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Abstract

Ultra short laser ablation is a common technique for material processing of metal thin
�lms on transparent substrate. Recently, a so-called "con�ned" laser ablation e�ect has been
reported, where an ultra-short laser pulse (pulse duration 660 fs and wave length 1053 nm)
irradiates onto a thin molybdenum (Mo) �lm through a transparent glass substrate, resulting
in a "lift-o�" of the irradiated layer in form of a thin, solid, cylindrical fragment. This
e�ect provides a new and very energy-e�cient selective structuring process for the Mo-back
electrode in thin-�lm solar cell production. The aim of this study was to create a �nite
element method (FEM) simulation model to investigate the underlying mechanism of the
con�ned laser ablation of a thin Mo-�lm coated on a transparent glass substrate by backside
irradiation with an ultra short laser pulse. The 3D axisymmetric FEM model consists of a
volume absorption for the laser pulse, a two-temperature model approach for heat di�usion
in the electron and the lattice subsystem and a thermo-mechanical expansion part, which
includes the expansion in the solid as well as the expansion during the phase transition of
melting and evaporation. The time frame of the model ranges from the femtosecond to the
microsecond regime to precisely include the involving physical mechanisms, which appear
on the di�erent time scales. The simulation reveals that irradiation of the Mo-layer with
an ultra-short laser pulse causes a rapid acceleration in the direction of the surface normal
within a time frame of a hundred picoseconds to a peak velocity of about 100 m/s. Then, the
molybdenum layer continues to move as an oscillating membrane, and �nally forms a dome
after about 100 ns. The calculated strain at the edges of the dome exceeds the tensile stress
limit at �uences that initiate the "lift-o�" in experimental investigations. In conclusion, the
simulation reveals that the driving mechanism of the "lift-o�" with ultra short laser pulses
is the ultra-fast expansion of the interface layer and not the generated gas pressure, which is
considered to be the driving force of the "lift-o�" with short laser pulses.
The model is further applied for an investigation to study the melting and vapor volume

over a wide range of pulse durations from 5 fs to 100 ps. It turns out, that the maximum vapor
volume is reached at a pulse duration between 10 ps to 50 ps. The results provided compelling
evidence, that the electron heat transfer is predominant for the ultra-short pulse regime below
10 ps to 50 ps, while the lattice heat transfer is outbalanced for longer pulse durations. Thus,
by considering the vapor volume as the ablated domain, it is supposed that an e�ective pulse
duration exists where the heat conduction of electrons and lattice is balanced, such that the
vapor volume can be maximized.
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1. Introduction

1.1. Motivation

Laser material processing exceptionally with ultra-short laser pulses has enabled new possi-
bilities of material removal and modi�cation. The spectrum of processable materials ranges
from metals, semiconductors to insolaters. Beside bulk materials, even �lm systems of di�er-
ent materials can be applied to this method. Over the last two decades the exploration of the
mechanisms behind these technological laser processes has attracted increasingly interest.1�12

Ultra short pulse laser ablation is also one of the most powerful patterning technique for
thin �lm material processing. This method has the potential of a highly selective structuring
process for a broad range of thin �lm materials with low thermal damage of the surround-
ing area.13�15 Therefore, also raising attention has been payed in the recent years for the
application of ultra short laser pulses to the processing of Copper Indium Gallium Diselenid
(CIGS/CIS) thin �lm solar cells. Here, the major issues are the increasing of the e�ciency,
costs reduction and high speed production.16 Promessing results has been shown to the pat-
terning of the monolithic serial interconnection which divides the solar cell into sub cells to
reduce ohmic losses and increase the voltage.17�19 Three di�erent process steps has to be
performed which are labeled by P1 (pattern 1), P2 (pattern 2), and P3 (pattern 3), shown in
�gure 1.1.20 Besides the P2 and P3 which are the selective opening of the active CIS layer and
the galvanic separation of the ZnO front p-contact, respectively, the P1 is of special interest
which is the galvanic separation of the Mo back n-contact.

Figure 1.1.: Schematic cross section of a CIGS thin �lm solar cell. The monolithic serial interconnec-
tion is performed by three di�ernet process steps, which are labeled as P1, P2 and P3. The arrows
are indicating the electron pathway through the solar cell structure. (Picture and caption obtained
from Heise et. al20).

The state of the art monolithic serial interconnection of the Mo p-contact is produced
by galvanic separation of the layer with means of direct irradiation by a nanosecond pulsed
laser.12,20 However this process shows thermal damage in form of burr formation and micro
cracks of the surrounded material. Even by irradiating the layer directly with picosecond laser
pulses the thin �lm material is still a�ected by thermal defects.16 One way of eliminating these
thermal side e�ects is enabled by a con�ned laser ablation or "lift-o�" process with ultra-short
laser pulses which is achieved by illuminating the Mo-layer through the glass substrate side.
The �lm can be removed completely as a solid disc. Thermal side e�ects like burr formation
and micro cracks are avoided completely.21 Figure 1.2 compares the ablation quality of a Mo-
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thin �lm on glass substrate for the direct nanosecond (a) and picoseond (b) laser ablation,
respectively with the con�ned picoseond laser ablation (c).16 Only in case of the con�ned
picoseond laser ablation, the ablated thin �lm is in form of a solid disc and the surrounded
material is free from thermal side e�ects.16,22,23 The energy needed for this process is only
∼30 J/mm3 and far below the evaporation enthalpy of Mo (∼78 J/mm3).24,25 In addition,
the complete layer can be removed by one single pulse which enables high speed processing.16

Figure 1.2.: Comparison of the ablation quality for a Mo-thin �lm on glass substrate. The direct
nanosecond laser ablation (a) and the direct picosecond laser ablation (b) exhibit damage of the
surrounded area. Only the con�ned picoseond laser ablation (c) shows no damage. (Picture and
caption obtained from Huber et. al16).

For further industrial process optimization, prediction and know-how transfer to further
laser processes with di�erent materials such as laser induced forward transfer (LIFT),26,27

blister formation,28,29 rapid prototyping of bio sensor chips30 or opening of dielectric layers
in silicon photovoltaics,31�33 the understanding of the physical mechanisms in detail for the
con�ned laser ablation or "lift-o�" is essential.

1.2. State of the art

The exploration of laser ablation processes are described in the literature by various groups.
The mechanism of the laser "lift-o�" process with laser pulse duration in the nanosecond
range are reported as a generation of a vapor pressure or the pressure inside a plasma phase.
An experimental investigation of the pressure generated by nanosecond-pulses in the con-

�ned interface between transparent substrate and a thick metallic absorber for laser shock
processing was performed by Fabbro et al.34 The driving force for the shock wave formation
was related to the generation of a con�ned plasma.
Adrian et al.35 investigated the LIFT process, where a 15 ns laser pulse, which is irradiated

through the backside of a transparent substrate, ejects a 1 µm-thick metallic �lm from the
front side and deposits the material onto a target. A 1D simulation model was used to
calculate the temperature pro�le with the result that the supplied laser energy was more than
su�cient to melt and partially evaporate the material. It was concluded that the force for
ejection should result from the vapor pressure of the partially vaporized metal.
Kattamis et al.36 simulated a polyimide µm-�lm blister formation for LIFT with 40 ns

pulse duration. The only driving force for the blister formation was explained by the pressure
of an ideal gas and an adiabatic expansion. During the volume work, the gas was still heated
by the laser energy and the pressure value was increased.
For femtosecond laser "lift-o�" processing the observed e�ects are related to ultrafast heat-

ing or melting, which results in shock waves and leading to a delamination. The gas pressure
plays only a minor role for the ablation, due to the short time interval of energy deposition
and a possible vapor phase is followed by subsequent condensation.
To further explore the mechanism behind the absorption, Itina et al.37 simulated the impact

of ultra-short 100 fs pulses on a metallic bulk sample with a 1D multiphysics model including
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a two-temperature model and a hydrodynamic model with a volume as a function of the
pressure. The solution of the equation yielded to shock waves with velocities of several km/s.
The ablation e�ect was explained by a compressive shock wave propagating into the bulk
while the unloading rarefaction wave leads to the material expansion or removal.

That mechanical stress from thermal expansion of solid material in contrast to vapour
pressure from a heated gas can be a major driving force in an ablation process was revealed by
Ivanov et al.38 in a theoretical work using a fundamental molecular dynamics simulation based
on interatomic interaction. The simulation explains the formation of nanobumps in 20 nm Ni
�lms on glass as the result of an acceleration of the thin �lm away from the substrate, caused
by compressive stress up to 8 GPa created from thermal expansion and a subsequent plastic
deformation of the material. The simulation however assumes a perfectly rigid substrate as
the mechanic boundary condition implying an elastic re�ection of the expanding �lm from
the substrate and leading to a very high take-o� speed of 300 m/s.

In a work by Shugaev et al.39 the stress waves created from thermal expansion were
investigated with a multiphysics continuum model including a two-temperature model and
a continuum elastic model in 1D. The simulation analysed the very �rst stage of the LIFT
processes for 200 fs pulses on 40 nm �lms of Au, Cr and Zn to �nd out why the material
is ejected in di�erent phase compositions. The result shows that with the same �uence of
0.35 J/cm2 di�erent electron gas and lattice temperatures are reached and that e.g. for gold
the ejected material is only partially molten, which is in agreement with cited experimental
work. The driving force was explained by a formation of strong pressure waves caused by
instantaneous laser induced heating and subsequent unloading from the side of the free �lm
boundary.

Zergioti et al.40 made a comparative study of the e�ect of ultra-short (0.5 ps) and short
(30 ns) pulses on the laser forward transfer of 40 nm Cr-�lms on glass. In case of fs laser
pulses, a shock assisted removal was observed. An induced high pressure gradient by the
fs-laser, lead to a shock wave in the direction of the Cr air-side followed by a rarefaction wave
propagating in the opposite direction. When the rarefaction wave reached the substrate �lm
interface, the Cr-layer was removed.

Previously, an analytic model was introduced by Heise et al.20 with a description of the
bulging and ablation behavior of a thin Mo-�lm by an ultra-short laser pulse. The laser energy
is absorbed in a fraction of the layer volume de�ned by the optical penetration length. This
irradiated volume is fully evaporated. The produced vapor pressure inside a con�ned volume
leads to an adiabatic expansion of the �lm and ends in a hydrostatic pressure. Ablation occurs
when the shear stress at the edges exceeds some limit. The calculated energies needed to enable
these processes are four times lower than the measured ones. The complete model is based on
a adiabatic expansion of a thin-�lm which is also the current state of the art explanation for
the "lift-o�" with nanosecond laser pulses.36 However the model of a heated gas expansion
was not capable to include thermal expansion and transient e�ects. Consequently, numerical
simulation is the next step to calculate these contribution to the ablation process.

However, although the "lift-o�" process with ultra short laser pulses was demonstrated in
the literature, there is still a gab in the knowledge of the physical mechanism behind this
ablation method.

The current dissertation is based on the research question why the Mo-layer can be removed
so e�ciently and the laser "lift-o�" with an ultra short laser pulse is investigated by the
means of numerical simulation. For this reason, a transient multiphysics and multi-time
scale 3D-axisymmertic FEM-model with high temporal range is introduced which takes the
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thermal expansion into account. An attempt is given which maps the complete process of the
"con�ned" laser ablation with an ultra-short laser pulse.
In the present model, a 435 nm thin Mo-layer is irradiated through a transparent glass

substrate of 3 mm thickness. The time duration ranges from femto- to microseconds to in-
clude the physical relevant time period. The following e�ects are taken into account: The
absorption of the laser pulse in the metallic layer by the electrons; the dissipation and the heat
transfer to the lattice; the heating and phase transition in the metallic �lm; the propagation
of a melt and evaporation front; the heat dissipation inside the layer and to the adjacent
material; the thermo-elastic and elasto-mechanic reaction of the material leading to a me-
chanical interaction with the substrate and �nally an acceleration of the partially intact layer;
the plastic deformation of the material under temperature and stress and, last, the motion of
the layer which leads to membrane oscillations, shear forces, and strain. The space and time
parameters are chosen such that it allows a comparison between this multiphysics model and
experimental results of the con�ned laser ablation.41�44 In these experiments a laser pulse
with a pulse duration of 660 fs and 1053 nm pulse duration is irradiated through a glass
substrate onto a 435nm thin Mo-layer with low �uence from 0.4 to 0.6 J/cm2. The ablation
threshold for complet layer removal is around 0.6 J/cm2 which outperforms the processes in
the cited articles45�48 that report on direct laser ablation in terms of energy e�ciency by far.
The simulation reveals that irradiation of the Mo-layer with an ultra-short laser pulse

through the transparent glass substrate generates a heating rate in the order of 1015 K/s at
the interface within the layer. As a result, acceleration of the Mo-layer is initiated by thermal
expansion supported through a backward impulse from the glass substrate in the time frame of
hundred picosecond. The Mo-layer then expands with a velocity of ∼ 100 m/s and continuous
to move as an oscillating membrane. Finally a dome is formed after about 100 ns. Thanks
to the plastic deformation model, the dome is stable and the layer remains �nally deformed.
The calculated strain at the edges of the dome exceeds the tensile stress limit at �uences
that initiate the "lift-o�" in experimental investigations. The complete process is thermally
and mechanically in equilibrium after about 10 µs.15 The driving mechanism of the "lift-o�"
is found as an ultra fast expansion and not the gas pressure, as it is mentioned in previous
models.25,35,36

For further research the thermal part of the model is applied to a front side laser irradiation
of the Mo-layer with a pulse duration range from 5 fs to 100 ps. The result showed that the
vapour volume has a maximum value at a pulse duration between 10 ps and 50 ps. A pulse
duration of 10 ps is observed in experimental investigation as the most e�cient one for material
removal.49
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2. Methodology

Throughout this dissertation vectors, matrices and tensors are written in bold letters unless
otherwise remarked.

2.1. Ultra short laser pulses

The word "Laser" is the abbreviation of "light ampli�cation by stimulated emission of ra-
diation". The posibility of stimulated emission was proposed by Albert Einstein in 1917.50

The �rst laser was build in 1960 by Theodor H. Maiman with a cylinderical ruby made of
chromium doped corundum51 which was based on previous work from Charles Hard Townes
and Arthur Leonard Schawlow.52 Since then, the laser has found its way to a wide range of
application like medicine, computer industry and material processing. The special character-
istic of light emitted by a laser source is its time and space coherence. By spacial focusing a
laser beam the light intensity can be increased by magnitudes onto an area in the micrometer
range. Laser can be either operated as continuous wave or pulsed mode. The pulsed mode
laser with a so called Q-switch are able to create pulse durations in the nanosecond range.
Therefor, the losses in the resonator are increased by an electro- or acousto-optical element
which allows the gain in the active median to increase. When the losses are rapidly decreased
in the resonator, the laser activity is initiated and a giant short pulse is produced from the the
stored energy in the gain medium with peak intensities up several gigawatts. For ultra short
laser pulses with pulse durations ranging from pico- to femtoseconds, a mode-lock technique is
introduced. The phase of the longitudinal laser modes are �xed which allows them to interfere
constructively to a pulse train with peak intensities up several terawatt and beyond.53

2.2. Laser matter interaction

In principal all kind of material like metal, semiconductor and insulator can be processed by
a laser beam. The key parameters a�ecting the laser matter interaction are the wave length
and the pulse duration of the laser. By irradiating a metal surface with a continuous wave
laser or a pulsed laser with a pulse duration up to the nanosecond rage, the material is mainly
heated, melted and evaporated. The irradiation of a metal surface by a pico- or femtosecond
pulse are additionally driven by thermally induced shock waves due to the high heating rates
of ∼ 1012 - 1015 K/s when a material is heated up to 5000 K in a time duration in the order
of 5 ps.54

The e�ective optical penetration depth 1/αopt of a material by a given laser wave length
is here a crucial factor. It determinates how far the radiation penetrates into the surface of
the material by a given wavelength until the peak intensity drops to a level of 1/e2. Typical
penetration depth for a wavelength 1053 nm (1.18 eV) are shown in table 2.1 for Mo and
Fused silica.
The classi�cation of laser matter interaction with an (for the laser wave length) absorbing

�lm on a transparent substrate can be categorized by �gure 2.1.58 The �rst row illustrates
the condition of the laser irradiation either directly onto the (gray) absorbing layer surface
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Variable Symbol Value Unit
Molybdenum 1/αopt 19.1 nm
Fused silica 1/αopt 1.72 cm

Table 2.1.: Optical data of molybdenum and soda-lime glass55�57

(�lm side irradiation) or indirectly through the (blue) transparent substrate (glass substrate
side irradiation). The �lm side can be directly irradiated while the thickness of the �lm is
greater than the e�ective penetration depth (a) or comparable to the e�ective penetration
depth (b). The �lm can also be irradiated through the glass substrate side with a thickness
comparable to the penetration depth (c), a thickness greater than the penetration depth (d)
and a thickness much greater than the e�ective penetration depth (e).58

Figure 2.1.: Laser irradiation of an absorbing layer on a transparent substrate. Film side irradiation:
(a) Thick and (b) thin absorbing layer. Substrate side irradiation: Thin absorbing layer with LIFT
(c), "lift o�" (d) and laser shock processing (e) (Picture and caption obtained from Domke et. al.58)

In the present case a lift-o� is expected with a glass as transparent layer and Mo as the
absorbing laser as shown in �gure 2.1(d).

2.3. Timescale

As illustrated in �gure 2.2 the timescale of physical processes initiated by the interaction of
an ultra-short laser pulse with matter rages over ten orders of magnited from the femtoseonds
to microseconds.59 The photon absorption happens on a time scale in the order of the pulse
duration of the laser pulse and impact ionization can take up to tens of picoseconds. The
carrier-carrier scattering takes place during the time scale of the photon absorption while the
time duration for the carrier-phonon scattering are ranges up to tens of picoseconds. The
carrier removal processes can ranges from sub-picosecond to several microseconds. Thermal
and structural e�ects are characterized by ablation and evaporation, thermal di�usion and
resodi�cation which also can last into the microsecond range. For the present simulation
study the whole time scale range was taken into account to develop a model which describes
the physical processes and hence the mechanism for the driving force completely.
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Figure 2.2.: Timescale of physical processes initiated by the interaction of a ultra short laser pulse
with matter. (Picture and caption obtained from Sundaram et. al59).

2.4. Model assumptions

In this dissertation a FEM analysis was performed to investigate the interaction of a sample
layer system based on a Mo-coated glass substrate with an ultra-short laser pulse. The
simulation setup was carefully chosen, such that it is comparable to previously performed
experimental work, which involves time and space resolved pump-probe microscopy studies.41

Figure 2.3 shows a schematic cross section of this simulation setup. The ultra-short laser
pulse (wavelength 1053 nm, pulse duration 660 fs) irradiates through a transparent glass
substrate (∼3 mm) and is absorbed at the Mo-glass-interface by the thin Mo-layer (435 nm).
No signi�cant absorption is expected within the investigated low �uence range in the glass
substrate because the glass damage threshold �unce for single pulse irradiation of the present
layer system starts at 0.75 J/cm2.60

It can be further seen in �gure 2.3, that the geometry of the glass substrate and the
Mo-layer were chosen as a cylinder. This choice of domain allows a perfect implementation
of the cylindrical transverse electromagnetic modes (TEM00) of the laser. Thanks to the
rotational symmetry, it was possible to reduce the 3D geometry to a axisymmetric model to
save computational time. Thus, cylindrical coordinates within a purely axisymmetric state
was used for the entire model. The �nal simulation domain consisted only of a rectangle with
dimensions of 435 nm height and 30 µm width which represents the Mo-layer. The Mo-layer
beyond this width, the complete glass substrate and the adjacent air were all modeled with
precise boundary conditions. These boundary conditions were de�ned on the edges by ∂Ω1,
∂Ω2, ∂Ω3 and ∂Ω4.

2.4.1. Model steps

The complete ablation process can be describe by the following eight steps (see Figure 2.4):
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Figure 2.3.: The thin-�lm molybdenum layer is irradiated by a laser (wavelength 1053 nm, pulse
duration 660 fs) through a transparent glass. Only the rectangular Mo-cross section is used in the
axisymmetric model. Important points at the boundary of the simulation domain are numbered from
1 to 4. The maximum irradiated intensity is reached in the center at point 1. The distance from 1
to 3 is 30 µm and from 1 to 2 is 435 nm.

(a) Irradiation through the glass substrate, partial re�ection and absorption by the nearly
free electron gas;

(b) Heating of the electrons, thermal di�usion and heat transfer to the Mo lattice;

(c) Thermal di�usion and thermal expansion of the heated solid Mo;

(d) Additional thermal expansion at the phase transition from solid to liquid;

(e) Emergence of vapor pressure in the interface between glass and Mo-layer;

(f) Mechanical deformation of the Mo-layer;

(g) Interaction of layer and substrate leading to acceleration of layer;

(h) Radial stress from plastic deformation and shearing, if the strain limit is exceeded.

The physical assumptions to describe these steps are as follows:

Absorption, re�ection and transmission

(a) The laser beam was focused with a radius of 21 µm on the Mo-surface through the glass
side. Two re�ections of the laser beam occurs, one at the Mo-glass interface and the
other on the glass surface. The re�ectivity for this layer system is measured to approx.
50 %.25 The remaining 50 % are expected to be absorbed in the Mo-volume near the
Mo-glass interface. The optical absorption depth of Mo was choosen to be about 19 nm
according to table 2.2. The absorption of the ultra short laser pulse at the Mo-surface
is �nally modeled by Beer-Lamberts law.61�63 This approach has the advantage, that
only the intensity of the laser beam has to be considered and the wave properties can be
neglected.

To obtain the precise absorbed intensity value all possible contribution form the laser beam
re�ections have to be considered. It turns out, that a variety of re�ections can occur in
the present layer system as illustrated in Figure 2.5(a). The incident laser beam is �rst
re�ected on the glass surface with a value of 4 %. The second re�ection takes place at the
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Figure 2.4.: Physical model of the ablation process. (a) A fraction of the laser pulse (660 fs, 1053
nm) energy is absorbed by the free electrons. (b) These di�use thermally and heat up the lattice by
relaxation. (c) The solid expands thermally. (d) The molybdenum is partially melted with additional
thermal expansion due to melting. (e) Finally, a fraction of the melt becomes evaporated and vapor
pressure rises. (f) The layer �rst expands in the normal direction to the glass and shock waves
created from fast expansion interact with the substrate and the layer becomes accelerated. (g) The
layer bulges and the material become strained in critical regions. (h) Either a dome is formed or the
layer is ablated when a critical strain is exceeded.

Mo-glass interface with about 50 %. This second re�ection is mainly transmitted through
the glass surface back into the surrounded air and minor back re�ection of about 4 %
arises. Only this minor back-re�ection is able to additionally contribute to the ablation
process. However, the overall run-time of this back-re�ection from the Mo-glass interface
towards the opposite side of the glass substrate and backwards is deterined by equation 2.1
to about 30 ps (see �gure 2.5(b)). Thus, the inital intensity is not enhanced since the
back-re�ected beam is temporally shifted from the incident beam. It is unlikely that the
remaining 4 % of the back-refelcted intensity in combination with the time delay of 30 ps
has a contribution to the ablation process because this value is far below the ablation
threshold.14 The incident laser beam is only expected to be absorbed inside the Mo-layer
at the Mo-glass interface. Nearly complete absorption is expected during the propagation
inside the Mo-layer before it reaches the opposite Mo-surface since the absorption length
for Mo is about 19 nm at the chosen laser wavelength of 1053 nm (table 2.2), while the
thickness of the Mo-layer is 435 nm. Only a negligible intensity fraction of ∼10−8 % is
transmitted to the Mo-bottom surface and thus a back-re�ection from this surface was
also excluded in this model.
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∆t =
∆l

v
=

∆l
c

n

=
2 · 3 mm

3 · 108 m/s

1.5

= 30 ps (2.1)

(a) (b)

Figure 2.5.: (a) All possible re�ection which could contribute to the ablation process. (b) Illustration
of the incident, absorbed and re�ected normalized laser intensity. The intensity decreases with an
exponential decay inside the Mo-layer. No contribution from the back-re�ection is expected due to
the time delay of 30 ps.

Electron and lattice heating

(b) The laser pulse is absorbed by a metal surface through its nearly free conduction band elec-
trons resulting in heating of the electron gas. A equilibrium electron temperature arises
through thermalization by electron-electron scattering on a femtosecond time scale.64�66

The electron temperature, its heat capacity, the di�usion coe�cient and the electron-
phonon coupling are taken into account. These parameters are still under discussion, the
latest value from literature were used in the presented study (table 2.3). Once the ab-
sorption of the electrons takes place, there thermal energy is immediately transferred to
the solid lattice resulting in a temperature rise. The electron-phonon coupling coe�cient
(table 2.3) determines the amount of energy transferred per time, volume and tempera-
ture. The subsequent mechanical motion is initiated by three fundamental mechanisms
with three di�erent quantitative contributions.

