Chair of Communication Networks 'I'I-I'"
Department of Electrical and Computer Engineering

Technical University of Munich

Adversarial Network Benchmarking

Andreas Blenk*

Joint work with:

Johannes Zerwas*, Patrick Kalmbach*, Laurenz Henkel*,
Sebastian Lettner, Gabor Rétvari®, Wolfgang Kellerer*,
Stefan Schmid?®

*Technical University of Munich, Germany

ABudapest University of Technology and Economics, Hungary

°Faculty of Computer Science, University of Vienna, Austria S~ e R

Communication Technologies Group,

Faculty of Computer Science, University of Vienna

©2019 Technical University of Munich

Today’s Approach of Operating Networks?

0

§

Iy

Today’s Approach of Operating Networks? TLTI

_ voos 2

Network

Problem

= ‘*
//L/

Today’s Approach of Operating Networks?

Network
Problem

Solution

Today’s Approach of Operating Networks? TLTI

Network
Problem

Solution

Performance
Evaluation

Today’s Approach of Operating Networks? TLTI

Network
Problem

Solution

Performance
Evaluation

With more complex networks need for automation!

What Self-Driving Networks Should Do

What Self-Driving Networks Should Do

Source: https://www.pinterest.at/pin/318137161149129652/

What Self-Driving Networks Should Do TUTI

Self-Monitoring

Network

Problem

Source: https://www.pinterest.at/pin/318137161149129652/

What Self-Driving Networks Should Do

Source: https://www.pinterest.at/pin/318137161149129652/

Self-Optimizing

Self-Monitoring

Network
Problem

Solution

What Self-Driving Networks Should Do

Source: https://www.pinterest.at/pin/318137161149129652/

Self-Monitoring

Self-Optimizing

Self-Benchmarking

Network
Problem

Solution

Performance
Evaluation

What Self-Driving Networks Should Do TUTI

Network

Self-Monitoring Problem

Self-Optimizing Solution

Source: https://www.pinterest.at/pin/318137161149129652/

Performance
Evaluation

NetBOA (NetAl'19)

Self-Benchmarking

Benchmarking Network Algorithms, Architectures etc...
The Traditional Way ...

Benchmarking Network Algorithms, Architectures etc...
The Traditional Way ...

O3 08 TR 00T o idgunent, ¥ Tagiea
LLRITITEIC P BrCe JOrLl 0. est
03:50:08 (Ra) 1665 807 Acknow leckwanrt, & lapen,
e §

10k
A b
JEEE W00 ATt fin Pegest, D
(o (RA) JEEE 302 AckrowTuckumnt, 1w,
i e XTI Respirne, i), 1
1066 902 frkov Tedienwnt, # o

;h(1
i

0010098 160,004
0:0):%

0010085101001

3 aaponne, Wel'0, Paed, 1 lagued, ...
Mo et v\up..

O0LC WP ureh ports MM (KR At port: SN0
08 00 kool T, 1lagieg

09 Router advertisemery,

1000 MDD kv lecemet, K lagua,

NI SOt I

0:00:3:(0 (k)

i e
€ ports 0 D iratfon port! N0

qen i s
L0 032000 () 1oex B0 AckeowTadoment, P1agus0, .0
SOMM s LI2001FFITA000C 100 GOICE 00T 009 DAATINITION OrTI 4950
S AME B 31 802 mkowTncowment nhm»«_‘,” i

Benchmarking Network Algorithms, Architectures etc...
The Traditional Way ...

S 000008 08 T SO0 Wit , FTaies,

Q SO IHLLARITEITONIC KO BANCR JOFL1 3809 COSLIILYGO T 4990 0.40 -
S0:00:00:00:50:08 (ka) 166F 807 Ackmow lecownt, £ lapea,
(0001 M1, 3 o0
0,00 , i 0.35}F | @ .—}|_]. 4

Nedgenot, »
Wit Bepest, T |
rovlidgenant, Flageo,
JEET MO0 &K TaLHCo Mespirae, Toel, TWD, Plajses
I0KE 202 fekeew oot F 1D, ! @ A=10
AR AOUCH GOCEE NS DeEinarion poet 0 — 0.25}
166 02 Ao dcpment ¢ Lot - 1
50 eapenee, elV0, Faed, 11ag8e0,. .0
B SOOI, T o }l,l: 020t
0k pors s D DAk (matsen pors; N0 b
008 07 koo Tkt 1 agie (=%
JOMY Router et semen .15
0:00 (ke) ann MDD acksovleccemeet, Hlagua, ...,
NI SOt I

0010088 100,00)0¢

00/00/08 160/00106
M

(0:00:84:00:00;04

SATTORR 1O AT 1120

T 0ot WO WegNRse TS nReT 0,10
A JILL W, L ™ i %
h & [y
Hen e 0.05f / - tl D\O
LA o () 3008 K02 Ackrowlbcpmant, 910U ne - n'h- » By
SOMN ez PITAODNCACR: BAICE JOT 02D DEATINATION (eTI 4350 0.0 it Z TR A aa s —
Ry il Do) 1hs W02 koo ndgwnat, +lagrea..... W] g 10 15 20

k

Traces Models

Benchmarking Network Algorithms, Architectures etc...
The Traditional Way ...

G208) BT Wi

0.40
| 0.3s5}*1 e A
el 0.30f | * A
v o A=10
s %[}_25. |]
Lo ’wﬂ);.\) \li:umuwm; 0 5 0.20

a
TR Ruter avertisemery .15

1k B0 ackaovieccemeet, HTague, ...,

20NV NI SONENTATIN e GD
1tebbicedd B WRghRee dweTSammer 0.10 o]
o ¢ 10 ‘I‘ =]
0.05 o
e Lo port! 00 -6
LS 1, g0, B Oy
SOMN s 109 DATINATIA0N OPT) 9950 0.00 L S e
R r ..., 10 15 20
k

Traces Models Human‘s
Best
Guesses

Benchmarking Network Algorithms, Architectures etc...
The Traditional Way ...

