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This Talk: Use Machine Learning to Benchmark Networks
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Receive training signal — learn from solution quality

- Benchmark Adversarial -
Machine Instance Problem Network Algorithm, Problem
Learning I Function Solution
Generator Instance

challenge
Machine Solution
Learning Information

Our ML/Al Way!
ML/AI vs ML/AI

NetBOA [NetAl'19]

TOXIN [CONEXT Com‘19]
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Use Cases of this Talk

(1) Benchmarking Open vSwitch

<

m Security: VLAN K\ Monitoring: Netflow,
isolation, traffic filtering ‘N, sFlow, SPAN, RSPAN

A y N y.
: ¢ Automated Control:
QuSstiatticiquedtiy OpenFlow, OVSDB
and traffic shaping
| A mgmt. protocol y

(2) Benchmarking Data Center
Traffic Scheduling Algorithms
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= Algorithmic complexity attacks (software domain): Why Important?
= SlowFuzz
= PerfFuzz

= Automated Synthesis of Adversarial Workloads for Implementation aspects can
Network Functions, ACM Sigcomm 2018 harm performance

= Policy Injection: A Cloud Dataplane DoS Attack, ACM

Sigcomm DEMO 2018 Could even be used to attack
your systems!

We propose NetBOA to automatically create network traffic input
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Example: Benchmark Open vSwitch

Host 1 Host 2

Traffic - Forward

Generator DROP

Host 3

Traffic

Open
‘ vSwitch

Sink
Packets over time

Goal: Find Network Traffic Configuration that Maximizes CPU/Latency

10
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Network Benchmarking is Challenging: Complex and Huge M
Configuration Space

How many packets to send? How should headers look like? What protocol to use? When to send
packets? Etc.

[ ]
&—

> > >
Number of Network Batch Size Packet Inter Arrival Time VLANS
Packets [1000 — 5000] [1-5] [Ims — 13mSs] [1-5]

< :
Human still

Involved!

11




NetBOA: A Bayesian Optimization-based Approach

Source: https://de.kisspng.com/png-pc3d06/preview.html

(2) Measure until
confidence is reached
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Generator
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(1) Set configuration
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¥ 50004 30
Bayesian Optimization - =5
(4) Machine Learn y
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5000 packets,
IAT 1 ms

0-1 % CPU

v
20 % CPU

0.30
0.25
0.20
0.15

(D
0.10 —
0.05
0.00

4000 packets,
IAT 3 ms

(S
Wwh NdD

(N

Num. packets
S

—

1 3 5 7 9 11 13
IAT [ms]

= Performance models are non-trivial
= Surprising: Sending less network packets over time can lead to significantly higher CPU

» But: Can we find such weak-spots automatically?
13



Bayesian Optimization: NetBOA for Inter Arrival Time (IAT) Parameter TUTI

Update Gaussian iteration 0 iteration 4 iteration 10

Process at
runtime

|\
|
]

Sampling from

5 ‘*h ; ‘Q;‘_ : x-
Gaussian Process ¢ |p" S 2. P D-.p Qi g
OO — Pl I | I hnlLLLI_‘

gives confidence

PU time/fs]

- (] - - |
0.01 N Stopping criteria
L] () [-) aborts search
000 - | | | | | | - | | | | | | - | | | | | |
357 91113 357 91113 357 91113
Expected
Improvement IAT [ms] IAT [ms] IAT [ms]
guides search
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Drop 1 Drop 1 Drop 2 Drop 1 Drop
2 Drop 2 Drop 3 Drop 2 Drop a COSt_I y_
3 Drop 3 Drop array res_lzmg
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CENN CENNN DN N R | | e pece

triggers 2 times

Drop 1 Drop 1 Drop 2 Drop 1 Drop
2 Drop 2 Drop 3 Drop 2 Drop a COSt_I y_
3 Drop 3 Drop array res_lzmg
Drop operation!
N Drop Drop

Time

OvS rule timeout 10 seconds

= We are using the OvS switch with the Megaflow Cache enabled
= For instance for 5000 packets: We trigger roughly every >2 ms a flow insertion + removal

-> Forcing OvS to continuously run through the array + resizing it
15
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NetBOA vs Random Search TLUTI]

NetBOA Random Search
1 2 3 4 1 2 3 4

1.0 1.0 7]
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Part 1: Conclusion

= Adversarial input generation to find weak spots, security holes ... to make your systems
bullet-proof?

