
Chair of Communication Networks
Department of Electrical and Computer Engineering
Technical University of Munich

©2019 Technical University of Munich

Adversarial Network Benchmarking

Joint work with:

Johannes Zerwas*, Patrick Kalmbach*, Laurenz Henkel*, 

Sebastian Lettner, Gábor Rétvári^, Wolfgang Kellerer*, 

Stefan Schmid°

*Technical University of Munich, Germany

^Budapest University of Technology and Economics, Hungary

°Faculty of Computer Science, University of Vienna, Austria

Communication Technologies Group,

Faculty of Computer Science, University of Vienna

Andreas Blenk*



Today’s Approach of Operating Networks?

2



Today’s Approach of Operating Networks?

2

Monitors
Network

Problem



Today’s Approach of Operating Networks?

2

Monitors
Network

Problem

Optimizes Solution



Today’s Approach of Operating Networks?

2

Monitors
Network

Problem

Optimizes Solution

Performance 

Evaluation
Designs



Today’s Approach of Operating Networks?

2

Monitors
Network

Problem

Optimizes Solution

Performance 

Evaluation
Designs

With more complex networks need for automation!



What Self-Driving Networks Should Do

3



What Self-Driving Networks Should Do

3

Source: https://www.pinterest.at/pin/318137161149129652/



What Self-Driving Networks Should Do

3

Self-Monitoring
Network

Problem

Source: https://www.pinterest.at/pin/318137161149129652/



What Self-Driving Networks Should Do

3

Self-Monitoring
Network

Problem

Self-Optimizing Solution

Source: https://www.pinterest.at/pin/318137161149129652/



What Self-Driving Networks Should Do

3

Self-Monitoring
Network

Problem

Self-Optimizing Solution

Performance 

Evaluation
Self-Benchmarking

Source: https://www.pinterest.at/pin/318137161149129652/



What Self-Driving Networks Should Do

3

Self-Monitoring
Network

Problem

Self-Optimizing Solution

Performance 

Evaluation
Self-Benchmarking

Source: https://www.pinterest.at/pin/318137161149129652/

NetBOA (NetAI’19)



Benchmarking Network Algorithms, Architectures etc…

The Traditional Way …

4



Benchmarking Network Algorithms, Architectures etc…

The Traditional Way …

4

Traces



Benchmarking Network Algorithms, Architectures etc…

The Traditional Way …

4

Traces Models



Benchmarking Network Algorithms, Architectures etc…

The Traditional Way …

4

Traces Models Human‘s 

Best 

Guesses



Benchmarking Network Algorithms, Architectures etc…

The Traditional Way …

4

Traces Models Human‘s 

Best 

Guesses

Not always 

available



Benchmarking Network Algorithms, Architectures etc…

The Traditional Way …

4

Traces Models Human‘s 

Best 

Guesses

Not always 

available

Not 

generalizing



Benchmarking Network Algorithms, Architectures etc…

The Traditional Way …

4

Traces Models Human‘s 

Best 

Guesses

Not always 

available

Not 

generalizing

Hmm…

Biased?



Benchmarking Network Algorithms, Architectures etc…

The Traditional Way …

4

Traces Models Human‘s 

Best 

Guesses

Data-Driven

Not always 

available

Not 

generalizing

Hmm…

Biased?



Benchmarking Network Algorithms, Architectures etc…

The Traditional Way …

4

Traces Models Human‘s 

Best 

Guesses

Data-Driven

Not always 

available

Not 

generalizing

Hmm…

Biased? Alternative 

opponent?



Benchmarking Network Algorithms, Architectures etc…

The Traditional Way …

4

This Talk: Use Machine Learning to Benchmark Networks 

Traces Models Human‘s 

Best 

Guesses

Data-Driven

Not always 

available

Not 

generalizing

Hmm…

Biased? Alternative 

opponent?



Towards Automated Network Optimization and Design

5

Benchmark

Instance

Generator

The Traditional Way!



Towards Automated Network Optimization and Design

5

Benchmark

Instance

Generator

Problem 

Instance

The Traditional Way!



Towards Automated Network Optimization and Design

5

Benchmark

Instance

Generator

Problem 

Instance

Network Algorithm, 

Function

The Traditional Way!