0 ' e A=1
* A=4
Not always o A=10 |
available
*,
----- TR T
k
Models

Best
Guesses

Benchmarking Network Algorithms, Architectures etc...
The Traditional Way ...

Not

e generalizing
Not always |

available Gkl

LG,

'h P/B
.
5 1

i'; Ivc: . Kﬂﬂ

0 0 15 20

Models

Best
Guesses

Benchmarking Network Algorithms, Architectures etc...
The Traditional Way ...

Not

o generalizing
Not always |

available Gkl

LG,

'h P/B
.
5 1

i'; Ivc: . Kﬂﬂ

0 0 15 20

Models Human‘s
Best
Guesses

Benchmarking Network Algorithms, Architectures etc... TUTI

The Traditional Way ...

Not

o generalizing
Not always |

available Gkl

LG,

'h P/B
.
5 1

J"; \f’ﬁ o %\x‘?ﬂi

0 0 15 20

Models Human‘s Data-Driven
Best
Guesses

Benchmarking Network Algorithms, Architectures etc... TUTI
The Traditional Way ...

Not

o generalizing
Not always |

available Gkl

Alternative

LG,

| ji w’f %\ﬂ opponent?
Models Human'‘s Data-Dri

Best
Guesses

Benchmarking Network Algorithms, Architectures etc... TUTI
The Traditional Way ...

Not

. generalizing
Not always |

avallablg Alternative

opponent?

5 10 15

Models Human‘s Data-Dri
Best
Guesses

20

This Talk: Use Machine Learning to Benchmark Networks

Towards Automated Network Optimization and Design

Benchmark
Instance
Generator

The Traditional Way!

Towards Automated Network Optimization and Design

Benchmark
Problem
InStance |——
Instance
Generator

The Traditional Way!

Towards Automated Network Optimization and Design

Benchmark
Instance
Generator

Problem
Instance

Network Algorithm,
Function

The Traditional Way!

Towards Automated Network Optimization and Design

Benchmark
Instance
Generator

Problem
Instance

Network Algorithm,
Function

The Traditional Way!

Problem
Solution

Towards Automated Network Optimization and Design

Benchmark
Instance
Generator

Problem
Instance

Network Algorithm,
Function

Our ML/Al Way!

Problem
Solution

Towards Automated Network Optimization and Design TLTI

Benchmark)
Problem Network Algorithm, Problem
Instance Function Solution
Generator

Machine Solution
Learning Information

Our ML/Al Way!

Towards Automated Network Optimization and Design TLTI

Benchmark)
Problem Network Algorithm, Problem
Instance Function Solution
Generator

Machine Solution
Learning Information

Our ML/Al Way!

Towards Automated Network Optimization and Design TUTI

Benchmark :
Problem Network Algorithm, Problem
Instance Function Solution
Generator

Solution
Information O’zapftis [BIG DAMA'17]

Empowerement [SelfDN’18]

Machine
Learning

Our ML/Al Way!

ISMAEL [TNSM’19]

Towards Automated Network Optimization and Design TLTI

Benchmark)
Problem Network Algorithm, Problem
Instance Function Solution
Generator

Machine Solution
Learning Information

Our ML/Al Way!

Towards Automated Network Optimization and Design

Iﬁ

Machine
Learning

Benchmark
Instance
Generator

Problem Network Algorithm,
Instance Function

Machine Solution
Learning Information

Problem
Solution

Towards Automated Network Optimization and Design

Machine
Learning

Receive training signal — learn from solution quality

Iﬁ

Benchmark
Instance
Generator

Problem Network Algorithm,

Instance Function

Machine Solution
Learning Information

Problem
Solution

Towards Automated Network Optimization and Design

Receive training signal — learn from solution quality

Machine
Learning

Adversarial l

Benchmark
Network Algorithm,
INStANCE frmmm——p Problem | Functi% !
Generator Instance

Machine Solution
Learning Information

Problem
Solution

Towards Automated Network Optimization and Design TLTI

Receive training signal — learn from solution quality

Adversarial l

. Benchmark .
Machine Instance Problem Network Algorithm, Problem
Learning I Instance Function Solution
Generator

challenge

Machine Solution
Learning Information

Towards Automated Network Optimization and Design TUTI

Receive training signal — learn from solution quality

- Benchmark Adversarial -
Machine Instance Problem Network Algorithm, Problem
Learning I Function Solution
Generator Instance

challenge
Machine Solution
Learning Information

Our ML/Al Way!
ML/AI vs ML/AI

NetBOA [NetAl'19]

TOXIN [CONEXT Com‘19]

Adversarial Network Algorithm Benchmarking: Use Cases

Use Cases of this Talk

(1) Benchmarking Open vSwitch

<

m Security: VLAN K\ Monitoring: Netflow,
isolation, traffic filtering ‘N, sFlow, SPAN, RSPAN

A y N y.
: ¢ Automated Control:
QuSstiatticiquedtiy OpenFlow, OVSDB
and traffic shaping
| A mgmt. protocol y

(2) Benchmarking Data Center
Traffic Scheduling Algorithms

NN >3
A e 8 e 8 SRS 8
S8 SLHP SHHP HPHP

(1) Benchmarking Open vSwitch

What Could be Seen as Related

= Algorithmic complexity attacks (software domain):
= SlowFuzz
= PerfFuzz

What Could be Seen as Related

= Algorithmic complexity attacks (software domain):
= SlowFuzz
= PerfFuzz

= Automated Synthesis of Adversarial Workloads for
Network Functions, ACM Sigcomm 2018

What Could be Seen as Related

= Algorithmic complexity attacks (software domain):
= SlowFuzz
= PerfFuzz

= Automated Synthesis of Adversarial Workloads for
Network Functions, ACM Sigcomm 2018

= Policy Injection: A Cloud Dataplane DoS Attack, ACM
Sigcomm DEMO 2018

What Could be Seen as Related TLUTI]

= Algorithmic complexity attacks (software domain): Why Important?
= SlowFuzz
= PerfFuzz

= Automated Synthesis of Adversarial Workloads for
Network Functions, ACM Sigcomm 2018

= Policy Injection: A Cloud Dataplane DoS Attack, ACM
Sigcomm DEMO 2018

What Could be Seen as Related

= Algorithmic complexity attacks (software domain):
= SlowFuzz
= PerfFuzz

= Automated Synthesis of Adversarial Workloads for
Network Functions, ACM Sigcomm 2018

= Policy Injection: A Cloud Dataplane DoS Attack, ACM
Sigcomm DEMO 2018

TUTI

Why Important?

