
Scheduling Algorithms
for Parallel Processing
and Buffering Problems

by Hermann Wilhelm Richard Stotz

Technische Universität München
Fakultät für Informatik

Fakultät für Informatik
Lehrstuhl für Algorithmen und Komplexität

Scheduling Algorithms
for Parallel Processing
and Buffering Problems

Hermann Wilhelm Richard Stotz

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Univer-
sität München zur Erlangung des akademischen Grades eines Doktors der Naturwis-
senschaften genehmigten Dissertation.

Vorsitzender:

Prüfer der Dissertation:

Prof. Dr. Michael G. Bader

1. Prof. Dr. Harald Räcke

2. Prof. Dr. Heiko Röglin

Die Dissertation wurde am 24.02.2020 bei der Technischen Universität München ein-
gereicht und durch die Fakultät für Informatik am 08.07.2020 angenommen.

Abstract

Scheduling, the task of sorting and distributing workload, is a fundamental area of algorith-
mic research. In this work, we analyze scheduling problems in two elementary scenarios.

In the first part of the thesis, we are interested in the problem of partitioning the vertex
set of a hypergraph into parts of equal size. It is our goal to minimize the number of
hyperedges between parts. This problem derives its importance from a scheduling task
arising in high-performance computing. The processes of a parallel application are to be
mapped onto processors in a parallel system so that on the one hand all processors receive
the same workload and on the other hand the necessary communication between processors
is minimal. Balanced partitioning of simple graphs is a classical and well-studied problem
whereas only limited theoretical results are known for the hypergraph case. We shed
new light on this scenario by discussing algorithmic strategies for approaching it and
developing approximation algorithms for several of its variants. By proving strong lower
bounds on the approximation factors achievable in polynomial time, we also establish a
strong distinction between partitioning problems in graphs and hypergraphs.

In the second part of the thesis, we study the Generalized Reordering Buffer Management
problem. Buffer management problems arise in scheduling scenarios where the execution
of a task can be delayed in order to improve the overall performance of the system. More
formally, we consider a sequence of colored items arriving online. Each item must be
processed by one of k servers. In each time step, the scheduling strategy must choose an
item from the b still unprocessed items and a server to process that item. Processing an
item only incurs cost if the previously processed item of that server had a different color.
The goal is to minimize the total cost incurred by the algorithm. We present an algorithm
that achieves competitive ratio O(log k(log k + log log b)) for Generalized Reordering
Buffer Management with uniform costs. Our result is a considerable improvement over
previous work and the algorithm is asymptotically optimal if k is a fixed constant.

i

Acknowledgements

First and foremost, I want to thank my advisor Harald Räcke for his guidance and support
throughout my studies. He always had an open door to discuss everything, from a classic
result to the latest papers, and I am immensely grateful for his trust and encouragement.
I also want to thank Heiko Röglin for agreeing to review my thesis and Michael Bader for
taking the time to hold the chair of the examination committee.
I want to thank Matthias Englert and Roy Schwartz for many inspiring discussions

during their respective stays in Munich.
My colleagues at the chair of Algorithms and Complexity provided a very enjoyable

and productive working atmosphere. Our monthly PhDinners were a highlight of my time
at the university! Special thanks to Luisa Peter and Maximilian Janke for proofreading
parts of this thesis, Leon Ladewig for verifying a last-minute proof and Dennis Kraft for
many insightful conversations.

I would especially like to thank my family. My wife Eva-Maria and our children always
helped and supported me with their encouragement, love and patience. My parents and
my sister deserve special thanks for their continued support and encouragement.

iii

Contents

1. Introduction 1
1.1. Balanced Cuts in Graphs and Hypergraphs 3

1.1.1. Formal description of the problems 4
1.1.2. Related work . 7
1.1.3. Our results . 10

1.2. Generalized Reordering Buffer Management 10
1.2.1. Problem statement . 12
1.2.2. Related work . 14
1.2.3. Delay problems . 16
1.2.4. Our results . 19

1.3. Bibliographical Notes . 19

2. Balanced Cuts in Graphs and Hypergraphs 21
2.1. Preliminaries . 21
2.2. Approximating Minimum Hypergraph Bisection 23

2.2.1. Approximation algorithms . 23
2.2.2. Hardness results . 27

2.3. Trees for Vertex Cuts and Hypergraph Cuts 35
2.3.1. Constructing vertex cut trees . 35
2.3.2. Lower bounds . 40

3. Generalized Reordering Buffer Management 51
3.1. The Linear Programming Relaxation . 51

3.1.1. LP formulation . 51
3.1.2. Modifying the buffer size . 54

3.2. Algorithm Overview . 57
3.2.1. Base procedure . 58
3.2.2. Cost control procedure . 60

3.3. Analysis . 64
3.3.1. Lower bound construction . 66

v

Contents

3.3.2. Analysis of the base procedure . 72
3.3.3. Analysis of the cost control procedure 82
3.3.4. Combining the results . 85

3.4. Scheduling k Servers . 86
3.4.1. Plan of attack . 87
3.4.2. Model of cost and adversary . 89
3.4.3. Subroutine for scheduling servers 95
3.4.4. Towards optimal competitiveness? 100

4. Conclusions and Open Problems 107
4.1. Open Problems . 108

A. Appendix 111
A.1. Proofs of Claim 2.13 . 111
A.2. Proofs of Claim 3.39 . 113

Bibliography 115

vi

1. Introduction

Whenever an assignment is so complex that it must be split into multiple subtasks, we
open the box of Pandora that is scheduling, the burden of arranging and dividing that
workload. But just as Pandora’s box ultimately contains the virtue of Hope, so lies in
scheduling one of the most rich and fruitful directions of algorithmic research. In less
poetic terms, scheduling is the duty of distributing and ordering tasks with the goal
of fulfilling some measure of efficiency. Very often a single decision maker must find a
strategy to arrange the workload subject to multiple or even conflicting constraints. The
performance of the strategy can then be analyzed using formal mathematical analysis,
experimental study or a combination of the two. This work focuses on the mathematical
analysis of two fundamental scenarios from the vast landscape of scheduling problems.

The first part of this thesis is devoted to algorithms for load balancing in parallel
systems. A classical challenge when using highly parallel machines is the distribution of
the workload among the machine’s processors; see Codd for a very early discussion [Cod60].
In modern large scale scientific computing, two major goals have been identified for the
scheduling algorithm: First, the load on a processor should be proportional to its speed.
Second, the amount of communication between processors should be minimized. It is
therefore convenient to model the workload as a graph whose vertices represent the units
of computation and whose edges represent the communication requirement between units
of computation. This leads to the classical algorithmic area that is graph partitioning. A
typical graph partitioning problem asks, for example, to divide the vertex set of the graph
into roughly equal-sized parts (corresponding to identical processors) so that the number
of edges between parts (corresponding to the communication requirement) is minimized.

While the above model has been widely used in both theory and practice, researchers
have long raised the need for a more expressive representation of communication than
graphs, see, e.g., Hendrickson and Kolda [HK00]. By representing the computation with a
hypergraph, one can model scenarios such as multicast communication more accurately. In
a hypergraph, the vertices are connected through hyperedges that encompass at least two
vertices. Standard graphs are the special case of hypergraphs in which every hyperedge
encompasses exactly two vertices. Hypergraph partitioning is therefore a natural extension

1

1. Introduction

of graph partitioning. The use of hypergraphs instead of graphs may however come at
the cost of increased algorithmic complexity. We will develop strategies for computing
balanced partitions in graphs and hypergraphs and give an overview of the computational
hardness of hypergraph partitioning problems.

In its second part, this thesis studies algorithms for scheduling a sequence of tasks that
arrive one-by-one. We are interested in scenarios where tasks can be delayed in order
to reduce the cost of processing the sequence. As an example by Spieckermann et al.,
consider a painting shop in a car manufacturing plant [SGV04]. Painting two consecutive
cars with different colors incurs significant setup costs compared to painting them with
the same color through, e.g., cleaning procedures. The overall cost of processing the
sequence is hence dominated by the number of color changes, i.e., the number of context
switches of the service station. In this scenario it may be possible to delay some tasks of
the sequence, for example by temporarily storing some cars in a parking lot. This allows
the scheduling strategy to partially reorder the sequence. If, for instance, the sequence
is red, blue, red, delaying the blue car to the end of the sequence reduces the number of
context switches by one. Hence, the reordered sequence incurs a smaller total cost. A
popular method of allowing limited reordering power is to employ a reordering buffer of
limited capacity. The scheduling strategy can either decide to process the next task of
the sequence or place it in the buffer instead. When the buffer fills up, the strategy must
pick a task from the buffer to process.

The basic scenario outlined above can be varied and extended in multiple ways, some
of which are outlined next. We say that tasks arrive online if the scheduling strategy has
to make its decisions with no knowledge about future requests. Furthermore, the cost of
a context switch might depend on both the old and the new state. In the Generalized

Reordering Buffer Management problem (GRBM), there are multiple service
stations available to process a task. In the example of the car manufacturing plant, this
corresponds to multiple painting stations built in order to reduce the number of necessary
color changes. We give a detailed analysis of GRBM and we present an algorithm for its
online variant.

In the remainder of this introductory chapter, we give a more detailed introduction
to the two main areas of this thesis along with a formal definition of the problems we
consider. We also review the state of the art and discuss related work. Finally, we give a
summary of the new results we obtained in this work.

2

1.1. Balanced Cuts in Graphs and Hypergraphs

1.1. Balanced Cuts in Graphs and Hypergraphs

In balanced graph partitioning, one is asked to partition the vertex set of a graph into
parts of equal or similar size, so as to minimize the boundary of the parts. Most often,
the boundary of a part is defined as the number of edges with exactly one endpoint in
the part. Alternatively, the number of vertices connected to these edges, the number
of directed edges leaving the part, or, if the underlying structure is a hypergraph, the
number of hyperedges with some but not all of its vertices within the part may be counted.
As argued above, this representation has been used successfully to model the task of load
balancing in parallel systems. We will, however, use the graph partitioning terminology
to keep the presentation in line with the majority of the literature.

As an exemplary problem, we consider the task of partitioning a (hyper-)graph of n
vertices into two parts A and B. Given a partition, let the size of this cut be the number
of (hyper-)edges with endpoints in both A and B.

If A and B are allowed to be of arbitrary size, the task is to find a minimum cut in
a graph. This classical Global Mincut problem is solvable in polynomial time, even
for hypergraphs, via a reduction to flow networks, see, e.g., Chekuri and Xu [CX17] and
references therein. For the case when A and B should have roughly the same size, the
Min-Ratio Cut problem has been a very influential ambassador. In this problem, the
goal is find a cut (A,B) that minimizes the ratio of the size of the cut δ(A,B) to the size
of the smaller part min{|A|, |B|}, i.e., the goal is to minimize δ(A,B)

min{|A|,|B|} . Min-Ratio

Cut is NP-hard, as shown by Matula and Shahrokhi [MS90], hence it likely cannot be
solved with a polynomial-time algorithm. In a highly influential work, Leighton and
Rao gave an approximation algorithm to find a cut of ratio at most O(log n) of the
optimum [LR99]. They also demonstrate how to use an algorithm for finding min-ratio
cuts as a subroutine in many other balanced graph partitioning algorithms. Most of
these results have been improved using more advanced techniques introduced by Arora
et al. [ARV09], e.g., there is an algorithm for approximating the min-ratio cut up to a
factor of O(

√
log n); see further discussion in Section 1.1.2.

The main algorithm developed by Leighton and Rao is based on first defining a metric
on the given graph. This metric is then used in order to find sets of cut cost proportional
to the volume of the set in the metric, i.e., the length of edges times their cost. One can
show that there always exists such a set, and that the total volume of the graph is a
lower bound on the cost of an optimal min-ratio cut. Leighton and Rao also apply their
technique to directed graphs. Via reductions, this leads to O(log n)-approximations for
Min-Ratio Cut in hypergraphs.

3

1. Introduction

When dealing with exact balance constraints, different techniques are necessary. This
is well-illustrated by the connection of Minimum Bisection to the classical Partition

problem. Minimum Bisection asks to partition the vertex set of a graph into two parts
of equal size so that the number of edges between parts is minimized. The problem is
NP-hard, as shown by Garey et al. [GJS76]. Partition is a weakly NP-complete problem
that asks to partition a multiset of integers into two sets so that both sum to the same
value (Problem (SP12) as described by Garey and Johnson [GJ79]). In a graph of disjoint
cliques, the Minimum Bisection problem essentially asks to solve Partition in order
to decide whether to cut a single edge or not. Hence, even an approximation algorithm
for Minimum Bisection requires a very careful control of the cuts generated by the
algorithm.
The most successful approach to approximating the optimal cut size of the minimum

bisection comes from the use of trees that are edge cut sparsifiers. These are constructions
of weighted trees that come with a mapping of the tree vertices into the vertices of the
original graph; while not entirely accurate, one can think of these trees as weighted
spanning trees of the original graph. The goal of the mapping is that for any two
sets of vertices A,B, the sizes for A and B are similar in the graph and in the tree.
Perhaps surprisingly, it is possible to construct tree so that δ(A,B) is distorted by at
most a polylogarithmic factor for any sets A,B. Räcke gives a construction of a family
of such trees with expected distortion O(log n) [Räc08]. Furthermore, he shows that a
comparatively simple dynamic program suffices to compute the optimal bisection of a
weighted tree. This gives an O(log n)-approximation algorithm for Minimum Bisection.

For problems which do not require strict balance, results for undirected graphs mostly
extend to hypergraphs. In our work we investigate whether the same is true for problems
with strict balance constraints such as Minimum Bisection. We are particularly
interested in constructing trees that are cut sparsifiers for hypergraphs and vertex cuts,
as those can be used to tackle a variety of partitioning problems.

1.1.1. Formal description of the problems

A hypergraph G = (V,E) consists of a set of vertices V and a set of hyperedges E, with
each hyperedge e ∈ E being a subset of vertices of cardinality at least 2. If all hyperedges
have the same size r, we say the hypergraph is r-uniform.
Given an hypergraph G = (V,E) and disjoint vertex sets A,B ⊂ V , an (A,B) edge

cut is a set of (hyper-)edges F ⊆ E whose removal from E disconnects A and B. Let
the cost (or size) δG(A,B) of the cut be the number of the edges in the smallest (A,B)

edge cut. We write δG(A) for δG(A, V \A) and drop the subscript if the hypergraph is

4

1.1. Balanced Cuts in Graphs and Hypergraphs

clear from the context. If A ⊂ V has size |A| = bn/2c, we say that A is a bisection of G
with cost δ(A). The sparsity of a subset ∅ 6= A ⊂ V with |A| < n/2 is δG(A)/|A|, a set of
minimum sparsity is called min-ratio cut of G. We will sometimes consider hypergraphs
with positive edge weights to which these definition extend naturally.

In the Minimum Bisection problem we are given an undirected graph G with the
goal to find a bisection of G with smallest cost. Similarly, in the Minimum Hypergraph

Bisection problem we are given a hypergraph G and are asked to find the bisection of
G with smallest cost. An α-approximation algorithm for these problems is an algorithm
that finds a bisection of cost at most α ·OPT, where OPT denotes the cost of an optimal
bisection. We require that the running time of any approximation algorithm be polynomial
in the size of the input.

Similarly, a vertex cut separating two disjoint sets of vertices A and B of an undirected
graph G = (V,E) is a set X ⊆ V whose removal from V disconnects A \X and B \X.
The vertex cut may include vertices from both A and B. Let the cost γG(A,B) of the
vertex cut be the total number of vertices in a minimum-weight (A,B) vertex cut. Again,
we may drop the subscript if no confusion is possible. If A ⊂ V has size bn/2c, we say that
A is a vertex bisection of G with cost γ(A, V \A). In the Minimum Vertex Bisection

problem we are given an undirected graph G and are asked to find a vertex bisection of
G with smallest cost. We will sometimes consider graphs with positive vertex weights to
which these definition naturally extend.

A Vertex Separator (A,B,X) is a set X ⊆ V whose removal separates G into two
disconnected pieces A and B (we do not require that A and B are connected themselves).
Its sparsity is defined as

|X|
min{|A|, |B|}+ |X|

.

A vertex separator of minimum sparsity is called min-ratio vertex cut of G.
For simplicity of exposition, we assume from now on that the number n of vertices of

any hypergraph is even, so that both sides of a bisection have size n/2. This assumption
does not affect our asymptotic results.
An edge cut tree T = (VT , ET , wT) of a hypergraph G = (V,E) is an edge-weighted

tree with V ⊆ VT ; typically, the vertices of G are the leaves of the tree. The edge cut
tree is dominating if for any two disjoint sets A,B ⊂ V , we have δG(A,B) ≤ δT (A,B).
The edge cut tree has quality or approximation guarantee α if for all disjoint A,B ⊂ V , it
holds that

δG(A,B) ≤ δT (A,B) ≤ α · δG(A,B) .

Observe that this implies that the tree is dominating.

5

1. Introduction

Similarly, a vertex cut tree T = (VT , ET , wT) of a hypergraph G = (V,E) is a vertex-
weighted tree with V ⊆ VT . The cut tree approximates edge cuts with quality α if for
any two disjoint sets A,B ⊂ V ,

δG(A,B) ≤ γT (A,B) ≤ α · δG(A,B) .

The tree approximates vertex cuts with quality α if for any two disjoint sets A,B ⊂ V ,

γG(A,B) ≤ γT (A,B) ≤ α · γG(A,B) .

Conjectures and hypotheses in computational complexity

As is common practice, the hardness results in this thesis depend on established conjectures
and hypotheses from computational complexity. Here, we only state those most relevant
to our results. An in-depth introduction into the field is provided by the textbook by
Arora and Barak [AB09]. For an entertaining perspective on the likelihood of some of
these conjectures, see a recent survey by Williams [Wil19].
Certainly the most famous conjecture from the field is P 6= NP, see Garey and

Johnson [GJ79]. Here P denotes the set of decision problems that can be solved by a
deterministic Turing machine in time polynomial in the input size. The set NP consists
of the decision problems that can be solved by a nondeterministic Turing machine in
time polynomial in the input size. Equivalently, the P 6= NP conjecture states that there
exists no polynomial-time algorithm for 3SAT. The 3SAT problem that asks to determine
whether a given 3SAT formula is satisfiable.

The Exponential Time Hypothesis (ETH) is a stronger hypothesis formulated by
Impagliazzo and Paturi.

Hypothesis 1.1 (ETH, [IP01]). 3SAT on n variables cannot be solved in 2εn time, for
some ε > 0.

The Hypergraph Dense versus Random Hypothesis (HDRH) was recently posed by
Chlamtáč et al. [CDK12, CDM17]. . Informally, the hypothesis postulates that no algo-
rithm can distinguish (with high probability) a random hypergraph from an adversarially
chosen hypergraph containing a dense subhypergraph. We defer its formal definition to
Section 2.2.2. It is unknown whether HDRH implies ETH, yet HDRH seems to yield
stronger lower bounds for problem such as Densest k-Subgraph. In the Densest

k-Subgraph problem, the goal is to find a k-vertex subgraph of a graph with maximum
number of edges. The problem does not admit an O

(
n1/(log logn)c

)
-approximation algo-

rithm under ETH as shown recently by Manurangsi [Man17], where c > 0 is a universal

6

1.1. Balanced Cuts in Graphs and Hypergraphs

constant. Under a simpler version of HDRH, a lower bound of Ω
(
n1/4−ε) for any ε > 0

was shown by Chlamtáč et al. [CDK12].

1.1.2. Related work

Computing balanced cuts

Saran and Vazirani initiated the search for approximation algorithms for Minimum

Bisection by showing an n/2-approximation [SV95]. Using recursive min-ratio cuts
of the graph, Feige et al. improved the approximation factor to O(

√
n log n) [FKN00].

Shortly after, Feige and Krauthgamer achieved the first polylogarithmic approximation
ratio for Minimum Bisection in a breakthrough result [FK02]. Their algorithm’s solution
is O(α · log n)-approximate, where α is the approximation ratio of an algorithm for finding
a min-ratio cut; plugging in the algorithm by Arora et al. gives α = O(

√
log n) [ARV09].

Feige and Krauthgamer’s algorithm constructs a decomposition tree of the graph using
a variant of min-ratio cuts. The vertices of the decomposition tree are then combined
via a nontrivial dynamic programming scheme. While this tree is reminiscent of the
trees used as cut sparsifiers discussed below, their method does not generalize as far as
cut sparsifiers do. In particular, the tree by Feige and Krauthgamer does not offer an
immediate correspondence between cuts in the graph and cuts in the tree. Räcke later
gave an algorithm for constructing a family of trees with O(log n) average distortion of
cut sizes [Räc08]. Minimum Bisection and other graph partitioning problems can be
solved exactly on trees and allow the application of Räcke’s framework, e.g., Multicut

and Minimum k-multicut. The result immediately implies O(log n)-approximation
algorithms for these problems.

Despite being a topic of active research for many years, there are few results concerning
the approximability of Minimum Bisection. It is unknown whether P 6= NP implies
that no polynomial-time approximation scheme can exist for the problem. A polynomial-
time approximation scheme (PTAS) is a family of (1+ε)-approximation algorithms for any
ε > 0, Khot rules out the existence of a PTAS given the assumption that 3SAT cannot be
solved by randomized subexponential time algorithms [Kho06]. Feige showed, assuming
random 3SAT formulae under a natural distribution cannot be refuted in polynomial
time, that there is no (4/3− ε)-approximation algorithm for any ε > 0 [Fei02].

To the best of our knowledge, no approximation algorithms for finding a minimum
bisection in a hypergraph have been published prior to our work. This stands in contrast to
the many results and software packages available for heuristic (hyper-)graph partitioning.
We do not attempt to survey them here and instead refer to the work of Schultz and

7

1. Introduction

Sanders [SS13], the survey by Buluç et al. [BMS+16] and references therein.
If the balance constraint is relaxed, the aforementioned results on approximating the

min-ratio cut are key findings. The work of Leighton and Rao is based on rounding a
linear programming relaxation [LR99] of the problem. Arora et al. gave a novel rounding
algorithm for a semidefinite programming relaxation of the problem [ARV09]. Min-ratio
cuts can be used to find bicriteria approximations to the minimum bisection. A (b, b′)-
bicriteria approximation algorithm for b′ < b ≤ 1/2 finds a a set of b′ · n vertices whose
cut cost is at most the cut cost of an optimal set of b · n vertices. Goemans et al. show
how to obtain a (1/2, 1/2 − ε) bicriteria approximation to Minimum Bisection with
approximation factor α (reported in [LR99]). Here, α denotes the approximation factor
of the min-ratio cut algorithm. For the task of partitioning a graph into k parts of
equal size, a bicriteria approximation algorithm cannot be avoided as shown by Andreev
and Räcke [AR06]. They observe that any approximation algorithm for the problem
must decide when given a graph of disjoint cliques whether a single edge must be
cut. In doing so, the algorithm would solve instances of the NP-complete 3Partition

problem. Krauthgamer et al. give an O(
√

log n log k)-approximation that violates the
balance constraint by a factor of 2 [KNS09]. Feldmann and Foschini demonstrate an
algorithm that violates the balance constraint by only a factor of (1 + ε) and obtain an
O(log n)-approximation based on the tree decomposition by Räcke [FF15].
Interestingly, some of the work with the non-strict balance constraint extends well

to hypergraph cuts and vertex cuts. For min-ratio cuts, Agarwal et al. present an
O(
√

log n)-approximation algorithm for the problem in directed graphs, which implies an
algorithm with the same guarantees for vertex cuts and hypergraph cuts [ACMM05]. Via
reductions, this implies a (1/2, 1/2− ε) bicriteria approximation algorithm to hypergraph
bisection for any constant ε > 0. On the other hand, there is some evidence that finding
exact hypergraph cuts and finding exact vertex cuts is hard. Lee shows that k-Vertex

Separator, the problem of finding a set of vertices whose removal leaves every connected
component with at most k vertices, is at least as hard as Densest k-Subgraph, a
problem commonly believed to be hard to approximate [Lee19].

Trees as cut sparsifiers

A tree that acts as a sparsifier for the minimum s-t cuts in a graph is the classical
Gomory-Hu tree named after its authors [GH61]. Gomory and Hu gave a polynomial-time
construction of an edge-cut tree that exactly represents all minimum s-t-cuts in the graph.
Furthermore, their tree is an s-t flow sparsifier of quality 1, which means that for any pair
of vertices s, t, the value of the s-t flow in the original graph is the same as in the tree.

8

1.1. Balanced Cuts in Graphs and Hypergraphs

Trees that represent all cuts in the graph have been studied in the context of oblivious
routing. An oblivious routing scheme is a probability distribution over (u, v)-paths for
each vertex pair (u, v). Given a demand for each pair of vertices, the oblivious routing
scheme specifies a path for each demand by drawing from the probability distributions.
Routing the demand creates load on the edges of the network. The goal is to minimize
the expected congestion, defined as the maximal ratio of load to capacity over all edges.
Hence, while the Gomory-Hu tree is a flow sparsifier for s − t-flows only, an oblivious
routing scheme requires a flow sparsifier for multicommodity flows of good quality.

Räcke showed that there exists a tree and a randomized embedding of this tree into the
graph that is a flow sparsifier of quality O(log3 n) [Räc02]. Later, Harrelson et al. gave a
polynomial-time construction of a suitable tree with quality O(α log n log log n), where α
is the min-cut max-flow gap for multicommodity flows [HHR03]. As shown by Leighton
and Rao, α is Θ(log n) for general graphs [LR99]. In planar graphs and other graphs
excluding any fixed graph as a minor, α is O(1) as shown by Klein et al [KPR93]. While
any flow sparsifier is a cut sparsifier of the same quality, better cut sparsifiers might exist:
Räcke and Shah show that the tree by Harrelson et al. is in fact a cut sparsifier of quality
O(log1.5 n log logn) [RS14].

While the above results use a single tree, Räcke considered a probability distribution
over trees and obtained a flow sparsifier (and cut sparsifier) of quality O(log n) [Räc08].
This asymptotically matches the lower bound of Ω(log n) that holds for both tree flow
sparsifiers and tree cut sparsifiers. For most, but not all applications, one can use the
probability distribution over trees to solve cut problems in arbitrary graphs. One simply
solves a given cut problem on each tree, and maps the best cut on a tree back to the graph
at a loss of only O(log n) in the approximation factor. The above strategy works well if
the target function of the application is linear in the set of edges cut, e.g., for Minimum

Bisection and Min-Sum Graph Partitioning. For problems such as Min-Max

k-Partitioning [RS16] and Simultaneous Source Location [AGG+09], the use of
a single tree is necessary.

We are not aware of any tree cut sparsifiers for hypergraphs or vertex cuts prior to
our work. Negative results are only known insofar that oblivious routing is known to be
considerably harder in directed graphs. Ene et al. show an Ω(n) lower bound for oblivious
routing in general directed networks [EMPS16]. As the tree cut sparsifiers for graphs also
yield polylogarithmic oblivious routing schemes, this suggests that similar trees might not
exist for directed graphs.

9

1. Introduction

1.1.3. Our results

This work improves the understanding of Minimum Hypergraph Bisection and gives
upper and lower bounds on the approximability of this important problem. On the
positive side, we obtain an Õ(

√
n)-approximation algorithm for Minimum Hypergraph

Bisection. The Õ notation hides polylogarithmic factors in n and we defer the precise
bounds to Chapter 2. Moreover, we obtain improved guarantees if either all hyperedges
are large or all hyperedges are small. If all hyperedges have size at least Ω(nα), we show
an Õ(n1−α)-approximation algorithm. If all hyperedges have size at most Ω(nα), a simple
reduction to graph bisection gives an Õ(nα)-approximation algorithm.

The approximation guarantees we reach for Minimum Hypergraph Bisection might
seem unsatisfactory at first sight, as polylogarithmic approximation guarantees for the
graph case have been known for a long time. Nevertheless, we show that algorithms with
strong approximation guarantees are unlikely to exist for hypergraphs. More precisely,
we prove that a polynomial-time approximation algorithm for Minimum Hypergraph

Bisection with approximation guarantee n1/(log logn)c for some universal constant c
would violate the Exponential Time Hypothesis. Here poly(x) denotes an arbitrary
constant-degree polynomial in x. The proof of this result relies on a reduction from the
Densest k-Subgraph problem, for which a similar hardness was recently shown by
Manurangsi [Man17]. Furthermore, we show that Minimum Hypergraph Bisection

does not admit an approximation algorithm of guarantee O(n1/4−ε), provided that the
Hypergraph Dense vs Random Hypothesis holds. Analogous results are given for Minimum

Vertex Bisection.
Further evidence that balanced hypergraph cuts are hard to approximate comes from

our study of trees as cut sparsifiers for hypergraphs. We show that a single tree must have
quality Ω(

√
n) in the case of hypergraph cuts and unweighted vertex cuts. We complement

this result by constructing a tree of quality Õ(
√
ndavg) for vertex cuts. We show how

the tree can be applied for constructing minimum vertex bisections in graphs. Observe
that we do not provide any lower bounds for convex combinations of cut trees such as the
ones used by Räcke [Räc08]. Even so, this result marks a sharp distinction between the
quality of edge cut trees that can be achieved in graphs (where polylogarithmic quality is
possible) and hypergraphs.

1.2. Generalized Reordering Buffer Management

In the Reordering Buffer Management problem (RBM), a sequence of items arrives
one-by-one and must be processed by the algorithm. The items represent some indivisible

10

1.2. Generalized Reordering Buffer Management

unit available for processing, e.g., cars in a manufacturing plant or TCP requests in a
streaming application. In order to distinguish between different types of items, we say
that each item has a color which summarizes its properties. On arrival, the item is placed
in a buffer that can hold up to b items. When the buffer is full, the algorithm must choose
an item from the buffer to process next. If it processes two consecutive items of different
colors, this incurs a cost of 1; more complicated cost models will be discussed later. The
goal is to process all items while minimizing the total cost.

The above model was introduced by Räcke et al. [RSW02]. This thesis studies the online
case of the problem, in which the algorithm does not know any future items when making
a decision. Räcke et al. show that simple algorithms perform poorly for this problem.
As an example, consider the Largest-Color-First algorithm (LCF) that picks, if possible,
an item of the same color as the previously processed one, and otherwise an item of the
color that is most frequent in the buffer. Now, suppose the first b− 2 items have colors
1, 2, . . . , b−3, b−2. After that, the sequence consists of two items of color b−1 followed by
two items of color b, and these last four items are repeated many times. LCF will only ever
process the items of color b− 1 and b, as those will be the largest colors in the butter. An
optimal strategy instead begins by processing the b− 2 first items and then performs LCF
on the remaining sequence. For a sufficiently large sequence, this leads to LCF having
Ω(b) times the cost of the optimal strategy, i.e., the LCF is Ω(b)-competitive. Similar lower
bounds can be shown for First-In-First-Out and Least-Recently-Used strategies. Räcke et
al. also present the Bounded Waste (BW) strategy as the first nontrivial algorithm for
the problem and prove that it is O(log2 b)-competitive [RSW02].

RBM is not only relevant due to its elegant description and the algorithmic discoveries
it inspired, but also because of its many applications. We have already seen the example
of a paint shop in a manufacturing plant and highlight two more applications now.
Krokowski et al. consider a 3D rendering system that assembles multiple primitives to
the screen [KRSW04]. In such a system, the graphics processor slows down if subsequent
primitives have different attributes such as texture or shader program. The authors
show that using a reordering buffer can improve the performance of the system and
they discuss several fast algorithms for the task. Azar et al. provided the example of a
network device that receives packets from an input stream and must forward them to
specific destinations [AEGK14]. If the device has no open connection to some destination,
setting up a new connection incurs significant delay. When the device is limited to k open
connections, e.g., k = 1, it can improve its performance by first storing all packets in a
buffer. The device serves the open connections as long as packets for theses destinations
exist. When none of the packets in the buffer can be distributed, the device must close a

11

1. Introduction

connection and open a new one. Other applications have been identified in the context of
information retrieval [BB02], storage systems [RSW02], and web caching [FMP+04].

A natural generalization of the problem is to consider multiple service stations available
to process items. Räcke et al. [RSW02] name this problem multi service sorting buffer,
yet the name Generalized Reordering Buffer Management (GRBM) has become
more common. Even for a buffer of size one, this problem is nontrivial: The algorithm
must decide for each item, which of its k service stations should (possibly) change its
current color to process it. This is equivalent to the well-known Paging problem, that has
been analyzed since the 80’s; see, e.g., Sleator and Tarjan [ST85] and further discussion
in Section 1.2.2. GRBM finds its usage, e.g., in the paint shop application (if there are
multiple paint stations available) and the network device application discussed above. Azar
et al. were the first to show algorithms for the online variant of this problem [AEGK14].

In this work, we are interested in algorithms for GRBM. We consider the uniform
case, in which each color change costs exactly 1. Note that our algorithms also apply to
classical RBM by setting the number of servers to one.

1.2.1. Problem statement

We now precisely define the model used for our discussion of GRBM. In this problem,
the algorithm controls k servers located in a uniform n-point space, i.e., all points are
at distance 1 from each other. Each point in the metric space is associated with a color.
At each time step, an item of some color c arrives and is immediately placed in a buffer.
We say that a buffer has size b, if it can hold up to b+ 1 items. If the buffer is full, the
algorithm must remove at least one item from it before moving to the next time step,
i.e., a buffer of size b contains b items at the end of the time step. If one of the servers
currently resides on color c, the item is immediately removed from the buffer at no cost.
Otherwise, the algorithm must specify a server movement in which it moves one of the
servers to a new color and removes all items of the color from the buffer. The goal is to
process the entire sequence with a minimum number of server movements.

The cost of processing a sequence in the above description is simply the total distance
travelled by the servers. In the uniform cost model we consider, this is equal to the
number of sever movements. Other works have considered a more refined scenario, in
which the cost of a server movement depends on both the old and the new color of the
server. The colors are then represented as points in some n-point metric space.

12

1.2. Generalized Reordering Buffer Management

Competitive analysis

We use the standard model of competitive analysis to determine the performance of an
algorithm in an online scenario. Here, we only review the most important notions from
the field of online algorithms. See the textbook by Borodin and El-Yaniv for an in-depth
introduction into the field [BE98].
For a given problem, let cALG(σ) denote the cost incurred by algorithm ALG on

input sequence σ. Similarly, let cOPT(σ) denote the cost that an optimal algorithm with
unbounded resources and full knowledge about the sequence σ achieves. For minimization
problems such as RBM, algorithm ALG is said to be c-competitive if for any input
sequence σ

cALG(σ) ≤ c · cOPT(σ) + d ,

where d is a constant independent of σ. We call the smallest c so that ALG is c-competitive
the competitive ratio of the algorithm.
Randomized online algorithms are often framed as a two-player game between the

algorithm on the one side and an adversary on the other side. The adversary knows
the algorithm and has unlimited computational power. His task is to generate an input
sequence for the algorithm. Ben-David et al. prove that the power of the adversary
against a randomized algorithm heavily depends on the knowledge it obtains about the
algorithm’s random choices [BBK+94]. They distinguish three types of adversaries:

• Oblivious adversary: The adversary has no knowledge about the random choices
and must construct the item sequence in advance.