= Use case: NetBOA is a Bayesian Optimization-based data-driven approach to generate
network traffic configurations for benchmarking network function implementations

—->NetBOA can efficiently find challenging network traffic configurations (maximize
CPU/Latency)
—~>NetBOA can also be used to minimize, e.g., CPU or Latency

= Open questions and problems:
= Does beating the machine means it generalizes?
= Does it scale?
= Alternatives?
= Bayesian Optimization needs also tuning!

17



(2) Benchmarking Data Center Traffic Scheduling Algorithms
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Quick-Sort
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S’ Random Input
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Motivation: Automation Helps Finding Weak-Spots

*=O(n * log(n)) on average case

=O(n * n) on worst case (e.g. inversely sorted
list for pivot on last element)

—->\Worst case can be calculated

1200000

1000000

800000

600000

400000

# of Quicksort Comparkons

200000

0

Quick-Sort

/

/

-

0

-

500 1000 1500

Input Sequence Length

Question: How to apply automation to data center traffic?

2000

Special Input

Random Input

[1] https://igoro.com/archive/quicksort-killer/
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Data Center Scenario TLTI

SO S— What can be changed?
= | TR

............ e F: Flows F1 F2 F3
PO 4 : : \ K ‘ .\'\". i b ‘ .": | N T=2ms T=5ms T=8 T Arnval TlmeS
<@ X @ X ® : I V: Volume |[v:100Mmbit|] Vv: 40Mbit V:110Mbit
. e ' SD: 5-7 SD:9-10 :
W S © © SD: Sou_rce-
‘b q’ @@@@ g?;} & R & l l l Destination
0 Time ]

= Small flows are scheduled first
= Shortest-Path-Routing
= K=4 Fattree

20
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% "::l‘é'i; "waZ) |g
ey B . - . ‘ ) ‘."
......... e s F: Flows F1

WO -l - o o T v s, o, S Tooms 13 |T: Arrival Times
&S S @' @ I I V: Volume |v:100mbit]| v: i

i -.‘.... L . u.mi « & ’ SD: 5-7 -lo- SD Source_
& @1 ® 3:1 l l l Destination

0 Time "

What we change

= Small flows are scheduled first Assignment from volumes to flows

= Shortest-Path-Routing

= K=4 Fattree Set of flow volumes stays constant
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Data Center Scenario

What can be changed?

nALl ez waz) 42,2

Q ,.<tf'§l; ; ®
.......... ’ __\"‘s:;:' X F: Flows F1
,,,,,,,,,, o O, T o, T=2ms | 1= |T: Arrival Times
"é < S © e ® : V: Volume |v:100mbit|| v: i
é% - | - % . QL - l SD: 5-7 \ 13- SD: Source-
I\ £\ I'\ G g . R Destination
&SP S8LP S&SP SSPP l l l .
0 Time

What we change

= Small flows are scheduled first Assignment from volumes to flows

= Shortest-Path-Routing

= K=4 Fattree Set of flow volumes stays constant

‘ Flow-Level Simulator evaluates traffic loads

20



Problem Definition

Given Set of Flows:

FL F2 F3 F4 F5 F6

Arrival Time | 12ms | 14ms | 17ms | 18ms | 21ms | 24ms

Source 3 4 13 2 3 12

Destination 14 12 7 7 1 6

Volume | 10Mbit | 400Mbit: 90Mbit 200MBit. 9Mbit | 110Mbit

TUTI

Find the order of Volumes such that:

argmax
F'n

| N
N Y FCT(f:)

1= 1
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Problem Definition

Given Set of Flows:

FL F2 F3 F4 F5 F6

Arrival Time | 12ms | 14ms | 17ms | 18ms | 21ms | 24ms

Source 3 4 13 2 3 12

Destination 14 12 7 7 1 6

Volume | 10Mbit | 400Mbit: 90Mbit 200MBit. 9Mbit | 110Mbit

TUTI

Find the order of Volumes such that:

argmax— Z FCT(f;)

Fn

FCT. Flow Completion Time

Arrival F1 Data has been transmitted

A—

0 Time

v
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Approach: Genetic Algorithm

Pseudo Code

12ms | 14ms | 17ms | 18ms | 21ms | 24ms
& 4 13 2 3 12
14 12 7 7 1 6

10Mbit | 400Mbit. 90Mbit | 200MBit, 9Mbit | 110Mbit
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Approach: Genetic Algorithm

Pseudo Code

1. Sample N flows

12ms | 14ms | 17ms | 18ms | 21ms | 24ms
& 4 13 2 3 12
14 12 7 7 1 6

10Mbit | 400Mbit. 90Mbit | 200MBit, 9Mbit | 110Mbit
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Approach: Genetic Algorithm

Pseudo Code

1. Sample N flows

X

X

X

X

X

X

X

X

X

X

X

X

X

‘10Mbit 400Mbit; 90Mbit ' 200MBit, 9Mbit 110Mbit|

X

X

X

X

X
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Approach: Genetic Algorithm

Pseudo Code T T . T1.7.T.
1. Sample N flows
2. Extract the sequence of volumes V S O L I B

‘10Mbit 400Mbit; 90Mbit ' 200MBit, 9Mbit 110Mbit|




Approach: Genetic Algorithm

Pseudo Code

1. Sample N flows

2. Extract the sequence of volumes V

3. Generate permutations of V by changing is
order (=initial population)

X

X

X

X

X

X

X

X

X

X

X

X

X

‘ 10Mbit | 400Mbit| 90Mbit ' 200MBit| 9Mbit 110Mbit|

X

X

X

X

X
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Approach: Genetic Algorithm

Pseudo Code

1. Sample N flows

2. Extract the sequence of volumes V

3. Generate permutations of V by changing is
order (=initial population)

4. Repeat (until convergence)

X

X

X

X

X

X

X

X

X

X

X

X

X

‘ 10Mbit | 400Mbit| 90Mbit ' 200MBit| 9Mbit 110Mbit|

X

X

X

X

X
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Approach: Genetic Algorithm

Pseudo Code

1. Sample N flows

2. Extract the sequence of volumes V

3. Generate permutations of V by changing is
order (=initial population)

4. Repeat (until convergence)

Crossover

X

X

X

X

X

X

X

X

X

X

X

X

X

‘ 10Mbit | 400Mbit| 90Mbit ' 200MBit| 9Mbit 110Mbit|
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X

X

X

X
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Approach: Genetic Algorithm

Pseudo Code

1. Sample N flows

2. Extract the sequence of volumes V

3. Generate permutations of V by changing is
order (=initial population)

4. Repeat (until convergence)

Crossover
Mutation

X

X

X

X

X

X

X

X

X

X

X

X

X

‘ 10Mbit | 400Mbit; 90Mbit ' 200MBit. 9Mbit 110Mbit|

X

X

X

X

X
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Approach: Genetic Algorithm

Pseudo Code

1. Sample N flows
2. Extract the sequence of volumes V
3. Generate permutations of V by changing is
order (=initial population)
4. Repeat (until convergence)
Crossover

Mutation
Fithess

X

X

X

X

X

X

X

X

X

X

X

X

X

‘ 10Mbit | 400Mbit; 90Mbit ' 200MBit. 9Mbit 110Mbit|

X

X

X

X

X
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Approach: Genetic Algorithm

Pseudo Code

X X X X X X

X X X X X X

1. Sample N flows

X X X X X X

2. Extract the sequence of volumes V

3. Generate permutatlons Of V by Changlng IS ‘ 10Mbit | 400Mbit; 90Mbit ' 200MBit. 9Mbit 110Mbit|

order (=initial population)
4. Repeat (until convergence)