Towards Automated Network Optimization and Design

5

Benchmark

Instance

Generator

Problem 

Instance

Network Algorithm, 

Function

Problem 

Solution

The Traditional Way!



Towards Automated Network Optimization and Design

5

Benchmark

Instance

Generator

Problem 

Instance

Network Algorithm, 

Function

Problem 

Solution

Our ML/AI Way!



Towards Automated Network Optimization and Design

5

Benchmark

Instance

Generator

Problem 

Instance

Network Algorithm, 

Function

Problem 

Solution

Machine

Learning

Solution

Information

Our ML/AI Way!



Towards Automated Network Optimization and Design

5

Benchmark

Instance

Generator

Problem 

Instance

Network Algorithm, 

Function

Problem 

Solution

Machine

Learning

Solution

Information

Our ML/AI Way!

Old!!!



Towards Automated Network Optimization and Design

5

Benchmark

Instance

Generator

Problem 

Instance

Network Algorithm, 

Function

Problem 

Solution

Machine

Learning

Solution

Information

Our ML/AI Way!

O’zapf t is [BIG DAMA’17]

Old!!!

Empowerement [SelfDN’18]

ISMAEL [TNSM’19]



Towards Automated Network Optimization and Design

5

Benchmark

Instance

Generator

Problem 

Instance

Network Algorithm, 

Function

Problem 

Solution

Machine

Learning

Solution

Information

Our ML/AI Way!



Towards Automated Network Optimization and Design

5

Benchmark

Instance

Generator

Problem 

Instance

Network Algorithm, 

Function

Problem 

Solution

Machine

Learning

Solution

Information

Our ML/AI Way!

Machine

Learning



Towards Automated Network Optimization and Design

5

Benchmark

Instance

Generator

Problem 

Instance

Network Algorithm, 

Function

Problem 

Solution

Machine

Learning

Solution

Information

Our ML/AI Way!

Machine

Learning

Receive training signal – learn from solution quality



Towards Automated Network Optimization and Design

5

Benchmark

Instance

Generator

Problem 

Instance

Network Algorithm, 

Function

Problem 

Solution

Machine

Learning

Solution

Information

Our ML/AI Way!

Machine

Learning

Adversarial

Problem 

Instance

Receive training signal – learn from solution quality



Towards Automated Network Optimization and Design

5

Benchmark

Instance

Generator

Problem 

Instance

Network Algorithm, 

Function

Problem 

Solution

Machine

Learning

Solution

Information

Our ML/AI Way!

Machine

Learning

Adversarial

Problem 

Instance

Receive training signal – learn from solution quality

challenge



Towards Automated Network Optimization and Design

5

Benchmark

Instance

Generator

Problem 

Instance

Network Algorithm, 

Function

Problem 

Solution

Machine

Learning

Solution

Information

Our ML/AI Way!

Machine

Learning

Adversarial

Problem 

Instance

Receive training signal – learn from solution quality

NetBOA [NetAI’19]

TOXIN [CoNEXT Com‘19]

challenge

ML/AI vs ML/AI



Adversarial Network Algorithm Benchmarking: Use Cases

6



Use Cases of this Talk

7

(1) Benchmarking Open vSwitch (2) Benchmarking Data Center 

Traffic Scheduling Algorithms



(1) Benchmarking Open vSwitch

8



 Algorithmic complexity attacks (software domain):

 SlowFuzz

 PerfFuzz

What Could be Seen as Related

9



 Algorithmic complexity attacks (software domain):

 SlowFuzz

 PerfFuzz

 Automated Synthesis of Adversarial Workloads for 

Network Functions, ACM Sigcomm 2018

What Could be Seen as Related

9



 Algorithmic complexity attacks (software domain):

 SlowFuzz

 PerfFuzz

 Automated Synthesis of Adversarial Workloads for 

Network Functions, ACM Sigcomm 2018

 Policy Injection: A Cloud Dataplane DoS Attack, ACM 

Sigcomm DEMO 2018

What Could be Seen as Related

9



 Algorithmic complexity attacks (software domain):

 SlowFuzz

 PerfFuzz

 Automated Synthesis of Adversarial Workloads for 

Network Functions, ACM Sigcomm 2018

 Policy Injection: A Cloud Dataplane DoS Attack, ACM 

Sigcomm DEMO 2018

What Could be Seen as Related

9

Why Important?



