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A B S T R A C T

The genetic code and its evolution have been studied by many different approaches. One approach is to compare
the properties of the standard genetic code (SGC) to theoretical alternative codes in order to determine how
optimal it is and from this infer whether or not it is likely that it has undergone a selective evolutionary process.
Many different properties have been studied in this way in the literature. Less focus has been put on the al-
ternative code sets which are used as a comparison to the standard code. Each implicitly represents an evolu-
tionary hypothesis and the sets used differ greatly across the literature. Here we determine the influence of the
comparison set on the results of the optimality calculation by using codes based upon different sub-structures of
the SGC. With these results we can generalize the results to different evolutionary hypotheses. We find that the
SGC's optimality is very robust, as no code set with no optimised properties is found. We therefore conclude that
the optimality of the SGC is a robust feature across all evolutionary hypotheses. Our results provide important
information for any future studies on the evolution of the standard genetic code. We also studied properties of
the SGC concerning overlapping genes, which have recently been found to be more widespread than often
believed. Although our results are not conclusive yet we find additional intriguing structures in the SGC that
need explanation.

1. Introduction

One nearly universal feature of life as we know it is the standard
genetic code (SGC). While alternative genetic codes do exist, all extant
codes are probably derivatives of the SGC, as they are taxonomically
restricted and therefore considered younger (Knight et al., 2001) and
they differ by few codon assignments. In this study we assume that the
SGC has always been a true code as it is today, which means that the
mapping is arbitrary i.e. any codon could map to any amino acid
(Barbieri, 2018). This can be achieved by adapter molecules such as
tRNAs that can map any amino acid to any codon. We assume that a
tRNA-like molecule completely defined the code at some point, since all
amino acids that have shown a tendency towards stereochemical
binding to their codons or anticodons thus far (Yarus et al., 2009) are
not prebiotically available and have high energy costs of synthesis
(Higgs and Pudritz, 2009). Even if the code was stereochemically de-
termined in the beginning, we cannot see any traces of this left in the
present SGC. Without stereochemical binding determining the code,
hypotheses about whether the SGC is an adaptation are possible, along
with investigating which properties are adaptive. The best-studied
property is the robustness to mutational or misread errors in genes

(Freeland and Hurst, 1998b; Haig and Hurst, 1991). Other properties of
the code which have been hypothesized to be near optimal include at
least five properties: minimizing the toll of frameshift errors (Itzkovitz
and Alon, 2007), supporting finding functional nucleotide sequences by
random mutations (Tripathi and Deem, 2018), facilitating coding of
additional information alongside protein sequences (Itzkovitz and Alon,
2007), conserving sequences in alternative reading frames (Konecny
et al., 1993) and creating alternating hydropathy patterns in sense–anti-
sense protein pairs (Blalock, 1990; Zull and Smith, 1990).

There are two main kinds of approach to studying the optimality of
the SGC, aiming at different aspects. The older approach is the ‘statis-
tical approach’, which compares the SGC to a set of theoretical alter-
native codes and determines the percentage of better codes in a chosen
property. This approach was developed in order to test the null hy-
pothesis that the SGC has not been optimized and is a ‘frozen accident’
(Crick, 1968) randomly picked from the set of possible codes. In the
evolution of the SGC have most likely been factors that restrict what the
code can look like and therefore determine the set of possible codes.
After proposing an evolutionary hypothesis we can construct this set of
possible codes and determine the percentage of codes better than the
SGC. Following Massey (2008) if the chance to draw a code better than
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the SGC is below 5% we can reject the null hypothesis of no optimi-
zation, and infer a likely optimization process.