• Adaptive online adversary: The adversary knows all previous decisions by the
algorithm, but not its random choices for the next round.

• Adaptive offline adversary: The adversary knows all previous decisions and all
future outcomes of the random choices.

They show that, in fact, the adaptive offline adversary is so powerful that randomization
cannot improve an algorithm’s competitive ratio against it.

This thesis studies randomized algorithms for the GRBM problem against an oblivious
adversary. We are interested in the expected cost of a randomized online algorithm, where
the expectation is over the random choices given a fixed input sequence. We say that
randomized algorithm ALG is c-competitive if for any input sequence σ

E[cALG(σ)] ≤ c · cOPT(σ) + d ,

13

1. Introduction

where d is a constant independent of σ. Again, we call the smallest c so that ALG is
c-competitive the competitive ratio of the algorithm. In other words, the best possi-
ble deterministic online algorithm has the same competitive ratio as the best possible
randomized online algorithm against an adaptive offline adversary.
Observe that the study of competitive analysis makes no assumptions on the running

time of the online algorithm under investigation. As both RBM and GRBM have been
shown to be NP-hard problems, it is unlikely that even a clairvoyant algorithm can find
an optimal solution in polynomial time.

1.2.2. Related work

Generalized reordering buffer management.

Räcke et al. introduced GRBM alongside classical RBM under the name multi service
sorting buffer [RSW02]. The authors observe that for a buffer of size one, it is equivalent
to the paging problem. Chan et al. [CMSvS12] formally analyze the offline variant
and show that it is NP-hard for any number of servers k by reducing RBM to it and
showing that RBM is NP-hard. On the positive side, Azar et al. [AEGK14] present a
deterministic online algorithm of competitive ratio O(min{k2 ln b, kb}) and a randomized
online algorithm that attains competitive ratio O(

√
b ln k). Their randomized algorithm

is a variant of the Marking algorithm for the Paging problem. Marking a color is delayed
until

√
b items of a color have arrived, while several clean-up procedures prevent a buffer

overflow.

Reordering buffer management.

Both the online and offline variant of RBM have widely been studied. In this survey, we
focus on results for the online variant of the problem; see [AR15] for further references.
The first nontrivial algorithm for RBM was the Bounded Waste (BW) strategy by Räcke et
al. [RSW02]. This algorithm is O(log2 b)-competitive in the uniform cost model. Englert
and Westermann developed the Maximum Adjusted Penalty algorithm (MAP) that is
O(log b)-competitive [EW05]. This result even holds in a non-uniform setting where the
cost of a color change depends on the new color. They also show that BW performs poorly
in this case. In fact, Englert and Westermann prove that MAP is 4-competitive against
an optimal algorithm with buffer size b/4 and that increasing the buffer by a constant
factor only increases the cost by O(log b). Avigdor-Elgrabli and Rabani developed the
simple, deterministic Threshold or Lowest Cost (TLC) strategy with competitive ratio
O(log b/ log log b) [AR15]. Their algorithm is combinatorial, yet they provide an LP-based

14

1.2. Generalized Reordering Buffer Management

analysis. Finally, Adamaszek et al. presented a deterministic algorithm with competitive
ratio O(

√
log b), nearly matching the lower bound of Ω(

√
log b/ log log b) for deterministic

algorithms shown in the same publication [ACER11].

Adamaszek et al. introduced the online block-devices problem, in which the server
must return to a neutral location at the end of each time step [ACER12]. The authors
gave a randomized online primal-dual algorithm of competitive ratio in O(log log b).
For RBM in the uniform cost model, Avigdor-Elgrabli and Rabani gave a randomized
O(log log b)-competitive algorithm [AR13], asymptotically matching the lower bound
given by Adamaszek et al. [ACER11]. Their algorithm first computes a nearly optimal,
fractional solution to an LP relaxation of the problem. Second, a randomized rounding
procedure transforms that fractional solution into a probability distribution over integral
solutions. In contrast to the block-devices problem however, the authors do not use a
packing-covering LP, hence the standard primal-dual framework does not apply. Instead,
the authors combine a primal-dual analysis with a more complicated dual fitting argument.

For the non-uniform case, Avigdor-Elgrabli et al. achieved an exponential improvement
over previous work by giving a randomized O((log log(bγ))2)-competitive algorithm, where
γ is the ratio between shortest and longest distance [AIMR15].

In an even more general scenario, the switching cost between colors depends on
both the old and the new color. In this scenario, the colors are arranged in a metric
space. If the metric is an edge-weighted tree, algorithm PAY introduced by Englert et al.
applies [ERW10]. PAY works in two steps: In the selection step, the items in the buffer can
“buy” edges towards the position of the current color. As soon as this color can be reached
via the “paid” edges, the algorithm starts the processing step. During the processing step,
the algorithm visits all colors in the connected component of “paid” edges. Englert et
al. show that PAY is O(D log b)-competitive on trees and O(log2 k log n)-competitive in
general metric spaces. Here, the factor D denotes the hop-diameter of the tree, which is
the number of edges on the longest path between two leaves. An improved analysis of PAY
by Englert and Räcke shows that the algorithm is O(log b)-competitive on hierarchically
separated trees (HSTs) [ER17]. An HST is a rooted, edge-weighted tree, whose edge
weights increase by some constant with the distance to the root. Fakcharoenphol et al.
show that any metric can be embedded into an HST so that the average stretch of an
edge is O(log n) [FRT04]. This implies that PAY has competitive ratio O(log n log b) in
arbitrary metric spaces. Kohler and Räcke use a different technique based on finding
stable blocks in the buffer and processing them [KR17]. This algorithm does not make
use of HSTs and the authors show a competitive ratio of O(log ∆ + min{log n, log b}),
where ∆ is the aspect ratio of the metric, the ratio of the longest to the shortest distance

15

1. Introduction

between points in the metric. Their algorithm is memory-robust, i.e., its performance
degrades gracefully with the size of the buffer.

Interestingly, both FRT-based algorithms and memory-robust algorithms can be shown
to have competitive ratio Ω(log n) on arbitrary metrics. The FRT-embedding loses a
factor of O(log n) and is optimal for general metric spaces. Bienkowski et al. show that
any memory-robust algorithm must be Ω(min{b, log n})-competitive [BBJ+18].
In another interesting scenario, colors are equidistant on an n-point line. Gamzu and

Segev gave an O(log n)-competitive algorithm for the problem [GS09]. An elegant proof
of this competitive ratio was given by Englert, who also notes that it is an interesting
open problem whether a better competitive ratio is possible [Eng18]. He observes that
the techniques employed so far are known to only give Ω(log n)-competitive results, so
any improvement would require a fundamentally different approach (see also [BBJ+18]).

1.2.3. Delay problems

RBM falls into a broad class of reordering and aggregation problems that have recently
gained much attention. Very broadly, these problems give a set of items, usually in a
metric space, that need to be served by one or multiple servers. The service cost, which is
the total distance travelled by the servers, may be reduced by rearranging and aggregating
items. The algorithm’s power to do so is, however, limited by charging a cost for delaying
items. For example, RBM limits the number of unprocessed items via the buffer size.
Next, we briefly survey other problems in this class.
In the Online Service with Delays (OSD) problem introduced by Azar et al.,

items arrive online in an n-point metric and can be served at any time after their
arrival [AGGP17]. As for RBM, we associate the points of the metric space with colors.
The cost of serving the sequence is the total delay of the items. In fact, each item may
have its own (monotone, increasing) delay penalty function. The authors also introduce
the k-OSD problem, in which there exist k servers to process the items.
While (G)RBM and (k-)OSD are similar in flavor, there are interesting technical

differences between the problems. For RBM, no constant competitive online algorithm for
uniform metrics can exist. For OSD, on the other hand, there is a simple 2-competitive
strategy: Move the server to a color c whenever the items at c have accumulated delay
penalty 1. One can see that between two movements of the online algorithm to c, the
optimal algorithm must either have moved to color c as well, or accumulated delay penalty
1. In fact, Azar et al. show that k-OSD on uniform metrics can be reduced to classical
Paging up to a constant factor.

Azar et al. also gave an O(kh4)-competitive algorithm for k-OSD on HSTs of height h.

16

1.2. Generalized Reordering Buffer Management

Using a randomized FRT-embedding, this implies an O(k log5 n)-competitive algorithm
in general metrics. The authors note that their algorithm is quite different from the
PAY algorithm used by Englert et al. for RBM on HSTs [ERW10]; in fact, a PAY-style
algorithm performs poorly for delay problems. Very recently, Azar and Touitou gave an
improved randomized algorithm for OSD with competitive ratio O(log2 n) on general
metrics for k = 1 [AT19].

Online multilevel aggregation can be considered a variant of OSD. In this
problem, items arrive on the leaves of a tree of depth D and each item comes with a
penalty function. The cost of processing an item is the total weight of the path from
the root to the item. An algorithm may process a set of items together, only paying the
cost of the spanning tree connecting the items of the set with the root. Again, the cost
of serving the sequence is the sum of service costs (weight of the spanning trees) and
delay cost (total penalty of the items). The online multilevel aggregation problem was
introduced by Khanna et al. [KNR02] and later studied by Bieńkowski et al. [BBB+16]
who gave an O(D42D)-competitive algorithm for the problem. Azar and Touitou gave a
deterministic O(D2)-competitive algorithm for this problem. For the special case where
all delay penalty functions are deadline functions (i.e., they are 0 before the deadline and
infinite after it) Buchbinder et al. gave a deterministic algorithm of competitive ratio
O(D) [BFNT17]. Interestingly, there remains a large gap to the best-known lower bound
of 2 shown by Bieńkowski et al. [BBC+14].
Other than the examples mentioned above, there exist numerous results for classical

online problems in a scenario with delays, e.g., online facility location [AT19], min-cost
matching [EKW16], bin packing [AEvSV19], and set cover [CPSV18].

k-Server

The Paging problem, which we identified above as a special case of GRBM, arises
naturally in computer systems using both slow, but large storage and a fast, but limited
cache. Suppose a sequence of pages is requested online. At each time step, one of the
n pages is requested and the online algorithm must move it into a cache that can hold
up to k pages if the page is not already contained in it. Such a page fault incurs unit
cost, and the algorithm’s goal is to minimize the total cost. The central decision by the
paging algorithm lies in the question which page to evict upon a page fault. Sleator and
Tarjan gave the first online analysis of the Least-Recently-Used algorithm (LRU) and
showed that it is k-competitive [ST85]. This strategy always evicts the page from the
cache that has been requested least recently. Manasse et al. showed that no deterministic
algorithm can have competitive ratio below k, making LRU an optimal strategy for

17

1. Introduction

paging [MMS90]. For randomized algorithms, that lower bound is the k-th harmonic
number Hk = Θ(log k), which is nearly matched by the (2Hk − 1)-competitive Marking
algorithm developed by Fiat et al. [FKL+91]. Achlioptas et al. provide a tight analysis of
algorithm Marking [ACN00]. Multiple Hk-competitive algorithms are known, the earliest
was given by McGeoch and Sleator [MS91].

While today optimal algorithms are known for the paging problem, the same is not true
for its generalization, the k-Server problem. In this problem introduced by Manasse et
al., k servers must serve items in a metric space online [MMS90]. The paging problem
corresponds to the uniform metric in which all points are at unit distance from each
other. The k-server problem has famously been conjectured to admit a deterministic k-
competitive algorithm for any value of k, the k-server conjecture [MMS90]. The conjecture
seemed far out of reach at the time it was posed, as not even an algorithm with competitive
ratio depending only on the number of servers k was known. Fiat et al. gave the first
such algorithm, albeit with an exponential dependency on k [FRR94]. Koutsoupias and
Papadimitriou then showed that their work function algorithm has competitive ratio
2k − 1 [KP95]. The work function algorithm has been the best-known deterministic
k-server algorithm for more than 25 years now. For a modern look on the algorithm and
a brief survey of the problem, see the paper by Koutsoupias [Kou09].

The power of randomization for the k-Server problem has recently received strong
attention. The randomized k-server conjecture states that a randomized O(log k)-
competitive algorithm for the problem exists. The conjecture implies that k-Server

admits the same approximation ratio in arbitrary metric spaces as in a uniform metric
space. Significant progress towards the resolution of this conjecture was made by Bansal et
al., who showed an O(log k)-competitive algorithm for k-Server in star metrics [BBN12].
Their algorithm applies the primal-dual scheme developed by Buchbinder and Naor [BN09].
With a more complicated linear programming relaxation, they extended their techniques to
develop an O(log2 k log3 n log log n)-competitive algorithm for the general case [BBMN15].
Although this algorithm’s performance still depends on n, it was the first algorithm
to only have polylogarithmic dependency in both n and k. Bubeck et al. used a novel
linear programming relaxation and techniques borrowed from online learning algorithms
to develop an O(log2 k log n)-competitive algorithm for the k-server problem [BCL+18].
Their result is a central building block in a recent breakthrough by Lee who gave an
algorithm of competitive ratio O(log5 k).

18

1.3. Bibliographical Notes

1.2.4. Our results

The main result of Chapter 3 is a randomized O(log k(log k + log log b))-competitive
algorithm for GRBM on uniform metric spaces. This is the first algorithm to achieve
polylogarithmic competitiveness for the problem. For constant k, our algorithm asymp-
totically matches the lower bound of Ω(log log b+ log k). This lower bound is on the one
hand inherited from the connection of GRBM to RBM (with the case of a single server),
which has a lower bound of Ω(log log b). On the other hand, GRBM turns into the paging
problem for b = 1, which gives a lower bound of Ω(log k).
Our algorithm also implies an O(log log b)-competitive algorithm for classical RBM.

This reproves a result by Avigdor-Elgrabli and Rabani [AR13]. Interestingly, our algorithm
uses a different framework and is based on a novel linear programming relaxation for
GRBM. This new linear program builds upon the work by Adamaszek et al. for scheduling
block devices [ACER12].

1.3. Bibliographical Notes

The results of Chapter 2 have been obtained in joint work with Roy Schwartz and Harald
Räcke. They have been presented in preliminary form at the 30th ACM Symposium on
Parallelism in Algorithms and Architectures [RSS18].
The proofs shown in this chapter are mostly extended and revised version of those

shown in [RSS18]. In addition to providing full proofs for all results, this thesis also
shows how to adapt the Minimum Hypergraph Bisection procedure to Minimum Vertex
Bisection. It also shows how a vertex cut tree can be used to find a minimum vertex
bisection.

The results of Chapter 3 have been obtained in joint work with Matthias Englert and
Harald Räcke and have been presented in preliminary form at the 60th Annual IEEE
Symposium on Foundations of Computer Science [ERS19]. The proofs shown in this
chapter are mostly extended and revised versions of those shown in [ERS19]. Section 3.4
gives an entirely new competitiveness proof based on a more rigorous analysis of the
probability space.

19

2. Balanced Cuts in Graphs and
Hypergraphs

This chapter is devoted to our results on computing balanced partitions in graphs and
hypergraphs. We begin by analyzing more precisely the relationship between edge cuts
in graphs, hyperedge cuts in hypergraphs and vertex cuts in graphs and we explain the
folklore reduction between them. After this warm-up exercise, we turn to Minimum

Hypergraph Bisection and we give an approximation algorithm for this problem.
We also analyze the computational hardness of finding a good hypergraph bisection by
proving lower bounds based on the complexity hypotheses HDRH and ETH. In the third
part of this chapter, we first give a construction for a vertex cut tree approximating
hypergraph cut and vertex cuts. We then give four lower bounds that demonstrate the
limits in constructing such trees.

2.1. Preliminaries

This work essentially considers three types of cut problems. The first type are classical
edge cuts in undirected graphs. In this scenario, an undirected graph G = (V,E) is
disconnected by removing edges from the edge set E. The second scenario is a natural
extension, namely hyperedge cuts in hypergraphs. Here, a hypergraph H = (V,EH) is
disconnected by removing hyperedges from the set of hyperedges EH . The third scenario
is vertex cuts in undirected graphs where an undirected graph is disconnected by removing
vertices from the vertex set.

This initial section demonstrates reductions between the three cut problems we consider.
The reductions are mostly simple and well-known in the literature. We include them for
completeness and as a reference for future sections.

Edge Cuts in Graphs and Hyperedge Cuts. We begin by exploring the relationship
between edge cuts in undirected graphs and hyperedge cuts in hypergraphs. Every undi-
rected graph is clearly a 2-uniform hypergraph, so any algorithm for cutting hypergraphs
works on graphs as well. On the other hand, the following construction transforms a

21

2. Balanced Cuts in Graphs and Hypergraphs

hypergraph into a weighted, undirected graph so that any cut size is distorted by at most
the maximum hyperedge size.

Given a hyperedge H = (V,EH), replace each hyperedge h ∈ EH with a clique Ch
among the vertices of h of edge weights 1/(|h| − 1). Call the resulting multigraph (with
parallel edges) G′. In order to obtain a graph G out of the multigraph G′, replace parallel
edges with a simple weighted edge.

Proposition 2.1. For any hypergraph H = (V,EH) of maximum hyperedge size hmax,
there is a weighted graph G = (V,EG) over the same vertex set so that for any A ⊂ V ,

δG(A) ≤ δH(A) ≤ min{|A|, hmax/2} · δG(A) .

Graph G can be constructed in polynomial time and |EH | ≤ |EG| ≤ h2
max · |EH |.

Proof. Given hypergraphH, use the above construction to obtain the undirected, weighted
graph G. Suppose hyperedge h is cut by a set A ⊂ V and let x = |h ∩A|. It follows that
the number of edges of clique Ch that is cut by A is

|h ∩A| · |h ∩ (V \A)| = x(|h| − x) =: f(x) .

On the one hand, function f is concave in x, so it is minimized for x = 1 or x = |h| − 1.
For both cases, this gives that at least |h| − 1 edges of Ch are cut. As the edge weight in
Ch is 1/(|h| − 1), the lower bound follows.

On the other hand, the number of edges in the cut is at most |A|(|h| − 1), which
gives the upper bound of |A|. Furthermore, function f is maximized at x = |h|/2, so
f(x) ≤ |h|2/4. The weight of edges cut is therefore |h|2/(4|h| − 4) ≤ |h|/2 as |h| ≥ 2,
which gives the second upper bound.

Vertex Cuts in Graphs and Hyperedge Cuts. We now demonstrate a reduction from
hyperedge cuts to vertex cuts in undirected graph. The following construction is essentially
given by Leighton and Rao [LR99].

Given a hypergraph H = (V,EH), we construct a bipartite graph G = (V ∪EH , EG).
Graph G is bipartite between V and EH . For any h ∈ EH and v ∈ h, construct an
edge {v, h} to obtain the set EG. For vertices in EH , set the vertex weight to 1. For
vertices v ∈ V , set the vertex weight to degH(v) + 1, where degH(v) denotes the number
of hyperedges in H vertex v is contained in.

22

2.2. Approximating Minimum Hypergraph Bisection

Proposition 2.2 ([LR99]). For any hypergraph H = (V,EH), there is a vertex-weighted
bipartite graph G = (V ∪ EH , EG, w) so that for any disjoint A,B ⊂ V

δH(A,B) = γG(A,B) .

Graph G can be constructed in polynomial time and has total vertex weight |EH | +

|V |(davg(H) + 1), where davg(H) denotes the average vertex degree in H.

Proof. Given hypergraph H, use the above construction to obtain the undirected, vertex-
weighted graph G. Observe that a minimum-weight vertex separator of any two vertex
sets in G never picks a vertex of V . To see this assume for a contradiction that the
minimum-weight separator S of A and B contains vertex v ∈ V . Replacing v by all of
its neighbors (in G) still separates A and B, yet the weight of S decreases by 1, which
contradicts the optimality of S. Therefore, optimal vertex separators in G are taken from
EH only and thus correspond to collections of hyperedges in H. As w(h) = 1 for all
h ∈ EH , the claim follows.

Leighton and Rao actually give a variant of the above construction [LR99]. They use
two weight functions w and b on the vertex set, where w(v) is the cut weight of a vertex
v and b(v) is its balancing weight. Vertices of G in V obtain infinite cut weight and
balancing weight 1. Vertices of G in EH obtain cut weight 1 and balancing weight 0.
This transformation allows a one-to-one correspondence between edge partitions in H
and non-infinite cost vertex partitions in G. Let γwG denote the cost of a vertex cut with
respect to weight function w, then we obtain the following theorem.

Proposition 2.3 ([LR99]). For any hypergraph H = (V,EH), there is a vertex-weighted
bipartite graph G = (V ∪ EH , EG, w, b) with two vertex weight functions w, b so that for
any disjoint A,B ⊂ V

δH(A,B) = γwG(A,B) .

Graph G can be constructed in polynomial time and has total vertex weight b(V ∪EH) = |V |.

2.2. Approximating Minimum Hypergraph Bisection

2.2.1. Approximation algorithms

The approximation algorithm for MHB shown in this section is an adaptation of the
algorithm by Feige et al. for Graph Bisection to hypergraphs [FKN00]. We begin by
sketching their algorithm.

23

2. Balanced Cuts in Graphs and Hypergraphs

Their algorithm proceeds in two phases. In the first phase, it partitions the graph into
small subgraphs using recursive min-ratio cuts. The goal is that each of the subgraphs
returned by the first phase is nearly monochromatic. This means that the subgraph lies
almost entirely on one side of some fixed optimal bisection. In the second phase, the
algorithm tries to compute, for each subgraph, the cut induced by the optimal bisection
within the subgraph. This divides each subgraph in two. Finally, all subgraphs are
grouped to form a bisection. The algorithm’s approximation ratio in graphs is Õ(

√
n).

We show the same ratio is achieved in hypergraphs.
Before presenting the overall algorithm in detail, we consider the problem of cutting a

few vertices from a hypergraph. This is used later as a subroutine in the second phase of
the algorithm we present.

Cutting k vertices from a hypergraph

The problem of removing k vertices from a hypergraph is called the Unbalanced k-Cut

problem. We give two simple algorithms approximating an optimal solution.

Proposition 2.4. There exists a min{k, hmax/2} · O(log n)-approximation algorithm for
Unbalanced k-Cut in hypergraphs where hmax is the size of the largest hyperedge.

Proof. Unbalanced k-Cut can be solved in graphs with approximation factor O(log n)

using the convex combination of edge cut trees by Räcke [Räc08]. The result therefore
follows by applying the transformation of hypergraphs into graphs of Proposition 2.1.

If all hyperedges span more than k vertices, any set of k vertices has no internal
hyperedges. In this case, Unbalanced k-Cut asks to find k vertices so that the total
number of hyperedges they are incident to is minimal. This is an instance of Minimum

k-Union (MkU). This problem was studied recently by Chlamtáč et al [CDM17] and is
discussed in detail in Section 2.2.2. Chlamtáč et al. obtain the following result.

Proposition 2.5 ([CDM17]). If all hyperedges have at least size k, and k = Ω
(
n1−α),

then there is an Õ(nα(1−α)+ε)-approximation algorithm for the unbalanced k-cut problem,
for any constant ε > 0.

Approximation algorithm for minimum hypergraph bisection

We are now ready to adapt the algorithm by Feige et al. to hypergraphs [FKN00].
Suppose we are given a hypergraph G = (V,E) on n vertices. The algorithm first

guesses the value OPT of an optimum solution. This can be done by binary search on the

24

2.2. Approximating Minimum Hypergraph Bisection

range of possible values, as this only increases the running time by a polynomial factor.
We assume from here on that the value of OPT is known.

The first phase of the algorithm uses an approximation algorithm A for min-ratio cut
in hypergraphs and a parameter k to be determined later. Algorithm A is then used
recursively on hypergraph G as follows. We start with the entire graph G and have A
compute an approximate min-ratio cut (V1, V2) of the vertex set of G. If the sparsity of
that cut is more than αOPT /k, we stop. If, on the other hand, the sparsity is at most
αOPT /k, let G′ and G′′ be the subhypergraphs induced by V1 and V2, respectively. On
both subhypergraphs G′ and G′′, continue this process recursively. When the recursive
process ends, the graph has been partitioned into subhypergraphs Gi. Each subhypergraph
Gi has the property that algorithm A has not found a cut of sparsity less than αOPT /k

in Gi. It follows that no cut of sparsity less than OPT /k exists in Gi. In other words,
the recursive procedure results in a partitioning of G into well-connected subhypergraphs.
This concludes the first phase of the algorithm. The next two lemmas show the main
properties of the hypergraphs Gi.

Lemma 2.6. The total weight of edges cut in the first phase is at most

α · n log n
OPT

k
.

Proof. Every cut Si of the first phase fulfills the inequality |δ(Si)|/|Si| ≤ αOPT /k, where
Si denotes the smaller side of the cut. This gives |δ(Si)| ≤ α|Si|OPT /k.

We can amortize the increase δ(Si) of the total cut-cost in the i-th step to the vertices
on the smaller side. Since during the whole construction a vertex appears on the smaller
side of a cut at most log n times, we amortize at most α log n ·OPT /k against a single
vertex. Summing over all vertices gives the lemma.

Let Gi denote the subhypergraphs returned after the first phase. We fix some optimal
bisection represented as a black and white coloring of the vertices. Subhypergraph Gi
has minority color white, if it contains fewer white vertices than black vertices; otherwise,
its minority color is black. The vertices that have the minority color are called minority
vertices. The following lemma shows that the first phase ends with only few minority
vertices in the subhypergraphs.

Lemma 2.7. There exist less than k minority vertices by the end of the first phase.

Proof. Let ki denote the number of minority vertices in part Gi and let OPTi be the
number of hyperedges of the (fixed) optimal bisection inside Gi. Note that

∑
i OPTi ≤

25

2. Balanced Cuts in Graphs and Hypergraphs

OPT, as the subhypergraphs Gi are disjoint. As no cut of sparsity below OPT /k exists,
every i must fulfill

OPTi

ki
≥ OPT

k
.

Summing over all i gives ∑
i OPTi

OPT
≥
∑

i ki
k

.

As the left-hand side is at most 1, the same holds for the right-hand side. The total
number of minority vertices

∑
i ki is therefore at most k.

The second phase of the algorithm aims to approximate the optimum cut within each
piece Gi. For this we “guess” in each subhypergraph the number of minority vertices
ki and remove this many vertices using the algorithm from Proposition 2.4. These
guesses are made one-by-one within a dynamic program by Feige et al. which we describe
next [FKN00].
Feige et al.’s dynamic programming algorithm labels each part Gi either black or

white. It furthermore determines for each part the number ki of minority vertices in the
part. The dynamic programming table is Cj(W,B,mW ,mB). A table entry stores the
(approximate) cost of labeling parts G1, . . . , Gj so that parts of W vertices in total are
labeled white and parts of B vertices in total are labeled black. The total number of
minority vertices of white parts and black parts are mW and mB, respectively.

For j = 1, suppose that we label G1 = (V1, E1) white. Then C1(|V1|, 0, `, 0) equals the
cost of cutting ` ≤ k vertices from G1 using the algorithm from Proposition 2.4. When
labeling G1 black, the table entries follow by symmetry. For j > 1, we guess whether Gj
is labeled black or white and then the number of minority vertices. There are only 2n for
each part, which gives a polynomial running time of the dynamic program.
If the total number of parts is p, we choose the labeling of parts corresponding to

the smallest table entry Cj(W,B,mW ,mB) with W −mW +mB = n/2 (so that we can
combine the parts to a bisection) and mW +mB ≤ k (so that there are at most k minority
vertices).

Lemma 2.8. The total cost of the cut computed in the second phase is O(log n)kOPT.

Proof. Suppose the optimum solution has ki minority vertices from subhypergraph Gi.
This means that a ki-unbalanced cut through Gi of cost at most OPT exists. Our
algorithm therefore finds a cut of cost at most ki OPTO(log n) in Gi. Summing over all
subhypergraphs gives cost at most

O(log n)
∑

i
ki OPT ≤ O(log n)kOPT .

26

2.2. Approximating Minimum Hypergraph Bisection

We have used in the inequality that the total number of minority vertices is at most k by
Lemma 2.7.

Theorem 2.9 ([RSS18]). There is a polynomial time O(
√
n log5/4 n)-approximation

algorithm for Minimum Hypergraph Bisection.

Proof. From lemmas 2.6 and 2.8 we know that the total cost is at most(
αn

k
+ k

)
OPT log n .

The theorem follows by setting k =
√
αn and using α = O(

√
log n).

If either all hyperedges are large or all hyperedges are small we can obtain the following
improved bounds.

Theorem 2.10 ([RSS18]). If all hyperedges have size at least Ω(nα), there exists an
Õ(n1−α) approximation algorithm for Minimum Hypergraph Bisection.
If all hyperedges have size at most O(nα), there is an Õ(nα)-approximation algorithm

for Minimum Hypergraph Bisection.

Proof. If all hyperedges have at least size z = Ω(nα), we choose k = z for the first phase
of the algorithm. Then the total number of minority vertices for the second phase is
at most z by Lemma 2.7. This means we can use the algorithm from Proposition 2.5
for the second phase. The approximation factor of the overall algorithm becomes then
Õ(n1−α) + Õ(nα(1−α)+ε) ∈ Õ(n1−α).

If all hyperedges have size at most O(nα), applying Proposition 2.1 and a logarithmic
approximation algorithm for Minimum Bisection in simple graphs gives an Õ(nα)

approximation algorithm for Minimum Hypergraph Bisection.

2.2.2. Hardness results

This section shows that a polynomial-time algorithm with approximation ratio n1/(log logn)c

for MHB would violate the Exponential Time Hypothesis (ETH). The stronger Hypergraph
Dense versus Random Hypothesis (HDRH) is shown to imply that the approximation ratio
for MHB cannot be better than n1/4−ε. Both results indicate a stark contrast between
classical Minimum Bisection and its variant for hypergraphs MHB, as polylogarithmic
approximation algorithms for the graph case have long been known, see Feige and
Krauthgamer [FK02].

27

2. Balanced Cuts in Graphs and Hypergraphs

Hardness based on hypergraph dense versus random

The hardness results of this section stem from the connection between MHB and the
Minimum k-Union (MkU) problem. In MkU, one is given a hypergraph G = (V,E) of n
vertices and m hyperedges. The goal is to pick 1 ≤ k ≤ m hyperedges so that their union
has minimum cardinality. MkU has been introduced recently by Chlamtáč et al. who
gave an Õ

(
m1/4+ε

)
-approximation algorithm [CDM17]. The authors observe that MkU

is closely related to Densest k-Subgraph (DkS), the problem of finding in a graph a
subgraph on k vertices with maximum number of edges. We have seen in Section 2.2.1
that this problem is equivalent to the Unbalanced k-Cut problem if all hyperedges
have size more than k. Our goal is now to analyze this connection more precisely. We
start by defining some concepts from random hypergraphs.
For integers n, r ≤ n, and a probability 0 < p < 1, the random graph Gn,p,r is a

graph on n vertices constructed via the following random process. Independently for any
r-subset S of vertices, add a hyperedge S with probability p to the hypergraph. Writing
G ∼ Gn,p,r means that G is constructed through this random process.
We sometimes say that some property P holds with high probability. This means

that the property P holds with probability at least 1 − 1
nc for an arbitrary constant c.

Sometimes the property P will be parameterized by a different constant c′ (hidden in the
O-notation) that may depend on c.

Chlamtáč et al. show that for any ε > 0 no m1/4−ε-approximation algorithm for MkU

exists if the HDRH holds.
This hypothesis is based on the Hypergraph Dense versus Random problem. This

game is a variation of the Dense versus Random distinguishing (promise) problem
introduced (implicitly) by Bhaskara et al. [BCC+10]. Informally, Dense versus Random

is a simple two-player game. At the beginning of each round, a random graph is generated
based on the game’s parameters. Player 1 can either use the random graph or construct
a graph containing some subgraph of high density. Player 2 must then guess if Player 1
presented the random graph or not. The goal of Player 2 is to guess correctly with
high probability. An in-depth discussion of Dense versus Random, its variants and
algorithms tackling it can be found in Vijayaraghavan’s thesis [Vij12].

Hypergraph Dense versus Random adapts Dense versus Random for hyper-
graphs. Formally, the problem is parameterized by an integer k and constants r and
0 < α, β < r − 1. The problem asks to distinguish between the following two graphs:

Dense G is adversarially chosen so that a planted subhypergraph of G on k vertices has
log-density β,

28

2.2. Approximating Minimum Hypergraph Bisection

Random G ∼ Gn,p,r, where p = nα−r+1.

The log-density of a hypergraph on k vertices and average vertex degree davg is logk(davg).
It follows that the average degree within the subhypergraph of the dense case is kβ .

Hypothesis 2.11. [HDRH, [CDM17]] For all constant r and 0 < α, β < r − 1, for
all sufficiently small ε > 0, and for all k such that k1+β ≤ n(1+α)/2, we cannot solve
Hypergraph Dense vs Random with log-density α and planted log-density β in
polynomial time (with high probability) when β < α− ε.

We say that an instance of MkU is quasi α-regular if the hypergraph is r-uniform
for some r and the degree of each vertex is Θ(nα). A quasi α-regular instance of MkU

is written as (G,n,m, α, r). We first show how the lower bound on the approximation
ratio for quasi α-regular MkU-instances predicted by HDRH is parameterized by α. In
doing so, we extend the result by Chlamtáč et al. [CDM17]. This will later serve us for
obtaining precise lower bounds for uniform MHB instances.

Lemma 2.12. Assuming Hypothesis 2.11 (HDRH), there is no polynomial-time algorithm
for MkU that achieves approximation factor O(mmin{α/(2α−2),α/(1+α)2}−ε) with high
probability for sufficiently small ε.

Proof. In order to establish the lemma we first show some facts about Gn,p,r. The proofs
of these facts have been deferred to Appendix A.1.

Claim 2.13. A random graph Gn,p,r fulfills the following properties.

1. Any vertex of a Gn,p,r with p = n1+α−r has vertex degree Θ(nα), with high probability.

2. Any set of n hyperedges in a Gn,p,r with p = n1+α−r covers at least Ω
(
(n/p)1/r

)
vertices, with high probability.

3. Any set of n(1+α)/2/r hyperedges in a Gn,p,r with p = n1+α−r covers at least
Ω
(
n(1+α)/2−ε) vertices, with high probability, if α < 1, r is sufficiently large and ε

is a small constant.