Implementation aspects can
harm performance

Could even be used to attack
your systems!

What Could be Seen as Related TLTI

= Algorithmic complexity attacks (software domain): Why Important?
= SlowFuzz
= PerfFuzz

= Automated Synthesis of Adversarial Workloads for Implementation aspects can
Network Functions, ACM Sigcomm 2018 harm performance

= Policy Injection: A Cloud Dataplane DoS Attack, ACM

Sigcomm DEMO 2018 Could even be used to attack
your systems!

We propose NetBOA to automatically create network traffic input

Example: Benchmark Open vSwitch

Host 2

- Forward

* DROP

Open

| vSwitch

Example: Benchmark Open vSwitch

Host 1 Host 2

Forward

Traffic
Generator * DROP

Open

)| vSwitch

Example: Benchmark Open vSwitch

Host 1

Traffic
Generator

li%ii!ll

Host 2

- Forward

* DROP

Open

| vSwitch

Host 3

Traffic

Sink

10

Example: Benchmark Open vSwitch

Host 1 Host 2

Forward

Host 3

Traffic
Generator * DROP

>

Packets over time

Traffic

Open

Sink

)| vSwitch

10

Example: Benchmark Open vSwitch

Host 1 Host 2

Traffic - Forward

Generator * DROP

Host 3

Traffic

Open

Sink

_ vSwitch
Packets over time :

10

Example: Benchmark Open vSwitch

Host 1 Host 2

Traffic - Forward

Generator DROP

Host 3

Traffic

Open
‘ vSwitch

Sink
Packets over time

Goal: Find Network Traffic Configuration that Maximizes CPU/Latency

10

Network Benchmarking is Challenging: Complex and Huge M
Configuration Space

How many packets to send? How should headers look like? What protocol to use? When to send
packets? Etc.

11

Network Benchmarking is Challenging: Complex and Huge M
Configuration Space

How many packets to send? How should headers look like? What protocol to use? When to send
packets? Etc.

>

Number of Network
Packets [1000 — 5000]

11

Network Benchmarking is Challenging: Complex and Huge M
Configuration Space

How many packets to send? How should headers look like? What protocol to use? When to send
packets? Etc.

> >

Number of Network Batch Size
Packets [1000 — 5000] [1-5]

11

Network Benchmarking is Challenging: Complex and Huge M
Configuration Space

How many packets to send? How should headers look like? What protocol to use? When to send
packets? Etc.

> > >

Number of Network Batch Size Packet Inter Arrival Time
Packets [1000 — 5000] [1-5] [Ims — 13ms]

11

Network Benchmarking is Challenging: Complex and Huge M
Configuration Space

How many packets to send? How should headers look like? What protocol to use? When to send
packets? Etc.

> > >

Number of Network Batch Size Packet Inter Arrival Time VLANS
Packets [1000 — 5000] [1-5] [Ims — 13mSs] [1-5]

>

11

Network Benchmarking is Challenging: Complex and Huge M
Configuration Space

How many packets to send? How should headers look like? What protocol to use? When to send
packets? Etc.

[]
&—

> > >
Number of Network Batch Size Packet Inter Arrival Time VLANS
Packets [1000 — 5000] [1-5] [Ims — 13mSs] [1-5]

< :
Human still

Involved!

11

NetBOA: A Bayesian Optimization-based Approach

Source: https://de.kisspng.com/png-pc3d06/preview.html

(2) Measure until
confidence is reached

Traffic

Generator

(3) New measurement

(1) Set configuration

points

NetBOA 1
n
¥ 50004 30
Bayesian Optimization - =5
(4) Machine Learn y
Acquisition Function Performance Model
Maximize Expected Improvement e} -
€
Update Posterior S 1000
Fit Gaussian Process T T T T T T 0
1 4

Inter arrival times [milliseconds]

[%] NdD

Grid Search for Two Parameters (Num. Packets and Inter Arrival Time) TLUTI]

an

0.30 _
0.25
0.20 =
0.15 3
0.10 —
0.05
0.00

=~

(N

Num. packets [1e3]
o

—

1 3 5 7 9 11 13
IAT [ms]

13

Grid Search for Two Parameters (Num. Packets and Inter Arrival Time) TLUTI]

an

0.30 _
0.25
0.20 =
0.15 3
0.10 —
0.05
0.00

=~

(N

Num. packets [1e3]
o

—

1 3 5 7 9 11 13
IAT [ms]

13

Grid Search for Two Parameters (Num. Packets and Inter Arrival Time) TLUTI]

5000 packets,

IAT 1 ms 0.30

025 9
0.20 =
0.15 3
0.10 —
0.05
0.00

4000 packets,
IAT 3 ms

W
-+
<)
—
O
g
Q.
=
-
Z

1 3 5 7 9 11 13
IAT [ms]

13

Grid Search for Two Parameters (Num. Packets and Inter Arrival Time) TLUTI]

5000 packets,
IAT 1 ms

0-1 % CPU

v
20 % CPU

0.30 _
0.25
0.20 =
0.15 3
0.10 —
0.05
0.00

4000 packets,
IAT 3 ms

Num. packets

1 3 5 7 9 11 13
IAT [ms]