 Algorithmic complexity attacks (software domain):

 SlowFuzz

 PerfFuzz

 Automated Synthesis of Adversarial Workloads for 

Network Functions, ACM Sigcomm 2018

 Policy Injection: A Cloud Dataplane DoS Attack, ACM 

Sigcomm DEMO 2018

What Could be Seen as Related

9

Why Important?

Implementation aspects can 

harm performance

Could even be used to attack 

your systems!



We propose NetBOA to automatically create network traffic input

 Algorithmic complexity attacks (software domain):

 SlowFuzz

 PerfFuzz

 Automated Synthesis of Adversarial Workloads for 

Network Functions, ACM Sigcomm 2018

 Policy Injection: A Cloud Dataplane DoS Attack, ACM 

Sigcomm DEMO 2018

What Could be Seen as Related

9

Why Important?

Implementation aspects can 

harm performance

Could even be used to attack 

your systems!



Host 2

Example: Benchmark Open vSwitch

10

Open

vSwitch

Match Rule

Forward

* DROP



Host 2Host 1

Example: Benchmark Open vSwitch

10

Open

vSwitch

Traffic

Generator

Match Rule

Forward

* DROP

Config



Host 3Host 2Host 1

Example: Benchmark Open vSwitch

10

Open

vSwitch

Traffic

Generator

Traffic

Sink

Match Rule

Forward

* DROP

Config



Host 3Host 2Host 1

Example: Benchmark Open vSwitch

10

Open

vSwitch
Packets over time

Traffic

Generator

Traffic

Sink

Match Rule

Forward

* DROP

Config



Host 3Host 2Host 1

Example: Benchmark Open vSwitch

10

Open

vSwitch
CPU

Latency

Packets over time

Traffic

Generator

Traffic

Sink

Match Rule

Forward

* DROP

Config



Host 3Host 2Host 1

Example: Benchmark Open vSwitch

10

Open

vSwitch
CPU

Latency

Packets over time

Traffic

Generator

Traffic

Sink

Match Rule

Forward

* DROP

Goal: Find Network Traffic Configuration that Maximizes CPU/Latency

Config



How many packets to send? How should headers look like? What protocol to use? When to send 

packets? Etc.

Network Benchmarking is Challenging: Complex and Huge 

Configuration Space

11



How many packets to send? How should headers look like? What protocol to use? When to send 

packets? Etc.

Network Benchmarking is Challenging: Complex and Huge 

Configuration Space

11

Number of Network 

Packets [1000 – 5000]



How many packets to send? How should headers look like? What protocol to use? When to send 

packets? Etc.

Network Benchmarking is Challenging: Complex and Huge 

Configuration Space

11

Number of Network 

Packets [1000 – 5000]

Batch Size

[1-5]



How many packets to send? How should headers look like? What protocol to use? When to send 

packets? Etc.

Network Benchmarking is Challenging: Complex and Huge 

Configuration Space

11

Number of Network 

Packets [1000 – 5000]

Batch Size

[1-5]
Packet Inter Arrival Time 

[1ms – 13ms]



How many packets to send? How should headers look like? What protocol to use? When to send 

packets? Etc.

Network Benchmarking is Challenging: Complex and Huge 

Configuration Space

11

Number of Network 

Packets [1000 – 5000]

Batch Size

[1-5]
Packet Inter Arrival Time 

[1ms – 13ms]

VLANs

[1-5]



How many packets to send? How should headers look like? What protocol to use? When to send 

packets? Etc.

Network Benchmarking is Challenging: Complex and Huge 

Configuration Space

11

Number of Network 

Packets [1000 – 5000]

Batch Size

[1-5]
Packet Inter Arrival Time 

[1ms – 13ms]

VLANs

[1-5]

Human still

Involved!