We show that an approximation algorithm for MkU distinguishes between the Dense
case and the Random case of the Hypergraph Dense vs Random problem. We use the
hypergraph provided by Hypergraph Dense vs Random as input for MkU. By Fact 1,
this is a quasi α-regular instance of MkU in the Random case with high probability.
In the Dense case, the instance chosen by the adversary must therefore also be quasi
α-regular, otherwise distinguishing them would be trivial.

29

2. Balanced Cuts in Graphs and Hypergraphs

In the Dense case, the adversary has planted a subhypergraph of k vertices and log-
density β in the graph. This subhypergraph contains ` = k1+β/r edges as kβ is the
average vertex degree and r the size of the hyperedges. It follows that in the Dense case,
the minimum union of ` hyperedges has size at most k.

Let k̂ be the size of the minimum `-union in the Random case, i.e., the minimum size
of a union of ` hyperedges in a Gn,p,r. We show that k̂ is considerably larger than k

with high probability. Assuming Hypothesis 2.11, no polynomial time algorithm may
distinguish between k and k̂. This gives a lower bound of k̂/k on the approximation ratio
for algorithms approximating MkU.

In the remainder of the proof, we show how to set the parameters of the Hypergraph

Dense versus Random instance so as to obtain the desired gap k̂/k. Recall that we
aim for a result that is parameterized by α. We distinguish two cases depending on the
value of α.

α > 1. We choose ` = n (note that this in fact chooses k for the Dense vs Random
instance, because we have set ` = k1+β/r before). We first show that k1+β ≤
n(1+α)/2 as this is a constraint on k that must be fulfilled for Hypothesis 2.11.
Indeed, k1+β = r` = rn < n(1+α)/2 for α > 1 and n sufficiently large.

Fact 2 implies that with high probability k̂ will be at least Ω
(
(n/p)1/r

)
. Let m

denote the total number of edges in the random instance. Fact 1 implies that, with
high probability, m = Θ(n1+α). We use this fact and rewrite (n/p)1/r with respect
to m:

(n/p)1/r = Θ

((
m1/(1+α)nr−(1+α)

)1/r
)

= Θ

((
m1/(1+α)mr/(1+α)−1

)1/r
)

= Θ
(
m1/(r(1+α))+1/(1+α)−1/r

)
.

In the first equality, we used that p = n1+α−r. As k = (rn)1/(1+β) which is in
Θ(m1/((1+α)(1+β))) (with r being constant and β > 0), it follows that

k̂/k = Ω
(
m

1
r(1+α)

− 1
r

+ 1
1+α
− 1

(1+α)(1+β)

)
.

30

2.2. Approximating Minimum Hypergraph Bisection

We now choose β = α− ε and ε/2 > 1/r, then the exponent is at least

1

1 + α
− 1

(1 + α)(1 + α− ε)
− 1

r
=

1

1 + α

(
1− 1

1 + α− ε

)
− 1

r

≥ α

(1 + α)2
− ε

(1 + α)2
− ε

2

>
α

(1 + α)2
− ε .

The second inequality uses that 1 + α > 2. It follows that the gap k̂/k is at least
Ω
(
mα/(1+α)2−ε).

α ≤ 1. We choose ` = n(1+α)/2/r. This choice is valid as k1+β = `r = n(1+α)/2. Fact 3
implies that with high probability k̂ will be at least Ω(n(1+α)/2−ε) if r is sufficiently
large. Again the total number of edges in a random hypergraph is m = Θ(n1+α) by
Fact 1, so

k̂ = Ω(m1/2−ε/(1+α)) .

On the other hand, k = n(1+α)/(2(1+β)) = Θ(m1/(2(1+β))), so the gap k̂/k is

k̂/k > Ω
(
m1/2−ε/(1+α)−1/(2(1+β))

)
.

Using β = α− ε and ε′ = 3ε/2, the exponent is

1

2
− 1

2(1 + β)
− ε

1 + α
=

1

2
· α− ε

1 + α− ε
− ε

1 + α

>
1

2
· α− ε

1 + α
− ε

1 + α

>
α

2(1 + α)
− 3ε

2(1 + α)
>

α

2(1 + α)
− ε′

It follows that the gap k̂/k is at least Ω
(
mα/(2+2α)−ε′).

The combination of both cases directly yields the lemma.

An instance of MkU can be transformed into a suitable instance of MHB using a
construction we describe now. At a high level, our reduction takes the instance G of
MkU and first constructs the dual hypergraph G∗ by switching vertices and hyperedges.
Then a new supervertex that is incident to every hyperedge of G∗ is added to G∗. The k
vertices in G∗ corresponding to the k hyperedges with minimum union in G now represent
the best unbalanced k-cut in G∗. By adding sufficiently many extra vertices, we extend
this argument to computing a bisection.

31

2. Balanced Cuts in Graphs and Hypergraphs

1 3

2

4 5

6

12 13 23 34 45 56

w p

Figure 2.1.: Left: A 2-uniform instance of MkU. Right: The corresponding instance of
MHB constructed through our reduction.

Given an instance of MkU G′ = (V ′, E′) with n = |V ′| and m = |E′|, the reduction
formally constructs the following hypergraph G = (V,E). The vertex set V consists of
a supervertex w and a vertex vi for each hyperedge h′i ∈ E′. For v′j ∈ V ′, a hyperedge
hj connects w with all vertices vi fulfilling v′j ∈ h′i. Additionally, there exist p padding
vertices u`, 1 ≤ ` ≤ p , with p = max{m+ 1− 2k, 2k −m− 1}, where k is the number of
hyperedges that must be chosen in the MkU instance. If k > (m + 1)/2, the padding
vertices are connected with the supervertex w by infinite-cost edges. Otherwise, they are
not connected to any vertex. An example of the construction is given in Figure 2.1.

As every hyperedge in the graph is incident to the supervertex w, any bisection (V1, V2)

of G must have one side without any internal hyperedges (namely the side not containing
w). Let V1 be this side. Furthermore, let n̄ = |V | = m + 1 + p denote the number of
vertices in G. Note that m ≤ n̄ ≤ 2m as 1 ≤ k ≤ m.

Lemma 2.14. An f(|V |)-approximation algorithm for Minimum Hypergraph Bisec-

tion on hypergraphs G = (V,E) implies an O(f(|E′|))-approximation algorithm for
Minimum k-Union on hypergraphs G′ = (V ′, E′), for some polynomial function f .

Proof. We use the construction described above to obtain an instance of MHB from an
instance of MkU. Let S∗ ⊂ E′ be an optimal solution to the MkU instance covering
OPTMkU vertices. We first claim that a bisection of G cutting OPTMkU hyperedges
exists. Observe that the hyperedges of S∗ correspond to k vertices of hypergraph G.
These vertices are only connected to OPTMkU hyperedges (those corresponding to vertices
covered by S∗), so disconnecting them from the rest of G costs at most OPTMkU. If
k > (m + 1)/2, the number of vertices in V is n̄ = 2k, so we have a bisection. If
k ≤ (m + 1)/2, the number of vertices n̄ = 2(m + 1 − k). Adding the p = m + 1 − 2k

padding vertices that are not covered by any hyperedge to our k vertices from S∗ gives a
bisection.

Let (V1, V2) be the bisection of G obtained by an f(|V |)-approximation algorithm and
let b be the number of hyperedges it cuts. Clearly b ≤ f(|V |) OPTMkU as there exists
a bisection of cost OPTMkU. We show how to construct a set S′ ⊂ E′ of k hyperedges

32

2.2. Approximating Minimum Hypergraph Bisection

that cover at most b vertices of the MkU instance. This gives an f(|V |) = O(f(|E′|))-
approximate solution for the MkU instance, because |V | ≤ 2m = 2|E′| and f is at most
a polynomial.

First, suppose k > (m+ 1)/2. Then both V1 and V2 consist of n̄/2 = k vertices. As
the p padding vertices are connected to the supervertex with edges of infinite cost in this
case, all of them must be in V2, the part containing the supervertex. The k vertices of V1

are therefore connected to b hyperedges in total. To see this, observe that each of these
hyperedges contains the supervertex and is therefore cut by the bisection. Hence the k
vertices of V1 correspond to k hyperedges of E′ covering b vertices.

Now, suppose that k ≤ (m+ 1)/2. Then both V1 and V2 consist of n̄/2 = (m+ 1− k)

vertices. Again, assume that V1 does not contain the supervertex and observe that V1

has no internal hyperedges. The number of padding vertices is p = m + 1 − 2k, so V1

contains at least k non-padding vertices. Choose an arbitrary set S of k non-padding
vertices from V1. The vertices of S are connected to at most b hyperedges as they, too,
have no internal hyperedges. The set S therefore corresponds to a set of k hyperedges
from E′ that cover at most b vertices of V ′.

Theorem 2.15. Assuming Hypothesis 2.11 (HDRH), there is no O
(
n1/4−ε) approximation

algorithm for Minimum Hypergraph Bisection, where n denotes the number of vertices
of the hypergraph, for any ε > 0.

Furthermore, there is no O
(
nmin{α/2,α(1−α)}−ε) approximation algorithm for Minimum

Hypergraph Bisection on Θ
(
nα
)
-uniform hypergraphs, for any ε > 0.

Proof. The lower bound of O
(
n1/4−ε) follows immediately from Lemma 2.14 and the

work by Chlamtáč et al. [CDM17].

For the second statement, observe that our reduction from MkU to MHB transforms a
quasi α-uniform instance (H ′, n,m, α, r) of MkU into an instance G = (V,E) of MHB.
The hypergraph G has n̄ = Θ(m) vertices and m̄ = n hyperedges. As the instance of
MkU is quasi α-uniform, every vertex of G′ has degree Θ(nα), and, given that the size r
of the hyperedges is constant, m = Θ(n1+α/r) = Θ(n1+α). The hyperedges of G therefore
have size Θ(nα) = Θ(mα/(1+α)) = Θ(n̄α/(1+α)). With γ = α/(1 + α), the hyperedges of
G thus all have size Θ(n̄γ).

Lemma 2.12 implies that quasi α-uniform instances of MkU cannot be approximated
up to factor mmin{α/(2+2α),α/(1+α)2}−ε. As

α

(1 + α)2
=

α

1 + α
· 1

1 + α
=

α

1 + α
·
(

1− α

1 + α

)
,

33

2. Balanced Cuts in Graphs and Hypergraphs

it follows that MHB with hyperedge sizes Θ(nγ) cannot be approximated with factor
n̄min{γ/2,γ(1−γ)}.

Via the reduction of Proposition 2.3, any hypergraph can be transformed into a simple
graph with two weight functions. Cuts in this graph are equivalent to the hypergraph, if
the balancing weight function is observed. Together with the previous theorem, this gives
a lower bound on the approximation ratio of an algorithm for Minimum Vertex Bisection
with two weight functions.

Corollary 2.16. Assuming Hypothesis 2.11 (HDRH), there is no O
(
n1/4−ε) approxima-

tion algorithm for doubly weighted Minimum Vertex Bisection, where n denotes the
number of vertices of the graph, for any ε > 0.

Hardness based on exponential time hypothesis

The inapproximability of MkU and, hence, MHB not only follows from HDRH. We
show next that an f -approximation algorithm for these problems implies an O(f2)-
approximation algorithm for Densest k-Subgraph (DkS). Recall that DkS asks to
find a k-vertex subgraph of a given graph with maximum number of edges. The hardness
of this problem has been widely studied, see, e.g., Manurangsi [Man18], Bhaskara et
al. [BCV+12] and references therein. Recently, Manurangsi showed that the problem
does not admit an n1/(log logn)c-approximation algorithm under the Exponential Time
Hypothesis for some universal constant c > 0. Under the stronger GAP-ETH1, no
subpolynomial approximation ratio is possible [Man17].

Lemma 2.17. An f(|V |)-approximation algorithm for Minimum Hypergraph Bisec-

tion implies an O
(
f2(|V |)

)
-approximation algorithm for Densest k-Subgraph for any

polynomial function f .

Proof. Given an instance G = (V,E) of DkS, we first guess the number of hyperedges in
the densest k-vertex subgraph of G. Call this number `∗. The goal of an α-approximation
algorithm to DkS is to find some k-vertex subgraph of G with at least `∗/α edges.
We define the following problem P: Find those `∗ edges, whose induced subgraph

contains the minimum number of vertices. Let k∗ be the number of vertices in an
optimal solution to this new problem and observe that k∗ ≤ k. This is because the
optimal subgraph of our DkS-instance is a feasible solution to problem P as well. A
1The GAP-ETH is an open hypothesis given by Dinur as follows: “For some constant c > 0, any
algorithm that is given a 3SAT formula Φ on n variables and O(n) clauses, and decides between
sat(Φ) = 1 and sat(Φ) < 0.9 must run in time at least 2cn. (Here sat(Φ) denotes the maximal fraction
of satisfied clauses).” [Din16].

34

2.3. Trees for Vertex Cuts and Hypergraph Cuts

β-approximation algorithm to problem P returns a subgraph G′ of G with `∗ edges and
at most k∗β ≤ kβ vertices.

Suppose we are given a β-approximate solution G′ to P. Then a random k-vertex
subgraph of G′ contains any edge of G′ with probability at least

(
k
kβ

)2
= 1

β2 . It follows
that a random k-vertex subgraph of G′ contains `∗/β2 edges. This means that the random
subgraph is a β2-approximation to the densest k-subgraph. Furthermore, the random
choice can be derandomized via the method of conditional expectations.

It remains to show what factor β we can achieve for problem P. Suppose that we are
given an f(|V |)-approximation algorithm for MHB. We claim that this implies β = f(|V |).
Observe that P is in fact an instance of MkU on the dual graph of G, i.e., the

instance of MkU has |V | hyperedges and |E| vertices. Following Lemma 2.14, an f(|V |)-
approximation algorithm for MHB is an O(f(m))-approximation to the MkU, where m
is the number of hyperedges in the instance. Here, m = |V |. This proves β = f(|V |).

Corollary 2.18. Assuming the ETH, there is no efficient approximation algorithm for
Minimum Hypergraph Bisection with approximation ratio n1/(log logn)c for some
universal constant c > 0.

Proof. Follows from Lemma 2.17 and [Man17].

2.3. Trees for Vertex Cuts and Hypergraph Cuts

This section considers the more general challenge of representing the complete cut structure
of a hypergraph by a tree. We further extend this to vertex cuts in graphs and give a
construction of a vertex cut tree with quality Õ(

√
W), where W is the total vertex weight.

We then explore the limits in constructing such a tree by showing lower bounds on the
quality of cut trees. Observe that the lower bounds shown in this section do not rely on
any assumptions from computational complexity. This is partly due to the fact that we
only exclude the existence of algorithms via a specific technique, instead of showing a
lower bound over all algorithms.

2.3.1. Constructing vertex cut trees

This section demonstrates the construction of a dominating vertex cut tree of quality
Õ(
√
W) for node-weighted graphs of total weight W . We assume the minimum weight of

a vertex to be 1 as can be achieved in many scenarios through rescaling.

35

2. Balanced Cuts in Graphs and Hypergraphs

w(S)

∞ ∞

Separator nodes

Vertices of G1 Vertices of G2

Figure 2.2.: Construction of the vertex cut tree.

Construction

The construction of our vertex cut tree employs a recursive partitioning of the graph
using min-ratio vertex cuts. We define the weighted version of a min-ratio vertex cut of
G = (V,E,w) as a vertex separator (A,B, S) of minimum sparsity

w(S)

min{w(A), w(B)}+ w(S)
.

Let A be an α-approximation algorithm for finding min-ratio vertex cuts. There exist
polynomial-time algorithms with α = O(

√
log n) [FHL08, ACMM05].

Use Algorithm A to find the min-ratio vertex cut (A,B,X) in the graph. Let
GX1 , G

X
2 , . . . be the connected components after removing the separator X. Repeat

the process on each subgraph until no cut of sparsity less than αf(W) can be found for
some function f that we chose later. This implies that no cut of sparsity less than f(W)

exists.
Let G1, G2, . . . denote the subgraphs remaining at the end of this process with Gi =

(Vi, Ei) and let S denote the union of all separators found. The cut tree is constructed
by first adding a root vertex r of weight w(S). For any vertex s ∈ S the root obtains
a child of weight w(s). Further, the root obtains a child tGi of infinite weight for any
subgraph Gi. Any vertex v ∈ Vi is added as a leaf of weight w(v) to tGi . A sketch of the
construction can be seen in Figure 2.2.

Analysis

Our analysis proceeds in two parts. We first show that the tree constructed according to
the above algorithm is dominating (independent of the choice of f). We then show that

36

2.3. Trees for Vertex Cuts and Hypergraph Cuts

for an appropriate choice of f , the tree has quality O(
√
α log nW).

Lemma 2.19. For any two disjoint sets A,B ⊂ V , we have γG(A,B) ≤ γT (A,B).

Proof. Let X be some minimum vertex separator of A and B in the tree of non-infinite
weight. We construct a set X ′ ⊂ V of equal weight that separates A and B in the graph.

First suppose that X does not contain the root r. Then X only contains vertices of V
and we set X ′ = X. Additionally, any pair of vertices a, b ∈ V is only separated by X in
T if either a or b belongs to X. It follows that either A ⊂ X or B ⊂ X and therefore
X ′ = X separates A and B in G.

If X contains the root r, let X ′ = (X ∩V)∪S, i.e., the cut in the graph is the separator
together with the vertices of X ∩ V . Let a ∈ A, b ∈ B and we show that X ′ separates a
and b in G. If either a ∈ X ′ or b ∈ X ′, this is obvious, so suppose neither belong to X ′;
in particular, a and b are not in the separator S. They furthermore do not belong to the
same subgraph Gi, as X separates them in T . This means that a and b belong to different
subgraphs Gi. As the vertices of S ⊆ X ′ separate all subgraphs Gi by construction, it
follows that a and b are separated by X ′.

Lemma 2.20. If G is connected, we can choose function f so that for any two disjoint
sets A,B ⊂ V ,

γT (A,B) ≤ O(
√
Wα log n)γG(A,B) .

Proof. In the following we construct a vertex cut X separating A and B in T .

First, we include the root r of T into this cut. We derive a bound on the weight w(r)

as follows. The weight of the root is the total weight w(S) of the vertices in the separator
S. For any separator (Ai, Bi, Si) found during the construction let Ai be the side of the
cut that has the smaller number of vertices (not necessarily the smaller weight). We have

w(Si)

w(Ai) + w(Si)
≤ w(Si)

min{w(Ai), w(Bi)}+ w(Si)
≤ α · f(W) .

The second inequality follows from the construction of the algorithm. This gives

w(Si) ≤
1

1− αf(W)
αf(W) · w(Ai)

≤ 2αf(W) · w(Ai) ,

for sufficiently large n if we choose f such that αf(W) = o(1). We amortize the weight
w(Si) of the separator against the weight w(Ai) of the vertices in Ai. Since a vertex can

37

2. Balanced Cuts in Graphs and Hypergraphs

be on the smaller side of the cut at most log n times we get that

w(S) =
∑
i

w(Si) ≤ 2αf(W)W log n .

Since the cost of the optimum cut is at least 1 this gives

w(r) = w(S) ≤ 2αf(W)W log n · γG(A,B) . (2.1)

In addition to the root r we add some leaf vertices for every subgraph Gi = (Vi, Ei)

to the cut X. Let Ai = A ∩ Vi and Bi = B ∩ Vi (note that these sets might be empty).
If w(Ai) ≤ w(Bi) we add the leaf vertices corresponding to Ai, otherwise we add those
corresponding to Bi. This forms an (A,B)-cut in T : a vertex a ∈ Ai is separated from
vertices in B of other subgraphs Gi′ because of the root r, and it is separated from the
vertices in B of its own subgraph Gi because either Ai or Bi is in the cut. We use Xi to
denote the set of vertices that were added in this step for subgraph Gi.
Let X∗i denote the intersection of the optimal (A,B)-separator with the subgraph Gi.

Since the sparsity of any vertex separator in Gi is at least f(W) it follows that

w(X∗i)

w(Xi ∪X∗i)
≥ f(W) .

To see this, recall that Xi is either Ai or Bi, whichever has the smaller weight, hence X∗i
separates Xi from the rest of the subgraph. By rearranging this inequality we obtain
w(Xi) ≤ w(Xi ∪X∗i) ≤ f(W)−1w(X∗i). As the subgraphs Gi are disjoint, taking the sum
over all i gives ∑

i

w(Xi) ≤ f(W)−1
∑
i

w(X∗i) ≤ f(W)−1γG(A,B) . (2.2)

Combining equations (2.1) and (2.2) gives that the cut X we constructed fulfills

w(X) ≤ (f(W)−1 + 2αf(W)W log n) · γG(A,B) .

We now choose f(W) = 1/
√

2αW log n to balance the two terms of the above sum.
Observe that, as α ∈ O(

√
log n), we fulfill αf(W) = o(1). With our choice of f , we obtain

w(X) ≤ O(
√
Wα log n).

Combining Lemma 2.19 and Lemma 2.20 with α ∈ O(
√

log n) gives the following
theorem.

38

2.3. Trees for Vertex Cuts and Hypergraph Cuts

Theorem 2.21. For a graph G with total vertex weight W , there is a polynomial-time
construction of a vertex cut tree for approximating vertex cuts with quality O(log3/4 n)

√
W .

Application to vertex bisection

We demonstrate how to apply Theorem 2.21 in order to find a minimum vertex bisection.

A vertex bisection of a graph G = (V,E) is a coloring of the graph vertices using three
colors black, white and gray. The number of black vertices is at most |V |/2, an so is the
number of white vertices. The cost of the bisection is the number of gray vertices. No
edge of the graph connects a black vertex and a white vertex.

Given graph G, construct a vertex cut tree T = (VT , ET) as described in the previous
section. Let bw : VT → {0, 1} be a function assigning balance weight to the vertices of
the tree. A vertex v ∈ V of the original graph has balance weight 1. A vertex v ∈ VT \ V
has balance weight 0. Observe that any vertex bisection in G induces a coloring of the
tree vertices, so that any path between a black vertex and a white vertex must contain a
gray vertex. In this coloring, the total balance weight of black vertices is at most n/2;
similarly, the total balance weight of white vertices is at most n/2. Again, the cost of the
partition is the total cost of the gray vertices.

Tthe minimum-cost coloring of the vertices of T respecting these two conditions can be
found through a dynamic program. We say a coloring of a subtree is valid if any path
between a black and a white vertex contains a gray vertex.

For any tree vertex v, Ckv (p, q, x) is the cost of the minimum-cost valid coloring of v
and the subtrees of its k first children, where the color of v is x ∈ {b, g, w}, p is the total
balance weight of the white vertices, and q is the total balance weight of the black vertices.
If v is a leaf, then C0

v (0,bw(v), b) = 0, C0
v (bw(v), 0, w) = 0 and C0

v (0, 0, g) = c(v), all other
values are infinite. For any internal vertex, C1

v (p, , qg) = minx∈{g,w,b}{Ckuu (p, q, x)}+ c(v),
where u is the first child of v and ku its number of children. Similarly, we set C1

v (p, q, w) =

minx∈{g,w}{Ckuu (p−bw(v), q, x)} and we set C1
v (p, q, b) = minx∈{g,b}{Ckuu (p, q−bw(v), x)}.

For k > 1, let u denote the k-th child of v and ku the number of children of u, then

Ckv (p, q, g) = min
p=pu+p′

q=qu+q′

xu∈{b,w,g}

{Ck−1
v (p′, q′, g) + Ckuu (pu, qu, xu)} ,

Ckv (p, q, w) = min
p=pu+p′+bw(v)

q=qu+q′

xu∈{g,w}

{Ck−1
v (p′, q′, w) + Ckuu (pu, qu, xu)} ,

39

2. Balanced Cuts in Graphs and Hypergraphs

Ckv (p, q, b) = min
p=pu+p′

q=qu+q′+bw(v)
xu∈{g,b}

{Ck−1
v (p′, q′, b) + Ckuu (pu, qu, xu)} .

The algorithm outputs the partition associated with the smallest entry Ckrr (p, q, x),
where p, q < |V |/2, r is the root of the tree, and x ∈ {b, g, w} is arbitrary.

Corollary 2.22. There is an O
(√
n log3/4 n

)
approximation algorithm for Minimum

Vertex Bisection in an n-vertex graph G = (V,E).

Proof. The correctness of the dynamic programming scheme follows by induction over
the depth of a vertex. The quality of the cut tree is O(log3/4 n)

√
W , where W is the

total vertex weight of graph G by Theorem 2.21.

Corollary 2.23. There is an O
(√

ndavg log3/4 n
)
approximation algorithm for Minimum

Hypergraph Bisection in an n-vertex hypergraph G = (V,E), where davg is the average
vertex degree in G.

Proof. This follows by applying the reduction from Proposition 2.2. In the tree, we
must slightly change the definition of balance weight, as only vertices that correspond to
vertices in the original hypergraph instance obtain balance weight 1.

If the solution computed on the tree places a vertex v ∈ V of the original hypergraph
in the separator, we modify the solution by adding all hyperedges incident to v into the
cut. This only decreases the cut size and we may place v in an arbitrary part of the
bisection.

Remark. It seems tempting to use the reduction from Proposition 2.3 in the above corollary
and obtain an O

(√
n log3/4 n

)
approximation algorithm for Minimum Hypergraph

Bisection. Unfortunately, this is not possible. Recall that Proposition 2.3 constructs a
graph with two independent vertex weight functions. One of the weight functions gives
the balancing weight of the vertex, the other one gives its cut weight. The construction of
our cut tree T , however, cannot properly distinguish two weight functions and the proof
of its quality fails. More specifically, the proof of Lemma 2.20 fails, as the optimal cut
in a subtree cannot simply take all vertices from the smaller side, as both sides possibly
have infinite cut weight.

2.3.2. Lower bounds

We complement the positive result from the previous section by various lower bounds
for approximating vertex cuts or hypergraph cuts by cut trees. We first show that in

40

2.3. Trees for Vertex Cuts and Hypergraph Cuts

order to get any reasonable approximation guarantee one needs to consider vertex cut
trees instead of edge cut trees. This is in strong contrast to ordinary graphs where edge
cut trees already give a polylogarithmic guarantee, see, e.g., Räcke and Shah [RS14]. We
then show that even vertex cut trees will not yield such guarantees by giving an O(

√
n)

lower bound for hypergraph cuts and an O(n1/3) lower bound for vertex cuts.

Edge cut trees for hyperedge cuts

Theorem 2.24. For any n ≥ 3 there exists a hypergraph on n vertices so that the quality
of any edge cut tree is at least n/8.

Proof. Consider a hypergraph H = (V,EH) over n vertices whose only hyperedge spans
all vertices. Let T = (VT , ET) be a rooted edge cut tree for hypergraph H. Without loss
of generality, every edge of T defines a cut of weight 1 in the hypergraph, thus we may
assume that all edges of the tree have weight 1. Furthermore, we may assume that every
internal vertex of the tree except the root has at least degree 3, otherwise we can remove
that vertex without changing the weight of any cut. It follows that T has less than 2n

edges.
We now derive our contradiction. Let A,B be two different subsets of V with A 6= V \B.

Let FA, FB ⊂ ET be the minimum-size sets of edges separating A from V \A in T and B
from V \B in T , respectively. Clearly FA and FB must be different, as a smaller cut for
either A or B could otherwise be found. This means that, for every nontrivial subset of
hypergraph vertices ∅ 6= A (V , there must be a unique set of edges that is the minimum
cut of A and V \A in the tree. We know that there are 2n − 2 > 2n−1 proper, nonempty
subsets of V . After excluding half of them for being a complement, 2n−2 remain, all of
which must be well-represented by T .

As |ET | < 2n, the number of subsets of ET of size at most n/8 is less than

n/8∑
i=1

(
2n

i

)
≤ n

8

(
2n

n/8

)
≤ n

8

(
e

2n

n/8

)n/8
<

1

4

(
32e

)n/8
<

1

4

(
27/8

)n
< 2n−2 .

The third inequality holds as (n/2) < 2n/8 for n ≥ 3. This means that the number
of subsets with cost at most n/8 is less than 2n−2. Hence, there must be at least one
nontrivial vertex set A whose cut cost in the tree is at least n/8, which proves the
lemma.

Observe that the above proof can also be generalized to show that for any polynomial-
sized family of edge cut trees, there must be at least one cut in the hypergraph that each

41

2. Balanced Cuts in Graphs and Hypergraphs

one of the trees approximates with factor Ω(n). Furthermore the theorem implies that a
simple, asymptotically optimal construction of an edge cut tree is the following. Suppose
that the hypergraph is connected, then connect all vertices with a simple path. Every
edge of the path is weighted with the number of hyperedges containing it. The cut cost of
the path now clearly dominates the hypergraph and each hyperedge contributes at most
its size to the cut cost of the path. This gives quality hmax ≤ n.

Vertex cut trees for hyperedge cuts

The bad example from the previous section can be perfectly represented by a vertex cut
tree, namely a star on all vertices. The following theorem gives a lower bound on the
quality of vertex cut trees for approximating hyperedge cuts in a hypergraph H.

Theorem 2.25. There exists a hypergraph on n vertices such that the quality of any
vertex cut tree is Ω(

√
n).

Proof. Consider a hypergraph H = (V,EH) with a top vertex v connected to n vertices
U = {u1, . . . , un} with simple edges of weight 1, as well as a hyperedge of weight

√
n

spanning all vertices ui. Figure 2.3 shows a sketch of graph H.

v

. . .u1 un
√
n

Figure 2.3.: Bad example for approximating hyperedge cuts via vertex cut trees.

The cut size of any non-empty set S (U is δH(S) =
√
n+ |S|, as both the hyperedge

and all edges connecting S to the top vertex v must bet removed. The cut size of any
set S′ ∪ {v}, ∅ 6= S′ (U is δH(S′ ∪ {v}) =

√
n+ n− |S′|. It follows that any set S with

1 ≤ ` < n/2 vertices from U has δH(S) ≥
√
n+ `.

Let T be a dominating vertex cut tree of H. Fix a root of T so that none of its children
have strictly more than n/2 vertices from U in its subtree. Also fix an arbitrary order
among the children of each node.

Suppose that some node x of this tree has ` vertices of U in its subtree. We claim that
x corresponds to a cut in the graph with at least `/3 vertices of U on both sides of the
cut. This is evident if ` ≤ n/2: node x separates the ` vertices in its subtree from the
n− ` > `/3 vertices outside its subtree. If ` > n/2, recall that none of the children of x
have more than n/2 vertices of U in its subtree. This means that x corresponds to a cut

42

2.3. Trees for Vertex Cuts and Hypergraph Cuts

that partitions the graph into subgraphs, so that no subgraph contains more than n/2
vertices of U . We may therefore group the subgraphs in such a way that both groups
contain at least n/3 ≥ `/3 vertices of U . As the tree is dominating, node x must therefore
have weight at least w(x) ≥ max{

√
n, `/3}.

We now explicitly construct a set S whose cut size is Ω(
√
n). Suppose without loss

of generality that an in-order traversal of the tree T visits the vertices of U in the order
u1, u2 . . . un. Let k = b

√
nc = Θ(

√
n) and S = {s1, . . . , sk} be the set {uk, u2k, . . . , uk2}

with si = uik for i ∈ [k]. As |S| = k < n/2, the cut size of S inH is δH(S) = k+
√
n ≤ 2

√
n.

We show that the vertex cut cost in the tree γT (S, V \ S) is Ω(n).
Fix a cut X = {x1, . . . , x|X|} of S and V \ S in T . As any node of T has weight

at least
√
n, we assume that |X| ≤ k/2 as otherwise the total weight of X is Ω(n)

immediately. Define another subset of R ⊂ U disjoint from S to be R = {r1, . . . , rk} =

{uk/2, uk/2+k, . . . , uk2−k/2} with the correspondence ri = uik−k/2. We assume here that k
is divisible by 2, otherwise let ri = uik−(k−1)/2, which does not change our results.

We count for every node xj the number pj of (si, ri) pairs it separates. More precisely,
let pj be the number of pairs (si, ri) for which xj lies on the unique path connecting them
in T . As X separates the sets S and R, we know

|X|∑
j=1

pi ≥ k .

Moreover, the weight of a node xj is roughly k times pj :

Claim 2.26. w(xj) ≥ k
6 (pj − 1).

Proof. If pj = 1, the right-hand side is 0, so the claim holds. Assume that pj > 1. Recall
that an in-order traversal of the tree visits the vertices of U in the order u1, . . . , un. This
means that if the subtree of xj contains vertices ui and ui′ with i < i′, it also contains all
vertices ui′′ for i ≤ i′′ ≤ i′. For any pair (ri, si) that xj separates, at least one of ri and
si must lie in the subtree of xj . By definition of ri and si, this means that the subtree of
xj contains at least one of uik−k/2 and uik. Let i, i′ be the smallest and largest integers,
respectively, so that xj separates (ri, si) and (ri′ , si′). With our above observation, this
means that the subtree of xj contains at least all nodes ut with ik ≤ t ≤ i′k − k/2 i.e., it
contains at least k(i′ − i)− k/2 nodes.

By definition of pj it is at most i′ − i+ 1, so the number of nodes in the subtree of xj
is at least

k(i′ − i)− k

2
≥ k(pj − 1)− k

2
≥ k

2
(pj − 1) .

43

2. Balanced Cuts in Graphs and Hypergraphs

As any node with ` nodes of U in its subtree has at least weight `/3, the weight of xj
must be at least k

6 (pj − 1).

The total weight of X is therefore at least

|X|∑
j=1

w(xj) ≥
|X|∑
j=1

k

6
(pj − 1) =

k

6

|X|∑
j=1

pj −
k

6
|X| ≥ k2

6
− k2

12
=
k2

12
.

The first step uses Claim 2.26 and the second inequality uses the assumption that |X|
contains at most k/2 vertices. As k = Θ(

√
n), the total weight of X is Ω(n).

Note that the same result holds for unweighted hypergraphs. To see this, replace the
weighted hyperedge with b

√
nc different hyperedges, each spanning n− 1 vertices of the

set U .

Vertex cut trees for weighted vertex cuts

The result from the previous section also yields a lower bound for vertex cut trees
approximating weighted vertex cuts. The proof is based on the graph GH = (VH , EH)

shown in Figure 2.4. Graph GH is precisely the graph constructed by applying the
reduction from Proposition 2.2 to the hypergraph H from the previous section. It consists
of a vertex t of weight

√
n (representing the hyperedge from H), connected to vertices

u1, . . . , un of weight
√
n + 1. Each of the ui is connected to a vertex wi of weight 1

(representing the edges of H). Finally, all wi are connected to a vertex v of weight n.
Graph GH has N = 2n+ 2 vertices of total weight 2n+ n(

√
n+ 1) +

√
n = Θ(N

√
N).

n

111 1 1

√
n+1

√
n+1

√
n+1

√
n+1

√
n+1

√
n

Figure 2.4.: Bad example for approximating weighted vertex cuts via vertex cut trees.

