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Abstract

Problem Big data frameworks enable organizations to process data with high volume,
velocity, and variety. Guaranteeing software performance requirements is essential to re-
ceive the expected value from big data systems. Evaluating the software performance in
terms of response time and resource utilization throughout the software lifecycle invol-
ves multiple complications. Measurement-based evaluation approaches are often used in
practice but require efforts, expenses, realistic test environments, and test data. Due to
the extent of big data systems, it is usually not feasible to examine all different system
configurations. In contrast, model-based performance evaluations do not involve these
drawbacks and can be already applied very early in the software lifecycle. In the context
of big data, existing approaches only support a few performance metrics, require meta-
knowledge of frameworks, and need to be created and maintained manually. The goal of
this dissertation is to introduce a model-based performance evaluation approach for big
data systems and supports its applicability by automatically extracting and simulating
models.

Research Method This dissertation follows a design science research methodology to
achieve its goals. It uses a development-centered approach to apply and extend existing
model-based concepts and approaches in the domain of big data software systems. Ar-
tifacts such as prototype systems are iteratively developed and enhanced. Their use is
demonstrated by formulating scenarios and evaluating them in controlled experiments for
their qualities (i.e., prediction accuracy) using simulations.

Results By the example of Internet of Things use cases, the increasing need of planning
and managing the software performance of big data systems is emphasized. Additionally,
problems of existing model-based approaches are outlined that work well in other do-
mains but miss relevant features such as modeling distributed and parallel computing. A
solution to model and simulate performance characteristics is introduced and evaluated
for batch processing and stream processing in upscaling scenarios regarding input data
sizes and hardware resources. In order to provide the solution in a tool-agnostic way and
independent of technologies, a formalism and corresponding domain-specific language is
introduced. Prototypes are presented that automate the extraction of instances of this
language at the level of software execution architectures and resource demands, data mo-
dels, and hardware resources. In order to monitor performance traces with low overhead
and being able to derive resource demands, a sampling approach is developed. The resul-
ting automated model-based performance approach showed to deliver accurate prediction
results (i.e., response time and utilization of central processing units) for two machine
learning applications in upscaling scenarios.
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Research Implications Existing model-based approaches focus on predicting the me-
tric response time. Resource demands are not modeled and predicted explicitly, but may
only be assumed implicitly. This dissertation introduces a formalism and domain-specific
language to describe performance-relevant characteristics and resource demands of big
data systems independent of technology. While automated model extractions exists in
other domains, only a few approaches exist in the domain of big data. These approaches
use machine learning techniques and represent black-box approaches. This dissertation
additionally demonstrates an automated white-box approach that presents procedures on
how to integrate and combine measurements. Software architectures are extracted and
parametric resource demands are derived and linked to software components. As a result,
performance models are created on architecture-level that can be simulated and used to
predict and evaluate the performance of big data systems.

Practical Implications Performance models are often not used in practice as the crea-
tion and usage is complex and tool support is not available. This dissertation contributes
to the applicability and usability of model-based performance evaluations. The prototype
to automatically extract models removes the need for manual creation and maintenance
across software releases. It also enables performance engineers to plan required capacities
and analyze the scalability of applications without expensive practical evaluations in test
environments. Futhermore, performance models are abstracted from users by introdu-
cing a domain-specific language that only contains performance-relevant parameters. In
this way, software engineers without meta-knowledge of big data frameworks and expert
knowledge in performance models shall be able to apply the automated approach.

Limitations Resource demands are derived based on one initial execution of an app-
lication. It is essential that the test data are comparable to production data in order to
ensure accurate prediction results. The presented model-based prototypes do not expli-
citly consider resource demands for disk drives but only implicitly. Intercepting accurate
and fine-granular measurements for read and write demands and relating them to softwa-
re operations was not possible without adding special instrumentation to the used data
provider. As the simulation of main memory is not provided by simulation engines or
only in a very limited way, demands for allocating and deallocating memory were also not
modeled.



Zusammenfassung

Problem Big Data Frameworks ermoglichen es Unternehmen, Daten mit hohem Vo-
lumen, hoher Geschwindigkeit und unterschiedlicher Datentypen zu verarbeiten. Die Si-
cherstellung der Anforderungen an die Softwareperformance ist unerlasslich, um den er-
warteten Nutzen und Mehrwert von Big Data Systemen zu generieren. Die Evaluation der
Softwareperformance wihrend des gesamten Softwarelebenszyklus hinsichtlich der Reak-
tionszeit und Ressourcenauslastung ist jedoch mit mehreren Komplikationen verbunden.
Messbasierte Evaluationsansitze werden in der Praxis haufig eingesetzt, erfordern aber
hohe Aufwéinde, Kosten, realistische Testumgebungen und Testdaten. Aufgrund des Um-
fangs und der Komplexitdt von Big Data Systemen ist es in der Regel nicht mdoglich, alle
verschiedenen Systemkonfigurationen und Testszenarien zu untersuchen. Modellbasierte
Evaluationsansatze haben diese Nachteile dagegen nicht und kénnen bereits sehr frith im
Softwarelebenszyklus eingesetzt werden. Im Kontext von Big Data Systemen unterstiit-
zen bestehende Ansétze jedoch nur wenige Performancemetriken, erfordern Metawissen
tiber Frameworks und miissen manuell erstellt und gepflegt werden. Ziel dieser Arbeit
ist es, einen modellbasierten Evaluationsansatz fiir Big Data System zu entwerfen und
dessen Anwendbarkeit durch die automatische Extraktion und Simulation von Modellen
zu unterstiitzen.

Forschungsmethode Diese Dissertation folgt einer designorientierten Forschungsme-
thode. Sie nutzt einen entwicklungszentrierten Ansatz, um bestehende modellbasierte
Konzepte und Ansétze im Bereich Big Data anzuwenden und zu erweitern. Artefakte wie
beispielsweise Prototypensysteme werden iterativ entwickelt und kontinuierlich verbes-
sert. Deren Anwendung wird durch die Formulierung von Szenarien und deren Evaluation
in kontrollierten Experimenten auf ihre Eigenschaften (wie die Vorhersagegenauigkeit)
mittels Simulationen demonstriert.

Ergebnisse An Anwendungsbeispielen im Bereich der Internet der Dinge wird der zu-
nehmende Bedarf fiir die Planung und das Management der Softwareperformance von Big
Data Systemen hervorgehoben. Zusatzlich werden Probleme bestehender modellbasierter
Ansétze skizziert, die fiir Systeme in anderen Doménen gut funktionieren, aber relevante
Eigenschaften wie die Modellierung von verteilten und parallelen Datenverarbeitungen
nicht abbilden. Ein Ansatz zur Modellierung und Simulation der Softwareperformance
wird eingefithrt und fiir die Stapel- und Datenstromverarbeitung in verschiedenen Szena-
rien hinsichtlich zunehmender Datengrofien und zuséatzlicher Hardwareressourcen evalu-
iert. Um die Losung tool-agnostisch und technologieunabhéngig bereitzustellen, wird ein
Formalismus und eine entsprechende doménenspezifische Sprache eingefiihrt. Es werden
Prototypen vorgestellt, die die Extraktion von Modellinstanzen dieser Sprache fiir den
Ausfithrungsplan und Ressourcenanforderungen der Softwarearchitektur, Datenmodelle
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und Hardwareressourcen automatisieren. Um Performanceabldufe mit geringem Aufwand
zu iiberwachen und Ressourcenbedarfe ableiten zu kénnen, wird zusatzlich ein Samp-
lingansatz entwickelt. Der automatisierte modellbasierte Performanceevaluierungsansatz
lieferte genaue Vorhersageergebnisse (bzgl. der Reaktionszeit und Auslastung von Prozes-
soren) fiir zwei Anwendungen des maschinellen Lernens in mehreren Szenarien.

Beitrag zur Forschung Bestehende modellbasierte Ansétze konzentrieren sich auf die
Vorhersage der Metrik Antwortzeit. Der Ressourcenbedarf wird nicht explizit modelliert
und vorhergesagt, sondern teils nur implizit angenommen. Diese Arbeit stellt einen Forma-
lismus und eine doménenspezifische Sprache vor, um performancerelevante Merkmale und
Ressourcenanforderungen von Big Data Systemen unabhéngig von deren Technologie zu
beschreiben. Wahrend fiir Bereiche anderer Systeme bereits einige automatisierte Model-
lextraktionen existieren, gibt es nur wenige Ansétze fiir Big Data Systeme. Diese Ansétze
verwenden dabei maschinelle Lerntechniken und stellen somit Black-Box-Anséatze dar.
Diese Dissertation zeigt einen automatisierten White-Box-Ansatz und stellt eine Heran-
gehensweise vor, wie modellbasierte und messbasierte Evaluationsansitze integriert und
kombiniert werden konnen. Softwarearchitekturen werden automatisiert extrahiert und
parametrische Ressourcenbedarfe abgeleitet und mit Softwarekomponenten verkniipft. Als
Ergebnis werden Performancemodelle auf Architekturebene erstellt, die simuliert und zur
Vorhersage und Evaluation der Softwareperformance von Big Data Systemen verwendet
werden konnen.

Beitrag zur Praxis Performancemodelle werden in der Praxis haufig nicht eingesetzt,
da die Erstellung und Nutzung komplex ist und keine Toolunterstiitzung verfiighar ist.
Diese Dissertation tragt zur Anwendbarkeit und Verwendbarkeit modellbasierter Perfor-
manceevaluationen bei. Der Prototyp zur Extraktion von Modellen automatisiert die ma-
nuelle Erstellung und Wartung im Falle von Softwareupdates. Dariiber hinaus erlaubt der
Ansatz notwendige Kapazitaten zu planen und die Skalierbarkeit von Anwendungen oh-
ne aufwiandige praktische Auswertungen in Testumgebungen zu analysieren. Des Weiteren
werden Performancemodelle durch die Einfiihrung einer doménenspezifischen Sprache, die
nur performance-relevante Parameter enthélt, von den Benutzern abstrahiert. Auf diese
Weise sollen auch Softwareentwickler ohne Metawissen tiber Big Data Frameworks und
Expertenwissen tiber Performancemodelle den automatisierten Ansatz anwenden kénnen.

Limitationen Ressourcenbedarfe werden basierend auf einer initialen Ausfithrung ei-
ner Anwendung abgeleitet. Dabei ist es wichtig, dass die Testdaten mit den Produk-
tionsdaten vergleichbar sind, um spater genaue Vorhersageergebnisse zu gewéahrleisten.
Daneben beriicksichtigen die vorgestellten modellbasierten Prototypen Festplattenzugrif-
fe nicht explizit, sondern nur implizit. Das Messen genauer und feingranularer Messungen
fiir Lese- und Schreibanforderungen und deren Verkniipfung mit Softwareoperationen war
nicht moglich, ohne das verwendete Framework zur Datenbereitstellung speziell zu instru-
mentieren. Da die Simulation des Hauptspeichers nicht oder nur sehr eingeschrankt von
Simulationsframeworks unterstiitzt wird, wurden auch Ressourcenbedarfe fiir die Alloka-
tion und Freigabe von Hauptspeicher nicht modelliert.
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Chapter 1

Introduction

The volume of available data exponentially grows as a result of increasing ubiquity of
information and communications technology and the Internet of Things (IoT) (Atzori/
Iera/Morabito, 2010; Schermann et al., 2014). The term associated with this huge amount
of information is big data, which describes data sets that are so large and complex that they
require specialized data storage, management, analysis, and visualization technologies
(Chen/Chiang/Storey, 2012). Systems that are specialized for such capabilities are called
big data systems. A common example represents the Apache Hadoop framework with its
distributed file system to store massive amounts of data and its integrated MapReduce
data processing to access and analyze this data (Apache Hadoop, 2015).

Big data systems are more and more used for analytical use cases and have to meet real-
time requirements. The performance of such systems plays an increasingly important role
so depending systems operate efficiently and organizations are able to receive the expected
value (Barbierato/Gribaudo/Iacono, 2014). This requires engineers to plan performance
requirements and size capacities adequately in advance in order to avoid bottlenecks and
optimize system configurations. Practically evaluating the performance is a complex task.
Another approach to address these problems are performance models (Becker/Koziolek/
Reussner, 2009). They allow to depict performance characteristics of software systems
and can be analytically solved and simulated to allow performance predictions.

One of the challenges is to model performance characteristics of big data applications and
derive parametric resource demands of each application component. Therefore, this work
aims on proposing a Domain-specific Language (DSL) for specifying big data systems and
a modeling approach for Apache Spark applications on Apache Hadoop. As creating mod-
els requires sophisticated metaknowledge regarding big data frameworks but also modeling
and simulation approaches, we additionally introduce a prototype to automatically derive
models based on measurements. By adapting model parameters and simulating models,
we are able to predict the performance of applications for different scenarios. We eval-
uate the prediction accuracy of adapted models compared to correspondingly executed
applications. Our approach enables architects to evaluate performance metrics such as
response time and utilization without expensive practical evaluations in test beds.
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1.1 Motivation and Problem Statement

The MapReduce paradigm and the corresponding open source implementation by Apache
Hadoop enabled software engineers to process and exploit big data (Dean/Ghemawat,
2008; Apache Hadoop, 2015). By now, there have been multiple frameworks released
such as Apache Spark, Apache Storm, and Apache Fink that enhanced the software
performance of big data systems and allow for processing different types of applications
and workloads, such as graphs, data streams, and machine learning (Zaharia et al., 2016;
Marz/Warren, 2015; Carbone et al., 2015). For all application and workload types, the
software performance of such frameworks and systems is vital for a successful application
(Brunnert etal., 2014).

Evaluating the software performance is a difficult and complex task (Wang/Khan, 2015).
Before starting the development of a new software application different technologies may
be compared depending on the type of workload in order to select an efficient solution.
Before deploying a big data application into production the performance and scalability
may also be evaluated with different system configurations for different scenarios such as
increased data input and increased hardware resources.

Practical measurement-based approaches such as performance tests are usually expensive.
The require realistic test systems and test data as well as expert performance knowledge
by software and systems engineers, for instance, to deduce root causes of performance bot-
tlenecks (Brunnert et al., 2015; Jain, 1991). In order to evaluate different configurations
and scaling behaviors, multiple test runs must be executed. As the extent of big data
systems systems and configurations is immense, usually, only a subset of different settings
can be evaluated in a reasonable amount of time. Furthermore, tests commonly run with
a reduced amount of data and hardware resources due to their availability and involved
costs. Therefore, it is often not possible to draw conclusions about required computing ca-
pacities while guaranteeing certain performance requirements (e.g., real-time processing).
Consequently, it is also difficult to estimate associated costs. Lastly, practical performance
evaluations usually occur late in the development lifecycle resulting in additional efforts
in case changes in algorithms and software framework are necessary.

In contrast, model-based approaches provide an alternative to measurement-based ap-
proaches. They can be used already at the beginning as well as during software develop-
ment. By adapting models and using analytical solvers or simulations to predict different
performance metrics the can be used for various use cases (Becker/Koziolek/Reussner,
2009; Brosig etal., 2015; Brunnert/Krcmar, 2017). For instance, they allow to proac-
tively optimize system and deployment configurations, evaluate scalability, test software
design alternatives, and apply different workloads.
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1.2 Research Goal and Research Questions

The goal of this dissertation is to develop a model-based approach in order to predict
and evaluate the software performance of big data applications. Existing approaches only
consider the response time of applications but not demands for resources (i.e., CPU) and
lack of tool support. Creating models manually takes a lot of effort and is error-prone
and slow as software systems are complex and continuously evolve (Brunnert et al., 2015).
Therefore, the goal of this dissertation is also develop a software solution to automatically
extract performance models for big data systems in order to support software and system
engineers and to enhance the applicability of model-based performance evaluations.

In order to achieve the research goals, this dissertation tries to answer the following
research questions (RQs):

RQ 1: What features must a meta-model support to model the performance of big
data systems?

Model-based performance are well understood for classical software systems such as busi-
ness applications. A variety of different meta-models exist that support to model perfor-
mance characteristics of software architectures and resource demands of software compo-
nents. Performance models on architecture-level provide a way to model software com-
ponents separated from hardware environments and workload descriptions. Such existing
models, however, do not support features of big data frameworks such as distributed and
parallel computing. In the area of big data, also several model-based approaches have
been introduced. However, they do not separate performance models on architecture-
level, are specific to one technology and to one processing paradigm, and do not allow
for modeling resource demands and predicting resource utilization. This first question
focusses on understanding the challenges and features of distributed and parallel systems
such as IoT and big data applications. Existing model-based approaches are reviewed
and evaluated. On this basis, an existing, widely used meta-model (i.e., the Palladio
Component Model (PCM) (Becker/Koziolek/Reussner, 2009)) and its simulation engine
is extended to support theses features independent of technologies.

RQ 2: How can the performance of batch and stream applications be modeled and
simulated?

This question focuses on applying and evaluating the developed meta-model using exam-
ple technologies. A concept is developed to depict and transfer all relevant performance
characteristics of big data systems. This includes data workload, hardware resources, the
execution architecture and execution components of applications. For the latter, resource
demands have to be estimated, for instance, for a Central Processing Unit (CPU) in or-
der to be able to predict the CPU utilization. To allow for adapting model parameters
and evaluate different system configurations (e.g., increased hardware resources and data
workload), it is essential to estimate and model resource demands of execution compo-
nents and relationships between components with parametric dependencies. In order to
evaluate our modeling approach, we apply it on two different processing types, batch and
stream processing, using example applications from an open source benchmark suite and



assess the prediction accuracy in controlled experiments. Therefore, we create one initial
model for an application and adapt model parameters according to different scenarios
such as upscaling data workload. Afterwards, we simulate these models and compare the
prediction accuracy of response times and resource utilization with measurement results
from executed applications with corresponding settings and configurations.

RQ 3: How can performance models and resource demands of big data systems be
automatically extracted?

For a software system, the manual creation of a corresponding performance model re-
quires a lot of expert knowledge and effort, especially, as software is continuously subject
to changes and evolvements. This usually prevents engineers from using them. In order
facilitate the use and applicability of our approach, this question focuses on automating
the approach of extracting performance models. We develop a DSL for big data systems
and a prototype that uses interfaces of big data frameworks to extract hardware re-
sources, data workload, and execution architectures. The prototype also uses monitoring
traces to estimate resource demands and relate these demands to components and intra-
component relationships of execution architectures. In order to use monitoring traces,
the performance applications must be profiled. As profiling adds a considerable amount
of overhead to the software performance of applications, we develop a lightweight profiler
that uses a sampling approach to extract stack traces and CPU measurements. In order
to use and simulate DSL instances, we transform them to performance models as speci-
fied in RQ 2. Similarly, we evaluate the prediction accuracy of our approach for different
scenarios using controlled experiment and apply more complex big data applications that
we were not able to model by hand.

1.3 Thesis Structure

This dissertation consists of three Parts A, B, and C. Figure 1.1 illustrates the structure
of the parts and contents as well as the line of argumentation.

Part A introduces this dissertation. The current chapter 1 describes the problem state-
ment, explains research goals and corresponding RQs, and illustrates the thesis structure.
Chapter 2 provides and overview of the conceptual background including related terms,
disciplines, methods, and technologies. Chapter 3 outlines the research design, applied
research methods, and the included publications.

Part B includes six embedded publications P1 to P6 in chapters 4 to 9. The publica-
tions are results from research done by the author as part of this dissertation. Section 3.3
provides a short summary of each publication and contribution to the corresponding RQ.

Part C concludes and discusses this dissertation. Chapter 10 first summarizes the
results of the publications and describes assumptions and limitations. Afterwards, it
outlines contributions to research and to practice and, finally, provides an outlook of
future research.
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Chapter 2

Conceptual Background

In this section we provide foundations about technologies and approaches on which this
thesis builds upon. We will give an overview of current big data systems in section 2.1.
This includes different frameworks and process paradigms on application level, but also
on resource and infrastructure management level and data and storage management level.
Section 2.3 describes two disciplines as part of software performance management. Section
2.3 gives an overview of performance modeling and simulation approaches.

2.1 Big Data Frameworks and Systems

This section presents two kinds of processing types - batch processing (section 2.1.1) and
stream processing (section 2.1.2). Afterwards, we illustrate how these applications are
managed in cluster resources (section 2.1.3) and access data (section 2.1.4).

2.1.1 Batch Processing

Batch applications process historical data with big volume and tend not to be used for
low latency scenarios (Chen/Zhang, 2014). The MapReduce implementation of Apache
Hadoop represents one of the first technologies for this purpose. Inspired by this, Apache
Spark and, recently, Apache Flink are two additional dedicated frameworks.

MapReduce

Data are often so large that they are required to be distributed across hundreds or even
thousands of machines. In order to analyze such data within a certain response time, data
processing is similarly aimed at being distributed and parallel. Since distribution data and
parallelizing computations, which also involves fault tolerance and load balancing, had to
be repetitively dealt with by developers, Google, in particular Dean/Ghemawat (2008),
designed and implemented the programming model MapReduce.

6
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Programming and Data Model The idea is similar to and based on constructs from
functional programming languages such as Lisp and is described in the following based
on Dean/Ghemawat (2008).

As the name suggests, the model consists of the two functions map and reduce.

map (k1,v1) — list(k2,v2) (2.1)

The map function receives one key/value pair as input and returns a set of key/value
pairs. The MapReduce framework groups values by the same key and invokes the reduce
function.

reduce (k2,list(v2))  — list(v2) (2.2)

The reduce function receives this set of keys and an associated a set of values for each
key and returns a set of result values.

Execution Architecture In order to visualize the flow and understand performance
characteristics, we consider the flow of a MapReduce operation as illustrated in figure 2.1.

Client
Program
; ——
fork, - o fork '~ fork
’ ‘ \\
Rl Master N
,¢  assign = < assign \\
,/ map _--"~ ~ Jeduce '~
é ull T~ Se \\\
7 Worker > N P
Split 0 / write [ output
i "] File1
Split 1 read local write
Split 2 » Worker —>
; Output

Split 3 >

p >< Worker File 2
Split 4 /

Worker >
Input Files Map Phase Intermediate Files Reduce Phase Output Files

Figure 2.1: Ezecution flow of MapReduce (adapted from Dean/Ghemawat, 2008)

If the big data application (user program) is executed, one master and multiple workers
will be created. The master distributes tasks to the workers, namely, map and reduce
tasks, which in turn execute the map and reduce function. Dependent on available re-
sources of each worker, tasks will be executed in parallel.

In the map phase, one map task will be initiated by the master for each split. A split is
a block of an input file. Usually, input files are split into several splits and, respectively,
blocks (the default size for Apache Hadoop is 128 megabytes). Within each map task, the
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worker reads the split, parses the key/value pairs and invokes the map function for each
pair (Dean/Ghemawat, 2008). When possible, the master aims to only assign map tasks
to those workers where a replica of the corresponding input split is on the local disk of the
worker available. This shall improve the reading speed as well as reduce network transfers
and usage. The output of tasks in the map phase is sorted by key and periodically spilled
to intermediate files on local disks, e.g., after a circular in-memory buffer exceeds a certain
threshold for Apache Hadoop (Kro/Krcmar, 2017). The data locations of these files are
reported to the master.

In the reduce phase, a worker receives these locations by the master and uses remote
method invocations to read the data from other workers’ disks. Therefore, each worker
has its own key space. When a worker received all data for its corresponding key space,
they are sorted by key and invokes the reduce function of each key and its associated in-
termediate values. The output is written and appended to output files (Dean/Ghemawat,
2008).

The number of splits, disk usage as well as network usage represent limiting factors re-
garding performance. Therefore, it is important to note that the map and reduce phase
are not necessarily executed sequentially. For Apache Hadoop MapReduce, the reduce
phase starts after a certain fraction (default 5%) of map tasks has finished (configured by
the parameter mapreduce.job.reduce.slowstart.completedmaps) (Apache Hadoop, 2015).
This involves the advantage of distributing remote reads over time and relieve network
bandwidth. Furthermore, a so-called combiner function can be implemented, which, in
practice, may be equal the reduce function. It will be executed during and directly after
the map phase to already compute preliminary results values and reduce the amount of
data that are remotely read in the reduce phase (Dean/Ghemawat, 2008).

Apache Spark

The emergence of big data has lead to multiple new software frameworks that are special-
ized for e.g., batch processing, stream processing, and Structured Query Language (SQL)
querying. Since big data is highly diverse and messy, pipelines and applications often
need to combine such different approaches (Zaharia etal., 2016). Therefore, data and
intermediate results must be reused, for instance, in iterative algorithms such as machine
learning and graph processing (Zaharia etal., 2012a). However, reusing results for iter-
ative processing, for instance, in MapReduce will require applying multiple applications
and, therefore, to always write these results to disk and read them between these applica-
tions, which affects response times. For this purpose, specialized add-on frameworks such
as Pregel and HaLoop had been developed, but also lack of providing abstractions and
interfaces for general reuse (Zaharia etal., 2012a).

Programming and Data Model In order to address these issues, Zaharia et al.
(2016) developed Apache Spark to provide a unified engine for distributed data process-
ing. The programming model is similar to MapReduce, but introduces Resilient Dis-
tributed Datasets (RDDs) for in-memory data-sharing in order to allow for processing
different workloads, which previously required separate engines. An RDD is a read-only,
partitioned data collection on which two different types of operations can be applied -
transformations and actions (Zaharia etal., 2012a). Transformations create and return
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new RDDs from either stored data or other RDDs. Examples include map, filter, and join
operations. Actions, on the other hand, only return a value to the application or save data
to disk. Examples constitute reduce, count, and save operations. Moreover, RDDs can be
specified to be persistent and reusable by setting a storage strategy (e.g., in-memory by
default). They also always contain necessary information to be reconstructed (including
its partitions) from stored data. Therefore, a Directed Acyclic Graph (DAG) is used to
track lineage across a wide range of associated transformations and Zaharia etal. (2012a)
provided RDDs with an interface that exposes five pieces of information:

a set of partitions
« meta data about its partitioning scheme

« meta data about its data placement

a function for computing the dataset based on its predecessors

a set of RDD dependencies

RDDs are put into reference and Spark distinguishes narrow dependencies and wide depen-
dencies as illustrated in figure 2.2, where rectangles represent RDDs and circles partitions
(Zaharia et al., 2012a). For narrow dependencies, each partition of a predecessor RDD is
referenced by at most one partition of the successor RDD. For wide dependencies, each
partition of a predecessor RDD may be references by multiple partitions of the successor
RDD so data are shuffled.

<@,

O OT—0O e
O+—+O O+—0O| | Os "o
O+—+O o0 |OERS
O+—O S—O| |OF
map, filter union groupByKey
(a) Narrow dependencies (b) Wide dependencies

Figure 2.2: Ezamples of dependencies of operations in Apache Spark (adapted from Za-
haria etal., 2012a)

Execution Architecture Spark stages operations to execute them in an optimized
ways as illustrated in figure 2.3. In addition to figure 2.2, circles are partitions that
are already in-memory and dashed rectangles represent stages. Operations that lead to
narrow dependencies are pipelined into a stage so they will be executed in direct succession
on a computer node (i.e., map, union). New stages will be only created for operations
that require partition data to be shuffled across nodes and, thus, cause wide dependencies
(i.e., groupBy, join), and for partitions already in memory (i.e., RDD B) (Zaharia et al.,
2012a).
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O1==

Figure 2.3: FEzecution flow of Apache Spark (adapted from Zaharia etal., 2012a)

The operating principle and execution flow of Apache Spark is illustrated in figure 2.4
and described subsequently based on Krofi/Krcmar (2017). The main process is the
driver program, which owns a SparkContext that orchestrates the application. First, it
connects to a cluster manager (see section 2.1.3) and allocates executors to worker nodes
of a cluster. FEzxecutors are processes with its own cache to run tasks in parallel and are
exclusively assigned to one application in order to be isolated from other applications.
Second, the SparkContext schedules an application’s tasks on executors. An application
consists of one or several jobs. Each job exclusively contains stages, which again contain
tasks. As already mentioned, a DAG is formed based on associated operations that are
grouped together into stages of tasks. The number of tasks of one stage is dependent to
the number of RDD partitions. Stages are executed sequentially as well as their parent
jobs.

Driver Program Worker Node =

Executor

i Task _H

Cluster Manager b

\ 4

SparkContext <
y

A

A 4
(@]
I}
o
>
o

Figure 2.4: Cluster architecture of Apache Spark (adapted from Apache Spark, 2015)
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2.1.2 Stream Processing

In contrast to batch applications, stream processing systems concentrate to continuously
analyze big volumes of live data with low latency (Chen/Zhang, 2014; Krof§/Krcmar,
2017). Therefore, two programming models can be differentiated - one mini-batch model
and one operator-based model (Hesse/Lorenz, 2015; Zaharia et al., 2012b). The basic idea
of the former paradigm is to divide data streams into mini or micro batches and apply
batch processing on those. The latter paradigm instantly processes each record at a time
as it enters the system (Hesse/Lorenz, 2015). In the following, we will first describe the
Spark Streaming library as part of Apache Spark, which is the only major framework
that implements the mini-batch model. Afterwards, two examples are presented that
implement the operator-based model - Apache Storm, which historically is one the first
sophisticated stream processing systems, and Apache Flink, which is a more recently
developed system and involves similar optimizations to Apache Spark.

Spark Streaming

As already mentioned, the motivation of Apache Spark was to design a core engine that
supports multiple workload and applications types. Therefore, it includes several exten-
sion libraries such as for machine learning (MLIib), graph processing (GraphX), SQL
querying, and, data stream processing (Spark Streaming) (Apache Spark, 2015).

O
t=0 —»>
— OO
Ot
t=1 —»>
— OO
DStream 1 DStream 2
Figure 2.5: DStream processing model of Apache Spark (adapted from Zaharia etal.,
2012b)

In order to allow for stream processing, the idea is to treat “streaming computations as
a series of deterministic batch computations on discrete time intervals” (Zaharia et al.,
2012b). Therefore, Zaharia et al. (2012b) introduce a new programming model DStream,
which is “a sequence of immutable, partitioned datasets (specifically, RDDs) that can be
acted on through deterministic operators” as illustrated in figure 2.5. They are created
either from input data streams, which will be split and received in sequential intervals
(i.e., t=1, t=2), or from operations on other DStreams (i.e., DStream 2 was created by
a batch operation on DStream 1). Moreover, there is one DStream for each series of
datasets (Zaharia etal., 2012b). Similar to Apache Spark’s core engine, a DStream is
partitioned (2.6) and the number of partitions depends on the number of partitions of the
input stream. Furthermore, operations with narrow dependencies will be also grouped
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together into stages. In similar way to operations on regular RDDs, there are two sets of
specialized operations for DStreams - transformations and output operations. The former
return new DStreams and are either stateless, where data dependencies are within the
same time interval, or stateful, where dependencies to results from prior intervals exist
(i.e., windowing, incremental aggregation, and state tracking) (Zaharia etal., 2012b).
Output operations, on the other hand, only return data to external systems such as file
systems or databases.

map reduce

v

Figure 2.6: Operations on DStreams and its partitions in Apache Spark (adapted from
Zaharia etal., 2012b)

Since Spark Streaming is an extension library, a developed application will use the cluster
architecture (figure 2.4) in the same way and is also orchestrated by one SparkContext.
From a concept perspective, however, Apache Spark will create one job for each DStream,
for each interval, whereas only one job is active and others are queued (Krof§/Krcmar,
2017; Apache Spark, 2015).

Apache Storm

In contrast to Spark Streaming and its mini-batch approach, Apache Storm represents one
of the early stream processing systems and uses an operator-based model (Hesse/Lorenz,
2015). Nevertheless, it is similarly designed to be horizontally scalable, resilient, extensi-
ble, efficient, and easy to administer. These characteristics include adding and removing
node to / from a cluster during operations, handling fault such as hardware failures, invok-
ing external interfaces, and reusing data structures in-memory (Toshniwal et al., 2014).
Apache Storm was created by Nathan Marz who also proposed the lambda architecture
(Toshniwal etal., 2014; Marz/Warren, 2015).

Programming and Data Model Storm processes tuples of data streams that run
through so-called topologies, which are defined in detail as follows:

“A topology is a directed graph where the vertices represent computation
and the edges represent the data flow between the computation components.
Vertices are further divided into two disjoint sets — spouts and bolts. Spouts
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are tuple sources for the topology. Typical spouts pull data from queues, [. . ]
bolts process the incoming tuples and pass them to the next set of bolts

downstream” (Toshniwal et al., 2014).
Bolt Bolt
Instance ’ Instance ’

Shuffle Grouping Fields Grouping

Spout
Instance

Figure 2.7: Ezecution flow of a Apache Storm topology (adapted from Toshniwal etal.,
2014)

In contrast to DAGs in Apache Spark, a topology is not acyclic. An instance for a topology
is illustrated in figure 2.7 which is based on (Toshniwal etal., 2014) and incrementally
counts the number of words. It contains a TweetSpout that receives or pulls data tuples
from systems (e.g., Apache Kafka) or )Application Programming Interfaces (APIs) (e.g.,
Twitter) and continuously forwards them to connected bolts. The ParseTweetBolt parses
words from a text. which is contained in the initial tuple, and emits a new tuple for
each word containing the word itself as well as the count (i.e., 1). This procedure is very
similar to the map operation and, respectively, phase of MapReduce. Analogically to the
reduce phase, the WordCountBolt receives each tuple, sums up the counts for each word,
and outputs the results to an external system. The latter may also be performed in time
intervals and an internal counter will be reset (Toshniwal etal., 2014).

Execution Architecture Apache Storm also involves a master worker architecture.
As illustrated in figure 2.8, the master is called Nimbus. It receives applications, or-
chestrates the execution on worker nodes, and maintains the cluster state via Apache
ZooKeeper (Hunt et al., 2010), a dedicated service for coordinating processes of distributed
applications . Each worker nodes runs one Supervisor for communication and one or sev-
eral worker processes for each application.

Worker

Zookeeper
- Supervisor

L
!

\ 4
A
A 4

Nimbus

Figure 2.8: Cluster architecture of Apache Storm (adapted from Toshniwal etal., 2014)

Furthermore, each worker process is exclusively dedicated to one application and may
execute different tasks of the topology of an application. Therefore, a task is represents the
operations of a bolt or a spout. Although tasks provide intra-bolt/intra-spout parallelism
and executors intra-topology parallelism, Apache Storm does not involve a similar concept
to group operators with narrow dependencies and reduce the number of threads and
shuffles like Apache Spark (Kroff/Krcmar, 2017; Toshniwal etal., 2014). Data tuples are
shuffled between spouts and bolts as illustrated in figure 2.7 and different partitioning
strategies are provided (i.e., Shuffle Grouping, Fields Grouping).
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Apache Flink

Apache Flink is an open source framework for processing data batches and stream that
uses a single execution model in order to cover different big data applications such as
continuous data pipelines, machine learning, and graph processing (Carbone et al., 2015).
We present Apache Flink only in section 2.1.2 Stream Processing since stream processing
is at its core (Carbone et al., 2015).

Programming and Data Model The core runtime uses distributed streaming dataflows
as abstractions in the programming model and the execution engine. Apache Flink does
not distinguish between analyzing events in a continuous way and analyzing historical
data. For batch scenarios, data are considered as finite streams where the time of records
is ignored. It begins to process data at different points and maintains different types of
state (Carbone et al., 2015). Therefore, it includes one dedicated API for batch processing
and one for stream processing on top of the core runtime. Similarly to Spark Stream-
ing and Apache Storm, Apache Flink involves streams and operations (transformations)
(Apache Flink, 2017a). A stream is a continuous flow of data records. An operation that
receives on one ore more streams as input, transforms it, and returns one or more streams
as output (Apache Flink, 2017a). Apache Flink also provides three different concepts to
refer to time (Carbone etal., 2015):

o processing time - the time an event was processed
e event time - the time an event emerged

e ingestion time - the time an event entered Apache Flink

As mentioned, distributed streaming dataflows are also used by the execution engine.
Therefore, a runtime program is a DAG of stateful operators such as filter, join and
window functions (e.g., SRC1) as vertices and intermediate data streams as edges as
illustrated in figure 2.9 (Carbone etal., 2015). Similar to other frameworks, the DAG
will be executed in a parallel way. Streams are constituted of several partitions. Stateful
operators represent tasks and are executed in subtasks in parallel where one subtask will
be created for each partition. There are two types of intermediate streams - pipelined and
blocking streams (Carbone et al., 2015). The former (e.g., 151, IS2) is used to exchange
data in parallel between operators and allow for a pipeline execution. In comparison to
Spark Streaming, results are not stages, but pipelined results can be directly processed by
successor operators (e.g., from SRC1 to OP1).In contrast and similar to Spark Streaming,
the blocking streams (e.g., IS%) buffer all data between two operators that are executed
in different stages (e.g., OP1, SNK1). This allocates more memory and data may have
to be spilled to disk. In order to avoid this performance decrease as well as materializa-
tion, Apache Flink prefers pipelined streams for streaming applications (Carbone et al.,
2015). Furthermore, figure 2.9 illustrates the transmission of Control Events. These are
produced by operators and are used to coordinate checkpoints (checkpoint barriers), to
progress event time (watermarks), and to indicate the end of an iteration (iteration bar-
riers) (Carbone etal., 2015). For iterations, Apache Flink includes dedicated operators
that are composed of an execution graph.
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Figure 2.9: Dataflow graph of Apache Flink (adapted from Carbone etal., 2015)

Execution Architecture Similar to already mentioned frameworks, Apache Flink
follows a master worker architecture as illustrated in figure 2.10. In order to execute an
application, a Flink Client initially creates a dataflow graph based on the application code
and sends it to the Job Manager. The Job Manager serves as master and orchestrates the
execution. This includes to schedule operators, to monitor its states as well as the state
of streams, and to manage checkpoints and recoveries. The execution is conducted on one
or several Task Managers that represent worker nodes. Therefore, each Task Manager
contains Task Slots to execute the operators through subtasks. A Task Slot isolated
subtasks and has a fixed amount of memory reserved that is available for them (Apache

Flink, 2017b).
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Figure 2.10: Cluster architecture of Apache Flink (adapted from Carbone etal., 2015)

2.1.3 Resource Management

Although some of the presented big data software frameworks are able to run in a stan-
dalone cluster, for productive deployments and Information Technology (IT) operations
usually a dedicated resource management technology is used. This implicated several ad-
vantages such as to operate a cluster of computer nodes that is able to support and run ap-
plications that implement different software frameworks, dynamically manages overall re-
sources, isolates applications, and provides special recovery mechanism (Vavilapalli et al.,
2013). Subsequently, two technologies are presented as examples.
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Apache YARN

At the beginning of Apache Hadoop, the main focus of its design was MapReduce and
the programming model was coupled with the management of resources (Vavilapalli et al.,
2013). Apache Yet Another Resource Negotiator (YARN) is the result of decoupling both
parts in order to allow for supporting and executing different programming models and
applications. Therefore, it includes the concept of an application master (AM) as part of
an application. This application master is a process run by YARN. It orchestrates the
application’s execution flow, programming model, and task fault tolerance and, for this
purpose, requests required resources.
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Figure 2.11: Architecture of Apache YARN (adapted from Vavilapalli etal., 2013)

YARN follows a master worker architecture as illustrated in figure 2.11. The Resource
Manager represents the master node. It receives applications by clients and forwards
each one to a Scheduler. The Scheduler dynamically allocates the requested resources,
so-called containers, by the application master with due regard to fairness, capacity, and
(data) locality (Vavilapalli etal., 2013). A container is an abstract notion for resources
such as memory and CPU cores and runs tasks on a assigned node (Krofi/Krcmar, 2017).
In particular, the application master itself runs inside a container and its requests include
the amount of containers as well as the resources for each container. Afterwards, the
Scheduler allocates and spawns the containers on Node Managers (NM) that represent
worker nodes. Therefore, the Resource Manager is connected to them to monitor the
cluster state and access resources. Each Node Manager is responsible for managing the
execution of its local containers, reporting their state, and monitoring and providing
resource information (Krofi/Kremar, 2017).

Hadoop MapReduce in YARN The Hadoop implementation of MapReduce includes
a MapReduce application master (MRAppMaster) (Apache Hadoop, 2017b). It requests
one container for each map and one container for reduce task and schedules as well
as executes each task inside the container. Afterwards, completed containers will be
reported. The client that submits the user program is required to be attached the running
application.
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Apache Spark in YARN  Applications will launch an application master that requests
resources for executors, and each executor will run in an own resource container (Krof3/
Kremar, 2017). Therefore, Apache Spark can be executed in two different modes on YARN
- cluster mode and client mode. For the former, the driver program and SparkContext
run inside the application master on the cluster (Apache Spark, 2017). For the latter,
the driver program and SparkContert run at the client and the client is attached to the
application for its entire lifetime (Krof/Kremar, 2017).

Apache Storm in YARN  Applications can be executed using third-party extensions
such as Slider !, an Apache incubator project, or an extension by Yahoo Inc.2. There-
fore, Nimbus will run in the application master container and each Supervisor in an own
container. Usually, ZooKeeper will not be executed inside any YARN container, but is
required to be operated externally.

Apache Flink in YARN In order to run one or more applications, first a session in
YARN must be created where the Apache Flink cluster will run (Apache Flink, 2017c).
One container for Job Manager and one container for each Task Manager will be initially
created for the session and applications will be submitted to this session. This implies
that once the session is created, computing resources are static and Apache Flink will
schedule applications on those. Similarly to Apache Spark in YARN, there are two ways
to start the session in YARN - either attached, where the client must be attached across
the lifetime, or detached. Whereas both approaches require to start a cluster first, it
is also possible to only run one Apache Flink application on YARN without starting a
cluster (Apache Flink, 2017c). For this approach, however, the client must be attached
to application for its lifetime.

Apache Mesos

Apache Mesos was developed at a time where YARN did not exist yet, but was coupled
within the fist Hadoop version of MapReduce. Therefore, Hadoop was only able to run
applications from the Hadoop ecosystem. In case software engineers developed an appli-
cation using a different framework, it could not be executed in the Hadoop cluster. This
limitation and problem was one of the reasons that lead to the development of Apache
Mesos. It is a platform in order use and share a cluster of resources in a fine-grained
manner (e.g., regarding data locality) for multiple diverse big data frameworks (Hind-
man etal., 2011). Therefore, a two-level scheduling abstraction called resource offers
is introduced (Hindman etal., 2011). First, Mesos offers a certain bundle of resources
to the software framework of an application based on a scheduling policy. Second, the
frameworks decides which resources it will accept. In this way, Mesos delegates the task
scheduling und execution to the framework itself.

Mesos uses a master worker architecture that is illustrated in figure 2.12. The Mesos
master involves an allocation module, which implements the mentioned resource offer
mechanism, and orchestrates the slave and, respectively, worker nodes, in which the tasks
of various big data frameworks run. Each framework has to include a scheduler component
and a executor component that is executed on the worker nodes. The scheduler accepts

Thttps://github.com/apache/incubator-slider
Zhttps://github.com /yahoo/storm-yarn
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Figure 2.12: Architecture of Apache Mesos (adapted from Hindman etal., 2011)

certain resource offers (e.g., 3 CPU cores and 15 Gigabyte (GB) memory) and reports the
tasks that shall be executed as well as the resources for each task to the Mesos master.
The master then sends the tasks to the slave nodes and allocated the resources to the
executor component.