NetBOA: A Bayesian Optimization-based Approach

12

Open

vSwitch

Traffic

Generator

Traffic

Sink
CPU

1 4

5000

1000N
u

m
b

e
r 

o
f 
p

a
c
k
e

ts

Inter arrival times [milliseconds]

(1) Set configuration

(2) Measure until 

confidence is reached

(3) New measurement 

points

0

30

C
P

U
 [%

]

Source: https://de.kisspng.com/png-pc3d06/preview.html

NetBOA

Bayesian Optimization

Update Posterior
Fit Gaussian Process

Acquisition Function
Maximize Expected Improvement

(4) Machine Learn 

Performance Model



Grid Search for Two Parameters (Num. Packets and Inter Arrival Time)

13



Grid Search for Two Parameters (Num. Packets and Inter Arrival Time)

13



Grid Search for Two Parameters (Num. Packets and Inter Arrival Time)

13

4000 packets, 

IAT 3 ms

5000 packets, 

IAT 1 ms



Grid Search for Two Parameters (Num. Packets and Inter Arrival Time)

13

0-1 % CPU

20 % CPU4000 packets, 

IAT 3 ms

5000 packets, 

IAT 1 ms



Grid Search for Two Parameters (Num. Packets and Inter Arrival Time)

13

 Performance models are non-trivial

 Surprising: Sending less network packets over time can lead to significantly higher CPU

 But: Can we find such weak-spots automatically?

0-1 % CPU

20 % CPU4000 packets, 

IAT 3 ms

5000 packets, 

IAT 1 ms



Bayesian Optimization: NetBOA for Inter Arrival Time (IAT) Parameter

14

Update Gaussian 

Process at 

runtime

Expected 

Improvement 

guides search

Stopping criteria 

aborts search

Sampling from 

Gaussian Process 

gives confidence



 We are using the OvS switch with the Megaflow Cache enabled

Why? Let Us Look At OvS Behavior!

15

Time

1

Match

1 Drop

OvS rule timeout 10 seconds



 We are using the OvS switch with the Megaflow Cache enabled

Why? Let Us Look At OvS Behavior!

15

Time

1 2

Match

1 Drop

Match

1 Drop

2 Drop

OvS rule timeout 10 seconds



 We are using the OvS switch with the Megaflow Cache enabled

Why? Let Us Look At OvS Behavior!

15

Time

1 2 N…

Match

1 Drop

Match

1 Drop

2 Drop

Match

1 Drop

2 Drop

3 Drop

… …

N Drop

OvS rule timeout 10 seconds



 We are using the OvS switch with the Megaflow Cache enabled

Why? Let Us Look At OvS Behavior!

15

Time

1 2 N…

Match

1 Drop

Match

1 Drop

2 Drop

Match

1 Drop

2 Drop

3 Drop

… …

N Drop

OvS rule timeout 10 seconds

1

Match

1 Drop

2 Drop

3 Drop

… …

N Drop



 We are using the OvS switch with the Megaflow Cache enabled

Why? Let Us Look At OvS Behavior!

15

Time

1 2 N…

Match

1 Drop

Match

1 Drop

2 Drop

Match

1 Drop

2 Drop

3 Drop

… …

N Drop

OvS rule timeout 10 seconds



 We are using the OvS switch with the Megaflow Cache enabled

Why? Let Us Look At OvS Behavior!

15

Time

1 2 N…

Match

1 Drop

Match

1 Drop

2 Drop

Match

1 Drop

2 Drop

3 Drop

… …

N Drop

OvS rule timeout 10 seconds

Match

2 Drop

3 Drop

… …

N Drop



 We are using the OvS switch with the Megaflow Cache enabled

Why? Let Us Look At OvS Behavior!

15

Time

1 2 N…

Match

1 Drop

Match

1 Drop

2 Drop

Match

1 Drop

2 Drop

3 Drop

… …

N Drop

OvS rule timeout 10 seconds

1

Match

2 Drop

3 Drop

… …

N Drop

Match

1 Drop

2 Drop

3 Drop

… …

N Drop



 We are using the OvS switch with the Megaflow Cache enabled

Why? Let Us Look At OvS Behavior!

15

Time

1 2 N…

Match

1 Drop

Match

1 Drop

2 Drop

Match

1 Drop

2 Drop

3 Drop

… …

N Drop

OvS rule timeout 10 seconds

1

Match

2 Drop

3 Drop

… …

N Drop

Match

1 Drop

2 Drop

3 Drop

… …

N Drop

Every packet

triggers 2 times 

a costly

array resizing 

operation!