44

2.3. Trees for Vertex Cuts and Hypergraph Cuts

Theorem 2.27. There exists a vertex-weighted graph on n vertices such that the quality
of any vertex cut tree for approximating vertex cuts is Ω(

√
n).

Proof. Let T be a vertex cut tree for GH . We first show that T is also a vertex cut tree
for hypergraph H = (V,E) considered in the previous section, shown in Figure 2.3. For
any two disjoint vertex sets A,B ⊂ V , δH(A,B) = γGH (A,B) by Proposition 2.2. As the
vertex set of GH is a superset of V , this means that T is indeed a vertex cut tree for H.
By Theorem 2.25, T has quality Ω(

√
|V |) for approximating hyperedge cuts in H. As

the number of vertices in GH is N = 2|V |+ 2, it follows that T is a vertex cut tree of
quality Ω(

√
N) for GH .

Vertex cut trees for unweighted vertex cuts

We now plan to adapt the analysis from the previous section to unweighted vertex cuts.
This is not straightforward as the lower bound we show relies heavily on the fact that the
graph GH is weighted.
For simplicity of exposition, let k =

√
n be an integer. The graph GH shown in

Figure 2.4 is transformed as follows. Any vertex of weight z is transformed into a clique
Cz on z vertices. Edges between formerly weighted vertices in GH are transformed into
complete bipartite subgraphs between these cliques. We also change the vertex weight
from

√
n + 1 to

√
n compared to the previous section, hence the number of vertices is

N = k3 + 2k2 + k. Let Ui denote the clique resulting from the vertex ui in GH . The
resulting graph G is shown in Figure 2.5.

P

UiUi Ui Ui

Q

Top clique of k2 vertices

Bottom clique of k vertices

Cliques of k vertices

Simple vertices

Figure 2.5.: Bad example for approximating unweighted vertex cuts via vertex cut trees.

We plan to adapt the proof of theorems 2.25 and 2.27. This proof is based on the
observation that for any tree, there must exist k vertices ui that are spread apart in the

45

2. Balanced Cuts in Graphs and Hypergraphs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Cluster 1 Cluster 4 Cluster 7

permutation π

21 15 20 4 23 7 8 11 5 24 19 14 18 2 1 22 6 13 16 9 27 3 17 26 12 25 10

Group 1 Group 2 Group 3

Figure 2.6.: Choose clusters 1, 4 and 7, then 3 integers from every group have been chosen.

tree and, therefore, separating these vertices in the tree is costly. When the vertices ui
are now cliques Ui, the vertices of the clique may not be concentrated in a vertex cut
tree. Nevertheless, we show that there are k cliques Ui whose combined vertex set is
well-spread over the tree.

In the unweighted graph, call the clique vertices Ui core vertices; enumerate them
so that core vertices of the same clique are consecutive. Given any vertex cut tree, an
in-order traversal of the tree induces a permutation of the core vertices. We first show
that, for any permutation, there is a choice of core vertices from Θ(k) cliques, such that
the following holds: After applying the permutation, there exist Θ(k) disjoint intervals of
length k2, in which Θ(k) chosen core vertices are found. This means that we can choose
cliques such that the vertices from these cliques are sufficiently spread apart in the tree.

We formalize the technical observation as follows. Divide the set L = {1, . . . , k3} into
k2 clusters of k consecutive integers {(i− 1)k + 1, . . . , ik} for i = 1, . . . , k2. Given some
permutation π of L, we define groups. Intuitively, a group is a set of n consecutive integers
in the image of π. Formally, group j is {π−1((j−1)k2 +1), . . . , π−1(jk2)} for j = 1, . . . , k.
We want to choose (the integers of) Θ(k) clusters, so that each group contains Θ(k)

integers. An example for k = 3 is shown in Figure 2.6.

Lemma 2.28. For any permutation π there exists a choice of 2k clusters such that there
are at least k/9 groups from which Θ(k) integers have been chosen.

Proof. Choose 2k clusters uniformly at random without replacement. We show that in
expectation at least k/9 groups have Θ(k) integers chosen from them. This implies the
lemma.

Let Yj be the number of chosen integers from group j, and let Xj be the indicator
variable of the event that k/2 ≤ Yj ≤ 7k/2. We plan to show E[

∑k
j=1Xj] ≥ k/9, it

46

2.3. Trees for Vertex Cuts and Hypergraph Cuts

therefore suffices to show for any j

E[Xj] = Pr[k/2 ≤ Yj ≤ 7k/2]
!
≥ 1/9 .

Observe that Yj follows a weighted hypergeometric distribution: Let Ci denote the
indicator variable that cluster i has been chosen and cij the number of integers from
cluster j that the permutation π maps to group j. The clusters are chosen without
replacement and Yj =

∑k2

i=1 cijCi counts the total weight (number of integers) obtained.
It follows that the expectation of Yj is 2k2. To see this, observe that E[Ci] = 2k/k2 = 2/k

and
∑k2

i=1 cij = k3.
We now argue that the variance of Yj is at most 2k2. With Cov denoting the covariance,

Var[Yj] =

k2∑
i=1

c2
ij Var[Ci] + 2

∑
1≤i<`≤k2

cijc`j Cov[Ci, C`] .

The variance of indicator variable Ci is 2
k (1− 2

k) = (2k − 4)/k2 < 2/k. Furthermore, Ci
and C` are negatively correlated for i 6= `, as sampling is without replacement: Choosing
Ci reduces the probability that C` is chosen as well. It follows that the covariance is
negative, so

Var[Yj] ≤
k2∑
i=1

c2
ij Var[Ci] <

2

k

k2∑
i=1

c2
ij ≤ 2k2 .

The last step follows as k2 integers are mapped to group j in total, at most k from each
cluster; so the sum

∑k2

i=1 c
2
ij is at most (maxi cij) · (

∑k2

i=1 cij) = k · k2.
Chebychev’s inequality states with µ = E[Yj] and σ2 = Var[Yj] for any t > 0

Pr[|Yj − µ| ≤ t] ≥ 1− σ2

t2
.

We have σ2 ≤ 2k2, µ = 2k and we choose t = 3k/2. The inequality then yields

Pr[k/2 ≤ Yj ≤ 7k/2] ≥ 1− 2k2

(3k/2)2
= 1− 8/9 = 1/9 .

We now give a proof of the theorem.

Theorem 2.29. There exists an unweighted graph on n vertices such that the quality of
any vertex cut tree for approximating vertex cuts is Ω(n1/3).

Proof. We use the graph G defined in the beginning of the section. The vertices are
named as in Figure 2.5. The clique of k2 vertices is the top clique P , the clique of k

47

2. Balanced Cuts in Graphs and Hypergraphs

vertices connected to all other cliques of k vertices the bottom clique Q. The single vertex
connected to all vertices of clique Ui is wi.
In order to separate any ` cliques Ui from the rest of G, one can remove the bottom

clique Q and the vertices wi. The cut size is therefore γG(U ′) ≤ k + `, where U ′ is the
union of the cliques we remove.
Let T be a dominating vertex cut tree of G and let w(x) denote the weight of tree

node x. Fix a root of T so that none of its children have more than k3/2 core vertices in
its subtree. We first show that every node x of this tree with j ≥ k core vertices in its
subtree must have weight at least max{k, j/(3k)}. If j < 3k2, node x defines a cut in the
graph with both sides having at least k core vertices. For any set of k disjoint pairs of
core vertices, there exist k vertex-disjoint paths connecting them via the bottom clique.
All of these paths must be cut by node x so its weight must be at least k. If j ≥ 3k2,
observe that x defines a cut in the graph with both sides having at least j/3 core vertices.
Pick j/(3k) cliques Ui from each side with no clique being chosen twice, and then one
vertex per clique. This gives j/(3k) pairs of vertices separated by x. For each pair, there
is a path connecting the two vertices via the top clique and we can choose these paths so
that they are all vertex disjoint. As node x interrupts all of the paths, its weight must be
at least j/(3k).
Enumerate the core vertices of the tree via an in-order traversal. The vertices jk2 +

1, . . . , (j + 1)k2 form a group in the tree, for j = 1, . . . , k. Choose 2k cliques Ui so that at
least k/9 groups have Θ(k) of their vertices chosen. These vertices form the set S. An
appropriate choice is possible, as shown by Lemma 2.28. The cut cost of S in the graph
is O(k), as argued above. We prove that the cut cost of S in the tree is Ω(k2). In the
following we refer to the vertices in S as S–vertices and to those in U \ S as U–vertices.
Fix a separator X of S in T . We first show that the cut cost of X is large if only few
U–vertices can reach the root.

Claim 2.30. If in a subtree T ′ at least j U–vertices are separated from the root, the cut
cost inside T ′ is at least j/(3k).

Proof. The proof is by induction over the height of T ′. The claim holds if T ′ is just a leaf
vertex. If a U–vertex is cut away from the root it means that the leaf vertex is in the cut
and the cost is at least 1 ≥ 1/(3k).

For the induction step consider a root vertex rT ′ with children c1, . . . , cs. Assume that
we aim to separate `i U–vertices of the subtree of ci from the root. If vertex rT ′ is part
of the separator, the claim holds as w(rT ′) ≥ j/(3k). Otherwise, we have to pay at least
`i/(3k) in each subtree by induction hypothesis which sums up to the same cost.

48

2.3. Trees for Vertex Cuts and Hypergraph Cuts

Removing node set X from the tree partitions T into connected components. If the
subtree of the (former) root contains at least one S–vertex, the cost of X is Ω(k2) by
Claim 2.30. This follows, as all k3 − 2k2 U–vertices are then disconnected from the root.
We therefore assume that no S–vertex is in the connected component of the root. For
tree node x, let Sx denote the set of S–vertices in the subtree of x. Observe that with
our assumption

⋃
x∈X Sx = S.

We show below that w(x) is at least |Sx|/6 for any x ∈ X. This gives that the total
weight of set X is ∑

x∈X
w(x) ≥ 1

6

∑
x∈X
|Sx| ≥

1

6
|S| = k2/2 .

The second step follows from the fact that
⋃
x∈X Sx = S. The cut cost of S in T is

therefore Ω(k2) while its cut cost in G is only O(k). As the number of nodes in G is
n = Θ(k3) this gives a lower bound of Ω

(
n1/3

)
in the quality of the tree.

Claim 2.31. w(x) ≥ |Sx|/6 for any x ∈ X.

Proof. Recall that |Sx| ≤ |S| = 2k and w(x) ≥ max{j/(3k), k}, if j ≥ k, where j denotes
the number of vertices in the subtree of x. The claim therefore holds if j ≥ k. Now
suppose that the subtree of x contains j < k core vertices. We show that w(x) ≥ j.
To see this, observe that x must separates a clique Ui. Pair the j vertices in Ui with j
vertices in some other clique and connect the pairs by mutually vertex-disjoint paths. As
node x interrupts all of these paths in the tree, its weight must be at least j. It follows
that w(x) ≥ j ≥ |Sx|.

49

3. Generalized Reordering Buffer
Management

This chapter presents our results for Generalized Reordering Buffer Management.
Our main result is an online algorithm for the problem that achieves competitive ratio
O(log k(log k+log log b)). The algorithm is based on a new linear programming formulation
of the problem which is shown in the first section of the chapter. The next section shows
how this LP can be used for designing an online algorithm. The analysis of that algorithm
is split into sections 3.3 and 3.4. The first part of the analysis focuses on explaining how
the different elements of the algorithm harmonize. The second part demonstrates in detail
how the algorithm handles k > 1 servers, as opposed to the (already nontrivial) classical
scenario of a single server that is RBM.

3.1. The Linear Programming Relaxation

Recall that we define GRBM as the problem of processing a sequence of colors arriving
online using k servers and a buffer of size b. At any time step t ≥ 1, a new item arrives
and is immediately placed in the buffer. A server can move from color c to a different
color c′ at cost 1. He then processes all items of color c′ currently in the buffer. As long
as the server stays on a color, new items of that color are processed immediately without
additional cost. The algorithm can only move to the next time step if the server contains
at most b items. The goal is to minimize the total cost.
In order to simplify the presentation, we allow the algorithm to also perform block

operations on the colors. A block operation on color c removes all items of that color
from the buffer and incurs cost 1. Clearly, two server movements can simulate a block
operation, so we changed the cost model outlined in the introduction by a constant factor
only.

3.1.1. LP formulation

Our new linear programming relaxation for GRBM is shown below.

51

3. Generalized Reordering Buffer Management

min
∑

t,c yc(t) +
∑

t,c xc(t)

s.t.
∑

c δc(t) ≤ k ∀t ≥ 1

δc(t) ≤ 1 ∀c, t ≥ 1

δc(t− 1)− δc(t) ≤ xc(t) ∀t ≥ 1∑
c

(∑
τ≤t |Ec(~v, τ)|t · yc(τ) + |Ec(~v, t)|t · δc(t)

)
≥ |E(~v, t)| − b ∀~v, t ≥ 1

yc(t), xc(t), δc(t) ≥ 0

(LPk, b)

For any time step t of the algorithm, variable yc(t) = 1 if a block operation on color c is
performed at time t. The variable δc(t) ≤ 1 indicates if a server is located at color c at
the beginning of time step t. We set δc(0) = 0 for all colors c. There exist k servers which
gives constraint

∑
c δc(t) ≤ k. In order to account for server movements, we introduce

variables xc(t). With the constraint δc(t − 1) − δc(t) ≤ xc(t) they indicate if a server
moves away from color c at time t. The objective is to minimize the number of block
operations

∑
t,c yc(t) plus the number of server movements

∑
t,c xc(t).

It remains to show how LPk, b models the buffer constraint that a new time step only
begins if at most b items are in the buffer. We first introduce some notation. For two
vectors of time steps ~v, ~w ∈ Nn0 with vc ≤ wc for every color c, let Ec(~v, ~w) be the set of
items to color c arriving in the interval [vc, wc). If wc = t for every color c, we simply
write Ec(~v, t); if t ≤ vc, the set Ec(~v, t) is empty. The set of items arriving between time
step vectors ~v and ~w is E(~v, ~w) =

⋃
cEc(~v, ~w); similarly, E(~v, t) =

⋃
cEc(~v, t). In order

to simplify the presentation, we set |Ec(~v, t)| = 0 if t ≤ vc.

The buffer constraint requires that the number of unprocessed items at the end of a
time step is at most b. This is equivalent to requiring for each vector ~v

|E(~v, t)| − |buffer(t)| ≥ |E(~v, t)| − b , (3.1)

where buffer(t) is the current content of the buffer at the end of time step t. The
left-hand side is at most the number of items that arrived since ~v and have already
been removed. The number of items removed via block operations since ~v is at least∑

c

∑
τ≤t |Ec(~v, τ)|yc(τ). For the colors that currently hold a server, the number of items

that arrived since ~v is
∑

c |Ec(~v, t)|δc(t). This means that we can require the following

52

3.1. The Linear Programming Relaxation

constraint: ∑
c

∑
τ≤t
|Ec(~v, τ)|yc(τ) +

∑
c

|Ec(~v, t)|δc(t) ≥ |E(~v, t)| − b . (3.2)

Observe that the above constraint is not a faithful representation of the GRBM problem
as an optimal solution might not satisfy it. This is because the constraint ignores items
that have been removed by a server that has since changed location. We therefore require
that the optimal solution accompanies every server movement from c to c′ with a block
operation on the old color c. This makes the optimal solution fulfill Constraint (3.2), and
its cost increases by at most a factor of 2.

Simply using Constraint (3.2) for modeling the buffer constraint unfortunately leads to
a large integrality gap of the LP. As an instructive example, consider a scenario with only
block operations (k = 0) where a sequence of b+ 1 items of the same color arrive. The
optimal solution experiences at least cost 1 during the first b+ 1 time steps, as it must
perform a block operation. If the algorithm is, however, permitted to perform fractional
block operations (via the yc(t)-variables), it simply performs 1/b of a block operation
in step b+ 1 and proceeds to the next time step. This indicates an integrality gap of b,
which is much more than we are aiming for.

The LP is therefore strengthened by adding so-called knapsack cover inequalities (see
Carr et al. [CFLP00]). We proceed as follows. Whenever |Ec(~v, τ)| ≥ |E(~v, t)| − b, we
decrease |Ec(~v, τ)| to |E(~v, t)| −b in Constraint (3.2) . We claim that this does not change
the feasibility of any integral solution. To see this, we note that this makes no change if
yc(τ) and δc(t) are 0. If yc(τ) = 1 or δc(τ) = 1, the left-hand side of the constraint is still
at least |E(~v, t)| − b afterwards; hence the constraint stays fulfilled. We define

|Ec(~v, τ)|t =

min{|Ec(~v, τ)|, |E(~v, t)| − b} if |E(~v, t)| ≥ b

0 otherwise.

Replacing |Ec(~v, τ)| by |Ec(~v, τ)|t in Constraint (3.2) yields precisely the constraint used
in the linear program LPk, b.

Linear program LPk, b is in fact a generalized version of the one used by Adamaszek et
al. for the block devices problem [ACER12]. To recover their formulation, set k = 0 and
remove all constraints except the buffer constraint.

53

3. Generalized Reordering Buffer Management

3.1.2. Modifying the buffer size

In the context of RBM, Englert and Westermann [EW05] first used the idea of comparing
the performance of an online algorithm with the performance of an optimal algorithm
with smaller buffer. A refined version of their argument is crucial in the analysis of RBM
by Avigdor-Elgrabli and Rabani [AR13] and the analysis of the block-devices problem
by Adamaszek et al. [ACER12]. In both problems, decreasing the buffer size by a factor
of
(
1 − 1

log b

)
only increases the cost by a constant factor. This section shows that

the same holds for GRBM. This will allow us to formulate a stronger version of linear
program LPk, b.

Theorem 3.1. For any input sequence, the cost OPTb′ of an optimal offline solution
utilizing a buffer of size b′ = (1− ε)b > 0 is at most a factor of (3 + ε ln b′)/(1− ε) larger
than the cost OPTb of an optimal offline solution utilizing a buffer of size b.

Proof. This proof is a slightly adapted variant of proofs given by Englert et al. [ERW09]
and Adamaszek et al. [ACER12].
Fix an input sequence and consider an optimal offline strategy using k servers and a

buffer of size b. In a slight abuse of notation, we will call both the optimal strategy and
its cost OPTb. Without loss of generality, we may assume that OPTb visits each color
exactly once with a server; otherwise, we re-color remaining items of the color after a
server first left it. This does not change OPTb and can only increase OPT′b. Also, without
loss of generality, we assume OPTb does not perform any block operations.

For a color c, let tstart(c) and tend(c) denote the time step when a server of OPTb visits
and leaves c, respectively.1 We call a color finished at time t if t ≥ tend(c). We call a
color active if it is currently assigned a server.

In the following we construct a strategy for processing the input sequence with a buffer
of size b′. The strategy performs the same server movements as the optimal strategy
OPTb and some additional block operations. Whenever the buffer is full and contains
no active color, the strategy wants to perform the next server movement of OPTb. This,
however, may require it to move a server away from some color c before all items of that
color have been processed, i.e., we still have t < tend(c). In this case, the strategy defers
the server movement and first performs block operations. These block operations remove
additional items and thereby increase t to tend(c) or beyond. At this point, the algorithm
performs the previously deferred server movement.

1Here, we assume that only a single item is processed per time step, i.e., a block operation takes r time
steps to process r items, but it does not process any new items of the same color arriving during that
time. This clearly does not change our model.

54

3.1. The Linear Programming Relaxation

When waiting for tend(c), the strategy performs block operations until a block operation
is successful, i.e., if t ≥ tend(c) holds afterwards. The strategy always chooses a color c′

that causes the maximal total increase in lateness `(c′). Initially, `(c′) = 0 for every color
c. A successful block operation does not change the lateness of any color. If the block
operation on c′ is unsuccessful, the lateness `(q) increases by n(c′) for every unfinished,
inactive color q that finishes before tstart(c

′) (including c′ itself). Here, n(c′) denotes the
number of items of color c′ that are currently in the buffer.

Claim 3.2. The lateness of a color is at most εb.

Proof. Let c denote the inactive color that finishes next according to OPTb. Among
unfinished, inactive colors this color has the largest lateness `(c). Assume we perform a
block operation on some color q with `(c) + n(q) > εb, i.e., the claim would be violated if
the block operation were unsuccessful.

There at most b items in the input sequence that occur before tend(c) and that belong
to colors q′ with tend(c) < tstart(q

′), as otherwise OPTb could not hold these items within
its buffer. Observe that all items that contributed to the increase of `(c) and also the n(q)

items of q belong to this class of items. Since the strategy for buffer size b′ has removed
them, there are at most b− `(c)− n(q) < b− εb = b′ of these items left. This means that
the strategy can hold all of these items in its buffer and can therefore advance to tend(c).
Hence, the block operation on q is successful, which is a contradiction.

Claim 3.3. There exists a color c′ such that
∑

q ∆`(q) ≥ b′/(1 + ln b′), where ∆`(q) is
the increase of the lateness of color q in case the block operation on c′ is unsuccessful.

Proof. Let s = b′/(1 + ln b′) to shorten notation, and assume for contradiction that the
increase in total lateness for every color is less than s.
Every server movement finishes one color and starts a new one. Sort the inactive

unfinished colors according to their start times and let ci be the i-th color among them.
If follows that there are i currently unfinished colors that end before tstart(ci). Performing
a block operation on ci incurs an increase of at least i · n(ci) in total lateness. As the
total lateness increase for every color is assumed to be at most s, it follows that n(ci) = 0

for i > s. Also note that active colors and finished colors have no items in the buffer.
Since the buffer is full, it follows that

b′ =

bsc∑
i=1

n(ci) ≤ s
bsc∑
i=1

1

i
< s(1 + ln s) =

b′

1 + ln b′
(1 + ln s) < b′ ,

which is a contradiction.

55

3. Generalized Reordering Buffer Management

Our strategy always performs a block operation on a color with maximal increase in
lateness, as described in Claim 3.3. Every successful block operation is followed by a server
movement that is also performed by OPTb, thus there can be at most OPTb successful block
operations. Every unsuccessful block operation increases

∑
c `(c) by at least b′/(1 + ln b′)

according to Claim 3.3. The total lateness amassed throughout the algorithm is at
most εbOPTb by Claim 3.2. Hence, at most εb(1 + ln b′)/b′OPTb = ε

1−ε(1 + ln b′) OPTb

unsuccessful block operations are performed by the strategy. Finally, the strategy performs
OPTb server movements imitating OPTb. Its total cost is therefore

(2 +
ε

1− ε
(1 + ln b′)) OPTb < (3 + ln b′)/(1− ε) ·OPTb .

Using the above theorem, we perform the following modifications to our linear program.
Let ε = 1/ ln b, so b′ = (1 − 1/ ln b)b. Then the optimal solution value of LPk, b is at
most a constant factor smaller than the one of LPk, b′ . We furthermore remove all buffer
constraints for pairs (~v, t) with |E(~v, t)| ≤ b from LPk, b′ , which does not increase the
optimum solution value. The resulting LP Primal and its dual program shown below.

min
∑

t,c yc(t) +
∑

t,c xc(t)

s.t.
∑

c δc(t) ≤ k Z(t)

δc(t) ≤ 1 pc(t)

δc(t− 1)− δc(t) ≤ xc(t) Bc(t− 1)

∀ ~v, t with |E(~v, t)| ≥ b :∑
c

(∑
τ≤t |Ec(~v, τ)|tyc(τ) + |Ec(~v, t)|tδc(t)

)
≥ |E(~v, t)| − b′ α(~v, t)

yc(t), xc(t), δc(t) ≥ 0

(Primal)

max
∑

~v,t

(
|E(~v, t)| − b′

)
α(~v, t)− k

∑
t Z(t)−

∑
c,t pc(t)

s.t.
∑

~v,t≥τ |Ec(~v, τ)|t · α(~v, t) ≤ 1 yc(τ)

Bc(t− 1) ≤ 1 xc(t)

− pc(t)− Z(t)−Bc(t) +Bc(t− 1) +
∑

~v |Ec(~v, t)|t · α(~v, t) ≤ 0 δc(t)

α(~v, t), pc(t), Bc(t), Z(t) ≥ 0

(Dual)

We obtain the following corollary.

56

3.2. Algorithm Overview

Corollary 3.4 ([ACER12]). For b′ =
(
1− 1

log b

)
b, the value of LP Primal is at most a

constant factor larger than the cost OPTb of an optimal offline algorithm using a buffer
of size b.

Proof. Follows from Theorem 3.1 and the above discussion.

3.2. Algorithm Overview

Our algorithm and its analysis are divided into two main parts, the base procedure
and the cost control procedure wrapped around it. The base procedure is essentially
the O(log log b)-competitive algorithm for scheduling block-devices by Adamaszek et
al. [ACER12]. This algorithm only schedules block operations but it never moves a server.
If left alone, it produces a valid solution to GRBM, but this solution is not competitive
with an optimal solution. The cost control procedure therefore schedules additional block
operations and it specifies a movement strategy for the k servers with the goal to greatly
reduce the number of block operations performed by the base procedure.

The base procedure is an LP-based algorithm using the primal-dual schema of Buch-
binder and Naor [BN09]. At each time step, the algorithm picks a violated primal
constraint (~v, t) and increases the corresponding dual variable α(~s, t) continuously. The
resulting violation of the dual constraints then triggers a fractional increase of primal
variables yc(τ). In order to obtain an integral solution that can be translated into actual
block operations, the base procedure applies a randomized rounding scheme. The ran-
domized rounding makes sure that the buffer constraint is fulfilled, i.e., it ensures that at
most b items reside in the buffer before the next time step. In the analysis, the cost the
solution is compared against the profit of the dual solution the algorithm constructed.

The cost control procedure is built around the base procedure in order to adapt it
to GRBM. When a new item arrives in a buffer of b items, the cost control procedure
may accommodate the new item by performing a block operation itself. Alternatively, it
can choose to leave the item to the base procedure. In the latter case, the cost control
procedure may react to the assignment of primal and dual variables by the base procedure.

The cost control procedure is vaguely inspired by the randomized Marking algorithm for
the paging problem by Fiat et al. [FKL+91]. In contrast to that algorithm, however, the
cost control procedure is nontrivial even in the case of a single server. We note that the
cost control procedure is deterministic for k = 1 and it only performs integral assignments
to the LP variables. For k > 1, the procedure is randomized, yet it does not employ a
randomized rounding procedure.

57

3. Generalized Reordering Buffer Management

Purely to simplify the presentation of our algorithm and our proofs we introduce dummy
time steps. These are time steps in which no new item arrives. We assume that between
any two real time steps (in which an item arrives) there are an arbitrarily large number
of dummy time steps. This allows us to present our algorithm as a nearly continuous
process, whenever this is convenient.
We now describe the algorithm’s main components in more detail.

3.2.1. Base procedure

The base procedure works on the α(~z, t)-constraints of the linear program Primal and its
dual. Given a (partial) assignment to the variables of the primal and a time step t, we
introduce the notion of a proper constraint. The definition uses a constant scaling factor
β := 80.

Definition 3.5. For a given variable assignment, an α(~z, t) primal constraint is called
proper if the following holds for every color c:

(i)
∑

zc≤τ≤t(yc(τ) + δc(τ)) ≥ 1/β,

(ii)
∑

zc<τ≤t(yc(τ) + δc(τ)) < 2/β,

(iii) yc(τ) + δc(τ) < 1/β for all τ ∈ {zc + 1, . . . , t}.

Intuitively, a proper constraint sets zc to the time of the last block operation. In
particular, whenever there is an integral server movement on color c (so δc(τ) = 1 or
yc(τ) = 1), then for a proper constraint α(~z, t) we must have zc ≥ τ .

The main loop of our algorithm feeds proper constraints α(~z, t) to the base procedure.
The base procedure then increases the yc(τ)-variables of the constraint in typical primal-
dual fashion, as shown in Algorithm 1. The procedure terminates if either (1) the current
constraint is fulfilled, or (2) the current constraint ceases to be a proper constraint.

If the current constraint is fulfilled, a rounding algorithm takes over in Line 14. It uses
the fractional assignment to the yc(τ)-variables and produces a probabilistic distribution
µ over block operation schedules. Each of the schedules in this distribution respects
the buffer constraint. Importantly, the rounding procedure does not require that the
fractional assignment fulfills every α(~v, t)-constraint. We defer the description of the
rounding algorithm to Section 3.3.2.

In the second case, the base procedure notices that the current constraint is not proper
anymore (Line 1). It then recomputes the vectors ~s and ~z (Line 2). We now describe
these two vectors in more detail. The cost control procedure keeps vectors ~s and ~z along

58

3.2. Algorithm Overview

Algorithm 1: Base procedure

1 if primal constraint α(~z, t) is not proper then
2 recompute ~z and ~s
3 if primal constraint α(~z, t) is violated then
4 Increase α1(~z, t) and α2(~s, t) by the same infinitesimal amount dα

5 foreach variable yc(τ), zc < τ ≤ t do
6 ∆(τ, c) := 0

7 if
∑

~v,t′≥τ |Ec(~v, τ)|t′ · α1(~v, t′) == 1 then
// dual constraint yc(τ) tight

8 if (
∑

τ≤i≤t yc(i) <
1

log3 b
) then

9 ŷc(t) := 1
log3 b

10 if
∑

~v,t′≥τ |Ec(~v, τ)|t′ · α1(~v, t′) > 1 then
// dual constraint yc(τ) violated

11 ∆(τ, c) :=
∑

τ≤i≤t yc(i) · |Ec(~z, τ)|t · dα
12 ∀c : dyc(t) := ŷc(t) + maxτ :zc<τ≤t ∆(τ, c)

13 ∀c : yc(t) := yc(t) + dyc(t)

14 adjust distribution µ to reflect new y-values

15 else // proper primal constraint α(~z, t) is satisfied

// rounding guarantees at most b items stored in buffer

16 proceed to the next time step

with corresponding (sets of) variables α1(~z, t) and α2(~s, t). The base procedure increases
both variables but it only bases its decisions on the α1-variables; the α2-variables are
discussed in the next section. For vector ~z, the rounding procedure only requires that
α(~z, t) be a proper constraint and that the vectors ~z be monotonously increasing over time.
Hence, for computing a new vector ~z, every coordinate zc that violates the constraints
of Definition 3.5 is set to the largest value less or equal to the current time t so that∑

vc≤τ≤t(yc(τ) + δc(τ)) ≥ 1/β. Observe that we may assume without loss of generality
that such a value always exists if we perform a block operation on any color that appears
for the first time2. The vector ~s is managed by the cost control procedure. For any color
c, sc = zc by default, but the algorithm may decide to set sc < zc for some colors. We
postpone the detailed description to the next section.

2This change increases the algorithm’s cost by at most a factor of 2

59

3. Generalized Reordering Buffer Management

3.2.2. Cost control procedure

The cost control procedure essentially consists of two new subroutines that wrap around
the base procedure. The activation procedure reacts when new items arrive to “activate”
colors and perform block operations. The deactivation procedure reacts when the base
procedure increases primal and dual variables of the LP. The procedure “deactivates”
colors and it is responsible for moving the k servers. Both procedures integrally set
variables of LP Primal and control the vector ~s. By setting variables of the LP, the cost
control procedure may change the current proper constraint α(~z, t). This is how the base
procedure indirectly learns about the decisions of the cost control procedure. We next
define the concept of activation and deactivation in more detail.

The interplay between activation procedure and deactivation procedure is governed by
the notion of an active color. Very informally, a color is active, if it has seen a significant
number of items since it was last visited by a server or has experienced a block operation.
Our goal is that the active colors contribute a large profit via the dual LP. A color is
deactivated, i.e., it ceases to be active, when it has caused too much violation in the dual
program.

More precisely, recall that the base procedure uses two vectors ~s and ~z and it requires
that α(~z, t) is always a proper constraint. For inactive colors, zc = sc and all colors
start out as inactive. When color c becomes active, the procedure sets sc < zc and
“freezes” sc, i.e., sc remains fixed until c is deactivated. The value of sc is chosen so that
|Ec(~s, t)| = dfmaxe, with

fmax =
b− b′

2k
=

b

2k log b
.

We distinguish the set of live items Ec(~z, t) of a color c and the set of extra items
Ec(~s, ~z). Observe that sc = zc for inactive colors, hence the set of extra items inactive
colors. The rounding routine of the base procedure ensures that all but the live items
have been removed from the buffer. The profit generated by the extra items (through
α2(~s, t)-variables in the base procedure) is used to pay for the actions of the cost control
procedure. We show below that the activation procedure makes sure that the number of
extra items is at least a constant fraction of the number of live items for each active color.
Before doing so, we explain the activation procedure.

The activation procedure

The activation procedure is shown in Algorithm 2. The procedure activates colors and
generates a sequence of block requests for the active colors. If the algorithm does not

60

3.2. Algorithm Overview

Algorithm 2: Activation procedure

// Item of color c arrives to a buffer of b items

// Block-Request(c) performs block operation on c unless c has server

1 if Color c is inactive and unmarked then
2 if Less than fmax items for c arrived since last block request then
3 Base-Procedure(t)

4 else
5 Color c becomes active, set sc < zc

6 Block-Request(c)

7 else // Color c is active

8 if |Ec(~s, t)| < (1 + γ)|Ec(~s, t′)| then // t′ is time of last block req.

9 Base-Procedure(t)

10 else if at least D block requests to c during current act. period then
11 Base-Procedure(t)

12 else
13 Block-Request(c)

have a server at color c, it must react to a block request to c with an immediate block
operation on c. If a server is located at c, no action is necessary. The rules for activating
colors use the notion of a color being either marked or unmarked. Additionally, unmarked
colors can be stale. These terms are borrowed from paging algorithms and we will only
define them later precisely. For now, we only need that the activation procedure makes
sure the following constraint is always observed.

scheduling constraint:

• a marked color is always assigned a server,

• the remaining colors are only distributed among stale colors.

What follows are the rules for generating block requests.

• If a color is not active and unmarked, the activation procedure issues a block request
after dfmaxe items arrived since the last block request to the color. With this block
request, the color becomes active.

• For an active color c, let t′ be the time of the last block request to c. The color
obtains a block request when |Ec(~s, t)| ≥ (1 + γ)|Ec(~s, t′)|, which means that a new

61

3. Generalized Reordering Buffer Management

block request is issued after γ|Ec(~s, t′)| new items arrived. We use the constant
γ = 1/128.

• As an exception to the previous rule, no further requests for a color are issued once
it has obtained D := dlog1+γ((2b+ 2)/(γfmax))e+ 1 = Θ(log k + log log b) requests
within its current activity period.

Observe that after a block request to c, zc ≥ t. This is because after a block request
either δc(t) = 1 or yc(t) = 1; by Condition (iii) of the proper constraints, zc must increase
in order for α(~z, t) to stay proper.

We now show that for active colors, nearly all items in the set Ec(~s, t) are extra items.