2.1.4 Data and Storage Management

Independent on batch and stream frameworks, applications require access to data sinks.
There are several frameworks specialized on either batch or stream purposes since theses
include significantly different requirements. In the following, one example for each type
will be presented. Note that there are also a few approaches in industry (e.g., the Kappa
architecture (Kreps, 2014)) where only one data sink technology is used for serving batch
as well as stream applications.

Apache HDFS

As part of the Apache Hadoop ecosystem, the Hadoop Distributed File System (HDFS)
is developed to provide applications data access with high availability, reliability and
horizontal scalability (Krofi/Kremar, 2017; Shvachko etal., 2010). Similarly, it imple-
ments a master worker architecture and requires a special client to access data. As other
filesystems, HDF'S is able to create, read, and delete files as well as directories.

NameNode It represents the master node and manages the entire metadata including
the so-called namespace. It is a tree of files and directories and contains data information
such as per permissions, modifications, and access times (Shvachko etal., 2010). The
metadata also include the mappings to the actual data locations on the DataNodes and are
kept in memory as an image. Furthermore, the NameNode handles data access by clients
and manages renaming, mapping, storing, reading and replicating data on DataNodes
(Apache Hadoop, 2017a). Usually, there is only one NameNode in a cluster. Since it can
be the single point of failure, the current Apache Hadoop implementation also contains
standby concepts with redundant NameNodes in order to ensure high availability (Apache
Hadoop, 2017a; Shvachko et al., 2010).
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DataNodes They are the worker nodes and responsible for storing data and, more
specifically, data blocks as delegated by the NameNode. In HDFS, files are split into
blocks (128 Megabyte (MB) by default) and replicated at multiple DataNodes to allow
for reliability (Shvachko etal., 2010). Two files are created for each block to store the data
content as well as the metadata. Therefore, DataNodes are invoked by the NameNode
to replicate blocks to other nodes, remove blocks, shut the entire DataNode down, or to
send a report of all blocks’ information, which is used for load balancing (Shvachko et al.,
2010). To communicate and execute these remote invocations, heartbeats are used that
also involve the purpose to report the service availabilities and ensure integrity in the
cluster. Furthermore, nodes perform a handshake if they register with the cluster and
exchange a shared, unique namespace identifier across the cluster and a identifier of the
DataNode (Shvachko etal., 2010).
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Figure 2.13: Architecture of Apache HDFS (adapted from Shvachko etal., 2010)

Users access the paths in the namespace in order to refer to directories and files using
the HDF'S client. Figure 2.13 shows a basic interaction of the client with a HDFS cluster
(Shvachko et al., 2010). In case of writing a file, the client indicates it to the NameNode
and receives a list of DataNodes that will store the first block of the file. It then creates
a sequential pipeline among the according DataNodes and directly sends the block data
to the pipeline where it will be forwarded at each node (White, 2015, pp. 72-73). Each
DataNode also acknowledges the finished written data block at the NameNode. After-
wards, the client receives a new list of DataNodes for the next block and this process
repeats until all blocks have been sent successfully. In case of reading a file, the client
also indicates it to the NameNode and receives a list of DataNodes that contain a replica
of the blocks of the file and directly accesses it at each DataNode (Shvachko et al., 2010).

Apache Kafka

HDFS is intended and usually used as incoming data source for batch applications. In
contrast, stream applications usually exploit messaging systems or brokers to receive data
as soon as they are created in a stream (Krof§/Krcmar, 2017). Apache Kafka represents a
widely used example for such as system that is built for scalability and high throughput
and, in contrast, uses a peer-to-peer architecture (Apache Kafka, 2015). The basic archi-
tecture and concepts of Apache Kafka is illustrated in figure 2.14 and will be explained
in the following based on Kreps/Narkhedem/Rao (2011).
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Figure 2.14: Architecture of Apache Kafka (adapted from Kreps/ Narkhedem/Rao, 2011)

Topics They represent a data stream of messages of a certain type. Messages are
created and, respectively, published by producers, while they are pulled and, respectively,
subscribed by consumers. Topics are stored on servers and, therefore, split into partitions
where each topic constitutes a logical log and each message is a logical offset in the log
that only consist of a payload of bytes. As a result, there are not any identifiers and index
structures used.

Producers They publish messages to a topic either one by one or as as set per request.
Therefore, the method of data serialization can be customized. Furthermore, messages
can be published to a random partition of a topic or certain partition based on a key or
function.

Consumers One or several consumers belong to a consumer group and subscribe to
a topic by creating one or several sub-streams in which the messages are distributed and
can be concurrently received. Each consumer group subscribed to a certain topic receives
all messages, but each message is only published to one consumer of its parent group.
Consumers provide the offset when pulling messages and also acknowledge the latest read
message offset. Furthermore, messages from one partition are guaranteed to be received
in sequential order by Apache Kafka in contrast to messages from multiple partitions.

Broker An Apache Kafka cluster usually consists of several nodes on which topics and
their partitions are distributed and replicated. They are called brokers and are always
stateless so they do not know what messages have been received by each consumer. Fur-
thermore, the cluster does not follow a master worker architecture, but coordinates itself
decentralized. This involves maintaining a registry for brokers as well as for consumers to
handle additions and removals. Furthermore, it includes an ownership registry to relate
consumers to partitions and an offset registry for already consumed messages of partitions.
The entire coordination is accomplished using Apache ZooKeeper.
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2.2 Software Performance Management

As a basis for the performance evaluation approaches introduced in this dissertation, we
use and integrate activities from software performance engineering (SPE) and application
performance management (APM). This section provides an overview of both areas.

2.2.1 Software Performance Engineering

SPE can be defined as a systematic, quantitative approach used throughput the software
development cycle in order to meet performance requirements (Smith, 2007; Woodside/
Franks/Petriu, 2007). Different views exist on what approaches and activities SPE com-
prises. For instance, Smith (2007) emphasizes mainly model-based approaches to predict
the performance of a software system early in the development cycle. In contrast, Wood-
side/Franks/Petriu (2007) additionally consider measurement-based approaches to apply
testing late in the development cycle when a software prototype can already be run and
measured. Throughout all different views, SPE involves a set of different activities that
are described in the following subsection based on Smith (2007) and Woodside/Franks/
Petriu (2007).

One key activity is defining and clarifying performance requirements. For instance, re-
quirements can be collected regarding the response time (as experienced by system users
and for single system components), throughput, and hardware resources. Performance
requirements may be also refined and clarified, for instance, based on predictions.

Another SPE activity is identifying concerns and scenarios. Concerns may be essential
system operations and factors affecting the software performance. Scenarios describe
different use cases of a system that may invoke such system operations (e.g., worst-case
scenarios).

Based on the concerns and scenarios, predicting the performance using model-based ap-
proaches (see section 2.3) is a key activity. Prediction results help to evaluate design
alternatives, understand scalability of architectures, and identify critical parts of a soft-
ware system.

Another key activity represents performance testing. It is a measurement-based approach
and evaluates the execution a software system under certain load with test data. Per-
formance testing may also be the basis to derive resource demands for model-based ap-
proaches. It should be also used to verify model specifications and validate prediction
results. Vice very, model-based approaches can support in designing performance tests
and at software evolution.
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2.2.2 Application Performance Management

APM can be defined as collection of activities by organizations in order to ensure that the
performance of applications meets the business goals during operations (Menasce, 2002).
Menascé/Almeida (2002) defines APM in the context of web-based applications, which
we apply to big data applications. To the best of our knowledge, there has not been a
definition specifically related to big data software systems introduced, but rather how big
data technologies can be used to implement APM (e.g., Rabl etal. (2012)).

APM can be implemented in a reactive way and in a proactive way Menasce (2002). In
reactive way, the application performance is monitored and it will be reacted if problems
occur and requirements are not met. In the other way, proactive processes are applied to
reduce and prevent the occurrence of problems. For both ways, performance monitoring
forms the basis to derive measurements that are analyzed for these purposes.

Monitoring can be accomplished by using event-driven and sampling-based techniques
(Brunnert et al., 2015; Menascé/Almeida, 2002; Lilja, 2005). The former approach cap-
tures a measurement if an event occurs (e.g., invocation of a method), the latter captures
a measurement in intervals (e.g., every second)(Brunnert et al., 2015).

Monitoring can be used to retrieve measurements on different levels of granularity for
metrics such as response times (and availability), throughput, and resource utilization.
Therefore, monitoring can take place at hardware-level (e.g., CPU, disk drives, and mem-
ory) as well as at software-level. At software-level, software is usually instrumented.
Instrumentation can be achieved statically at design time and dynamically at runtime
(Brunnert etal., 2015). Techniques include code modifications, compiler modifications,
and middleware interception (Brunnert etal., 2015; Jain, 1991; Lilja, 2005; Menascé/
Almeida, 2002).

2.3 Model-based Performance Evaluation

By the example of an architecture-level performance model, figure 2.15 illustrates the
procedure of a typical model-based performance evaluation. The software is modeled by
depicting the structure and components of the software architecture and the behavior and
resource demands of software components. The workload is modeled by specifying the
usage of the system. The hardware is modeled by depicting resources and their capacities.
In order to predict different performance metrics, these models can be transformed to and
solved by analytical models or transformed to be used by simulation engines.

In general, performance models can be differentiated into analytical and architecture-level
models (Brunnert et al., 2015). This section presents an overview of both types.
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Figure 2.15: Model-based performance evaluation (Brunnert etal., 2015)
2.3.1 Analytical Performance Models

Examples for analytical performance models represent Petri nets, Queuing Networks
(QNs), Queuing Petri Nets (QPNs) and Layered Queuing Networks (LQNs) (Brunnert et al.,
2015). In the following, we concentrate on QNs and LQNs since this dissertation extends
and uses the PCM, which uses model-2-code transformations to derive simulation model
based on QNs (Becker/Koziolek/Reussner, 2009).

Figure 2.15 includes an excerpt of a QN model. Hardware resources (i.e., CPU and Hard
Disk Drive (HDD)) are characterized as a queue with a waiting line and a resource that
serves transactions (Menasceé/Almeida/Dowdy, 2004, pp. 18-19). Arrivals join the waiting
line if the device does not idle, wait to use the device based on a queuing discipline, and
depart to the next queue after having been served (Menascé/Almeida/Dowdy, 2004, pp.
184-198).

Among many queuing disciplines, there are four common ones (Menascé/Almeida/Dowdy,
2004, p. 27). First Come First Served (FCFS) serves arrivals in the order of arrival
at a queue. Priority queuing serves the arrival that has the highest priority. Round
Robin (RR) serves each arrival for a short period of time in a circular fashion. Finally,
Processor Sharing (PS) represents the theoretical limit of RR as short periods of time
approaches zero.
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Input parameters of a QN are service demands, which specify the total average service
time provided by a resource, and the workload intensity, which describes the arrivals
(Menasce/Almeida/Dowdy, 2004, pp. 27-28). Arrivals are grouped into one or more
classes. Therefore, QN is open if all classes are open, closed if all classes are closed, and
mixed if open as well as closed classes exist (Menascé/Almeida/Dowdy, 2004, pp. 27-28).
In open classes, the workload intensity is specified by an arrival rate (i.e., A) describing
the number of requests per unit time. Consequentially, there are unbounded number of
arrivals in the system and the throughput is known as it equals the arrival rate (Menascé/
Almeida/Dowdy, 2004, p. 20). In closed classes, the workload intensity is modeled by
the number of concurrent requests. After a requests has been served, usually subsequent
requests follow, for instance, after a certain think time has elapsed. In contrast to open
classes, arrivals are bounded as the number of requests is known in the system and the
throughput does not depend on the input arrival rate, but is an output parameter and
determined at solving a QN (Menascé/Almeida/Dowdy, 2004, p. 20).

Furthermore, different types of single queue systems can be represented by a notation
with three attributes, for instance, G/G/1. The first attribute indicates the distribution
of interarrival times, for instance, a generic distribution G and an exponential distribution
with a Markov property M (Menascé/Almeida/Dowdy, 2004, pp. 184-198). Similarly, the
second attribute indicates the service time distribution. The third attribute indicates the
number of resources.

LQN are extended QN for software systems with nested simultaneous resource possession
(Franks etal., 2009). In a LQN, a resource can stop and wait for a nested request to
another resource during its service. In contrast, only one resource can be used at a time
in a QN. As a result, it is more suitable for modern distributed systems.

2.3.2 Architecture-Level Performance Models

Examples for architecture-level performance models are PCM and the Descartes Mod-
eling Language (DML) (Becker/Koziolek/Reussner, 2009; Huber etal., 2017). Both are
specialized to model and evaluate the performance of reusable software components.

PCM is constructed based on the roles in the component-based software engineering devel-
opment process. Figure 2.16 illustrates the process model (Reussner etal., 2011; Becker/
Koziolek/Reussner, 2009). Component developers model a repository of component speci-
fications via provided and required interfaces. The behavior of the provided services of a
component is model via a Resource Demanding Service Effect Specification (RDSEFF).
It is similar to Unified Modeling Language (UML) activity diagram and allows to specify
parametric descriptions of how the services uses hardware resources and how other services
of required components are invoked. System architects specify an assembly model of an
application based on the repository of components. System deployer model the hardware
resources and deploy components from the assembly model on these hardware resources
in an allocation model. Finally, domain experts specify use cases and the workload for the
interfaces of the assembled application in a usage model.
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Figure 2.16: Palladio process model (Reussner etal., 2011)

PCM provides tool support to create graphical models, predict the performance, and
analyze and visualize results. In order to predict the performance, this dissertation uses
the simulation framework SimuCom (Becker /Koziolek/Reussner, 2009). Therefore, model
instances are transformed to simulation code that is used by SimuCom. The simulation
supports G/G/n queues and is based on simulation of resources and queuing networks
(Becker/Koziolek/Reussner, 2009). In particular, a thread is started for each arrival
according to the workload and the according use case is simulated as specified in the
usage model. For each component and its RDSEFF code is generated to place resource
demands description on corresponding resources as specified in the assembly model. For
each resource, a request queue and scheduler is generated based on a queuing discipline.
Threads that request resources to process demands will be delayed until the demand is
processed. Throughout the simulation, probes include in the simulation code monitor
response times and queue lengths to calculate the simulation results.



Chapter 3

Research Methodology

This chapter describes the research design that this dissertation pursues and the research
methods applied for this purpose. We outline the embedded publications of this thesis as
well as related publications that are (co-)authored and do not substantially contribute to
the RQs.

3.1 Research Design

This thesis carries out research based on the design science research methodology (DSRM)
by Peffers etal. (2007). Design science deals with inventing and developing artifacts to
achieve certain goals (March/Smith, 1995; Simon, 1996; Hevner et al., 2004). DSRM is
a commonly accepted framework and incorporates principles and practices from different
researchers in key prior literature (Peffers et al., 2007). Its aims are achieving consistency
with prior literature, providing a nominal process model and providing a mental model
for presenting and evaluating design science research in information systems.

The DSRM process includes six activities in a nominal sequence although researchers
are not expected to proceed in sequential order, which are described in the following
(Peffers et al., 2007):

1. Problem identification and motivation. The research problem shall be defined
and the value of a solution shall be justified to motivate the audience to pursue the
solution and to follow the reasoning of the researcher.

2. Define the objectives for a solution. The goals shall be inferred rationally from
the defined problem and can be quantitative or qualitative.

3. Design and development. The intended functionality of the artifact(s) shall be
defined and the artifacts shall be created (e.g., constructs and models).

26
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4. Demonstration. The artifact(s) shall be applied to solve the defined problem (e.g.,
by experimentation and simulation).

5. Evaluation. The artifact(s) shall be evaluated how it provides a solution to the
defined problem, for instance, by quantitative measures (e.g., simulations), quan-
tifiable measures of system performance (e.g., response time), and any empirical
evidence.

6. Communication. The defined problem, the artifact(s), the effectiveness, and con-
tribution shall be communicated to researchers.

3.2 Research Methods

Following the research design activities we applied different research methods in order to
carry out these activities and serve its different purposes. This section describes these
research methods.

Literature Reviews are a method that are usually part of research publications and
shows related research that already exists but also areas with a research gap (Peffers et al.,
2007; Webster/Watson, 2002). As Webster/Watson (2002) and Levy/Ellis (2006) pro-
pose, we reviewed literature, first, by selecting relevant literature and conducting keyword
searching, second, by forward searching, and, third, by backward searching. We describe
each step in detail in the following.

In order to identify relevant literature we started with related scholarly databases and
leading workshops, conferences, and journals of related topics. We considered the following
databases:

1. Association for Computing Machinery (ACM) Digital Library?
2. Institute of Electrical and Electronics Engineers (IEEE) Xplore?
3. Springer Link®
4. ScienceDirect®
5. Google Scholar”
We include Google Scholar, which indexes many additional outlets, to avoid the narrow-

ness of searching only one or two database vendors (Levy/Ellis, 2006). Related literature
were mainly found in the following workshops, conferences, and journals:

3https://dl.acm.org
“https://ieeexplore.ieee.org
Shttps://link.springer.com
Shttps://www.sciencedirect.com/
Thttps://scholar.google.com
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1. European Performance Engineering Workshop (EPEW)

2. Symposium on Software Performance (SSP)

3. International Workshop on Big Data and Cloud Performance (DCPerf)

4. ACM/SPEC International Conference on Performance Engineering (ICPE)
5. IEEE International Conference on Software Architecture (ICSA)

6. IEEE International Symposium on Modeling, Analysis, and Simulation On Com-
puter and Telecommunication Systems (MASCOTS)

7. International Conference on Performance Evaluation Methodologies and Tools (Val-
ueTools)

8. International Conference on the Quality of Software Architecture (QQoSA)
9. USENIX Symposium on Networked Systems Design and Implementation (NSDI)

10. ACM Transactions on Modeling and Performance Evaluation of Computing Systems
(TOMPECS)

11. Business & Information Systems Engineering (BISE)
12. IEEE Transactions on Software Engineering (T'SE)
13. Journal of Systems and Software (JSS)

14. Journal on Software and Systems Modeling (SoSyM)

15. Performance Evaluation Journal

We used and combined the keywords performance evaluation, performance prediction,
performance models, model-driven, simulation, big data, model extraction, and model gen-
erator to gain initial insight into related work. Based on the identified works, we further
searched backwards by reviewing references of these articles, reviewing additional articles
published by the authors, and including keywords of the articles that have not been used
in our search yet. We concluded the literature review by searching forwards and reviewing
articles that have cited the identified articles.

Prototyping is a research method where instantiations such as prototype systems are
produced that, inter alia, represent artifacts in design science (Hevner etal., 2004).
Throughout this dissertation, we iteratively applied prototyping to develop and continu-
ously enhance our artifacts. Similarly, the prototypes were constantly evaluated for their
utility of addressing research problems and achieving research objectives.

Scenarios describe a descriptive design evaluation method used to to demonstrate the use
of artifacts and around them (Hevner et al., 2004). Motivated by performance manage-
ment perspectives and common difficulties in practice, we formulate exemplary scenarios
that we claim to address with our prototypes. These scenarios are evaluated then by
experimental evaluations methods.
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Controlled Experiments represent an experimental design evaluation method and have
the aim to study an artifact in a controlled environment for its qualities (Hevner etal.,
2004). We continuously applied them to execute and test each prototype system in a
reproducible evaluation. We use an open source and widely accepted benchmark suite that
defines and includes software applications, software configurations, system configurations,
and data workload generation.

Simulations also constitute an experimental design evaluation method and execute the
artifact with artificial data (Hevner et al., 2004). We use simulations as part of controlled
experiments in order to evaluate our model-based performance evaluation approach, in
particular, the prediction accuracy of our prototypes compared to measurement results.

3.3 Publications

Part B of this thesis includes six publications of the author. Table 3.1 shows the details
for each publication, which include a publication number, the authors, the title, and the
outlet.

Publications P1-P3 address the first RQ: What features must a meta-model support to
model the performance of big data systems?. In publication PI, we motivate the impor-
tance of performance and scalability of complex system-of-systems architectures on the
basis of big data and IoT scenarios. We describe the problems involved in evaluating
the performance and propose our vision for model-driven performance prediction in order
allow for evaluations early during software and system development. Furthermore, we
describe the existence of existing model-driven approaches that focus on user-driven busi-
ness applications but do not support features as found in data-driven applications. We
formulated our aim to combine and extend existing modeling approaches. In publication
P2, we examined the PCM, an existing approach for business applications in order to
model and predict the batch layer of the lambda architecture. The lambda architecture is
a generic principle to implement a big data architecture. We used Apache MapReduce as
exemplary technology. The evaluation was conducted on a single node cluster as we noted
missing features of PCM that would have been required to model Apache MapReduce ap-
plications in a distributed setup. In publication P3, we published the missing features
and proposed two extensions to the meta-model of the PCM to answer the first RQ. The
extensions address the modeling of distributed and parallel operations on application side
and modeling of clustered resources on infrastructure and hardware side.

Publications P4 and P5 focus on answering the second RQ: How can the performance
of batch and stream applications be modeled and simulated?. In publication P/, we apply
the extended meta-model of PCM and derive a model for a simple streaming application.
We further extend PCM’s simulation framework to allow for actually making use of the
extensions. We evaluate the modeling approach by simulating the application on a number
of increasing hardware nodes and compare the predicted response time with measurement
results from correspondingly executed applications. In publication P), we apply our meta-
model not only for a stream application but also for a batch application. In addition, we
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No

. Authors

Title

Outlet

P1

Krof3, Voss, Krcmar

Towards a Model-driven Performance
Prediction Approach for Internet of

Open Journal of Inter-
net Of Things (OJIOT)

Things Architectures

P2 Krof3, Brunnert, Stream Processing On Demand for Computer Performance

Prehofer, Runkler, Lambda Architectures Engineering.  Lecture
Krcmar Notes in Computer Sci-
ence
P3 Krof3, Brunnert, Modeling Big Data Systems by Extend- Softwaretechnik-Trends
Krcmar ing the Palladio Component Model [Software Engineering
Trends]
P4 Krof, Krcmar Modeling and Simulating Apache Softwaretechnik-Trends
Spark Streaming Applications [Software Engineering
Trends]
P5 Krof3, Krcmar Model-Based Performance Evaluation International Sympo-
of Batch and Stream Applications for sium on  Modeling,

Big Data Analysis and Simula-
tion of Computer and
Telecommunication
Systems (MASCOTS)
Big Data and Cognitive

Computing

P6 Krof3, Krcmar PerTract: Model Extraction and Spec-
ification of Big Data Systems for Per-
formance Prediction by the Example of

Apache Spark and Hadoop

Table 3.1: Publications embedded in this thesis

estimate and model resource demands for CPU resources and predict the CPU utilization
as well as evaluate its prediction accuracy while executing applications. Compared to
publication P4, we evaluate the approach not only for increasing hardware resources but
also for increasing data workload.

Lastly, publication P6 addresses the third RQ: How can performance models and resource
demands of big data systems be automatically extracted?. As we experienced limitations
for simulating data streams with more than 500,000 events in PCM, we wanted to ab-
stract our approach and be independent from modeling and simulation frameworks. In
publication P6, we introduced a DSL to describe performance characteristics of big data
systems and presented an approach to automatically extract such DSL instances from big
data frameworks. This includes frameworks for data processing, resource management,
and data management. Based on the DSL specification, we provide an automatic trans-
formation of DSL instances into PCM performance models in order to simulate them and
predict performance metrics. In order to demonstrate and evaluate our approach, we
applied the automatic extraction on two machine learning applications. We adapted pa-
rameters of DSL instances for different upscaling scenarios and compared the prediction
accuracy to measurements results of correspondingly executed applications.

In addition to the embedded publications, we describe publications that we (co)authored
with regard to the topic of this dissertation but do not substantially contribute to an-
swering the research questions. As before, table 3.2 lists these further publications.
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No. Authors Title Outlet

P7 Danciu, Krof3, Landscaping Performance Research at International  Confer-
Brunnert, Willnecker, the ICPE and its Predecessors: A Sys- ence on Performance
Vogele, Kapadia, tematic Literature Review Engineering (ICPE)
Krcemar

P8 Krof3, Brunnert, Model-based Performance Evaluation International Workhop
Prehofer, Runkler, of Large-Scale Smart Metering Archi- on Large-Scale Testing
Kremar tectures (LT)

P9 Brunnert, van Hoorn, Performance-oriented DevOps: A Re- Technical Report,
Willnecker, Danciu, search Agenda SPEC Research Group
Hasselbring, Heger, — DevOps Performance
Herbst, Jamshidi, Jung, Working Group
von Kistowski, Koziolek,

Krof3, Spinner, Vogele,
Walter, Wert

P10 Krof3, Willnecker, PET: Continuous Performance Evalu- International Workshop
Zwickl, Krcmar ation Tool on Quality-Aware De-

vOps (QUDOS)

P11 Krof3, Bezemer, Jian Proceedings of the Sixth International International Workshop
Workshop on Load Testing and Bench- on Load Testing and
marking of Software Systems Benchmarking of Soft-

ware Systems (LTB)

P12 Krof3, Bezemer Proceedings of the Seventh Interna- International Workshop

tional Workshop on Load Testing and
Benchmarking of Software Systems

on Load Testing and
Benchmarking of Soft-
ware Systems (LTB)

Table 3.2: Further publications during the work on this dissertation

Publication P7 presents a historical overview of topics, methods, and trends within the
software performance community. We systematically review published papers of the pro-
ceedings of the International Conference on Performance Engineering (ICPE) and its
predecessors ACM Workshop on Software and Performance (WOSP) and the SPEC In-
ternational Performance Evaluation Workshop (SIPEW).

In publication P8, we model and simulate the performance of an exemplary smart grid
systems to demonstrate a model-based evaluation approach that supports design decisions
at the beginning of developing a new system. In particular, we compare the scalability of
the response time of two different architectures for analyzing data from smart meters.

Publication P9 presents existing techniques and methods in the areas of SPE and APM.
We further describe open research challenges in order to integrate activities of both areas,
which are often considered separately.

In publications P10, we developed a prototype system that allows to store measurement
data independent of the data collection software and includes a graphical user interface to
visualize that. It addresses problems of researchers in the area of model-based performance
evaluations as it automates to statistically compare simulation results with measurement
results, which is usually carried out manually and error-prone.
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Finally, publications P11 and P12 represent the proceedings of the LTB workshops in
2017% and 2018° that were co-organized by the author.

8http://1tb2017.eecs.yorku.ca
9http://1tb2018.eecs.yorku.ca
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*In this part, the original publications are slightly modified, including the unification of format and
reference styles, the correction of spelling errors, and minor orthographic and grammatical revisions.
Furthermore, the references included in each research study have been integrated and are presented at
the end of this dissertation. The published version of the included publications can be found in the
appendix.



Chapter 4

Towards a Model-driven
Performance Prediction Approach
for Internet of Things Architectures

Authors | Krof, Johannes! (kross@fortiss.org)
Voss, Sebastian! (voss@fortiss.org)
Kremar, Helmut? (kremar@in.tum.de)

Hfortiss GmbH, GuerickestraBe 25, 80805 Miinchen, Germany
2Technical University of Munich (TUM), Boltzmannstrafie 3,

85748 Garching, Germany

Outlet | Open Journal of Internet Of Things

Status | Accepted

Keywords | Performance, Model, Simulation, Prediction, Evaluation, Internet
of Things, IoT, Architectures

Individual Contribution | Problem and scope definition, construction of the conceptual ap-

proach, paper writing, paper editing

Table 4.1: Bibliographic details for P1

35



Towards a Model-driven
Performance Prediction Approach
for Internet of Things Architectures

Abstract Indisputable, security and interoperability play major concerns in Internet of
Things (IoT) architectures and applications. In this paper, however, we emphasize the
role and importance of performance and scalability as additional, crucial aspects in plan-
ning and building sustainable IoT solutions. IoT architectures are complicated system-
of-systems that include different developer roles, development processes, organizational
units, and a multilateral governance. Its performance is often neglected during develop-
ment but becomes a major concern at the end of development and results in supplemental
efforts, costs, and refactoring. It should not be relied on linearly scaling for such systems
only by using up-to-date technologies that may promote such behavior. Furthermore, dif-
ferent security or interoperability choices also have a considerable impact on performance
and may result in unforeseen trade-offs. Therefore, we propose and pursue the vision of a
model-driven approach to predict and evaluate the performance of IoT architectures early
in the system lifecylce in order to guarantee efficient and scalable systems reaching from
sensors to business applications.

4.1 Introduction

Since several years Internet of Things (IoT) constitutes one of the main future topics for
industries (Atzori/lera/Morabito, 2010). Information and communication technologies
for small devices continuously become not only more affordable, but also more powerful
regarding processing. This enables these devices to be connected to the Internet. Addi-
tionally, big data technologies emerged and enabled organizations to store huge amounts
of data and to analyze incoming data streams with sophisticated algorithms in real-time
(Schermann etal., 2014). This has facilitated the evolution of IoT and enables orga-
nizations to build solutions for a highly diverse range of use case scenarios in different
domains. Therefore, IoT may be considered as an umbrella term for different disciplines
that already have longer histories (e.g., industry automation) and, additionally, promotes
the integration of these different disciplines, for instance, the automatic combination of
sensor data with enterprise resource planning data.
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Although being promoted very much, only a few IoT use cases are implemented in indus-
try yet. Contradictorily, there are already hundreds of IoT platforms and technologies
that are waiting to be exploited. In addition, there are several initiatives to define stan-
dards (Atzori/Iera/Morabito, 2010), however, their establishment progresses slowly and
an oversupply of vendor-specific implementations hamper the development of integrated
solutions. For instance, an [oT developer survey with 528 participants conducted by the
Eclipse IoT Working Group, IEEE IoT, and AGILE-IoT suggests that security, interop-
erability, and connectivity represent the three major concerns among all participants for
developing [oT solutions (Skerrett, 2016). However, for developers and organizations that
have already deployed IoT solutions, performance becomes the third concern over con-
nectivity. This reflects our comprehension that performance is not considered sufficiently
when building architectures and finalized developments become very costly to counteract
on late in the software life cycle.

We emphasize the role and importance of performance in terms of response time, through-
put, and resource utilization. It is a vital aspect in planning and building sustainable IoT
solutions as they involve multi-domain environments including constrained devices, gate-
ways, and platforms of which the latter combines big data technologies and business
applications. All these levels can have a direct impact on the performance of an overall
system. Furthermore, evaluating the impact of design choices (e.g., regarding security,
interoperability, and platforms) at development time is difficult, especially, for large-scale
operations. These are only some of the factors that complicate IoT performance manage-
ment.

In order to address and solve these issues, we propose the vision of a model-based approach
for representing components and performance-influencing factors of IoT architectures and
allow for performance-by-design. These models shall serve as input for analytical solvers
or simulation engines and allow for predicting different performance metrics (Figure 4.1)
(Brunnert etal., 2014). In this way, architectures can proactively be evaluated regarding
bottlenecks and scalability. Required resource demands can be planned and the through-
put and response time behavior of subsystems can be estimated. The derived performance
metrics and predictions shall also contribute to support communication and collaboration
between developers (e.g., embedded developers and developers for business applications)
and operations.

System
L Architectures

Hardware
Environments

Analytical i ;
Integrated Solvers / ;
Model Simulat 11 I
imulation ol
A
1 Response Time

Throughput
Adapt Resource Utilization

Figure 4.1: Model-based prediction approach
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4.2 Model-driven Performance Prediction

Our vision and its realization is driven by the following three research questions, which
we use to explain our proposal and intentions:

1. What resource requirements and performance difficulties occur and are relevant on
different levels of IoT architectures?

2. Which existing approaches and technologies can be used for implementing the inte-
grated modeling concept?

3. How can existing meta-models and simulation approaches of different levels be in-
tegrated and combined?
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Figure 4.2: Abstract IoT architecture

In order to address the first research question the different levels and developer roles of
architectures must be considered. Figure 4.2 shows a very basic loT architecture that is
reduced to the essential three layers. First, constrained devices and controllers represent
the things in IoT. Second, gateways, routers, and smart devices enable fog computing
at the edge and may integrate as well as pre-analyze data from devices (Skala etal.,
2015). Third, platforms process, store, and aggregate data from different sources and
enable business applications to analyze and report data to end users. The connectivity
and communication between the levels is not limited to one direction. In addition, non-
functional requirements such as performance, security, and interoperability are topics that
influence all levels. For performance engineers, for instance, the following questions occur:

1. How shall computing resources (e.g., CPU, disk, memory, network) be sized on each
level?

2. Shall gateways pre-analyze data and of how many devices per gateway?

3. What is the impact of protocol, security, and interoperability choices on the overall
performance?

4. Does the architecture scale linearly with increasing number of devices and gateways?

Since the IoT stack is highly diverse, different developers and engineers are involved in
the implementation. Embedded and systems developers are responsible on the device
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level and also partly on the gateway level. As gateways continuously expand, become
smarter, and are able to run sophisticated operating systems, application developers also
constitute a part on the gateway level. On the platform level, a mix of data scientists,
application developers, and web developers implement the integration and visualization
of data. Due to this mix of interests and engineering disciplines, we see the need to
investigate the performance requirements on each level and for each role in order to
understand influencing factors in a holistic view that need to be included in our model
approach.

Similarly, previous and present related modeling approaches consider these disciplines in
separated ways. As mentioned, IoT provides and increases the opportunity of combining
existing approaches. Use case scenarios arise, for instance, that require capacity planning
for devices and gateways based on formal models which are already well understood in
the domain of business information systems. Since there is a tremendous number of
modeling approaches, the second research questions addresses reviewing existing methods
and technologies for different levels with regards to our vision. In the following we list
one example technology for each level.

For the device level, for instance, AutoFOCUS3! represents an integrated model-based
tool for the development process of embedded systems (Aravantinos etal., 2015). It
includes the activities for modeling requirements, software architectures, hardware plat-
forms, and deployments as well as for generating code. The software architecture is built
up by different software components that may be connected to each other to allow for
interactions and may also be decomposed into multiple hierarchical subcomponents. The
hardware architecture includes resources such as processors and memory that can be
linked. It also involves platform architectures for execution and runtime environments
such as operating systems or Java virtual machines. The integration and combination of
these models enables developers to apply different analysis and synthesis methods such

as testing, model checking, deployment, and automated scheduling (Aravantinos et al.,
2015).

The Eclipse Framework for Distributed Industrial Automation and Control (4diac) 2? is
part of the Eclipse IoT ecosystem and represents an instance for modeling the gateway
level. It provides an open source infrastructure for distributed industrial process measure-
ment and control systems based on the IEC 61499 standard Zoitl/Strasser /Valentini (2010).
In order to model software architectures, 4diac includes an application editor that allows
for representing function block networks consisting of one or multiple function blocks and
their interaction via events. Similarly, a separate editor is included to model the specifica-
tion of hardware by modeling devices and resources. By the means of several more editors
and an own runtime environment, 4diac supports the development of industrial IoT ap-
plications and facilitates portability, interoperability, configurability, and scalability as
promoted by IEC 61499 (Zoitl/Strasser/Valentini, 2010).

Thttp:/ /af3.fortiss.org
Zhttps://eclipse.org/4diac/
3http:/ /fortiss.org/research /projects/4diac/
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For the platform level, the performance management work tools (PMWT)? provide several
integrated approaches to automate, support and integrate performance engineering activ-
ities across the software lifecycle (Brunnert et al., 2014). This includes the automatic gen-
eration of models for enterprise applications based on performance measurements (Brun-
nert/Krcemar, 2017), modeling complex user behavior of applications (Vogele et al., 2016),
and simulating the performance of big data applications (Krofl/Krcmar, 2016).

In order to address the third research question, we will examine similarities of model-
based approaches for the different levels and domains of IoT architectures. For instance,
models on architecture-level may often separate their meta-model as illustrated in Figure
4.1. One or several models are used to describe the software and system architecture,
its components and its activity flow. Another model is used to describe the hardware
and resource environment such as computing nodes with processors, disks, and memory
connected via a network. An additional usage model is used to describe the use case
scenarios of the software architecture and the workload.

Although implicitly considering performance aspects, present solutions focusing on the
device and gateway level usually concentrate on guaranteeing functionality and safety
(Aravantinos et al., 2015). In contrast, there are a lot of performance models to predict and
analyze behavior on the platform level. Existing models on architecture-level that provide
the benefits we seek with our vision, however, only focus on classical business applications
and involve different requirements. For instance, the workload of business applications is
mostly user-driven such as the number of parallel user accesses, whereas [oT applications
are mostly data-driven such as the volume, velocity, and variety of incoming data. In
addition, massive distributed and parallel computing and resource clusters are properties
that are usually not found in business applications. Therefore, we aim at combining
existing model approaches and additionally implementing missing functionalities so we are
able to model the performance requirements we identified in the first research questions.

In order to be able to predict the performance behavior of the architectures, we will also
implement simulators and solvers for deriving different metrics such as response time,
throughput, and resource utilization. To evaluate our approach (Figure 4.1), we plan
to model applications from IoT benchmark suites and adapt these models for various
scenarios such as increasing number of things and increasing resource capacities. After
simulating the models, we will compare simulation results with measurement results of
applications from the benchmark that we adapted in the same way.

4.3 Related Work

As already mentioned, IoT involves and combines a variety of application domains and
development stacks. Consequently, there are a lot of related, but also highly diverse ap-
proaches of which we try to refer to examples to the best of our knowledge in this Section.
There are also several solutions available to model constrained devices, simulate networks
within IoT architectures on a very detailed level, and evaluate them for throughput and

4https://pmw.fortiss.org/tools/pmwt /



latency issues. For instance, Wang etal. (2016) apply the network simulator OPNET
for IoT cloud solutions; Brambilla et al. (2014) propose a simulation methodology to test
large-scale [oT systems with interconnected devices in urban environments and include
several network protocols and different mobility, network, and energy consumption mod-
els.

Furthermore, many related approaches specifically analyze and compare the performance
of different protocols or technologies on different layers. For scenarios in which devices
and gateways do not have a wired connection, for instance, Costantino etal. (2012) in-
vestigate LTE as a suitable interconnection in terms of its efficiency, bandwidth, and
coverage. In contrast, Daud/Suhaili (2017) provide a performance evaluation of protocols
for the application layer in IoT architectures. Therefore, they compare the hypertext
transfer protocol (HTTP) and the constrained application protocol (CoAP) for message
formatting, communication, and request handling on different test beds.

There are several developments of performance benchmarks for IoT, however, mostly
on the platform level. Arlitt et al. present an analytics benchmark called loTAbench
(Arlitt etal., 2015). It allows for generating, loading, repairing and analyzing synthetic
data and was evaluated by the example of a smart metering use case and using a HP
Vertica database. (Shukla/Chaturvedi/Simmhan, 2017) propose another benchmark for
distributed stream processing platforms (i.e., Apache Storm) called RIoTBench. They
provide different data workloads and generators as well as a set of 27 common IoT tasks for
different domains. Furthermore, Medvedev et al. (2017) provide an evaluation of different
[oT platforms with regards to performance characteristics.

4.4 Conclusion and Future Work

This paper proposes and pursues the vision of an model-based approach for predicting and
evaluating the performance of IoT architectures and systems. It shall support developers
and engineers at examining design choices early in the system lifecycle, finding potential
bottlenecks, planning and sizing required resources on different levels, and predicting
response times from sensors to visual results. We will start our future research and
work with combining and integrating modeling approaches for embedded systems with
approaches for big data systems as well as for business information systems. Therefore,
we are currently developing a first prototype for an integrated modeling environment.
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Stream Processing On Demand for
Lambda Architectures

Abstract Growing amounts of data and the demand to process them within time con-
straints have led to the development of big data systems. A generic principle to design
such systems that allows for low latency results is called the lambda architecture. It de-
fines that data is analyzed twice by combining batch and stream processing techniques in
order to provide a real time view. This redundant processing of data makes this architec-
ture very expensive. In cases where process results are not continuously required to be low
latency or time constraints lie within several minutes, a clear decision whether both pro-
cessing layers are inevitable is not possible yet. Therefore, we propose stream processing
on demand within the lambda architecture in order to efficiently use resources and reduce
hardware investments. We use performance models as an analytical decision-making so-
lution to predict response times of batch processes and to decide when to additionally
deploy stream processes. By the example of a smart energy use case we implement and
evaluate the accuracy of our proposed solution.

5.1 Introduction

With the increasing ubiquity of information and communication technology (ICT) and
the emergence of the Internet of things (IoT) the available data amount is growing expo-
nentially. Simultaneously, technologies have been developed to store, manage and analyze
these diverse and high volumes of data, also known as big data (Schermann etal., 2014).
These circumstances allow for applying analytics in order to gain knowledge and support
decision-making. For more and more usage scenarios, these analytical capabilities must
also meet specific time requirements such as real-time (Chen/Zhang, 2014). One common
approach to design big data systems that can cover many use cases is the lambda archi-
tecture (Marz/Warren, 2015). It mainly consists of a batch layer and a speed layer. The
former iteratively processes a set of historical data in batches while the latter processes
the arriving data stream in parallel to incrementally analyze latest data. By joining the
output of both layers query results always reflect current data.

Nowadays, various complementary technologies with different characteristics exist to build

a big data system and there is hardly one technology solution that fits most use cases of
an organization. Although the lambda architecture simply is a generic design framework
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which offers a solution for many use cases, nonetheless, a variety of technologies can be
applied for the batch or speed layer. Examples for the batch layer are Hadoop MapRe-
duce (Apache Hadoop, 2015), Apache Pig (Apache Pig, 2014), and Apache Spark (Apache
Spark, 2015) and for the speed layer Apache Storm (Apache Storm, 2015), Apache Spark
Streaming (Apache Spark, 2015), Apache Samza (Apache Samza, 2015), or Amazon Ki-
nesis (Amazon Web Services, 2015). This multitude leads to the development of complex
system of systems, which often results in performance issues and high resource require-
ments (Brunnert etal., 2014). Furthermore, the lambda architecture intends to process
all data twice in both layers. Batch processes also analyze data from the ground up in
each iteration to ensure fault tolerance in case of hardware failures or human mistakes
(Marz/Warren, 2015). These fundamental ideas require costly resources. For use cases
where time constraints are not continuously needed or lie between several minutes, it can
be often an important question whether a speed layer is really required or not. However,
this question can usually not be answered during system development nor in test systems
under realistic workload. As stream processing heavily utilizes main memory, the speed
layer can also become an expensive investment (Liu/Iftikhar/Xie, 2014).

