obtained by No. of customers purchasing j as substitute for i
No. of customers choosing i as first choice . We had at least 30

interviewees for each item. Substitution rates per substitute amounted to up to 40%. The exact

parameters are subject to confidentiality obligations. The minimum daily demand δmini varied

between 1 and 25 units with a variation coefficient of CVi = [40%; 152%]. Sales prices ri ranged

between e1.5 and e3.95 with unit costs of ci=[e0.32; e1.02]. The penalty costs si are set at

zero. Because the items are perishable and our case study retailer has no further use for the items

after the stated expiry date, the salvage value vi is assumed to be zero. The retailer does not offer

special discounts for items close to the expiry date. This is due to the short shelf life of bakery

products (see also Kök and Fisher [2007] and Hübner et al. [2016] who analyze settings with no

salvage values). Beyond the specific setting in our case study we use non-zero salvage values in

the numerical analysis above to generalize our findings. To maintain a certain diversification on

the shelf, the number of facings ranges between 1 and 30, whereby the shelf depth Sdepth is 0.50m

and the shelf width Swidth is 1.20m. Currently, the retailer assigns shelf space to the 21 products

based on sales proportions, i.e., without explicit margins taken into account, demand volatility,
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space elasticity or substitution. The space elasticity β ranges in the sensitivity analysis between

0% and 30% in 5% increments. Additionally, 17% is added which is the average demand increase

driven by space elasticity [Eisend, 2014].

Table 13 shows the profit potential from applying our model. The retailer can increase profits by

up to 15% depending on the assumed space elasticity. Furthermore, it can be seen that optimized

assortments contain up to 38% fewer items than the current assortment. The increase in space

elasticity leads to more shelf space for the most profitable items. This results in smaller assortments

and an increasing number of items with facing changes.

Table 13: Results of case study

Space elasticity β
0% 5% 10% 15% 17% 20% 25% 30%

Profit potential1 5.3% 5.6% 7.3% 8.1% 12.5% 11.2% 12.9% 14.8%
Assortment size2 86% 86% 81% 76% 71% 62% 62% 62%
Facing changes3 62% 67% 76% 81% 81% 86% 95% 95%
SD facing changes4 0.70 1.35 1.72 1.96 2.03 2.18 2.05 2.28
1 Calculation: (2DSCASP profit / 2DSCASP∗ profit)-1
2 Optimized assortment size as a share of current assortment size
3 Share of items with facings different to current facings
4 Standard deviation of absolute facing quantity changes

As a result of the remaining uncertainties of determining the parameters, we analyzed the profit

potential together with the retailer depending on parameter robustness based on the average space

elasticity of Eisend [2014]. Moreover, we investigated the options for defining the appropriate shelf

space for the bread roll category. We applied a sensitivity analysis for that purpose. To do this,

the estimated substitution effects λ, variation coefficients CV and shelf space S are individually

adjusted pro rata between 60% and 140% in 10% increments, whereas the other parameters re-

mained unaffected. To ensure in-store practicability, 20% increments are used for the shelf space.

Table 14 shows that in a higher existing parameter ratio, substitution effects λ and shelf space

S create more profit, whereby variation coefficients CV lead to decreasing profit. The following

profit-oriented managerial insights can be concluded for the retailer:

i) Inaccuracies in estimating the substitution effects have a slight impact on profit.

ii) Slight deviations in determining the variation coefficients significantly affect profit.

iii) If there is additional shelf space available, the retailer should enlarge the shelf space size for

the bread roll category to increase profit.
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Table 14: Profit potential depending on parameter robustness

Existing parameter ratio
60% 70% 80% 90% 100% 110% 120% 130% 140%

λ -4.2% -3.0% -2.0% -0.6% 0.0% 0.7% 1.6% 2.5% 3.4%
CV 11.3% 8.9% 6.3% 3.3% 0.0% -3.5% -7.3% -11.1% -14.8%
S -36.1% - -17.3% - 0.0% - 15.6% - 27.7%

6. Conclusion and outlook

Conclusion. Our model integrates assortment and shelf-space optimization and takes into account

stochastic demand, substitution and space elasticity. It supports retailers in creating a planogram

for two-dimensional shelves by determining optimal assortments and shelf quantities as well as

the adjacently rectangular arrangement of each item’s facings. It is an integrated approach that

simultaneously solves the four subproblems item selection, shelf quantity, facing arrangement, and

item arrangement. Previous shelf planning literature focuses on regular shelf types where customers

just see the foremost unit of an item. Solutions obtained for regular shelves cannot easily be

transferred to two-dimensional and tilted shelves. The combinatorial complexity of the model leads

to a rapid increase in runtime with the number of items and the shelf-space size. We developed a

problem-specific specialized heuristic that is based on a genetic algorithm. In the numerical results

we have shown that

i) one-dimensional solution approaches of current literature are not readily appropriate methods

for solving the two-dimensional problems,

ii) our algorithm efficiently yields near-optimal results as our specialized heuristic achieves >99%

of the exact approach on average for small instances,

iii) neglecting stochastic demand, substitution and space elasticity leads to 78% lower profits and

changes in facings of up to 85%, and

iv) in a numerical analysis with the scope of one of Germany’s largest retailers, it may be possible

to increase profits by up to 15%.

Future areas of research. Various opportunities exist for further research. Our model is based on

several assumptions that could be relaxed in the future, e.g., we assumed that substitution takes

place across one round only. Future models could account for several rounds of substitution, if

substitutes are not available. The extension of our model is linked to the further development of

solution approaches. Further heuristics can be developed to approach the stochastic non-linear

problem. Another topic of research interest is combination of the tactical problem described in this

paper with operational topics, such as shelf refilling, order management and inventory accuracy

35

This article is protected by copyright. All rights reserved. 



A
cc

ep
te

d
 A

rt
ic

le
(cf. e.g., DeHoratius and Raman [2008]; Curseu et al. [2009]; Donselaar et al. [2010]; DeHoratius

and Ton [2015]; Xue et al. [2017]; Sharma et al. [2019]). Further extensions in this area would

address additional operational restrictions in backroom inventory and delivery frequency (cf. e.g.,

Eroglu et al. [2013]; Holzapfel et al. [2016]). Finally, the question of how a multi-store environment

can be taken into consideration requires investigation. For example, Bianchi-Aguiar et al. [2015]

developed an approach to replicate a standard planogram for several stores of a retail chain. A

holistic multi-store approach would also consider the potential impact of store segmentation on the

efficiency of supply chain processes. The model and solution approach presented in this paper has

laid the foundation for these research questions.
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