Lemma 3.6. For active colors, the number of live items is at most a γ-fraction of the
number of extra items, more precisely,

|Ec(~z, t)| ≤ γ|Ec(~s, ~z)| .

Proof. We first show |Ec(~z, t)| ≤ 2b. Consider the α(~z, t)-constraint in LP Primal∑
c

(∑
τ≤t
|Ec(~z, τ)|t · yc(τ) + |Ec(~z, t)|t · δc(t)

)
≥ |E(~z, t)| − b .

As |Ec(~z, τ)|t ≤ |Ec(~z, t)|, the left-hand side is at most

∑
c

|E(~z, t)|
t∑

τ=zc+1

(yc(τ) + δc(t)) ≤
2

β
|E(~z, t)| . (3.3)

The inequality follows from Condition (ii) for proper constraints.

On the other hand, the α(~z, t) constraint is violated by at most an additive 1. To see
this, observe that we can think of any increase of primal variables as infinitesimal, even if
performed outside the base procedure. In this scenario, whenever the current constraint
is fulfilled, the algorithm chooses a new proper constraint. Hence, the algorithm ends
a time step with a proper, fulfilled constraint. Moving to a new time step (with the
same vector ~z) can only generate violation 1. This implies that the left hand side of the
α(~z, t)-constraint is at least |E(~z, t)| − b− 1. In combination with the upper bound (3.3)
on the left-hand side, it follows that

|E(~z, t)| − b− 1 ≤ 2

β
|E(~z, t)| .

62

3.2. Algorithm Overview

Algorithm 3: Deactivation procedure

1 if volume volTc ((tact
c , t]) ≥ V for some active color c then

2 Label c as ready for deactivation
3 if (

4
volume volT ((tact

c , t]) ≥ 3V for some active color c or
a block operation was performed color c ready for deactivation

5) then
6 Deactivate c and set sc = zc

7 if No server is located at c then
8 Perform a block operation on c
9 if activation period of c started in the current phase then

10 Move a server to c and mark c
11 if k colors have been marked in the current phase then
12 End the current phase and start a new one

As β = 80 > 4, this implies

|E(~z, t)| ≤ β

β − 2
(b+ 1) < 2b+ 1 ,

so we obtain the upper bound in b.

Now we show |Ec(~z, t)| ≤ γ|Ec(~s, ~z)|. Consider the case that color c has seen less than
D requests in the current activity period. Assume for contradiction that |Ec(~z, t)| >
γ|Ec(~s, ~z)|, then

|Ec(~s, t)| = |Ec(~s, ~z)| + |Ec(~z, t)| > (1 + γ)|Ec(~s, ~z)| ≥ (1 + γ)|Ec(~s, t′)| ,

which triggers a block request for color c. The last inequality follows as zc ≥ t′ after a
block request to c. Hence, the block request restores the claimed property.

Now suppose color c has seen D block requests during the current activity period
and recall that there can be no more than D requests per color. Right after the i-th
request we have |Ec(~s, t)| = |Ec(~s, ~z)| ≥ (1 + γ)i−1fmax. It follows that |Ec(~s, ~z)| is
at least (1 + γ)D−1 ≥ 2b+2

γ . In order to violate the claim we would therefore require
|Ec(~z, t)| ≥ 2b+ 2, which is impossible.

63

3. Generalized Reordering Buffer Management

The deactivation procedure

The deactivation procedure is given in Algorithm 3. The deactivation procedure reacts
to the increase of the dual variables α2 by the base procedure. Its first goal is to bound
the violation of the dual program through α2(~s, t)-variables in the base procedure. Its
second goal is limit the cost incurred by the block requests of the activation procedure.
The deactivation procedure deactivates colors that contributed too much violation and it
may then decide to mark that color. Recall that, the scheduling constraint states that a
marked color always has a server assigned to it; hence, the deactivation procedure also
controls the server movements.
We now introduce the notion of total volume that is central to the deactivation

procedure. For a time interval I, let the total volume volTc (I) be the total increase of the
sum

∑
v,τ≤t |E(~v, τ)|α(~v, τ) during interval I. For an active color c, let tact

c be the time c
was activated, so volTc ((tact

c , t]) is the volume collected by c since its activation. Observe
that this is precisely the increase of the left-hand side of the yc(t)-constraint. We will
formalize this idea in the next section.
Ideally, we want to deactivate a color as soon as it has collected volume V since its

activation, where V = O(log k+ log log b) will be specified later. For technical reasons, we
instead set a color to be ready for deactivation when it has collected volume V . If a block
operation is performed on a color that is ready, we immediately deactivate it. Only if the
volume collected by the color reaches 3V we force a deactivation and deactivate the color
immediately. This rule permits us to amortize, in most cases, the cost of deactivation
against the cost of the block operation.

When a color c is deactivated, the procedure performs a block operation on c, unless a
server resides there. The procedure also decides whether to mark it or not. This marking
process is similar to the Marking algorithm. The algorithm partitions the time horizon
into phases. A phase starts with all colors unmarked. A a color is marked, if its activation
and deactivation lie in the same phase. When k colors are marked, all colors are unmarked
and a new phase starts. The choice, which of the k servers to move to a newly marked
color induces a variant of the paging problem. We defer the description and analysis of
this subroutine to Section 3.4.

3.3. Analysis

The analysis of the algorithm defined in the previous section is guided by the value
of the linear programs Primal and Dual. We see in this section that the expected
cost of the algorithm is proportional to the final objective value of the primal, i.e.,

64

3.3. Analysis

O
(∑

t,c yc(t) +
∑

t,c xc(t)
)
. Furthermore, the base procedure increases the α1- and α2-

variables of the dual, which gives a partial solution to this linear program. By weak
duality, the value of the dual is a lower bound on the value of the primal and, hence, the
cost of an optimal solution. Our high-level strategy is therefore to extend the assignment
to primal variables from the dual so that we obtain a lower bound that pays for both the
base procedure and the cost control procedure.

It is convenient to view its decisions as a continuous process of the α-variables. Recall
that the base procedure increases a single α1(~s, t) and a single α2(~z, t) variable in each
time step at the same infinitesimal rate dα. Let α denote the sum of α2-variables (or
α1-variables) and observe that α is nondecreasing over time. We can therefore view ~s, ~z
and t as functions of α (instead of functions of time) and we write ~s(α), ~z(α) and t(α).
The total profit contributed by only the α2-variables is then∫ αmax

0
(|E(~s(α), t(α)|)− b′) dα− k

∑
t

Z(t)−
∑
c,t

pc(t) , (3.4)

where αmax is the sum of all α2-variables in the end. In order to avoid notational clutter
we write |E(~s, t)| instead of |E(~s(α), t(α)|) whenever the dependency on α is clear. Recall
that ~s ≤ ~z at all times, so |E(~s, t)| ≥ |E(~z, t)|. This means that the α1-variable generate
a smaller profit than the α2-variables and we ignore the former for our lower bound
construction.

The central idea of our algorithm is separating it into two parts: the base procedure on
the one hand and the cost control procedure on the other hand. Analogously, we split the
profit (3.4) in a base budget Bbase and a cost control budget Bcontrol as follows:

Bbase =
1

2

∫ αmax

0
(|E(~z, t)| − b′) dα ,

Bcontrol =
1

2

∫ αmax

0
(|E(~z, t)| − b′) dα+

∫ αmax

0
|E(~s, ~z)| dα− k

∑
t

Z(t)−
∑
c,t

pc(t) .

We first show how to set the Z(t)-, pc(t)- and Bc(t)-variables of the dual program so that
we obtain a large cost control budget with small violation of the dual. In particular, it is
important that we assign values to dual variables such that the control budget Bcontrol is
positive. We therefore define a set of conditions for the cost control procedure to fulfill.

Second, we show that the cost of the base procedure (Procedure 1) is at most Bbase.
Recall that the base procedure is a primal-dual algorithm that schedules block operations
on the colors. It produces a fractional assignment to the yc(t)-variables. A randomized
rounding procedure generates a probability distribution over valid schedules for block

65

3. Generalized Reordering Buffer Management

operations based on the fractional assignment. The analysis of the base procedure is
straightforward, as it is essentially the algorithm by Adamaszek et al. for scheduling block-
devices [ACER12]. The authors show that the increase in yc(t)-variables per iteration is
at most 2

∑
~v,t

(
|E(~v, t)| − b′

)
α1(~v, t). This means, up to a factor of 4, it is bounded by

the base budget Bbase. Furthermore, the expected cost of the schedules produced by the
randomized rounding procedure is at most O

(∑
t,c yc(t)

)
. We include their analysis for

completeness in Section 3.3.2.

Section 3.3.3 then shows that our cost control procedure indeed fulfills the constraints
that guarantee a large cost control budget. This leads to a proof of the competitive
ratio O(log log b) for the case of k = 1. Furthermore, we obtain a set of conditions for
the subroutine for scheduling k > 1 servers. In Section 3.4, an algorithm fulfilling these
constraints is presented, which implies an online algorithm for GRBM with polylogarithmic
competitive ratio.

3.3.1. Lower bound construction

We now develop a lower bound on the cost on the optimal solution. We start with some
more notation. Let for a subset I ⊆ {1, . . . , T} of (consecutive) time steps α–(I) :=

inf{α | t(α) ∈ I} and α+(I) := sup{α | t(α) ∈ I}. The profit collected for the cost control
budget during some time interval I is

Bcontrol(I) =
1

2

∫ α+(I)

α–(I)
(|E(~z, t)| − b′) dα+

∫ α+(I)

α–(I)
|E(~s, ~z)| dα− k

∑
t∈I

Z(t)−
∑
c

∑
t∈I

pc(t)

≥
∫ α+(I)

α–(I)
|E(~s, ~z)| dα− k

∑
t∈I

Z(t)−
∑
c

∑
t∈I

pc(t) + k(α+(I)− α–(I))fmax .

The inequality follows as |E(~v, t)| − b′ ≥ b/ log b for any α(~v, t) constraint in LP Primal,
so with fmax = b/(2k log b)

1

2

∫ α+(I)

α–(I)
(|E(~z, t)| − b′) dα ≥ (α+(I)− α–(I))

b

2 log b
= k(α+(I)− α–(I))fmax .

We use actc(I) and actc(I) to denote the subset of the interval [α–(I), α+(I)] during
which color c is active and inactive, respectively. We define the extra volume collected
during interval I for color c by

volEc (I) =

∫ α+(I)

α–(I)
|Ec(~s, ~z)| dα =

∫
actc(I)

|Ec(~s, ~z)| dα .

66

3.3. Analysis

The equality follows because sc and zc are equal whenever c is not active. We define the
total volume of a color c collected during interval I by

volTc (I) =

∫
actc(I)

|Ec(~s, t)| dα .

Summing volTc (I) over all colors, we obtain the increase of
∑

v,τ≤t |E(~v, τ)|α(~v, τ) during
interval I. The definition of total volume of a color c is therefore consistent with the
definition of total volume of the previous section.

We also define the gap ∆c(I) between total volume and extra volume for a time
interval I:

∆c(I) := volTc (I)− volEc (I) ≤ γvolEc (I) . (3.5)

The inequality follows because our algorithm ensures that an active color has |Ec(~s, t)| ≤
(1 + γ)|Ec(~s, ~z)| (Lemma 3.6). We extend the above definitions to individual time steps,
i.e., we define volTc (t) := volTc ({t}). Observe that this means that volTc (I) =

∑
t∈I volTc (t).

This allows us to rewrite the cost control budget for a time interval as

Bcontrol(I) ≥
∑
t∈I

∑
c

volEc (t)−
∑
t∈I

∑
c

pc(t)− k
∑
t∈I

Z(t) + k(α+(I)− α–(I))fmax . (3.6)

We useXc(t) :=
∑

v |Ec(~v, t)|tα(~v, t), which is the term that appears in the δc(t)-constraint
of the dual. We have

Xc(t) =

∫ α+(t)

α–(t)
|Ec(~s, t)|t dα ≤

∫ α+(t)

α–(t)
|Ec(~s, t)| dα

=

∫
actc(t)

|Ec(~s, t)| dα+

∫
actc(t)

|Ec(~s, t)| dα

≤ volTc (t) + (α+(I)− α–(I))fmax .

The second inequality follows as an inactive color has sc = zc and has seen less than fmax

items since it became inactive. This gives that the δc(t)-constraint of the dual is

Xc(t)− pc(t) ≤ Z(t) +Bc(t)−Bc(t− 1) ,

which is implied by

(α+(I)− α–(I))fmax + volTc (t)− pc(t) ≤ Z(t) +Bc(t)−Bc(t− 1) . (3.7)

We now present the lower bound construction. Suppose we are given a partial solution

67

3. Generalized Reordering Buffer Management

to LP Dual that only specifies values for α-variables but that ensures that the yc(τ)-
constraints are violated by at most a factor of W . We describe how to extend this solution
in order to get a dual solution with large profit and, hence, a large lower bound for the
problem.

Recall that the marking process of our algorithm partitions the time horizon into phases.
We now specify three constraints for the phases that imply a large profit. In later sections,
we show that these constraints are actually respected by our algorithm.

Consider some partitioning of the time horizon into phases. We say that the i-th phase
consists of time steps Ii := {τi, . . . , τi+1 − 1} with τ1 = 1. We require that each phase
contain exactly k marked colors. We use Mi to denote the set of marked colors in the
phase and Ui to denote the set of the remaining (unmarked) colors. Let V be a parameter
to be defined later. We impose the following three constraints on the phases.

Marked Colors Each marked color c collects volume at least V during the phase,
i.e., for each c ∈Mi

volTc (Ii) =

∫
actc(Ii)

|Ec(~s, t)| dα ≥ V . (Condition I)

Unmarked Colors Each unmarked color c collects volume at most 6V during a phase,
i.e., for each c ∈ Ui

volTc (Ii) =

∫
actc(Ii)

|Ec(~s, t)| dα ≤ 6V . (Condition II)

New Colors We call a marked color new if it was unmarked in the previous
phase. Let ni denote the number of new colors in the i-th phase.
The gap between total volume and extra volume is small for marked
colors, i.e., ∑

c∈Mi

∆c(Ii) ≤ 10γniV . (Condition III)

This is sufficient to obtain our main lower bound.

Lemma 3.7. Suppose we are given an assignment to α-variables that violates yc(τ)-
constraints by at most a factor of W ≥ V , together with a partitioning of time steps into
phases according to the above constraints. Then there exists a constant ξ > 0 such that

68

3.3. Analysis

the cost of an optimum solution is at least

ξ

W

(∑
i

niV +
∑
i

∑
c∈Ui

volTc (Ii)

)
+

1

2W

∫ αmax

0

(
|E(~z, t)| − b′

)
dα .

Proof. Fix a pair of consecutive phases i and i+ 1, and let I := {τi, . . . , τi+2 − 1} denote
the time steps within these phases. In the following we define values for the LP variables
apart from α(~s, t) in order to obtain a solution to LP Dual.

Our first step is to use the pc(t)-variables to normalize the volume. We define volNc (t) =

volTc (t)− pc(t), and call volNc (t) the normalized volume of color c at step t. We require
that volNc (I) = min{volTc (I), V } for each color and we set the pc(t)-variables accordingly.
Since this means we only have to “reduce” volume we can achieve this with a non-negative
assignment to the pc(t)-variables. Observe that Condition I implies any color inMi∪Mi+1

will have volNc (I) = V , as its total volume in one of the phases must be at least V .

Rewriting Equation (3.6) gives a cost control budget for interval I of

Bcontrol(I) =
∑
t∈I

∑
c

volEc (t)−
∑
t∈I

∑
c

pc(t)− k
∑
t∈I

Z(t) + k(α+(I)− α–(I))fmax

=
∑
t∈I

∑
c

(
volNc (t)−∆c(t)

)
− k

∑
t∈I

Z(t) + k(α+(I)− α–(I))fmax .

We now set the Z(t)- and the Bc(t)-variables. These variables are constrained by the
δc(t)-constraint in the dual. By Equation (3.7) it is sufficient to fulfill, for any τ ∈ I

(α+(I)− α–(I))fmax + volNc (τ) ≤ Z(τ) +Bc(τ)−Bc(τ − 1) .

We do this while ensuring Bc(τ) ≤ V for all τ , i.e., the xc(τ)-constraints are violated by
at most a factor of V . We set Z(τi) = V + (α+(τi)− α–(τi))fmax and Bc(τi) = volNc (τi).
Then the above constraint is fulfilled for τ = τi as Bc(τi − 1) ≤ V by induction. For the
other time steps in I we fulfill the constraint by setting Z(τ) = (α+(τ)− α–(τ))fmax and
by setting Bc(τ) = Bc(τ − 1) + volNc (τ). The Bc-variables are therefore increasing over
interval I with Bc(τi+2 − 1) = volNc (I) ≤ V . This fulfills the δc(t)-constraints.

We get that
∑

t∈I Z(t) = V + (α+(I) − α–(I))fmax, so the cost control budget for
interval I is

Bcontrol(I) =
∑
t∈I

∑
c

(
volNc (t)−∆c(t)

)
− kV . (3.8)

We now make a case distinction on the colors. There are k + ni+1 colors in Mi ∪Mi+1,
each having volNc (I) = V . Exactly 2ni+1 of these colors are unmarked in one of the phases.

69

3. Generalized Reordering Buffer Management

Recall that the gap is defined as ∆c(I) := volTc (I)− volEc (I) ≤ γvolEc (I). An unmarked
color collects volume at most 6V , hence its gap is at most 6γV by Equation (3.5). The
gap generated by all marked colors throughout both phases is at most 10γ(ni + ni+1)

by Condition III.

A color that is unmarked in both phases (i.e., a color not in Mi ∪Mi+1) has volTc (I) ≤
12V by Condition II, and, hence, volNc (I) ≥ 1

12volTc (I) for these colors. Its gap is at most
γvolTc (I), a γ-fraction of its total volume.

Plugging these observations into Equation (3.8) give a cost control budget of at least

Bcontrol(I) ≥ ni+1V +
∑
c∈R

(
1
12 − γ

)
volTc (I)− 10γniV − 22γni+1V , (3.9)

where R denotes the set of colors not in Mi ∪Mi+1. Let Ui denote the set of color that
are unmarked in the i-th phase. Each of these colors has volTc (Ii) ≤ 6V , hence∑

c∈Ui\R

(
1
12 − γ

)
volTc (Ii) ≤ 1

2ni+1V ,

because |Ui \R| = ni+1 as each of these colors is new in phase i+ 1. Plugging this into
Equation (3.9) gives

Bcontrol(I) ≥ 1
2ni+1V +

∑
c∈Ui

(
1
12 − γ

)
volTc (Ii)− 10γniV − 22γni+1V

≥ 1
4ni+1V +

∑
c∈Ui

1
24volTc (Ii)− 1

12niV ,
(3.10)

where we used γ = 1/128 and∑
c∈R

volTc (I) =
∑
c∈Ui

volTc (Ii)−
∑

c∈Ui\R

volTc (Ii) +
∑
c∈Ui

volTc (Ii+1)−
∑

c∈Ui\R

volTc (Ii+1)

≥
∑
c∈Ui

volTc (Ii)−
∑

c∈Ui\R

volTc (Ii) .

In order to obtain a lower bound over the full time horizon, we group phases (1, 2),
(3, 4),(5, 6), . . . and (2, 3), (4, 5), (6, 7), . . . and taking the average over the two sequences.
This gives a lower bound for the overall cost control budget of

Bcontrol ≥
∑
i

1
16niV +

∑
i

∑
c∈Ui

1
48volTc (Ii)− 1

8n1V −
∑
c∈U`

1
48volTc (I`) .

70

3.3. Analysis

Note that Phase 1 does not appear as a second phase in a group and Phase ` (the
last phase) does not appear as first phase in a group. Therefore, the corresponding
contributions of these phases are subtracted in the above sum.
The sum of cost control budget and base budget Bcontrol + Bbase give the total profit

of the dual program. In order to obtain a lower bound, we divide it by the violation W
of the yc(τ)-constraints. The terms depending on n1 and U` are removed by exploiting
the additional lower bound OPT ≥ 1

2(n1 + |U`|), which holds as every color needs to be
accessed at least once. As V < W and the total volume of an unmarked color is at most
6V , the terms disappear by averaging. By choosing a sufficiently small constant ξ > 0,
we obtain the lemma.

We show later that we can keep the violationW in Θ(V). Further more, the deactivation
procedure only deactivates colors that have collected total volume at least V in their
current activity period. This gives us the following simpler lower bounds.

Corollary 3.8. If W ∈ Θ(V), then the following three lower bounds on the optimal
solution OPT hold:

OPT ≥ Ω

(
1

2W

∫ αmax

0

(
|E(~z, t)| − b′

)
dα

)
,

OPT ≥ Ω
(∑

i ni
)
,

OPT ≥ Ω
(∑

c ac
)
.

Here ac denotes the number of activity periods of color c for which c is a non-stale color
at the time of activation.

Proof. The first two lower bounds are immediate from Lemma 3.7. We prove OPT ≥
Ω
(∑

c ac
)
.

Fix a color c and an activity period P during which c is non-stale at the time of
activation. Suppose there is an activity period Q of c following P . If the color is marked
during P or Q, it is a new color during that phase and therefore contributes Ω(1) to the
lower bound. Otherwise, suppose P spans phases i up to j. Color c is not marked during
phase i, as it would be a stale color at the start of P otherwise. The color is also not
marked during phase i+ 1 . . . , j, as its only activity periods during these phases are P
and Q. Hence, color c is deactivated at the end of P after having collected volume at least
V (Algorithm 3). This volume fully contributes to the lower bound, so the contribution
of P is Ω(V/W) = Ω(1). Any two consecutive activity periods therefore give a constant
contribution to the lower bound, which gives the claim.

71

3. Generalized Reordering Buffer Management

3.3.2. Analysis of the base procedure

We now give the analysis of the base procedure and we specify the randomized rounding
algorithm. The proofs in this section are nearly identical to the work of Adamaszek
et al. [ACER12] and they are included for completeness. Aside from minor notational
differences, the only change is the inclusion of δc(τ)-variables in many statements. This
modification does not structurally impact the proofs.

Analyzing the cost of the base procedure

We start by showing that the dual constraints yc(τ) of LP Dual are not violated through
the increase of variables α1(~v, t).

Lemma 3.9. For every c and τ , Wbase :=
∑

~v,t′≥τ |Ec(~v, τ)|t′ · α1(~v, t′) = O(log log b).

Proof. Let χc(τ) =
∑

~v,t′≥τ |Ec(~v, τ)|t′ ·α1(~v, t′)− 1 denote the amount by which the dual
constraint yc(τ) is violated. χc(τ) can increase if some dual variable α1(~z, t) is increased.
However, note that this only causes an increase of χc(τ) if zc < τ ≤ t. Further note that
our procedure only increases α1(~z, t) if the corresponding primal constraint is proper,
which implies

∑
zc<τ≤t yc(τ) < 2/β. Therefore, once

∑
τ<i≤t yc(i) ≥ 2/β, χc(τ) does not

increase any further. In the following we analyze how large χc(τ) can become before∑
τ<i≤t yc(i) ≥ 2/β. We have the following claim.

Claim 3.10. A violated dual constraint yc(τ) fulfills
∑

τ<i≤t yc(i) ≥ eχc(τ)/ log3 b.

Proof. When the dual constraint yc(τ) becomes tight (i.e., χc(τ) = 0) in some time step
t, our procedure sets yc(t) to at least 1/ log3 b. Therefore, at this point∑

τ<i≤t
yc(i) ≥ eχc(τ)/ log3 b (3.11)

as required.
In later time time steps, an increase of dual variable α1(~z, t′) by dα increases the

violation χc(τ) by |Ec(~z, τ)|t′ ·dα. This means that the right hand side of Equation (3.11)
increases by

eχc(τ)

log3 b
· |Ec(~z, τ)|t′ · dα .

However, at the same time
∑

τ<i≤t′ yc(i) increases by at least

∑
τ<i≤t

yc(i) · |Ec(~z, τ)|t · dα ≥
eχc(τ)

log3 b
· |Ec(~z, τ)|t′ · dα

72

3.3. Analysis

The previous claim implies that the violation of a dual constraint can grow to at most
O(log log b) before

∑
τ<i≤t′ yc(i) becomes 2/β after which the violation does not increase

any further.

Our next goal is to derive a bound on the total amount by which y-variables are increased
in the base procedure. Recall that ŷ is defined in the base procedure (Algorithm 1) and
is either 0 or 1/ log3 b. The following two technical lemmas will be useful.

Lemma 3.11. If α1(~v, t) > 0, then
∑

c

∑
τ≤t |Ec(~v, τ)|t · ŷc(τ) ≤ |E(~v, t)| − b′.

Proof. Fix a color c. We partition the time steps τ ∈ {vc + 1, . . . , t} into classes according
to the value of |Ec(~v, τ)|. For j ≥ 0, the class Tc,j contains the time steps for which
|Ec(~v, τ)| ∈ [2j , 2j+1). Let Jc be the maximum value of j so that class Tc,j is nonempty.

Claim 3.12. A class Tc,j includes at most O(log log b) time steps τ for which ŷc(τ) > 0.

Proof. Since α1(~v, t) > 0 the primal constraint α(~v, t) was proper and violated at time t.
Fix a class Tc,j and let τ1, τ2, . . . denote its time steps that have ŷc(τi) > 0 in increasing

order. Define L(τ) :=
∑

~v,t′≥τ |Ec(~v, τ)|t′ · α1(~v, t′) to be the load of τ (the left hand side
of the constraint yc(τ) in the dual). Note that for τ ∈ Tc,j with τ ≥ τ1, an increase of
L(τ) by |Ec(~v, τ)|t · α1(~v, t) also results in an increase of L(τ1) by |Ec(~v, τ1)|t · α1(~v, t)

which is the same up to a factor of 2 as τ1 and τi are in the same class. In order for
ŷc(τi) to be set to a positive value, some L(τ) for τi−1 < τ ≤ τi has to have increased
to 1 (as a constraint needs to be tight). Hence, for every τi with ŷc(τi) > 0, the load
L(τ1) will increase by at least 1/2. But due to Lemma 3.9, the load L(τ1) is at most
O(log log b).

Let nc,j denote the number of time steps τ in class Tc,j that have ŷc(τ) > 0. Then we
have

∑
c

∑
τ≤t
|Ec(~v, τ)|t · ŷc(τ) ≤

∑
c

Jc∑
j>0

2j+1 nc,j

log3 b

≤
∑
c

O(log log b) · |Ec(~v, t)|
log3 b

≤ |E(~v, t)|
log b

≤ |E(~v, t)| − b′ .

The second inequality holds as nc,j ≤ O(log log b) by claim and
∑Jc

j>0 2j+1 ≤ 4 · 2Jc ≤
8|Ec(~v, t)|.

73

3. Generalized Reordering Buffer Management

Lemma 3.13. If ŷc(τ) > 0, then
∑

~v,t≥τ |Ec(~v, τ)|t · α1(~v, t) ≥ 1.

Proof. ŷc(τ) is only set to a non-zero value if the dual constraint yc(τ) is tight. Because
α1-variables are never decreased, once the constraint is tight it can only remain tight or
become violated.

We are now ready to derive our desired bound on
∑

c,t dyc(t).

Lemma 3.14. The cost of the base procedure is at most 2
∑

~v,t α1(~v, t)
(
|E(~v, t)| − b′

)
.

Proof. The cost of the base procedure
∑

c,t dyc(t) consists of two components:
∑

c,t ŷc(t)

and
∑

c,t maxτ :zc<τ≤t ∆(τ, c). We bound both components separately.
Using Lemma 3.11 and then Lemma 3.13, we get∑

τ,c

ŷc(τ) ≤
∑
τ,c

ŷc(τ) ·
∑
~v,t≥τ

|Ec(~v, τ)|t · α1(~v, t)

=
∑
~v,t

α1(~v, t)
∑
c

∑
τ≤t
|Ec(~v, τ)|tŷc(τ)

≤
∑
~v,t

α1(~v, t)
(
|E(~v, t)| − b′

)
.

For the second component, we have for a time step t,∑
c,t

max
τ :zc<τ≤t

∆(τ, c) =
∑
c

max
τ :zc<τ≤t

∑
τ≤i≤t

yc(i) · |Ec(~z, τ)|t dα

≤
∑
c

∑
τ≤t

yc(τ) · |Ec(~z, τ)|t dα

≤
∑
c

∑
τ≤t

yc(τ) · |Ec(~z, τ)|t dα1(~z, t) ,

where the last step follows because α1(~z, t) is increased by dα. Because the primal α(~z, t)

constraint is violated, this is at most (|E(~z, t)| − b′) dα1(~z, t). Summing over all time
steps t gives the desired bound.

Randomized rounding

The goal of this section is to show to provide a randomized rounding algorithm for the
base procedure.
The y-variables, some of which are set by the base procedure and some of which are

set equal to 1 by the cost control procedure can, in fact, be rounded online in such a
way that the buffer constraint is satisfied. This is true independent of which (if any)

74

3.3. Analysis

y-variables are set to 1 by the cost control procedure and also independent of the values
of the δ-variables.
A deterministic strategy for scheduling block operations is given by a function Q :

T × C → N0 with the meaning that Q(τ, c) describes the number of block operations
for color c performed in time step τ . We allow Q(τ, c) > 1, i.e., we will allow that the
strategy performs several consecutive block operations for the same color.
We specify a number of conditions on a deterministic strategy. The conditions are

chosen in such a way that any deterministic strategy that satisfies them produces an
overall solution that ensures that the buffer never stores more than b items.
In order to formulate the conditions for time t, we introduce the following notation.

We use wc(τ) := max{βyc(τ), 1} to denote a scaled version of the current assignment
to y-variables in the primal LP. We partition the pairs (τ, c) with τ ∈ {zc + 1, . . . , t}
into classes according to the value of |Ec(~z, τ)|. Here and in the following ~z is to be
understood as the vector that our procedure maintains. We say a pair (τ, c) is in class Si
if |Ec(~z, τ)| ∈ [2i, 2i+1) (we do not care about (τ, c)-pairs that have |Ec(~z, τ)| = 0). We
further use Sc to denote the set {(τ, c) | τ ∈ {zc + 1, . . . , t}} and S =

⋃
c S

c.
In addition to sets Si we also define a set L that contains (τ, c)-pairs with a “large”
|Ec(~z, τ)|-value. Formally, we first select pairs in decreasing order of |Ec(~z, τ)|-value until
L contains pairs whose wc(τ)-values sum up to at least λ + 1 (for a parameter λ � β

to be chosen later) or L = S; then if the wc(τ)-values sum up to more than λ + 1 we
remove the last element added. Hence, if L 6= S we have λ ≤

∑
(τ,c)∈Lwc(τ) ≤ λ+ 1, as

the wc(τ)’s are at most 1.
Our conditions for a deterministic strategy Q are as follows.

(A) For every color c,
∑

zc≤τ≤t(Q(τ, c)+δc(τ)) ≥ 1, i.e., between time zc and t, all items
of color c are removed from the buffer at least once; either because Q performed at
least one block device operation or because at some point one of the k servers was
located at c.

(B) Q mirrors the fractional solution of LP Primal on the sets Si:

∀Si : b
∑

(τ,c)∈Si
wc(τ)c ≤

∑
(τ,c)∈Si

Q(τ, c) .

(C) Q mirrors the fractional solution of LP Primal on the set L of large (τ, c)-pairs:

b
∑

(τ,c)∈L
wc(τ)c ≤

∑
(τ,c)∈L

Q(τ, c) .

75

3. Generalized Reordering Buffer Management

(D) For every color c and for every class Si,
∑

(τ,c)∈Si∩Sc Q(τ, c) ≤ 3. This means Q did
not remove the same color very often in the same class.

Suppose these conditions hold at the end of time t, where ~z is the specific vector
maintained by our base procedure, i.e., α(~z, t) is a proper constraint. Further suppose
that the proper constraint α(~z, t) is satisfied. In this case we will show next that the
buffer contains no more than b items.

Condition (A) guarantees that items of color c that appeared at time zc or before do
not influence the buffer-constraint for Q at time t, since all these items have already been
removed from the buffer. Hence, the following formula specifies exactly the number of
items in Q’s buffer at time t:

buffer(t) = |E(~z, t)| −
∑
c

max
τ :Q(τ,c)+δc(τ)≥1

|Ec(~z, τ)| .

This holds because |Ec(~z, τ)| (for the maximum τ with Q(τ, c) + δc(τ) ≥ 1) specifies the
items that appeared after time zc (excluding zc) and are evicted at time τ or before.
Furthermore, remember that if α(~z, t) is a proper constraint, we must have δc(τ) = 0 for
all c and τ > zc, i.e., there is no server at color c after time zc. We therefore also have

buffer(t) = |E(~z, t)| −
∑
c

max
τ :Q(τ,c)≥1

|Ec(~z, τ)| . (3.12)

Let j denote the index of the largest class that contains a pair (τ, c) with Q(τ, c)+δc(τ) ≥ 1.
Then

max
τ :Q(τ,c)≥1

|Ec(~z, τ)| ≥ 2j ≥ 1

12

j∑
i=0

3 · 2i+1

≥ 1

12

∑
(τ,c)∈Sc

Q(τ, c) · |Ec(~z, τ)| ,

where the last step uses Condition (D) (the fact that Q does not evict a color too often
in the same class). Plugging the above into Equation (3.12) gives

buffer(t) ≤ |E(~z, t)| − 1

12

∑
(τ,c)∈S

Q(τ, c) · |Ec(~z, τ)| .

76

3.3. Analysis

We need to show that this is at most b. This means we want to show that∑
(τ,c)∈S

Q(τ, c) · |Ec(~z, τ)| ≥ 12(|E(~z, t)| − b) . (3.13)

This is encapsulated in the following lemma.

Lemma 3.15. Let α(~z, t) be a proper, non-violated constraint. A scheduling strategy that
fulfills conditions A, B, C, and D fulfills

∑
(τ,c)∈S Q(τ, c) · |Ec(~z, τ)| ≥ 12(|E(~z, t)| − b).

Proof. Any α(~z, t)-constraint of LP Primal fulfills |Ec(~z, t)| ≥ b. We first show that this
implies the following technical claim.

Claim 3.16. λ ≤
∑

(τ,c)∈Lwc(τ) ≤ (λ+ 1).

Proof. If is sufficient to show that λ ≤
∑

zc<τ≤twc(τ), then by definition of the set L,
the sum will be at most λ+ 1.
The primal constraint α(~z, t) is fulfilled. Therefore,∑

c

(∑
zc<τ≤t

|Ec(~z, τ)|t · yc(τ) + |Ec(~z, t)|t · δc(t)
)
≥ |E(~z, t)| − b′ .