Above room temperature/elevated temperature

(c) First, the linear thermal expansion is generated by the heating of the solid molybdenum
above room temperature. The expansion of the volume results in a compressive stress.
The respective parameter for the calculation are the well known expansion coe�cient, as
well as the further thermodynamic properties of the solid Mo (table 2.3).
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Variable Symbol Value Unit

optical absorption coe�cient @1053nm αopt 5.23 · 107 1/m
Re�ectivity14 Ropt 50 %
Wavelength λopt 1053 nm
Pulse duration τp 660 fs
Beam radius @e−2 w0 21 µm
Fluence for simulation Φ0 0.40− 0.55 J/cm2

Table 2.2.: Data for laser pulse absorption model67

Above melting point

(d) Second, an additional thermal expansion during the melting of the Mo occurs if the
melting temperature is exceeded. The melting temperature and heat of fusion at zero
pressure for Mo are presented in table 2.3. The high compressive stress and the high
heating rate of the Mo produced by the laser pulse may results in possible superheating
e�ects.68�70 The corresponding equation of state for Mo are not well established and so
the equilibrium melt temperature was chosen. The volume expansion during the melting
process was taken from experimental values obtained under equilibrium conditions.71 The
liquid interface of molten Mo reduces the adhesive force between the Mo-layer and the
glass substrate. The melting temperature is hence a key parameter in this dissertation,
since it de�nes the ablation radius by its maximum extension.

Above evaporation point

(e) Third, if the Mo is further heated above the vapor temperature, it results in a vapor
phase and generates a pressure in the con�ned space between the Mo-layer and the glass
substrate. This pressure is assumed to be the vapor pressure pV (see table 2.3, table 2.4)
which is determined by the Clausius�Clapeyron relation and depends only on the lattice
temperature Tl72,73 (equation 2.2). Again, the equilibrium data are taken into account due
to the unknown equation of state (EOS) for Mo and super heating e�ects were neglected.
The vapor pressure is the upper limit of the pressure inside the con�ned area between Mo-
layer and glass substrate, due to the time delay while it is generated. If the pressure has
a non-negligible contribution to the Mo deformation, it is overestimated. This guarantees
that the question of the contribution from the gas to the ablation process can be properly
answered. Figure 2.2 shows the determined vapor pressure in dependence on the lattice
temperature Tl. At the vapor temperature TV the vapor presser pV (Tl) has a value of
∼110 kPa while the GPa range is reached not before ∼13,000 K.

pV (Tl) = p0 e

∆Hm

R

(
1

TV
−

1

Tl

)
(2.2)

here, R is the universal gas constant.
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Figure 2.6.: Vapor pressure of Mo determined according to equation 2.2. The vertical dotted line
denotes the vapor temperature.

Mechanical motion

(f) The creation of mechanical motion is implemented as follows. The very fast thermal
Mo expansion generates very fast compressive stress at the interface that initiates stress
waves which are propagate towards the normal direction. The expansion of the Mo-layer
is initial expected in a thin layer close to the vicinity of the interface. The Mo-layer can
be considered as a rigid plate and bend �rst in the direction of the glass substrate above
the neutral �ber to minimize its potential energy, similar to a bimetallic strip e�ect. A
transient continuum elastic description is necessary for the Mo-layer properties in radial
direction to take this e�ect into account. The continuum elastic properties of the glass
substrate are important to describe the momentum transfer precisely. Finally, the Mo-
layer results in a vertical velocity in the opposite direction to the glass substrate. For a
possible ablation, the initial velocity of the layer has to be su�cient enough to overcome
the potential energy barrier of the layer under the non-uniform compression.

Layer bulging

(g) If the the layer peel away and achieve separation from the substrate, a continuous motion
of the layer is expected to occur. The center of mass velocity of the layer motion is much
smaller compare to the shock wave velocity, which is fast and expected in the order to the
speed of sound in the Mo. During this motion the �lm will solidify and a nearly uniformly
distributed temperature will arise. At this point, the driving forces are the radial stress
originated from the thermal expansion in the radial direction and a possible remaining
vapor pressure in the spacing between the Mo-layer and the glass substrate.

Layer ablation

(h) The shear stress inside the Mo-layer is created by the inertial forces, the compressive
force in the radial direction and the cohesive forces outside the ablation radius. When
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Variable Symbol Value Unit

Heat capacity molybdenum a 250 J/(kgK)

Norm factor gauss function melting b (50
√

2π)−1 1
Melting temperature Tm 2896 K
Melting enthalpy ∆HM 389 · 103 J/kg

Norm factor gauss function evaporating c (50
√

2π)−1 1
Vaporization temperature Tv 4912 K
Vaporization enthalpy ∆Hv 6.25 · 106 J/kg
Width of Gaussian latent heat model (FWHM) ∆Tl 50 K
Thermal expansion coe�cient αexp 4.8 · 10−6 J/kg
Electron-phonon coupling constant G 13 · 1016 W/(m3K)
Lattice heat conductivity kl 135 W/(mK)
Speci�c electron heat constant γ 34 · 10−3 J/(kgK2)

Electronic heat conductivity ke k0
Te
Tl

W/(mK)

Electronic heat capacity Ce γ Te J/(KgK)

Table 2.3.: Data for the thermal heat di�usion model55,67,74

Variable Symbol Value Unit

Mass density ρ 10280 kg/m3

Young's modulus E 321 GPa
Yield stress level σY ield 0.3 GPa
Kinematic tangent modulus Ekin 1 GPa
Vapor pressure @ 2742 K p0 1 Pa
Thermal expansion coe�cient αth 4.8 · 10−6 m−1

Table 2.4.: Material data of molybdenum55
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some critical value is exceeded, the layer will be damaged or detached, depending on
the damage. If the critical value is not exceeded, the layer keeps attached, but may
be plastically deformed. Otherwise an elevated dome could not stably exist. The plastic
material properties are essential to reproduce a stable dome in the simulation. The actual
Mo-layer used for comparision with the experimental results41 are produced by sputtering.
Such a produced Mo-layer is less dense than the bulk Mo and its mechanical properties
are anisotropic. It is worth mention that some uncertainties remain since there is a lack
in literature of mechanical properties especially for the plastic behavior of thin Mo-�lms.
In this simulation, the well-known bulk Mo material properties from literature (table 2.4)
were included. For the elasto-plastic deformation model the linear elastic regime was
modeled with the temperature-dependent Young's modulus and the yield stress level was
chosen to 300 MPa (table 2.4). The compressibility of the liquid Mo were approximated
by the Young's modulus and a liquid-like Poisson ratio of close to 0.5. Finally the shear
o� is expected if a critical strain is exceeded.

Overall, three sub-models were used to implement the physical mechanisms, which are
the intensity absorption of the laser pulse, the heat di�usion in the electron and the lattice
sub-system and �nally the thermal expansion (see �gure 2.7). These sub-model needed to
be accurately coupled to ensure precise results. The intensity was coupled unidirectional to
the electron temperature. Then, the electron temperature and the lattice temperature were
bidirectional coupled. The lattice temperature was used to calculate the thermal expansion.
Only the boundary condition ∂Ω4 from the thermal expansion part was couples back into the
boundary condition from the lattice temperature. It is noted that on the domain level, the
thermal expansion model had no feedback loop to the lattice temperature. In other words,
the temperature was not a�ected by the structure changes in the domain, e.g. by internal
friction.

Figure 2.7.: Flow diagram for the illustration of the physical coupling in the FEM model. The
abbreviation B. C. stands for boundary conditions.

2.5. Laser pulse absorption model

For the light absorption model, the propagation of light inside a material can be derived from
Maxwell's equations in matter, presented here in di�erential form by equations 2.3.75
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∇ ·D = ρel Gauss's law (2.3a)

∇ ·B = 0 Gauss's law for magnetism (2.3b)

∇×E = −∂B

∂t
Maxwell�Faraday equation (2.3c)

∇×H = Jel +
∂D

∂t
Ampère's circuital law (with Maxwell's addition) (2.3d)

here, D is the displacement �eld, B is the magnetic �eld, E is the electric �eld and H is
the magnetizing �eld. The free charge density ρel and the free current density Jel are de�ned
by the charge and current per volume, respectively:

ρel =
Q

V
; Jel =

I

V
. (2.4)

The material is assumed to be isotropic, which means quantities are independent from the
spacial direction (full rotational symmetry), homogeneous independent of the spacial direction
in translational symmetry (transnational symmetry), source free which implies that the charge
density ρel is neglected.

For dielectrics like glass the conductivity σel is assumed to be zero, while in case of ohmic
conductors like metals Ohm's Law can be applied:

Jel = σel E Ohm's law (2.5)

2.5.1. Constitutive relations

The constitutive relations relate the displacement �eld (electric �ux density) D with the
electric �eld E and the magnetizing �eld H with the magnetic �eld (magnetic �ux density)
B trough material parameters. For a linear homogeneous isotropic medium the constitutive
relation is introduced by equation 2.6:

D = ε̃E; H = µ̃−1B (2.6)

here, ε̃ and µ̃ is the permittivity and the permeability of the material, respectively. A linear
material is considered for Mo, glass and air which means that ε and µ are scalar constants
throughout the volume for a given frequency.

The initial free charges ρel is assumed to be zero. By combining equation 2.6 with equa-
tion 2.3a and equation 2.3d and substituting equation 2.5 into equation 2.3d one gets:

∇ ·E = 0 (2.7a)

∇×B = µ̃σel E + µ̃ε̃
∂E

∂t
(2.7b)
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2.5.2. Wave equation

The well known wave equation can be derived by combining equation 2.7a and equation 2.7b
with equation 2.3c and further taking its curl (see section A.1.1). For simplicity, only the
electric �eld is written. The magnetic �eld exhibits a similar expression:

∇2E− µ̃ε̃ ∂
2E

∂t2
− µ̃σel

∂E

∂t
= 0. (2.8)

One solution of the wave equation is a monochromatic linear polarized wave with a single
frequency of ω propagating along the Z-direction:

E(Z, t) = E0 e
i(kZ−ωt)êy linear polarized wave in y-direction, (2.9)

here, k =
ω

c
ñ is the wave vector. Z is the propagation direction, êy the unity vector for the

oscillation direction of the E-Field and c is the vacuum speed of light. The refractive index
ñ can be related to the pemittivity (dielectric function) ε̃ which are both complex valued
quantities:76

ñ2 = n2 − k2 + i2nk = ε̃ = ε1 + ε2

ε1 = n2 − k2 = εr

ε2 = 2nk = i
σ

ωε0
(2.10)

here, εr =
ε

ε0
is the relative permittively as the real part of the dielectric function ε1 and ε0

is the permittively of free space. Now, equation 2.9 can be rewritten by splitting the complex
refractive index into its real and imaginary part:

E(Z, t) = E0 e
i

(ω
c
nZ−ωt

)
e
−
(ω
c
kZ

)
êy (2.11)

By doing so, the argument of the �rst exponential function in equation 2.11 is complex
and describes an oscillating E-�eld. The argument of the second exponential function is real
negative and results in an exponential decay of the E-�eld.
The propagation of the E-�eld inside a media is manly dominated by the value of k. In-

sulators have typically negligible values of k whereas in conductors like metals the value of k
are �nite. The refractive index values of Mo is shown in table 2.5. The value for k of 4.34
will result in an immediately exponential decay of the E-�eld beneath the Mo-surface.
The E-�eld for near infrared laser light is not directly measurable due to its very fast

oscillations in the order of femtoseconds. To �nd a measurable quantity like the average
power, Pointing's theorem is applied which states that the pointing vector S can be expressed
as:

S =
1

µ0
E×B = c ε0E

2
0 e

i

(ω
c
nZ−ωt

)
. (2.12)
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Variable Symbol Value Unit

Real part of the refractive in-
dex for Mo @1053 nm

n(Mo) 2.33 1

Imaginary part of the refrac-
tive index for Mo @1053 nm

κ(Mo) 4.34 1

Table 2.5.: Refrative index data of molybdenum77

The peak intensity I0 of a monochromatic plane wave can be derived from the time average
over the pointing vector < S >78 and is determinable over the measurable mean laser power
P̄ in combination the beam radius w0.

< S >=
1

T

T∫
0

S dt =

T∫
0

e
i

(ω
c
nZ−ωt

)
dt = I0 =

P̄

w0
=
c ε0 n

2
E2

0 (2.13)

This relationship further utilizes that the square average of any harmonic function is equal
to 1/2. It is assumed that k of Mo is constant during the ablation process. This assumption
is widely used for metals under the normal skin approximation10 in contrast to a changing
refractive index in semiconductor and dielectrics that is for example used for phase change
materials79,80 during the interaction of high intense laser pulse. Now, the light intensity inside
the Mo-layer can be written as:

I(Z) = I0e
−2

(ω
c
kZ

)
. (2.14)

The therm −2
(ω
c
k
)
can be expressed as the optical absorption coe�cient αopt.

αopt = −2
ω

c
k (2.15)

By substituting equation 2.15 into equation 2.14 the Beer-Lambert Law is obtained. This
approach is quite common for modelling ultra short laser pulse absorption in metals.61�63

I(Z) = I0e
−αoptZ (2.16)

A di�erent approach of the Beer-Lambert Law is derived from its state that the di�erential
decay of the radiation intensity in an absorbing media is proportional to the di�erential
propagation length. Equation 2.17 shows this relationship in form of a �rst order ordinary
di�erential equation (ODE).

dI = −αopt I (Z) dZ (2.17)

Here I(Z) is the Intensity of the laser beam at the depth Z inside the Mo-layer measured
from the Mo-glass interface of the incident laser beam.
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2.5.3. Re�ectivity, transmittance and absorption

In general, light propagating through a media can experiences re�ection, absorption, trans-
mission, scattering and re-emission. For the present study only the �rst three e�ects were
taken into account. The re�ectivety Ropt, transmittance Topt and absorption Aopt (re�ected,
transmitted and absorbed power) of an normal incident plane wave can be derived by equa-
tions 2.18. In the case of normal incidence for a plane wave, the polarization has no contri-
bution on the re�ectivety, transmission and absorption.

Ropt =
∣∣ropt∣∣2 =

(n1 − n2)2 + (κ1 − κ2)2

(n1 + n2)2 + (κ1 + κ2)2
(2.18a)

Topt =
ñ2

ñ1

∣∣topt∣∣2 = k

∣∣∣∣ 4ñ1ñ2

ñ1 + ñ2

∣∣∣∣2 (2.18b)

Aopt =

{
(1−R) for T=0

(1−R− T ) otherwise
(2.18c)

where ropt and topt is the re�ection and transmission coe�cient, respectively. The absorption
value used in this model for a laser beam transmitted through the glass and absorbed by the
Mo-layer is 50 % and nearly identical with measurements of a compareable Mo-glass interface
reported by Heise et al.25 obtained with a spectral photometer and a laser source with a peak
�uence of 0.02 J/cm2 in combination with a wavelength and pulse duration of 1064 nm and
10 ps, respectively (�gure 2.8).

Figure 2.8.: Re�ectivity and absorption of a Mo-glass sample. The solid black line and the black
rectangle indicates re�ectivtiy measurements with a spectral photometer and a laser source with a
wavelength and pulse duration of 1064 nm and 10 ps, respectively.14 The solid red line and red
circle are the corresponding calculated absorption values in the Mo-layer. The glass substrate was
assumed to be perfectly transparent.

No contributing interference e�ects were expected with the present layer system and the
transfer matrix method is not applied for the absorption calculation.81 All re�ectivity values
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Variable Symbol Value Unit

Re�ectivity air-glass interface @1053 nm RAG 0.0457 1

Re�ectivity glass-Mo interface
RGM

{
0.50 (photometer @1053 nm)14

1
0.48 (laser @1064 nm)14

Absorption Mo AGM


0.48 (photometer @1053 nm)14

10.48 (laser @1064 nm)14

0.50 (this study @1053 nm)

Table 2.6.: Re�ectivtiy and absorption data of a Mo-glass sample

for each interface and the absorption values for Mo are summarized in in table 2.6. It is noted,
that the transient absorption of the Mo-layer with 660 fs could be higher. The transient
absorption of a high intens laser pulse may di�er from the steady-state value depending on
the choice of material.82,83 For metals, the heating of the electronic subsystem in�uences the
absorption behavior through electron-electron scattering and can increase and decrease the
absorption during the laser pulse interaction. For semiconductor and dielectrics the transient
absorption caused by an ultra short laser pulse can even be raised by magnitudes in comparison
to the steady-state absorption due to the generation of free carrier by excitation over the
fundamental band gab as well as avalanche or impact ionization. Due, to the lack of transient
absorption model data for Mo, a steady-state absorption value was used.

2.5.4. Laser source model: Spacial and time domain

For later comparison with experimental results, performed with a mode-locked laser source
with a transverse electromagnetic modes (TEM00) Gaussian beam pro�le, the intensity dis-
tribution is assumed to be Gaussian in spacial radial direction:

I (R) = I0 e
−

2(X2 + Y 2)

w2
0 = I0 e

−
2R2

w2
0 (2.19)

here, w0 is the focal beam radius at e−2 intensity level and R is the radial spacial cylindrical
coordinate transformed from the polar coordinates X and Y .

For a precise description of the time domain a squared hyperbolic secant shaped (equa-
tion 2.20) was selected instead of a Gaussian distribution. The �xed phase relationship be-
tween the longitudinal modes in the frequency domain inside a mode-locked laser cavity, which
is used for ultra short pulsed lasers produces such a pulse shape:

I(t) = I0 sech
2

(
1.76 (30−12s− t)

τp

)
(2.20)

here, τp is the pulse duration at full width half maximum (FWHM) value and t is the time
parameter. The laser pulse intensity maximum is centered at 30 ps to include its rising slope.

The intensity distribution in the spacial radial direction and in the time domain is illustrated
in �gure 2.9. It is worth mentioning that the Guassian shape function and the Hyperbolic
secant square shape function are similar, due to their relation with the Euler function (see
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section A.1.2). The produced distribution in space and time di�er by the fact that the
Gaussian shape has a narrower slope.

Figure 2.9.: Normalized intensity distribution of a mode-locked laser pulse with a TEM00 in the
spacial radial I(R) and time I(t) and domain, respectively. The height of the surface is normalized
to one and the color is set for better visibility.

Despite a real laser beam with a �nite divergence even for a perfect Gaussian beam, the
intensity distribution in spacial axial direction (towards the beam propagation) is assumed
to be perfectly parallel. This assumption is carefully chosen, such that it is valid for a very
small length. The beam radius distribution along the spacial Z coordinate can be calculated
by equation 2.21:

w(z) = w0

√
1 +

(
Z

ZR

)2

with ZR =
πw2

0

λ
(2.21)

with the Rayleigh length ZR which is de�ned by the propagation distance along the spacial
Z coordinate from the focal beam radius w0 to the point where the beam radius w has
expanded by a factor of

√
2. The beam waist is illustrated in �gure 2.10. For the current

value of w0 and λ (table 2.2) the Rayleigh length ZR was calculated to ∼1.3 mm, which is a
factor of thousand higher than the Mo-layer thickness and thus the consideration of a parallel
beam is an excellent assumption.

For further comparison with experimental data, I0 needs to be expressed in terms of mea-
surable quantities. That is to say, the peak �uence Φ0 and the pulse duration τp according
to equation 2.22. The �rst can be derived from the mean optical laser power P̄ calculated in
section A.1.3.

Φ0 = I0

∞∫
−∞

I(t) dt = I0

∞∫
−∞

sech2(
1.76 t

τp
) dt = I0

2τ

1.76
→ I0 =

1.76 Φ0

2 τp
(2.22)
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Figure 2.10.: Illustration of the beam waist along the beam propagation and inside the Mo-layer. The
dimension of the Mo-layer is stretched for better visibility.

Equation 2.19, 2.20 and 2.22 can be combined to the complete laser intensity distribution,
that is absorbed by the Mo at the Mo-glass interface:

I4(R, t) = (1−Ropt)︸ ︷︷ ︸
Aopt

1.76 Φ0

2 τp
e
−

2R

w2
0 sech2

(
1.76 (30 · 10−12s− t)

τp

)
(2.23)

here, the total optical re�ectivity Ropt of the Mo-glass sample is included with the therm
(1−Ropt) as the absorbed fraction of the laser intensity.

2.5.5. Finite element formulation

One way to initialize the �nite element formulation for the Beer-Lambert law intensity dis-
tribution from Equation 2.17 is achieved by the so-called strong form of the stationary
convection-di�usion equation according to equation 2.24:

∇ · (∇I + αoptI) = 0, (2.24)

with the optial absorption tensor αopt =

[
0 0
0 αopt

]
.

The advantage of this general form is the possibility to consider also intensity dependent
absorption processes, even though it was not the scope of this work. A common approach
for the �nite element method implementation is utilized by the so-called weak formulation.84

The word "weak" in weak form arises from the weak requirement such that the the �rst
derivative of I is integrable and I is continuous in contrast to the strong form where the
second derivative of I has to be continuous. Equation 2.24 is transformed to its weak form
according to equation 2.25. For this purpose equation 2.24 is multiplied by a arbitrary test
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function v = v(R,Z) which has to satisfy the requirement of continuously di�erentiable and
is integrated over the hole domain Ω0. The test function v is part of the Hilbert space. It
is indicated that in general equation 2.25 is a stationary equation and the time parameter t
only appears in the boundary condition of ∂Ω4.

∫
Ω0

v∇ · (∇I + αoptI) dV0 = 0 (2.25)

Then, the divergence theorem is applied to equation 2.25:

∫
Ω0

v∇ · (∇I + αoptI) dV0 =

∫
∂Ω0

v (∇I + αoptI)T n dA0 −
∫
Ω0

(∇v)T (∇I + αoptI) dV0 = 0.

(2.26)

This volume integral expansion is explained in section A.1.4. The volume and the surface
integral is equal to the integral over the coordinate components. For a axial symmetric
geometry it yields to:

∫
Ω0

(·) dV0 =

∫
R

∫
Z

∫
Θ

(·) R dR dZ dΘ for the volume (2.27a)

∫
∂Ω0

(·) dA0 =

∫
R

∫
Z

∫
Θ

(·) R dR dΘ for the surface (2.27b)

2.5.6. Optical boundary conditions and initial values

The optical boundary conditions were axisymmetric in the case of ∂Ω1 and "zero �ux" for all
other boundaries (see �gure 2.11). In addition, the intensity distribution in spacial radial di-
rection and in the time domain was de�ned on ∂Ω4 according to equation 2.23. The boundary
conditions are summarize in table 2.7. The boundary conditions ∂Ω2, ∂Ω3 and ∂Ω4 ensures
the conversation of the �ux −n ·∇I = 0 which is equal to the absence of a heat source inside
the domain.

Figure 2.11.: Boundary condition for the optical absorption model.
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B.C. Intensity

∂Ω1 Axisymmetric

∂Ω2 −n · (∇I + αoptI) = 0

∂Ω3 −n · (∇I + αoptI) = 0

∂Ω4

{
I4(R, t)− I = 0 (eq 2.23)

−n · (∇I + αoptI) = 0

Table 2.7.: Optical boundary conditions (b.c.)

The initial values were set as follows. The Intensity at time zero had a negligible but
in�nite value of one for convergence reasons. The initial intensity time derivative was zero
(see equation 2.28).

I(t = 0) = 1;
∂I

∂t
(t = 0) = 0 (2.28)

2.5.7. Analytic formulation

Basically, an ultra short laser pulse are able to provide photon densities which are su�cient for
nonlinear (multi-photon) absorption and thus the absorption may depends on the intensity.
Multi-photon absorption occurs typically in semiconductor and insulators where the band gab
is greater than the photon energy of the laser beam. If an electron is excited from the valence
to the conduction band a hole is produced in the valence band. Equation 2.29 describes the
intensity decay during the absorption from the surface into the material.

I (z) = I0

(
e−αopt Z + e−βopt Z I + e−γopt Z I

2
+ ...

)
(2.29)

Metals, initially provides a very high free-like electron density in the conduction band.
These electrons are able to absorb photons by linear absorption (single-photon) resulting in
higher electron energies and subsequent higher electron temperature. Only single photon ab-
sorption is considered in this study. The absorption is considered to be linear and independent
from the intensity. For this special case equation 2.17 can be further solved to its analytic
solution:

I (z) = I0 e
−αopt Z . (2.30)

Equation 2.23 and equation 2.30 can be combined to the complete laser intensity distribu-
tion inside the Mo-layer:
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I(R,Z, t) = (1−Ropt)︸ ︷︷ ︸
Aopt

1.76 Φ0

2 τp
e−αopt Z e

−
2R

w2
0 sech2

(
1.76 (30−12s− t)

τp

)
. (2.31)

2.6. Thermal heat di�usion and phase change model

2.6.1. Thermal heat transfer

In the present subsection the heat transfer initiated by the laser intensity distribution (equa-
tion 2.31) is described. Heat transfer in a solid matter can occurs in form of radiation and
di�usion. At �rst a calculation is introduced to estimate the contribution from each of the
both physical mechanisms. In case of heat transfer by radiation the heat �ux can be described
by the Stefan-Boltzmann equation.

ql = εthσth(T 4
l − T 4

ref ) (2.32)

where ql is the heat �ux, Tl and Tref is the actual temperature and the ambient temper-
ature, respectively, εth is the emissivity and σth is the Stefan�Boltzmann constant. With an
estimated temperature di�erence of ∆T = 5000 K (above Mo evaporation) the heat �ux in
the radiation case is in the order of 35 MW/m2. In case of heat transfer by di�usion in solid
matter the heat �ux can be described by Fourier's law:

q = kl∇Tl = kl
∂Tl
∂Z
≈ kl

∆Tl
∆Z

(2.33)

here kl is the thermal conductivity and ∇Tl is the temperature gradient which can be
written in cylinder coordinates as:

∇Tl =
∂Tl
∂R

ER +
1

R

∂Tl
∂Θ

EΘ +
∂Tl
∂Z

EZ (2.34)

Here, ER,Θ,Z is the unity vector in the radial, azimuthal and axial direction, respectively.
With the same estimated temperature di�erence of ∆T = 5000 K (above Mo evaporation) as
in the radiation case and the Mo-layer thickness as the length di�erence ∆z the heat �ux by
di�usion is in the order of 1.5 TW/m2. This value for the heat �ux is �ve orders of magnitude
higher than in the radiation case. Thanks to the result of this estimation it was possible to
take only heat transfer by conduction into account and neglect the contribution for the heat
transfer by radiation.
The heat transfer by conduction in solid matter can be described by the heat equation in

form of a second order parabolic partial di�erential equation (PDE):

ρ Cl

(
∂Tl
∂t

)
−∇ · (kl∇Tl)−Q = 0 (2.35)

here, ρ is the mass density, Cl is the heat capacity, Tl is the Temperature, t is the time
parameter, kl is the thermal conductivity and Q is a volumetric heat source.
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The divergence of the temperature gradient in cylindrical coordinates is introduced in sec-
tion A.2.1.