Therefore, we propose a speed layer or stream processing, respectively, on demand. The
idea is to exclusively use batch processes as often as possible and switch on stream pro-
cessing only when batch processes are likely to exceed response time constraints. In this
way, computing power is utilized more efficiently and resources can be saved as well as
be available for other processes. In case of virtualized environments, investments can be
directly decreased by reducing cloud service resources. In order to switch on stream pro-
cessing at the right time, it is inevitable to predict the response time of succeeding batch
iterations. For this purpose, we use performance models. They allow to describe perfor-
mance influencing factors of software systems and to predict performance metrics such
as response time, throughput and utilization by means of analytical solvers or simulation
engines (Brosig etal., 2015). Therefore, we integrate estimated resource demands into
the model based on measurements from batch processes to simulate an accurate system
behavior. This enables us to efficiently schedule stream processes.

In this paper, we first give a detailed description of our proposed approach in Section
5.2 and how we use performance models to support decision-making. In Section 5.3, we
validate our approach in an experiment. We describe the selected use case, the setup and
sample algorithm for the batch layer, and the prototype performance model to predict
batch processes. Afterwards, we discuss the experimental results we derived for different
workload scenarios. In Section 5.4, we reflect related work in the area of the lambda
architecture and, finally, conclude our paper with providing an outlook for future work in
Section 5.5.

5.2 Stream Processing On Demand

In order to make decisions about when to switch on stream processing, we use performance
models as an analytical solution. As illustrated in Figure 5.1, the iterative process is
divided into two main steps in which the following Sections 5.2.1 and 5.2.2 are structured.
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Figure 5.1: Stream processing on demand process (© 2015 Springer)

First, one batch iteration and, potentially, a concurrent stream process are started within
the lambda architecture. Second, after the batch process has ended, a decision-making
model is used to decide whether stream processing is required in the next batch process
iteration or not. Basis of decision-making is a performance model which is used to predict
the response time of a batch process. Afterwards, the procedure is repeated.

5.2.1 Data Processing in the Lambda Architecture

As already mentioned, our focus is on data processing, namely batch and stream process-
ing, within lambda architecture and not storing data sets or results. Figure 5.2 illustrates
the data flow and structure of batch and speed layer that differ from each other. Starting
point is a shared data source which either streams the same data into each processing
layer or gets accessed by each layer to retrieve data. Within the batch layer, all data are
stored in a data set. A special characteristic of the data set is that it is append-only and
data are not updated or removed (Marz/Warren, 2015). Batch processes use the data set
to operate on. In doing so, each batch process usually analyzes a huge set of historical
data which leads to response times of minutes or hours for one batch job. The results are
written to separate views, which is also considered as serving layer by Marz/Warren (2015)
for batch results. Batch processes constantly run iteratively and start from the beginning
once a batch job has finished. If a batch process starts, only data that have been created
before are included. Consequently, data that arrive during the current batch process are
only included in the next new batch process. Since all data are analyzed in each cycle,
each new result view can replace its predecessor. As the batch layer does not rely on
incremental processing, it has the advantage of being a robust system where everything
can be recomputed and reconstructed in case of hardware or software failures or human
mistakes (Marz/Warren, 2015).

In contrast to the batch layer, the speed layer does not keep a record of historical data
and solely uses main memory. As of today, stream processes run permanently and ana-
lyze each incoming message. They incrementally calculate and immediately update their
result views. Thus, both layers include separated views and, in practice, usually different
technologies are used as underlying databases because of their distinct requirements re-
garding read and write operations. In order to receive a holistic result, the view of both
layers have to be merged in a query.
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Figure 5.2: Composition and data flow of batch and speed layer of the lambda architec-
ture (adapted from Marz/ Warren, 2015) (© 2015 Springer)

Although both layers process the same data, the results of queries that merge views only
reflect data that are processed once at the time of the query. The purpose of the speed
layer is to analyze the data prior to the batch layer and enable low latency by incremental
updated result views. As a result, a past view of the speed layer can be discarded as soon
as a subsequent batch job has finished.

A typical implementation of the lambda architecture as illustrated in Figure 5.2 would
be to use Apache Kafka (Apache Kafka, 2015) - a publish-subscribe messaging sys-
tem - as shared source for incoming data. For the batch layer, HDFS can be used as
data set and Hadoop MapReduce for batch processing. For storing batch results, which
Marz/Warren (2015) also describe as serving layer, ElephantDB! represents a specialized
database for this purpose. For the speed layer Apache Storm (Apache Storm, 2015) is an
example of an appropriate technology and Apache Cassandra (Apache Cassandra, 2015)
of a database.

5.2.2 Decision-making Model

To decide when to switch on stream processing, we predict the response time of succeeding
batch processes and build a decision-making model. To comprehend why it is necessary
to predict the succeeding batch processes, the chronological sequence of batch and stream
processes as intended by the lambda architecture is illustrated in Figure 5.3. As already
mentioned, results of batch processes are not available until they finish, while results of
stream processes are incremental and can be queried at any time. Supposing one batch
process 1 has ended and a decision must be made at time y on whether additional stream
processes are needed afterwards or not, the earliest point in time where results of stream
processes can be reasonably used is at time 2. Stream process j considers only data newer
than time y. Therefore, a batch process is required that has analyzed data before time y.
However, the corresponding batch process j will only start after time y and end at a given

Thttps://github.com/nathanmarz/elephantdb
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Figure 5.3: Chronological sequence of batch and stream processes (© 2015 Springer)

time z. Thus, a decision must already be made at time y, if batch process k violates time-
constraints so stream processes are switched on at time y. Consequently, query results
after time z will have consistently incorporated all data.

The above mentioned response time prediction is part of our decision-making model. Its
procedure is depicted in Figure 5.4. Starting point is a finished batch process iteration.
The response time of the second next batch iteration is predicted by using a performance
model, which takes two inputs - the time constraint for the duration of a batch process
and the load intensity. The latter means information about the incoming data of the batch
layer. For instance, this can be in the form of a variable distribution as modeled by the
LIMBO tool (von Kistowski/Herbst/Kounev, 2014). The prediction can be accomplished
by means of simulation or analytical solving. If the predicted response time does not lie
within the specified time limitation, the model tries to start batch processing in parallel
with stream processing, otherwise the model considers batch processing only as sufficient.

5.3 Experimental Validation

For the evaluation of our proposed approach, we conduct a controlled experiment which
is described in the following Subsections. First, we discuss the selected use case. Second,
we list the used setup and technologies of our exemplary batch layer as well as the sample
algorithm for data processing. Afterwards, the performance model prototype to support
decision-making is presented. Finally, we evaluate the accuracy of the inferred decision-
making on the basis of three selected scenarios and discuss results from our observed
measures.
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Figure 5.4: Decision-making model (© 2015 Springer)
5.3.1 Use Case and Design Options

To represent incoming data and their distribution, we pick the example of a common
smart energy use case as illustrated in Figure 5.5.

Here, several hundred wind turbines are positioned in several wind farms in different
geographic locations with long distances onshore or offshore. In order to operate efficiently,
they measure several thousand parameters per turbine such as pressure, temperature or
vibrations of rotor blades. As they are subject to various influences, wind turbines are
not always in operation and do not measure data, for instance, if they are defect or are
maintained. While onshore wind turbines and wind farms, respectively, tend to have a
time-based availability between 95-99%, the values for offshore wind farms with distance
less than 12km range from 67.4% to 90.4% (Faulstich/Hahn/Tavner, 2011). However,
wind turbines include also downtimes, if wind is too strong or too weak which is described
by the metric energy-based availability. Faulstich/Lyding/Tavner (2011) compared time-
based and energy-based availability of wind turbines. In an extreme case where the
downtime due to defects and the downtime due to wind speed does not overlap, the
energy-based availability lies within 90.4-95.2%.

Dependent on a wind turbine’s availability, we assume it either produces a set of mea-
surement data with constant volume or does not produce any output data. As a result,
wind turbines generate not only immense amount of heterogeneous data, but also variable
load which makes it difficult to predict the production rate of data. As soon as data are
generated, they flow into a central data center where they are processed. Dependent on
the use case, data are handled in different ways. They can be gathered and stored in
a central repository where batch processing can be used to extract, transform, and load
(ETL) data and to apply complex analytics. This procedure usually lies in the range of
minutes or hours and is not suitable for real-time requirements. For this purpose, stream
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Figure 5.5: Data processing of wind power facilities (© 2015 Springer)

processing can be used to directly process data as they stream in. Here, analytical algo-
rithms may be designed in a simpler and less complex way than at batch processing as
well as implemented in slightly different way as they produce incremental results.

In scenarios where low latency results are required and normally stream processing is
chosen, but also analysis of historical data by batch processing need to be incorporated
for conclusive results, the lambda architecture is an appropriate solution that allows for
serving such use cases. Therefore, on both processing layers, stream and batch, the same
kind of algorithm is implemented and results are joined.

Sensor data can be used for a variety of analytical scenarios such as for condition mon-
itoring, diagnostics, predictive analytics or maintenance, and load forecasting. For our
experiment, we concentrate on the latter example. Since the introduction of energy ex-
change such as the continuous intraday spot market of the European power exchange
(EPEX), power can be bargained in 15-minute intervals up to 45 minutes before delivery
which enables providers as well as consumers to efficiently act on short notice. In this case,
the time-constraint is within 15 minutes. Typical forecast methods for short-term load
forecasting include different exponential smoothing methods such as an autoregressive
integrated moving average (ARIMA) model (Taylor, 2008) or recurrent neural networks
(Schéfer/Zimmermann, 2006). Furthermore, these algorithms are often applied on a slid-
ing window of historical data.

Therefore, we will use this smart energy scenario as an example for our proposed approach
and generate sensor data that are processed by one central system in similarly way as we
have modeled it in a previous work (Krof et al., 2015a). The generator produces comma-
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separated values (CSV) files that represent measurements from wind turbines of one wind
farm. Listing 5.1 shows the file structure and syntax.

Listing 5.1: Fzample of generated monitoring data from wind turbines

id, timestamp, power, paraml, ... paramN
12, 2015-04-01 08:23:04.125, 12.67, valuel, ... valuel
15, 2015-04-01 08:23:03.973, 13.49, value2, ... value2
13, 2015-04-01 08:23:04.096, 12.59, value3d, ... value3

Each line represents a measurement of one wind turbine consisting of a id, timestamp, a
power value and several hundred more parameters which we generated randomly and do
not include in our succeeding analytic algorithms.

5.3.2 Implementation of the Batch Layer

To examine the accuracy of response time prediction for batch processes, we setup the
batch layer using HDF'S to store data sets and Hadoop MapReduce for batch processing.
For simplicity, we installed a single node cluster in pseudo-distributed mode so Apache
Hadoop runs only on one machine, but their daemons have their own Java processes. In
order to do load forecasting and apply the data generator as mentioned in Section 5.3.1,
we implemented a simple moving average algorithm in a Hadoop MapReduce job. It is
based on an example algorithm?.

The MapReduce programming model intends to implement one map and one reduce
function. The former takes a key/value pair as input and produces a set of key /value pairs,
whereas the latter takes a key and set of associated values and combines the values to
another smaller set (Dean/Ghemawat, 2008). In our case the map function is implemented
as

Listing 5.2: Map function pseudo code

map (Object keyl, String valuel):
// keyl: file name
// valuel: measurements of wind turbines of one farm
for each line 1 in value:
kv = parse (1)
emit ({kv.id, kv.timestamp}, {kv.timestamp, kv.powerl})

The function is called for each file within a given folder. It receives one CSV file and
its value, which are multiple rows of measurement data of wind turbines. The algorithm
reads every line and parses it in order to filter the id of a wind turbine, the timestamp of
the measurement and the power value that describes the generated power to that time.
Afterwards it releases a composite key containing the id and timestamp, and the values
timestamp and power. By using a composite key Hadoop sorts the ids of wind turbines

Zhttps://github.com /jpatanooga/Caduceus/
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and, in a secondary sort, the timestamp for each id. Subsequently, the reduce method
results in a simpler design as displayed in Listing 5.3.

Listing 5.3: Reduce function pseudo code

reduce (Object key, Iterator<object> values):

// key: an object containing id and timestamp
// values: power values ordered by timestamp
result = simpleMovingAverage(values)

emit (id, result)

The reduce function is called for each different wind turbine and calculates the actual
simple moving average. It receives the key object and a list of values as input which
contains timestamps and power values sorted by the former. The function itself calculates
the result and emits it with the corresponding wind turbine 7d.

5.3.3 Performance Model Prototype

We use the Palladio component model (PCM) (Becker/Koziolek/Reussner, 2009) for our
performance model. PCM is an annotated software architecture model that allows for
describing performance relevant factors of software architecture, execution environment
and usage profile (Brosig etal., 2015). Such performance models enable software archi-
tects and performance engineers to predict performance metrics such as response time,
utilization or throughput by means of simulation or analytical solving.

PCM is divided into several sub-models. In the repository model, we specify a batch
process as a software component with its service effect specification (SEFF) to describe the
resource demands of the provided service. In the resource environment model, we describe
the hardware resources and processing rates on which a batch process will be executed.
The concrete assignment of modeled batch processes to resources is determined in the
allocation model. Finally, we specify the load intensity from wind turbine measurements
in the usage model.

Figure 5.6 shows the substantials of modeling the batch process in our performance model.
As shown in Figure 5.6a, we specify one interface BatchProcess with the method processJob
to analyze an input data set. The implementation of the interface and its method is
modeled by the component MapReduce with the corresponding SEFF. As illustrated in
Figure 5.6b the SEFF itself solely consists of a CPU resource demand in dependence on
an incoming data set size. The data set size is specified in the usage model, in our case,
in gigabyte.

In order to define the CPU resource demand and simulate a realistic system behavior we
integrated measurements into our performance model. Therefore, we measured response
times of the MapReduce job described in Section 5.3.2 while running it. Afterwards, we
used an approximation with response times, which is also implemented by the LibReDe
library (Spinner etal., 2014), to estimate the required CPU time each process takes per
transaction. One transaction means exactly one batch process that analyzes a set of
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Figure 5.6: Modeling a batch process with the Palladio component model (© 2015
Springer)

messages. In our case, the resulting resource demand we estimated is 261 as represented
in Figure 5.6b.

In order to predict results, PCM instances must be first transferred to be either simulated
or solved analytically. Available model transformations are a model-to-text transformation
like SimuCom (Becker/Koziolek/Reussner, 2009), queuing Petri nets (QPN) transforma-
tions as well as a transformation to layered queuing networks (LQN). Brosig et al. (2015)
evaluated these model transformations with regards to their efficiency and accuracy. In
our application scenario, time is critical and the model need to be solved as efficiently as
possible so resulting predictions are available at an early opportunity and the next batch
process can be initiated. Therefore, we recommend the use of a model transformation to
LQNs. It showed to be the most efficient solution as it is an analytical solver (Brosig et al.,
2015).

The performance model prototype has the limitation that is does not reflect the scheduling
of processes itself within a cluster, for instance, as accomplished by Apache Hadoop
YARN. Therefore, we assume sufficient available resources so batch and stream processes
always run without interference.

5.3.4 Controlled Experiment

To conduct our experiments we run the mentioned data generator to produce CSV files
for 10 wind farms with 100 wind turbines each, whereas one wind turbine approximately
produces one measurement every second. Afterwards, we run the implemented Hadoop
MapReduce job which reads only data measured within a sliding window of 24 hours.
While the batch process is running, meanwhile we determine the incoming data volume.
After the batch process is finished, we predict the response time of the second next batch
process using our performance model. For the immediate succeeding batch process, we
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exactly know the data volume it will process as we know the historical data distribution
and tracked new arrived data. For the batch process to be predicted, the data volume must
be estimated. Therefore, a variety of specialized tools and algorithms exist to classify and
forecast workload such as the approach by Herbst etal. (2014). As we target an efficient
solution and a short-term forecast is required, namely, only the next point, we only use a
naive forecast in this study. It does not involve any computational overhead and simply
takes the value of the latest observation as next forecast point in contrast to other methods
such as cubic smoothing splines or ARIMA 101 that are more appropriate for scenarios
with strong trends or noises (Herbst etal., 2014). In our case, the next forecast point
equals the arrived data volume which has not been absorbed by the last batch process
yet. Afterwards, we trigger the performance models with the predicted load intensity
as input, and compare the predicted response time with the eventual measured response
time.

As already mentioned, the aim is to minimize the usage of the speed layer. The level
of potential resource reductions and costs savings that can be achieved depends on the
characteristics of the underlying workload and variations in data distributions. The effec-
tiveness of our solution itself, however, depends on how well the data volume is predicted
and, especially, how accurate batch processes are predicted. Therefore, we concentrate on
the latter in this controlled experiment and perform three selected scenarios with different
load intensities by assuming different availabilities of wind turbines based on Faulstich/
Hahn/Tavner (2011); Faulstich/Lyding/Tavner (2011) to evaluate the accuracy of our
solution.

Table 5.2: Measured and predicted results of batch processes (© 2015 Springer)

Scenario‘ WTA Fluctuation ‘ PRT MRT ‘ RE
85 % +0% 12.78 minutes 12.17 minutes 5.01 %
1 90 % +0% 13.53 minutes 13.60 minutes 0.51 %
95 % +0% 14.28 minutes 15.47 minutes 7.69 %
85 % +5% 12.78 minutes 13.82 minutes 7.53 %
2 90 % +5% 13.53 minutes 15.03 minutes 9.98 %
90 % -5% 13.53 minutes 12.58 minutes 7.55 %
3 95 % -5% 14.28 minutes 13.17 minutes 8.43 %

In the first scenario, we assume the wind turbine availability (WTA) is constant during two
following batch iterations. Consequently, the measurement data wind turbines produce do
also not fluctuate so the predicted load intensity using a naive forecast is very close to the
actual measured load intensity. In the second scenario, we assume an increase of the WTA
of 5 % for the subsequent batch process and, vice versa, we assume a decrease in a final
third scenario. For each scenario, we conduct several experiments with different WTA
to also validate the prediction accuracy under different load intensities. Afterwards we
compare predicted response times (PRT) with eventual measured response times (MRT)
of the batch process and calculate the relative error (RE) of the PRT. The results are
listed in Table 5.2.

For a WTA of 85% and no fluctuation during the following batch process, we predict the
response time for the batch process to be 12.78 minutes. We measured a MRT of 12.17
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minutes which leads to a RE of 5.01%. For a WTA of 90%, the RE of the predicted
response time is only 0.51 % and 7.69% for a WTA of 95%.

In the second scenario, for a 85% WTA and a 5% increase of available wind turbines during
the following batch iteration, the PRT is 12.78 minutes and the MRT 13.82 minutes with
a 7.53% RE. Here, the PRT equals the same PRT as in the experiment for first scenario
with a 85% WTA since the naive forecast, as already mentioned, uses the last observation
point, namely 85%, as next prediction point. The same occurrence also applies for the
following experiments. The highest RE with 9.98% appeared for a WTA of 90% with
+5% fluctuation at which the PRT is 13.53 minutes and the MRT 15.03 minutes.

For a decrease of the 5% WTA in the last scenario, we measured REs in the range similar
to the former scenario. With a starting point of 90% WTA, the PRT is 13.53 minutes
and the MRT 12.58 minutes. For 95% WTA, the PRT equals 14.28 minutes and MRT

13.17 minutes.

In our experiments, we showed that we are able to predict the response times of a batch
process or MapReduce job, respectively, with RE between 0.51% and 9.98%. With regards
to our exemplary use case, power can be traded every quarter of an hour in the intraday
spot market. Assuming a fluctuating workload and a maximum acceptable response time
of 14 minutes remaining one minute buffer, we would be able to accurately schedule stream
processing in the second scenario, namely, not to switch on in the first experiment and
to switch on stream processing in the second experiment as the MRT exceeds the time-
constraint with 15.03 minutes. For a decreasing fluctuation, we would proper schedule
stream processing for a starting WTA of 90%. However, for the last experiment in Table
5.2, we would have left the speed layer switched on as the PRT lies over 14 minutes in
contrast to the MRT which is mainly caused by the naive forecast.

5.4 Related Work

Similar to our use case, Sequeira etal. (2014) propose a system based on the lambda
architecture to analyze energy consumption. Martinez-Prieto etal. (2015) adapted the
architecture for semantic data and Casado/Younas (2015) give an extensive review about
technologies for the lambda architecture. Regarding optimization or efficient resource
usage of the architecture, however, related research mainly focuses on the processing layers
itself. For instance, Aniello/Baldoni/Querzoni (2013) and Rychly/Skoda/Smrz (2015)
specify on scheduling stream processes, while Alrokayan/Vahid Dastjerdi/Buyya (2014)
concentrate on scheduling batch processes.

Regarding predicting batch processes, there is comprehensive research available, for in-
stance, specialized for MapReduce jobs

(Barbierato/Gribaudo/Iacono, 2014; Verma/Cherkasova/Campbell, 2011; Vianna et al.,
2013) as well as for big data applications in cloud infrastructures (Castiglione et al., 2014).



To overcome redundancy regarding software development and infrastructure complex-
ity, approaches such as storm-yarn® or by Nabi/Wagle/Bouillet (2014) exist to integrate
stream processing in the Apache Hadoop environment. Summingbird* is an open source
library that allows to write algorithms that can be used for batch as well as stream
processing.

5.5 Conclusion and Future Work

This paper introduced a novel approach to use resources more efficiently when implement-
ing the lambda architecture. It is applicable for usage scenarios where time constraints of
queries are not permanently required to be low or lie within several minutes. To reduce
processing power, we propose to switch on stream processing on demand in cases where
batch processes are likely to exceed time requirements. By using historical information
of incoming data and naive forecasting to classify workload, we predicted the response
time of succeeding batch iterations. Therefore, we used performance models in which we
integrated estimated resource demands based on measurements. The results allow us to
make decisions when additional stream processes are required or, vice versa, can be saved
to reduce resource usage. If hardware provision is used in a as-a-service manner, it allows
for reducing costs directly.

For future work we plan to automate the process illustrated in Figure 5.1. This involves
to automatically measure incoming data during each batch iteration, apply workload
forecasting techniques and trigger solving the performance model. Another challenge is
to also integrate the speed layer into our test environment. This will enable us to examine
our approach and its efficiency for successive batch iterations for a lengthy period of time.
Furthermore, we will integrate other workload forecasting techniques besides the naive
forecast to evaluate possible prediction enhancements and scheduling optimizations.

© Springer International Publishing Switzerland 2015. Reprinted/adapted by permission
from Krof$ J., Brunnert A., Prehofer C., Runkler T.A., Kremar H. (2015) Stream Pro-
cessing on Demand for Lambda Architectures. In: Beltran M., Knottenbelt W., Bradley
J. (eds) Computer Performance Engineering. EPEW 2015. Lecture Notes in Computer
Science, vol 9272. Springer, Cham

3https://github.com /yahoo/storm-yarn
“https://github.com/twitter /summingbird
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Abstract The growing availability of big data has induced new storing and processing
techniques implemented in big data systems such as Apache Hadoop or Apache Spark.
With increased implementations of these systems in organizations, simultaneously, the
requirements regarding performance qualities such as response time, throughput, and
resource utilization increase to create added value. Guaranteeing these performance re-
quirements as well as efficiently planning needed capacities in advance is an enormous
challenge. Performance models such as the Palladio component model (PCM) allow for
addressing such problems. Therefore, we propose a meta-model extension for PCM to
be able to model typical characteristics of big data systems. The extension consists of
two parts. First, the meta-model is extended to support parallel computing by forking
an operation multiple times on a computer cluster as intended by the single instruction,
multiple data (SIMD) architecture. Second, modeling of computer clusters is integrated
into the meta-model so operations can be properly scheduled on contained computing
nodes.

6.1 Introduction

Exponentially growing volumes of data of various formats—referred to as big data—and
the necessity of organizations to gain benefits have led to the development of big data
systems (Casado/Younas, 2015; Schermann et al., 2014). These systems are specialized for
storing and processing this data. A common example includes Apache Hadoop! consisting
of a distributed file system called HDFS, a scheduler and cluster resource manager called
YARN and the MapReduce model for parallel data processing (Dean/Ghemawat, 2008).

Although Apache Hadoop is originally built for commodity hardware, other systems such
as Apache Spark (Streaming)? and Apache Storm® have emerged that enable low latency
results on big data by also using in-memory computing (Zaharia et al., 2012a). Therefore,

Thttp://hadoop.apache.org/
2http:/ /spark.apache.org/
3http://storm.apache.org/

57



6 Modeling Big Data Systems by Extending the Palladio Component Model 58

CallReturnAction >  CallAction

Iy 0.1 0.1 Iy

VariableUsage

*

OperationRequired 1

Role .
ExternalCall Action InterCall Action
1 - retryCount :

Integer 0.1

OperationSignature
SetVariableAction
DistributedCall Action Vi Vi
- totalForkCount : Integer AbstractAction 4 Abstractl nterna_ll 1
- simultaneousForkCount: Integer ControlFlowAction

(a) Service effect specification (SEFF) actions

<<Enumeration>>

SchedulingPolicy

Resource
Environment

_-DELAY

" ROUND_ROBIN

<<Enumeration>> *

ResourceRole

Resource Container LinkingResource

_-CLUSTER

1
- WORKER

0.1

ClusterResourceSpecification 1

- resourceRole : ResourceRole ProcessingResource CommunicationLink
- actionSchedulingPolicy : SchedulingPolicy Specification Resource Specification

(b) Resource environment

Figure 6.1: Meta-model extension for the Palladio component model (PCM, Version
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big data systems are able to meet continuously increasing performance requirements and
to serve several additional use cases. Consequently, up-front performance evaluations for
these systems and capacity planning for building an appropriate cluster become not only
inevitable, but also difficult and costly (Brunnert/Krcmar, 2017; Brunnert et al., 2014).

One way to approach these challenges are performance models such as the Palladio com-
ponent model (PCM) that focuses on component-based software architectures (Becker/
Koziolek /Reussner, 2009). It allows to model factors influencing system performance and
predict performance metrics such as resource utilization, response time, and throughput
by analytical solving or simulation (Brosig etal., 2015). As the PCM meta-model does
not allow to model some specific requirements of big data systems yet, we propose and
contribute a meta-model extension in this paper. This includes to specify an external
call of an action to be executed multiple times in parallel while limiting the number of
concurrent actions. It also includes to model a resource cluster consisting of several re-
source containers with different resource roles such as found in distributed computing
architectures.
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6.2 Modeling Big Data Systems

Comparing big data systems to ordinary component-based software systems (e.g., for web
applications), they make use of specialized processing paradigms. Casado/Younas (2015)
list two main techniques that are common for big data systems, namely, batch and stream
processing. They have in common that they utilize parallel and distributed computing
on a distributed system in the form of a computer cluster. For this purpose, software de-
velopers implement components with operation signatures, for instance by using software
libraries such as Apache Hadoop, and combine these components to build a task job that
will be deployed on a computer cluster. In order to distribute this task job across linked
resources, the components can be assembled in the form of a directed acyclic graph (DAG)
(Zaharia etal., 2012a). For instance, the MapReduce paradigm consists of two vertices
map and reduce that are linked by a directed edge. By this means, such systems are able
to make use of all distributed computing resources and achieve horizontal scalability for
increased workloads in terms of data volume or velocity.

Despite their shared characteristics, batch and stream processing adopt distinct ap-
proaches and are designed for different use cases. Batch processing is intended to be
used on data sets with high volume (Casado/Younas, 2015). In doing so, a specified oper-
ation is applied on splits of a non changing distributed data set multiple times in parallel.
For instance, implemented Hadoop MapReduce operations are applied on distributed files
on the HDFS. Implemented operations using Apache Spark are applied on so called re-
silient distributed datasets (RDD). The amount of parallelism for one specified operation
is usually limited by the split rate of a dataset. The amount of simultaneously running
parallel operations is usually limited by the amount of available resources or by specified
user configurations.

Stream processing, on the other hand, is designated for handling high velocity data
streams with low latency and is also referred to as real-time processing (Casado/Younas,
2015). It distinguishes itself from batch processing by not operating on a data set, but
rather operating on each data (e.g., Apache Storm) or a mini-batch (e.g., Apache Spark
Streaming) that are kept in-memory. Therefore, data are continuously received from an
unbounded data stream (e.g., in a message queue manner) and immediately processed
by an operation. Similar to batch processing, the number of simultaneously running
operations is limited by the amount of available resources or by specified configurations.

In previous work (Krof etal., 2015a) we already modeled one MapReduce job on a single
computer and predicted its response time. As we had to simplify several features and take
limitations into account, we identified the need to extend PCM. Based on these findings
and the above mentioned characteristics of batch and stream processing, we derive the
following requirements of big data systems that we propose to extend PCM in order to
allow for modeling typical big data systems:

1. Distribution and parallelization of operations
Component developers specify reusable software components consisting of opera-
tions using software frameworks like Apache Spark. In doing so, they may specity,
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but also may not know the definite number of simultaneous and/or total executions
of an operation.

2. Clustering of resource containers
System deployers specify resource containers with resource roles (e.g., master or
worker nodes), link them to a mutual network and logically group them to a com-
puter cluster.

On this basis, we propose the following extensions for the PCM meta-model, which are
shown in gray in Figure 6.1 (note that we only depict the relevant parts of the meta-
model regarding our approach). The PCM meta-model consists of several partial models
according to different developer roles (Becker/Koziolek/Reussner, 2009). Figure 6.1a
shows the actions of the service effect specification (SEFF) model. A SEFF describes
the behavior of an implemented operation. The element we propose to extend is the
ExternalCallAction that is used to call a required service (Becker/Koziolek/Reussner,
2009). Therefore, we introduce a DistributedCallAction. It contains the two additional
input parameters simultaenousForkCount and totalForkCount that can be used to specify
the simultaneous and/or total number of executions of an external call as mentioned
in the first requirement. Since these parameters depend on the workload and resource
environment, component developers can describe the two input parameters as well as the
resource demand of an operation as dependencies in parameterized form. In this way,
domain experts are able to specify the usage of the component afterwards as proposed by
Becker/Koziolek /Reussner (2009).

Figure 6.1b shows the meta-model extension for the resource environment. Here, a Re-
sourceContainer may or may not have several ProcessingResourceSpecifications to specify
e.g., processors and hard disks. A ResourceContainer can also have a set of nested
ResourceContainers. We propose to complement the ResourceContainer by a ClusterRe-
sourceSpecification which contains references to one ResourceRole as well as one Schedul-
ingPolicy. These are both part of a ResourceRepository, that is intended to contain types
of resources such as for middleware and operating system resources (Becker/Koziolek/
Reussner, 2009). A ResourceRole is used to describe whether a ResourceContainer repre-
sents a cluster, a master or a worker. A SchedulingPolicy is used to describe how actions
are distributed on a cluster.

An example for a modeled computer cluster is shown in Figure 6.2. An outer Resource-
Container is used to connect computing nodes to a cluster and includes a round robin
strategy to schedule actions on its nested ResourceContainer. This enables system de-
ployers to simply allocate components to a cluster. Furthermore, each nested Resource-
Container includes a ResourceRole. If only workers are specified, the cluster will represent
a shared-nothing architecture. If one master is specified, it will be responsible for dis-
tributing actions. Therefore, its ResourceContainer operates usually special middleware
with additional resource demands that can be modeled with InfrastructureCalls in PCM.
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6.3 Related Work

Most of the existing performance modeling approaches for big data systems concentrate
only on one technology, namely Apache Hadoop. Barbierato/Gribaudo/Iacono (2014)
introduce a performance modeling language to evaluate the performance of queries using
Apache Hive which is a data warehouse software on top of Apache Hadoop with a SQL-like
language. Vianna et al. (2013) propose an analytical model, which combines a precedence
graph model and a queuing network model, to model MapReduce workloads concentrating
on the pipeline parallelism between map and reduce operations. Verma/Cherkasova/
Campbell (2014) propose a framework consisting of micro benchmarks and a regression-
based model to predict and evaluate response times of MapReduce processes for different
cluster resource choices.

A more general approach regarding big data technologies is, for instance, introduced by
Castiglione etal. (2014) which use Markovian agents and mean field analysis to model
big data batch applications and to provide information about performance of cloud-based
data processing architectures. However, there is no approach available to the best of our
knowledge that tries to enable modeling of general batch and stream processes, and to
predict the response time and cluster resource utilization for their concurrent execution.

6.4 Conclusion and Future Work

In this paper we introduced a generic performance modeling formalism to model essential
characteristics of data processing as found in big data systems. For this purpose, we pre-
sented two meta-model extensions for PCM that enable performance engineers to model
a computer cluster and to apply distributed and parallel operations on this cluster. This
allows to model general stream processing as well as batch processing techniques inde-
pendent of their technology and to realize up-front performance evaluations for response
times, throughputs, and resource utilizations of CPU and memory of big data systems.

<<ResourceContainer>> Cluster

<<ClusterResourceSpecification>>
Resource Role: Cluster
Action Scheduling Policy: Round Robin

<<ResourceContainer>> Nodel <<ResourceContainer>> Node2 <<ResourceContainer>> Node3
<<ClusterResourceSpecification>> <<ClusterResource Speci fication>> <<ClusterResource Specifi cation>>
Resource Role: Master Resource Role: Worker Resource Role: Worker
<<Processingresource Specification>> <<Processingresource Specification>> <<Processingresource Specification>>

I<<LinkingResource>> LAN |

Figure 6.2: Fxample for a resource environment diagram



We already implemented the meta-model extensions, graphical modeling editors, model-
2-code transformations and basic functionalities of the associated simulation framework
SimuCom (Becker /Koziolek/Reussner, 2009) to support our extensions. Although we do
not consider network traffic between resource containers yet, first experimental results
already look promising. In future, we plan to complete the SimuCom extension as well as
integrate network traffic. Afterwards, we intend to comprehensively evaluate our meta-
model extension in controlled experiments. This includes up- and downscaling scenarios
regarding workload as well as resource capacities. Our long-term goal is to automatically
derive performance models for batch and stream processes based on measurement data
from middleware like Apache YARN.
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Modeling and Simulating Apache
Spark Streaming Applications

Abstract Stream processing systems are used to analyze big data streams with low la-
tency. The performance in terms of response time and throughput is crucial to ensure all
arriving data are processed in time. This depends on various factors such as the complex-
ity of used algorithms and configurations of such distributed systems and applications.
To ensure a desired system behavior, performance evaluations should be conducted to
determine the throughput and required resources in advance. In this paper, we present
an approach to predict the response time of Apache Spark Streaming applications by
modeling and simulating them. In a preliminary controlled experiment, our simulation
results suggest accurate prediction values for an upscaling scenario.

7.1 Introduction

Big data systems enable organizations to store and analyze data with high volume, ve-
locity, and variety (Schermann etal., 2014). Corresponding processing techniques can
be categorized into batch and stream processing (Hashem et al., 2015). Stream process-
ing systems receive broad concentration nowadays as algorithms, transformations, and
windowing mechanisms for streaming data constantly become more sophisticated and li-
braries for machine learning are available. They are mainly applied to process data and
provide results in real time (Hashem etal., 2015). Therefore, the performance of such
systems is particularly significant, for instance, to ensure high throughput for different
workload scenarios and prevent queueing up of input stream data. However, planning
the requirements of such applications and systems is complicated since environments and
conditions to evaluate the performance for different scenarios, system configurations, and
realistic workloads are usually not met as in productive environments (Brunnert et al.,
2014; Krof3 et al., 2015b).

We propose a modeling and simulation approach to predict the response time of stream
processing applications i.e., Apache Spark Streaming. Therefore, we use the Palladio com-
ponent model (PCM) (Becker/Koziolek/Reussner, 2009) and an extension for big data
systems that we have presented in previous work (Krof§/Brunnert/Krecmar, 2015). The
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extension is open source' and includes a distributed call action to model parallel and
distributed external calls in a service effect specification (SEFF) and a cluster resource
specification to model a cluster of master and worker nodes and distribute resource de-
mands to worker nodes.

7.2 Related Work

Regarding modeling, simulation, or analytical solving the performance of big data sys-
tems, most of prior research focuses on Apache Hadoop and its MapReduce paradigm and,
therefore, on batch processing. There is one approach by Wang/Khan (2015), that fo-
cuses on predicting the response time of Apache Spark applications, however, only batch
applications. Regarding stream processing, there is one patent by Ginis/Strom (2010)
that describes a method on predicting the performance of publish-subscribe middleware
messaging systems using queueing theory that, however, does not take resource demands
for CPU, memory, or hard disk drives into account.

7.3 Modeling and Simulation Approach

There are several known stream processing systems available such as Apache Samza,
Apache Storm, Apache Spark Streaming and Apache Flink (Hesse/Lorenz, 2015). We
focus on Apache Spark Streaming? in this paper as it is one of the sophisticated tech-
nologies with a large community and supported by known benchmarks. It comprises a
micro-batch model, in contrast to other technologies that use an operator-based model
(Hesse/Lorenz, 2015).

A Spark Streaming application is constructed as follows?: it receives incoming data from
streaming sources using a discretized stream called DStream. This data is fetched in the
form of a micro-batch job that is iteratively executed in stream intervals. A DStream is
represented by several resilient distributed datasets (RDDs). Afterwards, transformations
such as map or reduce operations can be applied on a DStream. Spark builds a distributed
acyclic graph (DAG) based on these related operations and splits them into stages of
tasks. The number of parallel tasks is limited by the number of partitions of an RDD.
Furthermore, transformations with narrow dependencies are consolidated in one stage,
for instance, map and filter operations that do not require to shuffle data. Stages are
executed sequentially and finally make up one job.

In order to model a Spark Streaming application, we specify one job executor component
with a SEFF that involves a loop to start several asynchronous forked behaviours as
displayed in Figure 7.1.

Thttps://git.fortiss.org/pmwt/bd.pcm.extension
http:/ /spark.apache.org/streaming/
3https:/ /spark.apache.org/docs/1.6.0/streaming-programming-guide.html
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Figure 7.1: SEFF of job executor component

The loop length and, therefore, the number of executed behaviors depends on the value
of the parameter partitions that is used to describe the number of topic partitions. In the
forked behavior, we call the SEFF of the stage executor component with the parameters
records and ezxecutorCores. The former parameter describes the number of records for
each partition, the latter the number of cores that is configured when starting a Spark
application with the equivalent parameter spark.ezecutor.cores. The SEFF is illustrated

in Figure 7.2.
o [
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DistributedOutputVariableUsage

Figure 7.2: SEFF of stage executor component

For each stage, we model an external call or distributed call (Krofl/Brunnert/Krcmar,
2015), respectively, with the number of records as input parameter. Our sample applica-
tion involves two stages map and reduce. The first SEFF map is invoked once since there
is one DStream for each partition. The second SEFF is invoked with a distributed call of
which the parallelism depends on the executorCores value. The map and reduce SEFFs
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involve three consecutive internal actions each with one parametric resource demands to
specify the scheduler delay, serialization time, and computing time.

In order to model the hardware environment, we specify a resource container with a
cluster resource specification (Kro8/Brunnert/Kremar, 2015) for each node. For the mas-
ter node, we model one parent resource container that includes a round robin action
scheduling policy and a master resource role. Dependent on the number of worker nodes,
we specify several nested resource containers with a worker resource role. In the usage
model, we invoke the job executor component with its three input parameters, model a
closed workload with one user, and specify the think time according to the stream interval.

7.4 Controlled Experiment

In our controlled experiment, we use the HiBench benchmark suite* of which we use the
distinct count application. It involves two stages map and reduce. Therefore, data are
streamed to a so-called topic in an Apache Kafka® cluster, a distributed publish-subscribe
messaging system. The application is connected to that topic and applies a direct stream
to query data from Apache Kafka using DStreams. Thereby, the level of parallel streams
is defined by the number of partitions of one topic which, consequently, equals the number
of map stages.
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Figure 7.3: Testbed setup

Our experimental setup is shown in Figure 7.3. For the workload, we setup 2 virtual
machines (VMs) that we use to generate data and a cluster consisting of 4 VMs for
Apache Kafka brokers. For the application, we setup 1 VM for the master node, and 8
VMs for the worker nodes where the benchmark application will be executed. We use
Apache YARN (2.7) as cluster manager and Apache Spark (1.6) as processing framework.
We specified one Spark executor per worker node with 6 cores and 24 gigabytes memory.

We conducted four scenarios with a stream interval of 10 seconds as listed in Table 7.2.

Based on the 2 nodes scenario, we measured the delay and CPU resource demands for all
tasks using the Spark monitoring API, adjusted the demands in dependence of the number
of records, and included them into our repository model as listed in Table 7.3. We used
this repository model for all upscaling scenarios. We adapted the number of workers in

4https://github.com/intel-hadoop/HiBench
Shttp://kafka.apache.org/
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Table 7.2: Conducted experiments

Workload Kafka Topic Spark

Scenario (events/second) broker partitions worker
2 nodes ~ 450,000 1 2 2
4 nodes ~ 450,000 2 4 4
6 nodes ~ 450,000 3 6 6
8 nodes ~ 450,000 4 8 8

the resource environment model and the partition parameter in the usage model for each
scenario.

Table 7.3: Parametric resource demands

Map SEFF

scheduler delay 10
deserialization ~ 0.000078549 % records.VALUE
Norm(0.003320415 * records.VALUE,

computing 0.0001553647 * records.VALUE)

Reduce SEFF

scheduler delay 10
deserialization  0.000013227 x records.VALUE
computing 0.000023370 * records.VALUE

A boxplot of the measured response time (MRT) and the simulated response time (SRT) is
illustrated in Figure 7.4. For the 2 nodes scenario, the mean MRT is 7.88 seconds and the
mean SRT is 7.94 seconds, which gives a relative reponse time prediction error (RTPE)
of 0.67%. In the 4 nodes scenario, the values deviate more with a RTPE of 21.14%.
Our analysis of the measurements suggests that the processing time for each task did not
behave as linear as in the other scenarios. In the 6 nodes and 8 nodes scenarios, the RTPE
result in 3.41% and 2.26%.

Our models, simulation and measurements results, and analysis script are publicly avail-
able online (Krof§/Krcmar, 2016).

7.5 Conclusion and Future Work

In this paper, we proposed a modeling approach for stream processing systems using the
example of Apache Spark Streaming. In a small controlled experiments, we simulated an
upscaling scenario in which we increased the cluster size. Our predicted response times
approach the measured ones closely.

At the moment, our extension for the simulation framework is for PCM 3.4.1 and we
only consider delay and CPU demands. Therefore, we plan to incorporate our extension
in the up to date PCM version and to additionally evaluate resources such as memory
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Figure 7.4: Measured and simulated response times

and network. Furthermore, we plan to extend our approach for operator-based processing
frameworks such as Apache Flink and Apache Storm. Our long-term goal is to automat-
ically derive performance models based on monitoring data, e.g., provided by APIs of
processing frameworks.
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Model-Based Performance
Evaluation of Batch and Stream
Applications for Big Data

Abstract Batch and stream processing represent the two main approaches implemented
by big data systems such as Apache Spark and Apache Flink. Although only stream
applications are intended to satisfy real-time requirements, both approaches are required
to meet certain response time constraints. In addition, cluster architectures continuously
expand and computing resources constitute high investments and expenses for organiza-
tions. Therefore, planning required capacities and predicting response times is crucial.
In this work, we present a performance modeling and simulation approach by using and
extending the Palladio component model. We predict performance metrics of batch and
stream applications and its underlying processing systems by the example of Apache Spark
on Apache Hadoop. Whereas most related work concentrates on one specific processing
technique and focuses on the metric response time, we propose a general approach and
consider the utilization of resources as well. In different experiments we evaluated our
approach using applications and data workloads of the HiBench benchmark suite. The
results indicate accurate predictions for upscaling cluster sizes as well as workloads with
errors less than 18%.