The left term is equal to
∑

c

∑
zc<τ≤t |Ec(~z, τ)|t ·yc(τ) because whenever δc(t) = 1 we have

zc = t and hence |Ec(~z, t)|t = 0. Since |E(~z, t)| ≥ b, we also have |Ec(~z, τ)|t ≤ |E(~z, t)|−b′

and therefore, the yc(τ) must sum to at least one. As wc(τ) ≥ βyc(τ), this gives that the
wc(τ)’s sum up to at least β. Hence, L contains a wc(τ)-weight of at least λ as λ� β.

The above claim then gives
∑

(τ,c)∈Lwc(τ) ≥ λ, hence with Condition (C)

∑
(τ,c)∈L

D(τ, c) ≥ λ .

Now assume that i`, the class-index of the pair (τ, c) ∈ L with smallest |Ec(~z, τ)|-value,
fulfills 2i` ≥ |E(~z, t)| − b. Then∑

(τ,c)∈S

|Ec(~z, τ)| ·Q(τ, c) ≥
∑

(τ,c)∈L

|Ec(~z, τ)| ·Q(τ, c)

≥ 2i`
∑

(τ,c)∈L

Q(τ, c)

≥ λ(|E(~z, t)| − b)

≥ 12(|E(~z, t)| − b) ,

77

3. Generalized Reordering Buffer Management

by choosing λ = 12. This gives the lemma if 2i` ≥ |E(~z, t)| − b.
We now assume 2i` ≤ (|E(~z, t)| − b). We have∑

(τ,c)∈S

|Ec(~z, τ)|Q(τ, c) ≥
∑
i≤i`

∑
(τ,c)∈Si

|Ec(~z, τ)|Q(τ, c)

≥
∑
i≤i`

2i
∑

(τ,c)∈Si

Q(τ, c)

≥
∑
i≤i`

2i
(∑

(τ,c)∈Si

wc(τ)− 1
)

=
1

2

∑
i≤i`

∑
(τ,c)∈Si

2i+1wc(τ)−
∑
i≤i`

2i .

It follows that∑
(τ,c)∈S

|Ec(~z, τ)|Q(τ, c) ≥ 1

2

∑
i≤i`

∑
(τ,c)∈Si

|Ec(~z, τ)|wc(τ)− 2i`+1

≥ β

2

∑
i≤i`

∑
(τ,c)∈Si

|Ec(~z, τ)|tyc(τ)− 2(|E(~z, t)| − b) .

(3.14)

Then

β

2

∑
L\Si`

|Ec(~z, τ)|tyc(τ) ≤ 1

2

∑
(τ,c)∈L

|Ec(~z, τ)|twc(τ)

≤ (|E(~z, t)| − b)
∑

(τ,c)∈L

wc(τ)

≤ (λ+ 1)(|E(~z, t)| − b)

where the last step uses
∑

(τ,c)∈Lwc(τ) ≤ λ + 1 by Claim 3.16. Adding the inequality
0 ≥ β

2

∑
L\Si`

|Ec(~z, τ)|tyc(τ)− (λ+ 1)(|E(~z, t)| − b) to Equation (3.14) we obtain

∑
(τ,c)∈S

|Ec(~z, τ)|Q(τ, c) ≥ β

2

∑
(τ,c)∈S

|Ec(~z, τ)|tyc(τ)− (λ+ 3)(|E(~z, t)| − b)

≥ 12(|E(~z, t)| − b) ,

where the last inequality holds as β = 80, λ = 12, and the fact that the primal constraint
for α(~z, t) is fulfilled and either δc(t) = 0 or |Ec(~z, t)|t = 0.

It remains to show how to update the distribution in an online manner so that the
block operation strategies fulfill conditions A, B, C, and D.

78

3.3. Analysis

Instead of constructing µ directly we will first construct distributions µ1, µ2, and µ3. A
random buffer management strategy according to µ is then chosen by sampling strategies
µ1 ∼ Q1, µ2 ∼ Q2, µ3 ∼ Q3 and computing the strategy Q by setting

Q(τ, c) := max{Q1(τ, c), Q2(τ, c), Q3(τ, c)} .

Any strategy, whether in the support of µ1, µ2, or µ3 fulfills for all c and Si that∑
(τ,c)∈Si∩Sc Q(τ, c) ≤ 3. Then it is clear that the strategy Q = max{Q1, Q2, Q3} fulfills

∀c,∀Si
∑

(τ,c)∈Si∩Sc Q(τ, c) ≤ 3 (Condition (D)).
In addition, strategies in the support of µ1 fulfill Condition (A), strategies from µ2

fulfill Condition (B), and strategies from µ3 fulfill Condition (C). Hence, Q will fulfill all
these conditions and consequently Q will obey buffer-constraints.

Maintaining µ1, µ2, and µ3. In the following we describe how to update µ1, µ2, and µ3,
and make sure that the strategies in their support fulfill their respective conditions. The
distributions µ1 and µ2 will always fulfill

∑
Q µi(Q) ·Q(τ, c) = wc(τ), i.e., the expected

number of times the color c is removed at time τ by a random strategy Q is equal to the
scaled LP-variable wc(τ) (recall that we allow a strategy to remove a color several times
in the same time step). It would be difficult to maintain the above property without
allowing changes in the past. Therefore, we will allow a strategy at time t to alter its past
behavior and to increase or decrease Q(τ, c) for τ < t (such a change may incur a cost,
of course). In reality, decreasing a Q(τ, c)-value only makes fulfilling buffer-constraints
more difficult, so allowing this does not give additional power to the algorithm. Similarly,
increasing a Q(τ, c)-value with τ < t is never better than increasing Q(t, c) instead, since
we only care about the buffer-constraint at t as the others have already been met.

There are two types of changes that require updating the distributions. Firstly, the
wc(τ)-values may increase. We will assume that these changes are infinitesimal, i.e., in
each time step we have to react to an increase of a wc(τ)-value from wc(τ) to wc(τ) + ε.
The other type of change is a change to the vector ~z. When ~z is recomputed because

otherwise the primal α(~z, t) constraint is not proper anymore, we set, for each color c
for which one of the conditions is violated, zc to the largest possible value (less or equal
to t) such that

∑
zc≤τ≤t(yc(τ) + δc(τ)) ≥ 1/β. The above procedure guarantees that the

following properties always hold

•
∑

(τ,c):zc<τ≤twc(τ) < 3. A primal α(~z, t) constraint is proper if
∑

(τ,c):zc<τ≤twτ (c) ≤
2. The base procedure (Algorithm 1), increases w-values by at most β/log3 b within
a single time step. For large enough b this means that the above sum never exceeds 3.

79

3. Generalized Reordering Buffer Management

•
∑

zc≤τ≤twc(τ) ≥ 1. In the end we want that every strategy Q from µ has every
color removed at least once within the range {zc, . . . , t}. Therefore this property is
important.

Whenever ~z changes
∑

(τ,c):zc<τ≤twc(τ) decreases by at least 1. Therefore a fixed pair
(τ, c) is only involved in at most 3 different α(~z, t) constraints.

For increasing wc(τ)-values we show that an increase in ε results in an expected cost of
O(ε) for the maintenance operation. We also implement a maintenance operation with
O(ε) expected cost when a wc(τ)-value decreases. With this decrement operation we
implement a change of the vector ~z as follows.

Suppose we want to change the c-th coordinate of ~z from zc to z′c. This may make all
conditions that depend on the values |Ec(~z, τ)| invalid. We decrement all wc(τ)-values
with τ ∈ {z′c + 1, . . . , t} to 0. Then we change zc to z′c, and after that we increase the
wc(τ)-values again. The cost for this is O(wc(τ)) for every (τ, c)-pair involved. Since each
(τ, c)-pair is only involved in a constant number of these decrement operations we obtain
that the total cost for the change is only O(

∑
τ,cwc(τ)) = O(

∑
t,c yc(t)), provided that

we can implement the increase and decrease operations as claimed.

Maintaining µ1. Recall Condition (A) states, for every c,
∑

zc≤τ≤t(Q(τ, c) + δc(τ)) ≥ 1.
For maintaining µ1 we do not require a decrement operation as Condition (A) does

not depend on |Ec(~z, τ)|-values. Suppose that wc(τ) increases by ε. Then we first
identify an ε-measure of strategies that have the smallest value of arg maxτ ′{Q(τ ′, c) > 0},
i.e., strategies that did not remove color c for a long time. For these strategies we set
Q(τ, c) = 1. This means that the strategies evict color c in a round-robin fashion. Since∑

(τ,c)∈Sc
∑

Q µ(Q)Q(τ, c) =
∑

(τ,c)∈Sc wτ (c) ≥ 1, Condition (A) follows.

Maintaining µ2. We maintain a strengthening of Condition (B), namely that for all Si⌊∑
(τ,c)∈Si

wc(τ)
⌋
≤
∑

(τ,c)∈Si
Q(τ, c) ≤

⌈∑
(τ,c)∈Si

wc(τ)
⌉
. (3.15)

Suppose that the wc̄(τ̄) value for some pair (τ̄ , c̄) is increased by ε and assume that (τ̄ , c̄) ∈
Si. As we want to satisfy

∑
Q µ1(Q)Q(τ̄ , c̄) = wc̄(τ̄) we have to increase Q(τ̄ , c̄) for some

strategies. For this we choose an ε-fraction of strategies that have
∑

(τ,c)∈Sc∩Si Q(τ, c) ≤ 2.
Observe that such strategies must exist for small enough ε as∑

Q

∑
(τ,c)∈Sc∩Si

Q(τ, c)µ1(Q) =
∑

(τ,c)∈Sc∩Si

wc(τ) ≤
∑

(τ,c)∈Sc
wc(τ) < 3

80

3.3. Analysis

. We increase the value of Q(τ, c) for the chosen strategies.

Suppose the constraint in Equation (3.15) is be violated for some class Si. Let
a = b

∑
(τ,c)∈Si wc(τ)c (before changing wc(τ)) and first assume that b

∑
(τ,c)∈Si wc(τ)c

remains equal to a. Then the strategies that just have been changed may now have∑
(τ,c)∈Si Q(τ, c) = a+ 2, which is not allowed.

We match these strategies to strategies that have
∑

(τ,c)∈Si Q(τ, c) = a. For each
strategy Q there must exist a (τ, c) such that Q(τ, c) > Q′(τ, c), where Q′ denotes the
strategy that Q is matched to. We decrease Q(τ, c) by 1 and increase Q′(τ, c) by 1. This
only induces an expected cost of O(ε). The case in which b

∑
(τ,c)∈Si wc(τ)c changes is

analogous.

Also the decrement operation can be implemented this way. When wc(τ) decreases we
select an ε-measure of strategies that fulfill Q(τ, c) > 0 and decrease Q(τ, c) for them.
Then we do a re-balancing step.

Maintaining µ3. Here we maintain a strengthened version of Condition (C). Let
(τ1, c1), (τ2, c2), . . . denote the sequence of (τ, c)-pairs from S, in decreasing order of
|Ec(~z, τ)|. Let (τr, cr) denote the first pair in this sequence that is not in L (note
that this may not exist; then we define r as |S| + 1 since L = S). Define a function
` on the (τ, c)-pairs that is zero for all (τi, ci), i > r; one for all (τi, ci), i < r and
wcr − (

∑r
i=1wci(τi)− (λ+ 1))/wcr(τr) for (τr, cr). For all (τi, ci), i 6= r ` simply is the

characteristic function of the set L; only for r it measures the fraction by which (τr, cr)

needs to be included into L in order that the wc(τ)-values in L sum up to exactly (1 + λ)

(recall that during the construction of L we were aiming for it to contain a total w-weight
of λ+ 1. When we overshoot we remove the last element).

We maintain the constraint that⌊∑
(τ,c)∈S

wc(τ)`(τ, c)
⌋
≤
∑

(τ,c)∈L
Q(τ, c) ≤

⌈∑
(τ,c)∈S

wc(τ)`(τ, c)
⌉
,

which is a strengthening of Condition (C). In addition we maintain
∑

QQ(τ, c)µ3(Q) =

wc(τ)`(τ, c).

Suppose that a wc(τ)-value increases and that (τ, c) ∈ L (otherwise we do not need to
do anything; observe that if wcr is increased or decreased by ε the value of wcr(τr)`(τr, cr)
stays constant). We increase Q(τ, c) for an ε-measure of strategies that have Q(τ, c) < 3.
In addition we decrease Q(τr, cr) for an ε-measure of strategies (only if r is defined, i.e.,
if L 6= S).

Now, there may be an ε-fraction of strategies that has a value of
∑

(τ,c)∈LQ(τ, c) that

81

3. Generalized Reordering Buffer Management

is too large by 1, and there may exist an ε-measure of strategies for which this value is
by one too low. As before we can perform re-balancing steps in order to fix this at an
expected cost of O(ε).

3.3.3. Analysis of the cost control procedure

We now give the analysis of the cost control procedure.

Bounding the violation

The analysis of the base procedure in Section 3.3.2 shows that the yc(τ)-constraints
in the dual solution are only violated by a factor of Wbase = O(log log b) when using
α1(~z, t)-variables (Lemma 3.9). Our lower bound construction in Section 3.3.1 uses the
α2(~s, t)-variables. In every iteration of the base procedure, α1(~z, t) and α2(~s, t) increase
by the same amount dα, yet sc < zc for active colors c. This means that the α2-variables
generate a higher profit and a larger violation in the yc(τ)-constraints. We now analyze
the violation that is caused by the α2(~s, t)-variables.
The deactivation procedure (Algorithm 3) is in charge for controlling the violation of

the dual program. The procedure makes sure that the following constraint is observed.

deactivation constraint:
The volume collected by a color during a single activity period lies between V and 3V .
Formally, suppose that a color is active during interval [αstart, αend]. Then

V ≤
∫ αend

αstart

|Ec(~s, t)| dα ≤ 3V .

The reason we do not simply deactivate a color once the collected volume reaches the
threshold V is the following. A color that is deactivated will usually become marked
and obtain a server for the rest of the phase. Moving a server to the color incurs cost.
However, if a server is already located at the color, its deactivation is for free. Therefore
we call a server available for marking when it reaches volume V . If a server moves to the
color before its volume reaches 3V , we immediately deactivate it. This does not incur any
additional cost. The deactivation constraint imposes that we may not delay deactivation
for too long and we must mark a color when its total volume reaches 3V . This technique
will be substantial when analyzing the routine for scheduling k > 1 servers in Section 3.4.

The following lemma bounds the violation of the yc(τ)-constraints in LP Primal.

82

3.3. Analysis

Lemma 3.17. The yc(τ)-constraints in our dual solution (using α2(~s, t)-variables) are
violated by at most a factor of W = Wbase + 6V = O(Wbase + V).

Proof. Fix a color c and a time step τ and recall that the yc(τ)-constraint is∑
~v,t≥τ

|Ec(~v, τ)|t · α(~v, t) ≤ 1 .

The color c can become active at different time steps. We first show that the left-hand
side of the constraint only increases during two activity periods of c.
Assume for a contradiction that the color is activated at t1 < t2 < t3 and all three

activity periods influence the constraint to τ . Let s1, s2, and s3 denote the sc-values that
correspond to t1, t2, and t3, respectively. For yc(τ) to be affected by the first activity
period we must have s1 < τ ≤ t for a time step t within the first activity period. Clearly
t < t2. Similarly, we get s3 < τ ≤ t′ for some time step t′, so s3 < τ < t2. However,
between consecutive activation points of a color at least dfmaxe items of color c arrive,
i.e., dfmaxe items arrive between time steps t2 and t3. When we activate color c at time t3
we set sc such that |E(~s, t3)| = dfmaxe. This means t2 ≤ s3, which gives a contradiction.

By the deactivation constraint, the left-hand side of a yc(t)-constraint increases by at
most 3V during a single activity period of c. The total violation collected during any
activity period of c is therefore at most 6V . The violation contributed while c is inactive
is ∫

actc

|Ec(~s, τ)|t dα =

∫
actc

|Ec(~s, τ)| dα

=

∫
actc

|Ec(~z, τ)| dα =

∫
actc

|Ec(~z, τ)|t dα ≤Wbase .

The equalities follow because for an inactive color c and constraint yc(t) we have
|Ec(~s, τ)| = |Ec(~z, τ)| ≤ fmax ≤ |E(~z, t)| − b′ ≤ |E(~s, t)| − b′, i.e., capping does not
have any effect. The total violation is therefore at most 6V +Wbase.

Fulfilling the constraints

In the following we show that the cost control procedure fulfills the preconditions of
Lemma 3.7. We will use that by Line 9 of the deactivation procedure (Algorithm 3), a
color is marked upon deactivation if and only if its activity period lies completely inside
the current phase.

Claim 3.18. Marked colors collect at least total volume V in a phase. This gives Condition I.

83

3. Generalized Reordering Buffer Management

Proof. A marked color has an activity period completely inside the phase. It collects at
least volume V due to the deactivation constraint.

Claim 3.19. Any color collects at most total volume 6V in a phase.This gives Condition II.

Proof. A color can be activated at most once in a phase, because after deactivation within
the same phase it will become marked. Hence at most two activity periods per color
overlap with a phase. The color collects at most volume 3V during each of them due to
the deactivation constraint.

The proof that Condition III holds is split into two parts: the volume gap on new colors
and the volume gap on stale colors. We first show the former.

Claim 3.20. The volume gap on new colors is at most
∑

c∈Ni ∆c(Ii) ≤ 6γniV , where Ii
denotes the time interval of the phase, Ni denotes the set of new colors in the phase and
ni = |Ni|.

Proof. This follows directly from Claim 3.19 and the fact that the gap is at most a
γ-fraction of the total volume (Equation (3.5)).

For stale colors, the volume gap is 0 if k = 1. This is because the phase immediately
ends if a new color is marked, so the (only) stale colors always has a server. This
gives Condition III for k = 1. For k > 1, we give an subroutine for scheduling servers on
the stale colors in Section 3.4 so that the volume gap is small. This is formalized in the
Stale Color Lemma below.

Cost analysis

When analyzing the cost of our algorithm when serving the block requests, we split the
cost into two parts. On the one hand there is the hit cost which is the cost we incur
if none of the k servers is located at the requested color. This is the cost of the block
operations scheduled by the base procedure. If the algorithm changes the placement of
servers, the corresponding cost is the movement cost. Note that these movements may
occur even without an explicit block request. Naturally, we can split this cost among
the different colors. For example, the movement cost for color c in the phase is the total
number of times that we changed the server assignment for color c.

Recall that the cost control procedure observes the scheduling constraint on the non-stale
colors.

84

3.3. Analysis

scheduling constraint:

• a marked color is always assigned a server,

• the remaining colors are only distributed among stale colors.

From this rule it follows that non-stale colors are served by block operations while they
are unmarked, and after this they do not incur any cost because they have a server.

Claim 3.21. The total movement cost on non-stale colors during Phase i is ni, where ni
is the number of new colors in the phase.

Proof. We only incur a movement cost if we mark a color. Non-stale colors that become
marked are new colors.

The cost on stale colors depends on our subroutine for scheduling the k servers on the
stale colors. We give this algorithm in Section 3.4 which will prove the following lemma.

Lemma 3.22 (Stale Color Lemma). For V ≥ D there is a randomized scheduling algo-
rithm for stale colors that obeys the scheduling and deactivation constraint and guarantees
that the volume gap on stale colors in Phase i is at most 3γ(1 + γ)niV . The expected cost
on stale colors generated by this algorithm is only O

(
V log k · E[

∑
i ni] + costbase

)
.

Proof for k = 1. For k = 1, a phase ends as soon as the first color is marked. This means
that the (only) stale color always has a server and does not collect a volume gap. The
lemma follows immediately.

3.3.4. Combining the results

We combine the bound on the cost with the lower bound from Corollary 3.8, which gives
our main theorem of this chapter.

Theorem 3.23. There is an algorithm of competitive ratio O(log k(log k + log log b)) for
the generalized reordering buffer management problem.

Proof. Condition I and Condition II follow from Claim 3.18 and Claim 3.19, respectively.
The volume gap on unmarked colors is at most

3γ(1 + γ)niV + 6γniV ≤ 10γniV ,

by Claim 3.20 and the Stale Color Lemma, which gives Condition III. We choose V = D,
which gives that the violation of the LP constraints is at most W = Wbase + 6V =

85

3. Generalized Reordering Buffer Management

O(log log b) + 6D = Θ(D). Hence, we can use the lower bounds on the optimum cost
provided in Corollary 3.8. It remains to analyze the different cost components.
By Lemma 3.14, the fractional assignments to yc(t)-variables in the base procedure

contribute at most 2
∑

~v,t α1(~v, t)
(
|E(~v, t)| − b′

)
. This is at most 2

∫ αmax

0 (|E(~z, t)| − b′) dα

and can be amortized against the lower bound at a loss of a factor of O(W) = O(D).
The expected cost of the cost control procedure is O

(
V log k · E[

∑
i ni] + costbase

)
on

the stale colors by the Stale Color Lemma. This can be amortized against the cost of
the base procedure and the lower bound Ω

(∑
i ni
)
, as this lower bound holds for every

partitioning of the request sequence into phases respecting the preconditions. The loss is
a factor of O(V log k) = O(D log k).
The movement cost of the cost control procedure for non-stale colors is

∑
i ni due to

Claim 3.21. This can be amortized against the lower bound Ω
(∑

i ni
)
at a loss of a factor

of O(1).
Finally, the cost of block requests to non-stale colors is at most D

∑
c ac, where ac

denotes the number of non-stale activity periods for color c. This is due to the fact that
a single activity period contains at most D block requests to a color.

Observe that our proof of the Stale Color Lemma for k = 1 already implies that our
algorithm is O(log log b)-competitive for classical Reordering Buffer Management. This
reproves a result by Avigdor-Elgrabli and Rabani [AR13].

3.4. Scheduling k Servers

The previous section shows how our new approach to RBM leads to an optimal O(log log b)-
competitive algorithm. The goal of this section is to extend this algorithm to the
generalized problem of k > 1 servers. This is not straightforward: recall that even if there
is no buffer (b = 0), GRBM reduces to the Paging problem. This observation implies in
particular that deterministic algorithms for GRBM will be Ω(k)-competitive.
As we aim for a polylogarithmic competitive ratio, the algorithm we construct is

therefore randomized. We will first present the high-level plan of attack we follow. We
then define a cleaner model of the subproblem our algorithm has to solve if k > 1. Notably,
this implies the definition of a specific adversary for the competitive analysis. We then
explain the algorithm itself and prove it fulfills the Stale Color Lemma. Finally, we
consider the question of designing an optimal O(log log b+ log k)-competitive algorithm
for GRBM. Our algorithm does not achieve this competitive ratio, hence we explain the
limits of our approach and we point towards techniques to overcome them.

86

3.4. Scheduling k Servers

3.4.1. Plan of attack

The Stale Color Lemma (Lemma 3.22) imposes essentially that a scheduling algorithm
guarantee that the volume gap in Phase i be at most O(niV), while the movement cost is
small. When analyzing the volume gap that a randomized scheduling algorithm collects
on the stale colors, one is faced with a major obstacle. The collection of volume (and
thereby the increase in the volume gap) is to a large extend guided by the increase of
α-variables through the base procedure. Unfortunately, the actions of the base procedure
depend on |E(~z, t)|, which, in turn, depends on the distribution of servers on the stale
colors. This means that we cannot simply treat the increase of volume gap as an input
sequence from an oblivious adversary (see Section 1.2.1 for a definition of the adversaries
in the field online algorithms). In other words, while the actual input for our algorithm is
provided by an oblivious adversary, the input for the (artificial) subproblem of scheduling
on the stale colors also depends on the random choices we make. This makes the analysis
of the randomized scheduling algorithm much more challenging and it requires a careful
modeling of the cost and the adversary.

The Marking algorithm for Paging

As mentioned in Section 3.2, our procedure for scheduling multiple servers is inspired by
the Marking algorithm devised by Fiat et al. for the Paging problem [FKL+91]. We now
give an overview of their algorithm and we sketch the proof of its competitive ratio. See
the textbook by Borodin and El-Yaniv for a formal analysis [BE98, Chap. 3].

The Paging problem is equivalent to GRBM if the buffer has size 0. A sequence
of requests arrives online and each request must be processed immediately by one of k
servers. Each request has a color and the k servers move on the set of colors. When the
request’s color c is occupied by some server, it will be processed immediately. Otherwise,
one of the servers must move to color c at cost 1. The goal is to minimize the total cost.
The Marking algorithm partitions the request sequence into phases with the first phase
starting with the algorithm. A phase begins with every color unmarked and the marked
colors of the previous phase are called stale. When a color sees its first request in the
current phase, that color is marked and obtains a server for the rest of the phase. This
server is chosen uniformly at random from one of the servers residing on the unmarked
stale colors. When k colors have been marked, the current phase ends and a new phase
starts.

The proof of the competitive ratio is based on two ideas. First, it is not hard to see
that an optimal algorithm has cost at least

∑
i ni over the course of the sequence. Here,

87

3. Generalized Reordering Buffer Management

ni denotes the number of new colors that were requested in the current phase, but not
the previous one. Second, one can show that the algorithm’s expected cost per phase is
O(log k)ni. To see this, recall that the algorithm only incurs cost by moving a server
from an unmarked stale color c′ to a marked color c. We charge all of the cost to the ni
new colors and we assume they are marked at the beginning of the phase. A fixed new
color c0 obtains its server from stale color c1. If c1 is marked later in the phase, it obtains
its server from a different, still unmarked stale color c2, and so on. As colors c1, c2, . . .

are chosen uniformly at random, we expect the number of unmarked stale colors to have
halved in the interval between marking colors ci and ci+1. As there are k stale colors at
the beginning of the phase, we expect only O(log k) movements to be charged to c0.

Our approach, while similar at the high level, differs substantially in the details. Aside
from the aforementioned issue in defining the adversary, the cost control procedure also
changes the definition of marking colors. The marking process depends on deactivation
colors, which means that it is influenced mostly by the volume.

Paid requests

Our algorithm requires that we slightly change the definition of a block request in the
cost control procedure. The change is mostly technical, yet necessary for adapting the
Marking algorithm to our scenario. Recall that an active color obtains a new block request
whenever |Ec(~s, t)| ≥ (1 + γ)|Ec(~s, t′)|, where t′ is the time of the last request. When a
color has obtained D requests in a single activity period, no further requests to this color
are issued in the current activity period.

For stale colors, we change this algorithm by issuing requests beyond the D-th request
in an activity period whenever |Ec(~s, t)| ≥ (1 + γ)|Ec(~s, t′)|. We call the first D requests
to a color its unpaid requests, all later requests are called paid requests. The paid requests
can be amortized against the cost of the base procedure, so they do not asymptotically
change the cost of our algorithm. We do not require that a block operation is performed
on c upon a paid request. In fact, we prove below that the base procedure must have
scheduled a block operation on c.
Before we formally prove that the cost of paid requests can, essentially, be ignored,

we explain why they are necessary for our strategy. At a high level, our algorithm must
distribute k− n servers on k stale colors. In order to minimize the volume gap, we like to
have the n holes on those colors with smallest rate increase in total volume. However,
following the minimum |Ec(~s, t)| directly results in a high movement cost, as this value
can change very often. Instead, we follow the colors with minimum number of requests,
as |Ec(~s, t)| ≈ (1 + γ)r(c)fmax, where r(c) is the number of requests to color c. This

88

3.4. Scheduling k Servers

(approximate) equality can only hold when we continue to issue requests after the D-th
request.

Fact 3.24. The number of paid requests in a phase is at most 2 costbase, where costbase

is the cost of the base procedure in the phase.

Proof. Suppose color c receives its j-th request at time t′ with j ≥ D, then |Ec(~s, t′)| ≥
(1 + γ)D−1fmax ≥ (2b + 2)/γ. When the next, paid, request for color c is issued,
|Ec(~s, t)| ≥ (1+γ)|Ec(~s, t′)|. This implies that at least 2b+2 items of color c have arrived
in the interval (t′, t] and none of them have been removed by block requests to c. As the
buffer only holds b items, it follows that the rounding procedure of the base procedure
must have scheduled at least one operation on color c in order keep a feasible solution.

3.4.2. Model of cost and adversary

We now define an abstract framework for analyzing the cost of the algorithm. We also
define precisely the power of our adversary, which simplifies the analysis later on.

Cost model

Consider a fixed adversary whose power will be defined later. A configuration C of our
algorithm consists of a time step t along with the algorithm’s decisions up to time t. At
any point in time, our algorithm chooses a new configuration based on (i) its current
configuration, (ii) the adversary’s actions, and (iii) some random bits. Given that the
adversary is fixed, the algorithm’s decision is therefore memoryless (more precisely, all
previous configurations are encoded in the current one). The algorithm can therefore be
viewed as a Markov chain whose states are the configurations. Furthermore, this Markov
chain is a directed tree rooted at the initial configuration C0. There exists an edge from
configuration C to configuration C ′ if the algorithm, when in configuration C, decides
with non-zero probability to have C ′ as its next configuration. Let p(C → C ′) denote this
transition probability.

The transition probability naturally extends to arbitrary pairs of configurations as
follows: p(C → C ′) is 0 if no path from C to C ′ exists in the tree; otherwise, it is
the product of transition probabilities on that path. We say that C ′ is reachable from
C, writing C → C ′, if and only if p(C → C ′) > 0. Similarly, when transitioning from
configuration C to configuration C ′, the cost of the transition is the total number of
unpaid actions performed by the algorithm while transitioning, either as block operations
or server movements on the stale colors. If C → C ′, let cost(C → C ′) denote the cost

89

3. Generalized Reordering Buffer Management

of the transition from C to C ′; otherwise cost(C → C ′) = 0. Importantly, cost(C → C ′)

ignores the cost that happens right after a paid request. We show later that each paid
request incurs only constant cost, so the total cost of paid requests is O(costbase +n(C)D)

in a phase ending in configuration C.

Our analysis uses an amortization scheme for the cost of the algorithm. For any
nonnegative function Φ(C) from the set of configurations to the real numbers, let the
amortized cost of transitioning from C to C ′ be

costΦ(C → C ′) =

cost(C → C ′) + Φ(C ′)− Φ(C) if C → C ′ ,

0 otherwise.
. (3.16)

Fact 3.25. If C → X and X → C ′ then

p(C → C ′) = p(C → X) · p(X → C ′) ,

costΦ(C → C ′) = costΦ(C → X) + costΦ(X → C ′) .

Proof. If C → X and X → C ′ then X lies on the path from C to C ′ in the tree. Thus
both the sides of the equation equal the product of transition probabilities on that path.
Similarly,

costΦ(C → C ′) = cost(C → C ′) + Φ(C ′)− Φ(C)

= cost(C → X) + cost(X → C ′) + Φ(C ′)− Φ(X) + Φ(X)− Φ(C)

= costΦ(C → X) + costΦ(X → C ′) .

The expected cost of our algorithm on the stale colors is∑
B∈B

p(C0 → B) cost(C0 → B) .

In order to show that this is small, our strategy is to define a special set S of event
configurations. We show that our algorithm only encounters few event configurations in
phase, yet the expected cost of transitioning from one event configuration to the next
is small. For event configurations C,C ′ ∈ S, we write C 7→ C ′ (say C ′ is successor of
C) if C 7→ C ′ and there is no event configuration X ∈ S on the path from C to C ′. Let
p(C 7→ C ′) = p(C → C ′) if C 7→ C ′ and 0 otherwise. Similarly, let costΦ(C 7→ C ′) =

costΦ(C → C ′) if C 7→ C ′ and 0 otherwise.

The precise definition of event configurations is deferred to Section 3.4.3. For now, we

90

3.4. Scheduling k Servers

only require the event configurations and a suitable potential function Φ ≥ 0 to fulfill the
following properties. Let n(C) denote the number of new colors marked in the phase of
C up to the time step of C.

(P1) The algorithm experiences at most O(D log k) event configurations per phase.

(P2) For any C ∈ S,
∑

C′∈S p(C 7→ C ′) costΦ(C 7→ C ′) = O(n(C)).

(P3) Φ(C0) = 0 and Φ(C) ≥ 0 for every configuration C.

Using these properties, the following technical lemma gives an upper bound on the
algorithm’s expected cost on stale colors.

Lemma 3.26. The expected cost on stale colors is at most O(D log k)E
[∑

i ni
]
, where

ni is the number of new colors in phase i.

Proof. Without loss of generality, assume that the end of a phase is always an event
configuration. Let P be the set of the event configurations that end a phase and call them
phase configurations. For any phase configuration, we have define an artificial, unique
event configuration on the next time step that marks the start of the new phase. Similarly
to the event configurations, we write C p7−→ C ′ if C → C ′ and there is no X ∈ P with
C → X and X → C ′. Let p(C p7−→ C ′) = p(C → C ′) if C p7−→ C ′ and 0 otherwise.
The expected cost of our algorithm is, using Property (P3) and Equation (3.16),∑
B∈B

p(C0 → B) cost(C0 → B) =
∑
B∈B

p(C0 → B)(costΦ(C0 → B)− Φ(B) + Φ(C0))

≤
∑
B∈B

p(C0 → B) costΦ(C0 → B) .

In a first step, we show that this is at most O(D log k)
∑

P∈P p(C0 → P)n(P). We then
prove that

∑
P∈P p(C0 → P)n(P) equals E

[∑
i ni
]
, which gives the lemma.

Claim 3.27.
∑

B∈B p(C0 → B) costΦ(C0 → B) = O(D log k)
∑

P∈P p(C0 → P)n(P).

Proof. Fact 3.25 implies that for any B ∈ B, cost(C0 → B) can be written as the sum of
costs between the event configurations on the path from C0 to B in the tree. We use that
cost(C 7→ C ′) is 0 if C ′ is not a successor of C and Property (P3) which gives

costΦ(C0 → B) ≤
∑
C∈S

∑
C′∈S
C′→B

costΦ(C 7→ C ′) .

91

3. Generalized Reordering Buffer Management

This allows us to rewrite the expected cost of the algorithm as∑
B∈B

p(C0 → B)
∑
C∈S

∑
C′∈S
C′→B

costΦ(C 7→ C ′)

=
∑
C∈S

∑
B∈B

∑
C′∈S
C′→B

p(C0 → B) costΦ(C 7→ C ′)

=
∑
C∈S

p(C0 → C)
∑
B∈B

∑
C′∈S
C′→B

p(C → B) costΦ(C 7→ C ′)

=
∑
C∈S

p(C0 → C)
∑
C′∈S

costΦ(C 7→ C ′)
∑
B∈B
C′→B

p(C → B) .

The second equation used Fact 3.25, the third equation changed the order of summation.
If C ′ is reachable from C, Fact 3.25 gives

∑
B∈B,C′→B p(C → B) = p(C → C ′) as the

algorithm always ends in a configuration of B. The expected cost is therefore∑
C∈S

p(C0 → C)
∑
C′∈S

p(C → C ′) costΦ(C 7→ C ′) ≤ ζ ·
∑
C∈S

p(C0 → C)n(C) .