A more recent approach to code optimality is an ‘engineering ap-
proach’, which uses a genetic algorithm (GA) to search for the best and
the worst code for a property following a chosen evolutionary hy-
pothesis. The GA starts with a random code, which is run through
multiple cycles of variation and selection in order to find the extreme
values. Since GAs can be stuck in local extrema, the GA is run with
different random starting codes. Finding the best and worst codes al-
lows calculation of the distances of the SGC to these codes (Błażj et al.,
2018) and also allows inferring the scale of optimization and how dif-
ficult it is to evolve the code. But it is not possible to determine whether
the SGC has been optimized at all in this approach. If the set of possible
codes is not distributed symmetrically around some mean value, it
could be that the worst code is much further away from most codes than
the best code is. So, even if the distance of the SGC to the best code is
much smaller than to the worst code it does not necessarily mean that
the SGC has been optimized. Also it is not clear what level of optimi-
zation for a given property we should expect under a hypothesis of
selection. Assuming the SGC has evolved through selection, the SGC
could have evolved to a local or even global fitness peak, but the fitness
of the SGC may not only be determined by a single property but si-
multaneously by many. Most studies only consider a single property as
it is not clear how to weight different properties and combine them into
a fitness function. Studying only a single property might create lower
values of optimality. It is also not clear how far the SGC has been op-
timized. The process could have been stopped before a maximum was
reached. One possible cause is Crick's concept of the ‘frozen accident’
(Crick, 1968), namely that the organism carrying the SGC was complex
enough such that a change in the SGC would be more deleterious than
beneficial. Another possible scenario is fixation of the code following
the evolution of horizontal gene transfer (HGT). In order for HGT to be
efficient all organisms need to have the same genetic code, which has
been shown to lead to stable convergence to a single code (Aggarwal
et al., 2016). An objection to the optimization hypothesis is that it
appears that many steps are needed on average to create a code as
optimal as the SGC (Massey, 2010). However this does not make the
optimization hypothesis hugely more unlikely than any alternatives, as
the evolution of the SGC was noted as a ‘notoriously difficult problem’
from the beginning (Crick et al., 1976), before the optimization was
recognised, and remains so today (Kun and Radványi, 2018).

In this study we are interested in determining whether the genetic
code shows evidence of having been optimized or not, thus we use the
‘statistical approach’. We will not discuss the different hypothesis on
how the SGC evolved, but refer the interested reader to a recent review
(Kun and Radványi, 2018). Previous studies show that results of the
‘statistical approach’ heavily depend on the codes used as a comparison
to the SGC. For the mutational error robustness the percentage of better
codes than the SGC ranges from 0.0001% (Freeland and Hurst, 1998b)
to 21.9% (Massey, 2008), depending on which evolutionary hypothesis
is used. In order to remove the optimality for the mutational robustness
a very specific evolutionary hypothesis had to be used in (Massey,
2008). They show that after relaxing the constraints of the hypothesis
only a little the mutational error robustness returns to optimal in the
SGC, so their result is not very robust. Assuming that their evolutionary
pathway is not exactly correct, the claim that the mutational error ro-
bustness of the SGC really had a neutral origin is questionable in itself,
though our analysis adds to this.

We test multiple properties on different code sets in order to infer
the robustness of the optimality of the SGC. If the genetic evolved via
natural selection, it should yield a fitness advantage for some kind of
replicating RNA/DNA system otherwise it would be expected to be lost
(Kun and Radványi, 2018). Since the most basic function of the genetic
code is to translate from mRNA to proteins, we assume that the created
proteins have a function and that the mRNA has to be translated mostly
without errors. In order to do so in an energy efficient and reliable way,

the genetic code should be robust against mutational and misread er-
rors, which is the first property we test. A second type of translation
error is a frameshift error, which is a shift of the ribosome by one or two
nucleotides on the mRNA. This results in a completely different protein
being translated and should be stopped as soon as possible, since pro-
tein translation is energetically costly (Lynch and Marinov, 2015). The
same effect can be observed when an insertion or deletion of nucleo-
tides takes place. In order to reduce the fitness cost of such a frameshift
event, the genetic code could be designed in such a way that the other
two sense reading frames of the translated strand have a high STOP
codon probability. This would stop the faulty translation shortly after
the frameshift and can be achieved by pairing the codons most fre-
quently found in the other two frames with STOP codons when frame-
shifted (Itzkovitz and Alon, 2007). Just as in Itzkovitz and Alon (2007)
and Mir and Schober (2014) we study the mean value of both sense
reading frames as both should be optimized at the same time, but also
both frames individually.