13

Grid Search for Two Parameters (Num. Packets and Inter Arrival Time) TLUTI]

5000 packets,
IAT 1 ms

0-1 % CPU

v
20 % CPU

0.30
0.25
0.20
0.15

(D
0.10 —
0.05
0.00

4000 packets,
IAT 3 ms

(S
Wwh NdD

(N

Num. packets
S

—

1 3 5 7 9 11 13
IAT [ms]

= Performance models are non-trivial
= Surprising: Sending less network packets over time can lead to significantly higher CPU

» But: Can we find such weak-spots automatically?
13

Bayesian Optimization: NetBOA for Inter Arrival Time (IAT) Parameter TUTI

Update Gaussian iteration 0 iteration 4 iteration 10

Process at
runtime

|\
|
]

Sampling from

5 ‘*h ; ‘Q;‘_ : x-
Gaussian Process ¢ |p" S 2. P D-.p Qi g
OO — Pl I | I hnlLLLI_‘

gives confidence

PU time/fs]

- (] - - |
0.01 N Stopping criteria
L] () [-) aborts search
000 - | | | | | | - | | | | | | - | | | | | |
357 91113 357 91113 357 91113
Expected
Improvement IAT [ms] IAT [ms] IAT [ms]
guides search

14

Why? Let Us Look At OvS Behavior! TLTI

i |

1 Drop

_ Time
OvS rule timeout 10 seconds

= We are using the OvS switch with the Megaflow Cache enabled

15

Why? Let Us Look At OvS Behavior! TLTI

L N

Drop 1 Drop
2 Drop

\

_ Time
OvS rule timeout 10 seconds

= We are using the OvS switch with the Megaflow Cache enabled

15

Why? Let Us Look At OvS Behavior! TLTI

LI I S

Drop 1 Drop 1 Drop
2 Drop 2 Drop

3 Drop

N Drop

Time

OvS rule timeout 10 seconds

= We are using the OvS switch with the Megaflow Cache enabled

15

Why? Let Us Look At OvS Behavior! TLTI

LI I G

Drop 1 Drop 1 Drop 1 Drop
2 Drop 2 Drop 2 Drop
3 Drop 3 Drop

Drop N Drop

B 8- - ..

_ Time
OvS rule timeout 10 seconds
= We are using the OvS switch with the Megaflow Cache enabled

15

Why? Let Us Look At OvS Behavior! TLTI

LI I S

Drop 1 Drop 1 Drop
2 Drop 2 Drop

3 Drop

N Drop

Time

OvS rule timeout 10 seconds

= We are using the OvS switch with the Megaflow Cache enabled

15

Why? Let Us Look At OvS Behavior! TLTI

LI I N I

Drop 1 Drop 1 Drop 2 Drop
2 Drop 2 Drop 3 Drop
3 Drop :
N Drop
N Drop

Time

OvS rule timeout 10 seconds

= We are using the OvS switch with the Megaflow Cache enabled

15

Why? Let Us Look At OvS Behavior! TLTI

CENN I I I O

Drop 1 Drop 1 Drop 2 Drop 1 Drop
2 Drop 2 Drop 3 Drop 2 Drop
3 Drop 3 Drop
N Drop
N Drop N Drop

_ Time
OvS rule timeout 10 seconds

= We are using the OvS switch with the Megaflow Cache enabled

15

Why? Let Us Look At OvS Behavior! TLTI

CENN CENNN DN N R | | e pece

triggers 2 times

Drop 1 Drop 1 Drop 2 Drop 1 Drop
2 Drop 2 Drop 3 Drop 2 Drop a COSt_I y_
3 Drop 3 Drop array res_lzmg
Drop operation!
N Drop Drop

Time

OvS rule timeout 10 seconds

= We are using the OvS switch with the Megaflow Cache enabled

15

Why? Let Us Look At OvS Behavior! TLTI

CENN CENNN DN N R | | e pece

triggers 2 times

Drop 1 Drop 1 Drop 2 Drop 1 Drop
2 Drop 2 Drop 3 Drop 2 Drop a COSt_I y_
3 Drop 3 Drop array res_lzmg
Drop operation!
N Drop Drop

Time

OvS rule timeout 10 seconds

= We are using the OvS switch with the Megaflow Cache enabled
= For instance for 5000 packets: We trigger roughly every >2 ms a flow insertion + removal

-> Forcing OvS to continuously run through the array + resizing it
15

NetBOA vs Random Search

Cmax.i

1.0

0.8 4

NetBOA
1 2 3 4

0.6 41

0.4 -

0.2 <7

0.0

10 30 50 70 90
iteration step

€max.i

1.0

0.8 4lIT1rr
0.6 T MITT,
0.4 L BETdsr 1]
024 =T

0.0

Random Search

1 2 3 4

10 30 50 70 90
iteration step

16

NetBOA vs Random Search

Cmax.i

1

NetBOA
2 3 4

1.0

0.8 4

- 0.6 -
0.4 -

0.2 <7

0.0

10 30 50 70 90

iteration step

€max.i

1

Random Search

2 3

4

1.0

0.8 =
- 0.6 -
0.4 .

0.2 -

0.0

10 30 50 70 90

iteration step

16

NetBOA vs Random Search

Cmax.i

NetBOA
2 3 4

0s 4] <

1
1.0
0647
0.4 4 1

0.2 4+ 7.

0.0

10 30 50 70 90
iteration step

€max.i

Random Search

1

2

3

4

1.0

0.8
- 0.6 -
0.4 .

0.2 -

0.0

10 30 50 70 90
iteration step

16

NetBOA vs Random Search TLUTI]

NetBOA Random Search
1 2 3 4 1 2 3 4

1.0 1.0 7]

0.8 4| m 0.8 -Zj_,,__ [T -
706t § 06 1 i LIEII;
s 044 Lo S 0.4 - _,,___:-_-:.+___ el T

0.2--;_-_1_-._.;'—5_.-';:' [T 024 ““lipee..