We used Property (P2) with ζ as the constant from the O-notation.
We now multiply each term of the sum with 1 =

∑
P∈P p(C

p7−→ P) and obtain

ζ ·
∑
C∈S

p(C0 → C)n(C)
∑
P∈P

p(C
p7−→ P) = ζ ·

∑
P∈P

∑
C∈S

p(C0 → C)n(C)p(C
p7−→ P)

≤ ζ ·
∑
P∈P

n(P)
∑
C∈S

p(C0 → C)p(C
p7−→ P)

≤ ζ ′ ·D log k
∑
P∈P

p(C0 → P)n(P) .

The first inequality uses that the number of colors never decreases within a phase. To
see the second inequality, observe that Property (P1) implies that for any fixed phase
configuration P at most O(D log k) event configurations have positive p(C p7−→ P). Again
ζ ′ is a constant from the O-notation.

Claim 3.28.
∑

P∈P p(C0 → P)n(P) = E
[∑

i ni
]
.

Proof. Let Pi denote the phase configurations ending the i-th phase in the tree and
observe that the Pi partition P. The expected number E[ni] of new colors in Phase i is∑

P∈Pi p(C0 → P). This uses that the algorithm has 0 colors in any phase it does not
reach. The claim then follows by linearity of expectation.

92

3.4. Scheduling k Servers

Model of the adversary

From now on, we consider a single phase starting in a single configuration. We re-number
the time steps with t = 1 being the first time step of the phase. The request sequence
and the increase in α both depend on the color sequence fed to the base procedure; it is
convenient to model it as a specific type of adversary that we define next.
We assume that the adversary select an order among the block requests on the stale

colors. Below, we show that any request outside this sequence may be ignored. After
choosing this sequence, the adversary can do one of the following operations in each
Step t.

• Request: Issue the next request from the predefined sequence.

• Volume increase: Increase α by dα. This increases the volume gap on active
colors that are not assigned a server.

In addition there are the following events that the adversary cannot influence directly
but only indirectly by altering the total volume collected by a color.

• Marking of a stale color: In this case one server has to be moved to the newly
marked stale color.

• Marking of a new color: Mark a non-stale color c. In this case one server has to
be moved away from the stale colors to be assigned to color c for the remainder of
the phase. This increases the number n(t) of new colors that appeared in the phase
up to time t.

For each of the above actions the adversary knows the random choices of the algorithm
up to Step t. The following claim shows that we can indeed assume that the adversary
has to specify the order of requests at the start of the phase.

Claim 3.29. After the start of the phase the order of requests to unmarked stale colors
during the phase is not influenced by actions of the scheduling algorithm.

Proof. As a reminder the rules for generating requests are as follows:

1. an inactive color gets a request if it has seen at least fmax requests since the most
recent explicit server request

93

3. Generalized Reordering Buffer Management

2. an active color gets a request if |Ec(~s, t)| ≥ (1 + γ)|Ec(~s, t′)|, where t′ is the time
step of the most recent explicit request to the color.

Recall that stale colors are inactive at the beginning of the phase. If at the start of the
phase we know the number of items that arrived for every color since the most recent
request, we can calculate how many items need to arrive in order for a request of Type 1 to
be generated (which activates the color). As long as the color stays active further requests
of Type 2 only depend on the number of items received for the respective color. When
the color gets deactivated it becomes marked and, hence, further requests to this color
are not of interest. This shows that requests to unmarked stale colors only depend on the
number of items and, thus, their order cannot be influenced once the input sequence of
items is fixed, which has to be done at the start of the algorithm.

At first glance the above claim might appear too weak to guarantee that the adversary
is strong enough as the order of requests to marked colors can actually be influenced by
actions of the base procedure. The reason is that marking/deactivating a color changes
how requests to the color are generated, and thus this can influence order of requests.
However, our algorithm ensures that any marked color is always assigned a server. It
follows that adding or removing requests to marked colors does not influence the scheduling
decisions or the cost of the algorithm.
In order to get a cleaner model we restrict the choice of the online algorithm in each

step. We add (many) dummy time steps, where in each time step the adversary has the
choice between a limited number of actions. More concretely we have the following types
of steps:

• Request time steps t ∈ Tr
The adversary issues the next request in the predetermined sequence. The adversary
cannot skip this step.

• Marking time steps t ∈ Tn for new colors
The adversary increases n or skips the action.

• Volume time steps t ∈ Tv
The adversary either increases α by dα or skips the action.

The above model can be obtained by fixing the time steps that should be request time
steps and by adding sufficiently many time steps of each type between any two consecutive
request time steps.

94

3.4. Scheduling k Servers

3.4.3. Subroutine for scheduling servers

We now present our algorithm and its analysis. Observe that with the discussion of the
previous section, it suffices to consider the algorithm’s decisions in a single phase.

The algorithm

Given a configuration C and stale color c, let rc(C) be the number of requests to color c
up to the time step of C. Let `r(C) denote the number of unmarked stale colors that
have seen r requests. The current round r∗(C) is min{r | `r(C) ≥ n(C)}. We sometimes
omit the argument C if the configuration is clear. Observe that r∗ never decreases as `r
never increases and n never decreases. A color c is free in round r∗ if it is an unmarked
color having seen exactly r∗ requests and with a server located at it.

The algorithm’s movement strategy is the following. The current server distribution is
only modified if

• a color c without server obtains its (r∗ + 1)-th requests, or

• a new color c is marked, or

• a stale color c without server is marked.

In these cases, the algorithm picks a free color c′ uniformly at random and moves the
server from c′ to c.

Similar to classical Marking, our algorithm distributes the servers on the marked colors
and the stale colors that have seen the most requests.

Observation 3.30. A marked color has a server. A stale color with more than r∗ requests
also has a server. An unmarked stale color with less than r∗ requests has no server.

Proof. A server moves to a color when the color is marked. As marked colors never
become free, this server never moves away.

Fix a configuration C and let t be its time step. For 0 ≤ τ ≤ t, we write rc(τ) to denote
the number of requests to color c up to time τ and r∗(τ) to denote the current round at
time τ . Note that configuration C encodes all decisions up to time t, hence rc(τ) and
r∗(τ) are fixed for 0 ≤ τ ≤ t. Let c be some unmarked stale color.

Suppose rc(t) is larger than r∗(t). We have rc(0) = r∗(0) = 0, as a phase starts without
marked colors. Let t′ < t be the last time step when rc(t

′) = r∗(t′). As both r∗ and
rc are nondecreasing, it follows that rc(t′ + 1) = r∗(t′ + 1) + 1 and rc(τ) > r∗(τ) for
t′ + 1 ≤ τ ≤ t. On the one hand, this implies that either a server was located at c at time

95

3. Generalized Reordering Buffer Management

t′ + 1, or a server moved to c at time t′ + 1. On the other hand, c was no free color in the
interval [t′ + 1, t], so the server cannot have moved away. Hence there is a server at color
c.
Now suppose rc(t) is smaller than r∗(t). Let t′ < t be the last time during which

rc(t
′) = r∗(t′). It follows that r∗ increases at time t′ + 1, so `r∗ = n at time t′. We know

that every color with at least r∗+ 1 requests has a server and n stale colors have no server.
It follows that no unmarked stale color with at most r∗(t′) requests has a server at time
t′. In particular, there is no server at color c at time t′. As color c is unmarked and never
sees its (r∗ + 1)-th request during interval [t′ + 1, t], it still has no server at time t.

It follows that our algorithm fulfills the scheduling constraint. It also fulfills the
deactivation constraint as marked colors always have a server and do not collect any more
volume.

Bounding the volume gap

In order to obtain a bound on the volume gap, we proceed as follows. The volume gap on
an active color c over interval I is defined as

∆c(I) = volTc (I)− volEc (I) ≤ γvolTc (I) .

The inequality follows from Equation (3.5). Observe that a color that is assigned a server
does not increase its volume gap as the increase in total volume matches the increase
in extra volume. Instead of analyzing the volume gap directly, we instead consider the
volume cost, which is equal to the total volume a color without server collects.

Lemma 3.31. The volume cost on stale colors is at most 3(1 + γ)V · n per phase, where
n is the number of new colors of the phase.

Proof. Fix a configuration C that marks the end of a phase and let n = n(C). We show
that the volume cost in the phase ending in configuration C is 3(1 + γ)V · n. Note that
this imposes a fixed set of random choices for the phase.

If n = 0 a stale color is always assigned a server, so the volume cost on stale colors will
be 0 in this case. Hence, assume n > 0. In this case there exist n stale colors that are
not marked in the phase. Let U denote this set of colors and observe that each of these
colors collects at most total volume 3V during the phase. Otherwise, the color would
be deactivated and directly become marked (unless the phase ends at that time step).
Hence

∑
c∈U volTc (I) ≤ 3nV , where I is the interval of the phase. We show next that in

96

3.4. Scheduling k Servers

each time step the volume cost of the algorithm increases roughly by the total volume
collected by colors in U during the step.

Fix a time step and letM denote the set of active stale colors that are currently missing
a server. The volume cost increases by

∑
c∈M |Ec(~s, t)| dα. On the other hand the total

volume collected by colors in U increases by
∑

c∈U |Ec(~s, t)| dα.

Claim 3.32.
∑

c∈M |Ec(~s, t)| ≤ (1 + γ)
∑

c∈U |Ec(~s, t)|.

Proof. First observe that |M | ≤ n = |U |. We sort the colors in M and U according to
the number of block requests they have received so far.

We now map the i-th color in M (if it exists) to the i-th color in U . We show that for
any such pair (cm, cu) we have |Ecm(~s, t)| ≤ (1 + γ)|Ecu(~s, t)|.

Let r(c) denote the number of requests to color c so far. Clearly r(cm) ≤ r(cu) as only
the colors that have seen the fewest requests are missing a server by Observation 3.30.
Furthermore, r(cm) ≥ 1, as the colors of M are active and therefore must have been
requested at least once. Let ρi denote the number of items in Ec(~s, t) right after the
i-th request, for 1 ≤ i ≤ D. Due to the way requests are generated in Algorithm 2 there
are exactly dfmaxe items in Ec(~s, t) at the time of the first request. For i > 1, we have
si = d(1 + γ)si−1e. Hence if 1 ≤ r(cm),

|Ecm(~s, t)| ≤ sr(cm)+1 − 1

≤ d(1 + γ)sr(cm)e − 1

≤ (1 + γ)sr(cu) ≤ (1 + γ)|Ecu(~s, t)| .

Since the volume of elements in U is at most 3nV we get that the volume cost on stale
colors is at most 3(1 + γ)nV .

Bounding the cost

In order to bound the movement cost of the servers, we define a suitable set of event
configurations. The start of a phase is always an event configuration, as well as the
configuration when n(C) first increases to 1. After that, event configurations are defined
inductively. As long as r∗ < D, a configuration is an event configuration if either n(C)

has doubled since the last event configuration, or the number of free colors has decreased
by a factor of 1/4, or the round r∗ < D increases. Furthermore, the end of a phase
(which are just one artificial time step away from the beginning of the next) is an event

97

3. Generalized Reordering Buffer Management

configuration. When r∗ ≥ D, no further more event configurations exist before the end of
the phase.
We prove that this definition fulfills properties (P1), (P2), and (P3) for a suitable

potential function Φ. The next claim proves Property (P1).

Claim 3.33. There are at most 8D log k event configurations in a phase.

Proof. The number of new colors is at most k, hence it doubles at most log k times. At
most D event configurations mark the increase of r∗. Within a round, the number of free
colors decreases by a factor of at least 3/4 between event configurations, hence there are
at most log4/3 k < 4 log k − 1 such event configurations per round. Finally, there are two
event configurations marking the start and end of the round. Summing up (generously)
gives the claim.

The movement cost for marking stale colors is bounded via the following technique.
According to the deactivation constraint, a color that as collected total volume V is
available for marking. The color must be marked before it collects volume 3V . If a color
is available for marking and has a server assigned to it, we simply mark the color. This
does not induce any movement cost, as the server assignment does not change. If a color
reaches volume 3V without a server assigned to it, we mark the color and reassign a
server from a free color to it. This forced marking induces cost 1. The next claim bounds
the number of these forced marking operations.

Claim 3.34. For any event configuration C, there can be at most 4n(C) forced marking
operations before the next configuration.

Proof. Observe that a color that experiences a forced marking operation has collected
total volume 2V since it became available for marking. During this time it has never
been assigned a server; otherwise, it would have been marked right away. This means
that a color that experiences a forced marking operation has volume cost at least 2V .
Let configuration C ′ be a successor of C and assume without loss of generality that

C ends a phase. This can be achieved, e.g., by marking all stale colors without server
right before C ′. Then the volume cost collected in the phase ending with C ′ is at most
3(1 + γ)V · n(C ′) ≤ 6(1 + γ)V · n(C) by Lemma 3.31. The number of forced markings in
the phase is therefore at most

6(1 + γ)V · n(C)

2V
= 3(1 + γ)n(C) ≤ 4n(C).

Next, we show that the cost after round r∗ = D is small.

98

3.4. Scheduling k Servers

Claim 3.35. The cost after round D is at most O(n(C)D + costbase) if the phase ends
in configuration C.

Proof. After reaching round D, at most n(C)D requests are still issued for colors with
less than D requests so far. All requests after the D-th request to a color is a paid request
and the algorithm has constant cost for adjusting the distribution in response to it. The
total number of paid requests is O(costbase), which gives the claim.

We now prove Property (P2). Let

Φ(C) =
∑
c

max{0,min{r∗(C), D} − rc(C)} .

Clearly Φ(C) ≥ 0 and Φ(C0) = 0, so Property (P3) is fulfilled.

Lemma 3.36. For any C ∈ S,
∑

C′∈S p(C 7→ C ′) costΦ(C 7→ C ′) = O(n(C)).

Proof. If r∗(C) ≥ D, all requests before the next event configuration are paid requests,
so costΦ(C 7→ C ′) = 0. As Φ only decreases after round D, the lemma holds.
Partition the set of successors of C into sets Sj so that the adversary makes identical

decisions for all configurations in Sj . We fix one set Sj and show that the expected cost
before reaching a configuration in Sj is O(n(C)).
Instead of arguing about the cost of servers, it is convenient to consider the cost of

antiservers that mark the absence of a server. We imagine n antiservers moving on the
stale colors, each color having either a server or an antiserver. There are n antiservers,
with n(C) ≤ n ≤ 2n(C), as there is one antiserver per new color and the number of new
colors can at most double between event configurations. The antiservers only visit free
colors (with rc = r∗) and unmarked colors with rc < r∗ by Observation 3.30.

When a color c without server and rc < r∗ is requested, the unit cost for processing the
request is absorbed by the decrease in Φ. If the requested color c is a free color, so rc = r∗,
we charge the antiserver located at c with 1. We also charge an antiserver located at a
color that is marked. Let Ai be the cost charged to the i-th antiserver and let Mi be the
number of times its color is marked in Sj . We show that E[Ai |Mi = mi] = O(1 +mi).
As the request sequence cannot be modified by the adversary after the start of the

phase, we number the free colors in the order in which they obtain their (r∗ + 1)-th
request. If configuration C has z free colors, at most colors 1, . . . , z/4 are requested before
the next event configuration. The adversary only controls the marking operations; we
therefore consider some fixed set of marking operations.

The mi forced markings of colors with antiserver i partition the time interval into 1+mi

intervals during which the antiserver experiences no marking event. Consider any of these

99

3. Generalized Reordering Buffer Management

intervals. Whenever antiserver i is charged, this means that is was located on one of the
colors 1, . . . , z/4 and this color just received its (r∗ + 1)-th request. The antiserver then
picks a free color uniformly at random to move to. If the new color is one of z/4+1, . . . , z,
the antiserver is settled, as it will not be charged before the next marking event. As there
are always at least z/2 unmarked colors in the interval z/4 + 1, . . . , z, it follows that
antiserver i is settled with probability at least 2/3. Let Bi count the number of trials until
antiserver i is settled. It follows that Bi < G with G ∼ Geo(2/3), so E[Bi] < E[G] = 3/2.
With the above discussion, this implies that E[Ai |Mi = mi] ≤ 3

2(1 +mi) +mi.
It follows that for any set Sj , the expected cost is at most

∑
i

E[Ai |Mi = mi] ≤ 2n(C)
3

2
+

5

2

∑
i

mi = 3n(C) + 4n(C) = 7n(C) .

We have used that by Claim 3.34 the number of forced markings between event configura-
tions is at most 4n(C). We also used that there are at most 2n(C) antiservers.
As the expected cost for any fixed Sj is at most 7n(C), the same must hold for any

weighted average of successors of C.

Combining the results

Lemma 3.36 and Claim 3.33 imply that our event configurations and Φ fulfill the required
properties, so Lemma 3.26 and Claim 3.35 imply that the expected cost on the stale
colors is at most O

(
D log k ·E[

∑
i ni] + costbase

)
. The bound on the volume gap is shown

in Lemma 3.31. Hence, we have proven the Stale Color Lemma for k > 1.

Lemma 3.37 (Stale Color Lemma). For V ≥ D there is a randomized scheduling algo-
rithm for stale colors that obeys the scheduling and deactivation constraint and guarantees
that the volume gap on stale colors in Phase i is at most 3γ(1 + γ)niV . The expected cost
on stale colors generated by this algorithm is only O

(
V log k · E[

∑
i ni] + costbase

)
.

As shown in Section 3.3.4, this implies our main theorem of this chapter.

Theorem 3.38. There is a O(log k(log k + log log b))-competitive algorithm for General-
ized Reordering Buffer Management.

3.4.4. Towards optimal competitiveness?

Improving the competitive ratio in Theorem 3.23 to O(log k + log log b) is a challenge
we must leave open in this work. Indeed, while a lower bound of Ω(log k + log log b) is
evident from the connection to Paging and RBM, we are not aware of any other result

100

3.4. Scheduling k Servers

to bridge this gap. Our goal for the remainder of the section will be to highlight some
possible avenues for bridging this gap within our framework, as well as the difficulties
that are to overcome.

First, observe that in order to achieve optimal competitiveness, it is enough to give
an algorithm for scheduling on the stale colors that respects the volume gap, and whose
total cost on the stale colors O(V + log k) = O(V). Recall that the algorithm we propose
only achieves cost in O(V · log k).

In order to gain a better intuition for the problem, we propose a discussion on the
following simplified problem we call V -paging. In this problem, we are given a cache of
size k − n and k colors (pages). At each time step, one of the k colors is requested and
must be moved into the cache at cost 1. After a color has been requested V times, it is
marked and stays in the cache permanently. The request sequence ends after k− n colors
have been marked. The goal is to find a strategy to move colors in and out of the cache
whose cost is minimal.

Strategies for V -Paging

A simple strategy for the offline version of the problem leaves those n colors that will
never be marked outside of the cache permanently. This strategy incurs movement cost n
and hit cost at most n · V . Observe that any deterministic online strategy tie breaking
cannot avoid cost Ω(V (k − n)), as the adversary can essentially request a color that is
outside of the algorithm’s cache most of the time.

A the high level, a randomized strategy for V -Paging can be defined as follows. At a
time step t, let xc(t) denote the number of requests color c has received before time step t.
This gives a vector x over the colors that we call the load vector. Similarly, let `c(t) = 1 if
color c is requested at time t and `c(t) = 0 otherwise. This gives x(t) = x(t− 1) + `(t− 1).
A randomized algorithm must define for any time step the probability ρc(x, t) that color
c is not in the cache. Observe that the entries of vector ρ must sum to n at any time.

The algorithm we present in Section 3.4.3 chooses ρc = 1 for colors with minimum
value of xc, breaking ties randomly. It is therefore a Follow-the-leader strategy and we
saw above that it incurs hit cost n · V log k.

An improved strategy comes from the area of online learning and is given by Blum et
al. [BBK99]. They propose to adapt the Randomized Weighted Majority algorithm (RWM)
for paging. This algorithm is known under many different names such as Multiplicative
Weights Update or Regularized Follow-the-leader. We sketch their approach using a
different notation.

101

3. Generalized Reordering Buffer Management

For x ∈ Rk, positive integer n ≤ k, and β > 1, define the β-softmin of order n as

sminβ,n(x) = − logβ

(∑
T∈([k]n) β

−
∑

i∈T xi
)
.

The function sminβ,n(x) is a smooth approximation of the sum of the n smallest elements
from the vector x. The higher we choose factor β, the more tight is the approximation of
the softmin to the actual minimum. We show in Section A.2 of the appendix that the
β-softmin fulfills the following properties.

Claim 3.39. The k-dimensional β-softmin of order n ≥ 1 fulfills the following properties:

(a) The function approximates the sum of the n smallest entries in x. Formally for all
vectors x we have

min
T∈([k]n)

∑
i∈T xi − n logβ k ≤ sminβ,n(x) ≤ min

T∈([k]n)

∑
i∈T xi .

(b) The gradient of the function is the type of measure we require. Formally, for all
vectors x, 0 ≤ ∇sminβ,n(x)c ≤ 1, and

∑
c∇sminc(x)c = n.

(c) The change of the function is reasonably well approximated by its gradient. Formally
for all vectors x, `, if ‖`‖1 ≤ 1 then

sminβ,n(x+ `)− sminβ,n(x) ≥ 1− 1/β

lnβ
∇sminβ,n(x)T ` .

Algorithm RWM uses measure ρ(x(t), t) = ∇sminβ,n(x(t)) with constant β . The
expected hit cost at time step t is therefore ∇sminβ,n(x(t))c = ∇sminβ,n(x(t))T `(t), if
color c is requested at that time step. This gives the following lemma.

Lemma 3.40 ([BBK99]). The expected hit cost of RWM is O(n(V + logβ k)) for constant
β > 1.

Proof. By Claim 3.39(c), the total hit cost is

∑
t≥1

∇sminβ,n(x(t))T · `(t) ≤ lnβ

1− β−1

∑
t≥1

(
sminβ,n(x(t) + `(t))− sminβ,n(x(t))

)
=

lnβ

1− β−1

(
sminβ,n(x(T))− sminβ,n(x(1))

)
.

102

3.4. Scheduling k Servers

Here T denotes the time step after the last request. Claim 3.39(a) gives that sminβ,n(x(T))

is at most nV , as there exist n colors that see at most V requests. On the other hand,
x(1) is 0 in ever component, so sminβ,1(x(1)) ≥ n logβ k.

Blum et al. furthermore give a strategy to round measure ρ into a distribution over
valid cache state so that the probability of color c being outside the cache is indeed ρc.
They show that their strategy’s expected movement cost is at most twice the hit cost.
We refer to their paper for the details [BBK99]. The authors prove that the total cost is
at most O(n(V + ln k)).

In order to obtain a lower bound on the performance of RWM, consider requesting the
colors in round-robin fashion. We show that the expected hit cost of RWM degrades with
β.

Lemma 3.41. For k, β > 2, the expected hit cost of RWM is at least

V ·min{ln(β), ln(k)}/2 .

Proof. Let n = 1 and fix a round r of the request sequence. Right before the request to
page i for i ∈ [k], pages 1, . . . , i− 1 have been requested r times, and color i, . . . , k have
been requested r − 1 times. It follows that the probability mass on color i is

∇sminβ,1(x)i =
β−xi∑
j β
−xj =

1

(i− 1) 1
β + (k − i+ 1)

.

The second equation follows by dividing by β−r+1. The expected hit cost in round r is
therefore

k∑
i=1

1

(i− 1) 1
β + (k − i+ 1)

=
k∑
i=1

1

i(1
β − 1) + (k + 1− 1

β)

=
β

1− β

k∑
i=1

1

i+ ζ
,

103

3. Generalized Reordering Buffer Management

with ζ = k+1−1/β
1/β−1 . The sum is at least

∫ k
1

1
x+ζ dx, so the expected hit cost is at least

β

1− β
ln

(
k + ζ

1 + ζ

)
=

β

β − 1
ln

(
1 + ζ

k + ζ

)
=

β

β − 1
ln

(
k

k
β + 1− 1

β

)
=

β

β − 1
ln

(
βk

k + β − 1

)
,

As β > 2, this is at least ln(βk/(k + β − 1)). For k > β > 2 we have

βk

k + β − 1
>

β2

2β − 1
≥
√
β .

The case β > k > 2 is symmetrical. It follows that the cost is at least min{ln(β), ln(k)}/2,
as desired. The lower bound follows by observing that the hit cost is the same in every
round.

From V -Paging to GRBM

Observe that V -Paging roughly describes a single phase of our algorithm. Our simpli-
fications include (i) that the number of new colors is fixed from the start, (ii) that the
volume gap only increases for one color at a time, (iii) that we have no block requests,
and (iv) that we assume an oblivious adversary.
It follows from the work of Blum et al. that simplifications (i), (ii) and (iii) can be

overcome with few modifications to their strategy. The challenge of dealing with a non-
oblivious adversary is, however, a significant one. To see this, recall that an adaptive offline
adversary is so strong that randomization does not help against it (see Section 1.2.1).
Our Follow-the-leader algorithm of Section 3.4.3 solve this challenge by considering

block requests instead of volume cost. The sequence of block requests is defined prior to
the random choices, hence one can apply a standard analysis outside of a few special events
such as marking new colors. As the number of block requests to a color is proportional to
the increase in volume cost up to a factor of (1 + γ)(see Lemma 3.31), an upper bound
on the volume cost follows. This implies the upper bound on the volume gap.
One idea for improving the competitive ratio is to apply algorithm RWM using the

number of requests as reference point. We show that this does not give a satisfactory
algorithm for any choice of β > 1. Consider a scenario with n = 1. Suppose the request
sequence gives the first color a minimum number of requests. The other k − 1 colors
have seen (up to an additive 1) log log k requests more than color 1 for most of the

104

3.4. Scheduling k Servers

request sequence. This means that the volume cost of any color 1 increases a factor of
(1 + γ)log log k ≈ log k slower than the volume cost of any other color. In order to keep a
small expected volume cost, one could require that β is chosen in a way that

∇sminβ,1(x)1 �
1

2
.

This, however, forces that

(k − 1)β− ln ln k + 1� 2 ,

which implies ln(β) ≥ ln(k−1)
ln ln k . With Lemma 3.41, this means that the hit cost of the

algorithm degrades to log k
log log k .

It follows that, in order to improve the competitive ratio, we cannot simply observe the
block requests. We must also react to the increase in volume cost (or volume gap) directly.
This will likely require a more precise model of the adversary. One could, for instance,
exploit the fact that, given an online can compute at any time the current increase in
volume cost for any possible set of random choices made in the past. We believe that this
might actually be necessary for defining a suitable probability distribution on the stale
colors.

In addition to this, an improved algorithm for scheduling the servers is likely necessary.
The V -Paging problem and its solution via the RWM algorithm suggest that one should
look into other online learning algorithms. The connection of online learning to the paging
problem has long been known, yet it recently gained attention, e.g., in context of the
k-Server algorithm by Bubeck et al. [BCL+18]. We suggest, in particular, to consider
the elegant Follow-the-Perturbed-Leader algorithm by Kalai and Vempala [KV05]. This
algorithm obtains similar guarantees to RWM, yet it only requires few random choices,
which could simplify an adaptation to our problem.

105

4. Conclusions and Open Problems

In this thesis we analyzed scheduling in the context of parallel systems and scheduling
in scenarios with a reordering buffer. We have developed new algorithms for solving
problems arising in these scenarios and we analyzed their properties mathematically. The
results we obtained are first and foremost theoretical in nature, yet we are confident
that an improved understanding of the mathematical foundations advances practical
implementations in like manner.

In Chapter 2 we analyzed scheduling in parallel systems through the lens of cut
problems in graphs and hypergraphs. We studied Minimum Hypergraph Bisection, a
fundamental problem in this area of research. We showed that MHB admits an Õ(

√
n)-

approximation algorithm and we were able to strengthen this result if the hypergraph in
question is uniform. Next, we demonstrated how to construct cut trees to approximate the
entire graph. These trees can serve as a building block in algorithms for more complicated
cut problems such as partitioning a graph into multiple parts of equal size. Our tree
approximates vertex cuts in graphs with quality Õ(

√
W), whereW is the sum of (positive)

vertex weights in the graph.

We complemented our algorithmic results with strong lower bounds for the approxima-
bility of balanced cut problems. Our reduction from Densest k-Subgraph to MHB
showed that MHB is part of a class of problems that are believed to admit no approxi-
mation algorithms of polylogarithmic quality. Formally, we proved that the Exponential
Time Hypothesis implies that no n1/(log logn)c-approximation algorithm exists for MHB,
where c is a universal constant. Via a different reduction, we were able to show that
the Hypergraph Dense versus Random Hypothesis implies that no n1/4−ε-approximation
algorithm for MHB exists. Finally, we gave unconditional lower bounds on the quality
of cut trees. Most importantly, we showed that any cut tree for unweighted vertex cuts
must have quality Ω

(
n1/3

)
. This establishes a strong contrast to the case of edge cuts,

for which trees of polylogarithmic quality exist, see, e.g., Räcke and Shah [RS14].

In Chapter 3 we turned to the problem of scheduling tasks with a reordering buffer in
the form of Generalized Reordering Buffer Management. It had previously been
known that any online algorithm for this problem must have competitive ratio Ω(log k +

107

4. Conclusions and Open Problems

log log b). We developed a new algorithm whose competitive ratio of O(log k(log k +

log log b)) nearly reaches that lower bound. The algorithm is asymptotically optimal for
constant k and its competitive ratio is a doubly exponential improvement over previous
work.

On the technical side, we introduced a new linear programming formulation for GRBM.
A new linear program is the cornerstone of our algorithm and it allowed us to split
the scheduling problem at hand into two mostly independent parts. The base part was
essentially Block-Devices problem. We combined this with a new procedure vaguely
inspired by algorithms for the Paging problem such as Marking. We also discussed
possible improvements of our algorithm that could lower its competitive ratio to an
asymptotically optimal O(log k + log log b), yet it remains unclear, whether or not these
ideas can be implemented successfully.

We close the thesis by highlighting more concrete open problems arising in the context
of our work.

4.1. Open Problems

Our hardness results for MHB suggest that strong approximation algorithms are unlikely
to exist for the problem. Due to the wide range of applications of hypergraph cuts,
studying whether better algorithms for restricted hypergraph classes exist seems to be an
interesting and relevant direction for future research. Notably, it would be interesting
to understand if real-world instances exhibit similar characteristics as the worst-case
instances we identified. Realistic hypergraph partitioning instances could, e.g., be collected
from numerical simulations in parallel high-performance computing.
On a more theoretical side, it would be interesting to find out if the balanced cuts

become easier to approximate if the underlying hypergraph is sufficiently sparse. As a
concrete example, consider a hypergraph that has n − 1 simple edges (forming a tree)
and n hyperedges of size

√
n. Finding an unbalanced

√
n-cut in this graph without losing

a factor of Ω(
√
n) seems impossible to do with the techniques used in this work. One

possible avenue for the search of a better algorithm is the log-density framework used by
Chlamtáč et al. for Minimum k-Union and related problems [CDM17].
The search for improved algorithms for MHB can be complemented by furthering the

development of stronger lower bounds on the approximability of the problem. It would be
interesting to see if there exists a possibility to transform an inapproximability result for
MHB into a similar result for Minimum Bisection. It is unknown whether Minimum

Bisection admits a PTAS if the ETH holds, yet we showed in this thesis that the ETH

108

4.1. Open Problems

rules out the existence of n1/(log logn)c-approximation algorithms for MHB. In an arguably
quite ambitious project, one could consider the hardness of bisection problems under the
classical P 6= NP conjecture. Ruling out a PTAS for Minimum Bisection of MHB under
this conjecture would come as a breakthrough in our understanding of cut problems.

In the context of GRBM it would be interesting to extend our techniques to star metrics.
In this scenario, the cost of a server movement may depend on the new color of the server.
A O

(
(log log bγ)2

)
-competitive algorithm for RBM on weighted stars is known, where γ

is the ratio between smallest and largest edge [AIMR15]. Adapting the linear program,
even for k = 1, is not straightforward, as one can no longer simulate a block operation at
constant cost via two server movements. We suggest the following modifications to the
linear program instead: Split a block operation to color c into a movement to the center
of the star (variables fc′(t)) and a movement from the center to color c (variable yc(t) as
before). Formally, one could consider the constraints

yc(t) ≤
∑
c′

fc′(t) ∀c, t ,

fc(t) ≤ δc(t) ∀c, t .

With yc(t) ≤
∑

c′ fc′(t), a block operation can only be performed if enough server mass
exists at the center. With fc(t) ≤ δc(t), the amount of mass traveling to the center from
c is limited. A major challenge then lies in adapting the construction of the lower bound
to the new linear program.

Recent results for Paging and related problems have shown improved online algorithms
through the use of projection-based formulations, see, e.g., Bubeck et al. [BCL+18]. It
is unclear whether or not these techniques can lead to improved online algorithms for
buffering problems. In particular, it would be fascinating to understand if one can achieve
a polylogarithmic competitive ratio for RBM that only depends on the buffer size and
not on the properties of the underlying metric space.

109

A. Appendix

A.1. Proofs of Claim 2.13

We use the standard Chernoff bounds for X ∼ Bin(n, p) with µ = n · p:

Pr[X ≤ (1− δ)µ] ≤ exp(−δ2µ/2) 0 ≤ δ ≤ 1 , (A.1)

Pr[X ≥ (1 + δ)µ] ≤ exp(−δµ/3) 1 ≤ δ . (A.2)

Proof of Claim 2.13 (1). With high probablity Gn,p,r with p = n1+α−r has vertex degree
Θ(nα).

Proof. For a fixed vertex v there are q :=
(
n−1
r−1

)
edges that contain v. Observe that

(2r)−rnr−1 ≤ q ≤ nr−1. Let X be the random variable counting the degree of X, i.e.,
X ∼ Bin(q, p) and µ = p · q ∈ [(2r)−rnα, nα]. Recall that we assumed r to be a constant
for any of our random hypergraphs.

For a given β ≥ 2, choose n large enough so that 1
3

(
1− 1

β

)
≥ log n/µ, then we apply

Chernoff bound (A.2) which gives

Pr[X ≥ βnα] ≤ Pr[X ≥ βµ] ≤ exp

(
−(β − 1)µ

3

)
≤ exp(−β log n) = n−β .

Similarly, for a given β ≥ 2, choose n large enough so that 1
2β

(
1− 1

β

)2 ≥ log n/µ, then
we apply Chernoff bound (A.1) which gives

Pr
[
X ≤ (2r)−r 1

βn
α
]
≤ Pr

[
X ≤ 1

βµ
]

≤ exp

(
−
(

1− 1

β

)2µ

2

)
≤ exp(−β log n) = n−β .

Proof of Claim 2.13 (2). Any set of n edges in a Gn,p,r with p = n1+α−r covers at least
Ω
(
(n/p)1/r

)
vertices, with high probability.