Two more properties we study only matter for overlapping genes
(OLGs). A genome containing OLGs will be shorter and therefore in-
crease replication rates as the genome has to be copied in any re-
plicating system. In a competitive setup this would plausibly yield a
fitness advantage and could be selected for. Viruses are known to carry
multiple OLGs (Barrell et al., 1976; Fiddes and Godson, 1978), but these
fascinating genes are also found in prokaryotes (Fukuda et al., 1999;
Tunca et al., 2009; Kim et al., 2009; Hücker et al., 2018b,a;
Vanderhaeghen et al., 2018), eukaryotes (Spencer et al., 1986; Iwabe
and Miyata, 2001) and even vertebrates (Williams and Fried, 1986;
Makalowska et al., 2004). It has intriguingly been proposed that amino
acyl tRNA synthetases arose from a sense-antisense overlapping gene
pair (Rodin and Ohno, 1995; Martinez-Rodriguez et al., 2005). In
theory, creating OLGs is difficult since the ‘mother gene’ restricts the
alternative reading frames, which makes it difficult to encode func-
tional proteins. Even if a functional OLG is created, any mutation in the
overlapping region will potentially damage two genes, so the OLG is
more likely to be lost in the course of evolution than a regular gene. Due
to the difficulties in creating and maintaining OLGs they have long been
thought to only appear in viruses, where genome size is an important
factor. Nevertheless OLGs exist outside of the virus domain, so an ex-
planation of how an organism can overcome these difficulties is needed.
One plausible route of explanation is that the structure of the genetic
code facilitates the creation and/or maintenance of OLGs. A related
question regarding the susceptibility of OLGs to mutations has been
studied by Konecny et al. (1993): if we have a conservative nucleotide
change in the ‘+1’ frame, which is a change that does not change the
amino acid coded for by the codon, how would this affect the ‘-1’
frame? To partly counter the mutational vulnerability of OLGs the ge-
netic code could conceivably be optimized to be especially error re-
sistant in alternative reading frames when there is a conservative mu-
tation in the ‘+1’ frame. This property can be optimised in a certain
reading frame if all codons of a single amino acid overlap with codons
of similar amino acids in that frame. Here we expand the study done in
Konecny et al. (1993) on the ‘-1’ frame to all alternative reading frames,
using the reading frame definitions summed up in Fig. 1.

In order for OLGs to be able to code for all kinds of proteins, the
average open reading frame (ORF) length on alternative reading frames
should ideally be similar to non-OLGs. The average ORF length is a
good measure for whether any of the alternative reading frames stands
out from the others. If OLGs were an important feature for organisms at
the time of genetic code optimization, a high average ORF length may
have yielded an evolutionary advantage. This property is optimised if
STOP codons share nucleotides with rarely used codons, i.e. STOP co-
dons overlap rarely used codons in alternative reading frames. In each
frame, this property conflicts strongly with reduction of the impact of
frameshift errors, especially for reading frames on the same strand, and
is the last property we study. But different reading frames could have
different functions. Some could be adjusted for long genes, while others
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quickly stop the translation after a frameshift error. In this sense both
properties can be realized in one genetic code – but whether different
reading frames are actually used differently in accordance with their
properties deserves further exploration.

Each code set we compare the SGC with in any of these four prop-
erties implicitly represents an evolutionary hypothesis. The SGC has a
few unusual structures compared to a completely random code, for
example only one out of 1065 random codes has the same block struc-
ture as the SGC. Since the SGC has such rare structures, all but the
stereochemical hypothesis of code evolution (Woese et al., 1966) try to
explain the structures of the standard genetic code. So instead of using
existing evolutionary hypothesis to create theoretical alternative code
sets, we will use codes created from different structures of the SGC. By
comparing the structures of the SGC that an existing or new evolu-
tionary hypothesis enforces on the set of possible codes we can infer the
order of optimality from our analysis. This allows us to make more
general claims about the robustness of the optimality of the SGC.

We study three different kinds of structures of the SGC and com-
pletely random codes called the ‘Random’ code set as comparison. The
first type of structure is the composition of the SGC, which is de-
termined by the number of STOP codons, the number of different amino
acids and the number of codons coding for each amino acid. The re-
spective code sets will be labelled ‘Random_fs’ (fixed STOPs),
‘Random_faa’ (fixed amino acids) and ‘Degeneracy’. Next we study the
absolute structure in the SGC, which is the degeneracy of the third
codon position. We call this the ‘Blocks’ code set as it conserves the
blocks of codons coding for the same amino acid. Lastly we study re-
lative structures of the SGC, which is the similarity of amino acids with
codons which differ only in one nucleotide. We create similar neigh-
bour code sets from the ‘Degeneracy’ code set called ‘Degeneracy_n’ and
from the ‘Blocks’ code set called ‘Blocks_n’. We also use the code set
created in (Massey, 2008) using the 2-1-3-model of code evolution

(Massey and Sequential, 2006). In this hypothesis the block structure of
the SGC is conserved, and additionally, neighbouring blocks have si-
milar amino acids created by a specific scheme originating from a se-
quential introduction of more and more amino acids to an originally
simple code consisting only of valine, alanine, aspartic acid and glycine.
This is the only comparison code set so far that results in no optimality
for the SGC in mutational error robustness. We also tested a few more
code sets, namely a generalized way of creating random blocks taken
from Buhrman et al. (2011), a random code set with both the number of
STOPS and different amino acids fixed, and two versions of the same
sets with similar neighbours; the data for these can be found in Figs.
S2–S6 of the Supplementary Material.