8.1 Introduction

The emergence of big data systems enabled organizations to store and process data with
high volume, variety and velocity (Schermann etal., 2014). The Apache Hadoop family
and the MapReduce paradigm paved the way for big data applications to be implemented
in various areas across all industries (Dean/Ghemawat, 2008; Casado/Younas, 2015).
Whereas these technologies were first designed to run on commodity hardware, frameworks
such as Apache Spark arose and increased the performance of long-running applications.
Their primary focus is to process a historical set of data in batches. Since there was also a
need to analyze emerging data as they arrive, stream processing systems such as Apache
Storm and Spark Streaming were developed in recent years.

The performance in terms of metrics such as response time, throughput, and resource
utilization is a crucial aspect for both types of applications and depends on a variety of
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factors (Brunnert etal., 2014). It is vital, but also complicated to estimate the behav-
ior and evaluate the impact of different scenarios such as changing data workload and
resources (Wang/Khan, 2015). When deploying a big data application from a test to a
production environment, for instance, data scientists are confronted with the challenge on
how to size resource capacities in order to guarantee certain response times. Performance
models represent an established way in order to address these challenges (Brunnert et al.,
2015). They depict software systems, analytical solve or simulate their behavior, and
predict different metrics (Brosig et al., 2015). Regarding big data applications, however,
most related approaches focus on specific technologies (i.e., MapReduce) and processing
types (i.e., batch). Furthermore, most efforts only consider the response time of applica-
tions in their approaches leaving out demands for resources. We propose and contribute
a modeling and simulation approach for batch and stream processing systems by the ex-
ample of Apache Spark. It includes resource demands and allows for predicting response
times as well as resource utilization. Therefore, we use and extend the Palladio compo-
nent model (PCM), a model designed for component-based software systems that rep-
resents performance-influencing factors on architecture-level (Becker/Koziolek/Reussner,
2009). Our extension and approach allows for simulating parallel operations as well as
distributing them on a cluster of hardware resources. It supports big data architects to
plan required capacities and examine the performance behavior under different conditions
such as changing data workload.

In this paper, we first describe related literature in Section 8.2. In Section 8.3, we give an
overview of batch and stream processing by the example of Apache Spark. Afterwards, we
describe our modeling and simulation approach in Section 8.4. In Section 8.5, we assess
the prediction accuracy of our approach and outline assumptions and limitations. Finally,
we conclude our work and describe future activities in Section 8.6.

8.2 Related Work

Most of the former related work concentrates on the MapReduce paradigm or comple-
mentary database technologies such as Apache Hive or HBase. Many approaches also
focus on the metric response time and do not consider resource demands and utiliza-
tions. Vianna etal. (2013) present a hierarchical model which combines a precedence
graph mode as well as a queuing network model to predict the response time of MapRe-
duce applications. They specifically focus on the intra-job synchronization delays between
map and reduce tasks. Verma/Cherkasova/Campbell (2014) present a framework to pre-
dict the response time of MapReduce applications before migrating to a different cluster
with different hardware. Therefore, they use micro-benchmarks on the initial cluster and
a regression-based approach to model hardware differences between the initial and new
cluster. Zhang/Cherkasova/Loo (2013a) present a framework including a platform per-
formance model to depict different phases of a MapReduce application and predict the
execution time in dependence on a new data set. For their approach they apply the model
of the ARIA framework by Verma/Cherkasova/Campbell (2014).
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Barbierato/Gribaudo/Iacono (2014) developed a language for the description of perfor-
mance models which includes MapReduce applications. The approach allows to pre-
dict the response time. As main component the model uses the SQL-like query lan-
guage of Apache Hive. Ardagna etal. (2016) proposed approaches to estimate response
times of Hive requires. Therefore, they presented multiple performance analysis models
with increasing complexity and accuracy such as queueing networks and stochastic well
formed nets. Lehrig (2014) proposes an early design-time scalability/elasticity analy-
sis of Software-as-a-Service (Saas) applications using architectural templates for Palladio.
They plan to enrich it by big data technologies on the data layer such as replicable NoSQL
databases and a MapReduce programming model. One general approach to model the
behavior of batch applications is proposed by Castiglione et al. (2014). They use Marko-
vian agents and mean field analysis to predict the behavior of concurrent interactive
cloud, batch, and time constrained applications. However, they focus on cloud infras-
tructures and evolution dynamics of applications rather than on predicting performance
metrics. Niemann (2016) present another approach to predict the performance and en-
ergy consumption of Apache Cassandra, a distributed data management system. They
use queueing Petri nets for various workload as well as cluster sizes.

As part of the DICE EU project, Casale et al. (2015) propose a model-driven engineering
for quality assurance of data-intensive software systems concentrating on Apache Hadoop,
NoSQL databases, and stream processing (i.e., Apache Storm). Their approach aims at
simulation, verification, and optimization for big data applications. The models contain
three different model layers including a platform-independent model, a technology-specific
model and a deployment-specific model (Guerriero et al., 2016). Gémez et al. (2016) also
propose a strategy to transform the models into stochastic Petri nets. It shall enable engi-
neers to asses performance requirements and they are currently validating their approach.
For Apache Spark, Wang/Khan (2015) propose a simulation-driven prediction model that
focuses on estimating response times. They also include read and write operations for
hard disk drives (HDD) and the allocation of memory. Venkataraman etal. (2016) pre-
sented the framework Ernest for predicting the performance for analytical jobs using e.g.,
Apache Spark based on a optimal experiment design. Therefore, they predict the response
time of applications ins dependence of the number of cluster nodes.

Regarding stream processing, there is one patent by Ginis/Strom (2010) that describes a
method on predicting the performance of publish-subscribe middleware messaging systems
using queueing theory that, however, does not take resource demands for CPU, memory,
or hard disk drives into account.

8.3 Big Data Applications and Systems

There is a huge variety of big data solutions available that use different computing tech-
niques (Chen/Zhang, 2014). In the following, we give an overview over batch and stream
processing systems by the example of Apache Spark.
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8.3.1 Batch Processing

Batch applications are designed to process a huge amount of historical data in a distributed
and parallel way (Chen/Zhang, 2014). The Apache Spark framework is example for such
applications and introduces so called resilient distributed datasets (RDDs) to keep and
reuse data in memory. RDDs are parallel data structures to store intermediate results in
memory and offer coarse-grained operations that can be applied on them (Zaharia etal.,
2012a). An application is executed by forming a distributed acyclic graph (DAG) based on
associated operations and grouping them into stages of tasks. A stage chains up operations
with narrow dependencies in case a shuffle is not required (Zaharia etal., 2012a). The
number of tasks of one stage depends on the number of RDD partitions. Stages are
executed successively and constitute one job. One or more sequential jobs compose one
Spark application. The application is orchestrated by one context, which runs in the main
process called the driver program. It is responsible for allocating executors to worker nodes
as well as scheduling tasks of an application on executors. An executor is a process that
runs tasks in parallel. An application has always its own executors assigned in order to
be isolated from other applications (Apache Spark, 2015).

8.3.2 Stream Processing

For applications that require to continuously analyze huge volumes of live data with
low latency, stream processing systems are specialized for this purpose (Chen/Zhang,
2014). There are mainly two approaches - one mini-batch model and one continuous
operator-based model (Hesse/Lorenz, 2015; Zaharia etal., 2012b). The former divides
data streams into mini-batches and allows for batch processing, whereas the latter fetches
and processes each record (e.g., Apache Flink) (Hesse/Lorenz, 2015). Apache Spark
provides an extension module called Spark Streaming to apply the mini-batch model on
data streams and reuse its core functionality. Therefore, Spark introduces discretized
streams (DStreams). They allow for representing stream computations as a series of
batch computations on mini-batch intervals and are represented as an ordered series of
RDDs - one RDD for each interval (Zaharia etal., 2012b). Starting point of the data
processing workflow is an input data stream that may be partitioned to increase parallel
computing. Spark Streaming receives incoming data from such a stream source using a
DStream and creates one RDD for each interval with the same amount of partitions as
the input stream. Afterwards, transformations such as map or reduce operations can be
applied on a DStream and RDD, respectively. As before, Spark builds a DAG based on
related operations and splits these into stages of tasks. In contrast to batch processing,
one job is created for each mini-batch. Jobs are continuously executed sequentially and
always contain the same set of stages and tasks.
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8.4 Modeling and Simulation Approach

This section first describes the extension for PCM. Afterwards, the derivation of the
models and resource demands is outlined for batch applications followed by stream ap-
plications. Subsequently, the specification of cluster resources is described as well as the
representation of data workloads.

8.4.1 Extending the Palladio Component Model

PCM enables engineers to describe performance relevant factors of software architectures
(Brosig et al., 2015). It is implemented using the Eclipse Modeling Framework and consists
of several models (Becker/Koziolek/Reussner, 2009). Software interfaces and components
are specified in the repository model. Components provide the implementation for signa-
tures of interfaces. Therefore, they contain a service effect specification (SEFF) in which
the activities such as parametric resource demands and external calls of signatures are
modeled. In the resource environment model, network and hardware resources are speci-
fied. The allocation model allows for deploying components on resources. The usage and
workload is specified in the usage model.

In previous work, we already modeled and simulated big data applications (Krof et al.,
2015b; Krofi/Kremar, 2016). Since PCM was not developed to support distributed and
parallel computing as well as cluster architectures, we propose two meta-model exten-
sions (KroB/Brunnert/Krcmar, 2015). A DistributedCallAction is added to the SEFF
meta-model. It extends the FxternalCallAction that is used to invoke a remote signature
of a required service. The DistributedCallAction includes two variables totalForkCount
and simultaneousForkCount. These specify the total number of executions of a remote sig-
nature call and the level of parallelism. Both variables can be specified using parametric
dependencies . Furthermore, a ClusterResourceSpecification is introduced to complement
a ResourceContainer. A ResourceContainer may represent a physical or virtual machine
that hosts resources (e.g., CPU). The ClusterResourceSpecification contains two variables
to reference a ResourceRole and a SchedulingPolicy. A ResourceRole is used to describe
whether a ResourceContainer represents a cluster, a master or a worker. A Scheduling-
Policy is used to describe how actions are distributed on a cluster.

For simulating models, PCM applies model to text (M2T) transformations to generate
code that is used by the simulation framework SimuCom (Becker/Koziolek/Reussner,
2009). We reuse existing Palladio concepts to implement the M2T transformation of the
DistributedCallAction as the following algorithm demonstrates.

1: forks {array of length simultaneousForkCount}
2: actionsPerForkCount < total ForkCount/simultan eousForkCount
3: for i + 0, stmultaneousForkCount do
actions {array of length actionsPerForkCount}
for j < 0, actionsPer ForCountk do
actions[j| = createExternalCall Action
end for

o



8 Performance Evaluation of Batch and Stream Applications for Big Data 76

8:  forks[i] = actions
9: end for
10: return forks

PCM supports modeling parallel calls of signatures from required services by using an
ExternalCallAction inside a so-called ForkedBehavior. First, we create an array forks of
type ForkedBehavior with length simultaneousForkCount. The parallel actions (or calls)
per fork (actionsPerForkCount) are calculated by dividing totalForkCount by simultane-
ousForkCount. We fill each index of the array forks with an array called actions. This
array consists of ErternalCallActions according to the number of actionsPerForkCount.
For example, if totalForkCount equals eight and simultaneousForkCount equals two, there
will be two ForkedBehaviors and each will contain four consecutive ExternalCallActions.

For the ClusterResourceSpecification and its components, we implemented corresponding
Java classes in the scheduler and SimuCom plugin of PCM. We also adapted the existing
implementation of a simulated resource container to apply the scheduling of calls (i.e.,
round robin) on nested resource containers.

8.4.2 Modeling Batch Applications

We compose our components in the repository model similar to the DAG of an application,
in this case Spark’s DAG. We specify one application component as a starting point. It
includes input parameters for the number of files, the size of one file, the default block
size, and the number of executors. We model job components according to the number of
Spark jobs. They are invoked sequentially by the application component with the same
input parameters. Similarly, we model stage components corresponding with the number
of Spark stages for each job. They are called sequentially by each job component and also
receive the same parameters.

For each stage, we model one associated task component that will be invoked multiple
times in parallel for which we use a DistributedCallAction (Krof3/Brunnert/Krcmar, 2015).
Therefore, we model the first stage and the number of task executions different from the
remaining stages. For the first stage, the number of task executions depends on the
number of RDD partitions since input files are read from the storage layer. Spark will
create a RDD for each input file and each RDD involves as many partitions as data
blocks and splits, respectively. We use the above mentioned input parameters to specify
the number of tasks and blocks n,.; as the sum of data blocks for all files. In order to
calculate the blocks for one file, we divide the size of a file z ;. by the default block size
Tpock and take the ceiling in case there is a remainder (z € Nyg).

N files

Nblock = Z (25 file = Tbiock | (8.1)

i=1

Furthermore, the input size for tasks of the first stage either match the default block size
of the storage layer or the remainder split. Therefore, we specify a branch to include both
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cases and determine the probability pge fquitspiie for a default block by dividing the amount
of default blocks by the total amount of blocks.

.
Daefott it — S i pite = Thioek] (8.2)
efaultspl TMblock

In contrast to the first stage, the data input for subsequent stages equals the output set
of predecessor stages. We model these as a percentage of the dataset of the predecessor.
Consequently, we do not need to specify two branches unlike for the first stage, but can
directly call the task component. Additionally, the total number of tasks for subsequent
stages depends on a fixed value configured by application developers. Since the config-
urable number of cores constitutes the limiting factor for concurrent tasks on a Spark
executor, we specify an additional infrastructure component to model a pool of available
cores. The component contains two SEFFs to acquire as well as release one core. In
order to finally execute a task, a core must be acquired first and released after the task
execution. The SEFF of the task component includes two consecutive resource demands,
one for delay and one for CPU. In this work, we do not consider HDD demands and
concentrate on CPU.

In order to estimate the function of the CPU demand, we profiled applications using the
Java Management Extension (JMX) on the Java virtual machine of each Spark executor.
We aggregated the CPU measurements of operations originating from org.apache.hadoop.-
net.uniz. DomainSocket Watcher.run for each stage during the application lifetime. We
divided the combined measurements by the number of tasks of each stage to get the
intercept of the function. In the same way, we transformed measurements for operations
called by org.apache.spark.scheduler. Task.run. We additionally divided the latter value
by the mean block size of the underlying dataset in order to the derive the slope of the
function in dependence of the data size.

Regarding the delay demand, we used the Spark monitoring interface of the history server
to calculate the mean response time of each task of a stage. We then subtracted the CPU
demand per task to derive the delay. The monitoring interface also provides several metrics
by itself. Although we also experimented to incorporate these metrics, the approach we
described delivered more accurate prediction results for CPU and response time.

8.4.3 Modeling Stream Applications

The repository model for stream applications is also kept similar to the DAG of a Spark
Streaming application as well as to our approach for batch applications. We model one
application component as a starting point, which is intended to be triggered for each
mini-batch interval. In contrast to the batch approach, we do not specify parameters
in dependence on data sizes (i.e., megabytes), but in dependence on records. Therefore,
the application component includes parameters for the number of records, the number
of partitions of the data stream, and the number of executors. Since Spark Streaming
creates one and the same job for each mini-batch, we create one job component. It is
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invoked by the application component using an asynchronous ForkedBehavior. In this
way, the application component does not wait until the job component is finished and can
be continuously triggered in time. According to the number of Spark stages, we model
stage components that are called sequentially by the job component.

For each stage, we model one task component that will be invoked multiple times in
parallel using a DistributedCallAction (KroB/Brunnert/Krcemar, 2015). Similar to the
batch approach, we model the first stage and the number of task executions different
from the remaining stages. The initial number of stream partitions defines the number
of RDD partitions and, therefore, the number of task executions for the first stage. For
subsequent stages, a fixed value is used as parameter since it can be configured by engineers
in the application configuration. The record input for subsequent stages equals the output
set of predecessor stages. As before, we model these as a percentage of the dataset of
the predecessor. For all stages, the final task will be invoked after a core is acquired,
which will be released afterwards. Therefore, we also specify an infrastructure component
to acquire and release available cores. The SEFF of the task component includes one
delay demand and one for CPU demand. Both demands are calculated as for the batch
approach but in dependence of the number of records.

8.4.4 Modeling Cluster Resources

In the resource environment model, we specify one parent ResourceContainer and mul-
tiple nested ResourceContainer depending on the number of workers. All containers are
connected to a network via a LinkingResource. For each ResourceContainer, we model
a ClusterResourceSpecification. For the parent ResourceContainer, we set a MASTER
role and a ROUND__ROBIN policy. For the nested ResourceContainer, we configured a
WORKER role. Additionally, processing resources (e.g., CPU) are added for each nested
container.

8.4.5 Modeling Data Workload

The data workload is modeled in the usage model. For batch applications, the application
component is invoked with four parameters. They specify the number of files that shall be
processed, the size of each file, the default block size of the storage layer, and the number of
Spark executors. A closed workload is used without any think time and with a population
of one since there shall only one application to be executed. For stream applications, the
SEFF of the application component is called with three parameters describing the sum
of records within the stream interval, the number of stream partitions, and the number
of Spark executors. Since the amount of records usually deviates slightly (e.g., due to
network circumstances), a normal distribution was used to address this factor. We also
specify a closed workload with a population of one. However, the think time is used to
represent the time of mini-batch intervals. The application component is continuously
invoked after the think time has elapsed.
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8.5 Evaluation

In order to evaluate our approach we used the HiBench benchmark suite! to run sample
applications in a test environment (Huang et al., 2010). Afterwards, we modeled and sim-
ulated these applications for selected scenarios and compared the measured and simulated
response time and CPU utilization. We conducted four different scenarios - one upscaling
scenario regarding cluster size and one upscaling scenario regarding data workload for
batch as well as for stream processing each. In the subsequent Subsections, we describe
our test environment setup, the evaluation of the batch scenarios followed by the stream
scenarios.

8.5.1 Test Environment Setup

The hardware environment includes five IBM System X3755M3 servers, each consisting
of four CPU sockets, 48 cores at 2.1 GHz in total, and 256 gigabyte (GB) random access
memory (RAM). Each server is connected to a storage area network via Fibre Channel
allowing for 8 gigabit per second (GBit/s). IBM System Storage EXP3512 is used for
storing data. We virtualized each server using the VMware ESXi (5.1.0) hypervisor.
We configured eight cores and 36 GB RAM for each virtualized machine (VM). On four
servers, we allocated four VMs each that are used as worker nodes. On the remaining
server, we allocated two VMs. One is used as master node and one for managing the
cluster and initiating the benchmark applications. The following software is used on the
VMs:

e CentOS Linux, 7.2.1511

e Oracle JDK, 1.8.0 60

o Apache Ambari, 2.4.2.0

o Hortonworks Data Platform, 2.5.3.0-37
« HiBench Suite, 6.0

Regarding HDF'S we kept the default configurations including a replication factor of three
and a data block size of 128 megabytes (MB). For YARN, we configured 26 GB and six
virtual cores (vCores) per container, for Spark executors 22 GB as well as six cores.

8.5.2 Evaluating Batch Applications

We used the word count application of HiBench. It parses a set of input data and counts
the appearance of each word (Huang etal., 2010). We conducted four upscaling experi-
ments regarding cluster nodes and, similarly, four regarding data workload. Therefore, we

Thttps://github.com/intel-hadoop/HiBench
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created one base repository model for the application. This model including its resource
demands is used for all batch experiments. According to each experiment, the resource
environment model and the usage model is adjusted. In order to evaluate the prediction
accuracy of our approach, we consider the metrics response time and CPU utilization.
For the simulation, we captured the simulated mean response time (SMRT) as well as
the simulated mean CPU utilization (SMCPU) across the cluster. For the benchmark
measurements, the applications were executed three times for each experiment and the
measured mean response time (MMRT) as well as the measured mean CPU utilization
(MMCPU) on user-level were calculated. The former is derived from the Spark monitoring
API, the latter from the Ambari Metrics System. The results for all batch experiments
are listed in Table 8.2 and the corresponding response times are illustrated in Figure 8.1.

Table 8.2: Measurement and simulation results for batch applications (© 2017 IEEE)

Cluster Workload | Response time [milliseconds] CPU utilization
nodes [gigabyte] | MMRT SMRT RTPE ‘MMCPU SMCPU CPUPE
4 28.72 104,599 103,218 1.32% 61.24% 61.95% 1.16%
8 28.72 68,205 62,233 8.76% 53.06% 55.77% 5.10%
12 28.72 54,984 52,632 4.28% 47.21% 47.5% 0.62%
16 28.72 50,140 47,181 5.90% 40.31% 42.18% 4.65%
16 57.36 74,657 69,583 6.80% 48.87% 48.22% 1.33%
16 86.08 101,675 93,292 8.24% 51.11% 49.66% 2.84%
16 114.72 119,977 122,740 2.30% 55.62% 52.07% 6.38%
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Figure 8.1: Response times for batch applications (© 2017 IEEE)

The starting experiment with four nodes resulted in a MMRT of 104,599 milliseconds (ms)
and a SMRT of 103,218 ms leading to a relative response time prediction error (RTPE) of
1.32%. The MMCPU amounts to 61.24%, whereas the SMCPU lies at 61.95%, which gives
a relative CPU utilization prediction error (CPUPE) of 1.16%. We resized the amount of
nodes up to 16 nodes. Throughout, RTPE and CPUPE remained relatively low and were
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at most 8.76% and 5.10% both for the eight node scenario. On a cluster of 16 nodes, we
additional increased the data workload. Similarly, we approximately resized the dataset
by factors two, three, and four. Here, the RTPE was highest for a workload of 86.08 GB
(8.24%), while the CPUPE deviated at most for 114.72 GB (6.38%).

Our approach showed to deliver relative prediction errors no more than 10% for both
batch scenarios. While we slightly overestimated the CPU utilization values in the first
scenario, we slightly underestimated them for the second scenario. Regarding response
time, the prediction values were little lower than the measurement values in both scenarios
except for one case.

8.5.3 Evaluating Stream Applications

We likewise used a word count application from the HiBench benchmark suite. The
application involves stateful operators as well as checkpoints and acknowledgements. The
application repeatedly fetches data from Kafka in a configured time interval of five seconds.
We configured the environment so Kafka as well as Spark run exclusively on VMs. During
the experiments, we adapted the number of Kafka brokers according to the number of
Spark workers. Similarly, we adapted the number of Kafka partitions to always have six
partitions on each Kafka broker to allow for optimal parallel processing of Spark (i.e.,
one partition per core (Marcu etal., 2016)). For our experimental results, we run the
benchmark application and captured performance measurements for ten minutes leaving
a ramp-up and ramp-down phase of five minutes.

We conducted four upscaling experiments regarding the cluster and four regarding data
workload. Similar to the batch experiments, we derived a repository model including
resource demands from the starting experiment and used this model for all simulations.
The results are illustrated in Table 8.3 and the response times in Figure 8.2. For an
interval of five second, the MMRT for the starting experiment is 3,006 ms and 31.81%
MMCPU. The SMRT resulted in 3,029 ms and the SMCPU in 33.29%, which gives a
RTPE of 1.21% and a CPUPE of 4.65%. With additional nodes, the relative prediction
errors increased for both metrics and were at most for eight nodes (a scaling factor of
four compared to the starting experiment). Here, the RTPE results in 17.02% and the
CPUPE 13.43%. With increasing data workload, the RTPE and CPUPE decreased.
In these experiments, we were not able to scale the workload by factor four since the
input data could not be processed within the five second interval. While the SMCPU
is constantly slightly lower than the MMCPU and the CPUPE behaves consistently, the
SMRT is slightly too low for the last experiment as the MMRT increases abruptly. We
conducted multiple experiments to further investigate the response time behavior of the
application. We observed that the response times tend to rise rapidly as they converge
to the time interval. Our prediction results still showed to provide accurate results with
relative errors around 17% (Menascé/Almeida, 2002).
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Our extension? as well as our models, simulation results, and measurements results are

publicly available online?.

Table 8.3: Measurement and simulation results for stream applications (©2017 IEEE)

Cluster =~ Workload Response time [milliseconds] CPU utilization

nodes [events/second] | MMRT SMRT RTPE ‘MMCPU SMCPU CPUPE
2 100,000 3,066 3,029 1.21% 31.81% 33.29% 4.65%
4 100,000 2,363 2,515 6.43% 20.89% 19.91% 4.69%
6 100,000 2,124 2,358 11.02% 17.02% 15.44% 9.28%
8 100,000 1,956 2,289 17.02% 15.26% 13.21%  13.43%
8 150,000 2,754 2,820 2.40% 17.55% 16.16% 7.92%
8 200,000 3,296 3,350 1.64% 20.43% 19.10% 6.51%
8 250,000 4,614 3,880 15.91% 22.79% 22.04% 3.29%
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Figure 8.2: Response times for stream applications (© 2017 IEEE)

8.5.4 Assumptions and Limitations

In our experiments, we allocated one Spark executor on each node. It is also possible to
size less cores and memory for spark executors and to allow for deploying multiple ones
on one node. Although we are also able to model and simulate these scenarios, we did not
evaluate such a case. We also evaluated our experiments in an exclusive cluster in which
no other applications were running in parallel and using any CPU, HDD, or network.
Regarding our modeling approach, we specified the input of a subsequent Spark stage
probabilistically in dependence on the output data of a previous stage. Therefore, our

http://git.fortiss.org/pmwt /bd.pcm.extension
3http://pmw.fortiss.org/research /ieee-mascots/



prediction error will increase, if the properties of the initial underlying data set change sig-
nificantly. Furthermore, Heinrich/Eichelberger/Schmid (2016) discuss current problems
such as modeling data structures and continuous data flows, but also potential solutions
in modeling big data using Palladio.

8.6 Conclusion and Future Work

In this work, we presented an approach to model and simulate the performance behavior
of batch as well as stream processing systems by the example of Apache Spark. Therefore,
we extended PCM to represent resource clusters and distributed and parallel operations.
This included a M2T transformation to generate corresponding simulation code and an
adaption of the simulation platform SimuCom. We evaluated the approach by using sam-
ple applications of the HiBench benchmark suite. We conducted upscaling scenarios for
cluster sizes as well as data workload both by factor four. Afterwards, we compared sim-
ulation with measurements values. The results suggest accurate predictions for response
times and CPU utilization. For batch applications, the relative prediction error was at
most 8.76% for response time and 6.38% for CPU utilization, for stream applications
17.03% and 13.43%.

Currently, we are experimenting with applying our approach for stream processing systems
that implement an operator-based model. We also intend to represent resource demands
for HDD. Furthermore, we plan to automatically derive models and resource demands for
big data applications based on measurements. This shall support performance engineers
by omitting the manual creation of models and ease the usage of our approach.

© 2017 IEEE. Reprinted, with permission, from J. Krof$ and H. Krecmar, Model-Based
Performance Evaluation of Batch and Stream Applications for Big Data, 2017 IEEFE

25th International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), Banff, AB, 2017.
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PerTract: Model Extraction and
Specification of Big Data Systems
for Performance Prediction by the
Example of Apache Spark and
Hadoop

Abstract Evaluating and predicting the performance of big data applications are required
to efficiently size capacities and manage operations. Gaining profound insights into the
system architecture, dependencies of components, resource demands, and configurations
cause difficulties to engineers. To address these challenges, this paper presents an approach
to automatically extract and transform system specifications to predict the performance of
applications. It consists of three components. First, a system- and tool-agnostic domain-
specific language (DSL) allows the modeling of performance-relevant factors of big data
applications, computing resources, and data workload. Second, DSL instances are auto-
matically extracted from monitored measurements of Apache Spark and Apache Hadoop
(i.e., YARN and HDFS) systems. Third, these instances are transformed to model- and
simulation-based performance evaluation tools to allow predictions. By adapting DSL
instances, our approach enables engineers to predict the performance of applications for
different scenarios such as changing data input and resources. We evaluate our approach
by predicting the performance of linear regression and random forest applications of the
HiBench benchmark suite. Simulation results of adjusted DSL instances compared to
measurement results show accurate predictions errors below 15% based upon averages for
response times and resource utilization.

9.1 Introduction

Big data frameworks are specialized to analyze data with high volume, variety, and veloc-
ity efficiently (Schermann etal., 2014). By distributing and parallelizing processing, they
allow for horizontal scalability. Since the introduction of the MapReduce paradigm, there
have been several frameworks released to support different types of applications, such as
machine learning and stream processing. For all types, the performance of such software

85
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systems in terms of response time, throughput, and resource utilization is essential for a
successful application (Brunnert etal., 2014). It is a difficult and complex task to man-
age and evaluate the performance for different scenarios such as changing data input and
hardware resources (Wang/Khan, 2015).

Practical evaluations such as load tests on test systems are expensive. They require mul-
tiple experiments and only test a subset of configuration parameters. Additionally, they
usually run with a reduced amount of data and resources. Thus, it is not able to draw accu-
rate conclusions about the performance behavior. Performance models, on the other hand,
provide an established evaluation approach by depicting performance characteristics of
software systems and simulating their behavior or analytically solving them (Brosig et al.,
2015). However, there are several challenges: creating models by hand is expensive, error-
prone and slow as software systems are complex and continuously evolve (Brunnert et al.,
2015). There is a lack of tool support for automatic model extraction. Regarding big
data system, most related modeling approaches are also specific to a certain technology
(i.e., Apache MapReduce) and only consider the response time of applications but not
demands for resources (i.e., CPU).

In order to address these challenges, we propose a specification and model extraction
approach for big data systems called PerTract to evaluate and predict the performance.
We present a DSL to allow for modeling specifications on an architecture-level in a tool-
agnostic way. To demonstrate our approach, we use Apache Spark for the application
layer, in particular one random forest and one linear regression application that both use
Spark’s machine learning library. Additionally, we use Apache Hadoop for data provi-
sioning and resource management. Figure 9.1 illustrates an overview of our approach.
We extract execution components and inter-component interactions, resource landscape,
and data workload in three separated specifications of a DSL instance using interfaces and
logs of these technologies. In addition, we extract monitoring traces of applications (i.e.,
CPU times) and interrelate these with data workload information to identify parametric
dependencies and estimate parametric resource demands of each execution component.
On this basis, performance predictions are enabled. Therefore, we transform a DSL
instance into a PCM (Becker/Koziolek/Reussner, 2009). Palladio is a model-based per-
formance evaluation tool on the architecture-level that is supported by several analytical
solvers and simulation engines.

Our approach provides several benefits. It integrates model-based activities, which are
performed during development, and measurement-based activities, which are carried out
during operations (DevOps) (Brunnert etal., 2015). The automated extraction process
eliminates the effort to create models by hand. As applications are continuously updated,
DSL instances can be extracted and tracked for each release as they evolve as well. This
also enables engineers to continuously manage and plan required capacities and evaluate
the performance for different scenarios (e.g., changing data workload) by adapting model
parameters. Finally, it gives detailed insights about resource demands of execution com-
ponents of an application and can be used to detect performance changes and regressions.
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Figure 9.1: OQverview of the extraction and transformation approach.

To sum up, the contributions of this paper are the following:

workload from Apache Spark and Apache Hadoop,

Tool support for this approach.

. A DSL for modeling performance-relevant factors of big data systems,

. An automatic extraction of system structure, behavior, resource demands, and data

Transformations from DSL instances to model- and simulation-based performance
evaluation tools,

To the best of our knowledge, our approach is the first white-box approach to extract
performance-relevant metrics that allow for performance predictions of response times and
resource usage. The developed tools are open source (Krofl) and extendable for extracting
DSL instances from other frameworks and for transforming them to other model-based
performance evaluation tools.

This paper builds upon our previous work (Krof etal., 2015b; Krof}/Brunnert/Krcmar,
2015; Krol/Kremar, 2016; Krofl/Kremar, 2017) on modeling and simulating the perfor-
mance of big data applications and includes the following major improvements and ex-

tensions:

1. A formalism and DSL to model big data applications,

2. A lightweight Java agent to sample stack traces and CPU times from applications,

3. Automatic extraction of DSL instances,

4. Detailed evaluation against complex applications of the HiBench benchmark suite.
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The remainder of this work is structured as follows: Section 9.2 describes related literature
and approaches in the area of modeling and simulating big data applications. Section 9.3
introduces the model formalism as well as the DSL, which are required to understand
this paper. Section 9.4 describes the extraction of DSL instances by the example of
Apache Spark and Apache Hadoop. Section 9.5 presents the transformation to PCM
models to allow for simulating the performance. Section 9.6 evaluates the prediction
accuracy of our proposed approach for different upscaling scenarios and describes our
assumptions and limitations. Finally, Section 9.7 outlines conclusions of our work and
ideas for future activities.

9.2 Related Work

Since the Apache Hadoop family was the first widely-adopted big data framework, initial
performance modeling approaches have been concentrating on this technology stack.

Vianna etal. (2013) predict the response time of MapReduce applications by introducing
an analytical model, which they validated against an event-driven queuing network sim-
ulator. Their approach primarily concentrated on synchronization delays between map
and reduce tasks. Verma/Cherkasova/Campbell (2014) introduce another approach for
MapReduce. They developed a framework to allow for predicting response times before
moving applications to different target platforms. The framework applies multiple bench-
marks on source platforms and a regression-based model to relate the performance of
source and the target platforms. Zhang/Cherkasova/Loo (2013a; 2013b; 2015) present
multiple approaches where most of them are based on the analytical model by Verma/
Cherkasova/Campbell (2014). Therefore, they additionally take heterogeneous clusters
and configuration optimizations into account.

For other applications of the Hadoop family, Barbierato/Gribaudo/Iacono (2014) devel-
oped a language for the description of performance models. As a main component, the
model uses the SQL-like query language of Apache Hive, a data warehouse built on top of
Apache Hadoop. Ardagna etal. (2016) propose approaches to estimate response times of
Hive requirements. Therefore, they presented multiple performance analysis models with
increasing complexity and accuracy, such as queueing networks and stochastic well formed
nets. They also considered unreliable resources in their experiments. Lehrig (2014) pro-
poses a scalability and elasticity analysis of Software-as-a-Service applications at design
time using architectural templates for Palladio. They plan to enhance it for big data
paradigms on the processing layer and data layer.

Wang/Khan (2015) propose a prediction model for estimating response times of Apache
Spark applications. In their approach, they consider demands for in-memory as well as
demands for disk drives but not CPU processing. Another work by Ardagna etal. (2018)
explores three modeling approaches for execution time prediction of Spark applications:
one queuing network with a fork-join model and one with a task precedence model. Third,
they present a discrete event simulation engine dagSim. The evaluation was conducted for
different applications such as logistic regression and K-Means running in a public cloud.
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Although the variance of the prediction accuracy is low for all approaches, the third
approach delivers the most precise results.

Besides analytical and simulation-driven approaches, there are also approaches using ma-
chine learning for Apache Spark. Singhal/Singh (2018) evaluated different machine learn-
ing algorithms (i.e., multi linear regression and support vector machine) as well as an
analytical model to predict execution times of Spark stages in development environments.
They include multiple parameters from application logs into their models but only use
execution times and do not consider resource demands. They also mention the drawback
of machine learning approaches, which require intensive experiments and data collection.
Furthermore, Venkataraman et al. (2016) present Ernest, a performance prediction frame-
work for large scale analytics using machine learning kernels. It involves an automatic
process to collect training data and to build a non-negative least squared model taking
only a few parameters. They evaluate their approach on Amazon EC2 and show accu-
rate predictions of execution times for increasing machine numbers. It is a black-box
approach and does not give any insight into components of an application. As Ernest is
bound to the structure of machine learning jobs, Alipourfard etal. (2017) present Cher-
ryPick, which intends to find best cloud configurations for various applications and use
Bayesian optimization to create performance models. A configuration, for instance, con-
tains parameters such as the number of virtual machines, CPU, and cores. In contrast
to our work, they support additional types of applications (i.e., Spark SQL). Addition-
ally, Witt etal. (2019) provide an extensive survey on performance prediction of batch
processing using black box monitoring and machine learning.

Castiglione et al. (2014) propose a general approach to model the behavior of batch ap-
plications and concentrate on cloud infrastructures and evolution dynamics in terms of
resource requirements and energy consumption. Therefore, they use an analytic modeling
technique based Markovian agents and mean field analysis to describe the behavior of in-
teractive cloud, batch, and time constrained applications. Niemann (2016) also presents
an approach in the area of energy consumption. He focuses on Apache Cassandra, a dis-
tributed data management system, and uses queueing Petri nets to predict the perfor-
mance and energy consumption of different workloads and platforms. Casale et al. (2015)
propose a model-driven engineering for quality assurance of data-intensive software sys-
tems concentrating on Apache Hadoop and MapReduce, NoSQL databases, and stream
processing (i.e., Apache Storm). Their approach aims at simulating, verifying, and opti-
mizing architectures of big data applications. The models contain three different model
layers including a platform-independent, a technology-specific and a deployment-specific
model (Guerriero etal., 2016). Gémez et al. (2016) also shows an approach to transform
these models into stochastic Petri nets, which is intended to allow for evaluating perfor-
mance requirements. Lastly, Ginis/Strom (2010) hold a patent in the area of stream pro-
cessing. The patent describes a method to model performance characteristics of publish—
subscribe systems using queueing theory. However, the method does not include resource
demands such as CPU, memory, and disks.

To summarize, the mentioned approaches focus on predicting the metric response time and
often only implicitly assume resource demands for service executions per resource but do
not link them to software components and operations (Brunnert et al., 2015). To the best
of our knowledge, automatic model extraction in the area of big data are only supported by
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the mentioned machine learning approaches (Venkataraman et al., 2016; Alipourfard et al.,
2017). However, these are black-box approaches and the models serve as interpolation
of the measurements (Brunnert etal., 2015). Consequently, they do not model detailed
information of the system architecture and dependencies and cannot be adapted for further
evaluation scenarios. Finally, most of the mentioned models are technology-specific and,
thus, are difficult to adapt and generalize them.

9.3 Modeling Approach

In this section, we describe the formalism for specifying big data systems. Afterwards,
we present the PerTract-DSL based on the formalism.

9.3.1 Formalism

The specification consists of the following components:

o An FExecution Architecture of the application, specifying nested directed graphs for
execution components,

o A set of Resource Profiles, providing demands of different resources with parametric
dependencies for the nodes of a graph,

e A Data Workload Architecture, specifying the underlying data model and type of
data source

o A Resource Architecture, specifying a cluster of resource nodes, each with several
resource units

9.3.1.1 Application Execution Architecture

The specification of the application Execution Architecture is a 2-tuple (¢, n) where ¢ € C
is the application configuration and n € N specifies an initial node of the application.

A configuration ¢ € C' is represented by the 5-tuple (pg,e,ts., m., my) where p,; is the
default parallelism for operations, more specifically tasks, of an application (e.g., join or
reduce); e is the number of executors, which manage tasks; ts. describes the number
of tasks slots per executor that can be executed in parallel; m, is the amount of main
memory per executor that is available for tasks; and m,, represents the amount of memory
that each task slot requires to be allocated.

Nodes N are composite components. They can represent directed graphs NG C N and
execution nodes of a directed graph NE C N. In Figure 9.2, Scala WordCount and
saveAsHadoopFile represent a directed graph and map and reduce an execution node.
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A directed graph ng € NG is a 2-tuple (Nyy, Eyg), in which N, is a set of nodes (or
vertices) of the directed graph ng such that ng ¢ N,,; and E,, is a set of directed edges.
A directed edge e € E is represented by a 3-tuple (ng, np,t.), where ny € N is the tail
of e; np, € N is the head of e; and t. € R specifies the factor of how many data are
transmitted from n; to n, dependent on the amount of input data of n,.

An execution node ne € NE is a 5-tuple (p,, s, m, n,y, rp) where p, is the parallelism
of node (e.g., some big data frameworks such as Apache Flink allow for specifying the
parallelism for each operation individually); s indicates whether ne is a spout that is the
node depending on partitioned data from an external source, such as a file system or
messaging system; m € M is a reference to the dependent data model from the Data
Workload Architecture; n,, € NG references the parent directed node graph; and rp €
RP describes the Resource Profile of ne.

9.3.1.2 Resource Profile

We use Resource Profiles to specify multiple resource demands. A Resource Profile rp €
RP describes an ordered set of parametric resource demands RD. A parametric resource
demand rd € RD is a 3-tuple (rt, f., p) in which rt € RT represents the resource type
and f,; : R5g — Ry is a function to specify the actual value of a resource demand in
dependence on a parameter p (e.g., number of partitions of an input data source).

9.3.1.3 Data Workload Architecture

The model to represent the data workload is kept very simple. A Data Workload Archi-
tecture d € D is a singleton containing a set of data models M. A data model m € M
contains one data source ds € DS element that consists of a parameter pgs to specify the
number of partitions.

9.3.1.4 Resource Architecture

A Resource Architecture ra € RA is a pair (ne, RN) in which nc € NC' is a network
channel and RN is a set of resource nodes. A network channel nc € NC'is a 2-tuple (b, 1)
where b describes its bandwidth and [ its latency. A resource node rn € RN describes
a cluster node and is a 2-tuple (cs, RU) in which ¢s € C'S is a cluster specification and
RU is a set of resource units. A cluster specification cs € C'S is described by a 2-tuple
(rr, sp) where rr € RR describes a resource role (i.e., master node or worker node) and
sp € SP the scheduling policy for distributing task across resource nodes (i.e., round
robin). A resource unit ru € RU represents CPU, drive, and memory units.
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9.3.2 PerTract-DSL

The PerTract-DSL follows the system model formalism described in the previous sub-
section and constitutes a language for specifying such models. Figure 9.2 illustrates
an exemplary PerTract-DSL instance for a big data application. The PerTract-DSL
is implemented as an Ecore-based meta-model using the Eclipse Modeling Framework
(EMF) (Steinberg etal., 2009). We use the DSL as an intermediate language to extract
model instances and adapt its parameters for different scenarios. Afterwards, we generate
architecture-level performance models that we use to simulate and predict the perfor-
mance.

Data Workload Execution Resource
Architecture Architecture Architecture
h / ScalaWordCount \ (bandwidth=1 23; latency=0.01 O
file 1 N
saveAsHadoopFile .
o rr=master rr=worker
rezzz_stiszzzlo sp=RoundRobin
map transmission- reduceByKey Processing Processing
Factor=0.0034 . Resource Resource
spout=true nodeParallelism=8| | [——=> Unit Unit
Drive Drive
filen Resource Resource
\ / Unit Unit
size=4832
records=1240 Resource Profiles
rdepy= 345 + dataSize * 75 rdepy= 976 + dataSize * 94
rdgisk reag= dataSize rdgisk read= dataSize T = resource role
' ' sp = scheduling policy

rd = resource demand

Figure 9.2: Ezemplary PerTract-DSL instance

Figure 9.3a shows the classes and relationships of the Execution Architecture and Re-
source Profile. The Execution Architecture includes execution flows and operations on
data and a configuration of an application. The configuration includes multiple param-
eters to specify the application settings. Depending on the application type (i.e., batch,
mini-batch, and stream), a corresponding configuration type can be instantiated and may
include additional parameters. For instance, a MiniBatchConfiguration involves an inter-
val variable to indicate the mini-batch intervals.