0.0 tt_TL'_'I-_r' 0.0 | | | : |r_

10 30 70 90 10 30 50 70 90
iterasion step iteration step

24 % higher CPU utilization

16

Part 1: Conclusion

= Adversarial input generation to find weak spots, security holes ... to make your systems
bullet-proof?

17

Part 1: Conclusion

= Adversarial input generation to find weak spots, security holes ... to make your systems
bullet-proof?

= Use case: NetBOA is a Bayesian Optimization-based data-driven approach to generate
network traffic configurations for benchmarking network function implementations

17

Part 1: Conclusion

= Adversarial input generation to find weak spots, security holes ... to make your systems
bullet-proof?

= Use case: NetBOA is a Bayesian Optimization-based data-driven approach to generate
network traffic configurations for benchmarking network function implementations

—->NetBOA can efficiently find challenging network traffic configurations (maximize
CPU/Latency)
—~>NetBOA can also be used to minimize, e.g., CPU or Latency

17

Part 1: Conclusion

= Adversarial input generation to find weak spots, security holes ... to make your systems
bullet-proof?

= Use case: NetBOA is a Bayesian Optimization-based data-driven approach to generate
network traffic configurations for benchmarking network function implementations

—->NetBOA can efficiently find challenging network traffic configurations (maximize
CPU/Latency)
—~>NetBOA can also be used to minimize, e.g., CPU or Latency

= Open questions and problems:
= Does beating the machine means it generalizes?
= Does it scale?
= Alternatives?
= Bayesian Optimization needs also tuning!

17

(2) Benchmarking Data Center Traffic Scheduling Algorithms

18

Motivation: Automation Helps Finding Weak-Spots TLTI

Quick-Sort
=0O(n * log(n)) on average case 1200000
E 1000000
. -E 800000 |
*=O(n * n) on worst case (e.g. inversely sorted ;
] . E 600000 _
list for pivot on last element) . specialinput
S’ Random Input
E 200000 |
—>Worst case can be calculated 0
0 500 1000 1500 2000

Input Sequence Length

[1] https://igoro.com/archive/quicksort-killer/ 19

Motivation: Automation Helps Finding Weak-Spots

*=O(n * log(n)) on average case

=O(n * n) on worst case (e.g. inversely sorted
list for pivot on last element)

—->\Worst case can be calculated

1200000

1000000

800000

600000

400000

of Quicksort Comparkons

200000

0

Quick-Sort

/

/

-

0

-

500 1000 1500

Input Sequence Length

Question: How to apply automation to data center traffic?

2000

Special Input

Random Input

[1] https://igoro.com/archive/quicksort-killer/

19

Data Center Scenario TLTI

SO S— What can be changed?
= | TR

............ e F: Flows F1 F2 F3
PO 4 : : \ K ‘ .\'\". i b ‘ .": | N T=2ms T=5ms T=8 T Arnval TlmeS
<@ X @ X ® : I V: Volume |[v:100Mmbit|] Vv: 40Mbit V:110Mbit
. e ' SD: 5-7 SD:9-10 :
W S © © SD: Sou_rce-
‘b q’ @@@@ g?;} & R & l l l Destination
0 Time]

= Small flows are scheduled first
= Shortest-Path-Routing
= K=4 Fattree

20

Data Center Scenario

What can be changed?

% "::l‘é'i; "waZ) |g
ey B . - . ‘) ‘."
......... e s F: Flows F1

WO -l - o o T v s, o, S Tooms 13 |T: Arrival Times
&S S @' @ I I V: Volume |v:100mbit]| v: i

i -.‘.... L . u.mi « & ’ SD: 5-7 -lo- SD Source_
& @1 ® 3:1 l l l Destination

0 Time "

What we change

= Small flows are scheduled first Assignment from volumes to flows

= Shortest-Path-Routing

= K=4 Fattree Set of flow volumes stays constant

20

Data Center Scenario

What can be changed?

nALl ez waz) 42,2

Q ,.<tf'§l; ; ®
.......... ’ __\"‘s:;:' X F: Flows F1
,,,,,,,,,, o O, T o, T=2ms | 1= |T: Arrival Times
"é < S © e ® : V: Volume |v:100mbit|| v: i
é% - | - % . QL - l SD: 5-7 \ 13- SD: Source-
I\ £\ I'\ G g . R Destination
&SP S8LP S&SP SSPP l l l .
0 Time

What we change

= Small flows are scheduled first Assignment from volumes to flows

= Shortest-Path-Routing

= K=4 Fattree Set of flow volumes stays constant

‘ Flow-Level Simulator evaluates traffic loads

20

Problem Definition

Given Set of Flows:

FL F2 F3 F4 F5 F6

Arrival Time | 12ms | 14ms | 17ms | 18ms | 21ms | 24ms

Source 3 4 13 2 3 12

Destination 14 12 7 7 1 6

Volume | 10Mbit | 400Mbit: 90Mbit 200MBit. 9Mbit | 110Mbit

TUTI

Find the order of Volumes such that:

argmax
F'n

| N
N Y FCT(f:)

1= 1

21

Problem Definition

Given Set of Flows:

FL F2 F3 F4 F5 F6

Arrival Time | 12ms | 14ms | 17ms | 18ms | 21ms | 24ms

Source 3 4 13 2 3 12

Destination 14 12 7 7 1 6

Volume | 10Mbit | 400Mbit: 90Mbit 200MBit. 9Mbit | 110Mbit

TUTI

Find the order of Volumes such that:

argmax— Z FCT(f;)