111

A. Appendix

Proof. For a fixed set of k vertices, there are q =
(
k
r

)
≤ kr edges contained in their

subhypergraph. At least n of them exist with probability at most(
q

n

)
pn ≤

(eqp
n

)n
≤
(
ekrp

n

)n
.

Setting k = 1
2e(n/p)

1/r, this probability is at most(
ekrp

n

)n
≤
(

enp

2rerpn

)n
≤ 2−n .

A union bound implies that the probability that any set of k vertices contains at least n
edges is at most (

n

k

)
2−n ≤ nk2−n = 2k logn−n .

As k ≤ (n/p)1/r and p = n1+α−r, we have k ≤ n1−α/r, therefore the above probability is
at most 2−cn for some small c. This implies that the claim holds with high probability.

Proof of Claim 2.13 (3). Any set of n(1+α)/2/r edges in a Gn,p,r with p = n1+α−r covers
at least Ω

(
n(1+α)/2−ε) vertices, with high probability, if α < 1, r is sufficiently large and

ε is a small constant.

Proof. Any fixed set of k vertices has q =
(
k
r

)
≤ kr edges in its subhypergraph. At least

z = n(1+α)/2/r of them exist with probability at most

(
q

z

)
pz ≤

(eqp
z

)z
=

(
rekrn1+α−r

n(1+α)/2

)n(1+α)/2

.

With k = n(1+α)/2−ε/e, this is

(
renr(1+α)/2−rεn1+α−r

ern(1+α)/2

)n(1+α)/2

≤
(
n(r+1)(1+α)/2−r−rε

)n(1+α)/2

We have used the fact that re/er < 1 for r ≥ 2. A union bound implies that the probability
that any set of k vertices contains at least n(1+α)/2 edges is at most(

n

k

)(
n(r+1)(1+α)/2−r−rε

)n(1+α)/2

≤ nn(1+α)/2
(
n(r+1)(1+α)/2−r−rε

)n(1+α)/2

.

112

A.2. Proofs of Claim 3.39

Observe that (r + 1)(1 + α)/2− r + 1 ≤ 0 iff r > (α+ 3)/(1− α). So, for r large enough,
the above probability is at most n−εn(1+α)/2 . This implies that the claim holds with high
probability.

A.2. Proofs of Claim 3.39

For x ∈ Rk, positive integer n ≤ k, and β > 1, define the β-softmin of order n as

sminβ,n(x) = − logβ

(∑
T∈([k]n) β

−
∑

i∈T xi
)
,

where
(
S
n

)
denotes the set of n-tuples from the set S, and [k] = {1, . . . , k}.

We will use that the gradient ∇sminβ,n(x) of the β-softmin is

∇sminβ,n(x)j = β−xj

∑
T∈([k]\{i}n−1) β

−
∑

i∈T xi∑
T∈([k]n) β

−
∑

i∈T xi
(A.3)

Proof of Claim 3.39(a). The function approximates the sum of the m smallest entries
in x. Formally for all vectors x we have

min
T∈([k]n)

∑
i∈T xi − n logβ k ≤ sminβ,n(x) ≤ min

T∈([k]n)

∑
i∈T xi .

Proof. To see the upper bound, observe that for any n-tuple T ∗,

sminβ,n(x) = − logβ

(∑
T∈([k]n) β

−
∑

i∈T xi
)

≤ − logβ

(
β−
∑

i∈T ∗ xi
)

= min
T∈([k]n)

∑
i∈T xi .

For the upper bound let y = min
T∈([k]n)

∑
i∈T xi, then

sminβ,n(x) ≥ − logβ

((k
n

)
β−y

)
≥ y − n logβ k .

Proof of Claim 3.39(b). The gradient of the function is the type of measure we require.
Formally, for all vectors x, 0 ≤ ∇sminβ,n(x)c ≤ 1, and

∑
c∇sminc(x)c = n.

Proof. Both properties follow immediately from Equation A.3

113

A. Appendix

Proof of Claim 3.39(c). The change of the function is reasonably well approximated by
its gradient. Formally for all vectors x, `, if ‖`‖1 ≤ 1 then

sminβ,n(x+ `)− sminβ,n(x) ≥ 1− 1/β

ln(β)
∇sminβ,n(x)T ` .

Proof. We first show the lower bound.
Define BT (x) = β−

∑
i∈T xi for any vector x and T ∈

(
[k]
n

)
and A(x) =

∑
T β
−

∑
i∈T xi .

As BT (x+ `) = BT (x) ·BT (`), we obtain

sminβ,n(x+ `)− sminβ,n(x) = − 1

ln(β)
ln

(
1

A(x)

∑
T∈([k]n)

BT (x+ `)

)

= − 1

ln(β)
ln

(
1

A(x)

∑
T∈([k]n)

(
BT (x) +BT (x)(BT (`)− 1)

))

= − 1

ln(β)
ln

(
1 +

1

A(x)

∑
T∈([k]n)

BT (x)(BT (`)− 1)

)

≥ 1

A(x) ln(β)

∑
T∈([k]n)

BT (x)(1−BT (`)) .

The last step follows by applying the standard inequality ln(1 + z) ≤ z. Another standard
inequality, 1 − β−z ≥ (1 − β−1)z for 0 ≤ z ≤ 1, implies that 1 − BT (`) is at least
(1− β−1)

∑
i∈T `i, when ` ≥ 0 and ‖`‖1 ≤ 1. It follows that

sminβ,n(x+ `)− sminβ,n(x) ≥ 1− 1/β

A(x) ln(β)

∑
T∈([k]n)

∑
i∈T

`iBT (x)

=
1− 1/β

A(x) ln(β)

∑
j∈[k]

`je
−xj

∑
T∈([k]\{j}n−1)

BT (x)

=
1− 1/β

ln(β)
∇sminβ,n(x)T ` ,

where we regroup the sum according to `j in the second step.

114

Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern
Approach. Cambridge University Press, 2009.

[ACER11] Anna Adamaszek, Artur Czumaj, Matthias Englert, and Harald Räcke.
Almost tight bounds for reordering buffer management. In Proceedings of
the 43rd ACM Symposium on Theory of Computing (STOC), pages 607–616,
2011. doi:10.1145/1993636.1993717.

[ACER12] Anna Adamaszek, Artur Czumaj, Matthias Englert, and Harald Räcke.
Optimal online buffer scheduling for block devices. In Proceedings of the 44th
ACM Symposium on Theory of Computing (STOC), pages 589–598, 2012.
doi:10.1145/2213977.2214031.

[ACMM05] Amit Agarwal, Moses Charikar, Konstantin Makarychev, and Yury
Makarychev. O(sqrt(log n)) approximation algorithms for min UnCut,
min 2CNF deletion, and directed cut problems. In Proceedings of the 37th
ACM Symposium on Theory of Computing (STOC), pages 573–581, 2005.
doi:10.1145/1060590.1060675.

[ACN00] Dimitris Achlioptas, Marek Chrobak, and John Noga. Competitive analysis of
randomized paging algorithms. Theoretical Computer Science, 234(1-2):203–
218, 2000. doi:10.1016/S0304-3975(98)00116-9.

[AEGK14] Yossi Azar, Matthias Englert, Iftah Gamzu, and Eytan Kidron. General-
ized reordering buffer management. In Proceedings of the 31st Symposium
on Theoretical Aspects of Computer Science (STACS), pages 87–98, 2014.
doi:10.4230/LIPIcs.STACS.2014.87.

[AEvSV19] Yossi Azar, Yuval Emek, Rob van Stee, and Danny Vainstein. The price of
clustering in bin-packing with applications to bin-packing with delays. In
Proceedings of the 31st ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 1–10, 2019. doi:10.1145/3323165.3323180.

115

http://dx.doi.org/10.1145/1993636.1993717
http://dx.doi.org/10.1145/2213977.2214031
http://dx.doi.org/10.1145/1060590.1060675
http://dx.doi.org/10.1016/S0304-3975(98)00116-9
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.87
http://dx.doi.org/10.1145/3323165.3323180

Bibliography

[AGG+09] Konstantin Andreev, Charles Garrod, Daniel Golovin, Bruce M. Maggs,
and Adam Meyerson. Simultaneous source location. ACM Transactions on
Algorithms, 6(1):16:1–16:17, 2009. doi:10.1145/1644015.1644031.

[AGGP17] Yossi Azar, Arun Ganesh, Rong Ge, and Debmalya Panigrahi. Online
service with delay. In Proceedings of the 49th ACM Symposium on Theory of
Computing (STOC), pages 551–563, 2017. doi:10.1145/3055399.3055475.

[AIMR15] Noa Avigdor-Elgrabli, Sungjin Im, Benjamin Moseley, and Yuval Rabani.
On the randomized competitive ratio of reordering buffer management with
non-uniform costs. In Proceedings of the 42nd International Colloquium
on Automata, Languages and Programming (ICALP), pages 78–90, 2015.
doi:10.1007/978-3-662-47672-7_7.

[AR06] Konstantin Andreev and Harald Räcke. Balanced graph partitioning. Theory
of Computing Systems, 39(6):929–939, 2006. doi:10.1007/s00224-006-1350-7.

[AR13] Noa Avigdor-Elgrabli and Yuval Rabani. An optimal randomized online
algorithm for reordering buffer management. In Proceedings of the 54th IEEE
Symposium on Foundations of Computer Science (FOCS), pages 1–10, 2013.
doi:10.1109/FOCS.2013.9.

[AR15] Noa Avigdor-Elgrabli and Yuval Rabani. An improved competitive algo-
rithm for reordering buffer management. ACM Transactions on Algorithms,
11(4):35:1–35:15, 2015. doi:10.1145/2663347.

[ARV09] Sanjeev Arora, Satish Rao, and Umesh V. Vazirani. Expander flows, geometric
embeddings and graph partitioning. Journal of the ACM, 56(2):5:1–5:37,
2009. doi:10.1145/1502793.1502794.

[AT19] Yossi Azar and Noam Touitou. General framework for metric optimization
problems with delay or with deadlines. In Proceedings of the 60th IEEE
Symposium on Foundations of Computer Science (FOCS), pages 60–71, 2019.
doi:10.1109/FOCS.2019.00013.

[BB02] Daniel K. Blandford and Guy E. Blelloch. Index compression through docu-
ment reordering. In Proceedings DCC 2002. Data Compression Conference,
pages 342–351, 2002. doi:10.1109/DCC.2002.999972.

[BBB+16] Marcin Bieńkowski, Martin Böhm, Jaroslaw Byrka, Marek Chrobak,
Christoph Dürr, Lukáš Folwarczný, Lukasz Jez, Jiri Sgall, Nguyen Kim

116

http://dx.doi.org/10.1145/1644015.1644031
http://dx.doi.org/10.1145/3055399.3055475
http://dx.doi.org/10.1007/978-3-662-47672-7_7
http://dx.doi.org/10.1007/s00224-006-1350-7
http://dx.doi.org/10.1109/FOCS.2013.9
http://dx.doi.org/10.1145/2663347
http://dx.doi.org/10.1145/1502793.1502794
http://dx.doi.org/10.1109/FOCS.2019.00013
http://dx.doi.org/10.1109/DCC.2002.999972

Bibliography

Thang, and Pavel Veselý. Online algorithms for multi-level aggregation. In
Proceedings of the 24th European Symposium on Algorithms (ESA), pages
12:1–12:17, 2016. doi:10.4230/LIPIcs.ESA.2016.12.

[BBC+14] Marcin Bieńkowski, Jaroslaw Byrka, Marek Chrobak, Lukasz Jez, Dorian
Nogneng, and Jirí Sgall. Better approximation bounds for the joint replenish-
ment problem. In Proceedings of the 25th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 42–54, 2014. doi:10.1137/1.9781611973402.4.

[BBJ+18] Marcin Bieńkowski, Martin Böhm, Lukasz Jez, Pawel Laskos-Grabowski, Jan
Marcinkowski, Jirí Sgall, Aleksandra Spyra, and Pavel Veselý. Logarithmic
price of buffer downscaling on line metrics. Theoretical Computer Science,
707:89–93, 2018. doi:10.1016/j.tcs.2017.10.008.

[BBK+94] Shai Ben-David, Allan Borodin, Richard M. Karp, Gábor Tardos, and Avi
Wigderson. On the power of randomization in on-line algorithms. Algorithmica,
11(1):2–14, 1994. doi:10.1007/BF01294260.

[BBK99] Avrim Blum, Carl Burch, and Adam T. Kalai. Finely-competitive paging.
In Proceedings of the 40th IEEE Symposium on Foundations of Computer
Science (FOCS), pages 450–458, 1999. doi:10.1109/SFFCS.1999.814617.

[BBMN15] Nikhil Bansal, Niv Buchbinder, Aleksander Madry, and Joseph Naor. A
polylogarithmic-competitive algorithm for the k -server problem. Journal of
the ACM, 62(5):40:1–40:49, 2015. doi:10.1145/2783434.

[BBN12] Nikhil Bansal, Niv Buchbinder, and Joseph Naor. A primal-dual randomized
algorithm for weighted paging. Journal of the ACM, 59(4):19:1–19:24, 2012.
doi:10.1145/2339123.2339126.

[BCC+10] Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige, and Aravindan
Vijayaraghavan. Detecting high log-densities: an O(n1/4) approximation for
densest k -subgraph. In Proceedings of the 42nd ACM Symposium on Theory
of Computing (STOC), pages 201–210, 2010. doi:10.1145/1806689.1806719.

[BCL+18] Sébastien Bubeck, Michael B. Cohen, Yin Tat Lee, James R. Lee, and Alek-
sander Madry. k-server via multiscale entropic regularization. In Proceedings
of the 50th ACM Symposium on Theory of Computing (STOC), pages 3–16,
2018. doi:10.1145/3188745.3188798.

117

http://dx.doi.org/10.4230/LIPIcs.ESA.2016.12
http://dx.doi.org/10.1137/1.9781611973402.4
http://dx.doi.org/10.1016/j.tcs.2017.10.008
http://dx.doi.org/10.1007/BF01294260
http://dx.doi.org/10.1109/SFFCS.1999.814617
http://dx.doi.org/10.1145/2783434
http://dx.doi.org/10.1145/2339123.2339126
http://dx.doi.org/10.1145/1806689.1806719
http://dx.doi.org/10.1145/3188745.3188798

Bibliography

[BCV+12] Aditya Bhaskara, Moses Charikar, Aravindan Vijayaraghavan, Venkate-
san Guruswami, and Yuan Zhou. Polynomial integrality gaps for strong
SDP relaxations of densest k -subgraph. In Proceedings of the 23rd ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 388–405, 2012.
doi:10.1137/1.9781611973099.34.

[BE98] Allan Borodin and Ran El-Yaniv. Online computation and competitive analy-
sis. Cambridge University Press, 1998.

[BFNT17] Niv Buchbinder, Moran Feldman, Joseph (Seffi) Naor, and Ohad Talmon.
O(depth)-competitive algorithm for online multi-level aggregation. In Pro-
ceedings of the 28th ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1235–1244, 2017. doi:10.1137/1.9781611974782.80.

[BMS+16] Aydin Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian
Schulz. Recent advances in graph partitioning. In Algorithm Engineering
- Selected Results and Surveys, volume 9220 of Lecture Notes in Computer
Science, pages 117–158. Springer, 2016. doi:10.1007/978-3-319-49487-6_4.

[BN09] Niv Buchbinder and Joseph Naor. The design of competitive online algorithms
via a primal-dual approach. Foundations and Trends in Theoretical Computer
Science, 3(2-3):93–263, 2009. doi:10.1561/0400000024.

[CDK12] Eden Chlamtáč, Michael Dinitz, and Robert Krauthgamer. Everywhere-
sparse spanners via dense subgraphs. In Proceedings of the 53rd IEEE
Symposium on Foundations of Computer Science (FOCS), pages 758–767,
2012. doi:10.1109/FOCS.2012.61.

[CDM17] Eden Chlamtáč, Michael Dinitz, and Yury Makarychev. Minimizing the union:
Tight approximations for small set bipartite vertex expansion. In Proceedings
of the 28th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
881–899, 2017. doi:10.1137/1.9781611974782.56.

[CFLP00] Robert D. Carr, Lisa Fleischer, Vitus J. Leung, and Cynthia A. Phillips.
Strengthening integrality gaps for capacitated network design and covering
problems. In Proceedings of the 11th ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), pages 106–115, 2000. URL http://dl.acm.org/citation.

cfm?id=338219.338241.

118

http://dx.doi.org/10.1137/1.9781611973099.34
http://dx.doi.org/10.1137/1.9781611974782.80
http://dx.doi.org/10.1007/978-3-319-49487-6_4
http://dx.doi.org/10.1561/0400000024
http://dx.doi.org/10.1109/FOCS.2012.61
http://dx.doi.org/10.1137/1.9781611974782.56
http://dl.acm.org/citation.cfm?id=338219.338241
http://dl.acm.org/citation.cfm?id=338219.338241

Bibliography

[CMSvS12] Ho-Leung Chan, Nicole Megow, René Sitters, and Rob van Stee. A note
on sorting buffers offline. Theoretical Computer Science, 423:11–18, 2012.
doi:10.1016/j.tcs.2011.12.077.

[Cod60] Edgar F. Codd. Multiprogram scheduling parts 1 and 2: Introduc-
tion and theory. Communications of the ACM, 3(6):347–350, 1960.
doi:10.1145/367297.367317.

[CPSV18] Rodrigo A. Carrasco, Kirk Pruhs, Cliff Stein, and José Verschae. The online set
aggregation problem. In Proceedings of the 13st Latin American Symposium
on Theoretical Informatics (LATIN), pages 245–259, 2018. doi:10.1007/978-
3-319-77404-6_19.

[CX17] Chandra Chekuri and Chao Xu. Computing minimum cuts in hypergraphs.
In Proceedings of the 28th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1085–1100, 2017. doi:10.1137/1.9781611974782.70.

[Din16] Irit Dinur. Mildly exponential reduction from gap 3SAT to polynomial-gap
label-cover. Electronic Colloquium on Computational Complexity (ECCC),
23:128, 2016. URL http://eccc.hpi-web.de/report/2016/128.

[EKW16] Yuval Emek, Shay Kutten, and Roger Wattenhofer. Online matching: haste
makes waste! In Proceedings of the 48th ACM Symposium on Theory of
Computing (STOC), pages 333–344, 2016. doi:10.1145/2897518.2897557.

[EMPS16] Alina Ene, Gary L. Miller, Jakub Pachocki, and Aaron Sidford. Routing
under balance. In Proceedings of the 48th ACM Symposium on Theory of
Computing (STOC), pages 598–611, 2016. doi:10.1145/2897518.2897654.

[Eng18] Matthias Englert. The reordering buffer problem on the line revisited.
SIGACT News, 49(1):67–72, 2018. doi:10.1145/3197406.3197418.

[ER17] Matthias Englert and Harald Räcke. Reordering buffers with logarith-
mic diameter dependency for trees. In Proceedings of the 28th ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 1224–1234, 2017.
doi:10.1137/1.9781611974782.79.

[ERS19] Matthias Englert, Harald Räcke, and Richard Stotz. Polylogarithmic guar-
antees for generalized reordering buffer management. In Proceedings of the
60th IEEE Symposium on Foundations of Computer Science (FOCS), pages
38–59, 2019. doi:10.1109/FOCS.2019.00012.

119

http://dx.doi.org/10.1016/j.tcs.2011.12.077
http://dx.doi.org/10.1145/367297.367317
http://dx.doi.org/10.1007/978-3-319-77404-6_19
http://dx.doi.org/10.1007/978-3-319-77404-6_19
http://dx.doi.org/10.1137/1.9781611974782.70
http://eccc.hpi-web.de/report/2016/128
http://dx.doi.org/10.1145/2897518.2897557
http://dx.doi.org/10.1145/2897518.2897654
http://dx.doi.org/10.1145/3197406.3197418
http://dx.doi.org/10.1137/1.9781611974782.79
http://dx.doi.org/10.1109/FOCS.2019.00012

Bibliography

[ERW09] Matthias Englert, Heiko Röglin, and Matthias Westermann. Evaluation
of online strategies for reordering buffers. ACM Journal of Experimental
Algorithmics, 14, 2009. doi:10.1145/1498698.1564503.

[ERW10] Matthias Englert, Harald Räcke, and Matthias Westermann. Reordering
buffers for general metric spaces. Theory of Computing, 6(1):27–46, 2010.
doi:10.4086/toc.2010.v006a002.

[EW05] Matthias Englert and Matthias Westermann. Reordering buffer management
for non-uniform cost models. In Proceedings of the 32nd International Collo-
quium on Automata, Languages and Programming (ICALP), pages 627–638,
2005. doi:10.1007/11523468_51.

[Fei02] Uriel Feige. Relations between average case complexity and approximation
complexity. In Proceedings of the 34th ACM Symposium on Theory of
Computing (STOC), pages 534–543, 2002. doi:10.1145/509907.509985.

[FF15] Andreas Emil Feldmann and Luca Foschini. Balanced partitions of trees
and applications. Algorithmica, 71(2):354–376, 2015. doi:10.1007/s00453-013-
9802-3.

[FHL08] Uriel Feige, MohammadTaghi Hajiaghayi, and James R. Lee. Improved
approximation algorithms for minimum weight vertex separators. SIAM
Journal on Computing, 38(2):629–657, 2008. doi:10.1137/05064299X.

[FK02] Uriel Feige and Robert Krauthgamer. A polylogarithmic approximation of
the minimum bisection. SIAM Journal on Computing, 31(4):1090–1118, 2002.
doi:10.1137/S0097539701387660.

[FKL+91] Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel D.
Sleator, and Neal E. Young. Competitive paging algorithms. Journal of
Algorithms, 12(4):685–699, 1991. doi:10.1016/0196-6774(91)90041-V.

[FKN00] Uriel Feige, Robert Krauthgamer, and Kobbi Nissim. Approximating the
minimum bisection size (extended abstract). In Proceedings of the 32nd
ACM Symposium on Theory of Computing (STOC), pages 530–536, 2000.
doi:10.1145/335305.335370.

[FMP+04] Tomás Feder, Rajeev Motwani, Rina Panigrahy, Steven S. Seiden, Rob van
Stee, and An Zhu. Combining request scheduling with web caching. Theoret-
ical Computer Science, 324(2-3):201–218, 2004. doi:10.1016/j.tcs.2004.05.016.

120

http://dx.doi.org/10.1145/1498698.1564503
http://dx.doi.org/10.4086/toc.2010.v006a002
http://dx.doi.org/10.1007/11523468_51
http://dx.doi.org/10.1145/509907.509985
http://dx.doi.org/10.1007/s00453-013-9802-3
http://dx.doi.org/10.1007/s00453-013-9802-3
http://dx.doi.org/10.1137/05064299X
http://dx.doi.org/10.1137/S0097539701387660
http://dx.doi.org/10.1016/0196-6774(91)90041-V
http://dx.doi.org/10.1145/335305.335370
http://dx.doi.org/10.1016/j.tcs.2004.05.016

Bibliography

[FRR94] Amos Fiat, Yuval Rabani, and Yiftach Ravid. Competitive k-server algo-
rithms. Journal of Computer and System Sciences, 48(3):410–428, 1994.
doi:10.1016/S0022-0000(05)80060-1.

[FRT04] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on
approximating arbitrary metrics by tree metrics. Journal of Computer and
System Sciences, 69(3):485–497, 2004. doi:10.1016/j.jcss.2004.04.011.

[GH61] Ralph E. Gomory and T. C. Hu. Multi-terminal network flows. Journal
of the Society for Industrial and Applied Mathematics, 9(4):551–570, 1961.
doi:10.1137/0109047.

[GJ79] Michael R. Garey and David S. Johnson. Computers and intractability : A
guide to the theory of NP-completeness. W. H. Freeman, 1979.

[GJS76] Michael R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some simplified
NP-complete graph problems. Theoretical Computer Science, 1(3):237–267,
1976. doi:10.1016/0304-3975(76)90059-1.

[GS09] Iftah Gamzu and Danny Segev. Improved online algorithms for the sorting
buffer problem on line metrics. ACM Transactions on Algorithms, 6(1), 2009.
doi:10.1145/1644015.1644030.

[HHR03] Chris Harrelson, Kirsten Hildrum, and Satish Rao. A polynomial-time tree
decomposition to minimize congestion. In Proceedings of the 15th ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), pages
34–43, 2003. doi:10.1145/777412.777419.

[HK00] Bruce Hendrickson and Tamara G. Kolda. Graph partitioning mod-
els for parallel computing. Parallel Computing, 26(12):1519–1534, 2000.
doi:10.1016/S0167-8191(00)00048-X.

[IP01] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-
sat. Journal of Computer and System Sciences, 62(2):367–375, 2001.
doi:10.1006/jcss.2000.1727.

[Kho06] Subhash Khot. Ruling out PTAS for graph min-bisection, dense k-subgraph,
and bipartite clique. SIAM Journal on Computing, 36(4):1025–1071, 2006.
doi:10.1137/S0097539705447037.

121

http://dx.doi.org/10.1016/S0022-0000(05)80060-1
http://dx.doi.org/10.1016/j.jcss.2004.04.011
http://dx.doi.org/10.1137/0109047
http://dx.doi.org/10.1016/0304-3975(76)90059-1
http://dx.doi.org/10.1145/1644015.1644030
http://dx.doi.org/10.1145/777412.777419
http://dx.doi.org/10.1016/S0167-8191(00)00048-X
http://dx.doi.org/10.1006/jcss.2000.1727
http://dx.doi.org/10.1137/S0097539705447037

Bibliography

[KNR02] Sanjeev Khanna, Joseph Naor, and Danny Raz. Control message aggregation
in group communication protocols. In Proceedings of the 29th International
Colloquium on Automata, Languages and Programming (ICALP), pages 135–
146, 2002. doi:10.1007/3-540-45465-9_13.

[KNS09] Robert Krauthgamer, Joseph Naor, and Roy Schwartz. Partitioning
graphs into balanced components. In Proceedings of the 20th ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 942–949, 2009.
doi:10.1137/1.9781611973068.102.

[Kou09] Elias Koutsoupias. The k-server problem. Computer Science Review, 3(2):105–
118, 2009. doi:10.1016/j.cosrev.2009.04.002.

[KP95] Elias Koutsoupias and Christos H. Papadimitriou. On the k-server conjecture.
Journal of the ACM, 42(5):971–983, 1995. doi:10.1145/210118.210128.

[KPR93] Philip N. Klein, Serge A. Plotkin, and Satish Rao. Excluded minors, net-
work decomposition, and multicommodity flow. In Proceedings of the 25th
ACM Symposium on Theory of Computing (STOC), pages 682–690, 1993.
doi:10.1145/167088.167261.

[KR17] Matthias Kohler and Harald Räcke. Reordering buffer management with
a logarithmic guarantee in general metric spaces. In Proceedings of the
44nd International Colloquium on Automata, Languages and Programming
(ICALP), pages 33:1–33:12, 2017. doi:10.4230/LIPIcs.ICALP.2017.33.

[KRSW04] Jens Krokowski, Harald Räcke, Christian Sohler, and Matthias Westermann.
Reducing state changes with a pipeline buffer. In Proceedings of the 9th
International Fall Workshop Vision, Modeling, and Visualization (VMV),
pages 217–224, 2004.

[KV05] Adam Kalai and Santosh S. Vempala. Efficient algorithms for online decision
problems. Journal of Computer and System Sciences, 71(3):291–307, 2005.
doi:10.1016/j.jcss.2004.10.016.

[Lee19] Euiwoong Lee. Partitioning a graph into small pieces with applications
to path transversal. Mathematical Programming, 177(1-2):1–19, 2019.
doi:10.1007/s10107-018-1255-7.

122

http://dx.doi.org/10.1007/3-540-45465-9_13
http://dx.doi.org/10.1137/1.9781611973068.102
http://dx.doi.org/10.1016/j.cosrev.2009.04.002
http://dx.doi.org/10.1145/210118.210128
http://dx.doi.org/10.1145/167088.167261
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.33
http://dx.doi.org/10.1016/j.jcss.2004.10.016
http://dx.doi.org/10.1007/s10107-018-1255-7

Bibliography

[LR99] Frank T. Leighton and Satish Rao. Multicommodity max-flow min-cut
theorems and their use in designing approximation algorithms. Journal of
the ACM, 46(6):787–832, 1999. doi:10.1145/331524.331526.

[Man17] Pasin Manurangsi. Almost-polynomial ratio ETH-hardness of approximating
densest k-subgraph. In Proceedings of the 49th ACM Symposium on Theory
of Computing (STOC), pages 954–961, 2017. doi:10.1145/3055399.3055412.

[Man18] Pasin Manurangsi. Inapproximability of maximum biclique problems, min-
imum k -cut and densest at-least-k -subgraph from the small set expansion
hypothesis. Algorithms, 11(1):10, 2018. doi:10.3390/a11010010.

[MMS90] Mark S. Manasse, Lyle A. McGeoch, and Daniel D. Sleator. Competitive
algorithms for server problems. Journal of Algorithms, 11(2):208–230, 1990.
doi:10.1016/0196-6774(90)90003-W.

[MS90] David W. Matula and Farhad Shahrokhi. Sparsest cuts and bottle-
necks in graphs. Discrete Applied Mathematics, 27(1-2):113–123, 1990.
doi:10.1016/0166-218X(90)90133-W.

[MS91] Lyle A. McGeoch and Daniel D. Sleator. A strongly competitive randomized
paging algorithm. Algorithmica, 6(6):816–825, 1991. doi:10.1007/BF01759073.

[Räc02] Harald Räcke. Minimizing congestion in general networks. In Proceedings
of the 43rd IEEE Symposium on Foundations of Computer Science (FOCS),
pages 43–52, 2002. doi:10.1109/SFCS.2002.1181881.

[Räc08] Harald Räcke. Optimal hierarchical decompositions for congestion minimiza-
tion in networks. In Proceedings of the 40th ACM Symposium on Theory of
Computing (STOC), pages 255–264, 2008. doi:10.1145/1374376.1374415.

[RS14] Harald Räcke and Chintan Shah. Improved guarantees for tree cut sparsifiers.
In Proceedings of the 22th European Symposium on Algorithms (ESA), pages
774–785, 2014. doi:10.1007/978-3-662-44777-2_64.

[RS16] Harald Räcke and Richard Stotz. Improved approximation algorithms for
balanced partitioning problems. In Proceedings of the 33rd Symposium on
Theoretical Aspects of Computer Science (STACS), pages 58:1–58:14, 2016.
doi:10.4230/LIPIcs.STACS.2016.58.

123

http://dx.doi.org/10.1145/331524.331526
http://dx.doi.org/10.1145/3055399.3055412
http://dx.doi.org/10.3390/a11010010
http://dx.doi.org/10.1016/0196-6774(90)90003-W
http://dx.doi.org/10.1016/0166-218X(90)90133-W
http://dx.doi.org/10.1007/BF01759073
http://dx.doi.org/10.1109/SFCS.2002.1181881
http://dx.doi.org/10.1145/1374376.1374415
http://dx.doi.org/10.1007/978-3-662-44777-2_64
http://dx.doi.org/10.4230/LIPIcs.STACS.2016.58

Bibliography

[RSS18] Harald Räcke, Roy Schwartz, and Richard Stotz. Trees for vertex cuts,
hypergraph cuts and minimum hypergraph bisection. In Proceedings of
the 30th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 23–32, 2018. doi:10.1145/3210377.3210398.

[RSW02] Harald Räcke, Christian Sohler, and Matthias Westermann. Online scheduling
for sorting buffers. In Proceedings of the 10th European Symposium on
Algorithms (ESA), pages 820–832, 2002. doi:10.1007/3-540-45749-6_71.

[SGV04] Sven Spieckermann, Kai Gutenschwager, and Stefan Voß. A sequential order-
ing problem in automotive paint shops. International Journal of Production
Research, 42(9):1865–1878, 2004. doi:10.1080/00207540310001646821.

[SS13] Peter Sanders and Christian Schulz. Think locally, act globally: Highly bal-
anced graph partitioning. In Proceedings of the 12th International Symposium
on Experimental Algorithms (SEA), pages 164–175, 2013. doi:10.1007/978-3-
642-38527-8_16.

[ST85] Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list up-
date and paging rules. Communications of the ACM, 28(2):202–208, 1985.
doi:10.1145/2786.2793.

[SV95] Huzur Saran and Vijay V. Vazirani. Finding k cuts within twice
the optimal. SIAM Journal on Computing, 24(1):101–108, 1995.
doi:10.1137/S0097539792251730.

[Vij12] Aravindan Vijayaraghavan. Beyond Worst Case Analysis in Approximation
Algorithms. PhD thesis, Princeton University, 2012. URL http://arks.

princeton.edu/ark:/88435/dsp01qr46r086z.

[Wil19] R. Ryan Williams. Some estimated likelihoods for computational complexity.
In Computing and Software Science - State of the Art and Perspectives,
volume 10000 of Lecture Notes in Computer Science, pages 9–26. Springer,
2019. doi:10.1007/978-3-319-91908-9_2.

124

http://dx.doi.org/10.1145/3210377.3210398
http://dx.doi.org/10.1007/3-540-45749-6_71
http://dx.doi.org/10.1080/00207540310001646821
http://dx.doi.org/10.1007/978-3-642-38527-8_16
http://dx.doi.org/10.1007/978-3-642-38527-8_16
http://dx.doi.org/10.1145/2786.2793
http://dx.doi.org/10.1137/S0097539792251730
http://arks.princeton.edu/ark:/88435/dsp01qr46r086z
http://arks.princeton.edu/ark:/88435/dsp01qr46r086z
http://dx.doi.org/10.1007/978-3-319-91908-9_2

	Introduction
	Balanced Cuts in Graphs and Hypergraphs
	Formal description of the problems
	Related work
	Our results

	Generalized Reordering Buffer Management
	Problem statement
	Related work
	Delay problems
	Our results

	Bibliographical Notes

	Balanced Cuts in Graphs and Hypergraphs
	Preliminaries
	Approximating Minimum Hypergraph Bisection
	Approximation algorithms
	Hardness results

	Trees for Vertex Cuts and Hypergraph Cuts
	Constructing vertex cut trees
	Lower bounds

	Generalized Reordering Buffer Management
	The Linear Programming Relaxation
	LP formulation
	Modifying the buffer size

	Algorithm Overview
	Base procedure
	Cost control procedure

	Analysis
	Lower bound construction
	Analysis of the base procedure
	Analysis of the cost control procedure
	Combining the results

	Scheduling k Servers
	Plan of attack
	Model of cost and adversary
	Subroutine for scheduling servers
	Towards optimal competitiveness?

	Conclusions and Open Problems
	Open Problems

	Appendix
	Proofs of Claim 2.13
	Proofs of Claim 3.39

	Bibliography