2.6.2. Two temperature model

By optically exiting a metal with an ultra-short laser pulse, the electrons are initially in
non-equilibrium distribution for a very short time duration. This time duration is in the
order of a few fs as illustrated in �gure 2.12 (a),85 the electron transport is considered as
ballistic. Subsequent, electron-electron equilibrium is achieved by thermalization and a Fermi
distribution is formed (see �gure 2.12 (b)85). At this time an electron temperature can be
de�ned and the heat di�usion inside the electron sub-system is ascribed.61,62,64,85�90

Figure 2.12.: Relaxation phases of optical excited electron in metals. (a) nonequilibrium electron
distribution which may results in ballistic electron motion. (b) Electons are relaxed to thermal
equilibrium and a Fermi distribution. The electron di�usion is driven by a temperature gradient.
(c) Electrons and lattice are in equilibrium.(Picture and caption obtained from Hohlfeld et. al.85)

The e�ect of ballistic electron distribution for di�erent metals are still under debate.61,74,91�93

Thus, in this study only the thermalized electrons with a de�ned Fermi distributed temper-
ature was taken into account, which is a common approach for laser material processing
simulation.
For ultra-short pulse laser heating the heating rate τh is comparable to or shorter than

the electron-phonon collision frequency τep (τh 6 τep).64,88,94�96 In the present case with a
heating rate of about 1015 K/s the classical one temperature Fourier law needs to be extended
to a two temperature approach, where the electron and lattice subsystem are described by
two coupled heat di�usion equations:64

ρCe(Te)
∂Te
∂t
−∇(ke(Te, Tl)∇Te)−G(Te − Tl)−Q = 0 (2.36a)

ρCl(Tl)
∂Tl
∂t
−∇(kl ∇Tl) +G(Te − Tl) = 0. (2.36b)
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where, T is the temperature, ρ is the mass density, C are the heat capacity at constant
pressure, k are the speci�c thermal conductivity and G is the electron�phonon coupling con-
stant. The subscripts e and l label electron and lattice, respectively. The electron and lattice
temperature are typically attain equilibrium on a time scale of tens of picoseconds (see �g-
ure 2.12(c)).85

Heating of the Mo-layer was initiated by a volumetric heat source Q, which is exclusively
introduced in the electron subsystem. The implementation of Q can be achieved by taking
the derivative of I (equation 2.31) with respect to Z:

Q (r, z, t) =
∂I (R,Z, t)

∂Z
. (2.37)

Finally, the heat source exhibits the following form:

Q (R,Z, t) = (1−Ropt)︸ ︷︷ ︸
Aopt

1.76 Φ0

2τp
e
−

2R

w2
0 αopt e

−αopt Z sech2

(
1.76 (30 · 10−12s− t)

τp

)
. (2.38)

2.6.3. Phase change model

During laser pulse heating a material can undergo phase changes if the melting and evapo-
ration point is exceeded. A phase change model was applied to the tow-temperature model
(see equation system 2.36) which is exclusively implemented into the lattice subsystem equa-
tion 2.36b by the lattice heat capacity with the heat of melting and evaporation:

Cl(Tl) = a+ ∆HM b e
− 1

2

(
Tl − TM

∆Tl

)2

+ ∆HV c e
− 1

2

(
Tl − TV

∆Tl

)2

. (2.39)

All included parameters are described in table 2.3. Two Gaussian functions of �nite width
∆Tl were centered around the melting temperature TM and the evaporation temperature TV .
This approach is an approximation in contrast to a delta function which gives the mathemati-
cal exact solution but it was unavoidable to make the model numerically solvable. Figure 2.13
illustrates the function of the lattice heat capacity in dependence on the lattice temperature.
The enthalphy is also plotted in this �gure to demonstrate the rise in internal energy during
the phase transitions. The heat of evaporation for molybdenum ∆HV is approximately 16
times higher than the heat of melting ∆HM . For the liquid speci�c heat the same value is
chosen than for the solid material.

2.6.4. Finite element formulation

The implementation of the heat di�usion equation into the FEM formulation leads to a non-
linear problem, since the heat capacity Cp;e,l and the thermal conductivity ke depends on the
Temperature Te,l. The equation system 2.36 is converted to its weak form with an arbitrary
test function v, like in the intensity case:
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Figure 2.13.: Heat capacity and enthalpy vs. temperature. The latent heat for melting and evapora-
tion is modelled by a Gaussian distribution.

∫
Ω0

v ρ Cp;e(Te) Ṫe dV0 −
∫
Ω0

v∇ ·
qe(Te,Tl)︷ ︸︸ ︷

(−ke(Te,Tl)∇Te) dV0 −
∫
Ω0

v (Q−G (Te −Tl)) dV0 = 0

(2.40a)∫
Ω0

v ρ Cp;l(Tl) Ṫl dV0 −
∫
Ω0

v∇ · (−kl∇Tl)︸ ︷︷ ︸
ql(Tl)

dV0 −
∫
Ω0

v (G (Te −Tl)) dV0 = 0.

(2.40b)

The thermal conductivity matrix for the electron and lattice sub-system, respectively is
de�ned by

qe,l = ke,l ∇ Te, l =

[
qR;e,l

qZ;e,l

]
= −

[
kRR;e,l 0

0 kZZ;e,l

]
∂

∂R

∂

∂Z

Te,l (2.41)

.

For an isotropic material kRR;e,l = kZZ;e,l can be assumed.

The divergence theorem is applied to the second therm of equation 2.40a and 2.40b. For
simplicity only one equation is used for the formulation with subscripts denoting the electron
or lattice heat equation.

∫
Ω0

v∇ · (−ke,l(Te,l)∇Te,l) dV0 =

∫
∂Ω0

v (ke,l(Te,l)∇Te,l)
T n dA0 −

∫
Ω0

(∇v)Tke,l(Te,l)∇Te,l dV0

(2.42)

By inserting equation 2.42 into equation 2.40a and 2.40b it yields to:
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∫
Ω0

v ρ Cp;e(Te) Ṫe dV0 +

∫
Ω0

(∇v)Tke(Te,Tl)∇Te dV0 =

∫
Ω0

v (Q−G (Te −Tl)) dV0 −
∫
∂Ω0

v (ke(Te,Tl)∇Te)
T n︸ ︷︷ ︸

qe(Te,Tl)

dA0 (2.43a)

∫
Ω0

v ρ Cp;l(Tl) Ṫl dV0 +

∫
Ω0

(∇v)Tkl∇Tl dV0 =

∫
Ω0

v (G (Te −Tl)) dV0 −
∫
∂Ω0

v (kl∇Tl)
T n︸ ︷︷ ︸

qe(Tl)

dA0. (2.43b)

By rearranging equation 2.43a and 2.43b the electron and lattice temperature can be sep-
arated in each therm of the equations:

∫
Ω0

v ρ Cp;e(Te) Ṫe dV0 +

∫
Ω0

(∇v)Tke(Te,Tl)∇Te −G Te dV0

−
∫
Ω0

v G Tl dV0 = −
∫
Ω0

v Q Tl dV0 +

∫
∂Ω0

v (ke(Te,Tl)∇Te)
T n︸ ︷︷ ︸

qe(Te,Tl)

dA0 (2.44a)

∫
Ω0

v ρ Cp;l(Tl) Ṫl dV0 +

∫
Ω0

(∇v)Tkl∇Tl −G Tl dV0

+

∫
Ω0

v G Te dV0 =

∫
∂Ω0

v (kl∇Tl)
T n︸ ︷︷ ︸

qe(Tl)

dA0. (2.44b)

2.6.5. Thermal boundary conditions and initial values

For the electron heat di�usion subsystem, all boundaries were modeled as thermally insulated,
such that the heat is completely transferred to the lattice inside the domain. For the lattice
heat di�usion sub-equation, �gure 2.14 and table 2.8 gives an overview of the selected thermal
boundary conditions.

Figure 2.14.: Boundary conditions for the thermal model.
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The boundary condition ∂Ω1 was modeled as axisymmetric. The boundary towards the
air side ∂Ω2 are treated as insulated. The boundary conditions for the interface to the
continuous Mo ∂Ω3 and towards the glass substrate ∂Ω4, however, were carefully selected to
model the temperature evolution precisely, after the large temperature inhomogeneity within
the �lm thickness has decreased. Then, after about a nanosecond, the radial temperature
distribution in the layer and the resulting forces depend predominately on the heat losses
to the outside region. ∂Ω3 to the radially continuing metal layer was modeled as a Newton
boundary condition. This is su�cient because the radial extension of the simulation domain
is su�ciently large, such that the major fraction of the heat loss is to the glass. ∂Ω4 to
the glass substrate is derived from the Green function of the heat equation with heat loss to
an in�nite half space de�ned by the thermal conductivity kgl and heat capacity Cp;gl of the
glass. The thermal state of the half space was implemented in the temperature gradient along
the boundary. Additionally, a gap of width u between the bulging metal and the glass had
been taken into account in the e�ective conductivity λeff . The accuracy of this boundary
condition has been con�rmed with a variety of test calculations containing the glass substrate
in an extended domain instead of the boundary condition.

B.C. Lattice temperature Electron temperature

∂Ω1 Axisymmetric Axisymmetric

∂Ω2 − n(kl∇Tl) = 0

∂Ω3

{ −n(kl∇Tl) = q0

q0 = h(Tl;ext − Tl)


−n(kl∇Te) = 0

∂Ω4 −n(kl∇Tl) = −λeff

(
Tl

√
ρCp;gl
kglπt

+
dTl
dt

√
ρCp;glt

kπ

)

Table 2.8.: Boundary conditions (B.C.) for the lattice and electron heat di�usion sub-equation.

Variable Symbol Value Unit

E�ective heat conductivity λeff

0.5 · 10−6 − u(
0.5 · 10−6 − u

1.4

)
+

(
−u
0.03

)
W/(mK)

Heat transfer coe�cient q0 70 106 W/m2

Table 2.9.: Parameters for the boundary condition models

The initial values are set as follows. The electron and lattice temperature at time zero was
set to room temperature, respectively.

Te,l(t = 0) = 273.14 K (2.45)
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2.7. Thermal expansion model

The lattice temperature Tl calculated in the previous section 2.6 is able to initiate a thermal
expansion in the Mo-layer. This thermal expansion may causes mechanical motion of the
Mo-layer which is subjected to inertia forces, thermal and deformation stress in the volume,
pressure and adhesion forces at the boundary. It may leads to large and possibly nonlinear
deformation. Moreover, plastic deformation can occur and damping e�ects are introduced on
oscillatory motion. For large displacements, tow coordinate systems are required. The �rst
is the reference material frame which is the �xed in space and the second is the so called
current spacial frame which is �xed to the moving and deformed body. The implementation
of the equations in structural mechanics were based on the principle of virtual work. A total
Lagrangian description was used exclusively for the structural analysis. In this description
all variables from the equations of virtual work are used in the material con�guration. The
description for solid mechanics presented here can be found in many textbooks e.g.97�100 All
materials were assumed to be isotropic. This assumption provides a su�cient good represen-
tation of the poly-crystalline Mo and the amorphous glass substrate.

2.7.1. Kinematics

Initially the body (a cylindrical disc) is in a stress free un-deformed reference con�guration
and its geometry is described by cylindrical coordinated R, Θ and Z:

0 6 R 6 A; 0 6 Θ 6 2π; 0 6 Z 6 B (2.46)

here, A and B is the radius and the height of the cylinder, respectively. During deformation
the geometry in the un-deformed material con�guration is mapped to the spacial con�guration
which can be described by a nonlinear mapping function ϕ. The domain Ω0 and the boundary
∂Ω0 were de�ned in the reference domain, while Ω and ∂Ω were implemented in the current
domain, respectively. All domains and boundaries are a subset of the three dimensional real
number space R3. Figure 2.15 illustrates a mapping of a point P to a point p via ϕ.
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Ω

t = t1

Figure 2.15.: Mapping from the material to the spacial frame.

ϕ : Ω0 → Ω; Ω0,Ω ⊆ R3

ϕ : X→ x(X, t) (2.47)

X =
[
R,Θ, Z

]T are points in the material coordinate system which are mapped via ϕ to

points x =
[
r, θ, z

]T in the spacial coordinate system. The basis vectors of the un-deformed

material geometry are written in upper case letters ER, EΘ and EZ while its spacial geometry
are written in lower case letters er, eθ and ez.

X = REr + ΘEΘ + ZEz (2.48a)

x = rer + θeθ + zez (2.48b)

The displacement of the points from the material con�guration to points in the spacial
con�gurations is described by:

u(X, t) = x(X, t)−X, (2.49)

(2.50)

with the displacement vector u which is a function of space and time. For the present
axisymmetric geometry u is presented in cylindrical coordinates and only depends spatially
on the R and Z coordinate, while the Θ coordinate vanishes due to the rotational symmetry:

u(X, t) = u(R,Z, t)Er + w(R,Z, t)Ez =

[
u(R,Z, t)
w(R,Z, t)

]
. (2.51)
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The radial displacement coordinate u was replaced by a new dependent variable uor =
u

r
to

avoid singularities for inverse values near the rotation axis.101,102 It is worth mentioning that
the displacement �eld u is the solution vector which need to be solved by the �nite element
method.

Two forms of the gradient-operators are introduced. One is the spacial gradient for the
current frame and the other is the material gradient for the reference frame.

∇(·) =
∂·
∂x

Er
∂(·)
∂r

+ Eθ
∂(·)
∂θ

+ Ez
∂(·)
∂z

for the spacial frame (2.52a)

∇(·) =
∂·
∂X

ER
∂(·)
∂R

+ EΘ
∂(·)
∂Θ

+ EZ
∂(·)
∂Z

for the material frame, (2.52b)

here, (·) represents an arbitrary di�entiable variable.

The deformation gradient

The deformation gradient F is introduced with the general property of mapping tensors form
the reference con�guration to the current con�guration. It has the from of a non symmetric
second-order tensor. For body changes of a line, the deformation gradient F has the property
to map a in�nitesimal line element dX from the initial con�guration to a in�nitesimal line
element dx in the current con�guration: F := dX→ dx

F =
∂x(X, t)

∂X
=
∂(X + u)

∂X
= I +

∂u(X, t)

∂X
= I + ∇X, (2.53)

with I as the second order identity tensor (see section A.2.2). A complete description of
the deformation gradient in cylindrical coordinates can be found in section A.3.1.

The determinant of the deformation gradient is called the Jacobian-determinant J of the
deformation. It has to be non-singular and positive, to preserve the orientation.

J := detF > 0 (2.54)

The Jacobi-determinant can map a in�nitesimal surface element dA from the current con-
�guration to the reference con�guration dA0 and vice versa:

dAn = dx× dy = (FdX)× (FdY) = ( J︸︷︷︸
detF

F−T )(dX× dY) = (JF−T )dA0n0, (2.55)

here, n =
dx× dy
‖ dx× dy ‖ and n0 =

dX× dY
‖ dX× dY ‖ are the unit normal vector pointing from a

surface element A and A0 in outward direction from its surface for the spacial and material
version, respectively and || · || is the L2 − norm.

The Jacobian-determinant can be further used for mapping a volume element dV from the
current to the reference con�guration dV0 and vice versa:
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dV = (dx× dy) · dz = (FdX)× (FdY) · FdZ = J (dX× dY) · dZ︸ ︷︷ ︸
dV0

⇒ dV

dV0
=
ρ0

ρ
= det(F) = J (2.56)

In the case of J = 1 the deformation state can be considered as incompressible.

Polar decomposition

By spliting F into a rotational part R and stretch part U and V for material and spatial
frame respectively, it yields to:

F = RU = VR. (2.57)

This splinting is called the polar decomposition of the deformation gradient. R performs a
rotation, while U and V lead to a stretch of the geometry.

The stretch is in general de�ned as the ratio of the current length and the initial length:

λ =
L

L0
(2.58)

The stretches λi in principle directions is de�ned as the ratio of a length element dli in the
spacial frame with a length element dLi in the material frame:

λi =
dli
dLi

(2.59)

This formulation can be extended to a change in volume by the ratio of the current volume
and the initial volume:

V

V 0
= λ1λ2λ3 (2.60)

λ1, λ2 and λ3 are the three eigenvalues of U and introduced as principal stretches.

The right Cauchy-Green deformation tensor C is de�ned by:

C = FTF (2.61)

A fully description of C in cylindrical coordinates is found in section A.3.2. One useful
property of the right Cauchy-Green deformation tensor is the determination of the deformation
in the material frame without knowing the rotation. This is can be very helpful for stress
determination in which only the deformation is required and not the rotation.
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C = UT RTR︸ ︷︷ ︸
I

U = UU = U2 (2.62)

UT = U since U is a symmetric matrix. Further C and U can be expressed as:

C =
3∑
i=1

λ2
i Ni ⊗Ni; U =

3∑
i=1

λi Ni ⊗Ni (2.63)

with, the eigenvectorsN1, N2 andN3 of C in the principle directions and their corresponding
eigenvalues λ1, λ2 and λ3, respectively. The tensor product ⊗ is expalined in section A.3.7.
The left Cauchy-Green deformation tensor B can be used for the determination of the

deformation in the spacial frame without knowing the rotation.

B = FFT (2.64)

B = V RTR︸ ︷︷ ︸
I

VT = VV = V2 (2.65)

as in the case of U also VT = V since V is a symmetric matrix. Finally, B and V can be
expressed as:

B =
3∑
i=1

λ̄2
i ni ⊗ ni; V =

3∑
i=1

λ̄i ni ⊗ ni =
3∑
i=1

λi (RNi)⊗ (RNi) (2.66)

with, the eigenvectors n1, n2 and n3 of B in the principle directions and their corresponding
eigenvalues λ̄1, λ̄2 and λ̄3, respectively. The eigenvectors and eigenvalues exhibit the following
relation:

λ̄i = λi; ni = RNi; with i=1,2,3 (2.67)

The rotational part R rotates N1, N2 and N3 into n1, n2 and n3, respectively.

The strain tensor

The engineering strain (Cauchy strain) in general is de�ned as relative change in length L of
a body:

ε =
∆L

L0
. (2.68)

Here, the ∆L is used for an absolute change in the length L− L0 and L0 is the initial
length. The true strain εtrue can be de�ned with the stretch λ:

34



εtrue = log
L

L0
= log λ. (2.69)

For a three dimensional disc, as used in the present model, the strain becomes a second
order tensor with cylindrical coordinates.

ε =

εrr εrθ εrz
εθr εθθ εθz
εzr εzθ εzz

 . (2.70)

The components εrθ and εzθ are zero due to the axisymmetry and equation 2.70 reduces to:

ε =

εrr 0 εrz
0 εθθ 0
εzr 0 εzz

 . (2.71)

With γrz = εrz + εzr = 2εrz the stress tensor can be further reduced to a vector by Voigt's
notation (see section A.3.3):

ε =
[
εrr εzz εθθ γrz

]T
(2.72)

The Green-Lagrange strain tensor for material con�guration is de�ned by:

EGL =
1

2

(
FTF− I

)
=

1

2
(C− I) =

1

2

(
U2 − I

)
=

3∑
i=1

1

2
(λ2
i − 1) Ni ⊗Ni

=
1

2

[
(∇ u)T + ∇ u + (∇ u)T ∇ u

]
. (2.73)

For small stains the Green-Lagrange strain EGL relaxes to the engineering strain ε:

lim
∇u→0

EGL := ε =
1

2

[
(∇ u)T + ∇ u

]
. (2.74)

The variation of the Green-Lagrange strain tensor reads

δEGL =
1

2
δ
(
FTF− I

)
=

1

2

(
δFTF− FT δF

)
. (2.75)

The Euler-Almansi strain tensor is de�ned in the spacial con�guration:

EEA =
1

2

(
I−

(
FFT

)−1
)

=
1

2
I−B−1 =

1

2
I−V−2 =

3∑
i=1

1

2
(1− λ−2

i ) ni ⊗ ni. (2.76)

The thermal strain is de�ned by:
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Eth = αthθth (2.77)

with θth = (Tl − Tref ) is the di�erence between the current temperature Tl and the initial
reference Temperature Tref and αth is the thermal expansion tensor which is de�ned by:

αth =

αth;rr αth;rz αth;rθ

αth;θr αth;θz αth;θθ

αth;zr αth;zz αth;zθ,

 (2.78)

or in Voigt's notation:

αth =
[
αR αZ αΘ αRZ

]T
. (2.79)

For a linear isotropic material the thermal strain can be written with the scalar thermal
expansion coe�cient αth:

Eth = αthθth
[
1 1 1 0

]T
. (2.80)

The volume change due to the thermal expansion can be calculated by:

Vth = (1 + αth(T − Tref ))3. (2.81)

Velocity, acceleration and rate of deformation

The velocity and acceleration can be derived from the �rst and second time derivative of the
displacement �eld u(X, t) at the position x.

v(X, t) = u̇(X, t) =
∂u(X, t)

∂t
=
∂u(X, t)

∂t

∣∣∣∣
x

(2.82a)

a(X, t) = v̇(X, t) =
∂2u(X, t)

∂t2
=
∂2u(X, t)

∂t2

∣∣∣∣
x

(2.82b)

The rate of the materiel deformation can be expressed through the velocity gradient. The
material velocity gradient can be written as the �rst time derivative of the deformation gra-
dient.

Ḟ =
∂F

∂t
=
∂x

∂t
=
∂u

∂t
= ∇ẋ = ∇u̇ (2.83)

And the spacial velocity gradient has the form:

L =
∂v(x, t)

∂x
= ∇v = ḞF−1 (2.84)
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with its decomposed form of the symmetric tensor LD = sym(L) (rate of stretching tensor)
and the skew-symmetric tensor LW = skew(L) (rate of rotation):

L = LD + LW =
1

2

(
L + LT

)
+

1

2

(
L− LT

)
(2.85)

The Green-Lagrange strain rate can be expressed as:

ĖGL = FT LD F (2.86)

The stress tensor

The Cauchy stress (true stress) in general can be considered as the internal resistance forces of
a body resulting from a deformation. For a three dimensional disc, the stress can be expressed
as a second order tensor in cylindrical coordinates. The �rst index is subjected to the force
direction and the second index is subjected to the surface normal on which the force acts
(�gure 2.16).

σ =

σrr σrθ σrz
σθr σθθ σθz
σzr σzθ σzz

 (2.87)

θ

r

z

σθθ

σrr

σrz

σzr

σzz

Figure 2.16.: Axisymmetric element for the illustration of the Cauchy stress components.

The components σrθ, σθr, σzθ and σθz are zero due to the axisymmetry and equation 2.87
reduces to:
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σ =

σrr 0 σrz
0 σθθ 0
σzr 0 σzz

 (2.88)

with σrz = σzr the stress tensor has only four independent components (see �gure 2.16)
and can be further reduced to a vector, according to Voigt's notation (see section A.3.3):

σ =
[
σrr σzz σθθ σrz

]T
(2.89)

The traction vector t and T for the material and spacial frame can be de�ned as an
in�nitesimal force df and dF per in�nitesimal area dA and dA0 where the force is acting in
the current con�guration or initial con�guration, respectively.

t(r, θ, z,n, t) =
df

dA
(2.90a)

T(R,Θ,Z,n0, t) =
dF

dA0
(2.90b)

here, n and n0 is the surface normal vector in the spacial and material con�guration,
respectively. Cauchy's theorem states a relation between the Cauchy stress tensor and the
traction vector in the current con�guration.

n · σ(r, θ, z, t) = t(r, θ, z, t) (2.91)

Subsequently, a formulation for the initial con�guration can be established with the �rst
Piola-Kirchho� stress P (PK1).

n0 ·P(R,Θ,Z, t) = T(R,Θ,Z, t) (2.92)

The Kirchho� stress and the �rst and second Piola-Kirchho� stress are introduced by:

τ = Jσ Kirchho� stress (2.93a)

P = JσFT 1st Piola-Kirchho� stress (nominal stress, PK1) (2.93b)

S = JF−1σFT 2st Piola-Kirchho� stress (material stress, PK2) (2.93c)

The Cauchy stress tensor can be easily transformed into the �rst and second Piola-Kirho�
stress by:

σ = J−1P = J−1FSFT . (2.94)
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For a chosen stress measure, a particular strain measure has to be selected. These pairs are
called energy-conjugated stress-strain pair and are listen in table 2.10.