2. Results and discussion

2.1. Mutational and misread error robustness

The optimality of mutational robustness is a very robust feature of
the SGC, as the percentage of better codes is far below the 5% threshold
for all code sets except the 213-model, which is slightly above the
threshold, c.f. the left panel of Fig. 2. For the ‘Degeneracy’ and the
‘Degeneracy_n’ code set not a single code better than the standard code
was found in 1010 codes.

Neither the STOP codons nor the number of different amino acids in
the code have a strong influence, c.f. the right panel of Fig. 2. Fixing the
degeneracy or introducing the block structure has a similar effect on the
mutational robustness on average. Since the block structure also creates
very similar amino acid degeneracies as in the SGC this feature seems to
fix the average value. Fixing the degeneracy on the third nucleotide
position increases the variance as either very similar amino acids are
close or very different ones. Creating codes with similar neighbours
barely influences the optimality, and only the specific evolutionary path
in 213-Model can, so the details of the evolutionary hypothesis matter a
great deal. The exact percentage of better codes for all code sets can be
found in Table S1 in the Supplementary Material.

2.2. Frameshift error abortion times

The distance to the next STOP codon after frameshift is only optimal
in the ‘Degeneracy’ and the ‘Degeneracy_n’ code set when considered in
each sense reading frame independently, but the average of both frames
is also optimal in the ‘Random_fs’ and the ‘213_Model’ code set, c.f. top
panel of Fig. 3. Optimizing both reading frames at the same time is
harder than optimizing only a single reading frame but more relevant in
a realistic scenario, so it is the property that should be studied instead

Fig. 1. Illustration of the alternative reading frame definitions.

Fig. 2. Mutational and misread error
robustness calculated on 1010 codes.
Compositional code sets are shown in
different shades of blue, absolute
structural code sets are shown in dif-
ferent shades of orange and relative
structural code sets are shown in dif-
ferent shades of grey. Left: Optimality
as the percentage of better codes. The
black line indicates the 5% threshold.
Right: Mean values with standard de-
viation as error bars. The black line
indicates the Dm value for the standard
code.
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of single reading frames. The previously mentioned code sets all restrict
the number of STOP codons to 3 and thus have very small variations
across their code set values leading to a higher optimality of the SGC,
c.f. bottom panel of Fig. 3. The distance to a STOP codon is bounded
below by 0, while there is no upper bound for a code without a STOP
codon. We expect that the more STOP codons are included in the SGC
the less impact each additional STOP codon has on the result. This
could be one factor determining that only 3 STOP codons are included
in the SGC.

The other structures besides the number of STOP codons have little
impact on this property. Interestingly, we find the distance to a STOP
codon after a frameshift to be optimal in the ‘213_Model’, so removing
the mutational error robustness with the underlying evolutionary hy-
pothesis does not remove the optimality of the SGC. In this study we
only test four properties, but additional optimalities are possible con-
sidering the multiple properties of the SGC. The exact percentage of
better codes for all code sets in the sense reading frames can be found in
Table S1. The anti-sense strand could also have some absorbing reading
frames, but it is not yet clear which reading frames to consider for
coding an which for absorbing faulty translations. The data of each anti-
sense reading frame can be found in Fig. S4 and Table S2 in the
Supplementary Material.

2.3. Conservation in alternative reading frames

The absolute conservation (Dc) values of the ‘-1’ frame cannot be
compared to other reading frames, as in this frame a single codon on the
‘+1’ frame defines a full codon, while on all other frames two codons in
the ‘+1’ frame are needed. This leads to 20 groups, one for each amino
acid, on which this property is calculated in the ‘-1’ frame, but in all
other frames 400 groups, one for each dipeptide, are used. The values of
the ‘-1’ frame are roughly 20 times larger than the values in other al-
ternative reading frames and we expect this to be an artifact of calcu-
lation, but have not studied this in more detail, c.f. bottom panel of
Fig. 4.