In order to specify operations on data and execution flows, we use nodes and directed
edges (for instance, distributed acyclic graphs DAGs represent execution flows in Apache
Spark, topologies in Apache Storm, and job graphs and ezecution graphs in Apache Flink).
Therefore, a Node is a composite that can represent two roles—a directed graph that
contains several nodes (children) and edges, and an execution node that executes tasks.
In the latter case, a node contains a Resource Profile for its tasks.

The term Resource Profile describes a set of resource demands for transactions of an
application (King, 2004; Brandl/Bichler/Strobel, 2007; Brunnert/Krcmar, 2017). This
includes resource demands for CPU, disk, memory, and network usage. Resource Profiles
have been used for transactions for a specific workload and specific servers (King, 2004;
Brandl/Bichler/Strobel, 2007) but also for component operations within the control flow
of each transaction independent of their deployment topology (Brunnert/Kremar, 2017).
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We change the notion of Resource Profiles for our purposes in three ways. First, we
include parametric dependencies. Second, we do not model the control flow and proba-
bility as this information is contained in the directed graph. Third, we do not apply a
Resource Profile on the same fine granularity level of operations except for a set of op-
erations and tasks. Big data frameworks chain and group single operations together and
transform each grouping into a set of tasks, which will eventually be executed multiple
times in a distributed way. The number of executed tasks usually depends on the number
of partitions. As we model data and hardware resources as first-class entities in dedicated
specifications, the exact number and distribution of operations depends on them. There-
fore, we apply a Resource Profile on a group of chained operations. It forms the basis to
derive tasks with resource demands and predict the performance by combining them with
data workload and Resource Architectures.

While considering data as first-class entities, we focus on specifying only performance-
relevant factors of data as presented in Figure 9.3b. A Data Workload Architecture
contains one or several data models, which are either file-based (e.g., for batch applica-
tions) or record-based (e.g., for stream applications). The former contains multiple file
specifications and a single data source, which specifies the partition size of the files and
the number of partitions. The latter contains a variable to indicate the mean record size
and a continuous data source, which describes the number of partitions of a data stream
as well as the arrival rate per second of one record.

Figure 9.3c illustrates an overview of the classes and relationships of the Resource Archi-
tecture. It is a simplified version based on the resource environment model of PCM in-
cluding our extension (Becker/Koziolek/Reussner, 2009; Kro8/Brunnert/Krcmar, 2015).
It contains several resource nodes that, combined, represent a cluster. Each resource node
contains a processing unit, memory unit, and drive unit with individual processing rates
or capacities. The resource demands of one Resource Profile will be performed on the
corresponding resource units of one resource node.

9.4 Extracting Model Instances by the Example of
Apache Spark, Apache YARN and Apache HDF'S

Since creating models for applications, data, and resources requires much effort, we pro-
pose an approach to automatically extract PerTract-DSL instances based on monitoring
measurements and logs. The remainder of this section describes the approach to extract
a DSL instance in detail, comprising the monitoring on application level (Section 9.4.1),
the extraction of Execution Architectures from applications (Section 9.4.2), the estima-
tion of Resource Profiles for stages of applications (Section 9.4.3), the derivation of Data
Workload Architectures (Section 9.4.4), and the extraction of hardware resources (Sec-
tion 9.4.5).
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9.4.1 Extraction of Resource Demands

Collecting measurement data is necessary in order to extract Resource Profiles, estimate
resource demands, and calculate parametric dependencies. Profilers provide a common
way to extract fine-grained data such as stack traces and CPU times. We examined mul-
tiple Java profilers but found that the performance of big data applications is significantly
increased by their overhead. Therefore, we chose a sampling approach and developed a
lightweight Java agent for sampling CPU values for either stack traces or thread groups
of long-running applications.

Algorithm 1 shows the main procedure of the agent. It collects samples in intervals of
100 milliseconds, which we found to cause only low overhead while still providing high
accuracy in our experiments. Therefore, the agent fetches a dictionary of thread identifiers
and corresponding stack traces by calling the getAllStackTraces() method provided by the
Java Thread class. The dictionary contains only entries for threads that are in an active
state at the point of time requested. The CPU time is collected for each thread by using
the ThreadMXBean management interface (i.e., the getThreadCpuTime(long id) method)
for monitoring of the Java Virtual Machine (JVM). The CPU times for thread groups
with the same names will be summed up and sent as a batch to an Apache Cassandra
repository. Additionally, the name of the JVM will be transmitted to the repository for
each measurement.

Algorithm 1: Sampling thread groups and CPU values
Output: samples < dictionary containing a timestamp as key and tuples of
thread groups and CPU times as value

Schedule new thread every 100 milliseconds
threadGroups <— < k : String,v : long >;
sampleTime < current timestamp;
/* procedure provided by Java */
threads < getAllStackTraces();
for thread to threads do
/* procedure provided by Java */
cpuTime < getThreadCpuTime(thread.id);
threadGroup < thread.threadGroup;
threadGroups[threadGroup| <— cpuTime + threadGroups[threadGroupl);
end
samples < (sampleTime, threadGroups);
Until application has terminated;

9.4.2 Extraction of Execution Architectures

The Apache Spark framework introduces so-called resilient distributed datasets (RDDs).
RDDs are parallel data structures to store intermediate results in memory and offer coarse-
grained operations, which can be applied on them and work the same way on all data
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items (Zaharia et al., 2012a). Spark offers several operations and transformations such as
map and reduce.

A Spark application is executed by forming a DAG based on associated operations and
grouping them into stages of tasks. A stage chains operations with narrow dependencies,
which means a shuffle operation is not required e.g., a map and a subsequent filter oper-
ation (Zaharia etal., 2012a). The number of tasks of one stage depends on the number
of RDD partitions. Stages are executed successively and constitute one job. One or more
jobs compose one Spark application. The application is managed by one context. It runs
in the main process called the driver program. It allocates executors to worker nodes and
schedules and assigns tasks of an application on to executors. An executor is a process
that executes the tasks and operations in parallel (Apache Spark, 2015).

In order to automatically extract execution components and inter-component interac-
tions from Apache Spark, we access the interfaces of the embedded history server. We
remind readers that we refer to the specification introduced in Section 9.3.1. We use
the Spark environment properties to derive an Application Configuration. We set py to
spark.default.parallelism, e to spark.executor.instances, ts. to spark.executor.cores, and m,
to spark.executor.memory. While a DAG created by Apache Spark models RDDs as nodes
and operations as edges, we create nodes on three levels—on application-, job- and stage-
level—and data flows as edges (similar to the JobGraph of Apache Flink).

On the application-level, one initial node is created to represent the application itself
(i.e., ScalaWordCount in Figure 9.2). It contains a set of child nodes and edges for
the job-level.

On the job-level, we read the interface for job metrics of the corresponding application and
create a set of nodes containing one element for each job entry. As jobs may be executed
in parallel, we consider the chronological sequence of jobs by accessing start times and end
times in order to create a set of directed edges and connect successive nodes. The data
transmission factor of each edge is calculated by bringing the input data of the tail and

head in dependence:
mput,,

dt. =

e = = : 9.1
mputy, (9:1)

Each job node contains a set of child nodes and edges for the stage-level. On the stage-
level, we access the interface for stage metrics of the corresponding application and create
a set of nodes containing one element for each stage entry corresponding to one job.
In order to derive the parallelism p,, of each node and whether it represents a spout s,,
we obtain the read data metrics of each stage and distinguish between input and shuffie
data:
true,  for input > 0 A shuffle=0, (9.2a)
= {false, otherwise, (9.2b)

[ pas, for input > 0 A shuffle= 0, (9.3a)
P = pg,  otherwise. (9.3b)
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In case a stage has read input bytes, the initial RDD of the stage is created by an external
data source and contains as many partitions as the data source. This usually applies to
each initial stage of a job. For this case, we set s, to true (Equation (9.2a)) and specify p,
according to the number of partitions of the data source pys (Equation (9.3a)). In case a
stage has read shuffled data, the corresponding RDD of the stage is already transformed
based on prior RDDs. Its partitions equal the default parallelism p,. Therefore, we set
s, to false (Equation (9.2b)) and set p,, to p, (Equation (9.3b)). The data transmission
factor is calculated as in (Equation (9.1)). Finally, we extract one Resource Profile for
each node element on the stage-level.

9.4.3 Extraction and Estimation of Resource Profiles

A Resource Profile consists of a set of resource demands where each element may involve
a different resource type and a function to specify the value. Our main focus lies on the
CPU resource. As Ousterhout etal. (2015) systematically identified by the example of
Apache Spark, CPU is the bottleneck of data analytics applications in most cases contrary
to the widely-accepted opinion that disk and network are weak points.

We define three different CPU demands for each stage ¢ € EN. The first one represents
the actual time to process a task. We define a linear function dependent on the parameter
p describing the data size for each task of a stage. The slope of the function is calculated
by using aggregated CPU times originating from task-related thread groups across all
Spark executors. This CPU time is divided by the total amount of read data for each
stage:

cpul'ime; yask

pz’nputi + shuffle;

fi,cpu,task (p) = (94)

The second CPU demand represents the overhead of coordinating with the driver pro-
gram, preparing a task before it is actually executed, and postprocessing. These times
are provided by the Spark task metrics interface (i.e., they are included in the variables
executorDeserializeTime and resultSerializationTime). As the coordination grows with
the number of Spark executors, we define the demand dependent on the configuration
parameter e, the number of executors. We observed that this demand varies very strong
from task to task, especially for the first tasks of a stage. As averaging the metric is not
reasonable, we model this demand by converting the series of time values to a boxed prob-
ability density function (PDF) with variable interval sizes as specified by PCM (Becker/
Koziolek/Reussner, 2009). In order to box the CPU values, we use the percentiles 5, 25,
50, 75 and 95 as intervals since they are provided by the Spark’s interface.

The third CPU demand represents the overhead caused by providing infrastructure ser-
vices for one task. As it is independent of data input, we define a static demand using
aggregated CPU times of traces originating from worker-related thread groups across all
Spark executors. We additionally divide the CPU times by the total number of tasks to
receive the demand for one task:

CPUszei,worker

(9.5)

Jo.couinfra = numComplTasks + numFailTasks
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For the extraction of drive demands, we examined several approaches to estimate read
and write demands. As we are not able to measure the drive demands on an appropriate
level without adding instrumentation to HDFS (similar to Ousterhout etal. (2015)), we
extract only a resource demand for reading data, which equals the dependent parameter
p describing the data size for each stage.

Similarly, network demands on a low granularity level are only able to be retrieved by
instrumenting Spark in a sophisticated way. In order to compensate and include the
time delays caused by network traffic, we extract wait demands. We calculate the delays
between stages by comparing their start and end times and model the demand accordingly.

Furthermore, we do not extract demands for allocating main memory at the moment.
As simulation approaches for memory are still limited and neglect features such as garbage
collection, the prediction accuracy of this resource is debatable (Brunnert/Krcemar, 2017).

9.4.4 Extraction of Data Workload Architectures

The Hadoop distributed file system (HDFS) is a distributed, scalable, and fault-tolerant
storage system for big data (Apache Hadoop, 2015). Files are split into a sequence of
blocks according to a specified block size, which are are replicated to different data nodes
to support fault tolerance (Apache Hadoop, 2015). For instance, if Spark applications read
a file from HDFS, it will be represented by one RDD with as many partitions as blocks.

In order to extract the Data Workload Architecture, we create a file-based data model
and a single data source for a specified folder in HDFS and create a file specification for
each file. To access the required information, we use the client library of Apache Hadoop.
We access the size of each file as well as calculate the partition size and number of overall
partitions pgs.

9.4.5 Extraction of Resource Architectures

Cluster managers, such as Apache Hadoop YARN and Apache Mesos, arbitrate resources
for batch and stream applications and provide support to distribute them on cluster
nodes. YARN stands for Yet Another Resource Negotiator and follows a master—worker
architecture (Apache Hadoop, 2015). This includes one resource manager and multiple
node managers. A node manager runs on each worker node and is responsible for executing
resource containers. A resource container is an abstract notion for resources such as
CPU, memory, and HDD in which application tasks run (Apache Hadoop, 2015). If a
new application is submitted, a responsible application master will be executed in a new
resource container. It orchestrates application tasks and, therefore, requests resource
containers from the resource manager and monitors their state (Dean/Ghemawat, 2008).
Apache Spark is able to run in different modes on YARN. In the so-called client-mode,
for instance, the driver program and Spark context runs at the client itself, the application
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master requests resources for executors, and each executor will run in its own resource
container (Apache Spark, 2015).

In order to extract Resource Architectures, we use the public interface provided by YARN
to retrieve metrics of each cluster node. For each node manager, we create one resource
node rn € RN. Therefore, we assign a worker resource role and create a resource unit
for each CPU, drive, and memory. The CPU cores and memory capacity are extracted
via the interface. As drive information is not available, we set the read and write speed
manually (e.g., by testing HDFS with the included DFSIO benchmark).

Besides the set of resource nodes, we create a network channel and also set the bandwidth
and latency manually.

9.5 Transformation to Performance Models

This section describes the concepts of the architecture-level performance model PCM and
how we transform DSL instances into PCM models.

9.5.1 Palladio Component Model

We chose to use PCM (Becker/Koziolek/Reussner, 2009) as a model-based performance
evaluation tool as it enables engineers to specify software systems independent of tech-
nology, include resource demands for software components, consider resource contention,
and predict not only response time, but also resource utilization. Furthermore, the tool
support is mature, open source, and continuously maintained with a large community.

In particular, PCM is developed for component-based software systems and enables en-
gineers to describe performance relevant factors of software architectures, resource envi-
ronments, and usage behavior (Brosig etal., 2015). It is implemented in Ecore from the
Eclipse Modeling Framework (EMF) and consists of multiple models (Becker/Koziolek/
Reussner, 2009). Software interfaces and components are specified in the Repository
Model (Figure 9.4a). Components provide the implementation for signatures of interfaces.
Therefore, they contain a resource demanding service effect specification (RDSEFF) in
which the activities such as parametric resource demands and external calls of signatures
are modeled similar to activity diagrams (Figure 9.4b). Components are additionally as-
sembled in a System Model. In the Resource Environment Model, network and hardware
resources are specified such as processing resources (CPU, disk, and delay), processing
rates, and scheduling policies. The Allocation Model allows for deploying assembled com-
ponents from the System Model on resources from the Resource Environment Model.
The usage and workload of software components are specified in the Usage Model. Fi-
nally, PCM provides a simulator for its models, which is based on a process-oriented
discrete event simulation.
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Figure 9.4: Ezemplary transformed PCM instances
9.5.2 Transformation to PCM

We describe the transformation for each DSL component. Table 9.2 shows the mapping of
DSL concepts to PCM elements. An Execution Architecture is transformed to a Repos-
itory Model (Figure 9.4a). In order to traverse the Edges and Nodes of an Execution
Architecture, we use a recursive depth-first search. Upon visiting each Node, we check if
it contains child Nodes and Edges. If this is the case, we again traverse this Node and
the procedure repeats.

For each Node, we create one Interface with several signatures and a corresponding Ba-
sic Component that provides the signatures using an RDSEFF. If a Node contains child
Nodes, we add a delegate signature to the corresponding Interface (i.e., 1Job0). Addition-
ally, the Basic Component requires the Interfaces of the child Nodes.

Parameters of the Configuration and parametric dependencies of the Execution Architec-
ture are transformed into input parameters of each Signature. We consider parameters
for the number of files, the data size of one file, the default partition size, the number of
partitions, and the number of executors. In order to model and limit the maximum num-
ber of concurrent tasks, we separately specify an Infrastructure Component to represent a
pool of available task slots. The component contains two SEFFSs to acquire and to release
a task slot. In order to finally execute a task, a slot must be acquired first. After task
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completion, the slot is released again. In the case of Apache Spark, the limiting number
of task slots is the number of total cores.

Table 9.2: Mapping of PerTract-DSL to PCM elements.

PerTract-DSL PCM Model Elements
Execution Architecture Repository Model
Nodes Interface, Basic Component
Edges RDSEFF
Configuration Parameters, Infrastructure Component
Resource Profile Distributed Call Action, RDSEFF
Resource Architecture Resource Environment Model
Resource Node Resource Container
Cluster Specification Cluster Specification
Network Channel Linking Resource
Data Workload Architecture Usage Model
Data Model Entry Level SystemCall, Parameters
Data Source Workload

RDSEFF Resource Demanding Service Effect Specification; Distributed Call Action,
Cluster Specification PCM extensions (Krofl/Brunnert/Krcmar, 2015).

Edges are represented in the RDSEFF of a Basic Component. Each delegate RDSEFF
models the flow by using External Call Actions to invoke signatures of required Interfaces
in the specified order (i.e., Job0 invokes the prepare signature of IStage0). In the course
of this, the input parameters are forwarded and altered at specific points to model the
data transmission factor ¢, of an Edge.

If a Node contains a Resource Profile, we transform it by creating several model elements.
In order to call a group of tasks in parallel, we add two signatures to the corresponding
Interface of the Node (i.e., Stage0). The providing RDSEFF prepare is intended to create
a set of parallel tasks. It uses a Distributed Call Action to invoke the execute signature
of the same Interface several times in parallel. The parallelism is either defined by the
number of partitions of a data source pys or the specified parallelism of the Node p,.
The execute RDSEFF acquires and releases a task slot before and after prompting a task.

We create an additional Interface and Basic Component (i.e., TaskForStage) to model a
task. Its behavior run is responsible to execute the parametric resource demands of a
task (Figure 9.4b). Only the wait demand of a Resource Profile will be executed in the
prior prepare RDSEFF as the demand occurs once at the beginning of each stage and not
for each task. We automatically assemble all Basic Components of the Repository Model
in order to derive Palladio’s System Model.

Since the Resource Architecture follows the concepts of Palladio’s Resource Environment
Model, the transformation is linear. We transform each Resource Node to a Resource
Container and convert the Cluster Specification and Resource Role accordingly. Addi-
tionally, we transform each Resource Unit to an equivalent Processing Resource Unit
including the specification of processing rates, number of replicas (e.g., the number of
cores), and scheduling policies. Finally, all Resource Containers are connected to net-
works via a Linking Resource.
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In order to create the Allocation Model, we deploy all assembled Basic Components from
the System Model on the master Resource Container from the Resource Environment
Model. Our previous extensions (Krof§/Brunnert/Kremar, 2015) enable Palladio’s simu-
lation framework SimuCom to distribute resource demands to Resource Containers that
represent worker nodes with a round robin policy.

Finally, we transform the Data Workload Architecture to a Usage Model. We create one
Entry Level System Call that invokes the delegate signature of the Application Interface.
The required input parameters are transformed based on the Data Model and Data Source.
We specify the number of files, the data size of one file, the default partition size, and the
number of partitions. For the Single Data Source, we create a simple closed Workload
with a population of one, which means the Entry Level System Call is triggered once.

All transformed models can be used by Palladio’s simulator to predict performance met-
rics.

9.6 Evaluation

This section evaluates the model extraction and performance simulation approach intro-
duced in this work.

9.6.1 Research Methodology

In order to validate our approach, we conduct three integrated controlled experiments
by modeling and simulating the execution of two different exemplary machine learning
applications (Hevner etal., 2004). Therefore, we formulate three claims by exemplary
problems from a performance management perspective.

First, engineers are interested in the performance behavior of applications and resources
in case data workload grows. This experiment evaluates the claim that data workloads
can be changed independently of Execution Architectures and Resource Architectures.
We initially extract one PerTract-DSL instance for each of the two applications based on
monitoring data. Afterwards, we adapt data sizes in Data Workload Architectures and
compare predictions for response times and CPU utilization with corresponding monitored
measurements in several upscaling scenarios.

Second, engineers need to evaluate the scalability of applications if additional hardware
resources are allocated. This experiment evaluates the claim that resources can be al-
tered independently of Execution Architectures and Resource Architectures. We modify
and add worker nodes in Resource Architectures without changing Execution Architec-
tures and Data Workload Architectures. Afterwards, we compare predictions results with
corresponding monitored measurements.
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Third, engineers need to efficiently plan and manage capacities for given data workloads
and performance requirements (Brunnert etal., 2015). This experiment evaluates the
claim that data workloads as well as resources can be changed independently of Execution
Architectures. Similarly, we use the models extracted in the first experiment and conduct
several upscaling scenarios regarding data workload and cluster size without modifying
Execution Architectures. Afterwards, we compare the simulated prediction results with
corresponding measurements.

9.6.2 HiBench Benchmark Suite

In our experiments, we apply the HiBench benchmark suite to run representative and
reproducible applications and workloads for Apache Spark (Huang etal., 2010). As the
automatic extraction approach shall allow for modeling complex applications, we use
two machine learning applications. We chose a random forest classification (RFC) since
random forests represent frequently used machine learning models for classification and
regression. HiBench implemented the application using Apache Spark’s machine learn-
ing library MLIlib and provides an RFC-specific data generator. Additionally, we chose
a linear regression (LR) as it is a common approach for regression analysis and forecast-
ing. Therefore, HiBench’s implementation uses a model without regularization using a
stochastic gradient descent to predict label values. Similarly, it implements Spark’s MLIlib
and includes its own data generator.

9.6.3 Experiment Setup

Table 9.3 and 9.4 illustrates our testbed and data configurations. The hardware envi-
ronment includes five servers. Each server is connected to a storage area network (IBM
System Storage EXP3512, New York, United States) via fibre channel allowing for eight
gigabits per second (GBit/s). The servers are also connected in a local area network
(LAN) with one GBit/s.

Table 9.3: Software and hardware configuration of the test system

Hortonworks Data Platform (2.6.3.0-235)
- Apache Spark (2.2.0)

Software platform - Apache Hadoop (2.7.3)

4x - Apache Ambari (2.6.0)
Java virtual machine Oracle JDK (1.8.0_60)
Operating system CentOS Linux (7.2.1511)
Virtualization VMware ESXi (5.1.0), 8 cores, 36 GB RAM
CPU cores 48 x 2.1 GHz
CPU sockets Ex 4 x AMD Opteron 6172
Random access memory (RAM) 256 gigabyte (GB)
Hardware system IBM System X3755M3

We virtualized each server using the VMware ESXi hypervisor (VMware, Palo Alto,
United States) and configured eight cores and 36-gigabyte (GB) memory for each vir-
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Table 9.4: Data workload scenarios and configurations

Application Scenario File Size Files Partitions Total Size

Random forest classification Small 1.89 gigabyte 8 128 15.12 gigabyte
Large 3.58 gigabyte 8 232 28.64 gigabyte
Huge 5.52 gigabyte 8 360 44.16 gigabyte

Linear regression Small 1.86 gigabyte 8 120 14.88 gigabyte
Large 3.49 gigabyte 8 224 27.92 gigabyte
Huge 5.59 gigabyte 8 360 44.72 gigabyte

tualized machine (VM). On each server, we allocated four VMs. On the first server, we
use one VM as a master node for Apache HDFS and YARN, one VM for managing the
cluster (i.e., Apache Ambari), one VM for storing monitoring data, and one VM for ini-
tiating the benchmark applications. On the remaining four servers, we use each VM as a
worker node. We deployed the Hortonworks Data Platform to use Apache Spark, YARN,
and HDFS. For HDFS, we kept the default configurations including a replication factor
of three and a data block size of 128 megabytes (MB). For YARN, we configured 26 GB
and six virtual cores (vCores) per container, for Spark executors 22 GB as well as six
cores. Since we experienced that not all cores were utilized when running applications,
we changed the resource calculator to be dominant and enabled CPU scheduling to ad-
dress this issue. For evaluating the prediction accuracy, we compare the metrics response
time and CPU utilization. For simulations, we captured the simulated mean response time
(MRT) as well as the simulated mean CPU utilization (MCPU) across the cluster. For the
benchmark measurements, applications were executed four times for each experiment to
avoid any distortions. Similarly, monitored MRT and monitored MCPU on the user-level
were calculated. Monitored response times are derived from the Spark monitoring API
and monitored CPU measurements from the Ambari Metrics System (2.6.0).

Tables 9.5 and 9.6 list all simulated and monitored MRT and MCPU results, the root
mean square errors (RMSE), and the relative prediction errors. They provide the basis
for presenting and discussing our experiments in the following.

9.6.4 Collecting Resource Demands and Extracting Execution Ar-
chitectures

The extraction and transformation process follows the overview illustrated in Figure 9.1.
In order to extract an Execution Architecture for one application, we monitor the ap-
plication using our profiler presented in Section 9.4.1 to extract stack traces and corre-
sponding CPU times. Additionally, the Spark framework itself monitors an application.
As described in Section 9.4.2, execution components and inter-component interactions are
extracted using Spark’s interfaces. For each execution component, CPU resource demands
are generated by processing corresponding CPU times and interrelating them with data
input information of each component as explained in Section 9.4.3.
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In order to evaluate the three proposed claims, we derive one initial PerTract-DSL in-
stance for each of the two machine learning applications that we use throughout all exper-
iments. According to each experiment and scenario, we adapt the PerTract-DSL instance
and simulate it to derive predictions.

Table 9.5: Monitored and simulated mean response times (seconds).

Random Forest Classification Application Linear Regression Application
‘Worker Data Monitored Simulated Prediction Monitored Simulated Prediction
Nodes ‘Workload MRT MRT RMSE Error MRT MRT RMSE Error
4 Small 264.79 262.71 447 0.78% 42.15 43.09 1.19 2.23%
Large 502.09 462.41 40.26 7.90% 71.96 76.60 4.73 6.45%
Huge 755.05 696.70 59.65 7.73% 124.21 116.38 13.39 6.30%
8 Small 222.46 199.04 24,92 10.53% 35.28 32.95 2.65 6.59%
Large 378.31 322.54 56.62 14.74% 52.24 49.74 3.66 4.79%
Huge 534.12 486.34 48.48 8.94% 76.73 73.54 4.60 4.15%
16 Small 196.62 196.46 4.34 0.08% 37.84 37.33 2.22 1.34%
Large 287.38 285.20 11.56 0.76% 40.86 45.24 4.48 10.74%
Huge 373.74 396.38 25.97 6.06% 53.27 56.96 4.05 6.93%

Table 9.6: Monitored and simulated mean CPU utilization.

Random Forest Classification Application Linear Regression Application
‘Worker Data Monitored Simulated Prediction Monitored Simulated Prediction
Nodes ‘Workload MCPU MCPU RMSE Error MCPU MCPU RMSE Error
4 Small 48.96% 45.69% 3.31% 6.69% 48.86% 47.43% 2.53% 2.94%
Large 56.93% 48.70% 8.23% 14.45% 57.55% 52.06% 5.62% 9.53%
Huge 56.06% 49.66% 6.43% 11.42% 56.32% 55.45% 4.02% 1.54%
8 Small 35.23% 34.83% 0.91% 1,13% 36.03% 32.48% 3.72% 9.86%
Large 44.64% 39.60% 5.31% 11.29% 46.13% 42.51% 3.85% 7.85%
Huge 47.27% 40.66% 6.61% 13.98% 52.93% 48.15% 4.81% 9.04%
16 Small 22.65% 22.12% 0.84% 2.32% 22.05% 19.34% 2.91% 12.26%
Large 31.23% 27.61% 3.65% 11.57% 31.85% 28.99% 3.06% 8.97%
Huge 34.00% 30.72% 3.39% 9.63% 38.22% 35.59% 3.13% 6.89%

9.6.5 Evaluating Data Workload Changes

In order to evaluate our first claim that data workload changes can be modified indepen-
dently, we specified three different scenarios small, large, and huge for both applications.
Table 9.4 shows the corresponding number of files, file sizes, total partitions and total sizes
for each scenario. The basis for evaluating workload changes of each application provides
one initial PerTract-DSL instance each. We extracted this instance from a monitored
experiment with a small data workload in a cluster of four worker nodes. Afterwards,
we changed the Data Workload Architecture according to the scenarios large and huge
and simulated the model instances. The simulation and monitoring results are part of
Tables 9.5 and 9.6.

The starting experiment (i.e., four nodes and small workload) shows a response time
prediction error of 0.78% for the RFC and 2.23% for the LR application. CPU prediction
errors amount to 6.69% and 2.94%. Changing the data workload according to the large
and huge scenarios leads to a response time prediction error of 7.90% and 7.73% for the
RFC and 6.45% and 6.30% for the LR applications. Similar to the prediction errors,
the RMSE increased in both scenarios. For the huge scenario, Figure 9.5 illustrates the
response time statistics of simulated and monitored Spark tasks for each stage. For both
applications, we predict the median of the tasks for 16 of 21 stages with errors below 30%.
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However, the monitored results show an increased deviation compared to the simulation
results, especially, for the LR application. This is due to the monitored delays and
task processing, which showed great variances. While we model delays with probability
distributions, we only use the mean for estimating CPU demands and did not depict
this behavior. For the RFC application, tasks for stages 05, 07, 09, and 11 also differ
significantly. These stages contain reduce operations for which the input data size does not
exactly scale linearly with increasing data workload for this RFC application. However,
the error only has a minor effect on the overall application response time as stages for
reduce tasks consist of only eight tasks compared to 360 tasks for each of the other stages.
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Figure 9.5: Response time statistics of Spark tasks for each stage (four worker nodes,
huge data workload)
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Figure 9.6: Mean CPU utilization of four worker nodes (huge data workload)

For the large and huge workload scenarios, the RMSE for CPU consistently remain below
9%. CPU prediction errors amount to 14.45% and 11.42% for the RFC and 9.53% and
1.54% for the LR application. Figure 9.6 illustrates the CPU utilization over time for one
experiment run. In order to avoid illustrating too many lines, we calculated the mean
across the worker nodes. Although underestimating the CPU utilization by 6.4% for the
RFC application, the graphs of the simulated and monitored values map very closely.

The results for response time and resource utilization show accurate prediction results
based upon averages for upscaling workload changes. Therefore, we validated the claim
of being able to change data workloads independent of Execution Architectures and Re-
source Architectures.
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9.6.6 Evaluating Resource Changes

We increased the initial cluster size of four worker nodes by factors two and four in order
to evaluate our second claim that hardware resources can be changed independently of
Execution Architectures and Data Workload Architectures.

Similarly, the evaluation is based on one initial PerTract-DSL instance for each appli-
cation, which is the same as for the data workload evaluation and was extracted from
a monitored experiment with four worker nodes. Afterwards, we increased the worker
nodes to eight and 16 nodes in the Resource Architecture. Additionally, we adapted the
number of executors e in the application configuration of the Execution Architecture to

match the number of worker nodes. The simulation and monitoring results are part of
Tables 9.5 and 9.6.

In the previous subsection, we already discussed the same starting experiment, which does
not include any changes. For eight worker and 16 worker nodes, response time prediction
errors amount to 10.53% and 0.08% for the RFC application and 6.59% and 1.34% for
the LR application, respectively. Compared to the data workload changes, the RMSE
is lower throughout the resource changes for both applications. Figure 9.7 additionally
shows the detailed response time statistics of Spark tasks for each stage of the applications.
Compared to the data workload evaluation, the median values of simulated and monitored
results lie closer together. The distance of the first and third quartiles are also predicted
more accurately for most stages of both applications. For a few stages such as Stage
01, minimum, maximum, and quartiles differ significantly. Nonetheless, response time
predictions errors on application-level remain below 15% in total.
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Figure 9.7: Response time statistics of Spark tasks for each stage (16 worker nodes,
small data workload)

For eight worker and 16 worker nodes, CPU prediction errors come to 1.13% and 2.32%
for the RFC application and to 9.86% and 12.26% for the LR application, respectively.
Figure 9.8 illustrates the CPU utilization over time for one experiment run. For the RFC
application, the simulated CPU usage overestimates several peaks and underestimates
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Figure 9.8: Mean CPU utilization of 16 worker nodes (small data workload)

negative peaks. However, it depicts the progression of the monitored results overall.
For the LR application, the predicted CPU utilization is very precise.

In total, the simulation results show accurate prediction results for upscaling hardware
resource changes with mean prediction errors below 15% and validate the claim that
hardware resource can be modified without changing Execution Architectures and Data
Workload Architectures.

9.6.7 Evaluating Data Workload and Resource Changes

In order to evaluate our claim that data workload and hardware resources can be mod-
ified without changing application Execution Architectures, we applied both upscaling
scenarios together, regarding data workload as well as worker nodes. The simulation and
monitoring results are part of Tables 9.5 and 9.6. Again, the evaluation is based on the
same initially extracted PerTract-DSL instance for each application.

For eight worker nodes and a large data workload, response time prediction errors amount
to 14.74% for the RFC and 4.79% for the LR application. For huge data workload, the er-
rors are 8.94% and 4.15%, respectively. For 16 worker nodes and a large data workload,
response time prediction errors come to 0.76% for the RFC and 10.74% for the LR applica-
tion. With huge data workload, the errors are 6.06% and 6.93%, respectively. The RMSE
results consistently behave similarly to prediction errors. The highest RMSE amounts to
56.62 seconds, which equals 14.97% of the corresponding monitored response times. For all
scenarios, prediction errors constantly remain below 15%. Figure 9.9 additionally shows
the response time statistics of results with 16 worker nodes and huge workload. Compared
to the two previous evaluations, the simulation results depict monitoring results as the
closest for both applications.

Looking at the CPU results for eight worker nodes and a large data workload, prediction
errors amount to 11.29% for the RFC application and 7.85% for the LR application.
For a huge workload, the errors remain similarly with 13.98% and 9.04%. For 16 worker
nodes and a large data workload, the errors also remain 11.57% and 8.97%. With a
huge data workload, they decrease a little to 9.63% and 6.89%, similar to the response
time prediction.

Figure 9.10 shows the CPU utilization over time of one run with 16 worker nodes and a
huge data workload. In case of the RFC application, the simulation graph depicts the
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Figure 9.10: Mean CPU utilization of 16 worker nodes (huge data workload)

progression of the monitored measurements. However, it shifts as the response time differs.
In case of the LR application, the simulated CPU utilization is also slightly shifted due
to the different response times. Otherwise, it depicts the monitored utilization except for
one peak at the beginning. This is due to overestimating the CPU demand for Stage 00.
Similarly, the task response time also significantly differs for Stage 00 for both applications
throughout all experiments. The reason for the overestimation is that this stage consists
of only one task, which does not scale linearly with the dependent data size. This is a case
that we intentionally did not consider and could not cover as it requires metaknowledge
of the application that we do not expect in an automatic extraction process.

Overall, the simulated results for response times on an application-level as well as CPU
utilization show accurate predictions for both data workload changes and hardware re-
sources. The mean prediction errors remained below 15% as well as the RMSE compared
to the monitored results. In performance evaluation literature, prediction errors of 30%
across cluster sizes are expected (Ardagna etal., 2018). Therefore, we validated the claim
of being able to change data workloads and resources’ architectures independent of Exe-
cution Architectures. Our approach enriches related work by predicting CPU utilization
across clusters and over time.
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9.6.8 Threats to Validity

Although we applied some sophisticated machine learning applications, we generated data
and used only a set of sample applications from one benchmark suite. As they are far
more complex applications and have deviating data in praxis, this represents a threat to
external validity (Wohlin etal., 2012).

Furthermore, we evaluated our approach only for one technology (i.e., Apache Spark) and
one type of application (i.e., batch). In previous work, we showed that our approach is
also applicable for Spark Streaming applications (Krof3/Krcmar, 2017). However, we claim
that the DSL builds a foundation to specify other technologies as well, such as Apache
Flink and Apache Storm. Extensions might be required (e.g., additional parameters) to
support modeling and accurate predictions. We plan to evaluate this in our future work.

We used several visualizations and statistical measures such as mean, standard deviation,
and relative error to ensure statistical conclusion validity. While the results of one measure
can be close to each other (e.g., mean), another measure can differ significantly (e.g.,
minimum value).

9.6.9 Assumptions and Limitations

We allocated one Spark executor to each node during our experiments. It is also possible
to size less cores and memory for Spark executors, which would enable Spark to allocate
multiple executors to one node. Although we are also able to model and simulate these
scenarios, we did not evaluate such a case. We evaluated our experiments in a virtualized,
but exclusive cluster in which no other applications were running in parallel and using
any CPU, disk drives, or networks. For data analytics applications, CPU is usually the
bottleneck (Ousterhout etal., 2015). As HiBench and other industry benchmarks mainly
consist of only compute-intensive applications, we did not evaluate our approach for a
wider variety of applications.

Regarding our modeling approach, we specified the input of a subsequent Spark stage
probabilistically depending on the output data of a previous stage. Therefore, our predic-
tion error will increase, if the properties of the initial underlying data set change signifi-
cantly (e.g., the number of distinct words in case of a word count application). Another
limitation is that we only include network delays in our models and simulations, but did
not simulate network throughput and bandwidth yet. The same applies to disk drives.
In addition, we also did not consider rack awareness in our specification. Regarding
big data features and PCM, Heinrich/Eichelberger/Schmid (2016) discuss current chal-
lenges and potential solutions, for instance, for modeling data structures and continuous
data flows.
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9.7 Conclusions and Future Work

Modeling and predicting the performance of big data applications are essential for plan-
ning capacities and evaluating configurations. Automatically deriving models, specifying
applications tool-agnostic, and gaining insights into performance-relevant factors of sys-
tem architectures and dependencies are complex challenges. We present PerTract, an ap-
proach to automatically extract model specifications and transform them to the model-
based performance evaluation tool Palladio. A PerTract-DSL allows the specification of
(i) application execution architectures including components, parametric dependencies,
and resource demands, (ii) computing resources, and (iii) data workloads. It is specif-
ically designed for big data systems, decreases the complexity compared to full perfor-
mance models, and simplifies the changeability to users. We demonstrated the extraction
of DSL instances by the example of Apache Spark applications, Apache YARN resources,
and Apache HDFS data. This is the first white-box approach to present an automated
way to integrate measurements and estimate resource demands to produce performance
models that can be simulated. We used two machine learning applications of the HiBench
benchmark suite in the evaluation and upscaled data sizes as well as cluster sizes in differ-
ent scenarios. We are able to predict mean response times on application-level and CPU
usage with accurate predictions errors below 15%.

In our future work, we plan to extract DSL instances from more technologies. We al-
ready provide a way to extract the execution architecture of Apache Flink applications,
but need further investigations to estimate accurate resource demands. Additional tech-
nologies include Apache Mesos for modeling computing resources and Apache Kafka for
characterizing data workload. We also plan to implement direct transformations from the
DSL to a scalable event-oriented discrete-event simulation as we are reaching the limit for
simulating continuous sources (data streams). Finally, we will extend the specification of
continuous data sources to include load intensity profiles that model variations in arrival
rates (Kistowski etal., 2017).
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Chapter 10

Summary of Results and Discussion
of Implications

In this chapter we first summarize the results for the embedded publications. Afterwards,
we outline limitations of this dissertation as well as the contributions to research and
practice. We conclude with an outlook of future research.

10.1 Summary of Results

This section describes the results of the embedded publications. We refer to the publica-
tion numbers as introduced in section 3.3.

Publication P1 proposes the vision of a model-based performance evaluation approach
that allows for predicting the performance and scalability of system-of-systems such as
big data and IoT systems. Motivated by IoT use cases in which big data must be pro-
cessed constantly, we identify the need to consider software performance, especially, at
the beginning of developing new systems in order to continuously ensure that perfor-
mance and scalability requirements can be met. We describe that performance models
are well understood in the area of business applications. As these applications are mainly
user-driven and often process data on a single hardware node, they do not consider data
as a first class entity. As a result, these approaches are not suitable for modeling the
data-driven applications as well as distributed and parallel applications. We describe our
future research goal to combine and integrate modeling approaches from different areas
including business applications and big data applications. Our contributions shall to en-
able engineers to detect bottlenecks, predict end-to-end response times, and plan required
capacities for efficient IT operations.

Publication P2 introduces an approach that uses PCM to model and simulate the per-

formance of a batch processing application that is part of a lambda architecture in order
to minimize the usage of parallel stream processing. We use this model and its prediction
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results as a decision making model during each processing iteration. We predict if the
response time of the batch processing application with given data input and hardware
resources is within a certain response time threshold. If this is the case, we determine to
switch off the speed layer for one iteration, otherwise we decide to run the speed layer for
the iteration in order to meet the response time requirements. Based on a smart energy
use case we implemented a batch application that analyzes data from wind power facili-
ties. In order to evaluate our approach, we model and simulate the batch application and
examine the accuracy of the response time prediction results for different sizes of input
data. In the evaluation we only used a single-node cluster for the batch application and
also simulated the application on only one hardware node. The reason for this is that
we where not able to model a distributed and parallel setup with PCM. As a result of
this publication, we derived a practical and detailed understanding of what features are
required and were missing the meta-model.

In publication P3, we address the missing features we experienced in P2 and proposed
meta-model extensions to PCM. In contrast to classical component-based software sys-
tems, big data frameworks and systems parallelize and distribute data processing in a
computer cluster. First, we extend the meta-model to allow for invoking an operation
multiple times in parallel. We introduce two parameters, one to specify the simultaneous
number of executions (e.g., that may equal the number of partitions of a data stream) and
one to specify the total number of executions (e.g., that may be the number of partitions
of a data file) with parametric dependencies. Second, we extend the meta-model to allow
for specifying resource clusters. This includes to specify the resource role of a resource
(e.g., master and worker) and the scheduling policy (e.g., round robin) that is used to
determine the distribution of operations on worker nodes. In order to make use of the
proposed extensions, we started to extend PCM’s simulation engine SimuCom to support
the features. This extension is tested in publication P4 and described as well as finished
in publication P5.

Publication P4 presents an approach to model and simulate stream applications on the
basis of our meta-model extensions from P3. As an exemplary technology we used the
Spark Streaming API of Apache Spark and chose as distinct count application of the Hi-
Bench benchmark suite. We demonstrate how we depict the concepts of the Apache Spark
framework into a performance model and how we use delay and CPU measurements to
derive parametric resource demands. We evaluate the approach for an upscaling scenario
regarding the amount of cluster nodes. We derive an initial performance model based on
two cluster nodes and adapt the model to four, six, and eight cluster nodes. Afterwards,
we compare simulated response times with measured response times from corresponding
execution runs in order to evaluate the prediction accuracy. During the four scenarios,
the mean relative prediction error remained below 22%. During the evaluation of this
paper, we already evaluated not only the modeling approach but also our extensions to
the simulation engine. We were able to simulate around 450,000 events per second and
simulation unit, respectively, and also experienced already the limitations with regard to
the scalability of the simulation engine. Unfortunately, simulating more events was not
feasible for us.