 We are using the OvS switch with the Megaflow Cache enabled

 For instance for 5000 packets: We trigger roughly every >2 ms a flow insertion + removal

 Forcing OvS to continuously run through the array + resizing it

Why? Let Us Look At OvS Behavior!

15

Time

1 2 N…

Match

1 Drop

Match

1 Drop

2 Drop

Match

1 Drop

2 Drop

3 Drop

… …

N Drop

OvS rule timeout 10 seconds

1

Match

2 Drop

3 Drop

… …

N Drop

Match

1 Drop

2 Drop

3 Drop

… …

N Drop

Every packet

triggers 2 times 

a costly

array resizing 

operation!



NetBOA vs Random Search

16

NetBOA Random Search



NetBOA vs Random Search

B
e
tte
r

16

NetBOA Random Search



NetBOA vs Random Search

B
e
tte
r

Faster

16

NetBOA Random Search



NetBOA vs Random Search

B
e
tte
r

Faster

16

NetBOA Random Search

24 % higher CPU utilization



 Adversarial input generation to find weak spots, security holes … to make your systems 

bullet-proof?

Part 1: Conclusion

17



 Adversarial input generation to find weak spots, security holes … to make your systems 

bullet-proof?

 Use case: NetBOA is a Bayesian Optimization-based data-driven approach to generate 

network traffic configurations for benchmarking network function implementations

Part 1: Conclusion

17



 Adversarial input generation to find weak spots, security holes … to make your systems 

bullet-proof?

 Use case: NetBOA is a Bayesian Optimization-based data-driven approach to generate 

network traffic configurations for benchmarking network function implementations

NetBOA can efficiently find challenging network traffic configurations (maximize 

CPU/Latency)

NetBOA can also be used to minimize, e.g., CPU or Latency

Part 1: Conclusion

17



 Adversarial input generation to find weak spots, security holes … to make your systems 

bullet-proof?

 Use case: NetBOA is a Bayesian Optimization-based data-driven approach to generate 

network traffic configurations for benchmarking network function implementations

NetBOA can efficiently find challenging network traffic configurations (maximize 

CPU/Latency)

NetBOA can also be used to minimize, e.g., CPU or Latency

 Open questions and problems:

 Does beating the machine means it generalizes?

 Does it scale?

 Alternatives?

 Bayesian Optimization needs also tuning!

Part 1: Conclusion

17



(2) Benchmarking Data Center Traffic Scheduling Algorithms

18



O(n * log(n)) on average case

O(n * n) on worst case (e.g. inversely sorted 

list for pivot on last element)

Motivation: Automation Helps Finding Weak-Spots

19

Quick-Sort

[1] https://igoro.com/archive/quicksort-killer/

Worst case can be calculated



O(n * log(n)) on average case

O(n * n) on worst case (e.g. inversely sorted 

list for pivot on last element)

Motivation: Automation Helps Finding Weak-Spots

19

Quick-Sort

[1] https://igoro.com/archive/quicksort-killer/

Worst case can be calculated

Question: How to apply automation to data center traffic?



 Small flows are scheduled first

 Shortest-Path-Routing

 K=4 Fattree

Data Center Scenario

20

Time

SD:13-2 SD:9-10SD: 5-7

V:100Mbit V: 40Mbit V:110Mbit

T=2ms T=5ms T=8

0

F1 F2 F3

What can be changed? 

F: Flows

T: Arrival Times
V: Volume

SD: Source-

Destination



 Small flows are scheduled first

 Shortest-Path-Routing

 K=4 Fattree

Data Center Scenario

20

Time

SD:13-2 SD:9-10SD: 5-7

V:100Mbit V: 40Mbit V:110Mbit

T=2ms T=5ms T=8

0

F1 F2 F3

What can be changed? 

What we change

F: Flows

T: Arrival Times
V: Volume

SD: Source-

Destination

Assignment from volumes to flows

Set of flow volumes stays constant



 Small flows are scheduled first

 Shortest-Path-Routing

 K=4 Fattree

Data Center Scenario

20

Time

SD:13-2 SD:9-10SD: 5-7

V:100Mbit V: 40Mbit V:110Mbit

T=2ms T=5ms T=8

0

F1 F2 F3

What can be changed? 