Stress Strain Volume integration
σ ε,EEA Spacial
τ ε,EEA Matrial
P F Matrial
S EGL Matrial

Table 2.10.: Energy-conjugated stress-strain pairs

2.7.2. Balance equations and equilibrium

The balance relation used in coniuum mechnics are the balance laws for mass, linear and
angular momentum, energy and entropy.100 The spacial form can be expressed as:

ρ̇ + ρ∇u̇ = 0 Conservation of mass

ρü(x, t)−∇ · σ(x, t)− fV (x, t) = 0 Conservation of linear momentum

σ = σT Conservation of angular momentum

ρ
∂Wint

∂t
= σ : LD −∇ · q + ρQ Conservation of energy. (2.95)

The material form then reads:

ρ̇0 = 0 Conservation of mass

ρ0ü(X, t)−∇ ·P(X, t)− FV (X, t) = 0 Conservation of linear momentum

S = ST Conservation of angular momentum

ρ0
∂Wint

∂t
= S : ĖGL −∇ · q0 + ρ0Q Conservation of energy. (2.96)

For an elasto-plastic material, the deformation state is irreversible due to energy dissipation
and the Clausius-Duhem inequality is introduced:

σ : LD − ρ
(
ψ̇ + Ṫ η

)
− q

T
∇T ≥ 0, (2.97)

here, η is the speci�c entropy per unit mass and ψ is the Helmholtz free energy. Equa-
tion 2.97 can also be written in a purely mechanical form by

39



σ : LD − ρ ψ̇ ≥ 0. (2.98)

The balance law for linear momentum was used to derive the master equation for the FEM
formulation. It can be derived from Newton's second law with the material time derivative
L̇ which is equal to all external forces Fext acting onto a body. These external forces are the
sum of the volume and surface forces.

d

dt

 ∫
Ω0

ρ0u̇(X, t) dV0


︸ ︷︷ ︸

n∑
i=1

L̇

=

∫
Ω0

FV (X, t) dV0 +

∫
∂Ω0

T(X, t) dA0

︸ ︷︷ ︸
n∑

i=1
Fext

. (2.99)

According to equation 2.92, the last therm is equal to the product of the the �rst Piola-
Kirchho� stress and the normal material vector P · n0. Then, the divergence theorem is
applied:

∫
∂Ω0

T(X, t) dA0 =

∫
∂Ω0

P(X, t) n0 dA0 =

∫
Ω0

∇ ·P(X, t) dV0. (2.100)

Now, the global formulation of the Cauchy equation of equilibrium can be derived:

∫
Ω0

ρ0ü(X, t) dV0 −
∫
Ω0

∇ ·P(X, t)︸ ︷︷ ︸
T(X,t)

dV0 −
∫
Ω0

FV (X, t) dV0 = 0. (2.101)

Equation 2.101 must hold for any arbitrary dV0. Thus, a local material form can be obtained
together with a spacial form which can be derived in the same way:

ρ0ü(X, t)−∇ ·P(X, t)− FV (X, t) = 0 (2.102a)

ρü(x, t)−∇ · σ(x, t)− fV (x, t) = 0. (2.102b)

2.7.3. Damping

A Rayleight damping model is introduced that is characterized by a velocity-dependent friction
which was chosen to damp oscillations on the nanosecond time scale.103 This model can be
introduced by the equation of motion with a single degree of freedom:

mü+ (αdMm+ βdKk)︸ ︷︷ ︸
c

u̇+ ku = f(t), (2.103)

here, m ist the mass, u is the displacement, k is the sti�ness, f(t) is a time dependent
external force and c is the damping coe�cient. The so-called damping parameter αdM and
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βdK was set to zero and 1012 1/s, respectively. The relative damping ξ(ω) is introduced to
illustrate the e�ect on frequency damping:

ξ(ω) =
1

2

(αdM
ω

+ βdKω
)
. (2.104)

Figure 2.17 shows the relative damping in dependence on the angular frequency ω for αdM ,
βdK and the sum of both. The relative damping for αdM is characterized by high damping for
low frequencies while the relative damping for βdK predominantly a�ects higher frequencies. A
superposition of both would lead to a damped frequency range in between. The present choice
of parameters provides an e�cient damping model for high frequencies, while low frequencies
are able to occur. This allows a very realistic model of the material where the computational
time consuming high frequencies vanishes within a certain time scale while the Mo-layer can
still develop low frequency modes during the expansion as it is expected.

Figure 2.17.: Illustration of the relative damping in dependence on the angular frequency ω for αdM ,
βdK and the sum of both.

2.7.4. Thermal expansion at the phase transition

At the phase transition from solid to liquid, the molybdenum gets an additional volume
change of ∼5 %, according to data of Hixson and Winkler.71 This volume change occurs in
a small temperature interval around the melting temperature. The direct implementation of
this e�ect into a numerical model leads to volume expansion in a small spatial interval around
the melt front. To avoid numerical instability and convergence problems the thermal strain
is implemented in Comsol Multiphysics� e�ectively by using a volume force model in which
the expansion is smeared out over the whole melting zone. The melting zone is divided into
two segments (rectangular in the axisymmetric projection). In the upper segment the force
is adjusted in the direction to the glass and in the bottom segment the force is directed in
the opposite direction. Equation 2.105 gives the magnitude of the volume forces, which cause
a change of 5 % in the length and �gure 2.18 shows the corresponding geometry. E is the
Young's modulus of molybdenum and zm/2 is the height of each segment.
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FV = ±
2∆l
l E
zm
2

(2.105)

Figure 2.18.: The liquid area is divided in two segments, in which positive and negative volume forces
are generated by the phase transition from solid to liquid.

2.7.5. Constitutive model

Equation 2.102a and 2.102b holds for any arbitrary material. Thus, a constitutive law has
to be included which relates physical quantities with material parameters. Finally, the con-
stitutive equations in combination with the kinematic relations and balance laws can give a
complete desrciption of the mechanical motion and the deformation of the body. To �nally
solve equation 2.102a and 2.102b the stress has to be computed. For linear materials Hook's
law as a tensor equation can be applied which relates the stress with the strain in a linear
dependency through the 4th order linear elastic material tensor Cel.

σ = Cel : εel = Cel : (ε − εinel)
(2.106)

here, (:) is the double dot tensor product (see section A.3.5). Cel exhibits the following
symmetry property:

Cel;ijkl = Cel;jikl = Cel;klij (2.107)

which yields to a reduction of maximum components from 81 to 21. For axisymmetric
geometry Hook's law can be de�ned in the following form:


σrr
σzz
σθθ
τrz

 = Cel


εrr
εzz
εθθ
γrz

 (2.108)

The Lamé constants λ and µ are introduced as material parameters to de�ne the sti�ness
tensor Cel:
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Cel = λ1⊗ 1 + 2µI. (2.109)

Here, 1 is the second-order identity tensor and I is the fourth-order identity tensor (see
section A.2.2 and A.3.6).

The Lamé constants λ and µ can be expressed in terms of the Young's modulus E and the
Poisson ratio ν and vice versa:

λ =
Eν

(1 + ν)(1− 2ν)
; µ =

E

2(1 + ν)
;

E =
µ(3λ+ 2µ)

λ+ µ
; ν =

λ

2(λ+ µ)
. (2.110)

.

Further, the shear modulus G and the bulk modulus K can be written as a function of E
and ν:

G =
E

2(1 + ν)
; K =

E

3(1− 2ν)
. (2.111)

.

For an isotropic material with an axisymmetric geometry, Cel can be reduced to a 4-by-4
matrix and the constitutive equation has the following form:


σrr
σzz
σθθ
τrz


︸ ︷︷ ︸

σ

=

[
E

(1 + ν)(1− 2ν)

]
1− ν ν 0 0
ν 1− ν 0 0
0 0 1− ν 0

0 0 0
1− 2ν

2


︸ ︷︷ ︸

Cel


εrr
εzz
εθθ
γrz


︸ ︷︷ ︸

ε

. (2.112)

The linear elastic material tensor Cel can be further decomposed into a deviatoric part Dd

(volume preserving) and a volumetric part Dv (volume changing):
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Cel =



4

3
G+K −2

3
G+K 0 0

−2

3
G+K

4

3
G+K 0 0

0 0
4

3
G+K 0

0 0 0 2G+K



= 2G



1

3
−1

3
0 0

−1

3

2

3
0 0

0 0
2

3
0

0 0 0 1


︸ ︷︷ ︸

Dd

+


K 0 0 0
0 K 0 0
0 0 K 0
0 0 0 0


︸ ︷︷ ︸

Dv

(2.113)

which yields to:

Cel = 2G

(
I− 1

3
1⊗ 1

)
+K (1⊗ 1) . (2.114)

The material form (total Lagrangian formulation) of the constitutive equation can be writ-
ten with the PK2 and the Green-Lagrange strain as corresponding conjugate stress-strain
pairs.104

S = Cel : EGL (2.115)

The thermal stress in the material frame can be written as:

Sth = Cel : Eth (2.116)

The Young's modulus E and the Poisson ratio ν are modeled as temperature dependent
which is shown in �gure 2.19. E decreases while ν increases from room temperature to the
melting region. Thus, the bulk modulus is at a nearly constant value. Above the melting
point, the Young's modulus becomes small, while the Poisson ratio approaches nearly 0.5. This
approximation transforms the solid Mo into a liquid phase in the framework of continuum
mechanics.

2.7.6. Plasticity

Uniaxial plasticity

The theroy for the plastic model used here can be found in many textbooks by e.g.99,100

The data for a plasticity model are normally obtained from the uniaxial tension experiment.
In this experiment, typically a force is applied to the ends of a rod, while the change in length
is measured. For plastic materials like ductile metals, this results in a stress strain curve with
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Figure 2.19.: Temperature-dependent Young's modulus and the Poisson ratio.105

an elastic and a plastic part (see �gure 2.20). Uniaxial tension plasticity is described by an
one dimensional model. The total strain ε can be obtained by the additive decomposition of
the elastic strain εe and the plastic strain εp.

ε = εel + εp ⇔ εel = ε− εp (2.117)

The constitutive law for the uniaxial stress can be de�ned as

σ = E εel = E(ε− εp). (2.118)

The yield function Φ is introduced to de�ne the elasic domain E :

E = {σ|Φ(σ, σys) < 0} with Φ(σ, σys) = |σ| − σys. (2.119)

The plastic �ow rule determines whether the plastic strain rate ε̇p indicates stretching (pos-
itive) or compression (negative) which is the case under tensile stress (positive) or compressive
stress (negative), respectively.

ε̇p = γ̇sgn(σ) (2.120)

Here sgn is the signum function which is basically de�ned as +1 if the argument is greater or
equal than zero and −1 if the argument is smaller than zero. The plastic multiplier is de�ned
as a non negative scalar value γ̇ ≥ 0 with the so-called complementary condition Φ γ̇ = 0.

If the yield function Φ is smaller than zero, a purely elastic deformation state is considered.
If the yield function is zero, then the yield stress level is reached and the deformation is
considered as either elastic unloading or plastic loading. Stress values above the yield stress
level are not admissible and the yield function do not exceed values greater than zero.
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Figure 2.20.: A typical stress strain curve is illustrated with elastoplastic material behaviour. (Picture
and caption obtained from Neto et. al.100)

Φ(σ, σys)


< 0 ⇒ γ̇ = 0 ⇒ ε̇p = 0 elastic

=0

{
⇒ ε̇p = 0 for elastic unloading

⇒ γ̇ ≥ 0 ⇒ ε̇p 6= 0 for plastic loading
> 0 not admissible

(2.121)

The loading/ unloading conditions for the occurence of platic �ow (Karush-Kuhn-Tucker
conditions)106 are de�ned by:

Φ(σ, σys) ≤ 0; γ̇ ≥ 0; Φ(σ, σys)γ̇ = 0. (2.122)

The hardening law implies that the yield stress level σys in equation 2.119 is a function of
the accumulated axial plastic strain ε̄p. The yield stress level σys is the sum of an initial yield
stress level σys0 and the isotropic hardening modulus σh.

σys = σys(ε̄p) = σys0 + σh(ε̄p). (2.123)

The accumulated axial plastic strain ε̄p is de�ned by:

ε̄p =

t∫
0

|ε̇p|dt;
dε̄p
dt

= ˙̄εp = |ε̇p|; ˙̄εp = γ̇. (2.124)

During plastic �ow γ̇ 6= 0 the consistency condition can be established:
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Φ = 0; ⇒ Φ̇γ̇ = 0 ⇒ Φ̇ = 0. (2.125)

The time derivative of the yield function in equation 2.119 can be derived from:

Φ̇ = sgn(σ)σ̇ −HT ˙̄εp, with HT = HT (ε̄p) =
dσys
dε̄p

. (2.126)

The stress rate in case of plastic yielding can be deduced with equation 2.125:

sgn(σ)σ̇ = HT ˙̄εp (2.127)

The plastic multiplier can now be derived from 2.118 and equation 2.127:

γ̇ =
E

E +HT
sgn(σ)ε̇ =

E

E +HT
|ε̇| (2.128)

The slope of the plastic regime in �gure 2.20 can be expressed by the following stress strain
relation ship:

σ̇ = Eepε̇. (2.129)

The elastoplastic tangent modulus Eep and hardening modulus HT can be de�ned by com-
bining equation 2.118, 2.120, 2.128 and 2.129.

Eep =
EHT

E +HT
; HT =

Eep

1− Eep
E

(2.130)

Three dimensional plasticity

For the three dimensional or multiaxial strained case the same additive decomposition was
assumed than in the uniaxial case. This is a good assumption for small strains like in the
present case. The stresses and strains are now replaced by tensors.

ε = εe + εp

ε̇ = ε̇e + ε̇p (2.131)

The free energy potential ψ is introduced as a function of the strain tensor ε, the plastic
strain component εp and an internal hardening variable α = {ε̄p}.

ψ(ε, εp, α) (2.132)
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The free energy can be splitted into an elastic component ψe which is the contribution to
the elastic strain and a plastic component ψp which is dedicated to the hardening.

ψ(ε, εp, α) = ψe (ε − εp)︸ ︷︷ ︸
εel

+ψp(α) (2.133)

The purely mechanical Clausius�Duhem inequality 2.98 can than be splitted into an elastic
and a plastic part.

(
σ − ρ0

∂ψe
∂εe

)
: ε̇e︸ ︷︷ ︸

elastic

+σ : ε̇p −Aα̇︸ ︷︷ ︸
plastic

≥ 0 with A ≡ ρ0
∂ψp
∂α

(2.134)

A is a set of hardening thermodynamic forces. The so-called dissipation function Υp is
formulated as:

Υp(σ,A, ε̇p, α̇) ≡ σ : ε̇p −Aα̇ ≥ 0. (2.135)

In the case of an isotropic linear elastic material, the elastic contribution to the free energy
ψe can be written based on the mechanical kinetic energy as:

ρ0ψe(εe) =
1

2
εe : Cel : εe = G εe;d : εe;d +

1

2
K(εe;v)

2 (2.136)

where εe;d and εe;v are the deviatoric and volumetric part of the elastic strain. Now, the
general stress strain law can be formulated by considering that the plastic contribution of
equation 2.134 vanishes and the elastic contribution is set to zero.

σ = ρ0
∂ψe
∂Ee

= Cel : εe = 2 G εe;d +K εe;v I (2.137)

In the three dimensional case the plastic �ow is initiated when the yield function Φ is zero.

Φ(σ,A) = 0 (2.138)

The elastic domain E can then be de�ned such that the yield function is smaller than zero.

E = {σ|Φ(σ,A) < 0) Elastic domain. (2.139)

A yield surface Y can be de�ned when the yield function is zero:

Y = {σ|Φ(σ,A) = 0) Yield surfac (2.140)

The internal parameter for the plastic �ow rule and the hardening law need to be de�ned:
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ε̇p = γ̇ N; N = N(σ,A)

α̇ = γ̇ H; H = H(σ,A), (2.141)

with the �ow vector N and the generalised hardening modulus H. The loading/ unloading
conditions for the occurence of platic �ow (Karush-Kuhn-Tucker conditions)106 are de�ned
identical to the uniaxial case:

Φ ≤ 0; γ̇ ≥ 0; Φγ̇ = 0. (2.142)

The plastic �ow rule can also be de�ned by a so-called �ow potential Ψ:

Ψ = Ψ(σ,A); (2.143)

both, the �ow vector N and the hardening modulus H may than be derived from this
potential:

N ≡ ∂Ψ

∂σ
; H ≡ ∂Ψ

∂A
. (2.144)

To satisfy the dissipation inequality 2.135, the requirements for the �ow potential Ψ are
that it is a non-negative convex function of σ and A with zero values at the origin:

Ψ(σ = 0,A = 0) = 0 (2.145)

For the present model the same yield function Φ and �ow potential Ψ can be assumed:

Ψ ≡ Φ (2.146)

The determination of the plastic multiplier can be achieved by the so-called additional
complementarity equation and the consistency condition:

Φ̇ γ̇ = 0; Φ̇ = 0. (2.147)

In case of plastic yielding (γ̇ 6= 0) the time derivative of the yield function can be written
as:

Φ̇ =
∂Φ

∂σ
: σ̇ +

∂Φ

∂A
: Ȧ. (2.148)

By insertin the stress-strain rate relationship,
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σ̇ = Cel : (ε̇− ε̇p) = Cel : (ε̇− γ̇ N) (2.149)

into equation 2.148 the time derivative of the the yield function reads:

Φ̇ =
∂Φ

∂σ
: Cel : (ε̇− ε̇p) +

∂Φ

∂A
∗ ρ0

∂2Ψp

∂α2
∗ α̇

=
∂Φ

∂σ
: Cel : (ε̇− γ̇ N) +

∂Φ

∂A
∗ ρ0

∂2Ψp

∂α2
∗H. (2.150)

The plastic multiplier can be established by rearranging the above equation:

γ̇ =

∂Φ

∂σ
: Cel : ε̇

∂Φ

∂σ
: Cel : N− ∂Φ

∂A
∗ ρ0

∂2Ψp

∂α2
∗H

(2.151)

During purely elastic deformation, the stress rate can be computed with the elastoplastic
sti�ness tensor Cel:

σ̇ = Cel : ε̇ (2.152)

During plastic �ow, the stress rate can be computed with the elastoplastic sti�ness tensor
Cep:

σ̇ = Cel : (ε̇− ε̇p) = Cep : ε̇, (2.153)

which can be written as:

Cep = Cel −
(Cel : N)⊗

(
Cel :

∂Φ

∂σ

)
∂Φ

∂σ
: Cel : N− ∂Φ

∂A
∗ ρ0

∂2Ψp

∂α2
∗H

(2.154)

here ε̇p is substituted with equation 2.141 and with the plastic multiplier of equation 2.151.

Von Mises plasticity with kinematic hardening

In the present model von Mises plasticity with kinematic hardening was applied to the elasto-
plastic material model. In the plastic regime, σ depends linearly on ε, but the strain freezes
with an isotropic hardening model. Since σ increases only weakly in the plastic regime, the
strain is considered as the quantity to monitor shearing. This kinematic, plastic material
model is a compromise between the need to have stress in the vertical direction and the need
to have stress relaxation in the radial direction.
The von Mises yield criterion is de�nes when plastic yielding is initiated by a critical value

of the so-called J2 stress deviator invariant:107
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Φ(σ) =
√

3 J2(s(σ))− σys. (2.155)

Kinematic hardening is characterized by a resistance to plastic yielding in the opposite
direction to prior loading. The yield function for kinematic hardening is de�ned by the
relative stress tensor η which is de�ned by the di�erence of the stress deviator s and the
so-called back-stress tensor β:

Φ(σ, β) =
√

3 J2(η(σ, β))︸ ︷︷ ︸
σmises

−σys; with η(σ, β) ≡ s(σ)− β; s(σ) = σ − 1

3
trσ1

(2.156)

here, σys is the yield stress level. The plastic �ow rule for kinematic hardening is de�ned
by the �ow vector and the plastic strain rate:

N ≡ ∂Φ

∂σ
=

√
3

2

η

||η||

ε̇p = γ̇ N = γ̇

√
3

2

η

||η||
(2.157a)

The back stress in linear kinematic hardening can be assumed as:108

β̇ =
2

3
HT ε̇p = γ̇

√
2

3
HT

η

||η||
(2.158)

A plastic deformation model was used when the von Mises stress σmises initially exceeded a
yield stress level σys0. The yield stress level was set to 300 MPa only for the solid molybdenum.
No plasticity appeared in the liquid phase. The yield stress function σys is de�ned by the sum
of the initial yield stress function σys0 and the kinematic hardening function σh.

σys(εp) = σys0 +
2

3

HT︷ ︸︸ ︷
ETKin

1− ETKin
E

εp

︸ ︷︷ ︸
σh(εp)

for Φ(σ, σys) = 0 (2.159)

The plasitc strain variable εp is not directly accessible and the computation requires an
iterative elastic predictor/plastic corrector return mapping algorithm.109,110 All conditions
for the rate independent associative linear kinematic hardening model with von Mises-yield
criteria are summarized in table 2.11.

2.7.7. Stress-strain computation

An additive decomposition of the strain tensor was assumed which was proposed by Green and
Naghdi.111 For small strain but large deformation study, the Green-Lagrange strain tensor is
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Condition Function

1. Linear elastic law: σ = Cel : εel = Cel : (ε − εpl)

2. Yield function:

{
Φ(σ, β) =

√
3 J2(η(σ, β))− σys

η(σ, β) ≡ s(σ)− β

3. Plastic �ow rule: ε̇p = γ̇ N = γ̇

√
2

3

η

||η||

4. Hardening law: β̇ =
2

3
HT ε̇p = γ̇

√
2

3
HT

η

||η||
5. Kuhn-Tucker conditions: Φ(σ, σys) ≤ 0; γ̇ ≥ 0; Φ(σ, σys)γ̇ = 0

Table 2.11.: Conditions for the rate independent associative linear kinematic hardening model with
von Mises-yield criteria

applied and splitted into the sum of an elastic and an inelastic component which is the sum
of the plastic and the thermal strain, respectively.

EGL = Eel + Eth + Epl︸ ︷︷ ︸
Einel

Eel = EGL −Eth −Epl︸ ︷︷ ︸
Einel

(2.160)

For extension of �nite strain elastoplasticity the interested reader is referred to further
literature.112,113 This approach is based on multiplicative decomposition of the deformation
gradient:

F = Fe Fpl Fth (2.161)

Since in the present work large displacements and small strains are expected, the engineering
stress σ and strain ε were substituted by the energy conjugated second Piola-Kirchho� stress
S and the Green-Lagrange strain EGL, respectively. As mentioned in section c the Mo liqui�es
above the melting point. The liquid phase is implemented through the elastic constants in
the mechanical constivitive model in section 2.7.5. Part of the domain is formed into a liquid
like Mo-phase by modifying the Poisson's ratio to values close to 0.5. This may results in
numerical instabilities because the trace of the strain in the liquid Mo-phase vanishes. A
nearly incompresible approach was necessary to avoid numerical instabilities. The software
Comsol Multiphysics� uses a mixed formulation for the nearly incompressible approach, where
the pressure is implemented as a new dependent variable.101 The �nal stress strain relation
for a nearly incompressible material reads:101
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S = Dd : (EGL −Ep −Eth)−Dv : pI

S = Dd : (EGL −Ep −Eth)−
(

1

3
tr(Dv : EGL −Eth)

)
I (2.162)

As mentioned before, the implementation of the plasticity model is may obtained by an
Euler time discretization of the plastic strain rate and a solution scheme of a elastic predic-
tor/plastic corrector algorithm with a return mapping algorithm. For more details on this
method the interested reader is referred to e.g.100

2.7.8. Finite element formulation

In this section the equation for solving the deformation is presented with the necessary bound-
ary conditions. The three forms of boundary conditions are called Dirichlet, Neumann and
mixed boundary condition. The Dirichlet boundary condition prescribes the displacement,
while the Neumann boundary condition speci�es the traction vector. All equations are pre-
sented in the strong form �rst as a so-called boundary value problem:

ρü = ∇ · σ + Fv on Ω (2.163a)

u = ũ on ∂ΩD (Dirichlet B.C.) (2.163b)

t = σn = t̃ on ∂ΩN (Neumann B.C.) (2.163c)

Equation 2.163a is a hyperbolic PDE known as the balacne of linear momentum (equa-
tion 2.102a). Equation 2.163b and 2.163c are the Dirichlet and Neumann boundary condition,
respectively.

The weak form of equation 2.163a is obtained by appling the principle of virtual work.97,114

In a �rst step the spacial description is introduced:

δW (u, δu) =

∫
Ω0

(ρ0ü−∇ · σ − FV ) δuT dV0 = 0 (2.164)

here, δu is the test function v which is the so-called virtual displacement. This function has
to be smooth and zero at the boundary surfaces ∂Ω. The �nal weak form can be derived from
equations 2.164 by using integration by parts and the divergence theorem (see section A.3.8):
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∫
Ω

(
ρ ü δuT −∇ · σ δu− FV δu

)
dV = 0

∫
Ω

(ρüδu−∇ · (σδu) + σ : ∇δu− FV δu) dV = 0

∫
Ω

ρüδu dV +

∫
Ω

σ : ∇δu dV −
∫
Ω

FV δu dV −
∫
δΩ

σδu · n dA = 0

∫
Ω

ρüδu dV +

∫
Ω

σ : ∇δu dV −
∫
Ω

FV δu dV −
∫
δΩ

t̃δu · n dA = 0

∫
Ω

ρüδu dV

︸ ︷︷ ︸
δWkin

+

∫
Ω

σ : δε dV

︸ ︷︷ ︸
δWint

−
∫
Ω

FV δu dV −
∫
δΩ

t̃δu · n dA

︸ ︷︷ ︸
δWext

= 0. (2.165)

The equation for virtual work can be divided into three sub-equations. It consists of a
kinetic part δWkin and internal part δWint and an external part δWext. The kinetic part
consists of virtual work done by inertia forces, the internal part consists of work done by
internal forces and the external part consists of work done by volume and boundary forces.
The internal virtual work is now transformed from the spacial to the material domain by

∫
Ω
σ : ∇δu dV =

∫
Ω

(Jσ) : ∇δuF−1 dV =

∫
Ω

P : δF dV

=

∫
Ω

P : ∇u dV =

∫
Ω0

FS : ∇u dV0. (2.166)

Similar, the inertia and the external vital work is transformed from the spacial into the
material domain by:

∫
Ω

fVδu dV +

∫
δΩ

t̃δu dS =

∫
Ω0

FVδu dV0 +

∫
δΩ0

F̃δu dS0 (2.167a)

∫
Ω
ρ üdV =

∫
Ω0

ρ0 ü dV0 (2.167b)

with the relation of the body force fV = J−1FV , the volume change dV = JdV0 and ρ = J−1ρ0.
Consequently, the material form of equation 2.165 reads:

∫
Ω0

ρ0 ü δu dV0

︸ ︷︷ ︸
δWkin

+

∫
Ω0

S : δEGL dV0

︸ ︷︷ ︸
δWint

−
∫
Ω0

FV δu dV0 −
∫
δΩ0

T̃δu dS0

︸ ︷︷ ︸
δWext

= 0 (2.168)
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with δEGL as the the variation of the Green-Lagrange strain tensor which is obtained by
equation 2.75.
To compute the solid and the liquid Mo-phase in the framework of continuum mechanics

a mixed formulation is assumed for the nearly incompressible material.101,115 This mixed
formulation consists of two weak form equations. Besides the originally only independent
displacement variable u with the virtual displacement δu, the pressure p is now introduced
as a second new independent variable with the virtual pressure δp.