Fn

FCT. Flow Completion Time

Arrival F1 Data has been transmitted

A—

0 Time

v

21

Approach: Genetic Algorithm

Pseudo Code

12ms | 14ms | 17ms | 18ms | 21ms | 24ms
& 4 13 2 3 12
14 12 7 7 1 6

10Mbit | 400Mbit. 90Mbit | 200MBit, 9Mbit | 110Mbit

22

Approach: Genetic Algorithm

Pseudo Code

1. Sample N flows

12ms | 14ms | 17ms | 18ms | 21ms | 24ms
& 4 13 2 3 12
14 12 7 7 1 6

10Mbit | 400Mbit. 90Mbit | 200MBit, 9Mbit | 110Mbit

22

Approach: Genetic Algorithm

Pseudo Code

1. Sample N flows

X

X

X

X

X

X

X

X

X

X

X

X

X

‘10Mbit 400Mbit; 90Mbit ' 200MBit, 9Mbit 110Mbit|

X

X

X

X

X

22

Approach: Genetic Algorithm

Pseudo Code T T . T1.7.T.
1. Sample N flows
2. Extract the sequence of volumes V S O L I B

‘10Mbit 400Mbit; 90Mbit ' 200MBit, 9Mbit 110Mbit|

Approach: Genetic Algorithm

Pseudo Code

1. Sample N flows

2. Extract the sequence of volumes V

3. Generate permutations of V by changing is
order (=initial population)

X

X

X

X

X

X

X

X

X

X

X

X

X

‘ 10Mbit | 400Mbit| 90Mbit ' 200MBit| 9Mbit 110Mbit|

X

X

X

X

X

22

Approach: Genetic Algorithm

Pseudo Code

1. Sample N flows

2. Extract the sequence of volumes V

3. Generate permutations of V by changing is
order (=initial population)

4. Repeat (until convergence)

X

X

X

X

X

X

X

X

X

X

X

X

X

‘ 10Mbit | 400Mbit| 90Mbit ' 200MBit| 9Mbit 110Mbit|

X

X

X

X

X

22

Approach: Genetic Algorithm

Pseudo Code

1. Sample N flows

2. Extract the sequence of volumes V

3. Generate permutations of V by changing is
order (=initial population)

4. Repeat (until convergence)

Crossover

X

X

X

X

X

X

X

X

X

X

X

X

X

‘ 10Mbit | 400Mbit| 90Mbit ' 200MBit| 9Mbit 110Mbit|

X

X

X

X

X

22

Approach: Genetic Algorithm

Pseudo Code

1. Sample N flows

2. Extract the sequence of volumes V

3. Generate permutations of V by changing is
order (=initial population)

4. Repeat (until convergence)

Crossover
Mutation

X

X

X

X

X

X

X

X

X

X

X

X

X

‘ 10Mbit | 400Mbit; 90Mbit ' 200MBit. 9Mbit 110Mbit|

X

X

X

X

X

22

Approach: Genetic Algorithm

Pseudo Code

1. Sample N flows
2. Extract the sequence of volumes V
3. Generate permutations of V by changing is
order (=initial population)
4. Repeat (until convergence)
Crossover

Mutation
Fithess

X

X

X

X

X

X

X

X

X

X

X

X

X

‘ 10Mbit | 400Mbit; 90Mbit ' 200MBit. 9Mbit 110Mbit|

X

X

X

X

X

22

Approach: Genetic Algorithm

Pseudo Code

X X X X X X

X X X X X X

1. Sample N flows

X X X X X X

2. Extract the sequence of volumes V

3. Generate permutatlons Of V by Changlng IS ‘ 10Mbit | 400Mbit; 90Mbit ' 200MBit. 9Mbit 110Mbit|

order (=initial population)
4. Repeat (until convergence)

Crossover
Mutation
Fithess

Selection

Fithess Function TUTI

Flow Completion Time
(Fitness)

10 30 12 55 4 7

Data Center
Simulator

Simulator:

= 500 Mbit Links

= Uniform Volume between 1 and 500 Mbit
= Poisson Arrival Times (mean 0.7 sec)

= Uniform Src-Dst pairs

23

GA Behavior over Generations for Different Population Sizes

Population with N = 10 flows Population with N = 30 flows
C C
S 0.60 S 09l — Optimized Input
= / = Random Input
= &
‘o 0.55 T
g —— Optimized Input ; 0.8 1
o Random Input o
5 0.50 G 0.7
L L
C c
5 5
S 0.451_ | | | | = 061 | | | |
0 25 50 75 100 0 25 50 75 100

Generations Generations

GA Behavior over Generations for Different Population Sizes

Population with N = 10 flows Population with N = 30 flows
C C
o 0.60 o .
= +0.1 sec 5094 Optimized Input
S S Random Input
= &
‘o 0.55 T
g —— Optimized Inpu ; 0.8 1
o Random Input o
5 0.50 G 0.7
L L
C c
5 5
S 0.451_ | | | | = 061 | | | |
0 25 50 75 100 0 25 50 75 100

Generations Generations

GA Behavior over Generations for Different Population Sizes TLTI

Population with N = 10 flows Population with N = 30 flows
17% more challenging 35% more challenging
C C
o 0.60 - o .
= +01 sec 5091 Optimized Input
S S Random Input
£ 0.55 . =
. —— Optimized Inpu .
o Random Input o
5 0.50+ 8
L L
C c
5 5
z 0'45— T T T T T z 0.6— T T T T T
0 25 50 75 100 0 25 50 75 100

Generations Generations

GA Behavior over Generations for Different Population Sizes TLTI

Population with N = 10 flows Population with N = 30 flows
17% more challenging 35% more challenging
C C
o 0.60 - o .
= +01 sec 5091 Optimized Input
S S Random Input
£ 0.55 . =
. —— Optimized Inpu .
o Random Input o
5 0.50+ 8
L L
C c
: :
z 0'45— T T T T T z 0.6— T T T T T
0 25 50 75 100 0 25 50 75 100
Generations Generations

More Flows mmsss) Higher margin of optimization

Flow Volume over Time (N=100)