Only when compared to the ‘Degeneracy’ and the ‘Degeneracy_n’
code set is the SGC optimal across all reading frames, c.f. top panel of
Fig. 4. Again we find optimality in the ‘213_Model’ code set, namely in
the two sense reading frmes and the ‘-3’ frame. In the ‘-1’ frame almost
all code sets are optimal except the ‘Blocks’, the ‘Blocks_n’ and the
‘213_Model’. If any reading frame has been optimised to be especially
conservative it is the ‘-1’ frame, but the relative optimality still depends
on the evolutionary background.

No structure of the SGC strongly influences the conservation value

except in the case of the ‘-2’ frame. Since the third codon positions in
the ‘+1’ and the ‘-2’ overlap, codes with the degeneracy on the third
codon position are especially conserved, as synonymous mutations in
the mother gene are also mostly synonymous in the ‘-2’ frame.
Interestingly, the SGC, which also has this degeneracy structure on the
third codon position, is not influenced on the ‘-2’ frame. Extending this
insight, when comparing the conservation values of the SGC across
reading frames except the ‘-1’ frame, we find them to be remarkably
similar. Just as for the frameshift error reduction property, studying
single reading frames might not be the right approach for this property.
In the case of OLGs we do not only want to conserve existing genes but
plausibly also need some coding flexibility in order to create an OLG to
begin with. Since conservation and flexibility are opposing properties, a
trade-off between the two properties might lead to a constant value
across reading frames being optimal. Further studies are needed in
order to clarify this intriguing result. The exact percentage of better
codes for all code sets can be found in Table S2 in the Supplementary
Material.

2.4. Average ORF length

Only in the ‘-2’ frame do we find optimality of the SGC. The SGC is
optimal with regards to the ‘Degeneracy’, the ‘Degeneracy_n’ and the
‘213_Model’ code sets for this reading frame, c.f. top panel of Fig. Fig. 5.
The latter model gives especially high optimality as only 0.012% of
codes are better than the standard code. As the average ORF length and
the distance to a STOP codon after a frameshift error are very similar
properties, the influence of the number of STOP codons is the same in
both properties, c.f. bottom panel of Fig. 5. Besides the number of STOP
codons we do not see a clear influence of any other structure on the
average ORF length, except in the ‘-2’ frame, where the degeneracy
structure on the third nucleotide position greatly increases the varia-
bility among theoretical alternative codes. The reason for this influence
is not clear, but since the two third codon positions overlap in this
reading frame, and this position is especially important for this struc-
ture, we expect a connection between the two observations. The exact
percentage of better codes for all code sets can be found in Table S3 in
the Supplementary Material.

3. Conclusion

It has been shown in the literature that the underlying evolutionary
hypothesis used to create theoretical alternative codes can strongly
influence the results of an optimality calculation, but we find that the

Fig. 3. Frameshift error abortion times
calculated for 105 codes. Compositional
code sets are shown in different shades
of blue, absolute structural code sets
are shown in different shades of orange
and relative structural code sets are
shown in different shades of grey. Top:
Optimality as the percentage of better
codes. The black line indicates the 5%
threshold. Bottom: Mean values with
standard deviation as error bars. The
black line indicates the TA value for the
standard code.
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optimality of the SGC is still a very robust feature, when considered as a
‘multi-dimensional’ property. In all code sets but the ‘213_Model’ we
find the SGC to be very optimal in the mutational robustness. Not even
our algorithm to create code sets with similar neighbours nor those in
the first two models tested in Massey (2008) are able to produce many
codes as good as the SGC. Only by choosing a very specific evolutionary
hypothesis as in the ‘213_Model’ can the mutational robustness be ex-
plained without an optimization step in the SGC. But even if the mu-
tational robustness is not optimal in the ‘213_Model’, various other SGC
properties turn out to be optimal in this code set. Some properties
concern OLGs, but also the distance to a STOP codon after a frameshift
error is found to be optimal in the ‘213_Model’; and we have only tested
a few of the possible properties of the SGC. Therefore we conclude that
the optimality of the SGC is a robust feature and cannot be explained by
any simple evolutionary hypothesis proposed so far.