∫
Ω0

ρ0 ü δu dV0

︸ ︷︷ ︸
δWkin

+

∫
Ω0

Sd : δE dV0 +

∫
Ω0

Ip : δET dV0

︸ ︷︷ ︸
δWint

−
∫
Ω0

FV δu dV0 −
∫
δΩ0

T̃δu dS0

︸ ︷︷ ︸
δWext

= 0

(2.169a)

∫
Ω0

δp
[
ITE− p

K

]
dV0

︸ ︷︷ ︸
δWint

= 0 (2.169b)

2.7.9. Mechanical boundary conditions and initial values

The mechanical boundary conditions (�gure 2.21) are a crucial point of the model since it con-
tains the interaction between the expanding Mo-layer and the glass substrate, in other words,
the recoil pressure. It introduces the dependence of the ablation process on the substrate's
elastic properties.

Figure 2.21.: Boundary conditions for the elasto-mechanical model.

Since the Young's modulus of the glass substrate is smaller than of the metal layer, the
substrate can not be modeled as a rigid boundary condition and a shock-wave will not be
re�ected completely. The counteraction back from the substrate to the layer may be weak.
The substrate in the boundary condition ∂Ω4 was chosen with a spring model where the
parameters of mass, spring constant and damping constant were calibrated carefully. The
spring model describes the response of the substrate to the layer material moving in substrate
direction. The spring continuum obtains a value for deformation and velocity in every point
along the boundary. A second spring model was used to describe the adhesion force of the layer
outside the melt region. No further spring modeling was applied inside the melt region; the
layer is allowed to move away, when the velocity is su�cient to overcome a possible potential
energy barrier in the stressed layer.
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B.c. Displacement

∂Ω1 Axisymmetric
∂Ω2 Free
∂Ω3 σn = −kMo (u− u0)

∂Ω4 σn = −kglass(u− u0)− dglass
∂u

∂t

Table 2.12.: Elasto-mechanical boundary conditions (b.c.)

The accuracy of the boundary condition ∂Ω4 had been con�rmed by a variety of test
calculations. Therefor ∂Ω4 was replaced by an extended domain which represented the glass
substrate. Figure 2.22 illustrates the result from this prior simulations. The temperature
rises with a step function from 0 to ∼4000 K in a time interval of about 50 ps which was
very similar to the �nal simulation conditions. By comparing the displacement from point 1
and 2 of the spring boundary with the glass domain it turns out, that the deviations are very
small. Thus, the spring boundary represent an excellent substitution for the glass domain in
the thermal expansion model.

Figure 2.22.: Displacement of point 1 and 2 initiated by a temperature step function. The displace-
ment is shown with a spring foundation boundary condition in comparison with an adjacent glass
domain.

The mechanical boundary ∂Ω3 to the radial outside was also described by a spring model
with the purpose to tolerate some radial deformation. ∂Ω1 and ∂Ω2 were modeled as axisym-
metric and free, respectively. Table 2.12 summarizes all boundary conditions with the used
values of table 2.13.

The complete boundary value problem requires the initial values of u and its �rst time
derivative u̇ at time zero.

u(t = 0) = u0; u̇(t = 0) = u̇0 (2.170)
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Variable Symbol Value Unit

Spring constant glass kglass 1.6 10−6 N/m

Damping factor glass dglass 1.5 107 Ns/(mm2)

Spring constant molybdenum kMo 1018 Ns/(mm2)

External temperature Text 293.14 K

Table 2.13.: Parameters for the boundary condition models

2.8. Space and time discretization

The FEM-equation 2.26, 2.43 and 2.169 are continuous in space and time. To make
them numerically solvable a discretization is necessary. The following subsections show the
space and time discretization, including the assembly, equation coupling and the numerical
integration method.

2.8.1. Space discretisation

FEM is based on the concept to approximate a continuous solution of a PDE on a domain
by an approximated discrete solution. For this reason, the complete material domain Ω0

is divided into non overlapping subdomains Ω0;e which consists of �nite elements forming a
mesh:

Ω0 ≈ Ω0;h =

nel⋃
e=1

Ω0;e, (2.171)

here, Ω0;h is the approximated discrete version of Ω0, nel is the number of mesh elements
in the domain Ω0 and Ω0;e is a set of element domains. The solution is computed only at
discrete points, the so-called nodes on the �nite elements by a set of algebraic �nite element
equations for a steady state problem and a set of ordinary di�erential equations for a transient
problem. The discretization is explained in many FEM textbooks e.g.97,115�117

Thanks to the rectangular geometry of the cross section for the Mo-disc, the complete
domain could be represented by a 2 dimensional mesh. All mesh elements were chosen to be
rectangular. The advantage of rectangular elements is that they may improves convergence
for a deformed mesh since the angle during deformation gets not such acute in comparison
to triangular elements.118 The mesh element size was decreased towards the center point to
precisely resolve the strong physical gradients. For a �uence of 0.40 J/cm2 the mesh consists
of 2500 elements with an element ratio growth rate of 0.1 in axial and radial direction, shown
in �gure 2.23. For higher �uence of 0.50 J/cm2 and 0.55 J/cm2, the mesh was re�ned to
10,000 elements with the same element ratio.

Shape functions

Any dependent variable u(R,Z, t) and the weight function v(R,Z, t) can be approximated
by a linear combination of functions Φ(R,Z) and Ψ(R,Z) with coe�cients ai(t) and bj ,
respectively within one elements with nnodes number of nodes, by
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Figure 2.23.: The mesh for a �uence of 0.40 J/cm2 with 2500 elements and an element ration growth
rate of 0.1 in axial and radial direction, respectively. The aspect ratio is not preserved for better
visibility such that it has equal length in vertical and horizontal direction.

u(R,Z, t) ≈ uh(R,Z, t) =

nnodes∑
i=1

Φi(R,Z) ai(t)

v(R,Z) ≈ vh(R,Z) =

nnodes∑
j=1

Ψj(R,Z) bj . (2.172)

A local coordinate system (R′, Z ′) is introduced for each �nite element of the mesh. The
coordinate transformation can be achieved by:

R′ = R−R0; Z ′ = Z − Z0, (2.173)

here, the coordinate origin is located at the center of the element (R0, Z0) as shown in
�gure 2.24.
Accroding to the Galerkin method, the same function for the discretization may be used

for the dependent variable u(R,Z, t) and the weight function v(R,Z).

Φ(R,Z) = Ψ(R,Z) (2.174)

A new coordinate system which is called the natural coordinate system (ξ,η) in the so
called parent domain is introduced for the shape function. This approach has the advantage
to map a shape function with triangular or quadratic shape to any arbitrary shape in the
original coordinate system within the so called global domain where the geometry is de�ned.
The coordinates X(ξ, η) and the dependent variable u(ξ, η) as well as the weight function
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Z ′

R′
Z

R

N1 (−a,−b) N2 (a,−b)

N3 (a, b)N4 (−a, b)

(R0, Z0)

Figure 2.24.: Picture of linear quadrilateral element in the R-Z-plane. The coordinate R′ and Z ′ are
the local element coordinates, respectively. The four nodes are at the edges of the rectangle at node
one (-a,-b), node two (a,-b), node three (a,b) and node four (-a,b).

v(ξ, η) may be transformed by a shape function within one �nite element. If the same shape
function N(ξ, η) is used for the coordinate and the �eld variable, the approach is called
isoparametric.119 If the shape functions are di�erent than it is known as sub- or super-
parametric formulation, depending on the order of interpolation function. The coordinate
X(ξ, η), the displacement �eld u(ξ, η, t) and the weight function v(ξ, η, t) are de�ned within
an arbitrary point of one �nite element as a linear combination of shape functions Ni;e at the
node i with coe�cients (Ri, Zi), (ui;r, ui;z) and (ṽj;r, ṽj;z), respectively.

X(ξ, η) ≈
[
R(ξ, η)
Z(ξ, η)

]
=

nnodes∑
i=1

[
Ri
Zi

]
Ni;e(ξ, η) (2.175)

u(ξ, η, t) ≈
[
u(ξ, η, t)
w(ξ, η, t)

]
=

nnodes∑
i=1

[
ui;r(t)
ui;z(t)

]
Ni;e(ξ, η) (2.176)

v(ξ, η, t) ≈
[
ṽ(ξ, η, t)
ṽ(ξ, η, t)

]
=

nnodes∑
j=1

[
ṽj;r(t)
ṽj;z(t)

]
Nj;e(ξ, η) (2.177)

The shape functions were chosen as Lagrangian and are de�ned in the form of polynomials:
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Ni;e(ξ, η) =
n∑
i=1

1

4
(1 + ξξi) (1 + ηηi) ; 4-node linear (2.178)

Ni;e(ξ, η) =
n∑
i=1

1

4
(1 + ξξi) (1 + ηηi) (ξξi + ηiη − 1) 9-node quadratic, (2.179)

with (ξi, ηi) denotes the natural coordinates at the node i which are de�ned in the range
(±1, ±1) . The linear and quadratic shape functions are listed in details in table 2.14.
In the present case, the form of isoparametric quadrilateral elements is always square with

an edge length of two and the coordinate origin is in the center (see �gure 2.25). Isoparametric
mapping between the global and the natural coordinate system within one �nite element is
achieved by:

R = R(ξ, η) =

nnodes∑
i=1

Ri Ni;e(ξ, η)

Z = Z(ξ, η) =

nnodes∑
i=1

Zi Ni;e(ξ, η). (2.180)

Then, an arbitrary function f(R,Z) can be mapped from the global and the natural coor-
dinate system by:

f(R,Z) = f (R(ξ, η), Z(ξ, η)) = f̂(ξ, η). (2.181)

R′

Z ′

ξ

η

N1 (−1,−1) N2 (1,−1)

N3 (1, 1)N4 (−1, 1)

N5 (0,−1)

N6 (0, 1)

N7 (0, 1)

N8 (−1, 0) N9 (0, 0)

N1 (R1, Z1)

N2 (R2, Z2)

N3 (R4, Z4)

N4 (R3, Z3)

N5 (R5, Z5)

N6 (R6, Z6)

N7 (R7, Z7)

N8 (R8, Z8)
N9 (R9, Z9)

[
R
Z

]
=

[
R(ξ, η)
Z(ξ, η)

]
Isoparametric mapping

Figure 2.25.: Picture of a quadrilateral isoparametric Lagrangian element in the R′-Z ′-plane which
is isoparametrically mapped into the η-ξ-plane.

For the intensity and the temperature computation, the element-type was selected as
second-order quadrilateral Lagrangian which consisted of nine nodes per element. The nodes
are located at the element-vertexes, the midpoints of the edges and in the center. For the
thermal expansion computation, the element-type was selected as �rst-order quadrilateral
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linear quadratic

N1(ξ, η) =
1

4
(1− ξ) (1− η)

N2(ξ, η) =
1

4
(1 + ξ) (1− η)

N3(ξ, η) =
1

4
(1 + ξ) (1 + η)

N4(ξ, η) =
1

4
(1− ξ) (1 + η)

N1(ξ, η) =
1

4
(1− ξ) (1− η) ξη

N2(ξ, η) =
1

4
(1 + ξ) (−1 + η) ξη

N3(ξ, η) =
1

4
(−1 + ξ) (1 + η) ξη

N4(ξ, η) =
1

4
(1 + ξ) (1 + η) ξη

N2(ξ, η) = −1

2
(−1 + ξ) (1 + ξ) (−1 + η) η

N2(ξ, η) = −1

2
(−1 + ξ) (−1 + η) (1 + η) ξ

N2(ξ, η) = −1

2
(1 + ξ) (−1 + η) (1 + η) ξ

N2(ξ, η) = −1

2
(−1 + ξ) (1 + ξ) (1 + η) η

N9(ξ, η) = (−1 + ξ) (1 + ξ) (−1 + η) (1 + η)[
N(ξ, η) = N1 N2 N3 N4

]
N(ξ, η) =

[
N1 N2 N3 N4 N5 N6 N7 N8 N9

]
Table 2.14.: First and second order Lagrangian shape function with four and nine nodes.

Lagrangian which consisted of four nodes per element. The nodes are only located at the
element-vertexes. Figure 2.26(a) sketches the 4 linear and Figure 2.26(b) to 2.26(d) the 9
quadratic shape functions in the natural coordinate system, respectively.

The complete FEM computation is conducted in the natural coordinate system. Thus,
the computation of the semi-discrete weak form requires the computation of derivatives with
respect to the natural coordinates ξ and η. The Jacobian matrix J and its inverse J−1 can be
used to transform derivative quantities from the the natural to the global coordinate system
and reverse:


∂(·)
∂ξ

∂(·)
∂η

 =



J11︷︸︸︷
∂R

∂ξ

J12︷︸︸︷
∂Z

∂ξ

∂R

∂η︸︷︷︸
J21

∂Z

∂η︸︷︷︸
J22


︸ ︷︷ ︸

J


∂(·)
∂R

∂(·)
∂Z

 ;


∂(·)
∂R

∂(·)
∂Z

 =
1

detJ


∂Z

∂η
−∂Z
∂ξ

−∂R
∂η

∂R

∂ξ


︸ ︷︷ ︸

J−1


∂(·)
∂ξ

∂(·)
∂η

 (2.182)

with detJ =
∣∣J∣∣ = J11J22 − J21J12. (2.183)

The Jacobian matrix elements (here, e.g. �rst-order square quadrilateral Lagrangian) can
be computed as follows:
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(a) (b)

(c) (d)

Figure 2.26.: Illustration of the �rst-order (a) and second-order (b)-(d) square quadrilateral Lagrange
elements. The shape functions have a value one at the associated node and zero at all other nodes.

J =


nnodes∑
i=1

∂Ni;e

∂ξ
Ri;e

nnodes∑
i=1

∂Ni;e

∂ξ
Zi;e

nnodes∑
i=1

∂Ni;e

∂η
Zi;e

nnodes∑
i=1

∂Ni;e

∂η
Ri;e

 =


∂N1

∂ξ

∂N2

∂ξ

∂N3

∂ξ

∂N4

∂ξ

∂N1

∂η

∂N2

∂η

∂N3

∂η

∂N4

∂η





R1;e Z1;e

R2;e Z2;e

R3;e Z3;e

R4;e Z4;e


(2.184)

The derivatives of the shape function in the entries of the sti�ness matrix and the boundary
vector are de�ned with respect to the global coordinates R and Z. The Jacobian matrix J
can be used to express these derivatives with respect to the natural coordinates η and ξ:
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
∂Ni;e

∂ξ

∂Ni;e

∂η

 =


∂R

∂ξ

∂Z

∂ξ

∂R

∂η

∂Z

∂η


︸ ︷︷ ︸

J


∂Ni;e

∂R

∂Ni;e

∂Z

 ;


∂Ni;e

∂R

∂Ni;e

∂Z

 =
1

detJ


∂Z

∂η
−∂Z
∂ξ

−∂R
∂η

∂R

∂ξ


︸ ︷︷ ︸

J−1


∂Ni;e

∂ξ

∂Ni;e

∂η

 .

(2.185)

For a 2d-axisymmetric element, the area ratio between the global element (global coordi-
nates) and the natural element (natural coordinates) equals the value of the Jacobin deter-
minant.
It is noted, that for the volume and surface integration a transformation to the natural

coordinates system is necessary. The integral can be converted via (see also section A.4.1):

∫
Ω0;e

(·) dV0 = 2π

∫
Ω0;e

(·) R dR dZ = 2π

1∫
−1

1∫
−1

(·) R(ξ, η)
∣∣J∣∣ dξ dη (2.186)

∫
∂Ω0;e

(·) dA0 = 2π

∫
∂Ω0;e

(·) R dS0 = 2π

1∫
−1

(·) R(ξ, η)

√
(∂R)2

∂(ξ, η)
+

(∂Z)2

∂(ξ, η)
d(ξ, η) (2.187)

here, (·) denotes an arbitrary function and d(ξ, η) is either a line integration over the
coordinate dξ or dη.
Now, a semi-discrete formulation for a �nite element can be derived. First, the matrices

for each element will determined separately and then assembly to the global matrices is
constructed.

Intensity space discretization

As described in the previous section (section 2.8.1), FEM is based essentially on weighted
residual methods where the solution of a PDE is approached by the sum of weighted basis
function. The variables can be approximated by a linear combination of basis function.
Equation 2.188a and 2.188b show the discretization for the intensity and the trail function as
a linear combination of basis function weighted by the coe�cients N of the solution vector uI

and ṽ, respectively, for one element.

Ie(R,Z) =

nnodes∑
j=0

Nj(R,Z) uI;j = NuI (2.188a)

ve(R,Z) =

nnodes∑
i=0

Ni(R,Z) tildevi = Nṽ (2.188b)

The shape function type was chosen as Lagrangian and the element order was quadratic
in the material frame. According to the Galerkin approximation method the same function
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may be used for the basis- and the trail function Ni(R,Z) = Nj(R,Z). The space discretized
FEM-intensity equation 2.26 fro one element then reads:

∫
Ω0;e

(∇Nṽ)T (∇NuI + αoptNuI) dV0 = −
∫

∂Ω0;e

Nṽ
[
(∇NuI + αoptNuI)

T n
]

dA0. (2.189)

A common substitution is used to replace the gradient of the shape function by a so-called
B-matrix B = ∇N. Further ṽ vanishes in equation 2.189.

∫
Ω0;e

BT (B + αoptN) dV0 uI = −
∫

∂Ω0;e

NT
[
(BuI + αoptNuI)

T n
]

︸ ︷︷ ︸
q

dA0 (2.190)

The integral of the right and left hand side in equation 2.190 can be rewritten in a compact
form:

KI;e =

∫
Ω0;e

BT (B + αoptN) dV0 (2.191a)

fI;e =

∫
∂Ω0;e

NT q dA0 (2.191b)

here, KI;e is the sti�ness matrix and fI;e is the force vector. The force vector is non zero
only if a element boundary contributes to the surface. The �nial equation system can be
expressed as:

KI;e uI;e = fI;e (2.192)

Equation 2.191a mapped to the natural coordinate system can be found in section A.4.2.
For the square quadrilateral Lagrange elements a local nel × nel sti�ness matrix is produced.
The solution vector uI;e for a nine node element is de�ned by:

uI;e =
[
N1 N2 · · · N9

]

uI;1
uI;2
...

uI;9

 (2.193)

For the 9 node �nite element the sti�ness matrix has a dimension of 9× 9 and the solution
and the force vector are both of dimension 9. The complete equation system for one �nite
element reads:
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
K11 ... K91

K12 ... K29
...

. . .
...

K19 ... K99



uI;1
uI;2
...

uI;9

 =


F1

F2
...
F9

 (2.194)

Thermal heat transfer space discretization

The Temperature Te and Tl and the weight function v can be approximated by a linear
combination of shape functions Nj(R,Z) = Ni(R,Z) according to Galerkin's approach. In
addition, the time derivative of Te and Tl may be approximated in the same way:

Te,l;e(R,Z) =

nnode∑
j=0

Nej,lj(R,Z) uTe,l;j(t) = NuTe,l
(t) (2.195a)

Ṫe,l;e(R,Z) =

nnode∑
j=0

Nej,lj(R,Z) u̇Te,l;j(t) = Nu̇Te,l
(t) (2.195b)

ve,l;e(R,Z) =

nnode∑
i=0

Ni(R,Z)ṽi = Nṽe,l. (2.195c)

In odrder to formulate the semi-discrete non-linear heat transfere equations, the temper-
autre depenency of the heat capacity and the heat conduction may be approximated simi-
lar:120�122

ρ0

∫
Ω0;e

(Neve)
T Cp;e(NeuTe) Neu̇Te dV0 +

∫
Ω0;e

(Neve)
T ke(NeuTe ,NluTl

)∇N dV0 uTe =

∫
Ω0;e

Neve (Q−G (NeuTe −NluTl
)) dV0 +

∫
∂Ωe

0

Neve (ke(Ne uTe ,Nl uTl
)∇NeuTe)

T n︸ ︷︷ ︸
qe

dA0

(2.196a)

ρ0

∫
Ω0;e

(Nlvl)
T Cp;l(NluTl

) Nlu̇Tl
dV0 +

∫
Ω0;e

(Nevl)
T kl ∇Nl dV0 uTe =

∫
Ω0;e

Nevl G (NeuTe −NluTl
) dV0 +

∫
∂Ω0;e

Nevl (kl ∇NluTl
)T n︸ ︷︷ ︸

ql

dA0.

(2.196b)

The trail function ve,l vanishes in the equation system 2.196. The gradient of the shape

function can be replaced by the B-matrix Be,l = ∇Ne,l and the expression
(
ke,l∇Ne,luTe;l

)T
n

can be considered as the spacial discretized heat �ux qe,l:
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ρ0

∫
Ωe

0

NT
e Cp;e(NeuTe) Neu̇Te dV0 +

∫
Ωe

0

BT
e ke(NeuTe ,NluTl

)Be dV0uTe =

−
∫
Ωe

0

NT
e (Q−G (NeuTe −NluTe)) dV0 +

∫
∂Ω

NT
e qTe ndA0

(2.197a)

ρ0

∫
Ωe

0

NT
l Cp;l(NuTl

) Nlu̇Tl
dV0 +

∫
Ωe

0

BT
l kl Bl dV0uTl

=

−
∫
Ωe

0

NT
l G (NeuTe −NluTl

) dV0 +

∫
∂Ωe

0

NT
l qTl ndA0.

(2.197b)

By rearranging the equation system 2.197 the spacial discretized electron and lattice tem-
perature uTe and uTl

can be separated, respectively and the �nal spacial discretized weak
form of the two coupled heat equations can be derived:

Ce︷ ︸︸ ︷
ρ0

∫
Ωe

0

NT
e Cp;e(NeuTe) N dV0 u̇Te−

Kee︷ ︸︸ ︷∫
Ωe

0

BT
e ke(NeuTe ,NluTl

)Be +G Ne dV0 uTe−

∫
Ωe

0

G Nl dV0

︸ ︷︷ ︸
Kel

uTl
= −

∫
Ωe

0

NeQ dV0 +

∫
∂Ωe

0

NT
e qTe n dA0

︸ ︷︷ ︸
fe

(2.198a)
Cl︷ ︸︸ ︷

ρ0

∫
Ωe

0

NT
l Cp;l(NuTl

) Nl dV0 u̇Tl
−

Kll︷ ︸︸ ︷∫
Ωe

0

BT
l kl Bl −G Nl dV0 uTl

+

∫
Ωe

0

G Ne dV0

︸ ︷︷ ︸
Kle

uTe =

∫
∂Ωe

0

NT
l qTl n dA0

︸ ︷︷ ︸
fl

. (2.198b)

The equation system 2.198 can be rewritten in a more compact form:

Ce(uTe) u̇Te −Kee(uTe ,uTl
) uTe −Kel uTe + fe (uTe ,uTl

) = 0 (2.199a)

Ce(uTl
) u̇Te −Kll uTl

−Kle uTe + fl (uu) = 0 (2.199b)

It is worth noting, that besides the temperature dependency of the equation system 2.198
the lattice force vector fl depends on the displacement uu due to the boundary condition from
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table 2.8 and 2.9. Thanks to the thermal isolation of the electron sub system, the electron
force vector fe is equal to zero. Now, the equation system 2.199 can be written in a matrix
form:

[
Ce(uTe ,uTl

) 0
0 Cl(uTl

)

]
︸ ︷︷ ︸

CT (uTe ,uTl
)

[
u̇Te

u̇Tl

]
︸ ︷︷ ︸

u̇T

+

[
Kee(uTe ,uTl

) Kel

Kle Kll

]
︸ ︷︷ ︸

KT (uTe ,uTl
)

[
uTe

uTl

]
︸ ︷︷ ︸

uT

−
[

0
fl(uTl

,uu)

]
︸ ︷︷ ︸

fT (uTl
,uu)

= 0

(2.200)

Because of the time dependency of the equation system 2.198 a spacial semi-discrete �rst
order ordinary di�erential equation in time is produced:117,123

CTu̇T + KTuT = fT. (2.201)

Thermal expansion space discrtization

The displacement u and the virtual displacement δu may approximated by a linear combi-
nation of the same shape functions Nj(R,Z) = Ni(R,Z) according to Galerkin's approach.
In addition, the �rst and second time derivative of u may be approximated in the same way.
According to the equation system 2.169 a mixed formulation was applied with the pressure
as a new independent variable. Consequently, the pressure p and its variation δp has to be
discretized by up and ṽp, respectively.

u(R,Z) ≈
n∑
j=0

Nj(R,Z) uu;j(t) = Nuũ(t);

u̇(R,Z) ≈
n∑
j=0

Nj(R,Z) u̇u;j(t) = Nu̇ũ(t); p(R,Z) ≈
n∑
j=0

Np;j(R,Z) pu;j(t) = Npup(t)

ü(R,Z) ≈
n∑
j=0

Nj(R,Z) üu;j(t) = Nüũ(t); δp(R,Z) ≈
n∑
i=0

Np;i(R,Z) pu;i = Npṽp

δu(R,Z)︸ ︷︷ ︸
v(R,Z)

≈
n∑
i=0

Ni(R,Z)ṽu;i = Nṽ

The gradient of N can be express as the B-matrix B and the strain E and its variation δE as
the product of the B-matrix B and the displacement u and the variation of the displacement
δu, respectively.

