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How many packets to send? How should headers look like? What protocol to use? When to send 

packets? Etc.

Network Benchmarking is Challenging: Complex and Huge 

Configuration Space

11

Number of Network 

Packets [1000 – 5000]

Batch Size

[1-5]
Packet Inter Arrival Time 

[1ms – 13ms]

VLANs

[1-5]

Human still

Involved!
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Grid Search for Two Parameters (Num. Packets and Inter Arrival Time)

13

 Performance models are non-trivial

 Surprising: Sending less network packets over time can lead to significantly higher CPU

 But: Can we find such weak-spots automatically?

0-1 % CPU

20 % CPU4000 packets, 

IAT 3 ms

5000 packets, 

IAT 1 ms



Bayesian Optimization: NetBOA for Inter Arrival Time (IAT) Parameter
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Stopping criteria 

aborts search

Sampling from 

Gaussian Process 

gives confidence
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 Forcing OvS to continuously run through the array + resizing it
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NetBOA Random Search

24 % higher CPU utilization



 Adversarial input generation to find weak spots, security holes … to make your systems 

bullet-proof?

Part 1: Conclusion

17



 Adversarial input generation to find weak spots, security holes … to make your systems 

bullet-proof?

 Use case: NetBOA is a Bayesian Optimization-based data-driven approach to generate 

network traffic configurations for benchmarking network function implementations

Part 1: Conclusion

17



 Adversarial input generation to find weak spots, security holes … to make your systems 

bullet-proof?

 Use case: NetBOA is a Bayesian Optimization-based data-driven approach to generate 

network traffic configurations for benchmarking network function implementations

NetBOA can efficiently find challenging network traffic configurations (maximize 

CPU/Latency)

NetBOA can also be used to minimize, e.g., CPU or Latency

Part 1: Conclusion

17



 Adversarial input generation to find weak spots, security holes … to make your systems 

bullet-proof?

 Use case: NetBOA is a Bayesian Optimization-based data-driven approach to generate 

network traffic configurations for benchmarking network function implementations

NetBOA can efficiently find challenging network traffic configurations (maximize 

CPU/Latency)

NetBOA can also be used to minimize, e.g., CPU or Latency

 Open questions and problems:

 Does beating the machine means it generalizes?

 Does it scale?

 Alternatives?

 Bayesian Optimization needs also tuning!

Part 1: Conclusion
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Quick-Sort

[1] https://igoro.com/archive/quicksort-killer/

Worst case can be calculated

Question: How to apply automation to data center traffic?
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Time

SD:13-2 SD:9-10SD: 5-7

V:100Mbit V: 40Mbit V:110Mbit

T=2ms T=5ms T=8

0

F1 F2 F3

What can be changed? 

What we change

Flow-Level Simulator evaluates traffic loads

F: Flows

T: Arrival Times
V: Volume

SD: Source-

Destination

Assignment from volumes to flows

Set of flow volumes stays constant



Problem Definition

21

Given Set of Flows:

Source 

Destination 

Arrival Time

Volume

Find the order of Volumes such that:

1

F1 F2 F3 F4 F5 F6



Problem Definition

21

Given Set of Flows:

Source 

Destination 

Arrival Time

Volume

Find the order of Volumes such that:

FCT: Flow Completion Time

Time0

Arrival F1 Data has been transmitted

1

F1 F2 F3 F4 F5 F6
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Pseudo Code

1. Sample N flows

2. Extract the sequence of volumes V

3. Generate permutations of V by changing is 

order (=initial population)

4. Repeat (until convergence)

Approach: Genetic Algorithm

22

Crossover

Mutation

Selection

Fitness



Simulator:

 500 Mbit Links

 Uniform Volume between 1 and 500 Mbit

 Poisson Arrival Times (mean 0.7 sec)

 Uniform Src-Dst pairs

Fitness Function

23

Flow Completion Time 

(Fitness)

[3]

Data Center 

Simulator
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Population with N = 10 flows Population with N = 30 flows

+ 0.1 sec

+ 0.25 sec

More Flows Higher margin of optimization

17% more challenging 35% more challenging
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 Concentrate larger flows together

 Place large flows on the same link for close arrivals

Flow Volume over Time (N=100)

25

BUT: Simulations consume a lot of time! 

Idea: Use Machine Learning in Genetic Algorithm [Bha13]
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Flow Completion Time 

(Fitness)

[3]

Data Center

Simulation

Flow 

Completion 

Time Prediction

 Needs to be evaluated very frequently

 slow, does not scale

Approximate Fitness Function with Deep Neural Network



The Training Data
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Spatial Distribution

 Test Set Score: 87% of the samples achieved a relative error of less then 5%

FCT Distribution of Labels
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 Neural network cannot predict the fitness of population correctly

 Best population members cannot be found correctly

Idea: combine 

Simulation and NN
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Comparison of Simulation vs Simulation-enhanced Neural Network 

Approach

29

Performance even better than

simulation

 Simulations can be used to determine current best simulation members

 More than one simulation needed to improve population

And what did

we save?



Runtime Comparison (10 runs, CI 95%)
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Neural Net < Mixed < Simulation

Mixed 4 times slower than NeuralNet

… but Mixed 4 times faster than 

Simulation



 Genetic Algorithm can automate adversary Traffic Generation 

Automated Benchmarking

 Neural Network can significantly accelerate Genetic Algorithms

Scalability

Limitations:

 Long training time of GA

 Accelerator trades-off solution quality and compute time

 Accelerator needs to be re-trained when fitness function changes

Potentials and Future Work:

 Utilize current network state (e.g., demand matrix)

 Make a prediction for the next arrival(s) – e.g., investigate existing network traces

Part 2: Conclusion
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Thank you!

Questions?



[BIG DAMA’17] Blenk, Andreas; Kalmbach, Patrick; Schmid, Stefan; Kellerer, Wolfgang: o'zapft is: Tap Your Network Algorithm's Big Data! ACM SIGCOMM 2017 

Workshop on Big Data Analytics and Machine Learning for Data Communication Networks (Big-DAMA), 2017

[SelfDN’18] Kalmbach, Patrick; Zerwas, Johannes; Babarczi, Péter; Blenk, Andreas; Kellerer, Wolfgang; Schmid, Stefan: Empowering Self-Driving Networks. 

Proceedings of the Afternoon Workshop on Self-Driving Networks - SelfDN 2018, ACM Press, 2018 

[NetAI’19] Zerwas, Johannes; Kalmbach, Patrick; Henkel, Laurenz; Retvari, Gabor; Kellerer, Wolfgang; Blenk, Andreas; Schmid, Stefan: NetBOA: Self-Driving

Network Benchmarking. ACM SIGCOMM 2019 Workshop on Network Meets AI & ML (NetAI '19), 2019

[CoNEXT Com‘19] Lettner, Sebastian; Blenk, Andreas: Adversarial Network Algorithm Benchmarking. The 15th International Conference on emerging Networking 

EXperiments and Technologies (CoNEXT ’19 Companion), ACM, 2019

[TNSM‘19] Zerwas, Johannes; Kalmbach, Patrick; Schmid, Stefan; Blenk, Andreas: Ismael: Using Machine Learning To Predict Acceptance of Virtual Clusters in 

Data Centers. IEEE Transactions on Network and Service Management, 2019

[Bha13] Maumita Bhattacharya. 2013. Evolutionary Approaches to Expensive Optimisation. Arxiv - Computers & Society 2, 3 (2013), 53–59. DOI:http://dx.doi.org/10.

14569/IJARAI.2013.020308

References

33