After testing many properties for optimality we can expect that a
few will turn out optimal just by chance. Therefore it is very important
when fitting these results into an evolutionary context that the tested
properties plausibly create a fitness advantage for the replicating
system. Quantifying a threshold above which an effect could be selected
for is very difficult however. The effect strength of the fitness advantage

must overcome stochastic fluctuations in the population, which depend
on population size. It is not yet possible to estimate this threshold for
early life.

In this study we tested each property individually, but we saw in the
distance to a STOP codon after a frameshift error that only a combi-
nation of both reading frames turned out to be optimal, which in any
case is the most sensible property as long as there are no frequency
differences in frame shift errors between the ‘+2’ and the ‘+3’ frame.
Taking this observation further, in the ideal case all properties that the
SGC is supposedly optimal in should not be tested individually but
combined into a single fitness function in order to mimic a real selection
process. This is very difficult as it is not clear what fitness contribution
each property adds to the overall fitness. A simpler but less realistic
approach that comes to mind is to test properties in a sequential
manner. i.e. collect all codes that are better than the SGC in one
property and test the next property on this subset of codes. Repeating
this process for all properties we can then find conditional optimalities.
Something similar has been done in Itzkovitz and Alon (2007) and Mir
and Schober (2014), which both use a code set constructed in such a
way that the mutational robustness of the SGC is conserved. Un-
fortunately this only works when all properties are independent of each

Fig. 4. Conservation in alternative reading frames calculated for 107 codes. Compositional code sets are shown in different shades of blue, absolute structural code
sets are shown in different shades of orange and relative structural code sets are shown in different shades of grey. Top: Optimality as the percentage of better codes.
The black line indicates the 5% threshold. Bottom: Mean values with standard deviation as error bars. The black line indicates the Dc value for the standard code.

Fig. 5. Average ORF length calculated for 105 codes. Compositional code sets are shown in different shades of blue, absolute structural code sets are shown in
different shades of orange and relative structural code sets are shown in different shades of grey. Top: Optimality as the percentage of better codes. The black line
indicates the 5% threshold. Bottom: Mean values with standard deviation as error bars. The black line indicates the TR value for the standard code.
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other, otherwise the order in which the properties are being tested will
influence the result; and there is no natural ordering of the properties.
For example, the distance to a STOP codon after a frameshift error and
the average ORF length are almost the same property, but the first is
optimal for short distances to a STOP codon, while the latter is optimal
for long distances. If all properties were independent of each other,
testing them individually would be sufficient as it yields the same re-
sults. Only combining all properties to a single fitness function could
finally answer the question of code optimality within a framework
where optimality is taken to imply both an optimization process and
natural selection as the driving force of optimization.

In the literature and also in our study many properties have very
high reported optimalities, meaning that the probability of finding the
standard genetic code by chance is very low. Selection is not an om-
nipotent force, so this raises the question of whether a selection process
could have found the SGC in the case of extreme code optimalities. For
some evolutionary hypotheses this has already been tried (Massey,
2010), but this question is strongly related to how many codes could
have been tested by natural selection during code evolution, which is
not yet answered. By studying these questions we might be able to rule
out some evolutionary hypotheses and thereby further our under-
standing of the evolution of the SGC. Conducting a similar study to this
with many different evolutionary hypotheses, but using GAs to de-
termine how many codes must be tested in order to find genetic codes
similar to the SGC, would greatly extend our knowledge on this topic.

We believe of particular interest for future research is that we tested
just two properties connected to OLGs. The conservation is mostly only
optimal in the ‘-1’ frame, while the average ORF length in only optimal
in the ‘-2’ frame. Taking just these results, OLGs do not seem to be
clearly optimized for overall, but on closer inspection there are many
questions left. The average ORF length was calculated as the average
length between STOP codons, but some STOP codons can be removed
by synonymous mutations in the mother gene. It might be more realistic
to study the average distance between two STOP codons that cannot be
removed by judicious codon usage. In the conservation of OLGs we saw
that the SGC has unexpectedly similar values across all readying frames
(except the ‘-1’). It is possible that this value represents an optimum for
this property as existing OLGs not only need to be preserved but new
OLGs must be created, so coding flexibility is also needed. A low op-
timality in a value does not necessarily mean that the property has not
been optimised for or that it is not important but maybe the optimum
has already been reached due to other factors. In this case it could be a
trade-off between conservation and flexibility. In this study we only
tested two properties, but more are of interest concerning OLGs. Just to
name one, the ‘mother gene’ could enforce structure on alternative
reading frames via the genetic code, making formation of de novo genes
more likely.