B = ∇N; Bp = ∇Np; E = Bu; δE = Bδu. (2.202)

Equation 2.168 can now be spatially discretized by:

67



ρ0

∫
Ω0;e

(Nṽ)T üũ N dV0 +

∫
Ω0;e

S : ∇Nṽ dV0 −
∫

Ω0;e

Nṽ FV dV0 −
∫

∂Ω0;e

Nṽ t̃ · n dA0 = 0.

(2.203)

By applying the substitution S = Cel B uũ, equation 2.203 yields to:

ρ0

∫
Ω0;e

NT N dV0 üũ

︸ ︷︷ ︸
δWkin

+

∫
Ω0;e

BT Cel B dV0 uũ

︸ ︷︷ ︸
δWint

−
∫

Ω0;e

N FV dV0 −
∫

∂Ω0;e

N t̃ · n dA0

︸ ︷︷ ︸
δWext

= 0.

(2.204)

The discretization of the mixed formulation (equation 2.169) then may reads:

A︷ ︸︸ ︷
ρ0

∫
Ω0;e

NT N dV0 üũ

︸ ︷︷ ︸
finer

+

B︷ ︸︸ ︷∫
Ω0;e

BT : Dd : B dV0 uũ +

C︷ ︸︸ ︷∫
Ω0;e

(NpI) : B dV0 up

︸ ︷︷ ︸
fint

−

∫
Ω0;e

NT FV dV0

∫
∂Ω0;e

NT t̃ · n dA0

︸ ︷︷ ︸
fext

= 0

(2.205a)

∫
Ω0;e

Npvp

[
ITB uu −

Npup
K

]
dV0

︸ ︷︷ ︸
fint

=

C︷ ︸︸ ︷∫
Ω0;e

NT
p IB dV0 uũ −

D︷ ︸︸ ︷∫
Ω0;e

NT
p

1

K
Np dV0 up = 0,

(2.205b)

here, the substitution S = DD : Eel −Dv : pI = Dd : (EGL −Ep −Eth)−
(

1

3
tr(Dv : EGL −Eth)

)
I

is included.
The equation system 2.205 can now be written in a matrix form:

[
A 0
0 0

]
︸ ︷︷ ︸

Mu

[
üũ

üp

]
︸ ︷︷ ︸
üu

+

[
B C
CT D

]
︸ ︷︷ ︸

Ku

[
uũ

up

]
︸ ︷︷ ︸
uu

=

[
fext
0

]
︸ ︷︷ ︸
fuu

(2.206)

here, up appears as a so-called Lagrange multiplier. The Rayleigh damping model (see
section 2.7.3) is may spatially discretized within a damping matrix Cu which is a linear
combination of the mass matrix Mu and the sti�ness matrix Ku. fext is the vector of external
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forces and uu as the spatially discretized displacement vector. The superimposed single and
double dots of uu features its �rst and second time derivative which is the spatially discretized
velocity and acceleration. The �nal semi-discretized thermal expansion equation (discretized
in space and continuous in time) reads:

Muüu + Cuu̇u + Kuuu = fuu ; with Cu = αdM Mu + βdK Ku. (2.207)

2.8.2. Numerical integration

The determination of the integral equations which arises in the spatially discretized weak
forms was performed in the parent coordinate system. The integrals are solved by numerical
integration in the framework of the Gauss quadrature.115 The integrals are computed at
discrete points, the so-called Gauss points which are not concentrically positioned with the
mesh points. Figure 2.27 shows the position for a number of 4 (black solid circle) and 9 (red
dashed circle) Gauss points n. For an arbitrary function f(ξ, η) the volume integration in the
axisymmetric case yields to:

∫
Ω0;e

f (R,Z) dV0 =

∫
Ω0;e

f (R,Z) 2 π R dR dZ =

1∫
−1

1∫
−1

f (ξ, η) 2 π R(ξ, η)
∣∣J∣∣ dξ dη =

n∑
i=1

n∑
j=1

f (ξi, ηj) 2 π R(ξ, η)
∣∣J∣∣ wi wj , (2.208)

here, wi;j are the so-called weights.

ξ

η

N1 (−1,−1) N2 (1,−1)

N3 (1, 1)N4 (−1, 1)

Figure 2.27.: Positions of the Gauss points in the (ξ, η)-plane within a �nite element for a number of
4 (black solid circle) and 9 (red dashed circle). The Gauss points do not coincide with the position
of the nodes.

The Gauss points position with respect to ξi and ηi in combination with the weights wi;j
for a number of 4 and 9 are summarized in table 2.15.
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Numbers of Gauss points Gauss quadrature point ξi ηj wi;j

No.1 −1/
√

3 −1/
√

3 1

4

No.2 1/
√

3 −1/
√

3 1

No.3 −1/
√

3 1/
√

3 1

No.4 1/
√

3 1/
√

3 1

No.1 −
√

3/5 −
√

3/5 25/81

No.2 0 −
√

3/5 40/81

No.3
√

3/5 −
√

3/5 25/81

No.4 −
√

3/5 0 40/81

9

No.5 0 0 64/81

No.6 −
√

3/5 0 40/81

No.7 −
√

3/5 −
√

3/5 25/81

No.8 0
√

3/5 40/81

No.9
√

3/5
√

3/5 25/81

Table 2.15.: Gauss quadrature points (ξi, ηj) and weights wi;j for quadrilateral element.

2.8.3. Assembly

In the previous chapter 2.8.1 the discretized mass, damping, sti�ness matrix and force vector
were introduced for one local �nite element. To obtain a solution for the complete FEM
domain a assembly procedure is necessary which contains all element contributions. In the
one dimensional case, the governing integral equations of the weak form can be obtained by
integration over each element and subsequent summation of the element integration:

∫
Ω0

(·) dV0 =
∑

nelement

 ∫
Ω0;e

(·) dV0

 .

︸ ︷︷ ︸
nnodes∑

i=1
(·)wi

(2.209)

For two and three dimensions the sum has to be replaced by the so-called element assembly
operator Ael which produces a matrix with elements of each nodal integration. Finally, the
global assembly operator Ag forms the global matrix from each element contribution:
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∫
Ω0

(·) dV0 ≈
nel

Ag
i=1


nnodes

Ael
i=1


∫
Ωe

0

(·) dV0

︸ ︷︷ ︸
nnodes∑

i=1

nnodes∑
j=1

(·)wi wj




, (2.210)

here, the volume integral is achieved by two sums for the Gauss quadrature in the ax-
isymmetric case. The global assembly operator Ag �nally merges the local element matrices
formed by Ael to the global matrices:

M =
nel

Ag
e=1

Me K =
nel

Ag
e=1

Ke

C =
nel

Ag
e=1

Ce f =
nel

Ag
e=1

fe (2.211)

The dimension of the global FEM matrices depends on the number of nodes in each spacial
direction. The assembly operators Ael and Ag are implemented in the FEM code by an
algorithm.84,117,124,125

2.8.4. Equation coupling

By combing all spatially discretized �nite element equation of intensity (equation 2.192), heat
conduction of the electron and lattice subsystem (equation 2.201) and the mechanical motion
due to thermal expansion (equation 2.207) within a fully coupled approach the following
matrix system is produced:126

r︷ ︸︸ ︷
ri
re
rl
ru

 =

M︷ ︸︸ ︷
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 Mu


ü︷ ︸︸ ︷
üI

üTe

üTe

üu

+

Cu(u)︷ ︸︸ ︷
0 0 0 0
0 Ce(uTe) 0 0
0 0 Cl(uTl

) 0
0 0 0 Cu(uu)


u̇︷ ︸︸ ︷
u̇I

u̇Te

u̇Te

u̇u



+


KI 0 0 0
0 Kee(uTl

,uTl
) Kel 0

0 Kle Kll 0
0 0 KTl;u(uu) Ku(uu,uTl

)


︸ ︷︷ ︸

K(u)


uI

uTe

uTl

uu


︸ ︷︷ ︸

u

−


fI
0

fTl
(uu)
fu


︸ ︷︷ ︸

f(u)

(2.212)

The thermal expansion is implemented in the elastic sti�ness matrix Ku(uu,uTl
) and the

thermal lattice load vector fTl
(uu) depends on the displacement vector uu due to the bound-

ary condition described in table 2.9. The coupled transient FEM formulation �nally relaxes
to a second order ordinary di�erential equation. It has the form of an equation of motion
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with includes inertia, damping, a restoring force and an external force. The coupled equa-
tion system 2.212 with its initial condition can be �nally expressed as:

r = Mü + C(u)u̇ + K(u)u− F(u); u0 = u(t = 0); u̇0 = u̇(t = 0), (2.213)

with r, M, C, and K as the global residual, mass, damping and sti�ness matrix, respectively.
f , is the global load vector. C, K, and f are functions of the global unknown solution vectors
u. This equation is still a semi-discrete equation, which means it is discretized in space and
continuous in time.

2.8.5. Time discretization

Particular attention had been payed to the section of time discretization since it determines
the accuracy of the transient numerical solution. A common approach to discretize the time
domain in the framework of FEM are achieved by the �nite di�erence approximation. It is
based on the assumption that the time derivatives of an arbritary variable u can approximated
by its di�erence quotient:127

∂u

∂t
= lim

∆t→0

ut+∆t − ut
∆t

≈ ut+∆t − ut
∆t

∂2u

∂2t
= lim

∆t→0

ut+2∆t − 2ut+2∆t + ut
∆t2

≈ ut+2∆t − 2ut+2∆t + ut
∆t2

(2.214)

These methods can be distinguished between explicit and implicit. Explicit methods are
characterized by a computation where the solution can be computed directly from the solution
at time t while implicit methods are attributed by an implicit solution via t+ ∆t. Implicit
methods have the advatnge that they are more stable than in the explicit case and large time
step sizes can be realized. As showed earlyer in �gure 2.2 the timescale of physical processes
initiated by the interaction of a ultra short laser pulse with matter ranges up to ten orders of
magnited from the femtoseonds to microseconds.59 Thus, an implicit time integration scheme
with an adaptive time step was the method of choice for the present study. To meet the
accuracy criterion, the time step has to be around 10−15 s in the initial phase where large
gradients of intensity, temperature and displacement appears that may initiates shock waves.
Because the temperature gradients are smoothed out and the shock waves are damped with
the Rayleigh damping model, the time step increases up to 10−9 s during the calculation which
make the computational costs of the simulation acceptable. Fluences larger than 0.55 J/cm2

may requires more mesh elements and smaller time steps to achieve convergence and were not
conducted in this investigation.

The software Comsol multiphysics� enables the selection of three di�erent time-dependent
solvers: The implicite backward di�erentiation formulas (BDF),128 the generalized-αmethod129

which is a umbrella therm for the HHT-α,130 the WBZ-α? and CH-α129 method and the
explicite Runge-Kutta method.131�133 Each method has its unique advantages and disadvan-
tages depending on the particular numerical problem. In this study, an implicite generalized-α
method,129 was applied which is based on Newmarks's method.134 The major advantage of
this time integration scheme is that it is assumed to be more stable for large time step than
the BDF.
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2.8.6. Newmark's method

First, Newmark's method is introduced which is based on the constant average acceleration
scheme. This means that the acceleration changes linearly within a time step. The method
is unconditionally stable for linear structural mechanics.

In the following sections, the time steps are denoted by the subscript n for the current time
step (·)n := (·)(tn) and n+ 1 for the subsequent time step (·)n+1 = (·)(tn+1), respectively.
Further, m are the total number of time steps n ∈ [0, 1, ...,m− 1]. The second order ODE
space discretizes equation ?? is now also discetrized in time by the time approximations:

un+1 ≈ dn+1; u̇n+1 ≈ vn+1; ün+1 ≈ an+1. (2.215)

With this consideration equation 2.207 yields to:

Man+1 + Cvn+1 + Kdn+1 − Fn+1 = 0. (2.216)

For the time integration, this equation is only solved at discrete time steps n. The basic
idea is to determine the solution of dn+1, vn+1 and an+1 from the known values of dn, vn

and an.

The Newmark's method is formulated by a time approximation of dn+1 and vn+1:

dn+1 = dn + vn∆t+
1

2

(
(1− 2 β) an + 2 βan+1

)
∆t2 (2.217a)

vn+1(dn+1) = vn +
(
(1− γ) an + γan+1

)
∆t. (2.217b)

The value for β ∈ [0, 0.5] and γ ∈ [0, 1] has to be initialized carefully for accuracy and
stabilization. Table 2.16 summarizes values for β and γ for di�erent Newmark's method. By
rearranging equation 2.217a and 2.217b they can be expressed in terms of vn+1 and an+1:

vn+1(dn+1) =
γ

β∆t
(dn+1 − dn)− (

γ

β
− 1)vn + ∆t(

β − 1

2
γ

β
)an, (2.218a)

an+1(dn+1) =
1

β∆t2
(dn+1 − dn)− 1

β∆t
vn −

β − 1

2
β

an. (2.218b)

The initial condition for the �rst time step are de�ned as:

d0 = u(t = 0); v0 = v(t = 0); a0 = M−1(F(t = 0)−C(d0)v0 −K(d0)d0)). (2.219)

Equation 2.218a and 2.218b can now be inserted into equation ?? and ??, respectively.
This yields to the following nonlinear algebraic equation:
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Method γ β Type

Linear acceleration 1/2 1/6 Implicit

Constant-average acceleration (Trapezoidal rule) 1/2 1/4 Implicit

Central di�erence 1/2 0 Explicit

Table 2.16.: Di�erent Newmark's methods which are characterized by the values of γ and β

Man+1︷ ︸︸ ︷
M

γ

β∆t2
(dn+1 − dn)− 1

β∆t
vn −

β − 1

2
β

an

+ C
γ

β∆t
(dn+1 − dn)− (

γ

β
− 1)vn + ∆t(

β − 1

2
γ

β
)an︸ ︷︷ ︸

Cvn+1

+Kdn+1 = Fn+1 (2.220)

The only remaining unknown variable in equation 2.220 is dn+1 and a solution can now be
achieved.
The time dsicretization for a �rst order ODE can be written similar to equation 2.218a by

canceling γ and last therm with an:135

vn+1(dn+1) =
1

β∆t
(dn+1 − dn)− (

1

β
− 1)vn. (2.221)

This again yields to a nonlinear algebraic equation:

C
1

β∆t
(dn+1 − dn)− (

1

β
− 1)vn︸ ︷︷ ︸

Cvn+1

+Kdn+1 = Fn+1 (2.222)

With this approach, the temperature time discretization can be obtained by approximate
the variable dn;n+1 and vn;n+1 with the temperature uT;n;n+1 and the �rst time derivative of
the temperature u̇T;n;n+1, respectively.
For zero-order ODEs or algebraic equations no time integration algorithm is necessary and

equation 2.222 relaxes to:

Kdn+1 = Fn+1. (2.223)

From this solution, the time and space discrete intensity equation arises by approximate
the intensity dn;n+1 with uI;n;n+1.
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Method αm αf
Newmark 0 0
Hilber-Hughes-Taylor (HHT) 0
Chung-Hulbert scheme (CH) > 0 6= 0
Wood-Bossak-Zienkiewicz scheme (WBZ) 0

Table 2.17.: Conditions of αm and αf for common time integration methods.

2.8.7. Generalized α-method

However, although Newmark's method has shown to be A-stable (unconditionally stable)
for linear structural dynamics its behavior for non-linear structural dynamics may become
unstable.136,137 An extended improved version of Newmark's method is established by the
so called general-α method or CH-α method.129 The main idea of the generalized-α method
is instead of determining a solution strict at the end points tn+1, to determine a solution at
intermediate points tn+1−αm;f within the time step interval ∆t = tn+1 − tn. The value of the
weighting parameters αm and αf de�ne the method solution algorithm (see table 2.17). The
big advantage of this procedure is that high frequency damping can occurs while low frequency
damping is supressed. Thus, nummerical convergence is supported and an accurate sulutions
can be achieved. Even with high time step sizes, like it was nessesery for the solution of the
present model, with a time scale range of approx. 10 orders of magnited, this algorythm is the
mehtod of choise.138The general-α method can now be applied to the initial value problem
for non-linear structural dynamics of equation 2.207. First, the general trapezoid rule is may
applied to d, v and a:

dn+1−αf
= (1− αf )dn+1 + αfdn (2.224a)

vn+1−αf
= (1− αf )vn+1 + αfvn (2.224b)

an+1−αm = (1− αm)an+1 + αman (2.224c)

The general trapezoid rule is may also applied to the internal and external forces.

Kn+1−αf
= (1− αf )K(dn+1) + αfKdn (2.225a)

Fn+1−αf
= (1− αf )F(dn+1) + αfFdn (2.225b)

The internal forces may also approximated by the generalized mid-point-rule (MR) or the
generalized energy-momentum rule (GEMR).137 The parameter αm/f , β and γ are de�ned
as:136

αm =
2ρ∞ − 1

ρ∞+1
; αf =

ρ∞
1 + ρ∞

; β =
1

(1 + ρ∞)2
; γ =

1

2

3− ρ∞
1 + ρ∞

; (2.226)

with the maximum spectral radius ρ∞ ∈ [0, 1] which is a key factor since it controls the
numerical dissipation. The spectral radius is in general de�ned as the maximum absolute
eigenvalue of a square matrix or a bounded linear operator. With the case of ρ∞ = 0 asymp-
totic annihilation of the high-frequency response is achieved and ρ∞ = 1 corresponds to the
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case of no algorithmic dissipation. In the present study ρ∞ was set to 0.75 to achieve a good
balance between high-frequency response and algorithmic dissipation.

The complete space and time disctretized equation for a second-order ODE according to
the general-α method can be written as:

Man+1−αm + Cvn+1−αf
+ Kdn+1−αf

= fn+1−αf
, (2.227)

By inserting equations 2.224 into equation 2.227, it yields to:

(1− αm)Man+1 + αm Man+

(1− αf )C(dn+1)vn+1 + αfC(dn)vn + (1− αf )K(dn+1) + αfK(dn) − (1− αf )F + αfF = 0

(2.228)

For a �rst-order ODE equation 2.227 and equation 2.228 relaxes to:

Cvn+1−αm + Kdn+1−αf
= fn+1−αf

, (2.229)

and to:

(1− αm)C(dn+1)vn+1 + αmC(dn)vn + (1− αf )K(dn+1) + αfK(dn) − (1− αf )F + αfF = 0.
(2.230)

The general-α method applied to a zero-order ODE or algebraic equation like the time
disretized intensity equation it may expands to:

Kdn+1−αm = fn+1−αf
(2.231)

The generalized-α method applied to the fully coupled equation 2.212 �nally yields to:

r︷ ︸︸ ︷
ri
re
rl
ru

 =

M︷ ︸︸ ︷
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 Mu


a︷ ︸︸ ︷
aI

aTe

aTe

au

+

C(v)︷ ︸︸ ︷
0 0 0 0
0 Ce(dTe) 0 0
0 0 Cl(dTl

) 0
0 0 0 Cu(du)


v︷ ︸︸ ︷
vI

vTe

vTe

vu

+


KI 0 0 0
0 Kee(dTl

,dTl
) Kel 0

0 Kle Kll 0
0 0 KTl;u(du) Ku(du)


︸ ︷︷ ︸

K(d)


dI

dTe

dTl

du


︸ ︷︷ ︸

d

−


fI
0

fTl
(du)

fu(dTl
)


︸ ︷︷ ︸

f(d)

(2.232)
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2.9. Solution algorithm: Newton-Raphson method

The Newton-Raphson method is a fundamental FEM algorithm for �nding the roots of a
real valued function f(x).139 This function is linearized at a certain point xi by its tangent.
According to Taylor's theorem, this tangent t(x) can be expressed by neglecting second and
higher order derivative therms denoted by O:

t(x) = f(xi) + f ′(xi)
∣∣
i
(x− xi) + O︸︷︷︸

=0

(2.233)

The iteration steps are denoted by the superscript i for the current iteration step (·)i = (·)(i)
and i+ 1 for the subsequent iteration step (·)i+1 = (·)(i+ 1), respectively. The iterations are
performed within each time step tn; tn+1. Several iteration steps may has to be performed
until convergence is reached. If a start value x0 is given, the function f(x0) and its derivative
f ′(x)

∣∣
0
(with respect to x) can be evaluated at this point. The iteration scheme is performed

by �nding the root of the tangent t(x) and using the corresponding x for the subsequent
iteration step i+ 1. This can be achieved by setting t(x) = 0 and x = xi+1. It is important
to emphasis that the Newton-Raphson method only converges if the solution is di�erentiable
and continuous. The iteration scheme then becomes:

xi+1 = xi − f(xi)

f ′(xi)
∣∣
i

(2.234)

Exemplary, the �rst six Newton-Rapshon iterations are illustrated in �gure 2.28 for an
arbitrary one-dimensional function f(x) = −xex + 3. With each increasing iteration step the
root of the function converges.

Figure 2.28.: Visualization of the Newton Raphson algorithm for a single degree of freedom system.
An arbitrary chosen function f(x) = −xex + 3 is used to show six iteration steps.
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The Newton-Raphson method is also applicable to multi-variable functions. Thus, the fully
discretized nonlinear algebraic coupled equation system 2.232 was solved by this method. The
global residual r(din+1) has the following form:

r(din+1) = Main+1−αm
+ Cvin+1−αf

+ Kdin+1−αf
− fn+1−αf

(2.235)

The solution vector can be expanded in the following way:

di;i+1
n;n+1 =

[
di;i+1
I;n;n+1 di;i+1

Te;n;n+1 di;i+1
Tl;n;n+1 di;i+1

u;n;n+1

]T
(2.236)

The tangent t(dn+1) of equation 2.235 is de�ned as:

t(dn+1) = r(din+1) +
∂r(dn+1)

∂dn+1

∣∣∣∣i(dn+1 − din+1) (2.237)

Now, the tangent is set to zero t(din+1) = 0 and corresponding solution vector din+1 is set
as the value for the subsequent iteration di+1

n+1. Equation 2.237 than becomes the well known
Newton-Raphson iteration algorithm for multi-variable equations:

di+1
n+1 = din+1 −

r(din+1)

∂r(dn+1)

∂dn+1

∣∣∣∣i}Kt(din+1)

(2.238)

The derivative of r(dn+1) with respect to dn+1 at i is the so called global tangent sti�ness
matrix Kt, which is de�ned as:

Kt

(
din+1

)
:=

∂r(dn+1)

∂dn+1

∣∣∣∣i =

∂Main+1−αm

∂din+1

+︸ ︷︷ ︸
KM

∂C(din+1−αf
)vin+1−αf

∂din+1

+︸ ︷︷ ︸
KC

∂K(din+1−αf
)din+1−αf

∂din+1

−︸ ︷︷ ︸
KK

∂f(din+1−αf
)

∂din+1−αf︸ ︷︷ ︸
Kf

. (2.239)

By applying the chain rule, the complete global tangent sti�ness matrix expands to:
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Kt

(
din+1

)
:=



∂rI(dI)n+1

∂dI;n+1

∣∣∣∣i ∂rI(dI)n+1

∂dTe;n+1

∣∣∣∣i ∂rI(dI)n+1

∂dTl;n+1

∣∣∣∣i ∂rI(dI)n+1

∂du;n+1

∣∣∣∣i
∂rTe(dTe,dTl)n+1

∂dI;n+1

∣∣∣∣i ∂rTe(dTe,dTl)n+1

∂dTe;n+1

∣∣∣∣i ∂rTe(dTe,dTl)n+1

∂dTl;n+1

∣∣∣∣i ∂rTe(dTe,dTl)n+1

∂du;n+1

∣∣∣∣i
∂rTl

(dTl,dTe)n+1

∂dI;n+1

∣∣∣∣i ∂rTl
(dTl,dTe)n+1

∂dTe;n+1

∣∣∣∣i ∂rTl
(dTl,dTe)n+1

∂dTl;n+1

∣∣∣∣i ∂rTl
(dTl,dTe)n+1

∂du;n+1

∣∣∣∣i
∂ru(du,dTl)n+1

∂dI;n+1

∣∣∣∣i ∂ru(du,dTl)n+1

∂dTe;n+1

∣∣∣∣i ∂ru(du,dTl)n+1

∂dTl;n+1

∣∣∣∣i ∂ru(du,dTl)n+1

∂du;n+1

∣∣∣∣i


.