Crossover
Mutation
Fithess

Selection



Fithess Function TUTI

Flow Completion Time
(Fitness)

10 30 12 55 4 7

Data Center
Simulator

Simulator:

= 500 Mbit Links

= Uniform Volume between 1 and 500 Mbit
= Poisson Arrival Times (mean 0.7 sec)

= Uniform Src-Dst pairs
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GA Behavior over Generations for Different Population Sizes

Population with N = 10 flows Population with N = 30 flows
C C
S 0.60 S 09l — Optimized Input
= / = Random Input
= &
‘o 0.55 T
g —— Optimized Input ; 0.8 1
o Random Input o
5 0.50 G 0.7
L L
C c
5 5
S 0.451_ | | | | = 061 | | | |
0 25 50 75 100 0 25 50 75 100

Generations Generations



GA Behavior over Generations for Different Population Sizes

Population with N = 10 flows Population with N = 30 flows
C C
o 0.60 o .
= +0.1 sec 5094 Optimized Input
S S Random Input
= &
‘o 0.55 T
g —— Optimized Inpu ; 0.8 1
o Random Input o
5 0.50 G 0.7
L L
C c
5 5
S 0.451_ | | | | = 061 | | | |
0 25 50 75 100 0 25 50 75 100

Generations Generations



GA Behavior over Generations for Different Population Sizes TLTI

Population with N = 10 flows Population with N = 30 flows
17% more challenging 35% more challenging
C C
o 0.60 - o .
= +01 sec 5091 Optimized Input
S S Random Input
£ 0.55 . =
. —— Optimized Inpu .
o Random Input o
5 0.50+ 8
L L
C c
5 5
z 0'45— T T T T T z 0.6— T T T T T
0 25 50 75 100 0 25 50 75 100

Generations Generations



GA Behavior over Generations for Different Population Sizes TLTI

Population with N = 10 flows Population with N = 30 flows
17% more challenging 35% more challenging
C C
o 0.60 - o .
= +01 sec 5091 Optimized Input
S S Random Input
£ 0.55 . =
. —— Optimized Inpu .
o Random Input o
5 0.50+ 8
L L
C c
: :
z 0'45— T T T T T z 0.6— T T T T T
0 25 50 75 100 0 25 50 75 100
Generations Generations

More Flows mmsss) Higher margin of optimization



Flow Volume over Time (N=100)

E 300 - —— random
Q0 optimized
E:‘275-
" .
S W / A
2 250+ \/
> v
5 225 -
L
200 , | ,
5 10 15

Arrival Time [s]

= Concentrate larger flows together

N
o

SRC-DST ID

= Place large flows on the same link for close arrivals

N
o

<100
<200
<300
<400
<500

Y
f°9 ° 3
° o (Y )
® o o ®
° q°
e ® %% o %
o0
[ ]
® % %
o ® )
e — L
5 10 15

Arrival Time [s]

25



Flow Volume over Time (N=100)

Flow Volume [Mbit]
N N N (8
N Ul ~d o
un o un ()

N
o
o

= Concentrate larger flows together

| =—— random

optimized

5

Arrival Time [s

10

N
o

SRC-DST ID

= Place large flows on the same link for close arrivals

N
o

<100
<200
<300
<400
<500

Arrival Time [s

25



Flow Volume over Time (N=100)

= 300{ random ®
= L
2 optimized 0 401 5q
— 2751 —
Y )
_§, Mv‘ 0
= 250 ' ]
S g 20
% 225 4 U <100
TH e <200
200 | | <300
5 10 e <400
Arrival Time [s e <500 Arrival Time |s

= Concentrate larger flows together
= Place large flows on the same link for close arrivals

BUT: Simulations consume a lot of time!
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Flow Volume over Time (N=100)