The idea of trade-offs between properties of the standard genetic
code could be taken further. For example, the number of different
amino acids in the SGC could face a trade-off. Having more amino acids
opens up a wider protein space, but also reduces the mutational ro-
bustness as the degeneracy structure strongly improves this property.
We propose that the idea of trade-offs could be very important in un-
derstanding the nature of SGC optimality. Every property has a cost
versus some other property and assuming that the genetic code had
some freedom in its evolution, some trade-offs were plausibly experi-
enced as constraints. Finding further such trade-offs may launch future
studies into this central topic in molecular biology which surprisingly
remains unexhausted.

4. Materials and methods

4.1. The random code set

This subset has no restrictions besides the set of 20 amino acids or a
STOP codon, which the codes can include, although not all 20 amino

acids or a STOP codon have to be included. It embodies the total pos-
sibility space for triplet genetic codes with the same total pool of pos-
sible products as the SGC, and every other code set will be a subset of
this ’Random’ set.

4.2. Composition code sets

The ‘Random_fs’ (fixed STOPS) code set restricts the number of
STOP codons to exactly three, the ‘Random_faa’ (fixed amino acids)
code set only contains random codes which include all 20 amino acids
and the ‘Random_fb’ (fixed both) code set is the intersection of the first
two sets, so it contains only codes with all 20 amino acids and exactly
three STOP codons. The ‘Degeneracy’ code set is created by restricting
each amino acid in its codes to exactly as many codons as the SGC uses.

4.3. Absolute structure code sets

We construct the ‘Blocks’ code set by combining all codons which
code for the same amino acid in the SGC into a fixed ‘block’ and
changing the amino acid assigned to each block. In our calculations this
also includes the STOP codons, which in the literature are often left
fixed. This relaxes both the amino acid degeneracy and the number of
STOP codons, but only small variations are possible.

A more randomized version of the ‘Blocks’ code set was constructed
in Buhrman et al. (2011). They used the wobble binding rules on the
last nucleotide (Agris et al., 2007; Berg et al., 2010) to construct all
possible boxes of degeneracies on the last nucleotide, where a box
contains all codons which have the same first two nucleotides. Drawing
random boxes and fixing the number of STOP codons to three and the
number of amino acids to 20 we can study the influence of the de-
generacy on the third codon position in a more general approach. We
call this code set the ‘Random_Blocks’ code set.

4.4. Relative structure code sets

The degeneracy on the third nucleotide position already creates
similar neighbours, but in addition to this the blocks of amino acids can
be arranged in order to make neighbours as similar as possible. These
code sets are created by first picking a random codon/block from the
code and listing the amino acids on the neighbouring codons/blocks.
Next we create a list of all remaining amino acids to be incorporated in
the code which have a smaller distance than a threshold distance d to at
least one of the neighbouring amino acids. If this list is not empty we
choose a random amino acid from the list. Otherwise a random amino
acid from all remaining amino acids is selected. We will use polar re-
quirement (Mathew and Luthey-Schulten, 2008) differences to de-
termine similarity between amino acids. We found that a threshold
distance of one fourth of the standard deviation of the polar require-
ment values of all 20 amino acids in the SGC creates codes with the
most similar neighbours. This can be done for every code set but we
only do it for the ‘Random_fb’, the ‘Degeneracy’, the ‘Random_Blocks’
and the ‘Blocks’ code set resulting in the ‘Random_fb_n’, the ‘Degen-
eracy_n’, the ‘Random_Blocks_n’ and the ‘Blocks_n’ code set.