(2.240)

Some entries of the global sti�ness matrix relaxes to zero due to the missing variable de-
pendency within its function:

Kt

(
din+1

)
:=



∂rI(dI)n+1

∂dI;n+1

∣∣∣∣i 0 0 0

0
∂rTe(dTe,dTl)n+1

∂dTe;n+1

∣∣∣∣i ∂rTe(dTe,dTl)n+1

∂dTl;n+1

∣∣∣∣i 0

0
∂rTl

(dTl,dTe)n+1

∂dTe;n+1

∣∣∣∣i ∂rTl
(dTl,dTe)n+1

∂dTl;n+1

∣∣∣∣i 0

0 0
∂ru(du,dTl)n+1

∂dTl;n+1

∣∣∣∣i ∂ru(du,dTl)n+1

∂du;n+1

∣∣∣∣i


. (2.241)

The Newton-Raphson algortythm requires to compute the inverse of the global sti�ness
matrix Kt according to equation 2.238. This is commonly achieved in the FEM framework
by the method LU decomposition.140 With equation 2.238 a linear equation system can be
produced.

Kt(d
i
n+1) ∆di+1

n+1︸ ︷︷ ︸
di+1
n+1−di

n+1

= −r(din+1)

(2.242)

The solution vector di+1
n+1 can be computed from the sum of its previous iteration step din+1

and the incremental solution vector ∆di+1
n+1:

di+1
n+1 = din+1 + ∆di+1

n+1 (2.243)

79



This linear equation system 2.242 was computed by the so-called parallel sparse direct lin-
ear solver MUMPS (MUltifrontal Massively Parallel sparse direct Solver).141 This solver
supports multithreading and worked excellent for the present large DOF systems. Actu-
ally, the software Comsol Multiphysics� uses an additional damping factor λ ∈ [0, 1] if
the absolute value of a global residual solution is greater than those of the previous step
(
∣∣r(di+1

n+1)
∣∣ > ∣∣r(din+1)

∣∣). The advantage of this procedure is, that the computational costs
are reduced by decreasing the iteration steps.142,143 The damped solution vector is computed
by:

ddampedn+1 = din+1 + λ ∆di+1
n+1

(2.244)

If
∣∣r(ddampedn+1 )

∣∣ > ∣∣r(din+1)
∣∣ then the damping factor λ is reduced and ddampedn+1 is recomputed

until
∣∣r(ddampedn+1 )

∣∣ < ∣∣r(din+1)
∣∣. Then, the iteration procedure is restated by setting the �nal

damped solution as the new starting point di,newn+1 := ddampedn+1 .

di+1
n+1 = di,newn+1 + ∆di+1

n+1 (2.245)

For the convergence criteria, the estimated error Er is de�ned by the absolute value of the
incremental solution vector

∣∣∆di+1
n+1

∣∣ in the following way:

Er :=
∣∣∆di+1

n+1

∣∣ =
∣∣di+1
n+1 − din+1

∣∣ (2.246)

The convergence is reached and the iteration steps for a speci�c time step are completed if
the relative error err is smaller or equal than the relative tolerance εr;tol.

err =

√√√√√
 1

N

N∑
i=1

(∣∣Ei
n+1

∣∣
W i
n+1

)2
 ≤ εr;tol; with W i

n+1 = max(
∣∣din+1

∣∣, Sin+1) (2.247)

here, N is the number for the degree of freedom and Sin+1 is a scale factor. The subsequent
time steps can be performed by the same procedure as described in this section until the last
time step m is computed and the complete solution is obtain. The explanation of the adaptive
time stepping method for the generalized-α method is beyond the scope of this work and the
interssting reader is refered to e.g.144
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3. Results

3.1. Analytic model of con�ned laser ablation

Figure 3.1 shows a confocal microscopy image of the con�ned Mo-thin �m ablation on glass
substarte with a picosecond laser sorce by Heise et al.145 The bulging of the Mo-thin �lm is
clearly visible by a stable blisters below the ablation threshold �uence. Above the ablation
threshold �uence the ablated blisters can be recollected as intact domes. In the bottom of
the trench, the damage free glass substrate is visible.

Figure 3.1.: Confocal microscopy images of a con�ned laser ablation of a Mo layer coated on glass
subtrate with a laser pulse duration of 10 ps and a wavelength of 1064 nm. (Picture and caption
obtained from Heise et. al145).

In previous works, laser lift-o� or con�ned laser ablation with short and ultra-short laser
pulses is reported as a gas expansion or "bubble blow up".25,35,36 Figure 3.2 shows a schematic
of the energy conversation model developed by Heise et al.25 This model is based on the
assumption that the laser energy is absorbed homogeneously in the Mo-layer within a depth
in the order of the optical absorption length (few tens of nm), as shown in �gure 3.2a. A part
of this depth is then instantaneously evaporated to an ideal gas which occupies a cylindrical
volume V1 with a diameter of the ablated hole. The energy E0 needed for the evaporation of
the Volume V1 is determined by:

E0 = V1ρ (Cp ∗ (TV − T0) + ∆HV ) (3.1)

with Cp as the heat capacity, ρ as the density and ∆HV as the total evaporation enthalpy
of Mo. TV and T0 are the evaporation temperature of Mo and the room temperature, respec-
tively.
An arising gas pressure p1 inside the evaporated volume V1 initiates an adiabatic expansion

of the Mo-layer as shown in �gure 3.2b and results in a hydrostatic pressure p2 within a volume
V2 as shown in �gure 3.2c. This describs the formation process of the blister in the scope of the
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Figure 3.2.: "Model for the ablation mechanism of induced laser ablation. (a) A molybdenum layer is
irradiated from the glass side at a de�ned pulse energy E0. (b) The pulse energy is absorbed within
a thin interface layer of the molybdenum, whereupon instantaneous evaporation of the molybdenum
interface initiates an ideal gas phase with volume V1 of bulk molybdenum (supercritical Mo state).
(c) The molybdenum layer is bulged by an adiabatic expansion of the ideal gas up to volume V2,
while the maximum of V2 is de�ned by the tensile stress limit. (d) If the deformation of the cap
exceeds the stress limit, the molybdenum cap shears o� and subsequently lifts o�. No melting e�ects
can be detected at the substrate and remaining side walls."(Figure and caption optained from Heise
et. al.25).

model. The pressure p1 is calculated by the ideal gas law in equation 3.2a and the pressure p2

with means of the so-called hoop formula in equation 3.2b.146 The volume V2 in equation 3.2c
is obtained by geometric considerations with data from pro�lometry measurements of the
dome.

p1 =
ρ

MMo
RM TV (3.2a)

p2 = σshear
2d

a
(3.2b)

V1 =

(
p1

p2

)κ
V2. (3.2c)

Here, MMo is the molar mass of Mo, RM is the molar gas constant and κ is the adia-
batic exponent; d and a is the �lm thickness and the dome radius, respectively according to
�gure 3.2c.

The criteria for ablation is de�ned when a shear stress limit σshear of 1 GPa is exceeded at
the edged of the dome (see �gure 3.2d). In the framework of this model, an energy of 0.25 µJ
for the exceeding of this shear stress limit is predicted. The Energy E0 is �nally obtained
by inserting the Volume V1 in equation 3.1. By comparing the value of 0.25 µJ obtained
from this model with the pulse energy threshold needed for a punched out dome of 1 µJ it
turns out that the model underestimates the needed energy, however the values are in the
same order of magnitude. In the introduced model thermal expansion was not implicated
and it was not possible to include transient e�ects. In the present work the contribution of
time-dependent e�ects including phase transitions and thermal expansions are explored by
the means of numerical simulation.
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3.2. Simulation model of con�ned laser ablation

As described in section 2.3, a multitime-scale simulation was necessary to take transient
contributing e�ects into account. The complete simulation was done with three di�erent laser
peak �uences of 0.40, 0.50 and 0.55 J/cm2. The center of the laser pulse was shifted to 30 ps
in the time domain to implement the full contribution of its rising slope. The results are
presented according to �gure 2.3 with 4 di�erent points of interests in the spacial domain:
Point 1 is located at the Mo-glass interface and in the spacial center of the laser pulse. Point
2 is then vertically shifted of 435 nm to the Mo-bottom surface. Point 3 and 4 are each
horizontally shifted with a distance of 30 µm with respect to point 1 and 2, respectively. The
laser pulse had a beam radius of 21 µm (1/e2 intensity level).

3.3. Absorption, electron heating, electron-phonon scattering,

and phase transitions

Figure 3.3(a) contains data of the laser pulse intensity at the center point 1 in dependence on
time. The shown intensity is plotted for three di�erent laser peak �uences of 0.40, 0.50 and
0.55 J/cm2. The solid lines represent the data from the calculation referring to equation 2.20
and the included symbols are data points obtained from the simulated intensity. The data
of the calculation and the simulation matches perfectly which indicates the validity of the
simulated intensity. It is worth mentioning that the intensity at point 3 drops down to 1.8 %
of the initial maximum intensity at point 1.

(a) (b)

Figure 3.3.: (a) Intensity of the laser pulse at the center point 10 for a peak �uences are 0.40, 0.50
and 0.55 J/cm2, the pulse duration is 660 fs and the wavelength 1053 nm. (b) Electron and lattice
temperature at the center point 1. Both temperatures have reached equilibrium after about 80 ps
for all �uences.

Figure 3.3(b) shows the electron and lattice temperature in dependence on time during
and after the laser pulse irradiation of the sample for a �uence of 0.40, 0.50 and 0.55 J/cm2

at point 1. The photons of the laser pulse are absorbed by the nearly free electrons through
inverse bemsstrahlung and increasing their energy level by interbandabsorption.3 Here, a fully
thermalized electron system was considered with a de�ned temperature distribution. The
temperature of the electron subsystem increases rapidly during the laser pulse absorption to
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a peak temperature of ∼19,000 K. The lattice subsystem is heated nearly instantaniously
through electorn-phonon coupling. The electron and lattice subsystem reaches equilibrium at
a time of 80 to 100 ps for all simulated �uences. At about 35 ps the rising latice temperature
remains at a constant level for 3 to 5 ps. During this time period, the melting process is
expected68 and the thermal energy is used for the latent heat of melting during the phase
transition while the temperature remains constant. A second range with no rise in temperature
can be observed at about 50 ps147,148 for a �uence of 0.50 and 0.55 J/cm2 which originates
from the latent heat of vaporization.

Figure 3.4(a) contains the lattice temperature at the points 1 to 4 versus the complete time
scale of up to 10 µs for the simulation. The entire layer is resolidi�ed after around 400 ps.
This is indicated after a third time intervall of nearly constant temperature. At 1 ns the
Mo-layer is almost in thermal equilibrium in the vertical direction between point 1 and 2.
The resolidi�ed Mo cools further down to the initial room temperature in the time frame of
1 ns to 10 µs. The points 3 and 4 are only slightly heated to 500 K during the hole process
because of the spacial distance from the laser absorption center. This only slightly heating
at the top of the dome is supported by previous works from Heise et al.25 Here, a Mo-coated
glass substrate was irradiated through the glass side with a �unece of 0.15 J/cm2 by an ultra
short laser pulse with 10 ps pulse duration and 1064 nm wavelength. A dome was produced
and studied by means of atomic force microscopy (AFM). The measured mean grain size was
around 40 nm, both on top of the dome and on the outer area (see Figure 3.4(b)).25 This
indicates that no thermal structure changes has occurred on top of the Mo-layer during the
laser processing, like it is predicted in the present simulation results.

(a) (b)

Figure 3.4.: (a) Lattice temperature at the monitor points 1 to 4 at a �uence of 0.40, 0.50 and
0.55 J/cm2. After around 400 ps the layer is solidi�edat point 1; this is indicated by the end of the
temperature plateau. Time to reach a homogeneous temperature in vertical direction is about 1 ns.
Outer points 3 and 4 are only slightly heated up to 500 K. Room temperature is reached after about
10 µs. (b) AFM-image of a Mo-dome produced with a �uence of 0.15 J/cm2, 10 ps pulse duration
and 1064 nm wavelength (Figure and caption optained from Heise et. al25). No deviations of the
mean grain size of about 40 nm at the top of the dome (top right) and the outer area (bottom right)
are observed which indicates no thermal structure changes.
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3.4. Acceleration of the molybdenum layer and shock wave

observation

The lattice temperature reaches the vaporization temperature at approx. 50 ps (see Fig-
ure 3.4(a), point 1 at 0.55 J/cm2), and thus 20 ps after the intensity maximum of the laser
pulse. If the vapor temperature is exceeded inside a certain Mo volume, a vapor pressure
are able to arise. Figure 3.5 compares between the resulting vapor pressure, determined at
the temperature of point 1 (left y-axis) by equation 2.2 in section d and the simulated mean
vertical pressure, averaged over boundary ∂Ω4 inside the molybdenum �lm (right y-axis), for
a �uence of 0.55 J/cm2. The maximum vapor pressure of 75 kPa is reached at about 54 ps
and nearly vanishes completely after about 150 ps due to recondensation. In contrast, at
40 ps the mean vertical pressure already reaches a minimum of -2 GPa, which is related to
compressive stress, caused by the con�ned thermal expansion of the Mo near the Mo-glass
interface during ultra-fast heating and melting. The heating rate is in the order of 1015 K/s
and thus the thermal expansion occurs also on a ultra fast time scale, which evidently initiates
a shock wave.
Figure 3.6 contains the average acceleration (averaged over the vertical direction from point

1 to 2) of the entire �lm thickness in dependence on time. The maximum acceleration was
calculated to be 1.2·1012 m/s2, which corresponds to an acceleration of 1011 multiple of g
(gravity of earth) at 40 ps. This results from thermal expansion during heating and from the
phase transition during melting.

Figure 3.5.: Vapour pressure (determined at the temperature of point 1) and mean vertical stress
component (averaged over the vertical direction from point 1 to 2) for a �uence of 0.55 J/cm2.
Vapor pressure does not exceed 75 kPa and has nearly vanished after 100 ps. The average vertical
stress component is initially compressive (negative) and then reaches values up to 8 GPa. After
the layer has detached from the substrate, the sign is alternating and is related to the thickness
oscillation of the layer triggered by the expansion shock

The physical mechanisms that lead to the acceleration of the Mo-�lm are revealed in detail
in Figure 3.7. The displacement of points 1 and 2 relative to its initial position is plotted
versus the time. The Mo at point 1 is initially heated by the laser pulse at the center of the
Mo-glass interface and starts to expand thermally. After about 100 ps, point 1 has propagated
10 nm into the glass substrate while point 2 is still at its initial position. The spring model
at the mechanical boundary condition ∂Ω4 (see Figure 2.21 and table 2.12) which represents
the adjacent glass domain creates a reset force due to the thermal expansion which results in
an acceleration of point 1 in the opposite direction away from the substrate. As a result, the
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Figure 3.6.: Average acceleration (averaged over the vertical direction from point 1 to 2) in the centre
for �uence of 0.40, 0.50 and 0.55 J/cm2. First the layer accelerates by thermal expansion and the
following backward impulse of the substrate in the order of 1011 multiple of g for all values of �uence.
If the Mo layer is uncoupled from the glass substrate at 130 ps, the acceleration and therefore the
external force is nearly zero.15

mean vertical pressure in Figure 3.5 indicates high compressive strain that increases up to
8 GPa. At ∼130 ps the Mo-layer is no longer coupled to the glass substrate in an area de�ned
by the maximum melting radius. Simultaneously, the high heating rate with a magnitude of
1015 K/s and the resulting rapid thermal expansion initiates a shock wave which propagates
with the speed of sound of about 5800 m/s through the entire molybdenum layer and displaces
point 2 by about 10 nm towards the surrounded air. The shock wave is then re�ected at the
bottom side of the Mo and get back to point 1 at about 230 ps. It seems that point 1 shows
no displacement for about 100 ps. As a matter of fact, the acceleration of the center of mass
and thus of the entire Mo-layer was already �nished after the detachment at around 130 ps
and the entire layer was set in motion.

In the following, the oscillations of the moving layer are damped. The parameter of the
damping, however, was chosen without a�ecting the initial acceleration and was not deduced
from the parameter for plastic deformation. After about 1 ns points 1 and 2 have equal
velocities for each �uence, which means the Mo layer is propagating nearly free at a constant
speed.

The described shock wave is also shown in former simulation of ultra short laser mate-
rial processing in dielectrics149,150 and metals.149,151,152 The evolution of the shock wave
is described by a rapid decay in pressure in the order of 1011 Pa to 109 Pa within a few
nanoseconds.

3.5. Ultrafast heating and melting as driving forces

As described before, the "lift-o�" is initiated by ultra-fast heating and melting. The contri-
bution of each e�ects to the bulging velocity of the dome can be analytically estimated. The
initial velocity ∆vs that is caused by ultra-fast heating can be calculated from the change in
length lαth∆Ts due to the linear thermal expansion divided by the time interval for heating
∆ts:
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Figure 3.7.: (a) The displacement of points 1 and 2. The glass is only in contact with the molybdenum
in the �rst 130 ps. Then the molybdenum is propagating free within the area of the melting diameter.
A shockwave travels between the upper and lower boundary with the speed of sound of about
5800 m/s. This leads to a period of approx. 200 ps. We assumed a damping of the oscillation after
the interaction with the substrate to model the observations and facilitate the multi-scale simulation.
After about 1 ns points 1 and 2 have equal slopes for each �uence, indicating a di�erent velocity for
each �uence.

∆vs =
lsαth∆Ts

∆ts
, (3.3)

here, the temperature di�erence ∆Ts is 4,000 K, the heating time ∆ts is 20 ps, the heated
layer thickness ls is 100 nm and thermal expansion coe�cient of Mo can be found in table 2.4.
An expansion velocity of the layer of about 100 m/s was calculated. In addition, ultrafast
melting causes a volume expansion at the phase transition from solid to a liquid, which has
been determined to be 5 %71 (Figure 2.4d). This expansion adds to the thermal expansion of
the solid and accelerates the molybdenum layer further in axial direction. The velocity ∆vm
due to melting can be determined by:

∆vm =
∆lm · 0.05

∆tm
. (3.4)

For a melting depth ∆lm of 20 nm and a 5 % relative volume change with a melting time
∆tm of 5 ps, the resulting velocity is 200 m/s. This is twice the velocity from linear thermal
expansion, caused by ultra-fast heating.

The sum of both thermal expansion e�ects is then 300 m/s in the direction towards the
glass. The magnitude of this basic estimation is in excellent agreement with the simulated
initial velocity of point 1 in the direction towards the glass, as shown in Figure 3.8. The
�gure shows also the velocity in point 2 which is directed away from the glass in response
to the velocity in point 1. The relative velocity of point 1 in the direction towards the glass
reaches an absolute maximum at the end of the acceleration which is caused by the Rayleigh
damping.
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Figure 3.8.: Velocity over time in points 1 and 2 for �uence of 0.40, 0.50 and 0.55 J/cm2. Point 1
travels with maximum speed into the glass, because of the assumed Rayleigh damping. Then points
1 and 2 oscillate inversely phased around the mean velocity

3.6. The bulging process and dome formation at low �uence

The ultrafast acceleration causes the molybdenum to bulge and results in a dome formation
at low �uence, as shown in Figure 3.9. For the motion of the membrane itself, the averaged
velocity in axial direction over the layer thickness is the quantity of interest. The average
velocity (averaged over the vertical direction from point 1 to 2) is almost constant and directed
away from the substrate during the last contact with the glass at about 130 ps until the motion
slows down after 40 ns, as shown in Figure 3.10(a). The average velocity is much smaller than
the peak velocities in the shock wave and is the result of the damped back-reaction of the
substrate on the layer. The deviations of the average velocity from a constant value in the
center are related to an oscillating motion of the moving membrane excited in several modes
as well as membrane corrugation.

Figure 3.9.: Membrane height for 0.55 J/cm2 during motion at 52 ns, measured from the Mo surface.

Figure 3.10(b) shows the center dome height, measured from the Mo-air interface (see
Ω2 in �gure 2.21) as a function of time. The maximum height of 2.2 µm for a �uence of
0.55 J/cm2 coincides with the time of deceleration of the membrane motion at about 40 ns.
At the maximum height corrugation occurred, due to the strong initial shock-wave driven
acceleration. After 400 ns, the frequency of the membrane oscillation is about 11 MHz,
indicating a dynamic e�ect. The dome is shrinking with decreasing temperature. For a purely
elastic material, the dome would be assumed to shrink to intial zero height. Thanks to the
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(a) (b)

Figure 3.10.: (a) Height of the dome for �uence of 0.40, 0.50 and 0.55 J/cm2 , measured from the Mo
surface. The layer expands at constant bulging velocity and starts to oscillate after the maximum is
reached, due to inertial e�ects. At the end of the timescale the layer has an irreversible deformation,
although it cools down to room temperature. This is an e�ect of the plastic deformation. (b)
Average velocity (averaged over the vertical direction from point 1 to 2) for �uence of 0.40, 0.50 and
0.55 J/cm2. In the �rst hundreds of picoseconds the layer accelerates to a constant velocity. The
oscillations at around 10 ns are numerical discretization errors. The oscillation at 100 ns is observed
also in our height experiments and can be interpreted as corrugation. After 1µs the mechanical
motion has terminated.

plastic material in the presented model, a residual deformation was obtained, which de�nes
the static height of the dome. As mentioned earlier in section g, the material properties
of the sputtered molybdenum are not well characterized. The used plastic material model
parameters have to be considered as estimates, which leads qualitatively to the observed
dome height by Domke et al.41

The cooling of the �lm results in a shrinking of the layer. Hence, the thermal expansion in
radial direction has a signi�cant contribution to bulging. Assuming a circular dome geome-
try, the maximum static dome height h caused by thermal expansion can be estimated (see
table 3.1).

The temperature is taken at the time of maximum dome height. However, this is only
a static consideration without plastic deformation and dynamic e�ects. By comparing the
dome height from the static estimation for a �uence of 0.55 J/cm2 with the simulation result
it appears that the contributes from radial thermal expansion to the bulging of the dome is
only below 50 %. The remaining contribution is expected from plastic deformation and inertia
overshoot.

Fluence [J/cm2] ∆ T [K] Maximum static Dome height h [nm]

0.40 1300 970
0.50 1490 1050
0.55 1585 1070

Table 3.1.: Estimated maximum static dome height by thermal expansion for a circular dome geom-
etry.
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3.7. Shearing from strain and threshold to ablation at high

�uence

During the motion of the membrane away from the substrate stresses and strains are created in
the layer. The implemented plastic deformation model causes stress relaxation with time. The
strain values, however, are not reduced from plastic deformation and are a perfect parameter
to identify the condition for fracture. Figure 3.11(a) and 3.11(b) presents the maximum
values of radial strain over the radial position for di�erent times with �uences of 0.40 and
0.55 J/cm2. The maximum strain value is located at the melting radius and increases strongly
with increasing �uence. It can be expected, that a critical value is exceeded for some �uence
and that fracture of the layer occurs along the periphery, leading to the "lift-o�" ablation
with a layer fragment in form of a disk. In addition, the strain at the centre (radius of zero)
also increases with increasing �uence. This could be a reasonable explanation for a crack on
top of an ablated dome, as described by Heise et al.25 (see �gure 3.1).

(a) (b)

Figure 3.11.: Maximum values for radial strain (a) for 0.40 J/cm2 and (b) for 0.55 J/cm2. The strain
maximum appears at the edges of the con�ned melting radius. The strain level rises with higher
�uence. Also a strain raise is visible at the centre, which can lead to a crack, as described by Heise
et al.25

3.8. Front side irradiation

By using the material and method described before, results of a simulation for a front side
ablation were obtained by using the laser pulse absorption model and thermal heat di�usion
and phase change model, exclusively. A slightly modi�ed laser wavelength of 1064 nm and a
beam radius of 20 µm was applied for comparison with experimental results.49 Figure 3.12
illustrates that the pulse was now applied from the front side. The aim of this study was
to investigate the ablation e�ciency in dependence on the pulse duration. For this purpose,
the maximum melting and vapor volume was simulated. The applied laser peak �uences was
set to 20 mJ/cm2 while the pulse duration was varied over ranges from 5 fs to 100 ps. For
the simulation of the vapor volume an elevated �uence of 4.9 J/cm2 was needed for vapor
generation of all pulse duration.
In �gure 3.13(a) the comparison of the transient behavior of the electron temperature for

di�erent pulse duration is plotted. The laser intensity maximum is set to 30 ps as previously
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Figure 3.12.: The thin-�lm molybdenum layer is irradiated by a laser (wavelength 1053 nm, pulse
duration 660 fs) through a transparent glass. Only the rectangular Mo-cross section is used in the
axisymmetric model. Important points at the boundary of the simulation domain are numbered from
1 to 4. The maximum irradiated intensity is reached in the center at point 1. The distance from 1
to 3 is 30 µm and from 1 to 2 is 435 nm.

described in section 3.2. The highest electron temperatures of 23,000 K appears for the
shortest pulse duration of 5 fs. As expected, the electron peak temperature decreases with
increasing pulse duration, due to the decreasing peak intensity. A temporal shift of the
maximum electron temperature for increasing pulse duration is visible.

Figure 3.13(b) shows the comparison of the lattice temperature for the di�erent pulse
duration. The absolute maximum of the lattice temperature of each pulse duration increases
from 5 fs to a maximum at 10 ps and the drop then down to 100 ps. All pulse duration passes
the melting temperature. In addition, the vapor temperature is slightly reached for the pulse
duration of 10 ps which can be identi�ed by a time interval with constant temperature.