In publication P), we enhanced our modeling approach of publication P/ and evaluated it
in more detail. We model and evaluate one batch application as well as one stream appli-
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cation. We completed the extension to the simulation engine and describe corresponding
model to text transformations. In addition to comparing response times, we also compare
the prediction accuracy of CPU utilization. The procedure from Pj in which we used
measurements form the Spark’s API to derive CPU resource demands did not result in
accurate CPU utilization predictions. The reason was that the calculation of provided
measurements involved some abstractions that distorted the measurements. We decided
not to change the source code of Spark as we wanted our approach to be reproducible
and useable without any modifications. Therefore, we used profilers to monitor the CPU
time of applications and used those measurements to extract parametric resource de-
mands. Compared to P4, we also considered upscaling scenarios regarding input data
sizes for both application types. In order to evaluate the prediction accuracy, we com-
pared the mean response time as well as the mean CPU utilization of simulated results
with measured results. For all upscaling scenarios, both metrics, and both application,
the prediction error was at most 17.02%.

Publication P6 presents our approach PerTract to automatically extract models of big
data systems. Throughout our former publications we faced several limitations and draw-
backs. The adaption of model parameters with regard to data information is complex
and involves several limitations as PCM does not consider data as first class entity. We
also reached the performance limit of the simulation engine for stream applications. To
address these concerns, we introduce an own DSL and modeling formalism to consider
only essential characteristics of big data frameworks. Based on this DSL, we provide
automated transformations to create PCM model instances. By this abstraction and con-
sidering data as a first class entity, we are able to adapt model parameters in an easier
way and may also provide transformations to other simulation frameworks in future that
may be able to to handle more load.

Furthermore, it was not feasible to model complex big data applications (e.g., machine
learning) manually in prior publications. In publication P6, we introduce an automatic
approach to derive DSL instances. We use provided interfaces by big data frameworks to
derive the software execution architecture, data models, and hardware resources. We also
implemented a lightweight agent to sample stack traces and CPU times of applications
as existing monitoring solutions caused a considerable amount of overhead in our experi-
ments. We use these monitored measurements to interrelate them with components of the
software execution architecture and derive parametric resource demands. We automated
all our procedures including simulating and analyzing simulation results and provided
tool support in order to enable engineers to use our approach without expert knowledge
in software performance. We evaluated our approach similar to publication P35, but used
a random forest classification and linear regression as exemplary batch applications. In
addition, we also visualized the CPU utilization over time and provided the response times
not only on application-level, but also for task operations. Our evaluation shows that we
are able to accurately predict the performance throughout our conducted scenarios.

Table 10.1 summarizes the key results of the embedded publications.
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No. Title Key Results
P1 Towards a Model-driven Performance ¢ Demonstration of the necessity to consider
Prediction Approach for Internet of performance and scalability when starting the
Things Architectures development of big data and IoT systems
P2 Stream Processing On Demand for ¢ Modeling and simulation of a Apache
Lambda Architectures MapReduce application on a single-node
cluster
o Identification that existing performance
modeling approaches on architecture-level are
not sufficient for evaluating data-intensive
architectures and distributed and parallel
processing
P3 Modeling Big Data Systems by o FExtensions for PCM’s meta-model to allow for
Extending the Palladio Component modeling
Model
— distributed and parallel operations
— clustered resources
P4 Modeling and Simulating Apache ¢ Modeling an Apache Spark application and
Spark Streaming Applications simulating the response time for upscaling
hardware resources
P5 Model-Based Performance Evaluation o Extensions for PCM’s simulation framework
of Batch and Stream Applications for SimuCom
Big Data
¢ Evaluation of batch and stream processing
applications
¢ Prediction of response time and CPU
utilization
P6 PerTract: Model Extraction and e A formalism and a DSL to model big data

Specification of Big Data Systems for
Performance Prediction by the
Example of Apache Spark and Hadoop

applications

A lightweight Java agent to sample stack
traces and CPU times from applications

Automatic extractions of DSL instances from
big data frameworks on application-, data-,
and hardware-level

Comprehensive evaluation against machine
learning applications for response time

Table 10.1: Key results of embedded publications
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10.2 Limitations

The presented approaches and evaluations come with several assumptions and limitations,
which we describe in this section.

In our approaches, we assume that operations always produce the same amount of output
data in dependence on their input data. As a result, we model the input data of a
subsequent operation as a percentage of the input data of a prior operation. Depending
on the underlying data set, this assumption may not be always true. For instance, the
output of a distinct word count application may vary depending on the number of distinct
words. As a result, our prediction error will decrease or increase in case the data properties
change. For test environments, it is desirable to have test data that comprise the same
characteristics as production data.

As Apache Spark applications are also usually mainly CPU bound (Ousterhout etal.,
2015), we did not explicitly consider demands for disk drives as well as network, but
implicitly modeled them within delay demands. Although we tried to extract demands
for disk drives, we were not able to retrieve fine-granular measurements without adding
sophisticated instrumentation to Apache HDFS. We also did not model demands for
allocating and deallocating main memory as simulation engines are not able to simulate
such features while taking into account important features such as garbage collection
(Brunnert/Kremar, 2017). Furthermore, we did not regard data locality in our modeling
approach. Throughout our evaluations, operations always read data from local disks. In
production environments, data may not be always locally available, but may be read via
network. Finally, we could not take rack awareness into account due to the size and
virtualization of our test environment. Rack awareness is a feature supported by Apache
YARN to enhance the performance in very large clusters.

Throughout our experiments, we used an exclusive cluster in which no other applications
were running and competing for resources. For the experiments that involved Apache
Spark, we always allocated one Spark executor on each node. It is also possible to configure
Spark and YARN so multiple Spark executors can be allocated on one node. In order
to calculate the response time of a Spark batch application, we did not use the response
time provided by the Spark API as it involves the time to request and allocate worker
nodes. We considered only the pure processing time as response time.

Big data frameworks involve hundreds of different configuration parameters each. For
Apache Spark, Apache MapReduce, Apache YARN, and Apache HDFS, we always used
the default settings (if not explicitly described in our embedded publications). We did
not evaluate our approach for other configurations.

Finally, simulating Apache Spark Streaming applications with our approach is limited by
the scalability of PCM’s simulation engine SimuCom. As Spark Streaming implements a
mini-batch-model, our approach is not evaluated for stream frameworks with an operator-
model (e.g., Apache Flink) yet.
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10.3 Contribution to Research

This thesis contributes to research by introducing a formalism to describe performance
characteristics of big data systems on architecture-level including execution components,
resource demands, data models, and hardware resources. With the introduction of a
DSL, we allow for describing big data systems independent of their technology in a tool-
agnostic way. DSL instances can be used as an intermediate language and be transformed
and integrated with other performance modeling approaches and simulation frameworks.

We provide a white-box approach and demonstrate different procedures how execution
components and inter-component interactions from common big data frameworks can
be formalized and transferred into DSL instances. By providing an prototype that
uses measurement data to automatically extract performance models, this thesis com-
bines model-based approaches, which are usually conducted during development, and
measurement-based approaches, which are usually performed during operations, as pro-
posed by Woodside/Franks/Petriu (2007) to manage software performance efficiently
(Smith, 2002; Menascé, 2002; Brunnert et al., 2015).

Finally, we provide a simple procedure how stack traces and corresponding CPU times can
be sampled and monitored from long running big data applications in a distributed setup.
We demonstrate to correlate these distributed traces to single execution components and
put CPU times into parametric resource demands.

10.4 Contribution to Practice

Balsamo etal. (2004) describe that automation is a key factor for efficient and effective
practice of performance management. This can be achieved through available tooling
and support of performance prediction across the software lifecycle. Similarly, Osman/
Knottenbelt (2012) argue that performance models are often unexploited as there is not
sufficient tool support available and models are complex to create and maintain.

This dissertation contributes to the scope, applicability, and usability of model-based
performance evaluations by providing a prototype to create performance models and to
analyze big data systems. The automated extraction process eliminates the effort to
create models by hand. It supports performance engineers to plan capacities, answer
sizing questions as well as to analyze a system’s performance and scalability that usually
cannot be realized in test systems.

By automating all procedures, depicting only relevant parameters in a DSL, and abstract-
ing performance models from users, this thesis aims also to support software engineers
that do not have any knowledge about performance models. As software continuously
evolves, DSL instances can be extracted and tracked for each application release. In this
way required capacities can be continuously planned.
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10.5 Future Research

There are several opportunities to extend the approaches introduced in this dissertation.
In this section, we describe different aspects that are worth focussing on and should be
pursued in future.

Support for Additional Technologies

At the beginning of this thesis, we experimented with Apache MapReduce and then mainly
focussed on Apache Spark and Spark Streaming. While Spark Streaming utilizes a mini-
batch model, it would be interesting to use our approach with additional frameworks that
use an operated-based model such as Apache Storm and Apache Flink. In general, the
support of additional frameworks also on data level (e.g., Apache Kafka) and on resource
management level (e.g., Apache Mesos) is desirable. As a result, it would also allow for
comparing the performance of different frameworks for certain workloads and support
engineers at selecting an appropriate framework.

Another field we approached in this thesis is profiling and sampling the performance by
using Java agents. At the moment our extraction approach requires monitoring data from
our agent. As they are many different agents available, making our approach adaptable
to different vendors would benefit the applicability.

Modeling and Simulating Additional Configuration Parameters

Big data frameworks involve hundreds of different parameters on different level. It is also
desirable to identify the main performance influencing parameters. If appropriate, they
could be incorporated into our formalism and DSL and evaluated in different scenarios.
Modeling demands for disk drives, main memory, and network are additional possibilities
to increase the prediction accuracy of our approach.

Simulation Capabilities

As we reached the performance limit when simulating data streams, transformations to
other simulation frameworks are required. Similarly, we modeled data sources in a very
simple way. In order to mimic realistic workload, load intensity profiles should be con-
sidered to model load variations. In this context, our approach could also be extended to
allow for extracting DSL instances during runtime for stream applications. This would
enable, for instance, to predict when data will queue and additional resources will be
required to ensure real-time processing.

DSL Visualizations

The DSL instances represent execution components, inter-component relations and re-
source demands for different frameworks in a unified, technology-independent way. Visu-
alizing the DSL, for instance, in a web application, would enable engineers to have a com-
prehensive view of the execution architecture and illustrate performance-characteristics.
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ABSTRACT

Indisputable, security and interoperability play major concerns in Internet of Things (IoT) architectures and
applications. In this paper, however, we emphasize the role and importance of performance and scalability as
additional, crucial aspects in planning and building sustainable loT solutions. loT architectures are complicated
system-of-systems that include different developer roles, development processes, organizational units, and a
multilateral governance. Its performance is often neglected during development but becomes a major concern at
the end of development and results in supplemental efforts, costs, and refactoring. It should not be relied on linearly
scaling for such systems only by using up-to-date technologies that may promote such behavior. Furthermore,
different security or interoperability choices also have a considerable impact on performance and may result in
unforeseen trade-offs. Therefore, we propose and pursue the vision of a model-driven approach to predict and
evaluate the performance of loT architectures early in the system lifecylce in order to guarantee efficient and
scalable systems reaching from sensors to business applications.
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enables these devices to be connected to the Internet.
Additionally, big data technologies emerged and enabled
organizations to store huge amounts of data and

1 INTRODUCTION

Since several years Internet of Things (IoT) constitutes

one of the main future topics for industries [3].
Information and communication technologies for small
devices continuously become not only more affordable,
but also more powerful regarding processing. This

This paper is accepted at the International Workshop on Very
Large Internet of Things (VLIoT 2017) in conjunction with the
VLDB 2017 Conference in Munich, Germany. The proceedings of
VLIoT@VLDB 2017 are published in the Open Journal of Internet
of Things (OJIOT) as special issue.

to analyze incoming data streams with sophisticated
algorithms in real-time [11]. This has facilitated the
evolution of IoT and enables organizations to build
solutions for a highly diverse range of use case scenarios
in different domains. Therefore, IoT may be considered
as an umbrella term for different disciplines that already
have longer histories (e.g., industry automation) and,
additionally, promotes the integration of these different
disciplines, for instance, the automatic combination of
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Figure 1: Model-based prediction approach

sensor data with enterprise resource planning data.

Although being promoted very much, only a few IoT
use cases are implemented in industry yet. On the
contrary, there are already hundreds of IoT platforms
and technologies that are waiting to be exploited. In
addition, there are several initiatives to define standards
[3]; however, their establishment progresses slowly
and an oversupply of vendor-specific implementations
hamper the development of integrated solutions. For
instance, an IoT developer survey with 528 participants
conducted by the Eclipse IoT Working Group, IEEE IoT,
and AGILE-IoT suggests that security, interoperability,
and connectivity represent the three major concerns
among all participants for developing IoT solutions [14].
However, for developers and organizations that have
already deployed IoT solutions, performance becomes
the third concern over connectivity. This reflects
our comprehension that performance is not considered
sufficiently when building architectures and finalized
developments become very costly to counteract on late
in the software life cycle.

‘We emphasize the role and importance of performance
in terms of response time, throughput, and resource
utilization. It is a vital aspect in planning and building
sustainable IoT solutions as they involve multi-domain
environments including constrained devices, gateways,
and platforms of which the latter combines big data
technologies and business applications. All these levels
can have a direct impact on the performance of an overall
system. Furthermore, evaluating the impact of design
choices (e.g., regarding security, interoperability, and
platforms) at development time is difficult, especially,
for large-scale operations. These are only some of the
factors that complicate IoT performance management.

In order to address and solve these issues, we propose
the vision of a model-based approach for representing
components and performance-influencing factors of
IoT architectures and allow for performance-by-design.
These models shall serve as input for analytical solvers
or simulation engines and allow for predicting different

performance metrics (Figure 1) [6]. In this way,
architectures can proactively be evaluated regarding
bottlenecks and scalability. Required resource demands
can be planned and the throughput and response
time behavior of subsystems can be estimated. The
derived performance metrics and predictions shall also
contribute to support communication and collaboration
between developers (e.g., embedded developers and
developers for business applications) and operations.

2 MODEL-DRIVEN PERFORMANCE

PREDICTION

Our vision and its realization is driven by the following
three research questions, which we use to explain our
proposal and intentions:

1. What resource requirements and performance
difficulties occur and are relevant on different levels
of ToT architectures?

2. Which existing approaches and technologies can
be used for implementing the integrated modeling
concept?

3. How can existing meta-models and simulation
approaches of different levels be integrated and
combined?

In order to address the first research question the
different levels and developer roles of architectures
must be considered. Figure 2 shows a very basic IoT
architecture that is reduced to the essential three layers.
First, constrained devices and controllers represent the
things in IoT. Second, gateways, routers, and smart
devices enable fog computing at the edge and may
integrate as well as pre-analyze data from devices [13].
Third, platforms process, store, and aggregate data from
different sources and enable business applications to
analyze and report data to end users. The connectivity
and communication among the levels is not limited to
one direction. In addition, non-functional requirements
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such as performance, security, and interoperability
are topics that influence all levels. For performance
engineers, for instance, the following questions occur:

1. How shall computing resources (e.g., CPU, disk,
memory, network) be sized on each level?

2. Shall gateways pre-analyze data and of how many
devices per gateway?

3. What is the impact of protocol, security,
and interoperability choices on the overall
performance?

4. Does the architecture scale linearly with increasing
number of devices and gateways?

Since the IoT stack is highly diverse, different
developers and engineers are involved in the
implementation. Embedded and systems developers
are responsible on the device level and also partly on
the gateway level. As gateways continuously expand,
become smarter, and are able to run sophisticated
operating systems, application developers also constitute
a part on the gateway level. On the platform level,
a mix of data scientists, application developers,
and web developers implement the integration and
visualization of data. Due to this mix of interests and
engineering disciplines, we see the need to investigate
the performance requirements on each level and for
each role in order to understand influencing factors in
a holistic view that need to be included in our model
approach.

Similarly, previous and present related modeling
approaches consider these disciplines in separated
ways. As mentioned, IoT provides and increases the
opportunity of combining existing approaches. Use
case scenarios arise, for instance, that require capacity
planning for devices and gateways based on formal
models which are already well understood in the domain
of business information systems. Since there is a
tremendous number of modeling approaches, the second
research question addresses reviewing existing methods
and technologies for different levels with regards to our
vision. In the following we list one example technology
for each level.

For the device level, for instance, AutoFOCUS3!
represents an integrated model-based tool for the
development process of embedded systems [1]. It
includes the activities for modeling requirements,
software architectures, hardware platforms, and
deployments as well as for generating code. The
software architecture is built up by different software
components that may be connected to each other to
allow for interactions and may also be decomposed into
multiple hierarchical subcomponents. The hardware
architecture includes resources such as processors and
memory that can be linked. It also involves platform
architectures for execution and runtime environments
such as operating systems or Java virtual machines. The
integration and combination of these models enables
developers to apply different analysis and synthesis
methods such as testing, model checking, deployment,
and automated scheduling [1].

The Eclipse Framework for Distributed Industrial
Automation and Control (4diac)*® is part of the
Eclipse IoT ecosystem and represents an instance for
modeling the gateway level. It provides an open
source infrastructure for distributed industrial process
measurement and control systems based on the IEC
61499 standard [17]. In order to model software
architectures, 4diac includes an application editor
that allows for representing function block networks
consisting of one or multiple function blocks and their
interaction via events. Similarly, a separate editor is
included to model the specification of hardware by
modeling devices and resources. By the means of
several more editors and an own runtime environment,
4diac supports the development of industrial IoT
applications and facilitates portability, interoperability,
configurability, and scalability as promoted by IEC
61499 [17].

For the platform level, the performance management
work tools (PMWT)* provide several integrated
approaches to automate, support and integrate
performance engineering activities across the software
lifecycle [6]. This includes the automatic generation of
models for enterprise applications based on performance
measurements [5], modeling complex user behavior of
applications [15], and simulating the performance of big
data applications [9].

In order to address the third research question, we
will examine similarities of model-based approaches for
the different levels and domains of IoT architectures.
For instance, models on architecture-level may often
separate their meta-model as illustrated in Figure 1.

! http:/af3.fortiss.org

2 https://eclipse.org/4diac/

3 http://fortiss.org/research/projects/4diac/
4 https:/pmw.fortiss.org/tools/pmwt/
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One or several models are used to describe the software
and system architecture, its components and its activity
flow. Another model is used to describe the hardware
and resource environment such as computing nodes
with processors, disks, and memory connected via a
network. An additional usage model is used to describe
the use case scenarios of the software architecture and
the workload.

Although implicitly considering performance aspects,
present solutions focusing on the device and gateway
level usually concentrate on guaranteeing functionality
and safety [1]. In contrast, there are a lot of
performance models to predict and analyze behavior on
the platform level. Existing models on architecture-
level that provide the benefits we seek with our vision,
however, only focus on classical business applications
and involve different requirements. For instance, the
workload of business applications is mostly user-driven
such as the number of parallel user accesses, whereas
IoT applications are mostly data-driven such as the
volume, velocity, and variety of incoming data. In
addition, massive distributed and parallel computing
and resource clusters are properties that are usually not
found in business applications. Therefore, we aim at
combining existing model approaches and additionally
implementing missing functionalities so we are able to
model the performance requirements we identified in the
first research questions.

In order to be able to predict the performance
behavior of the architectures, we will also implement
simulators and solvers for deriving different metrics such
as response time, throughput, and resource utilization.
To evaluate our approach (Figure 1), we plan to model
applications from IoT benchmark suites and adapt these
models for various scenarios such as increasing number
of things and increasing resource capacities. After
simulating the models, we will compare simulation
results with measurement results of applications from the
benchmark that we adapted in the same way.

3 RELATED WORK

As already mentioned, IoT involves and combines a
variety of application domains and development stacks.
Consequently, there are a lot of related, but also highly
diverse approaches of which we try to refer to examples
to the best of our knowledge in this Section. There
are also several solutions available to model constrained
devices, simulate networks within IoT architectures on
a very detailed level, and evaluate them for throughput

and latency issues. For instance, Wang et al. [16] apply
the network simulator OPNET for IoT cloud solutions;

Brambilla et al. [4] propose a simulation methodology to
test large-scale IoT systems with interconnected devices

in urban environments and include several network
protocols and different mobility, network, and energy
consumption models.

Furthermore, many related approaches specifically
analyze and compare the performance of different
protocols or technologies on different layers. For
scenarios in which devices and gateways do not have
a wired connection, for instance, Costantino et al. [7]
investigate LTE as a suitable interconnection in terms
of its efficiency, bandwidth, and coverage. In contrast,
Daud and Suhaili [8] provide a performance evaluation
of protocols for the application layer in IoT architectures.
Therefore, they compare the hypertext transfer protocol
(HTTP) and the constrained application protocol (CoAP)
for message formatting, communication, and request
handling on different test beds.

There are several developments of performance
benchmarks for IoT, however, mostly on the platform
level. Arlitt et al. present an analytics benchmark
called IoTAbench [2]. It allows for generating, loading,
repairing and analyzing synthetic data and was evaluated
by the example of a smart metering use case and using
a HP Vertica database. Shukla et al. [12] propose
another benchmark for distributed stream processing
platforms (i.e., Apache Storm) called RIoTBench. They
provide different data workloads and generators as well
as a set of 27 common IoT tasks for different domains.
Furthermore, Medvedev et al. [10] provide an evaluation
of different IoT platforms with regards to performance
characteristics.

4 CONCLUSION AND FUTURE WORK

This paper proposes and pursues the vision of an
model-based approach for predicting and evaluating the
performance of IoT architectures and systems. It shall
support developers and engineers at examining design
choices early in the system lifecycle, finding potential
bottlenecks, planning and sizing required resources on
different levels, and predicting response times from
sensors to visual results. We will start our future research
and work with combining and integrating modeling
approaches for embedded systems with approaches for
big data systems as well as for business information
systems. Therefore, we are currently developing a first
prototype for an integrated modeling environment.
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Abstract. Growing amounts of data and the demand to process them
within time constraints have led to the development of big data systems.
A generic principle to design such systems that allows for low latency
results is called the lambda architecture. It defines that data is analyzed
twice by combining batch and stream processing techniques in order to
provide a real time view. This redundant processing of data makes this
architecture very expensive. In cases where process results are not con-
tinuously required to be low latency or time constraints lie within several
minutes, a clear decision whether both processing layers are inevitable
is not possible yet. Therefore, we propose stream processing on demand
within the lambda architecture in order to efficiently use resources and
reduce hardware investments. We use performance models as an analyti-
cal decision-making solution to predict response times of batch processes
and to decide when to additionally deploy stream processes. By the ex-
ample of a smart energy use case we implement and evaluate the accuracy
of our proposed solution.

Keywords: Lambda Architecture, Big Data, Performance, Model, Eval-
uation

1 Introduction

With the increasing ubiquity of information and communication technology
(ICT) and the emergence of the Internet of things (IoT) the available data
amount is growing exponentially. Simultaneously, technologies have been devel-
oped to store, manage and analyze these diverse and high volumes of data, also
known as big data [30]. These circumstances allow for applying analytics in or-
der to gain knowledge and support decision-making. For more and more usage
scenarios, these analytical capabilities must also meet specific time requirements
such as real-time [17]. One common approach to design big data systems that
can cover many use cases is the lambda architecture [26]. It mainly consists of a
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batch layer and a speed layer. The former iteratively processes a set of historical
data in batches while the latter processes the arriving data stream in parallel
to incrementally analyze latest data. By joining the output of both layers query
results always reflect current data.

Nowadays, various complementary technologies with different characteristics
exist to build a big data system and there is hardly one technology solution
that fits most use cases of an organization. Although the lambda architecture
simply is a generic design framework which offers a solution for many use cases,
nonetheless, a variety of technologies can be applied for the batch or speed layer.
Examples for the batch layer are Hadoop MapReduce [5], Apache Pig [7], and
Apache Spark [9] and for the speed layer Apache Storm [10], Apache Spark
Streaming [9], Apache Samza [8], or Amazon Kinesis [2]. This multitude leads
to the development of complex system of systems, which often results in per-
formance issues and high resource requirements [14]. Furthermore, the lambda
architecture intends to process all data twice in both layers. Batch processes
also analyze data from the ground up in each iteration to ensure fault toler-
ance in case of hardware failures or human mistakes [26]. These fundamental
ideas require costly resources. For use cases where time constraints are not con-
tinuously needed or lie between several minutes, it can be often an important
question whether a speed layer is really required or not. However, this question
can usually not be answered during system development nor in test systems un-
der realistic workload. As stream processing heavily utilizes main memory, the
speed layer can also become an expensive investment [24].

Therefore, we propose a speed layer or stream processing, respectively, on
demand. The idea is to exclusively use batch processes as often as possible and
switch on stream processing only when batch processes are likely to exceed re-
sponse time constraints. In this way, computing power is utilized more efficiently
and resources can be saved as well as be available for other processes. In case
of virtualized environments, investments can be directly decreased by reducing
cloud service resources. In order to switch on stream processing at the right time,
it is inevitable to predict the response time of succeeding batch iterations. For
this purpose, we use performance models. They allow to describe performance
influencing factors of software systems and to predict performance metrics such
as response time, throughput and utilization by means of analytical solvers or
simulation engines [13]. Therefore, we integrate estimated resource demands into
the model based on measurements from batch processes to simulate an accurate
system behavior. This enables us to efficiently schedule stream processes.

In this paper, we first give a detailed description of our proposed approach
in Section 2 and how we use performance models to support decision-making. In
Section 3, we validate our approach in an experiment. We describe the selected
use case, the setup and sample algorithm for the batch layer, and the prototype
performance model to predict batch processes. Afterwards, we discuss the ex-
perimental results we derived for different workload scenarios. In Section 4, we
reflect related work in the area of the lambda architecture and, finally, conclude
our paper with providing an outlook for future work in Section 5.
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2 Stream Processing On Demand

In order to make decisions about when to switch on stream processing, we use
performance models as an analytical solution. As illustrated in Figure 1, the
iterative process is divided into two main steps in which the following Sections 2.1
and 2.2 are structured. First, one batch iteration and, potentially, a concurrent
stream process are started within the lambda architecture. Second, after the
batch process has ended, a decision-making model is used to decide whether
stream processing is required in the next batch process iteration or not. Basis
of decision-making is a performance model which is used to predict the response
time of a batch process. Afterwards, the procedure is repeated.

@ Lambda architecture

Batch process =I@ Decision-making model
< : I :
SN Stream process
on demand

Fig. 1: Stream Processing On Demand Process

2.1 Data Processing in the Lambda Architecture

As already mentioned, our focus is on data processing, namely batch and stream
processing, within lambda architecture and not storing data sets or results. Fig-
ure 2 illustrates the data flow and structure of batch and speed layer that differ
from each other. Starting point is a shared data source which either streams
the same data into each processing layer or gets accessed by each layer to re-
trieve data. Within the batch layer, all data are stored in a data set. A special
characteristic of the data set is that it is append-only and data are not updated
or removed [26]. Batch processes use the data set to operate on. In doing so,
each batch process usually analyzes a huge set of historical data which leads to
response times of minutes or hours for one batch job. The results are written to
separate views, which is also considered as serving layer by Marz and Warren
[26] for batch results. Batch processes constantly run iteratively and start from
the beginning once a batch job has finished. If a batch process starts, only data
that have been created before are included. Consequently, data that arrive dur-
ing the current batch process are only included in the next new batch process.
Since all data are analyzed in each cycle, each new result view can replace its
predecessor. As the batch layer does not rely on incremental processing, it has
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the advantage of being a robust system where everything can be recomputed
and reconstructed in case of hardware or software failures or human mistakes

[26].

Batch layer

Data
set

Iterative batch processing

Incoming data

Double processing Merge
Query

Speed layer

\‘{ Incremental stream processing )
View

Fig. 2: Composition and data flow of batch and speed layer of the lambda archi-
tecture (adapted from Marz and Warren [26])

In contrast to the batch layer, the speed layer does not keep a record of his-
torical data and solely uses main memory. As of today, stream processes run per-
manently and analyze each incoming message. They incrementally calculate and
immediately update their result views. Thus, both layers include separated views
and, in practice, usually different technologies are used as underlying databases
because of their distinct requirements regarding read and write operations. In
order to receive a holistic result, the view of both layers have to be merged in a
query.

Although both layers process the same data, the results of queries that merge
views only reflect data that are processed once at the time of the query. The
purpose of the speed layer is to analyze the data prior to the batch layer and
enable low latency by incremental updated result views. As a result, a past
view of the speed layer can be discarded as soon as a subsequent batch job has
finished.

A typical implementation of the lambda architecture as illustrated in Figure
2 would be to use Apache Kafka [6] - a publish-subscribe messaging system -
as shared source for incoming data. For the batch layer, HDFS can be used
as data set and Hadoop MapReduce for batch processing. For storing batch
results, which Marz and Warren [26] also describe as serving layer, ElephantDB*
represents a specialized database for this purpose. For the speed layer Apache
Storm [10] is an example of an appropriate technology and Apache Cassandra
[4] of a database.

* https://github.com /nathanmarz/elephantdb
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2.2 Decision-making Model

To decide when to switch on stream processing, we predict the response time of
succeeding batch processes and build a decision-making model. To comprehend
why it is necessary to predict the succeeding batch processes, the chronological
sequence of batch and stream processes as intended by the lambda architecture
is illustrated in Figure 3. As already mentioned, results of batch processes are
not available until they finish, while results of stream processes are incremental
and can be queried at any time. Supposing one batch process i has ended and
a decision must be made at time y on whether additional stream processes are
needed afterwards or not, the earliest point in time where results of stream pro-
cesses can be reasonably used is at time z. Stream process j considers only data
newer than time y. Therefore, a batch process is required that has analyzed data
before time y. However, the corresponding batch process j will only start after
time y and end at a given time z. Thus, a decision must already be made at time
y, if batch process k violates time-constraints so stream processes are switched
on at time y. Consequently, query results after time z will have consistently
incorporated all data.

Decision point whether batch process k will exceed
time-constraint and stream processes j and k are demanded

v
Batch process i Batch process j Batch process k
time <X time <y time <z
Stream process j Stream process k
time > y time > z
' >
t —>
x y 7 time

Fig. 3: Chronological sequence of batch and stream processes

The above mentioned response time prediction is part of our decision-making
model. Tts procedure is depicted in Figure 4. Starting point is a finished batch
process iteration. The response time of the second next batch iteration is pre-
dicted by using a performance model, which takes two inputs - the time con-
straint for the duration of a batch process and the load intensity. The latter
means information about the incoming data of the batch layer. For instance,
this can be in the form of a variable distribution as modeled by the LIMBO
tool [22]. The prediction can be accomplished by means of simulation or ana-
lytical solving. If the predicted response time does not lie within the specified
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time limitation, the model tries to start batch processing in parallel with stream
processing, otherwise the model considers batch processing only as sufficient.

Start
Batch process
(and stream process)
are completed

) . Will the batch Yes
Predict response time of ocess excend ime o Start new
second next batch process| process exceec’ > batch process
T constraints? No
ime
constraint
Yes
Start new
End

stream process

Fig. 4: Decision-making model

3 Experimental Validation

For the evaluation of our proposed approach, we conduct a controlled experi-
ment which is described in the following Subsections. First, we discuss the se-
lected use case. Second, we list the used setup and technologies of our exemplary
batch layer as well as the sample algorithm for data processing. Afterwards, the
performance model prototype to support decision-making is presented. Finally,
we evaluate the accuracy of the inferred decision-making on the basis of three
selected scenarios and discuss results from our observed measures.

3.1 Use Case and Design Options

To represent incoming data and their distribution, we pick the example of a
common smart energy use case as illustrated in Figure 5.

Here, several hundred wind turbines are positioned in several wind farms in
different geographic locations with long distances onshore or offshore. In order to
operate efficiently, they measure several thousand parameters per turbine such
as pressure, temperature or vibrations of rotor blades. As they are subject to
various influences, wind turbines are not always in operation and do not mea-
sure data, for instance, if they are defect or are maintained. While onshore wind
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Sensor data
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Fig. 5: Data processing of wind power facilities

turbines and wind farms, respectively, tend to have a time-based availability be-
tween 95-99%, the values for offshore wind farms with distance less than 12km
range from 67.4% to 90.4% [19]. However, wind turbines include also downtimes,
if wind is too strong or too weak which is described by the metric energy-based
availability. Faulstich et al. [20] compared time-based and energy-based availabil-
ity of wind turbines. In an extreme case where the downtime due to defects and
the downtime due to wind speed does not overlap, the energy-based availability
lies within 90.4-95,2%.

Dependent on a wind turbine’s availability, we assume it either produces a set
of measurement data with constant volume or does not produce any output data.
As a result, wind turbines generate not only immense amount of heterogeneous
data, but also variable load which makes it difficult to predict the production
rate of data. As soon as data are generated, they flow into a central data cen-
ter where they are processed. Dependent on the use case, data are handled in
different ways. They can be gathered and stored in a central repository where
batch processing can be used to extract, transform, and load (ETL) data and
to apply complex analytics. This procedure usually lies in the range of minutes
or hours and is not suitable for real-time requirements. For this purpose, stream
processing can be used to directly process data as they stream in. Here, ana-
lytical algorithms may be designed in a simpler and less complex way than at
batch processing as well as implemented in slightly different way as they produce
incremental results.
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In scenarios where low latency results are required and normally stream pro-
cessing is chosen, but also analysis of historical data by batch processing need to
be incorporated for conclusive results, the lambda architecture is an appropriate
solution that allows for serving such use cases. Therefore, on both processing
layers, stream and batch, the same kind of algorithm is implemented and results
are joined.

Sensor data can be used for a variety of analytical scenarios such as for
condition monitoring, diagnostics, predictive analytics or maintenance, and load
forecasting. For our experiment, we concentrate on the latter example. Since the
introduction of energy exchange such as the continuous intraday spot market of
the European power exchange (EPEX), power can be bargained in 15-minute
intervals up to 45 minutes before delivery which enables providers as well as
consumers to efficiently act on short notice. In this case, the time-constraint
is within 15 minutes. Typical forecast methods for short-term load forecasting
include different exponential smoothing methods such as an autoregressive inte-
grated moving average (ARIMA) model [33] or recurrent neural networks [29].
Furthermore, these algorithms are often applied on a sliding window of historical
data.

Therefore, we will use this smart energy scenario as an example for our
proposed approach and generate sensor data that are processed by one central
system in similarly way as we have modeled it in a previous work [23]. The
generator produces comma-separated values (CSV) files that represent measure-
ments from wind turbines of one wind farm. Listing 1 shows the file structure
and syntax.

Listing 1: Example of generated monitoring data from wind turbines

id, timestamp, power, paraml, ... paramN
12, 2015-04-01 08:23:04.125, 12.67, valuel, ... valuel
15, 2015-04-01 08:23:03.973, 13.49, value2, ... value2
13, 2015-04-01 08:23:04.096, 12.59, value3, ... value3

Each line represents a measurement of one wind turbine consisting of a id,
timestamp, a power value and several hundred more parameters which we gen-
erated randomly and do not include in our succeeding analytic algorithms.

3.2 Implementation of the Batch Layer

To examine the accuracy of response time prediction for batch processes, we
setup the batch layer using HDFS to store data sets and Hadoop MapReduce
for batch processing. For simplicity, we installed a single node cluster in pseudo-
distributed mode so Apache Hadoop runs only on one machine, but their dae-
mons have their own Java processes. In order to do load forecasting and apply
the data generator as mentioned in Section 3.1, we implemented a simple mov-
ing average algorithm in a Hadoop MapReduce job. It is based on an example
algorithm®.

® https://github.com/jpatanooga/Caduceus,/
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The MapReduce programming model intends to implement one map and one
reduce function. The former takes a key/value pair as input and produces a set
of key/value pairs, whereas the latter takes a key and set of associated values
and combines the values to another smaller set [18]. In our case the map function
is implemented as

Listing 2: Map function pseudo code
map (Object keyl, String valuel):
// keyl: file name
// valuel: measurements of wind turbines of one farm
for each line 1 in value:
kv = parse(1l)
emit ({kv.id, kv.timestamp}, {kv.timestamp, kv.power})

The function is called for each file within a given folder. It receives one
CSV file and its value, which are multiple rows of measurement data of wind
turbines. The algorithm reads every line and parses it in order to filter the id
of a wind turbine, the timestamp of the measurement and the power value that
describes the generated power to that time. Afterwards it releases a composite
key containing the id and timestamp, and the values timestamp and power. By
using a composite key Hadoop sorts the ids of wind turbines and, in a secondary
sort, the timestamp for each id. Subsequently, the reduce method results in a
simpler design as displayed in Listing 3.

Listing 3: Reduce function pseudo code

reduce (Object key, Iterator<object> values):

// key: an object containing id and timestamp
// values: power values ordered by timestamp
result = simpleMovingAverage (values)

emit (id, result)

The reduce function is called for each different wind turbine and calculates
the actual simple moving average. It receives the key object and a list of values
as input which contains timestamps and power values sorted by the former. The
function itself calculates the result and emits it with the corresponding wind
turbine id.

3.3 Performance Model Prototype

We use the Palladio component model (PCM) [12] for our performance model.
PCM is an annotated software architecture model that allows for describing per-
formance relevant factors of software architecture, execution environment and
usage profile [13]. Such performance models enable software architects and per-
formance engineers to predict performance metrics such as response time, uti-
lization or throughput by means of simulation or analytical solving.

PCM is divided into several sub-models. In the repository model, we specify
a batch process as a software component with its service effect specification
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(SEFF) to describe the resource demands of the provided service. In the resource
environment model, we describe the hardware resources and processing rates on
which a batch process will be executed. The concrete assignment of modeled
batch processes to resources is determined in the allocation model. Finally, we
specify the load intensity from wind turbine measurements in the usage model.

£] MapReduce
¥T SEFF <processjob>

PassiveResourceCompartment ¢ MapReduce

ResourceDemands

ComponentParameterCompartment
P P 5 dataSet.BYTESIZE * 261.0428141 <CPU>
FailureOccurrenceDescriptions

; Infi
< <Provides> > nfrastructureCallsCompartment

© BatchProcess ()

=| void process)ob(byte dataSet)
— (b) Service effect specification

(a) Repository model (SEFF) <processJob>

Fig. 6: Modeling a batch process with the Palladio component model

Figure 6 shows the substantials of modeling the batch process in our per-
formance model. As shown in Figure 6a, we specify one interface BatchProcess
with the method processJob to analyze an input data set. The implementation of
the interface and its method is modeled by the component MapReduce with the
corresponding SEFF. As illustrated in Figure 6b the SEFF itself solely consists
of a CPU resource demand in dependence on an incoming data set size. The
data set size is specified in the usage model, in our case, in gigabyte.

In order to define the CPU resource demand and simulate a realistic system
behavior we integrated measurements into our performance model. Therefore,
we measured response times of the MapReduce job described in Section 3.2 while
running it. Afterwards, we used an approximation with response times, which
is also implemented by the LibReDe library [32], to estimate the required CPU
time each process takes per transaction. One transaction means exactly one
batch process that analyzes a set of messages. In our case, the resulting resource
demand we estimated is 261 as represented in Figure 6b.

In order to predict results, PCM instances must be first transferred to be
either simulated or solved analytically. Available model transformations are
a model-to-text transformation like SimuCom [12], queuing Petri nets (QPN)
transformations as well as a transformation to layered queuing networks (LQN).
Brosig et al. [13] evaluated these model transformations with regards to their ef-
ficiency and accuracy. In our application scenario, time is critical and the model
need to be solved as efficiently as possible so resulting predictions are available
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at an early opportunity and the next batch process can be initiated. Therefore,
we recommend the use of a model transformation to LQNs. It showed to be the
most efficient solution as it is an analytical solver [13].

The performance model prototype has the limitation that is does not reflect
the scheduling of processes itself within a cluster, for instance, as accomplished
by Apache Hadoop YARN. Therefore, we assume sufficient available resources
so batch and stream processes always run without interference.

3.4 Controlled Experiment

To conduct our experiments we run the mentioned data generator to produce
CSYV files for 10 wind farms with 100 wind turbines each, whereas one wind tur-
bine approximately produces one measurement every second. Afterwards, we run
the implemented Hadoop MapReduce job which reads only data measured within
a sliding window of 24 hours. While the batch process is running, meanwhile we
determine the incoming data volume. After the batch process is finished, we pre-
dict the response time of the second next batch process using our performance
model. For the immediate succeeding batch process, we exactly know the data
volume it will process as we know the historical data distribution and tracked
new arrived data. For the batch process to be predicted, the data volume must
be estimated. Therefore, a variety of specialized tools and algorithms exist to
classify and forecast workload such as the approach by Herbst et al. [21]. As we
target an efficient solution and a short-term forecast is required, namely, only
the next point, we only use a naive forecast in this study. It does not involve any
computational overhead and simply takes the value of the latest observation as
next forecast point in contrast to other methods such as cubic smoothing splines
or ARIMA 101 that are more appropriate for scenarios with strong trends or
noises [21]. In our case, the next forecast point equals the arrived data volume
which has not been absorbed by the last batch process yet. Afterwards, we trigger
the performance models with the predicted load intensity as input, and compare
the predicted response time with the eventual measured response time.

As already mentioned, the aim is to minimize the usage of the speed layer.
The level of potential resource reductions and costs savings that can be achieved
depends on the characteristics of the underlying workload and variations in data
distributions. The effectiveness of our solution itself, however, depends on how
well the data volume is predicted and, especially, how accurate batch processes
are predicted. Therefore, we concentrate on the latter in this controlled ex-
periment and perform three selected scenarios with different load intensities by
assuming different availabilities of wind turbines based on Faulstich et al. [19,20]
to evaluate the accuracy of our solution.

In the first scenario, we assume the wind turbine availability (WTA) is con-
stant during two following batch iterations. Consequently, the measurement data
wind turbines produce do also not fluctuate so the predicted load intensity using
a naive forecast is very close to the actual measured load intensity. In the second
scenario, we assume an increase of the WTA of 5 % for the subsequent batch
process and, vice versa, we assume a decrease in a final third scenario. For each
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Table 1: Measured and predicted results of batch processes

Scenario‘ WTA Fluctuation PRT MRT RE
85 % +0% 12.78 minutes 12.17 minutes 5.01 %
1 90 % +0% 13.53 minutes 13.60 minutes 0.51 %
95 % +0% 14.28 minutes 15.47 minutes 7.69 %
85 % +5% 12.78 minutes  13.82 minutes 7.53 %
2 90 % +5% 13.53 minutes  15.03 minutes 9.98 %
90 % -5% 13.53 minutes 12.58 minutes 7.55 %
3 95 % -5% 14.28 minutes 13.17 minutes 8.43 %

scenario, we conduct several experiments with different WTA to also validate
the prediction accuracy under different load intensities. Afterwards we compare
predicted response times (PRT) with eventual measured response times (MRT)
of the batch process and calculate the relative error (RE) of the PRT. The results
are listed in Table 1.