E 300 - —— random
Q0 optimized
E:‘275-
" .
S W / A
2 250+ \/
> v
5 225 -
L
200 , | ,
5 10 15

Arrival Time [s]

= Concentrate larger flows together

N
o

SRC-DST ID

= Place large flows on the same link for close arrivals

N
o

<100
<200
<300
<400
<500

Y
f°9 ° 3
° o (Y)
® o o ®
° q°
e ® %% o %
o0
[]
® % %
o ®)
e — L
5 10 15

Arrival Time [s]

25

Flow Volume over Time (N=100)

Flow Volume [Mbit]
N N N (8
N Ul ~d o
un o un ()

N
o
o

= Concentrate larger flows together

| =—— random

optimized

5

Arrival Time [s

10

N
o

SRC-DST ID

= Place large flows on the same link for close arrivals

N
o

<100
<200
<300
<400
<500

Arrival Time [s

25

Flow Volume over Time (N=100)

= 300{ random ®
= L
2 optimized 0 401 5q
— 2751 —
Y)
_§, Mv‘ 0
= 250 ']
S g 20
% 225 4 U <100
TH e <200
200 | | <300
5 10 e <400
Arrival Time [s e <500 Arrival Time |s

= Concentrate larger flows together
= Place large flows on the same link for close arrivals

BUT: Simulations consume a lot of time!

25

Flow Volume over Time (N=100)

:—g 300 - — random
= .
s optimized
5 275"
5
= 250
>
g 225
L
200 , ,
5 10

Arrival Time [s

= Concentrate larger flows together

N
o

SRC-DST ID

= Place large flows on the same link for close arrivals

N
o

<100
<200
<300

<400
<500 Arrival Time [s

BUT: Simulations consume a lot of time!

ldea: Use Machine Learning in Genetic Algorithm [Bhal3]

GA Acceleration — Deep Learning

10 30 12 55 4 7

Data Center
Simulation

Flow Completion Time
(Fitness)

26

GA Acceleration — Deep Learning

X X X X X X l
X X X X X X

10 30 12 55 4 7

Flow
Completion
Time Prediction

Flow Completion Time
(Fitness)

26

GA Acceleration — Deep Learning

X X X X X X l
X X X X X X

10 30 12 55 4 7

Flow Completion Time
(Fitness)

Flow
Completion
Time Prediction

- Needs to be evaluated very frequently
—> slow, does not scale

26

GA Acceleration — Deep Learning TLTI

X X X X X X l
X X X X X X

10 30 12 55 4 7

Flow Completion Time
(Fitness)

Flow
Completion
Time Prediction

- Needs to be evaluated very frequently
—> slow, does not scale

Approximate Fitness Function with Deep Neural Network

The Training Data

FCT Distribution of Labels

0.6

0.8 1.0
FCT

UMAP 2

10

Spatial Distribution

"' * ' -
df’, b .
‘ \ ‘,",,.“ A .‘.:.*'.. 3P
2l S Kot e =
qj&ﬁ 7" .{ .%:5‘?
o
-5 0 5
UMAP 1

= Test Set Score: 87% of the samples achieved a relative error of less then 5%

1.0649
0.9949
0.9250

-0.8551
-0.7852
-0.7153
-0.6454

0.5755
0.5056
0.4357

Comparison of Simulation vs Neural Network TLTI

Mean Predicted Fitness
—:= Mean True Fitness
® Actual Fitness
Best Solution Prediction

0.9 —— Best Fitness 1.1 4 - 8008
.] . ' .-.. 7_.
—— Mean Fitness r.__.-o-"
.-.-'
.—‘
- e
8 1.0 tr.
£ 0.8 1 o .,o'
Q E /./
E < 0.9 l./.
n =
)] K .,‘
Q0.7 - £ -’
2 S 0.8+ K
. 2 p
g E 7
c
= 0.6 o ”
i . o 0.7 1 !
= "’ N ’.‘ '\8,'-.‘ ’
".v'\’. ot) &\ & .V
0.6 1 . [.‘--.‘i’-,-"")"'—""‘% f.:._i:'rf_"‘, "I"'J‘fr"“’"'“\ """ * ﬂ\-.,'.
0.5 1 ar i S W' ® ey e
T T T T T T ‘./ Q
0 20 40 60 80 100 /
. 0.5 - T T T T T T
Generation 0 20 40 60 80 100
Generation

= Neural network cannot predict the fitness of population correctly
= Best population members cannot be found correctly

Comparison of Simulation vs Neural Network

—— Best Fitness

091 - Mean Fitness
g
£ 0.8 A
]
&
I
(&)
2 0.7 4
0
o
a
Q
b=
i.l__ 0-6 T

0.5 1

0 20 40 60 80 100
Generation

= Neural network cannot predict the fitness of population correctly
= Best population members cannot be found correctly

—:= Mean Predicted Fitness
—-= Mean True Fitness

® Actual Fitness

® Best Solution Prediction

1.1 4 _.'_.:_.:_.’Q-.-—.-F.
-.—"".'.:—‘ o
.a‘_“/‘/‘
1.0 P
] "".— /'/‘/
E /.’., e
i"; 0.9 -® /‘/
5 8
S 4 4
K P e
['Y Vd
g ~ 4
O 0.8 b Ve
z ’r.' s
o Vi /‘/
5 0 ~x 7
e i s
7/
¢ / .
0.6 A »'/ .&- eSS
1/9 g8
¢s
/ .
o5l . |dea: combine