What we change

Flow-Level Simulator evaluates traffic loads

F: Flows

T: Arrival Times
V: Volume

SD: Source-

Destination

Assignment from volumes to flows

Set of flow volumes stays constant



Problem Definition

21

Given Set of Flows:

Source 

Destination 

Arrival Time

Volume

Find the order of Volumes such that:

1

F1 F2 F3 F4 F5 F6



Problem Definition

21

Given Set of Flows:

Source 

Destination 

Arrival Time

Volume

Find the order of Volumes such that:

FCT: Flow Completion Time

Time0

Arrival F1 Data has been transmitted

1

F1 F2 F3 F4 F5 F6



Pseudo Code

Approach: Genetic Algorithm

22



Pseudo Code

1. Sample N flows

Approach: Genetic Algorithm

22



Pseudo Code

1. Sample N flows

Approach: Genetic Algorithm

22



Pseudo Code

1. Sample N flows

2. Extract the sequence of volumes V

Approach: Genetic Algorithm

22



Pseudo Code

1. Sample N flows

2. Extract the sequence of volumes V

3. Generate permutations of V by changing is 

order (=initial population)

Approach: Genetic Algorithm

22



Pseudo Code

1. Sample N flows

2. Extract the sequence of volumes V

3. Generate permutations of V by changing is 

order (=initial population)

4. Repeat (until convergence)

Approach: Genetic Algorithm

22



Pseudo Code

1. Sample N flows

2. Extract the sequence of volumes V

3. Generate permutations of V by changing is 

order (=initial population)

4. Repeat (until convergence)

Approach: Genetic Algorithm

22

Crossover



Pseudo Code

1. Sample N flows

2. Extract the sequence of volumes V

3. Generate permutations of V by changing is 

order (=initial population)

4. Repeat (until convergence)

Approach: Genetic Algorithm

22

Crossover

Mutation



Pseudo Code

1. Sample N flows

2. Extract the sequence of volumes V

3. Generate permutations of V by changing is 

order (=initial population)

4. Repeat (until convergence)

Approach: Genetic Algorithm

22

Crossover

Mutation

Fitness



Pseudo Code

1. Sample N flows

2. Extract the sequence of volumes V

3. Generate permutations of V by changing is 

order (=initial population)

4. Repeat (until convergence)

Approach: Genetic Algorithm

22

Crossover

Mutation

Selection

Fitness



Simulator:

 500 Mbit Links

 Uniform Volume between 1 and 500 Mbit

 Poisson Arrival Times (mean 0.7 sec)

 Uniform Src-Dst pairs

Fitness Function

23

Flow Completion Time 

(Fitness)

[3]

Data Center 

Simulator



GA Behavior over Generations for Different Population Sizes

24

Population with N = 10 flows Population with N = 30 flows



GA Behavior over Generations for Different Population Sizes

24

Population with N = 10 flows Population with N = 30 flows

+ 0.1 sec

+ 0.25 sec



GA Behavior over Generations for Different Population Sizes

24

Population with N = 10 flows Population with N = 30 flows

+ 0.1 sec

+ 0.25 sec

17% more challenging 35% more challenging



GA Behavior over Generations for Different Population Sizes

24

Population with N = 10 flows Population with N = 30 flows

+ 0.1 sec

+ 0.25 sec

More Flows Higher margin of optimization

17% more challenging 35% more challenging



 Concentrate larger flows together

 Place large flows on the same link for close arrivals

Flow Volume over Time (N=100)

25



 Concentrate larger flows together

 Place large flows on the same link for close arrivals

Flow Volume over Time (N=100)

25



 Concentrate larger flows together

 Place large flows on the same link for close arrivals

Flow Volume over Time (N=100)

25

BUT: Simulations consume a lot of time! 



 Concentrate larger flows together

 Place large flows on the same link for close arrivals

Flow Volume over Time (N=100)

25

BUT: Simulations consume a lot of time! 