For a WTA of 85% and no fluctuation during the following batch process,
we predict the response time for the batch process to be 12.78 minutes. We
measured a MRT of 12.17 minutes which leads to a RE of 5.01%. For a WTA
of 90%, the RE of the predicted response time is only 0.51 % and 7.69% for a
WTA of 95%.

In the second scenario, for a 85% WTA and a 5% increase of available wind
turbines during the following batch iteration, the PRT is 12.78 minutes and the
MRT 13.82 minutes with a 7.53% RE. Here, the PRT equals the same PRT as
in the experiment for first scenario with a 85% WTA since the naive forecast,
as already mentioned, uses the last observation point, namely 85%, as next
prediction point. The same occurrence also applies for the following experiments.
The highest RE with 9.98% appeared for a WTA of 90% with +5% fluctuation
at which the PRT is 13.53 minutes and the MRT 15.03 minutes.

For a decrease of the 5% WTA in the last scenario, we measured REs in the
range similar to the former scenario. With a starting point of 90% WTA, the
PRT is 13.53 minutes and the MRT 12.58 minutes. For 95% WTA, the PRT
equals 14.28 minutes and MRT 13.17 minutes.

In our experiments, we showed that we are able to predict the response times
of a batch process or MapReduce job, respectively, with RE between 0.51% and
9.98%. With regards to our exemplary use case, power can be traded every quar-
ter of an hour in the intraday spot market. Assuming a fluctuating workload and
a maximum acceptable response time of 14 minutes remaining one minute buffer,
we would be able to accurately schedule stream processing in the second scenario,
namely, not to switch on in the first experiment and to switch on stream pro-
cessing in the second experiment as the MRT exceeds the time-constraint with
15.03 minutes. For a decreasing fluctuation, we would proper schedule stream
processing for a starting WTA of 90%. However, for the last experiment in Table
1, we would have left the speed layer switched on as the PRT lies over 14 minutes
in contrast to the MRT which is mainly caused by the naive forecast.
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4 Related Work

Similar to our use case, Sequeira et al. [31] propose a system based on the lambda
architecture to analyze energy consumption. Martinez-Prieto et al. [25] adapted
the architecture for semantic data and Casado and Younas [15] give an extensive
review about technologies for the lambda architecture. Regarding optimization
or efficient resource usage of the architecture, however, related research mainly
focuses on the processing layers itself. For instance, Aniello et al. [3] and Rychl
et al. [28] specify on scheduling stream processes, while Alrokayan et al. [1]
concentrate on scheduling batch processes.

Regarding predicting batch processes, there is comprehensive research avail-
able, for instance, specialized for MapReduce jobs [11], [34], [35] as well as for
big data applications in cloud infrastructures [16].

To overcome redundancy regarding software development and infrastructure
complexity, approaches such as storm-yarn® or by Nabi et al. [27] exist to inte-
grate stream processing in the Apache Hadoop environment. Summingbird” is
an open source library that allows to write algorithms that can be used for batch
as well as stream processing.

5 Conclusion and Future Work

This paper introduced a novel approach to use resources more efficiently when
implementing the lambda architecture. It is applicable for usage scenarios where
time constraints of queries are not permanently required to be low or lie within
several minutes. To reduce processing power, we propose to switch on stream
processing on demand in cases where batch processes are likely to exceed time
requirements. By using historical information of incoming data and naive fore-
casting to classify workload, we predicted the response time of succeeding batch
iterations. Therefore, we used performance models in which we integrated esti-
mated resource demands based on measurements. The results allow us to make
decisions when additional stream processes are required or, vice versa, can be
saved to reduce resource usage. If hardware provision is used in a as-a-service
manner, it allows for reducing costs directly.

For future work we plan to automate the process illustrated in Figure 1.
This involves to automatically measure incoming data during each batch itera-
tion, apply workload forecasting techniques and trigger solving the performance
model. Another challenge is to also integrate the speed layer into our test en-
vironment. This will enable us to examine our approach and its efficiency for
successive batch iterations for a lengthy period of time. Furthermore, we will
integrate other workload forecasting techniques besides the naive forecast to
evaluate possible prediction enhancements and scheduling optimizations.

S https://github.com /yahoo/storm-yarn
7 https://github.com/twitter /summingbird
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ABSTRACT

The growing availability of big data has induced new storing
and processing techniques implemented in big data systems
such as Apache Hadoop or Apache Spark. With increased
implementations of these systems in organizations, simulta-
neously, the requirements regarding performance qualities
such as response time, throughput, and resource utilization
increase to create added value. Guaranteeing these perfor-
mance requirements as well as efficiently planning needed
capacities in advance is an enormous challenge. Performance
models such as the Palladio component model (PCM) allow
for addressing such problems. Therefore, we propose a meta-
model extension for PCM to be able to model typical char-
acteristics of big data systems. The extension consists of two
parts. First, the meta-model is extended to support parallel
computing by forking an operation multiple times on a com-
puter cluster as intended by the single instruction, multiple
data (SIMD) architecture. Second, modeling of computer
clusters is integrated into the meta-model so operations can
be properly scheduled on contained computing nodes.

Categories and Subject Descriptors

C.4 [Performance of Systems|: Modeling techniques

Keywords
Palladio Component Model, Performance Model, Big Data

1. INTRODUCTION

Exponentially growing volumes of data of various formats
referred to as big data—and the necessity of organizations
to gain benefits have led to the development of big data sys-
tems [6], [10]. These systems are specialized for storing and
processing this data. A common example includes Apache
Hadoop' consisting of a distributed file system called HDFS,
a scheduler and cluster resource manager called YARN and
the MapReduce model for parallel data processing [8].

Although Apache Hadoop is originally built for commod-
ity hardware, other systems such as Apache Spark (Stream-
ing)? and Apache Storm® have emerged that enable low la-
tency results on big data by also using in-memory comput-
ing [13]. Therefore, big data systems are able to meet con-
tinuously increasing performance requirements and to serve

"http://hadoop.apache.org/
2http://spark.apache.org/
3http://storm.apache.org/
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several additional use cases. Consequently, up-front per-
formance evaluations for these systems and capacity plan-
ning for building an appropriate cluster become not only
inevitable, but also difficult and costly [4, 5].

One way to approach these challenges are performance
models such as the Palladio component model (PCM) that
focuses on component-based software architectures [2]. It
allows to model factors influencing system performance and
predict performance metrics such as resource utilization, re-
sponse time, and throughput by analytical solving or simu-
lation [3]. As the PCM meta-model does not allow to model
some specific requirements of big data systems yet, we pro-
pose and contribute a meta-model extension in this paper.
This includes to specify an external call of an action to be ex-
ecuted multiple times in parallel while limiting the number
of concurrent actions. It also includes to model a resource
cluster consisting of several resource containers with differ-
ent resource roles such as found in distributed computing
architectures.

2. MODELING BIG DATA SYSTEMS

Comparing big data systems to ordinary component-based
software systems (e.g., for web applications), they make use
of specialized processing paradigms. Casado and Younas
[6] list two main techniques that are common for big data
systems, namely, batch and stream processing. They have
in common that they utilize parallel and distributed com-
puting on a distributed system in the form of a computer
cluster. For this purpose, software developers implement
components with operation signatures, for instance by us-
ing software libraries such as Apache Hadoop, and combine
these components to build a task job that will be deployed
on a computer cluster. In order to distribute this task job
across linked resources, the components can be assembled
in the form of a directed acyclic graph (DAG) [13]. For
instance, the MapReduce paradigm consists of two vertices
map and reduce that are linked by a directed edge. By this
means, such systems are able to make use of all distributed
computing resources and achieve horizontal scalability for
increased workloads in terms of data volume or velocity.

Despite their shared characteristics, batch and stream pro-
cessing adopt distinct approaches and are designed for dif-
ferent use cases. Batch processing is intended to be used on
data sets with high volume [6]. In doing so, a specified oper-
ation is applied on splits of a non changing distributed data
set multiple times in parallel. For instance, implemented
Hadoop MapReduce operations are applied on distributed



Appendix: Published/Accepted Version of Included Publications 154

(>l CallAction ‘

<<Enumeration>>

Resource
Environment

VariableUsage

Yy

- DELAY

- PROCESSOR_SHARING|
-FCFS

- ROUND_ROBIN

OperationRequired
Role

SetVariableAction

DistributedCall Action \vi

- totalForkCount : Integer

" Abstractinternal
SimalneolsForkCount: Integer | ’ AbstractAction  [<H o oiFiowAction [

(a) Service effect specification (SEFF) actions

ExternalCall Action InterCallAction
- retryCount : Integer 0.1

ResourceRole e
LinkingResource

- CLUSTER
- MASTER
- WORKER

0.1

ClusterResourceSpecification

[¢ jicationLink

(b) Resource environment

Figure 1: Meta-model extension for the Palladio component model (PCM, Version 3.4.1)

files on the HDFS. Implemented operations using Apache
Spark are applied on so called resilient distributed datasets
(RDD). The amount of parallelism for one specified oper-
ation is usually limited by the split rate of a dataset. The
amount of simultaneously running parallel operations is usu-
ally limited by the amount of available resources or by spec-
ified user configurations.

Stream processing, on the other hand, is designated for
handling high velocity data streams with low latency and is
also referred to as real-time processing [6]. It distinguishes
itself from batch processing by not operating on a data set,
but rather operating on each data (e.g., Apache Storm) or
a mini-batch (e.g., Apache Spark Streaming) that are kept
in-memory. Therefore, data are continuously received from
an unbounded data stream (e.g., in a message queue man-
ner) and immediately processed by an operation. Similar
to batch processing, the number of simultaneously running
operations is limited by the amount of available resources or
by specified configurations.

In previous work [9] we already modeled one MapReduce
job on a single computer and predicted its response time.
As we had to simplify several features and take limitations
into account, we identified the need to extend PCM. Based
on these findings and the above mentioned characteristics
of batch and stream processing, we derive the following re-
quirements of big data systems that we propose to extend
PCM in order to allow for modeling typical big data systems:

1. Distribution and parallelization of operations
Component developers specify reusable software com-
ponents consisting of operations using software frame-
works like Apache Spark. In doing so, they may spec-
ify, but also may not know the definite number of si-
multaneous and/or total executions of an operation.

2. Clustering of resource containers
System deployers specify resource containers with re-
source roles (e.g., master or worker nodes), link them
to a mutual network and logically group them to a
computer cluster.

On this basis, we propose the following extensions for the
PCM meta-model, which are shown in gray in Figure 1 (note
that we only depict the relevant parts of the meta-model re-
garding our approach). The PCM meta-model consists of

several partial models according to different developer roles
[2]. Figure la shows the actions of the service effect specifi-
cation (SEFF) model. A SEFF describes the behavior of an
implemented operation. The element we propose to extend
is the ExternalCallAction that is used to call a required ser-
vice [2]. Therefore, we introduce a DistributedCallAction. It
contains the two additional input parameters simultaenous-
ForkCount and totalForkCount that can be used to specify
the simultaneous and/or total number of executions of an
external call as mentioned in the first requirement. Since
these parameters depend on the workload and resource en-
vironment, component developers can describe the two input
parameters as well as the resource demand of an operation
as dependencies in parameterized form. In this way, domain
experts are able to specify the usage of the component af-
terwards as proposed by Becker et al. [2].

Figure 1b shows the meta-model extension for the resource
environment. Here, a ResourceContainer may or may not
have several ProcessingResourceSpecifications to specify e.g.,
processors and hard disks. A ResourceContainer can also
have a set of nested ResourceContainers. We propose to
complement the ResourceContainer by a ClusterResource-
Specification which contains references to one ResourceRole
as well as one SchedulingPolicy. These are both part of
a ResourceRepository, that is intended to contain types of
resources such as for middleware and operating system re-
sources [2]. A ResourceRole is used to describe whether a Re-
sourceContainer represents a cluster, a master or a worker.
A SchedulingPolicy is used to describe how actions are dis-
tributed on a cluster.

An example for a modeled computer cluster is shown in
Figure 2. An outer ResourceContainer is used to connect

<<ResourceContainer>> Cluster

[Resource Role: Cluster

<<ClusterResourceSpedification>>
|Adtion Scheduling Policy: Round Robin

[<<Resourcece > Nodel Il i0de2 I

e e Woster e e Wotter
L )L L

[ [orymmem——— J

AN

<<l
[Resource Role: Master

Figure 2: Example for a resource environment diagram
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Abstract

Stream processing systems are used to analyze big
data streams with low latency. The performance in
terms of response time and throughput is crucial to
ensure all arriving data are processed in time. This
depends on various factors such as the complexity of
used algorithms and configurations of such distributed
systems and applications. To ensure a desired sys-
tem behavior, performance evaluations should be con-
ducted to determine the throughput and required re-
sources in advance. In this paper, we present an ap-
proach to predict the response time of Apache Spark
Streaming applications by modeling and simulating
them. In a preliminary controlled experiment, our
simulation results suggest accurate prediction values
for an upscaling scenario.

1 Introduction

Big data systems enable organizations to store and
analyze data with high volume, velocity, and variety
[4]. Corresponding processing techniques can be cate-
gorized into batch and stream processing [5]. Stream
processing systems receive broad concentration nowa-
days as algorithms, transformations, and windowing
mechanisms for streaming data constantly become
more sophisticated and libraries for machine learn-
ing are available. They are mainly applied to pro-
cess data and provide results in real time [5]. There-
fore, the performance of such systems is particularly
significant, for instance, to ensure high throughput
for different workload scenarios and prevent queue-
ing up of input stream data. However, planning the
requirements of such applications and systems is com-
plicated since environments and conditions to evaluate
the performance for different scenarios, system config-
urations, and realistic workloads are usually not met
as in productive environments |3, 8].

‘We propose a modeling and simulation approach to
predict the response time of stream processing appli-
cations i.e., Apache Spark Streaming. Therefore, we
use the Palladio component model (PCM) [1] and an
extension for big data systems that we have presented
in previous work [7]. The extension is open source!

Thttps://git.fortiss.org/pmwt/bd.pcm.extension
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and includes a distributed call action to model par-
allel and distributed external calls in a service effect
specification (SEFF) and a cluster resource specifica-
tion to model a cluster of master and worker nodes
and distribute resource demands to worker nodes.

2 Related Work

Regarding modeling, simulation, or analytical solving
the performance of big data systems, most of prior re-
search focuses on Apache Hadoop and its MapReduce
paradigm and, therefore, on batch processing. There
is one approach by Wang and Khan [9], that focuses on
predicting the response time of Apache Spark appli-
cations, however, only batch applications. Regarding
stream processing, there is one patent by Ginis and
Strom [2] that describes a method on predicting the
performance of publish-subscribe middleware messag-
ing systems using queueing theory that, however, does
not take resource demands for CPU, memory, or hard
disk drives into account.

3 Modeling and Simulation Approach

There are several known stream processing systems
available such as Apache Samza, Apache Storm,
Apache Spark Streaming and Apache Flink [6]. We
focus on Apache Spark Streaming? in this paper as it
is one of the sophisticated technologies with a large
community and supported by known benchmarks. It
comprises a micro-batch model, in contrast to other
technologies that use an operator-based model [6].

A Spark Streaming application is constructed as
follows?: it receives incoming data from streaming
sources using a discretized stream called DStream.
This data is fetched in the form of a micro-batch
job that is iteratively executed in stream intervals. A
DStream is represented by several resilient distributed
datasets (RDDs). Afterwards, transformations such
as map or reduce operations can be applied on a
DStream. Spark builds a distributed acyclic graph
(DAG) based on these related operations and splits
them into stages of tasks. The number of parallel tasks

2http://spark.apache.org/streaming/
Shttps://spark.apache.org/docs/1.6.0/streaming-
programming-guide.html



Appendix: Published/Accepted Version of Included Publications

157

is limited by the number of partitions of an RDD. Fur-
thermore, transformations with narrow dependencies
are consolidated in one stage, for instance, map and
filter operations that do not require to shuffle data.
Stages are executed sequentially and finally make up
one job.

In order to model a Spark Streaming application,
we specify one job executor component with a SEFF
that involves a loop to start several asynchronous
forked behaviours as displayed in Figure 1.

& runjobs
& partitions VALUE

[ ] i startAsync
. ForkedBehaviours

@ Required Job.run

[ ] InputvariableUsage
. $x records
VariableCharacterisation
. $X VALUE = recordsVALUE / partitionsVALUE
$x executorCores.
VariableCharacterisation
$X VALUE = executorCoresVALUE

OutputvariableUsage

Figure 1: SEFF of job executor component

The loop length and, therefore, the number of exe-
cuted behaviors depends on the value of the parameter
partitions that is used to describe the number of topic
partitions. In the forked behavior, we call the SEFF
of the stage executor component with the parameters
records and executorCores. The former parameter de-
scribes the number of records for each partition, the
latter the number of cores that is configured when
starting a Spark application with the equivalent pa-
rameter spark.ezecutor.cores. The SEFF is illustrated
in Figure 2.

4 Required_Mapper.map
InputvariableUsage
$ records
VariableCharacterisation
X VALUE = records.VALUE

OutputvariableUsage

& Required Reducer.reduce
& Total Fork Count: executorCores VALUE
& Simultaneous Fork Count: executorCores VALUE
DistributedinputvariableUsage
8 records
VariableCharacterisation
$x VALUE = records.VALUE/executorCores.VALUE

DistributedOutputvariableUsage

Figure 2: SEFF of stage executor component

For each stage, we model an external call or dis-
tributed call [7], respectively, with the number of
records as input parameter. Our sample application
involves two stages map and reduce. The first SEFF
map is invoked once since there is one DStream for
each partition. The second SEFF is invoked with a
distributed call of which the parallelism depends on
the ezecutorCores value. The map and reduce SEFFs
involve three consecutive internal actions each with
one parametric resource demands to specify the sched-
uler delay, serialization time, and computing time.

In order to model the hardware environment, we
specify a resource container with a cluster resource
specification [7] for each node. For the master node,

we model one parent resource container that includes
a round robin action scheduling policy and a master
resource role. Dependent on the number of worker
nodes, we specify several nested resource containers
with a worker resource role. In the usage model, we in-
voke the job executor component with its three input
parameters, model a closed workload with one user,
and specify the think time according to the stream
interval.

4 Controlled Experiment

In our controlled experiment, we use the HiBench
benchmark suite* of which we use the distinct count
application. It involves two stages map and reduce.
Therefore, data are streamed to a so-called topic
in an Apache Kafka® cluster, a distributed publish-
subscribe messaging system. The application is con-
nected to that topic and applies a direct stream
to query data from Apache Kafka using DStreams.
Thereby, the level of parallel streams is defined by the
number of partitions of one topic which, consequently,
equals the number of map stages.

“HiBench

{Data Generation

a5
! [Machine 2| !

Figure 3: Testbed setup

Our experimental setup is shown in Figure 3. For
the workload, we setup 2 virtual machines (VMs) that
we use to generate data and a cluster consisting of 4
VMs for Apache Kafka brokers. For the application,
we setup 1 VM for the master node, and 8 VMs for the
worker nodes where the benchmark application will be
executed. We use Apache YARN (2.7) as cluster man-
ager and Apache Spark (1.6) as processing framework.
We specified one Spark executor per worker node with
6 cores and 24 gigabytes memory.

We conducted four scenarios with a stream interval
of 10 seconds as listed in Table 1.

Table 1: Conducted experiments

Scenario ‘Workload Kafka Topic Spark
(events/second) broker partitions worker

2 nodes ~ 450,000 1 2 2

4 nodes ~ 450,000 2 4 4

6 nodes ~ 450,000 3 6 6

8 nodes ~ 450,000 4 8 8

Based on the 2 nodes scenario, we measured the
delay and CPU resource demands for all tasks using
the Spark monitoring API, adjusted the demands in
dependence of the number of records, and included
them into our repository model as listed in Table 2.
We used this repository model for all upscaling scenar-
ios. We adapted the number of workers in the resource

4https://github.com/intel-hadoop/HiBench
Shttp://kafka.apache.org/
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environment model and the partition parameter in the
usage model for each scenario.

Table 2: Parametric resource demands

Map SEFF

scheduler delay 10
deserialization ~ 0.000078549 * records. VALUE
Norm(0.003320415 * records.VALUE,

computing 0.0001553647 * records.VALUE)

Reduce SEFF

scheduler delay 10
deserialization ~ 0.000013227 # records. VALUE
computing 0.000023370 * records. VALUE

A boxplot of the measured response time (MRT)
and the simulated response time (SRT) is illustrated
in Figure 4. For the 2 nodes scenario, the mean MRT
is 7.88 seconds and the mean SRT is 7.94 seconds,
which gives a relative reponse time prediction error
(RTPE) of 0.67%. In the 4 nodes scenario, the values
deviate more with a RTPE of 21.14%. Our analysis of
the measurements suggests that the processing time
for each task did not behave as linear as in the other
scenarios. In the 6 nodes and 8 nodes scenarios, the
RTPE result in 3.41% and 2.26%.

Our models, simulation and measurements results,
and analysis script are publicly available online [10].
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Figure 4: Measured and simulated response times

5 Conclusion and Future Work

In this paper, we proposed a modeling approach
for stream processing systems using the example of
Apache Spark Streaming. In a small controlled exper-
iments, we simulated an upscaling scenario in which
we increased the cluster size. Our predicted response
times approach the measured ones closely.

At the moment, our extension for the simulation
framework is for PCM 3.4.1 and we only consider de-
lay and CPU demands. Therefore, we plan to incor-
porate our extension in the up to date PCM version
and to additionally evaluate resources such as memory

and network. Furthermore, we plan to extend our ap-
proach for operator-based processing frameworks such
as Apache Flink and Apache Storm. Our long-term
goal is to automatically derive performance models
based on monitoring data, e.g., provided by APIs of
processing frameworks.
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Abstract—Batch and stream processing represent the two main
approaches implemented by big data systems such as Apache
Spark and Apache Flink. Although only stream applications are
intended to satisfy real-time requirements, both approaches are
required to meet certain response time constraints. In addi-
tion, cluster architectures continuously expand and computing
resources constitute high investments and expenses for organi-
zations. Therefore, planning required capacities and predicting
response times is crucial. In this work, we present a performance
modeling and simulation approach by using and extending the
Palladio component model. We predict performance metrics of
batch and stream applications and its underlying processing
systems by the example of Apache Spark on Apache Hadoop.
Whereas most related work concentrates on one specific process-
ing technique and focuses on the metric response time, we propose
a general approach and consider the utilization of resources as
well. In different experi ts we eval d our approach using
applications and data workloads of the HiBench benchmark suite.
The results indicate accurate predictions for upscaling cluster
sizes as well as workloads with errors less than 18%.

I. INTRODUCTION

The emergence of big data systems enabled organizations to
store and process data with high volume, variety and velocity
[1]. The Apache Hadoop family and the MapReduce paradigm
paved the way for big data applications to be implemented
in various areas across all industries [2], [3]. Whereas these
technologies were first designed to run on commodity hard-
ware, frameworks such as Apache Spark arose and increased
the performance of long-running applications. Their primary
focus is to process a historical set of data in batches. Since
there was also a need to analyze emerging data as they arrive,
stream processing systems such as Apache Storm and Spark
Streaming were developed in recent years.

The performance in terms of metrics such as response
time, throughput, and resource utilization is a crucial aspect
for both types of applications and depends on a variety of
factors [4]. It is vital, but also complicated to estimate the
behavior and evaluate the impact of different scenarios such
as changing data workload and resources [5]. When deploying
a big data application from a test to a production environment,
for instance, data scientists are confronted with the challenge
on how to size resource capacities in order to guarantee certain
response times. Performance models represent an established

Helmut Krcmar
Chair for Information Systems
Technische Universitit Miinchen
Boltzmannstr. 3
85748 Garching, Germany
Email: krcmar@in.tum.de

way in order to address these challenges [6]. They depict
software systems, analytical solve or simulate their behavior,
and predict different metrics [7]. Regarding big data appli-
cations, however, most related approaches focus on specific
technologies (i.e., MapReduce) and processing types (i.e.,
batch). Furthermore, most efforts only consider the response
time of applications in their approaches leaving out demands
for resources. We propose and contribute a modeling and
simulation approach for batch and stream processing systems
by the example of Apache Spark. It includes resource demands
and allows for predicting response times as well as resource
utilization. Therefore, we use and extend the Palladio com-
ponent model (PCM), a model designed for component-based
software systems that represents performance-influencing fac-
tors on architecture-level [8]. Our extension and approach
allows for simulating parallel operations as well as distributing
them on a cluster of hardware resources. It supports big data
architects to plan required capacities and examine the perfor-
mance behavior under different conditions such as changing
data workload.

In this paper, we first describe related literature in Section
II. In Section III, we give an overview of batch and stream
processing by the example of Apache Spark. Afterwards, we
describe our modeling and simulation approach in Section
IV. In Section V, we assess the prediction accuracy of our
approach and outline assumptions and limitations. Finally, we
conclude our work and describe future activities in Section VI.

II. RELATED WORK

Most of the former related work concentrates on the MapRe-
duce paradigm or complementary database technologies such
as Apache Hive or HBase. Many approaches also focus on
the metric response time and do not consider resource de-
mands and utilizations. Vianna et al. [9] present a hierarchical
model which combines a precedence graph mode as well
as a queuing network model to predict the response time
of MapReduce applications. They specifically focus on the
intra-job synchronization delays between map and reduce
tasks. Verma et al. [10] present a framework to predict the
response time of MapReduce applications before migrating
to a different cluster with different hardware. Therefore, they

For copyright reasons the accepted version is reprinted and not the final published version.

© 2017 IEEE. Reprinted, with permission, from J. KroR and H. Krcmar, Model-Based Performance Evaluation of Batch and Stream Applications for Big Data,
2017 IEEE 25th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), Banff, AB, 2017.
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use micro-benchmarks on the initial cluster and a regression-
based approach to model hardware differences between the
initial and new cluster. Zhang et al. [11] present a framework
including a platform performance model to depict different
phases of a MapReduce application and predict the execution
time in dependence on a new data set. For their approach they
apply the model of the ARIA framework by Verma et al. [10].

Barbierato et al. [12] developed a language for the descrip-
tion of performance models which includes MapReduce appli-
cations. The approach allows to predict the response time. As
main component the model uses the SQL-like query language
of Apache Hive. Ardagna et al. [13] proposed approaches
to estimate response times of Hive requires. Therefore, they
presented multiple performance analysis models with increas-
ing complexity and accuracy such as queueing networks and
stochastic well formed nets. Lehrig [14] proposes an early
design-time scalability/elasticity analysis of Software-as-a-
Service (Saas) applications using architectural templates for
Palladio. They plan to enrich it by big data technologies on the
data layer such as replicable NoSQL databases and a MapRe-
duce programming model. One general approach to model the
behavior of batch applications is proposed by Castiglione et
al. [15]. They use Markovian agents and mean field analysis
to predict the behavior of concurrent interactive cloud, batch,
and time constrained applications. However, they focus on
cloud infrastructures and evolution dynamics of applications
rather than on predicting performance metrics. Niemann [16]
present another approach to predict the performance and
energy consumption of Apache Cassandra, a distributed data
management system. They use queueing Petri nets for various
workload as well as cluster sizes.

As part of the DICE EU project, Casale et al. [17] propose
a model-driven engineering for quality assurance of data-
intensive software systems concentrating on Apache Hadoop,
NoSQL databases, and stream processing (i.e., Apache Storm).
Their approach aims at simulation, verification, and optimiza-
tion for big data applications. The models contain three dif-
ferent model layers including a platform-independent model,
a technology-specific model and a deployment-specific model
[18]. Gémez et al. [19] also propose a strategy to transform
the models into stochastic Petri nets. It shall enable engineers
to asses performance requirements and they are currently
validating their approach. For Apache Spark, Wang and Khan
[5] propose a simulation-driven prediction model that focuses
on estimating response times. They also include read and write
operations for hard disk drives (HDD) and the allocation of
memory. Venkataraman et al. [20] presented the framework
Ernest for predicting the performance for analytical jobs using
e.g., Apache Spark based on a optimal experiment design.
Therefore, they predict the response time of applications ins
dependence of the number of cluster nodes.

Regarding stream processing, there is one patent by Ginis
and Strom [21] that describes a method on predicting the per-
formance of publish-subscribe middleware messaging systems
using queueing theory that, however, does not take resource
demands for CPU, memory, or hard disk drives into account.

II1. BIG DATA APPLICATIONS AND SYSTEMS

There is a huge variety of big data solutions available that
use different computing techniques [22]. In the following, we
give an overview over batch and stream processing systems
by the example of Apache Spark.

A. Batch Processing

Batch applications are designed to process a huge amount
of historical data in a distributed and parallel way [22]. The
Apache Spark framework is example for such applications
and introduces so called resilient distributed datasets (RDDs)
to keep and reuse data in memory. RDDs are parallel data
structures to store intermediate results in memory and offer
coarse-grained operations that can be applied on them [23].
An application is executed by forming a distributed acyclic
graph (DAG) based on associated operations and grouping
them into stages of tasks. A stage chains up operations with
narrow dependencies in case a shuffle is not required [23]. The
number of tasks of one stage depends on the number of RDD
partitions. Stages are executed successively and constitute
one job. One or more sequential jobs compose one Spark
application. The application is orchestrated by one context,
which runs in the main process called the driver program.
It is responsible for allocating executors to worker nodes as
well as scheduling tasks of an application on executors. An
executor is a process that runs tasks in parallel. An application
has always its own executors assigned in order to be isolated
from other applications [24].

B. Stream Processing

For applications that require to continuously analyze huge
volumes of live data with low latency, stream processing
systems are specialized for this purpose [22]. There are mainly
two approaches - one mini-batch model and one continuous
operator-based model [25], [26]. The former divides data
streams into mini-batches and allows for batch processing,
whereas the latter fetches and processes each record (e.g.,
Apache Flink) [25]. Apache Spark provides an extension
module called Spark Streaming to apply the mini-batch model
on data streams and reuse its core functionality. Therefore,
Spark introduces discretized streams (DStreams). They allow
for representing stream computations as a series of batch
computations on mini-batch intervals and are represented as
an ordered series of RDDs - one RDD for each interval
[26]. Starting point of the data processing workflow is an
input data stream that may be partitioned to increase parallel
computing. Spark Streaming receives incoming data from such
a stream source using a DStream and creates one RDD for each
interval with the same amount of partitions as the input stream.
Afterwards, transformations such as map or reduce operations
can be applied on a DStream and RDD, respectively. As
before, Spark builds a DAG based on related operations and
splits these into stages of tasks. In contrast to batch processing,
one job is created for each mini-batch. Jobs are continuously
executed sequentially and always contain the same set of
stages and tasks.
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IV. MODELING AND SIMULATION APPROACH

This section first describes the extension for PCM. After-
wards, the derivation of the models and resource demands is
outlined for batch applications followed by stream applica-
tions. Subsequently, the specification of cluster resources is
described as well as the representation of data workloads.

A. Extending the Palladio Component Model

PCM enables engineers to describe performance relevant
factors of software architectures [7]. It is implemented using
the Eclipse Modeling Framework and consists of several mod-
els [8]. Software interfaces and components are specified in
the repository model. Components provide the implementation
for signatures of interfaces. Therefore, they contain a service
effect specification (SEFF) in which the activities such as
parametric resource demands and external calls of signatures
are modeled. In the resource environment model, network
and hardware resources are specified. The allocation model
allows for deploying components on resources. The usage and
workload is specified in the usage model.

In previous work, we already modeled and simulated big
data applications [27], [28]. Since PCM was not developed to
support distributed and parallel computing as well as cluster
architectures, we propose two meta-model extensions [29]. A
DistributedCallAction is added to the SEFF meta-model. It
extends the ExternalCallAction that is used to invoke a remote
signature of a required service. The DistributedCallAction
includes two variables totalForkCount and simultaneousFork-
Count. These specify the total number of executions of a re-
mote signature call and the level of parallelism. Both variables
can be specified using parametric dependencies . Furthermore,
a ClusterResourceSpecification is introduced to complement
a ResourceContainer. A ResourceContainer may represent a
physical or virtual machine that hosts resources (e.g., CPU).
The ClusterResourceSpecification contains two variables to
reference a ResourceRole and a SchedulingPolicy. A Re-
sourceRole is used to describe whether a ResourceContainer
represents a cluster, a master or a worker. A SchedulingPolicy
is used to describe how actions are distributed on a cluster.

For simulating models, PCM applies model to text (M2T)
transformations to generate code that is used by the simulation
framework SimuCom [8]. We reuse existing Palladio concepts
to implement the M2T transformation of the Distributed-
CallAction as the following algorithm demonstrates.

1. forks {array of length simultaneousForkCount}

2: actionsPerForkCount < total ForkCount/simultan
eousForkCount
. for i «+ 0, simultaneousForkCount do
actions {array of length actionsPerForkCount}
for j < 0, actionsPerForCountk do

actions|j] = create ExternalCall Action
end for
forksli] = actions
: end for
10: return forks

W %03 hw

PCM supports modeling parallel calls of signatures from
required services by using an ExternalCallAction inside a
so-called ForkedBehavior. First, we create an array forks of
type ForkedBehavior with length simultaneousForkCount. The
parallel actions (or calls) per fork (actionsPerForkCount) are
calculated by dividing fotalForkCount by simultaneousFork-
Count. We fill each index of the array forks with an array
called actions. This array consists of ExternalCallActions ac-
cording to the number of actionsPerForkCount. For example,
if totalForkCount equals eight and simultaneousForkCount
equals two, there will be two ForkedBehaviors and each will
contain four consecutive ExternalCallActions.

For the ClusterResourceSpecification and its components,
we implemented corresponding Java classes in the scheduler
and SimuCom plugin of PCM. We also adapted the existing
implementation of a simulated resource container to apply
the scheduling of calls (i.e., round robin) on nested resource
containers.

B. Modeling Batch Applications

We compose our components in the repository model
similar to the DAG of an application, in this case Spark’s
DAG. We specify one application component as a starting
point. It includes input parameters for the number of files,
the size of one file, the default block size, and the number of
executors. We model job components according to the number
of Spark jobs. They are invoked sequentially by the application
component with the same input parameters. Similarly, we
model stage components corresponding with the number of
Spark stages for each job. They are called sequentially by
each job component and also receive the same parameters.

For each stage, we model one associated task component
that will be invoked multiple times in parallel for which we
use a DistributedCallAction [29]. Therefore, we model the
first stage and the number of task executions different from
the remaining stages. For the first stage, the number of task
executions depends on the number of RDD partitions since
input files are read from the storage layer. Spark will create
a RDD for each input file and each RDD involves as many
partitions as data blocks and splits, respectively. We use the
above mentioned input parameters to specify the number of
tasks and blocks np.c1 as the sum of data blocks for all files.
In order to calculate the blocks for one file, we divide the size
of a file xyy. by the default block size xpiocr and take the
ceiling in case there is a remainder (x € Ny ).

Nfiles

Nplock = Z [T, fite + Thiock | (1

=1

Furthermore, the input size for tasks of the first stage
either match the default block size of the storage layer or
the remainder split. Therefore, we specify a branch to include
both cases and determine the probability pacfauitspric for a
default block by dividing the amount of default blocks by the
total amount of blocks.
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Nfiles .
2 i pite + Thlock ] 5
PdefaultSplit = 2)
Tblock

In contrast to the first stage, the data input for subsequent
stages equals the output set of predecessor stages. We model
these as a percentage of the dataset of the predecessor.
Consequently, we do not need to specify two branches unlike
for the first stage, but can directly call the task component.
Additionally, the total number of tasks for subsequent stages
depends on a fixed value configured by application developers.
Since the configurable number of cores constitutes the limiting
factor for concurrent tasks on a Spark executor, we specify
an additional infrastructure component to model a pool of
available cores. The component contains two SEFFs to acquire
as well as release one core. In order to finally execute a
task, a core must be acquired first and released after the
task execution. The SEFF of the task component includes
two consecutive resource demands, one for delay and one for
CPU. In this work, we do not consider HDD demands and
concentrate on CPU.

In order to estimate the function of the CPU demand, we
profiled applications using the Java Management Extension
(JMX) on the Java virtual machine of each Spark executor.
We aggregated the CPU measurements of operations originat-
ing from org.apache.hadoop.net.unix.DomainSocketWatcher.-
run for each stage during the application lifetime. We divided
the combined measurements by the number of tasks of each
stage to get the intercept of the function. In the same way,
we transformed measurements for operations called by org.-
apache.spark.scheduler. Task.run. We additionally divided the
latter value by the mean block size of the underlying dataset
in order to the derive the slope of the function in dependence
of the data size.

Regarding the delay demand, we used the Spark monitoring
interface of the history server to calculate the mean response
time of each task of a stage. We then subtracted the CPU
demand per task to derive the delay. The monitoring interface
also provides several metrics by itself. Although we also
experimented to incorporate these metrics, the approach we
described delivered more accurate prediction results for CPU
and response time.

C. Modeling Stream Applications

The repository model for stream applications is also kept
similar to the DAG of a Spark Streaming application as well
as to our approach for batch applications. We model one
application component as a starting point, which is intended
to be triggered for each mini-batch interval. In contrast to the
batch approach, we do not specity parameters in dependence
on data sizes (i.e., megabytes), but in dependence on records.
Therefore, the application component includes parameters for
the number of records, the number of partitions of the data
stream, and the number of executors. Since Spark Streaming
creates one and the same job for each mini-batch, we create
one job component. It is invoked by the application component

using an asynchronous ForkedBehavior. In this way, the ap-
plication component does not wait until the job component is
finished and can be continuously triggered in time. According
to the number of Spark stages, we model stage components
that are called sequentially by the job component.

For each stage, we model one task component that will
be invoked multiple times in parallel using a Distributed-
CallAction [29]. Similar to the batch approach, we model the
first stage and the number of task executions different from
the remaining stages. The initial number of stream partitions
defines the number of RDD partitions and, therefore, the
number of task executions for the first stage. For subsequent
stages, a fixed value is used as parameter since it can be
configured by engineers in the application configuration. The
record input for subsequent stages equals the output set of
predecessor stages. As before, we model these as a percentage
of the dataset of the predecessor. For all stages, the final task
will be invoked after a core is acquired, which will be released
afterwards. Therefore, we also specify an infrastructure com-
ponent to acquire and release available cores. The SEFF of
the task component includes one delay demand and one for
CPU demand. Both demands are calculated as for the batch
approach but in dependence of the number of records.

D. Modeling Cluster Resources

In the resource environment model, we specify one parent
ResourceContainer and multiple nested ResourceContainer
depending on the number of workers. All containers are
connected to a network via a LinkingResource. For each
ResourceContainer, we model a ClusterResourceSpecification.
For the parent ResourceContainer, we set a MASTER role and
a ROUND_ROBIN policy. For the nested ResourceContainer,
we configured a WORKER role. Additionally, processing re-
sources (e.g., CPU) are added for each nested container.

E. Modeling Data Workload

The data workload is modeled in the usage model. For
batch applications, the application component is invoked with
four parameters. They specify the number of files that shall
be processed, the size of each file, the default block size
of the storage layer, and the number of Spark executors. A
closed workload is used without any think time and with a
population of one since there shall only one application to be
executed. For stream applications, the SEFF of the application
component is called with three parameters describing the
sum of records within the stream interval, the number of
stream partitions, and the number of Spark executors. Since
the amount of records usually deviates slightly (e.g., due to
network circumstances), a normal distribution was used to
address this factor. We also specify a closed workload with a
population of one. However, the think time is used to represent
the time of mini-batch intervals. The application component
is continuously invoked after the think time has elapsed.
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V. EVALUATION

In order to evaluate our approach we used the HiBench
benchmark suite! to run sample applications in a test envi-
ronment [30]. Afterwards, we modeled and simulated these
applications for selected scenarios and compared the mea-
sured and simulated response time and CPU utilization. We
conducted four different scenarios - one upscaling scenario re-
garding cluster size and one upscaling scenario regarding data
workload for batch as well as for stream processing each. In
the subsequent Subsections, we describe our test environment
setup, the evaluation of the batch scenarios followed by the
stream scenarios.

A. Test Environment Setup

The hardware environment includes five IBM System
X3755M3 servers, each consisting of four CPU sockets, 48
cores at 2.1 GHz in total, and 256 gigabyte (GB) random
access memory (RAM). Each server is connected to a storage
area network via Fibre Channel allowing for 8 gigabit per
second (GBit/s). IBM System Storage EXP3512 is used for
storing data. We virtualized each server using the VMware
ESXi (5.1.0) hypervisor. We configured eight cores and 36 GB
RAM for each virtualized machine (VM). On four servers, we
allocated four VMs each that are used as worker nodes. On
the remaining server, we allocated two VMs. One is used as
master node and one for managing the cluster and initiating
the benchmark applications. The following software is used
on the VMs:

¢ CentOS Linux, 7.2.1511

o Oracle JDK, 1.8.0_60

o Apache Ambari, 2.4.2.0

« Hortonworks Data Platform, 2.5.3.0-37

« HiBench Suite, 6.0

Regarding HDFS we kept the default configurations includ-
ing a replication factor of three and a data block size of 128
megabytes (MB). For YARN, we configured 26 GB and six
virtual cores (vCores) per container, for Spark executors 22
GB as well as six cores.

B. Evaluating Batch Applications

We used the word count application of HiBench. It parses
a set of input data and counts the appearance of each word
[30]. We conducted four upscaling experiments regarding
cluster nodes and, similarly, four regarding data workload.
Therefore, we created one base repository model for the
application. This model including its resource demands is used
for all batch experiments. According to each experiment, the
resource environment model and the usage model is adjusted.
In order to evaluate the prediction accuracy of our approach,
we consider the metrics response time and CPU utilization.
For the simulation, we captured the simulated mean response
time (SMRT) as well as the simulated mean CPU utilization
(SMCPU) across the cluster. For the benchmark measure-
ments, the applications were executed three times for each

"https://github.com/intel-hadoop/HiBench

experiment and the measured mean response time (MMRT)
as well as the measured mean CPU utilization (MMCPU) on
user-level were calculated. The former is derived from the
Spark monitoring API, the latter from the Ambari Metrics
System. The results for all batch experiments are listed in
Table I and the corresponding response times are illustrated in
Figure 1.

TABLE I
MEASUREMENT AND SIMULATION RESULTS FOR BATCH APPLICATIONS

Cluster ~ Workload | Response time [milliseconds] CPU utilization
nodes [gigabyte] MMRT RTPE ‘ MMCPU SMCPU CPUPE
4 28.72 104,599 103,218  1.32% 61.24% 61.95% 1.16%
8 28.72 68,205 62,233 8.76% 53.06% 55.77% 5.10%
12 28.72 54,984 52,632 4.28% 47.21% 47.5% 0.62%
16 28.72 50,140 47,181 5.90% 40.31% 42.18% 4.65%
16 57.36 74,657 69,583 6.80% 48.87% 48.22% 1.33%
16 86.08 101,675 93.292 8.24% 51.11% 49.66% 2.84%
16 114.72 119977 122,740  2.30% 55.62% 52.07% 6.38%
1304
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Fig. 1. Response times for batch applications

The starting experiment with four nodes resulted in a
MMRT of 104,599 milliseconds (ms) and a SMRT of 103,218
ms leading to a relative response time prediction error (RTPE)
of 1.32%. The MMCPU amounts to 61.24%, whereas the
SMCPU lies at 61.95%, which gives a relative CPU utilization
prediction error (CPUPE) of 1.16%. We resized the amount
of nodes up to 16 nodes. Throughout, RTPE and CPUPE
remained relatively low and were at most 8.76% and 5.10%
both for the eight node scenario. On a cluster of 16 nodes,
we additional increased the data workload. Similarly, we
approximately resized the dataset by factors two, three, and
four. Here, the RTPE was highest for a workload of 86.08 GB
(8.24%), while the CPUPE deviated at most for 114.72 GB
(6.38%).