4.5. Mutational and misread error robustness

It is known that the standard code has a high mutational robustness
(Haig and Hurst, 1991), a finding which is highly robust to changes in
calculation details. Both misreads and mutations have been shown to
appear with different frequencies for transitions and transversions
(Collins and Jukes, 1994; Kumar, 1996; Moriyama and Powell, 1997;
Morton, 1995; Friedman and Weinstein, 1964) but the observed dif-
ferences vary strongly and most likely depend on many details of cal-
culation or experiment. Also a codon is not read with the same accuracy
on all positions, namely the second position has the highest accuracy,
followed by the first position, while the third position is the most error
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prone (Parker, 1989; Woese, 1965). Introducing different weights for
mutations or misreads on different positions and for transitions and
transversions increases the optimality (Freeland and Hurst, 1998b,a;
Freeland et al., 2000), but the values of the weights used in these stu-
dies represent a tendency rather than a quantitative value, so we will
refrain from using weights in this study. The measure for the mutational
robustness is the average change a single mutation inflicts on a gene. In
order to calculate this property a numerical distance between different
amino acids has to be defined. Here we will use polar requirement
(Woese et al., 1966; Spencer et al., 1986) to define the distance func-
tion. Since distances to STOP codons cannot be defined that way we will
use a suppression approach for STOP codons as has been suggested
(Buhrman et al., 2011). The suppression approach does indeed mini-
mize the effect of STOP codons (Fig. S1 in the Supplementary Material).

Following Buhrman et al. (2011), Eq. (1) is the formula of calcu-
lation for the MMER Dm, where d(ai, aj) is the difference of polar re-
quirement values of the amino acids ai and aj and nSTOPs is the number
of STOP codons in each code.

=
∑

−
D

d a a

n

( , )

9(64 )m
i j i j,

2

STOPs (1)

4.6. Frameshift error abortion time

Following Mir and Schober (2014), we will calculate the average
number of codons translated after a frameshift before a STOP codon is
encountered. Following Mir and Schober (2014), Eqs. (2)–(4) define the
average number of amino acids before a STOP codon TA, where P(cj|ci)
is the conditional probability that codon cj follows codon ci.

=
∑

T
t

64A
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i( )

(2)
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→

= −
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1 (3)

=Q P c c[ ˆ ] ( | )f i j j i, (4)

4.7. Conservation in alternative reading frames

First we construct the sets of codons produced by conservative
mutations, while also taking two and three point mutations into ac-
count so long as the result is conservative (i.e. results in no change in
the amino acid). In the ‘-1’ frame this is straightforward, as we only
have to translate all codons of each amino acid into the ‘-1’ frame and
thus create sets of codons. Picking two codons i and j from such a set
and calculating the distance between their respective amino acids d(ai,
aj) we can estimate the difference resulting from conservative muta-
tions. Just as for the mutational robustness we use the squared amino
acid distance. In Eq. (6) ni is the number of amino acids coding for
amino acid ai and Pi the probability to find this amino acid in a gene.

∑=
−

≠
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¯c

a

a

b b
a a

(6)

For all other alternative reading frames we have to construct groups
for all possible combinations of two amino acids. From each combina-
tion of amino acids we extract the codon in each alternative reading
frame. In order to reduce double counting, only conservative mutations
that change the nucleotides of the codon on the alternative reading
frame will contribute to the set of codons produced by conservative
mutations. The only difference to the ‘-1’ frame case is that the sum over
a in Eq. (6) runs over all sequences of dipeptides and Pa are the oc-
currence probabilities of those sequences. Details of derivation of

equations (5) and (6) as well as examples to calculate (5) can be found
in the Supplementary Material.

4.8. Average open reading frame (ORF) length

We use the same approach as Mir and Schober (2014), who has
estimated the average open reading frame length as the average
number of codons between two STOP codons (Sieber et al., 2018).
Following Mir and Schober (2014), Eq. (7) defines the calculation of the
average ORF length TR, where P c( )i

STOP
( ) is the probability to encounter

the STOP codon c(i).

= =
∑

T
P P c

1 1
( )

R
i

i
STOP STOP

( )
(7)

4.9. Codon probabilities

In some of the properties codon and conditional probabilities are
used. These probabilities can be extracted from any genome; in this
study we use the pathogenic bacterium Escherichia coli O157:H7
EDL933 (Accession number NC 002655, EHEC).

The codon usage statistic could have adapted to the standard code
such that using this statistic for alternative codes would cause the
standard code to artificially appear more optimal. Therefore, just as in
Mir and Schober (2014) we will not use codon statistics but amino acid
statistics. Amino acids make up the proteins and are therefore the
building blocks of life. Their usage statistic depends on what is needed
to make the necessary proteins. Codon statistics can be constructed
from the amino acid statistics by assuming each codon coding for the
same amino acid has the same probability. The probabilities in the ‘+1’
frame are determined by amino acid usage statistics. The conditional
probabilities in the other reading frames can be calculated from the
‘+1’ frame as shown in Mir and Schober (2014).
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