Figure 3.13(c) illustrates the maximum melting volume as a function of the laser pulse
duration. A maximum value of the achieved melting volume with 25 µm3 appears at 10 ps.
Besides this pulse duration the melting volume is monotonically decreasing. This observation
can be explained as follows. In the case of shorter pulse duration, the electron heat capacity Ce
is proportional to the electron temperature Te according to table 2.3. Thus, for high electron
temperatures more energy can be initially stored in the electron system. The initially locally
narrowed strong heated volume at point 2 creates a high temperature gradient inside the
Mo-layer which distributes the electron temperature very fast into the surrounded region and
outside the melting area. This e�ect is may additionally driven by the rising of the electron
conductivity ke in the condition of high electron temperature and low lattice temperature.
Thus the losses caused by electron heat di�usion are predominated. In the case of longer
pulse duration the lattice temperature gradient distributes most of the thermal energy in the
material such that is transferred outside the melting area.

A similar observation is shown in �gure 3.13(d). Here, the vapor volume is plotted versus
the pulse duration. A �uence of 4.9 J/cm2 initiates a region with a maximum vapor volume
of about 57 µm3 between 10 to 50 ps. Due to the higher applied �uence the above described
mechanism is extended to longer pulse duration. The dependence of the threshold peak �uence
and thus the ablation e�ciency for longer pulse duration is well known and is proportinal to
the square root of the pulse duration:153
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Φ0,thr(τp) ∼
√
τ (3.5)

Summarized, the simulation results suggest that the maximum ablation e�ciency for molyb-
denum can be achieved by a laser with a pulse duration of 10 to 50 ps.

(a) (b)

(c) (d)

Figure 3.13.: (a) The electron temperature and (b) the lattice temperature for 5 fs to 100 ps laser
pulse duration versus the time. (c) The maximum melting volume and (d) the maximum vapor
volume versus the pulse duration. A logariythm x-axis is applied for bettter resolution. The laser
wavelength is 1064 nm, the beam radius is 21 µm (@1/e2) and the peak �uence is 0.20 J/cm2; expect
for the peak �uence of the vapor volume which is 4.9 J/cm2. The maximum of the pulse is set to
30 ps. The lines are plottted as a guide to the eyes54

A recent study reports that indeed there is evidence for an e�cient pulse duration range
around 10 ps. Figure 3.14 shows data from Neuenschwander et. al.49 The ablation threshold
�uence of steel in dependence on the pulse duration which is measured after 256 pulses at
the same spacial point is illustrated for each pulse duration. The experimental data are
still under debate, but if the lowest threshold �uence is to be associated with the ablation
e�ciency a similar trend for pulse duration below 10 ps in relation to the present simulation
results can be observed. It is further noted, that the front side ablation model is only a
thermal model and neglect mechanical e�ects like shock waves and thermal expansion, which
is likely to possible in�uence the results. This could be an explanation why the simulation
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results show the maximum vapor volume up to 50 ps while the experimental results show a
monotonic increase in the threshold �uence up to 50 ps. A very interesting observation can be
made by comparing the the maximum melting volume from the simulation in �gure 3.13(c)
with the experimental results. Here, the trend of both curves are in much better agreement,
which is an indication that melting plays a much more impotent role than evaporation in the
mechanism for the front side ablation threshold process. This is supported by further results
from literautre.154,155

Figure 3.14.: Ablation threshold �uence of steel in dependence of the pulse duration which is measured
after 256 pulses at the same spacial point on the probe surface for each measure point. (Picture and
caption obtained from Neuenschwander et. al49).
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4. Discussion

4.1. Analysis of the driving force for the initiation of the

"lift-o�"

Former studies show a variety of explanations for the driving forces that initiate the laser "lift-
o�" by con�ned ablation. Especially, the application of ultra-short pulse lasers suggest that
ultrafast e�ects might also have a contribution.37�41 Essentially four e�ects are considered in
this simulation study:

(1) Expansion of gas under con�nement

(2) Thermal expansion in axial direction driven by ultra fast heating

(3) Thermal expansion in axial direction driven by ultra fast melting during the phase tran-
sition from solid to liquid

(4) Thermal expansion of the heterogeneously heated �lm in radial direction

Expansion of gas under con�nement is explained as the driving force for nanosecond laser
ablation.35 In the present simulation study, however, with the use of ultra-short pulses, the
pressure generated by thermal expansion was 5 orders of magnitude above the pressure from
gas expansion under con�nement. This implies that the contribution of the gas pressure is
negligible and there is a clear evidence that thermal expansion can be regarded as the driving
force.
Consequently, the simulation suggests that the acceleration of the �lm is mainly driven by

ultrafast heating and melting and not by partial evaporation and subsequent gas expansion, as
assumed in the earlier analitc model25 (see section 3.1). This implication is also supported by
experimental observations of shock waves during con�ned laser ablation, which are initiated
by ultrafast heating and melting.156

A shock wave is initiated by the ultra fast thermal expansion10,41,157 which propagates
from the Mo-glass interface ∂Ω4 to the Mo-air interface ∂Ω2 (Figure 3.12) and vice versa.
The arose recoil pressure induces the delamination process of the Mo-�lm from the substrate
within an area of the melting radius. During the time of the shock wave accelerated Mo-�lm,
there is no relevant contribution from the radial thermal stress. The accelerate of the �lm to
nearly constant velocity of about 30 to 50 m/s by a time of about 100 ps requires a value in the
order of 1011 multiple of g. Thus, ultra fast expansion in axial direction is the predominately
initial driving force. The results shows further that 1/3 of the impulse is generated by ultra
fast heating and 2/3 by ultra fast melting.158 This implies that "lift-o�" is initiated although
the layer is not molten completely. The simulation revealed that the maximum melting depth
is only about 1/4 of the complete layer thickness (Figure 4.1).
In contrast, in case of nanosecond laser ablation, a larger volume is heated with a lower

heating rate and thus a thermal expansion on a time scale 3 orders of magnitude lower occurs
than in the case of ultra-short pulse ablation. The back reaction of the substrate is therefore
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Figure 4.1.: Maximum melting depth of the Mo-layer by irradiation through the glass substrate with
peak �uences of 0.40, 0.50 and 0.55 J/cm2. The pulse duration was 660 fs and the wave length
1053 nm

too small to ablate the layer before melting and evaporation arises. Evaporation may take
over the major role in con�ned nanosecond processing, because a larger fraction of the layer
is melted and because the vapor can absorb energy directly from the laser irradiation. Thus,
a high vapor pressure is may generated.

4.2. Comparison with experiment: ablation thresholds

The simulation has been conducted in accordance with the experimental parameters chosen
in Ref.41 The �rst validation compares the simulated ablation area with the experimental
results, using the method of Liu et al.159 This method is based on the assumption that the
projection of the ablated area (Aabl = π r2

alb) of a sample with a perfect threshold property is
proportional to the logarithm of the irradiated peak �uence Φ0.

Φ(r, t) = Φ0 e
−2r2

w2
0 ⇐⇒ d2 = 2 w2

0 ln
Φthr

Φ0
(4.1)

where, d2 is the square diameter of the bulged or ablated area, w0 is the e�ective beam
radius at 1/e2, Φthr is the bulging or ablation threshold, de�ned at a �uence level at the
intersection of an extrapolated chart with the x-axis at zero diameter.
The experimental values for the bulged and ablated square diameter41 are plotted against

the logarithm of the �uence in �gure 4.2 in comparison with the simulated data. It is apparent,
according to the experimental values, that for peak �uences between about 0.3 and 0.5 J/cm2

a bulging and therefore dome formation of the Mo-layer is discovered. For peak �uences
above 0.5 J/cm2 a "lift-o�" ablation is observed. For the data from the simulation model, the
calculated square of the melt diameter is plotted. As mentioned earlier in section c, within
this diameter the Mo-layer is assumed to have lost its adhesive force with the substrate in
such a way, that detachment is possible. The maximum strain values are found then at the
�xed edges.
The bulged and ablated diameter data from the experiment41 are in good agreement with

the simulation data in terms of the calculated melt diameter. Both data sets exhibits a nearly
perfect threshold characteristic. The main di�erence is a slightly systematic like deviation
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which can be explained as follows. First, The melt diameter is in�uenced by the electron
temperature model parameter, which are still under debate and not the scope of this study.
Second, the temperature dependence of the light absorption coe�cient has not been taken
into account, due to the lack of unknown data. Indeed, the dielectric function also depends
on the electron temperature.82,83 With a possible higher optical energy coupling into the
Mo-layer a larger slope of the melt diameter in the simulation results seems possible.160 A
strain value of 2 % for 0.55 J/cm2 is exceeded in the simulation. This �uence value is the
experimental ablation threshold and is set as the criteria for fracture in the simulation model.
The present study can be considered as an attempt to explain the fundamental mechanism

of the con�ned laser ablation of thin �lms on transparent within the framework of ultra short
laser pulse processing.

Figure 4.2.: Square diameter of the bulged or ablated area versus the laser peak �uence for the
directly induced laser ablation which is plotted by the method of Liu et al.159 The plot shows the
experimental values from Domke et al.41 (red dots) in comparison to the the present simulation
study ( black squares).

4.3. Comparison with experiment: pump-probe microscopy

4.3.1. Height measurement

A transient height measurement from experimental pump-probe microscopy41 is presented
(see Figure 4.3) in comparison with the simulated height, which are both measured from
the center of the Mo-glass interface (Figure 3.12, point 1) to the center of the top of the
dome. The overall agreement is very good. A constant velocity after 1 ns is clear visible
due to the nearly straight line which indicates a direct proportionality of the height and the
time with barely no acceleration. This matches with the data of the average acceleration in
Figure 3.6. The experimental membrane velocity for 0.5 J/cm2 has a value of 60 m/s and hence
a slightly deviation to the 40 m/s predicted by the simulation. It can be further seen, that
after the dome has exceeded its maximum height, a shrinking process appears. For �uences
above 0.50 J/cm2 the dome is ablated and no further height measurement was possible. The
estimated maximum static dome height of 970 nm for 0.40 J/cm2 (table 3.1) is consistent
with the simulation and experimental results. For 0.50 and 0.60 J/cm2 the estimation still
�ts to the experimental values, however the simulation height is lower, due to the imperfect
plastic model parameters. The dome shrinking is correlated to the cooling and stops until
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initial room temperature is achieved. Thanks to the plastic deformation model a stable dome
was produced.
The comparison further shows that the bulging membrane velocity is lower for all �uences

in the simulation case. The reason may be the simpli�cation in the volume expansion model
during melting, where the e�ect is smeared out over the melt volume instead of being localized
and forming a shock front.
It seem plausible that the deviation in dome height at later times could be explained from

the unknown plastic behavior of the sputtered molybdenum layer. Like all refractive vacuum
coated metals, the material properties are not comparable with bulk and are probably very
anisotropic. The plastic parameters have been estimated for the present model only to demon-
strate qualitatively the mechanism of dome formation. A �tting for the exact reproduction
of the pump probe data was not the focus of this work.

Figure 4.3.: Data of the dome height obtained from time resolved pump-probe investigations [32]
compared with simulated results.

Figure 4.4(a) illustrates a dome from the FEM simulation in comparison to a confocal
microscopy image from the experiment41 with a �uence of 0.50 J/cm2, respectively. The
values for the height and the radius of the produced dome show good agreement between the
simulation and the experiment.

4.3.2. Pressure waves

The evidence of pressure waves that is descibed in section 3.4 is supported by previous ex-
perimental work from Domke et al.152 The same laser parameter of 660 fs pulse duration and
1053 nm wavelength in combination with nearly the same beam radius of 20 µm as well as
the same Mo-layer thickness of 435 nm coated on a 1 mm glass substrate is used. A pump
probe setup with a probe pulse of 532 nm wavelength is applied to time resolved pump-probe
microscopy of the laser irradiated sample. The complete setup is descirbed in a previous
work.161

With means of this time resolved pump-probe microscopy setup, a transient re�ectivity
model is introduced which considers the transient re�ectivity signal R1 of the probe beam
from the Mo-glass interface during its changes of states from solid to liquid and gas. A second
transient re�ectivity model is included which take the re�ectivity R2 of the probe beam from
a glass pressure wave into account (see �gure 4.5(a)). Both transient re�ectivity models are
combined to calculate the overall transient re�ectivity signal obtained from the interference
of the two probe beams in �gure 4.5(b).
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(a) (b)

Figure 4.4.: (a) Simulated dome of a glass side irradiated Mo-�lm with a laser pulse duration of
660 fs and a �uence of 0.50 J/cm2,15 (b) Confocal microscopy image of an experimental result with
comparable parameters.41

It is assumed that the generated pressure wave is initiated in a time frame of a few picosec-
onds. It is further concluded by comparison of the below bulging �uence and the above bulging
�uence, that the pressure wave is launched during heating and melting. In addition, pressure
waves are found below the bulging threshold in the �uence range where evaporation is insuf-
�cient. These �ndings are in very good agreement with the present simulation results when
a pressure wave towards the Mo-layer was initiated at about 5 ps during the melting process.
For �uences su�cient for evaporation, no deviations in the oscillations signal in �gure 4.5(b)
are found in the time frame when evaporation was calculated in the present simulation model
and there is no indication of a contribution of a con�ned gas to the �lm bulging.152 Fur-
ther shock-wave observation is reported in literature by the lift-o� of thin-Mo-�lms on glass
substrate irradiation with ultra short laser pulses.156
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(a) (b)

Figure 4.5.: (a) The laser-induced ultrafast thermal expansion at the Mo-glass interface generates
pressure waves in the transparent and in the absorbing layers. The pressure wave can be regarded as
a moving interface with the re�ectivity R2 that propagates towards the probe-pulse with a velocity
v. The distance of this interface determines the phase shift between the re�ected wave fronts from
the pressure wave (R2) and the laser-matter interaction zone (R1). The interference of both re�ec-
tions lead to an oscillation in the time-resolved re�ectivity signal. (b) Relative re�ectivity from the
interference of the two probe laser pulses.(Figure and caption obtain from Domke et. al.152)
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5. Conclusion

Prior works have demonstrated a suggestion for the mechanism of "lift-o�" with short34�36

and ultra short20,37�40 laser pulses. Although, these studies have shown reliable models of
"lift-o�" for short pulse laser ablation, only simpli�ed static model have been established
for the case of ultra short laser pulses. In this dissertation a multiphysics and multi-time
scale FEM simulation model was introduced for the description of the driving mechanisms
for con�ned ultra short laser ablation of metal thin �lm on a transparent substrate by the
example of a Mo-layer on a glass substrate. A "big-picture" of the whole ablation process was
created by combining multiphysics with multi-time scale modeling. Within the multiphysics
model, it was possible to implement the optical, thermal and mechanical physics. These
di�erent physical aspects all appear on di�erent time scales ranging from the femtosecond
to the microsecond scale and are interconnected to each other. Thanks to the additional
multi-time scale approach, this led to a very powerful simulation model.

It was demonstrated that the initial driving force for ultra short pulse laser ablation of
thin Mo �lms on glass substrate is identi�ed as ultra fast thermal expansion in axial direction
caused by ultra fast heating and melting. The further dome formation is supported by heating
of the thin Mo-�lm in radial direction. A surprising outcome of this study is that these
mechanisms are fundamentally di�erent from those which are found by short pulse laser
ablation with pulse duration in the nanosecond regime. The results were used for reliable
predictions which were comparable to those of related experimental work.41 The bulging
velocity and the dome height were able to be reproduced in a qualitative manner. The model
was further applied to the prediction for the mechanism of front side ablation of Mo with
ultra short laser pulses.

The presented model extend those from Heise et al.25 by investigating the vapor pressure
and the thermal expansion in a transient 3d axisymmetric model to identify a variety of
predominating e�ects that can have a contribution on the driving force. This simulation study
has further motivate studies in the �eld of ultrashort laser ablation at spacial con�ned of thin
�lms.152,162�179,179�189 Because the laser energy is deposited ultra fast in a localized region
near the interface, the Mo-layer expands thermally fast and produces a shock wave which
initiates the ablation process. The expansion of the Mo-layer into the substrate produces a
backward impulse and creates large enough forces and strain for �lm bulging and ablation.
Thermal expansion of both, heating and melting, must be assumed to get the right value
for the "lift-o�". The gas pressure from evaporation is not su�cient to contribute to the
mechanism and is also only observed during a very short time period. The insight gained in
this investigation concerns the fundamental role of the backward impulse generated by the
substrate. This impulse produces a su�ciently high acceleration to set the layer in motion
in the opposite direction to the substrate. The e�ect is therefore purely mechanical and
the characterization is therefore a so-called "cold ablation". In this model, the process and
material parameters may be varied and investigated systematically as they are: The electronic
and optic parameter of the materials, the elastic parameter of layer and substrate. The model
assumptions can explain all observed phenomena and magnitudes. In such a way, the "directly
induced" laser ablation process could may be improved. At the same time, the experimental
validation could be improved using the discovered dependencies in the present investigation.
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In the present study, a deep insight had been made possible to increase the understanding
of "lift-o�" with ultra short laser pulses and therefore contributes and bene�ts to the global
understanding in the �eld of laser matter interaction. To the author knowledge, this is the
�rst time that a simulation model was created which explains the dome formation with means
of con�ned ultra short laser ablation and gave a qualitative description of its driving force.
The results can deepen the understanding of ultra short laser material processing and are
capable to optimize industrial processes. The used layer system is preferred used as a back-
contact for copper indium gallium (di)selenide (CIGS) thin-�lm solar cell. The new know-how
is may bene�cial for the improvement of laser processes for these solar cells in terms of energy
e�ciency, product quality and production costs.
However, some imperfections are worth noting. Although the model was able to give a

excellent qualitative description, better known material parameter are necessary for accurate
quantitative results. These parameters are those for the absorption and the two-temperature
model which are virtually all temperature depended. In addition, the elasto-plastic material
parameters need to be derived for the thin �lm which may consists of anisotropies that di�ers
from the balk ones and may depends also on the fabrication method. The introduced model is
not limited to the present used materials of Mo and glass. Both, the thin �lm and the substrate
can be substituted by any materials where the material data are well-known. For the case
of non-metal thin �lms the absorption and two-temperature model need to be modi�ed like
it is suggested in literature.190,191 Multi-pulse simulation could be performed too within the
framework of this model, however the simulation time consumption will growth with every
additional pulse. It is also concievable to add a crack analysis to focus on the shear of the
layer.192
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A. Appendix for Methodology

A.1. Appendix for the Laser pulse absorption model

A.1.1. Crul operator for the wave equation

∇× (∇×E) = ∇ (∇ ·E)−∇2E = −∇× Ḃ

∇× Ḃ = µ̃ε̃Ë + µ̃σelĖ

⇒∇2E− µ̃ε̃Ë− µ̃σelĖ = 0 (A.1)

A.1.2. Squared hyperbolic secant

sech2(x) =
1

cosh2(x)
=

4

(ex + e−x)2 =
4

e2x + e−2x
=

4e2x

e4x + 1
(A.2)

A.1.3. Mean laser power

The peak laser power P0 is obtained by taking the integral of the intensity over its area:

P0 =

∞∫
−∞

I(x, y) dA =

∞∫
−∞

e

−2(x2 + y2)

w2
0 dx dy =

I0

2

2π∫
0

∞∫
0

e

−2(R2)

w2
0 R dR dΘ

→ P0 =
I0 π w

2
0

2
. (A.3)

The peak �uence Φ0 is utilized by by taking the integral of the intensity over time and then
substituting the peak intensity I0 of equation A.3 with the peak laser power P0:

Φ0 = I0

∞∫
−∞

I(t) dt = I0

∞∫
−∞

sech2(
1.76t

τ
) dt = I0

2τ

1.76
=

→ Φ0 =
2 P0

π w2
0

2 τ

1.76
(A.4)

The peak laser power P0 is related with the mean laser power P̄ through the pulse duration
τp and the laser repetition rate frep. Finally, the peak �uence Φ0 can be expressed in terms
of the mean laser power P̄ with equation A.4.

P0 2 τp
1.76

=
P̄

frep
→ P0 =

P̄ 1.76

frep 2 τ
⇒ Φ0 =

2 P̄

π ω2
0 frep

(A.5)
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A.1.4. Intensity volume integral

−
∫
Ω0

(∇v)T (∇I + αoptI) dV0 =

∫
Ω0

− ∂v

∂R

∂I

∂R
− ∂v

∂Z

(
∂I

∂Z
+ αopt I

)
dV0 (A.6)

A.2. Appendix for the Thermal heat di�usion and phase change

model

A.2.1. Divergence of the temperature gradient

∇ · (kl∇T ) =
1

R

∂

∂R

(
Rkl

∂T

∂R

)
+

1

R

∂

∂Θ

(
kl
R

∂T

∂Θ

)
+

∂

∂Z

(
kl
∂T

∂Z

)
(A.7)

A.2.2. Second-order identity tensor

1 = eiejδij =

1 0 0
0 1 0
0 0 1

 (A.8)

here, ei;j are the two components of the second-order identity tensor.

A.3. Appendix for the Thermal expansion model

A.3.1. Deformation gradient in cylindrical coordinates

F =


1 0 0

0 1 0

0 0 1

+


∂u

∂R
0

∂u

∂Z
0

u

R
0

∂w

∂R
0

∂w

∂Z

 =


1 +

∂u

∂R
0

∂u

∂Z
0 1 +

u

R
0

∂w

∂R
0 1 +

∂w

∂Z

 (A.9)

A.3.2. The Cauchy-Green deformation tensor

The right Cauchy-Green deformation tensor in cylindrical coordinates can be written as:
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C = FTF =


1 +

∂u

∂R
0

∂w

∂R
0 1 +

u

R
0

∂u

∂Z
0 1 +

∂w

∂Z




1 +
∂u

∂R
0

∂u

∂Z
0 1 +

u

R
0

∂w

∂R
0 1 +

∂w

∂Z

 =



(
1 +

∂u

∂R

)2

+

(
∂w

∂R

)2

0

(
∂u

∂Z

)(
1 +

∂u

∂R

)
+

(
∂w

∂R

)(
1 +

∂w

∂Z

)
0

(
1 +

u

R

)2
0(

∂u

∂Z

)(
1 +

∂u

∂R

)
+

(
∂w

∂R

)(
1 +

∂w

∂Z

)
0

(
∂u

∂Z

)2

+

(
1 +

∂w

∂Z

)2


(A.10)

A.3.3. Voigt notation

In Voigt notation the symmetric second order stress tensor can be rewritten in the following
simpli�ed way:

σ =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 =

σ11 σ12 σ13

· σ22 σ23

· · σ33

 =



σ11

σ22

σ33

σ23

σ12

σ13

 (A.11)

A.3.4. Divergence operator

div A = ∇ · A =



A11

X1

A21

X2

A31

X3

A12

X1

A22

X2

A32

X3

A13

X1

A23

X2

A33

X3


(A.12)

A.3.5. Double dot product

A : B =
∑
j

∑
i

AijBij =

A11B11 +A12B21 +A13B31+

A21B12 +A22B22 +A23B32+

A31B13 +A32B23 +A33B33 (A.13)
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A.3.6. Fourth-order identity tensor

I = eiejδijδklekel =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 1


(A.14)

here, ei;j;k;l are the four components of the fourth-order identity tensor.

A.3.7. Tensor product

A⊗B =

A11B11 A11B12 A11B13 A12B11 A12B12 A12B13 A13B11 A13B12 A13B13

A11B21 A11B22 A11B23 A12B21 A12B22 A12B23 A13B21 A13B22 A13B23

A11B31 A11B32 A11B33 A12B31 A12B32 A12B33 A13B31 A13B32 A13B33

A21B11 A21B12 A21B13 A22B11 A22B12 A22B13 A23B11 A23B12 A23B13

A21B21 A21B22 A21B23 A22B21 A22B22 A22B23 A23B21 A23B22 A23B23

A21B31 A21B32 A21B33 A22B31 A22B32 A22B33 A23B31 A23B32 A23B33

A31B11 A31B12 A31B13 A32B11 A32B12 A32B13 A33B11 A33B12 A33B13

A31B21 A31B22 A31B23 A32B21 A32B22 A32B23 A33B21 A33B22 A33B23

A31B31 A31B32 A31B33 A32B31 A32B32 A32B33 A33B31 A33B32 A33B33


(A.15)

A.3.8. Partial integration

Two di�erentiable functions f(x) and g(x) can be partially integrated within the interval a
and b by:

b∫
a

f(x)′ g(x) = [f(x) g(x)]

∣∣∣∣∣
b

a

−
b∫
a

f(x) g(x)′ (A.16)

here, f(x)′ and g(x)′ is the �rst derivative of f(x) and g(x), respectively.

A.4. Appendix for the Space and time discretization

A.4.1. Integral tranformation

The integral of a function g(x) within the interval a and b can be transformed into the
normalized interval −1 and 1 with a function f(t) in the following way:

106



b∫
a

g(x)dx =

1∫
−1

f(t)dt with t ∈ [−1, 1]− > x = a+
b− a

2
(t+ 1) ∈ [a, b]

⇒
b∫
a

g(x)dx =
b− a

2

1∫
−1

g

(
a+

b− a
2

(t+ 1)

)
dt

(A.17)

A.4.2. Inentsity discretization

The intensity sti�ness matrix equation 2.191a mapped to the natural coordinate system can
be expressed as:

KI;ij;e =

∫
Ω0;e

[
−
(

J−1
11;e

∂Ni(ξ, η)

∂ξ
+ J−1

12;e

∂Ni(ξ, η)

∂η

)(
J−1

11;e

∂Nj(ξ, η)

∂ξ
+ J−1

12;e

∂Nj(ξ, η)

∂η

)

−
(

J−1
21;e

∂Ni(ξ, η)

∂ξ
+ J−1

22;e

∂Ni(ξ, η)

∂η

)(
J−1

21;e

∂Nj(ξ, η)

∂ξ
+ J−1

22;e

∂Nj(ξ, η)

∂η
+ αNj

)]
2 π R(ξ, η)

∣∣J∣∣ dξ dη
(A.18)
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