Idea: Use Machine Learning in Genetic Algorithm [Bha13]



GA Acceleration – Deep Learning

26

Flow Completion Time 

(Fitness)

[3]

Data Center

Simulation



GA Acceleration – Deep Learning

26

Flow Completion Time 

(Fitness)

[3]

Data Center

Simulation

Flow 

Completion 

Time Prediction



GA Acceleration – Deep Learning

26

Flow Completion Time 

(Fitness)

[3]

Data Center

Simulation

Flow 

Completion 

Time Prediction

 Needs to be evaluated very frequently

 slow, does not scale



GA Acceleration – Deep Learning

26

Flow Completion Time 

(Fitness)

[3]

Data Center

Simulation

Flow 

Completion 

Time Prediction

 Needs to be evaluated very frequently

 slow, does not scale

Approximate Fitness Function with Deep Neural Network



The Training Data

27

Spatial Distribution

 Test Set Score: 87% of the samples achieved a relative error of less then 5%

FCT Distribution of Labels



Comparison of Simulation vs Neural Network

28

 Neural network cannot predict the fitness of population correctly

 Best population members cannot be found correctly



Comparison of Simulation vs Neural Network

28

 Neural network cannot predict the fitness of population correctly

 Best population members cannot be found correctly

Idea: combine 

Simulation and NN



Comparison of Simulation vs Simulation-enhanced Neural Network 

Approach

29

 Simulations can be used to determine current best simulation members

 More than one simulation needed to improve population



Comparison of Simulation vs Simulation-enhanced Neural Network 

Approach

29

Performance even better than

simulation

 Simulations can be used to determine current best simulation members

 More than one simulation needed to improve population



Comparison of Simulation vs Simulation-enhanced Neural Network 

Approach

29

Performance even better than

simulation

 Simulations can be used to determine current best simulation members

 More than one simulation needed to improve population

And what did

we save?



Runtime Comparison (10 runs, CI 95%)

30

Neural Net < Mixed < Simulation

Mixed 4 times slower than NeuralNet

… but Mixed 4 times faster than 

Simulation



 Genetic Algorithm can automate adversary Traffic Generation 

Automated Benchmarking

 Neural Network can significantly accelerate Genetic Algorithms

Scalability

Limitations:

 Long training time of GA

 Accelerator trades-off solution quality and compute time

 Accelerator needs to be re-trained when fitness function changes

Potentials and Future Work:

 Utilize current network state (e.g., demand matrix)

 Make a prediction for the next arrival(s) – e.g., investigate existing network traces

Part 2: Conclusion

31



32

Thank you!

Questions?



[BIG DAMA’17] Blenk, Andreas; Kalmbach, Patrick; Schmid, Stefan; Kellerer, Wolfgang: o'zapft is: Tap Your Network Algorithm's Big Data! ACM SIGCOMM 2017 

Workshop on Big Data Analytics and Machine Learning for Data Communication Networks (Big-DAMA), 2017

[SelfDN’18] Kalmbach, Patrick; Zerwas, Johannes; Babarczi, Péter; Blenk, Andreas; Kellerer, Wolfgang; Schmid, Stefan: Empowering Self-Driving Networks. 

Proceedings of the Afternoon Workshop on Self-Driving Networks - SelfDN 2018, ACM Press, 2018 

[NetAI’19] Zerwas, Johannes; Kalmbach, Patrick; Henkel, Laurenz; Retvari, Gabor; Kellerer, Wolfgang; Blenk, Andreas; Schmid, Stefan: NetBOA: Self-Driving

Network Benchmarking. ACM SIGCOMM 2019 Workshop on Network Meets AI & ML (NetAI '19), 2019

[CoNEXT Com‘19] Lettner, Sebastian; Blenk, Andreas: Adversarial Network Algorithm Benchmarking. The 15th International Conference on emerging Networking 

EXperiments and Technologies (CoNEXT ’19 Companion), ACM, 2019

[TNSM‘19] Zerwas, Johannes; Kalmbach, Patrick; Schmid, Stefan; Blenk, Andreas: Ismael: Using Machine Learning To Predict Acceptance of Virtual Clusters in 

Data Centers. IEEE Transactions on Network and Service Management, 2019

[Bha13] Maumita Bhattacharya. 2013. Evolutionary Approaches to Expensive Optimisation. Arxiv - Computers & Society 2, 3 (2013), 53–59. DOI:http://dx.doi.org/10.

14569/IJARAI.2013.020308

References

33