Simulation and NN

28

29

o
L i =
‘I e .LW..NII..IIIIIM...U.NI.I\.
o= -, - _IAI\
J‘ .\.\.V
..IIHHHHI.II._.lllll.WF.I...Il.. ”””” - l.m.‘
V" e) Lo
¥ To-)
& e =
ey o h“““””“"ﬂl
Q- N X
e T
® “se |} -3
= ,._
S TSP il
& [e
= .
= I — S and
.l.l.-l'}'..l.ll. llllllll ‘ll..
m N I~e N
) I
P e IHL
— < =g
© : 7
— ¥ ol
u \'hl\lll“"“”i.fn*lllm.t
@ . W
- ot
Z pr—— =2t
g, & e - N 2
© S§ B ™ Jw
c a
(D] £§28c¢ = g <
O Bgis T TS e
n o - = 8
a m m = ..& T T T !
==& o o @ ~ hu 2
c _ T e mconseem ©©
n _ P awl] uonadwo) mojq ueap
D
1
-
O
fd
a (@]
- O
L —
-
p] -8
0
2
-
e S ¢
fd 8
a +
L ©
S 2
[
= o
< <
[T 0
@) a9
U Cc o
- g £ R
o S 5
n c g9
- O
© © | Lo
o O
m — : _ _ _ _
o o Q ™~ © ot
o o S o ©
hw NP Jdoquiaw 1So(Q QO SSoull4

Generation

= Simulations can be used to determine current best simulation members

= More than one simulation needed to improve population

Comparison of Simulation vs Simulation-enhanced Neural Network M

Approach Performance even better than
Mean Predicted Fitness S | m u Ia'“ O n

—:= Mean True Fitness
® Actual Fitness
® Best Solution Prediction

0.9 —— Best Fitness
’ —— Mean Fitness
1.0 1

| .
é 0.8 "",.’"

R) @~]
£ £ 09 ,_o’*l,' "f
2 = et H i
- S L\ & W ! A
0 = [} 4 ’ ! ::
o > [2 Y i -"- {
P 0.7 £ 0.8 ,'Qur A i 1 1
o 8 # 0 i i t
o 3 o ,l i t oo
£ E T4 VE W

| I
£ 0.6 1 SRS S 1 VAR | SO S| PR
= 1 *) 1/l e U ‘,"\.,. ,\7
é B el L R ol N~
n /&Yy =k eed g
h P] v oe o)
i ! N — [Id \d
0.6 i ‘b‘l ® L
0.5 1 177
¢
1 1 T T | | ‘l
0 20 40 60 80 100 /
; 0.5 : :
Generation 0 20 40 60 80 100
Generation

= Simulations can be used to determine current best simulation members

= More than one simulation needed to improve population
29

Comparison of Simulation vs Simulation-enhanced Neural Network M

Approach
—— Best Fitness
0.9 - M Fit
—— Mean Fithess 104
g
GEJ 0.8 4 .g 0.9
E I
-
5 g
P 0.7 £ 0.8
o @]
%] =
7] o
GCJ w
= i c 0.7
= 0.6 E
0.6
0.5 -
0 20 40 60 80 100
Generation 0.5 -

= Simulations can be used to determine current best simulation members

== Mean Predicted Fitness
—:= Mean True Fitness
® Actual Fitness

® Best Solution Prediction

Performance even better than
simulation

= More than one simulation needed to improve population

And what did
we save?

29

Runtime Comparison (10 runs, Cl 95%) TUTI

Mixed 4 times slower than NeuralNet

Population 10 30 50 100

Simulation | 106 (7.1) | 369 (7.7) | 638 (24.2) | 1187 (17.9)
NeuralNet | 23 (1.8) | 29(1.5) | 32(1.6) 43 (1.1)
Mixed 32(0.9) | 73(1.0) | 118(2.6) | 210 (3.1)

... but Mixed 4 times faster than
Simulation

Neural Net < Mixed < Simulation

30

Part 2: Conclusion

= Genetic Algorithm can automate adversary Traffic Generation
- Automated Benchmarking

= Neural Network can significantly accelerate Genetic Algorithms
—> Scalability

Limitations:

= Long training time of GA

= Accelerator trades-off solution quality and compute time

= Accelerator needs to be re-trained when fitness function changes

Potentials and Future Work:
= Utilize current network state (e.g., demand matrix)
= Make a prediction for the next arrival(s) — e.g., investigate existing network traces

31

Thank youl!

Questions?

32

References TI-ITI

[BIG DAMA’17] Blenk, Andreas; Kalmbach, Patrick; Schmid, Stefan; Kellerer, Wolfgang: o'zapft is: Tap Your Network Algorithm's Big Data!l ACM SIGCOMM 2017
Workshop on Big Data Analytics and Machine Learning for Data Communication Networks (Big-DAMA), 2017

[SelfDN’18] Kalmbach, Patrick; Zerwas, Johannes; Babarczi, Péter; Blenk, Andreas; Kellerer, Wolfgang; Schmid, Stefan: Empowering Self-Driving Networks.
Proceedings of the Afternoon Workshop on Self-Driving Networks - SelfDN 2018, ACM Press, 2018

[NetAI'19] Zerwas, Johannes; Kalmbach, Patrick; Henkel, Laurenz; Retvari, Gabor; Kellerer, Wolfgang; Blenk, Andreas; Schmid, Stefan: NetBOA: Self-Driving
Network Benchmarking. ACM SIGCOMM 2019 Workshop on Network Meets Al & ML (NetAl '19), 2019

[CONEXT Com*19] Lettner, Sebastian; Blenk, Andreas: Adversarial Network Algorithm Benchmarking. The 15th International Conference on emerging Networking
EXperiments and Technologies (CoNEXT 19 Companion), ACM, 2019

[TNSM‘19] Zerwas, Johannes; Kalmbach, Patrick; Schmid, Stefan; Blenk, Andreas: Ismael: Using Machine Learning To Predict Acceptance of Virtual Clusters in
Data Centers. IEEE Transactions on Network and Service Management, 2019

[Bhal3] Maumita Bhattacharya. 2013. Evolutionary Approaches to Expensive Optimisation. Arxiv - Computers & Society 2, 3 (2013), 53-59. DOI:http://dx.doi.org/10.
14569/1JARAI.2013.020308

33