:—g 300 - — random
= .
s optimized
5 275"
5
= 250
>
g 225
L
200 , ,
5 10

Arrival Time [s

= Concentrate larger flows together

N
o

SRC-DST ID

= Place large flows on the same link for close arrivals

N
o

<100
<200
<300

<400
<500 Arrival Time [s

BUT: Simulations consume a lot of time!

ldea: Use Machine Learning in Genetic Algorithm [Bhal3]




GA Acceleration — Deep Learning

10 30 12 55 4 7

Data Center
Simulation

Flow Completion Time
(Fitness)
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GA Acceleration — Deep Learning

X X X X X X l
X X X X X X

10 30 12 55 4 7

Flow
Completion
Time Prediction

Flow Completion Time
(Fitness)
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GA Acceleration — Deep Learning

X X X X X X l
X X X X X X

10 30 12 55 4 7

Flow Completion Time
(Fitness)

Flow
Completion
Time Prediction

- Needs to be evaluated very frequently
—> slow, does not scale
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GA Acceleration — Deep Learning TLTI

X X X X X X l
X X X X X X

10 30 12 55 4 7

Flow Completion Time
(Fitness)

Flow
Completion
Time Prediction

- Needs to be evaluated very frequently
—> slow, does not scale

Approximate Fitness Function with Deep Neural Network




The Training Data

FCT Distribution of Labels

0.6

0.8 1.0
FCT

UMAP 2

10

Spatial Distribution

"' * ' -
df’, b .
‘ \ ‘,",,.“ A .‘.:.*'.. 3P
2l S Kot e =
qj&ﬁ 7" .{ .%:5‘?
o
-5 0 5
UMAP 1

= Test Set Score: 87% of the samples achieved a relative error of less then 5%

1.0649
0.9949
0.9250

-0.8551
-0.7852
-0.7153
-0.6454

0.5755
0.5056
0.4357



Comparison of Simulation vs Neural Network TLTI

Mean Predicted Fitness
—:= Mean True Fitness
® Actual Fitness
Best Solution Prediction
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= Neural network cannot predict the fitness of population correctly
= Best population members cannot be found correctly



Comparison of Simulation vs Neural Network

—— Best Fitness

091 - Mean Fitness
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= Neural network cannot predict the fitness of population correctly
= Best population members cannot be found correctly

—:= Mean Predicted Fitness
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= Simulations can be used to determine current best simulation members

= More than one simulation needed to improve population



Comparison of Simulation vs Simulation-enhanced Neural Network M

Approach Performance even better than
Mean Predicted Fitness S | m u Ia'“ O n
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= Simulations can be used to determine current best simulation members

= More than one simulation needed to improve population
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Comparison of Simulation vs Simulation-enhanced Neural Network M

Approach
—— Best Fitness
0.9 - M Fit
—— Mean Fithess 104
g
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= Simulations can be used to determine current best simulation members

== Mean Predicted Fitness
—:= Mean True Fitness
® Actual Fitness

® Best Solution Prediction

Performance even better than
simulation

= More than one simulation needed to improve population

And what did
we save?
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Runtime Comparison (10 runs, Cl 95%) TUTI

Mixed 4 times slower than NeuralNet

Population 10 30 50 100

Simulation | 106 (7.1) | 369 (7.7) | 638 (24.2) | 1187 (17.9)
NeuralNet | 23 (1.8) | 29(1.5) | 32(1.6) 43 (1.1)
Mixed 32(0.9) | 73(1.0) | 118(2.6) | 210 (3.1)

... but Mixed 4 times faster than
Simulation

Neural Net < Mixed < Simulation
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Part 2: Conclusion

= Genetic Algorithm can automate adversary Traffic Generation
- Automated Benchmarking

= Neural Network can significantly accelerate Genetic Algorithms
—> Scalability

Limitations:

= Long training time of GA

= Accelerator trades-off solution quality and compute time

= Accelerator needs to be re-trained when fitness function changes

Potentials and Future Work:
= Utilize current network state (e.g., demand matrix)
= Make a prediction for the next arrival(s) — e.g., investigate existing network traces
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Thank youl!

Questions?
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