Our approach showed to deliver relative prediction errors
no more than 10% for both batch scenarios. While we slightly
overestimated the CPU utilization values in the first scenario,
we slightly underestimated them for the second scenario.
Regarding response time, the prediction values were little
lower than the measurement values in both scenarios except
for one case.
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C. Evaluating Stream Applications

We likewise used a word count application from the Hi-
Bench benchmark suite. The application involves stateful
operators as well as checkpoints and acknowledgements. The
application repeatedly fetches data from Kafka in a configured
time interval of five seconds. We configured the environment
so Kafka as well as Spark run exclusively on VMs. During
the experiments, we adapted the number of Kafka brokers
according to the number of Spark workers. Similarly, we
adapted the number of Kafka partitions to always have six
partitions on each Kafka broker to allow for optimal parallel
processing of Spark (i.e., one partition per core [31]). For our
experimental results, we run the benchmark application and
captured performance measurements for ten minutes leaving
a ramp-up and ramp-down phase of five minutes.

We conducted four upscaling experiments regarding the
cluster and four regarding data workload. Similar to the
batch experiments, we derived a repository model including
resource demands from the starting experiment and used this
model for all simulations. The results are illustrated in Table
II and the response times in Figure 2. For an interval of
five second, the MMRT for the starting experiment is 3,006
ms and 31.81% MMCPU. The SMRT resulted in 3,029 ms
and the SMCPU in 33.29%, which gives a RTPE of 1.21%
and a CPUPE of 4.65%. With additional nodes, the relative
prediction errors increased for both metrics and were at most
for eight nodes (a scaling factor of four compared to the
starting experiment). Here, the RTPE results in 17.02% and
the CPUPE 13.43%. With increasing data workload, the RTPE
and CPUPE decreased. In these experiments, we were not able
to scale the workload by factor four since the input data could
not be processed within the five second interval. While the
SMCPU is constantly slightly lower than the MMCPU and
the CPUPE behaves consistently, the SMRT is slightly too
low for the last experiment as the MMRT increases abruptly.
We conducted multiple experiments to further investigate the
response time behavior of the application. We observed that
the response times tend to rise rapidly as they converge to the
time interval. Our prediction results still showed to provide
accurate results with relative errors around 17% [32].

Our extension? as well as our models, simulation results,
and measurements results are publicly available online®.

TABLE II
MEASUREMENT AND SIMULATION RESULTS FOR STREAM APPLICATIONS

Cluster Workload Response time [milliseconds] CPU utilization

nodes [events/second] | MMRT  SMRT RTPE ‘ MMCPU SMCPU CPUPE
2 100,000 3,066 3,029 1.21% 31.81% 33.29% 4.65%
4 100,000 2,363 2,515 6.43% 20.89% 19.91% 4.69%
6 100,000 2,124 2,358 11.02% 17.02% 15.44% 9.28%
8 100,000 1,956 2,289 17.02% 15.26% 13.21% 13.43%
8 150,000 2,754 2,820 2.40% 17.55% 16.16%  7.92%
8 200,000 3,296 3,350 1.64% 20.43% 19.10%  6.51%
8 250,000 4,614 3,880 1591% 22.79% 22.04%  3.29%

2http:/git.fortiss.org/pmwt/bd.pcm.extension
3http://pmw.fortiss.org/research/ieee-mascots/
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Fig. 2. Response times for stream applications

D. Assumptions and Limitations

In our experiments, we allocated one Spark executor on
each node. It is also possible to size less cores and memory
for spark executors and to allow for deploying multiple ones
on one node. Although we are also able to model and simulate
these scenarios, we did not evaluate such a case. We also
evaluated our experiments in an exclusive cluster in which no
other applications were running in parallel and using any CPU,
HDD, or network. Regarding our modeling approach, we spec-
ified the input of a subsequent Spark stage probabilistically in
dependence on the output data of a previous stage. Therefore,
our prediction error will increase, if the properties of the initial
underlying data set change significantly. Furthermore, Heinrich
et al. (2016) [33] discuss current problems such as modeling
data structures and continuous data flows, but also potential
solutions in modeling big data using Palladio.

VI. CONCLUSION AND FUTURE WORK

In this work, we presented an approach to model and
simulate the performance behavior of batch as well as stream
processing systems by the example of Apache Spark. There-
fore, we extended PCM to represent resource clusters and
distributed and parallel operations. This included a M2T trans-
formation to generate corresponding simulation code and an
adaption of the simulation platform SimuCom. We evaluated
the approach by using sample applications of the HiBench
benchmark suite. We conducted upscaling scenarios for cluster
sizes as well as data workload both by factor four. Afterwards,
we compared simulation with measurements values. The re-
sults suggest accurate predictions for response times and CPU
utilization. For batch applications, the relative prediction error
was at most 8.76% for response time and 6.38% for CPU
utilization, for stream applications 17.03% and 13.43%.

Currently, we are experimenting with applying our approach
for stream processing systems that implement an operator-
based model. We also intend to represent resource demands for
HDD. Furthermore, we plan to automatically derive models
and resource demands for big data applications based on
measurements. This shall support performance engineers by
omitting the manual creation of models and ease the usage of
our approach.
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Abstract: Evaluating and predicting the performance of big data applications are required to
efficiently size capacities and manage operations. Gaining profound insights into the system
architecture, dependencies of components, resource demands, and configurations cause difficulties
to engineers. To address these challenges, this paper presents an approach to automatically extract
and transform system specifications to predict the performance of applications. It consists of three
components. First, a system- and tool-agnostic domain-specific language (DSL) allows the modeling
of performance-relevant factors of big data applications, computing resources, and data workload.
Second, DSL instances are automatically extracted from monitored measurements of Apache Spark
and Apache Hadoop (i.e., YARN and HDFS) systems. Third, these instances are transformed to model-
and simulation-based performance evaluation tools to allow predictions. By adapting DSL instances,
our approach enables engineers to predict the performance of applications for different scenarios such
as changing data input and resources. We evaluate our approach by predicting the performance of
linear regression and random forest applications of the HiBench benchmark suite. Simulation results of
adjusted DSL instances compared to measurement results show accurate predictions errors below 15%
based upon averages for response times and resource utilization.

Keywords: peformance evaluation; performance modeling; model extraction; performance simulation;
big data systems

1. Introduction

Big data frameworks are specialized to analyze data with high volume, variety, and velocity
efficiently [1]. By distributing and parallelizing processing, they allow for horizontal scalability.
Since the introduction of the MapReduce paradigm, there have been several frameworks released
to support different types of applications, such as machine learning and stream processing. For all
types, the performance of such software systems in terms of response time, throughput, and resource
utilization is essential for a successful application [2]. It is a difficult and complex task to manage
and evaluate the performance for different scenarios such as changing data input and hardware
resources [3].

Practical evaluations such as load tests on test systems are expensive. They require multiple
experiments and only test a subset of configuration parameters. Additionally, they usually run with
a reduced amount of data and resources. Thus, it is not able to draw accurate conclusions about the
performance behavior. Performance models, on the other hand, provide an established evaluation
approach by depicting performance characteristics of software systems and simulating their behavior

Big Data Cogn. Comput. 2019, 3, 47; doi:10.3390/bdcc3030047 www.mdpi.com/journal /bdcc



Appendix: Published/Accepted Version of Included Publications 167

Big Data Cogn. Comput. 2019, 3, 47 20f24

or analytically solving them [4]. However, there are several challenges: creating models by hand
is expensive, error-prone and slow as software systems are complex and continuously evolve [5].
There is a lack of tool support for automatic model extraction. Regarding big data system, most related
modeling approaches are also specific to a certain technology (i.e., Apache MapReduce) and only
consider the response time of applications but not demands for resources (i.e., CPU).

In order to address these challenges, we propose a specification and model extraction approach for
big data systems called PerTract to evaluate and predict the performance. We present a domain-specific
language (DSL) to allow for modeling specifications on an architecture-level in a tool-agnostic way.
To demonstrate our approach, we use Apache Spark for the application layer, in particular one
random forest and one linear regression application that both use Spark’s machine learning library.
Additionally, we use Apache Hadoop for data provisioning and resource management. Figure 1
illustrates an overview of our approach. We extract execution components and inter-component
interactions, resource landscape, and data workload in three separated specifications of a DSL
instance using interfaces and logs of these technologies. In addition, we extract monitoring traces
of applications (i.e., CPU times) and interrelate these with data workload information to identify
parametric dependencies and estimate parametric resource demands of each execution component.
On this basis, performance predictions are enabled. Therefore, we transform a DSL instance into a
Palladio component model (PCM) [6]. Palladio is a model-based performance evaluation tool on the
architecture-level that is supported by several analytical solvers and simulation engines.
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Figure 1. Overview of the extraction and transformation approach.

Our approach provides several benefits. It integrates model-based activities, which are performed
during development, and measurement-based activities, which are carried out during operations
(DevOps) [5]. The automated extraction process eliminates the effort to create models by hand.
As applications are continuously updated, DSL instances can be extracted and tracked for each release
as they evolve as well. This also enables engineers to continuously manage and plan required capacities
and evaluate the performance for different scenarios (e.g., changing data workload) by adapting model
parameters. Finally, it gives detailed insights about resource demands of execution components of an
application and can be used to detect performance changes and regressions.

To sum up, the contributions of this paper are the following;:

1. A DSL for modeling performance-relevant factors of big data systems,

2. An automatic extraction of system structure, behavior, resource demands, and data workload
from Apache Spark and Apache Hadoop,

3. Transformations from DSL instances to model- and simulation-based performance evaluation tools,
Tool support for this approach.
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To the best of our knowledge, our approach is the first white-box approach to extract
performance-relevant metrics that allow for performance predictions of response times and resource
usage. The developed tools are open source [7] and extendable for extracting DSL instances from other
frameworks and for transforming them to other model-based performance evaluation tools.

This paper builds upon our previous work [8-11] on modeling and simulating the performance
of big data applications and includes the following major improvements and extensions:

A formalism and DSL to model big data applications,
A lightweight Java agent to sample stack traces and CPU times from applications,
Automatic extraction of DSL instances,

LN -

Detailed evaluation against complex applications of the HiBench benchmark suite.

The remainder of this work is structured as follows: Section 2 describes related literature and
approaches in the area of modeling and simulating big data applications. Section 3 introduces the
model formalism as well as the DSL, which are required to understand this paper. Section 4 describes
the extraction of DSL instances by the example of Apache Spark and Apache Hadoop. Section 5
presents the transformation to PCM models to allow for simulating the performance. Section 6
evaluates the prediction accuracy of our proposed approach for different upscaling scenarios and
describes our assumptions and limitations. Finally, Section 7 outlines conclusions of our work and
ideas for future activities.

2. Related Work

Since the Apache Hadoop family was the first widely-adopted big data framework, initial
performance modeling approaches have been concentrating on this technology stack.

Vianna et al. [12] predict the response time of MapReduce applications by introducing an analytical
model, which they validated against an event-driven queuing network simulator. Their approach
primarily concentrated on synchronization delays between map and reduce tasks. Verma et al. [13]
introduce another approach for MapReduce. They developed a framework to allow for predicting
response times before moving applications to different target platforms. The framework applies multiple
benchmarks on source platforms and a regression-based model to relate the performance of source and
the target platforms. Zhang et al. [14-16] present multiple approaches where most of them are based on
the analytical model by [13]. Therefore, they additionally take heterogeneous clusters and configuration
optimizations into account.

For other applications of the Hadoop family, Barbierato et al. [17] developed a language for the
description of performance models. As a main component, the model uses the SQL-like query language
of Apache Hive, a data warehouse built on top of Apache Hadoop. Ardagna et al. [18] propose
approaches to estimate response times of Hive requirements. Therefore, they presented multiple
performance analysis models with increasing complexity and accuracy, such as queueing networks and
stochastic well formed nets. They also considered unreliable resources in their experiments. Lehrig [19]
proposes a scalability and elasticity analysis of Software-as-a-Service applications at design time using
architectural templates for Palladio. They plan to enhance it for big data paradigms on the processing
layer and data layer.

Wang and Khan [3] propose a prediction model for estimating response times of Apache Spark
applications. In their approach, they consider demands for in-memory as well as demands for
disk drives but not CPU processing. Another work by Ardagna et al. [20] explores three modeling
approaches for execution time prediction of Spark applications: one queuing network with a fork-join
model and one with a task precedence model. Third, they present a discrete event simulation engine
dagSim. The evaluation was conducted for different applications such as logistic regression and
K-Means running in a public cloud. Although the variance of the prediction accuracy is low for all
approaches, the third approach delivers the most precise results.
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Besides analytical and simulation-driven approaches, there are also approaches using machine
learning for Apache Spark. Rekha and Praveen [21] evaluated different machine learning algorithms
(i.e., multi linear regression and support vector machine) as well as an analytical model to predict
execution times of Spark stages in development environments. They include multiple parameters
from application logs into their models but only use execution times and do not consider resource
demands. They also mention the drawback of machine learning approaches, which require intensive
experiments and data collection. Furthermore, Venkataraman et al. [22] present Ernest, a performance
prediction framework for large scale analytics using machine learning kernels. It involves an automatic
process to collect training data and to build a non-negative least squared model taking only a few
parameters. They evaluate their approach on Amazon EC2 and show accurate predictions of execution
times for increasing machine numbers. It is a black-box approach and does not give any insight
into components of an application. As Ernest is bound to the structure of machine learning jobs,
Alipourfard et al. [23] present CherryPick, which intends to find best cloud configurations for various
applications and use Bayesian optimization to create performance models. A configuration, for instance,
contains parameters such as the number of virtual machines, CPU, and cores. In contrast to our work,
they support additional types of applications (i.e., Spark SQL). Additionally, Witt et al. [24] provide
an extensive survey on performance prediction of batch processing using black box monitoring and
machine learning.

Castiglione et al. [25] propose a general approach to model the behavior of batch applications
and concentrate on cloud infrastructures and evolution dynamics in terms of resource requirements
and energy consumption. Therefore, they use an analytic modeling technique based Markovian
agents and mean field analysis to describe the behavior of interactive cloud, batch, and time
constrained applications. Niemann [26] also presents an approach in the area of energy consumption.
He focuses on Apache Cassandra, a distributed data management system, and uses queueing Petri
nets to predict the performance and energy consumption of different workloads and platforms.
Casale et al. [27] propose a model-driven engineering for quality assurance of data-intensive software
systems concentrating on Apache Hadoop and MapReduce, NoSQL databases, and stream processing
(i.e., Apache Storm). Their approach aims at simulating, verifying, and optimizing architectures of big
data applications. The models contain three different model layers including a platform-independent,
a technology-specific and a deployment-specific model [28]. Gémez et al. [29] also shows an approach
to transform these models into stochastic Petri nets, which is intended to allow for evaluating
performance requirements. Lastly, Ginis and Strom [30] hold a patent in the area of stream processing.
The patent describes a method to model performance characteristics of publish-subscribe systems
using queueing theory. However, the method does not include resource demands such as CPU,
memory, and disks.

To summarize, the mentioned approaches focus on predicting the metric response time and
often only implicitly assume resource demands for service executions per resource but do not
link them to software components and operations [5]. To the best of our knowledge, automatic
model extraction in the area of big data are only supported by the mentioned machine learning
approaches [22,23]. However, these are black-box approaches and the models serve as interpolation of
the measurements [5]. Consequently, they do not model detailed information of the system architecture
and dependencies and cannot be adapted for further evaluation scenarios. Finally, most of the
mentioned models are technology-specific and, thus, are difficult to adapt and generalize them.

3. Modeling Approach

In this section, we describe the formalism for specifying big data systems. Afterwards, we present
the PerTract-DSL based on the formalism.
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3.1. Formalism

The specification consists of the following components:

e An Execution Architecture of the application, specifying nested directed graphs for execution components,

e A set of Resource Profiles, providing demands of different resources with parametric dependencies
for the nodes of a graph,

o A Data Workload Architecture, specifying the underlying data model and type of data source

e A Resource Architecture, specifying a cluster of resource nodes, each with several resource units

3.1.1. Application Execution Architecture

The specification of the application Execution Architecture is a 2-tuple (c, ) where ¢ € C is the
application configuration and n € N specifies an initial node of the application.

A configuration ¢ € C is represented by the 5-tuple (py, e, ts,, ., ms) where pj is the default
parallelism for operations, more specifically tasks, of an application (e.g., join or reduce); e is the
number of executors, which manage tasks; ts, describes the number of tasks slots per executor that
can be executed in parallel; i, is the amount of main memory per executor that is available for tasks;
and my, represents the amount of memory that each task slot requires to be allocated.

Nodes N are composite components. They can represent directed graphs NG C N and execution
nodes of a directed graph NE C N. In Figure 2, ScalaWordCount and saveAsHadoopFile represent a
directed graph and map and reduce an execution node.

A directed graph ng € NG is a 2-tuple (Nng, Eng), in which Ny, is a set of nodes (or vertices) of
the directed graph ng such that ng ¢ Nyg; and Eg is a set of directed edges. A directed edge e € E is
represented by a 3-tuple (1, ny, t.), where n; € N is the tail of ¢; 1, € N is the head of ¢; and £, € R>
specifies the factor of how many data are transmitted from 7; to 1, dependent on the amount of input
data of n;.

An execution node ne € NE is a 5-tuple (py, s, m, nng,rp) where p, is the parallelism of node
(e.g., some big data frameworks such as Apache Flink allow for specifying the parallelism for each
operation individually); s indicates whether ne is a spout that is the node depending on partitioned
data from an external source, such as a file system or messaging system; m € M is a reference to the
dependent data model from the Data Workload Architecture; n,; € NG references the parent directed
node graph; and rp € RP describes the Resource Profile of ne.

3.1.2. Resource Profile

We use Resource Profiles to specify multiple resource demands. A Resource Profile rp € RP
describes an ordered set of parametric resource demands RD. A parametric resource demand rd € RD
is a 3-tuple (rt, fy1, p) in which rt € RT represents the resource type and f;; : R>g — R> is a function
to specify the actual value of a resource demand in dependence on a parameter p (e.g., number of
partitions of an input data source).

3.1.3. Data Workload Architecture

The model to represent the data workload is kept very simple. A Data Workload Architecture
d € D is a singleton containing a set of data models M. A data model m € M contains one data source
ds € DS element that consists of a parameter p; to specify the number of partitions.

3.1.4. Resource Architecture

A Resource Architecture ra € RA is a pair (nc, RN) in which nc € NC is a network channel and
RN is a set of resource nodes. A network channel nc € NC is a 2-tuple (b,1) where b describes its
bandwidth and [ its latency. A resource node rn € RN describes a cluster node and is a 2-tuple (cs, RU)
in which cs € CS is a cluster specification and RU is a set of resource units. A cluster specification
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cs € CS is described by a 2-tuple (rr, sp) where rr € RR describes a resource role (i.e., master node or
worker node) and sp € SP the scheduling policy for distributing task across resource nodes (i.e., round
robin). A resource unit ru € RU represents CPU, drive, and memory units.

3.2. PerTract-DSL

The PerTract-DSL follows the system model formalism described in the previous subsection and
constitutes a language for specifying such models. Figure 2 illustrates an exemplary PerTract-DSL
instance for a big data application. The PerTract-DSL is implemented as an Ecore-based meta-model
using the Eclipse Modeling Framework (EMF) [31]. We use the DSL as an intermediate language to
extract model instances and adapt its parameters for different scenarios. Afterwards, we generate
architecture-level performance models that we use to simulate and predict the performance.

Data Workload
Architecture

Resource
Architecture

Execution
Architecture

ScalaWordCount bandwidth=123; latency=0.01
file 1
saveAsHadoopFile
size=4832 rr=master . rr=worker
records=1240 sp=RoundRobin
map transmission- reduceByKey Processing Processing
J Factor=0.0034 . Resource Resource
— spout=true nodeParallelism=8 Ui Uni
Drive Drive
filen Resource Resource
Unit Unit
size=4832
records=1240 Resource Profiles
rdcpu= 345 + dataSize * 75 rdcpu= 976 + dataSize * 94
1dgisk read= dataSize rdgisk reaq= dataSize T = resource role
i i sp = scheduling policy

rd = resource demand

Figure 2. Exemplary PerTract-DSL instance.

Figure 3a shows the classes and relationships of the Execution Architecture and Resource Profile.
The Execution Architecture includes execution flows and operations on data and a configuration of
an application. The configuration includes multiple parameters to specify the application settings.
Depending on the application type (i.e., batch, mini-batch, and stream), a corresponding configuration
type can be instantiated and may include additional parameters. For instance, a MiniBatchConfiguration
involves an interval variable to indicate the mini-batch intervals.

In order to specify operations on data and execution flows, we use nodes and directed edges (for
instance, distributed acyclic graphs DAGs represent execution flows in Apache Spark, topologies in
Apache Storm, and job graphs and execution graphs in Apache Flink). Therefore, a Node is a composite
that can represent two roles—a directed graph that contains several nodes (children) and edges, and an
execution node that executes tasks. In the latter case, a node contains a Resource Profile for its tasks.

The term Resource Profile describes a set of resource demands for transactions of an
application [32-34]. This includes resource demands for CPU, disk, memory, and network usage.
Resource Profiles have been used for transactions for a specific workload and specific servers [32,33]
but also for component operations within the control flow of each transaction independent of their
deployment topology [34]. Branches with probabilities for its occurrences represent operation control
flows. As yet, the related approaches do not use parametric dependencies and use Resource Profiles
in the area of enterprise applications, where the workload is mainly user-driven and the resource
demands for operations may remain static for each user. In our case, operations highly depend on
incoming data volume either dependent on the data size or number of records.

We change the notion of Resource Profiles for our purposes in three ways. First, we include
parametric dependencies. Second, we do not model the control flow and probability as this information
is contained in the directed graph. Third, we do not apply a Resource Profile on the same fine
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granularity level of operations except for a set of operations and tasks. Big data frameworks chain
and group single operations together and transform each grouping into a set of tasks, which will
eventually be executed multiple times in a distributed way. The number of executed tasks usually
depends on the number of partitions. As we model data and hardware resources as first-class entities in
dedicated specifications, the exact number and distribution of operations depends on them. Therefore,
we apply a Resource Profile on a group of chained operations. It forms the basis to derive tasks
with resource demands and predict the performance by combining them with data workload and
Resource Architectures.
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(c) Resource Architecture

Figure 3. PerTract-DSL classes and relationships.
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While considering data as first-class entities, we focus on specifying only performance-relevant
factors of data as presented in Figure 3b. A Data Workload Architecture contains one or several
data models, which are either file-based (e.g., for batch applications) or record-based (e.g., for stream
applications). The former contains multiple file specifications and a single data source, which specifies
the partition size of the files and the number of partitions. The latter contains a variable to indicate the
mean record size and a continuous data source, which describes the number of partitions of a data
stream as well as the arrival rate per second of one record.

Figure 3c illustrates an overview of the classes and relationships of the Resource Architecture. It is
a simplified version based on the resource environment model of PCM including our extension [6,9].
It contains several resource nodes that, combined, represent a cluster. Each resource node contains
a processing unit, memory unit, and drive unit with individual processing rates or capacities.
The resource demands of one Resource Profile will be performed on the corresponding resource
units of one resource node.

4. Extracting Model Instances by the Example of Apache Spark, Apache YARN and Apache HDFS

Since creating models for applications, data, and resources requires much effort, we propose an
approach to automatically extract PerTract-DSL instances based on monitoring measurements and logs.
The remainder of this section describes the approach to extract a DSL instance in detail, comprising
the monitoring on application level (Section 4.1), the extraction of Execution Architectures from
applications (Section 4.2), the estimation of Resource Profiles for stages of applications (Section 4.3),
the derivation of Data Workload Architectures (Section 4.4), and the extraction of hardware resources
(Section 4.5).

4.1. Extraction of Resource Demands

Collecting measurement data is necessary in order to extract Resource Profiles, estimate resource
demands, and calculate parametric dependencies. Profilers provide a common way to extract
fine-grained data such as stack traces and CPU times. We examined multiple Java profilers but
found that the performance of big data applications is significantly increased by their overhead.
Therefore, we chose a sampling approach and developed a lightweight Java agent for sampling CPU
values for either stack traces or thread groups of long-running applications.

Algorithm 1 shows the main procedure of the agent. It collects samples in intervals of
100 milliseconds, which we found to cause only low overhead while still providing high accuracy
in our experiments. Therefore, the agent fetches a dictionary of thread identifiers and corresponding stack
traces by calling the getAllStackTraces() method provided by the Java Thread class. The dictionary contains
only entries for threads that are in an active state at the point of time requested. The CPU time is collected
for each thread by using the ThreadMXBean management interface (i.e., the getThreadCpuTime(long id)
method) for monitoring of the Java Virtual Machine (JVM). The CPU times for thread groups with the
same names will be summed up and sent as a batch to an Apache Cassandra repository. Additionally,
the name of the JVM will be transmitted to the repository for each measurement.



Appendix: Published/Accepted Version of Included Publications 174

Big Data Cogn. Comput. 2019, 3, 47 9of24

Algorithm 1: Sampling thread groups and CPU values.

Output: samples < dictionary containing a timestamp as key and tuples of thread groups and
CPU times as value

Schedule new thread every 100 milliseconds
threadGroups < < k : String,v : long >;
sampleTime < current timestamp;
/* procedure provided by Java */
threads < getAllStackTraces();
for thread to threads do
/* procedure provided by Java */
cpuTime <— getThreadCpuTime(thread.id);
threadGroup < thread.threadGroup;
threadGroups|threadGroup| < cpuTime + threadGroups|threadGroup]);
end
samples < (sampleTime, threadGroups);
Until application has terminated,;

4.2. Extraction of Execution Architectures

The Apache Spark framework introduces so-called resilient distributed datasets (RDDs). RDDs
are parallel data structures to store intermediate results in memory and offer coarse-grained operations,
which can be applied on them and work the same way on all data items [35]. Spark offers several
operations and transformations such as map and reduce.

A Spark application is executed by forming a DAG based on associated operations and grouping
them into stages of tasks. A stage chains operations with narrow dependencies, which means a shuffle
operation is not required e.g., a map and a subsequent filter operation [35]. The number of tasks of one
stage depends on the number of RDD partitions. Stages are executed successively and constitute one
job. One or more jobs compose one Spark application. The application is managed by one context.
It runs in the main process called the driver program. It allocates executors to worker nodes and
schedules and assigns tasks of an application on to executors. An executor is a process that executes
the tasks and operations in parallel [36].

In order to automatically extract execution components and inter-component interactions from
Apache Spark, we access the interfaces of the embedded history server. We remind readers that we
refer to the specification introduced in Section 3.1. We use the Spark environment properties to derive
an Application Configuration. We set p; to spark.default.parallelism, e to spark.executor.instances, ts, to
spark.executor.cores, and m, to spark.executor.memory. While a DAG created by Apache Spark models
RDD:s as nodes and operations as edges, we create nodes on three levels—on application-, job- and
stage-level—and data flows as edges (similar to the JobGraph of Apache Flink).

On the application-level, one initial node is created to represent the application itself
(i.e., ScalaWordCount in Figure 2). It contains a set of child nodes and edges for the job-level.

On the job-level, we read the interface for job metrics of the corresponding application and create
a set of nodes containing one element for each job entry. As jobs may be executed in parallel, we
consider the chronological sequence of jobs by accessing start times and end times in order to create
a set of directed edges and connect successive nodes. The data transmission factor of each edge is
calculated by bringing the input data of the tail and head in dependence:

inputy,

dt, = (€]

T inputy,’

Each job node contains a set of child nodes and edges for the stage-level. On the stage-level,
we access the interface for stage metrics of the corresponding application and create a set of nodes
containing one element for each stage entry corresponding to one job. In order to derive the parallelism
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pn of each node and whether it represents a spout s, we obtain the read data metrics of each stage
and distinguish between input and shuffle data:

{ true, for input > 0 A shuffle = 0, (2a)

S,y =

" false, otherwise, (2b)
{ Pdss for input > 0 A shuffle = 0, (3a)

Pn= Pd, otherwise. (3b)

In case a stage has read input bytes, the initial RDD of the stage is created by an external data
source and contains as many partitions as the data source. This usually applies to each initial stage of a
job. For this case, we set s, to true (Equation (2a)) and specify p;; according to the number of partitions
of the data source p,5 (Equation (3a)). In case a stage has read shuffled data, the corresponding RDD of
the stage is already transformed based on prior RDDs. Its partitions equal the default parallelism p;.
Therefore, we set s, to false (Equation (2b)) and set p,, to p, (Equation (3b)). The data transmission
factor is calculated as in (Equation (1)). Finally, we extract one Resource Profile for each node element
on the stage-level.

4.3. Extraction and Estimation of Resource Profiles

A Resource Profile consists of a set of resource demands where each element may involve a
different resource type and a function to specify the value. Our main focus lies on the CPU resource.
As Kay et al. [37] systematically identified by the example of Apache Spark, CPU is the bottleneck
of data analytics applications in most cases contrary to the widely-accepted opinion that disk and
network are weak points.

We define three different CPU demands for each stage i € EN. The first one represents the actual
time to process a task. We define a linear function dependent on the parameter p describing the data
size for each task of a stage. The slope of the function is calculated by using aggregated CPU times
originating from task-related thread groups across all Spark executors. This CPU time is divided by
the total amount of read data for each stage:

cpuTime; a5

- pinputi + shuffle;” @)

fi,cpu,msk(p)

The second CPU demand represents the overhead of coordinating with the driver program,
preparing a task before it is actually executed, and postprocessing. These times are provided by
the Spark task metrics interface (i.e., they are included in the variables executorDeserializeTime and
resultSerializationTime). As the coordination grows with the number of Spark executors, we define the
demand dependent on the configuration parameter e, the number of executors. We observed that this
demand varies very strong from task to task, especially for the first tasks of a stage. As averaging the
metric is not reasonable, we model this demand by converting the series of time values to a boxed
probability density function (PDF) with variable interval sizes as specified by PCM [6]. In order to box
the CPU values, we use the percentiles 5, 25, 50, 75 and 95 as intervals since they are provided by the
Spark’s interface.

The third CPU demand represents the overhead caused by providing infrastructure services for
one task. As it is independent of data input, we define a static demand using aggregated CPU times
of traces originating from worker-related thread groups across all Spark executors. We additionally
divide the CPU times by the total number of tasks to receive the demand for one task:

cpu Timei/workrr
numComplTasks + numFail Tasks

®)

fi,cpu,infra =
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For the extraction of drive demands, we examined several approaches to estimate read and
write demands. As we are not able to measure the drive demands on an appropriate level without
adding instrumentation to HDFS (similar to [37]), we extract only a resource demand for reading data,
which equals the dependent parameter p describing the data size for each stage.

Similarly, network demands on a low granularity level are only able to be retrieved by
instrumenting Spark in a sophisticated way. In order to compensate and include the time delays
caused by network traffic, we extract wait demands. We calculate the delays between stages by
comparing their start and end times and model the demand accordingly.

Furthermore, we do not extract demands for allocating main memory at the moment.
As simulation approaches for memory are still limited and neglect features such as garbage collection,
the prediction accuracy of this resource is debatable [34].

4.4. Extraction of Data Workload Architectures

The Hadoop distributed file system (HDFS) is a distributed, scalable, and fault-tolerant storage
system for big data [38]. Files are split into a sequence of blocks according to a specified block size,
which are are replicated to different data nodes to support fault tolerance [38]. For instance, if Spark
applications read a file from HDFS, it will be represented by one RDD with as many partitions as blocks.

In order to extract the Data Workload Architecture, we create a file-based data model and a single
data source for a specified folder in HDFS and create a file specification for each file. To access the
required information, we use the client library of Apache Hadoop. We access the size of each file as
well as calculate the partition size and number of overall partitions py;.

4.5. Extraction of Resource Architectures

Cluster managers, such as Apache Hadoop YARN and Apache Mesos, arbitrate resources for
batch and stream applications and provide support to distribute them on cluster nodes. YARN stands
for Yet Another Resource Negotiator and follows a master—-worker architecture [38]. This includes
one resource manager and multiple node managers. A node manager runs on each worker node
and is responsible for executing resource containers. A resource container is an abstract notion for
resources such as CPU, memory, and HDD in which application tasks run [38]. If a new application is
submitted, a responsible application master will be executed in a new resource container. It orchestrates
application tasks and, therefore, requests resource containers from the resource manager and monitors
their state [39]. Apache Spark is able to run in different modes on YARN. In the so-called client-mode,
for instance, the driver program and Spark context runs at the client itself, the application master
requests resources for executors, and each executor will run in its own resource container [36].

In order to extract Resource Architectures, we use the public interface provided by YARN
to retrieve metrics of each cluster node. For each node manager, we create one resource node
rn € RN. Therefore, we assign a worker resource role and create a resource unit for each CPU,
drive, and memory. The CPU cores and memory capacity are extracted via the interface. As drive
information is not available, we set the read and write speed manually (e.g., by testing HDFS with the
included DFSIO benchmark).

Besides the set of resource nodes, we create a network channel and also set the bandwidth and
latency manually.

5. Transformation to Performance Models

This section describes the concepts of the architecture-level performance model PCM and how
we transform DSL instances into PCM models.

5.1. Palladio Component Model

We chose to use PCM [6] as a model-based performance evaluation tool as it enables engineers
to specify software systems independent of technology, include resource demands for software
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components, consider resource contention, and predict not only response time, but also resource
utilization. Furthermore, the tool support is mature, open source, and continuously maintained with a
large community.

In particular, PCM is developed for component-based software systems and enables engineers
to describe performance relevant factors of software architectures, resource environments, and usage
behavior [4]. It is implemented in Ecore from the Eclipse Modeling Framework (EMF) and consists
of multiple models [6]. Software interfaces and components are specified in the Repository Model
(Figure 4a). Components provide the implementation for signatures of interfaces. Therefore, they contain
a resource demanding service effect specification (RDSEFF) in which the activities such as parametric
resource demands and external calls of signatures are modeled similar to activity diagrams (Figure 4b).
Components are additionally assembled in a System Model. In the Resource Environment Model, network
and hardware resources are specified such as processing resources (CPU, disk, and delay), processing
rates, and scheduling policies. The Allocation Model allows for deploying assembled components from
the System Model on resources from the Resource Environment Model. The usage and workload of
software components are specified in the Usage Model. Finally, PCM provides a simulator for its models,
which is based on a process-oriented discrete event simulation.

© 'Application <<Provides>> £] Application
[Z] void delegate(int files, ... %7 SEFF <delegate>

<<Requires>>

o 1Job0 <<Provides>> @ Job0
[=] void delegate(int files, ... %7 SEFF <delegate>
<<Requires>>
<<Provides>> <<Requires>>
© Istage0 £] Stage0 I IResources
[=] void delegate(int files, ... <<Requires>>%{ SEFF <delegate> [=] freeSlot (int amount)
m void execute(bool isDe... tj SEFF <execute> m allocSlot(int amount)
<<Provides>>
“<Requires>> £] Resources
%7 SEFF <allocSlot
i %7 SEFF <freeslot>
© 'TaskForStage0 s<Provides>> £ TaskForStage0
D void run(int dataSize, ... tj SEFF <run> slots <Capacity: 6+4>

(a) PCM Repository model example

¢ cPU

. ResourceDemands .

=151 <cpu>
[® DoublePDF[(1;0.3)(2;0.5)(11;0.2)] * executors.VALUE <CPU>
% 10 * dataSize.VALUE <CPU>

(b) Resource demanding SEFF for a task (PDF probability density function)

Figure 4. Exemplary transformed PCM instances.
5.2. Transformation to PCM

We describe the transformation for each DSL component. Table 1 shows the mapping of DSL
concepts to PCM elements. An Execution Architecture is transformed to a Repository Model (Figure 4a).
In order to traverse the Edges and Nodes of an Execution Architecture, we use a recursive depth-first
search. Upon visiting each Node, we check if it contains child Nodes and Edges. If this is the case, we
again traverse this Node and the procedure repeats.
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For each Node, we create one Interface with several signatures and a corresponding Basic
Component that provides the signatures using an RDSEFF. If a Node contains child Nodes, we add a
delegate signature to the corresponding Interface (i.e., IJob0). Additionally, the Basic Component requires
the Interfaces of the child Nodes.

Parameters of the Configuration and parametric dependencies of the Execution Architecture
are transformed into input parameters of each Signature. We consider parameters for the number of
files, the data size of one file, the default partition size, the number of partitions, and the number of
executors. In order to model and limit the maximum number of concurrent tasks, we separately specify
an Infrastructure Component to represent a pool of available task slots. The component contains two
SEFFs to acquire and to release a task slot. In order to finally execute a task, a slot must be acquired
first. After task completion, the slot is released again. In the case of Apache Spark, the limiting number
of task slots is the number of total cores.

Table 1. Mapping of PerTract-DSL to PCM elements.

PerTract-DSL PCM Model Elements
Execution Architecture Repository Model
Nodes Interface, Basic Component
Edges RDSEFF
Configuration Parameters, Infrastructure Component
Resource Profile Distributed Call Action, RDSEFF
Resource Architecture Resource Environment Model
Resource Node Resource Container
Cluster Specification Cluster Specification
Network Channel Linking Resource
Data Workload Architecture  Usage Model
Data Model Entry Level SystemCall, Parameters
Data Source Workload

RDSEFF Resource Demanding Service Effect Specification; Distributed Call Action, Cluster Specification PCM
extensions [9].

Edges are represented in the RDSEFF of a Basic Component. Each delegate RDSEFF models the
flow by using External Call Actions to invoke signatures of required Interfaces in the specified order
(i.e., Job0 invokes the prepare signature of IStage0). In the course of this, the input parameters are
forwarded and altered at specific points to model the data transmission factor ¢, of an Edge.

If a Node contains a Resource Profile, we transform it by creating several model elements. In order
to call a group of tasks in parallel, we add two signatures to the corresponding Interface of the Node
(i.e., Stage0). The providing RDSEFF prepare is intended to create a set of parallel tasks. It uses a
Distributed Call Action to invoke the execute signature of the same Interface several times in parallel.
The parallelism is either defined by the number of partitions of a data source p;; or the specified
parallelism of the Node p,,. The execute RDSEFF acquires and releases a task slot before and after
prompting a task.

We create an additional Interface and Basic Component (i.e., TaskForStage) to model a task.
Its behavior run is responsible to execute the parametric resource demands of a task (Figure 4b).
Only the wait demand of a Resource Profile will be executed in the prior prepare RDSEFF as the demand
occurs once at the beginning of each stage and not for each task. We automatically assemble all Basic
Components of the Repository Model in order to derive Palladio’s System Model.

Since the Resource Architecture follows the concepts of Palladio’s Resource Environment Model,
the transformation is linear. We transform each Resource Node to a Resource Container and convert
the Cluster Specification and Resource Role accordingly. Additionally, we transform each Resource
Unit to an equivalent Processing Resource Unit including the specification of processing rates, number
of replicas (e.g., the number of cores), and scheduling policies. Finally, all Resource Containers are
connected to networks via a Linking Resource.
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In order to create the Allocation Model, we deploy all assembled Basic Components from the
System Model on the master Resource Container from the Resource Environment Model. Our previous
extensions [9] enable Palladio’s simulation framework SimuCom to distribute resource demands to
Resource Containers that represent worker nodes with a round robin policy.

Finally, we transform the Data Workload Architecture to a Usage Model. We create one Entry
Level System Call that invokes the delegate signature of the Application Interface. The required input
parameters are transformed based on the Data Model and Data Source. We specify the number of files,
the data size of one file, the default partition size, and the number of partitions. For the Single Data
Source, we create a simple closed Workload with a population of one, which means the Entry Level
System Call is triggered once.

All transformed models can be used by Palladio’s simulator to predict performance metrics.

6. Evaluation

This section evaluates the model extraction and performance simulation approach introduced in
this work.

6.1. Research Methodology

In order to validate our approach, we conduct three integrated controlled experiments
by modeling and simulating the execution of two different exemplary machine learning
applications [40]. Therefore, we formulate three claims by exemplary problems from a performance
management perspective.

First, engineers are interested in the performance behavior of applications and resources in case
data workload grows. This experiment evaluates the claim that data workloads can be changed
independently of Execution Architectures and Resource Architectures. We initially extract one
PerTract-DSL instance for each of the two applications based on monitoring data. Afterwards,
we adapt data sizes in Data Workload Architectures and compare predictions for response times
and CPU utilization with corresponding monitored measurements in several upscaling scenarios.

Second, engineers need to evaluate the scalability of applications if additional hardware resources
are allocated. This experiment evaluates the claim that resources can be altered independently of
Execution Architectures and Resource Architectures. We modify and add worker nodes in Resource
Architectures without changing Execution Architectures and Data Workload Architectures. Afterwards,
we compare predictions results with corresponding monitored measurements.

Third, engineers need to efficiently plan and manage capacities for given data workloads and
performance requirements [5]. This experiment evaluates the claim that data workloads as well as
resources can be changed independently of Execution Architectures. Similarly, we use the models
extracted in the first experiment and conduct several upscaling scenarios regarding data workload
and cluster size without modifying Execution Architectures. Afterwards, we compare the simulated
prediction results with corresponding measurements.

6.2. HiBench Benchmark Suite

In our experiments, we apply the HiBench benchmark suite to run representative and reproducible
applications and workloads for Apache Spark [41]. As the automatic extraction approach shall
allow for modeling complex applications, we use two machine learning applications. We chose a
random forest classification (RFC) since random forests represent frequently used machine learning
models for classification and regression. HiBench implemented the application using Apache Spark’s
machine learning library MLIib and provides an RFC-specific data generator. Additionally, we chose a
linear regression (LR) as it is a common approach for regression analysis and forecasting. Therefore,
HiBench’s implementation uses a model without regularization using a stochastic gradient descent to
predict label values. Similarly, it implements Spark’s MLIlib and includes its own data generator.
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6.3. Experiment Setup

Tables 2 and 3 illustrates our testbed and data configurations. The hardware environment
includes five servers. Each server is connected to a storage area network (IBM System Storage EXP3512,
New York, NY, USA) via fibre channel allowing for eight gigabits per second (GBit/s). The servers are
also connected in a local area network (LAN) with one GBit/s.

We virtualized each server using the VMware ESXi hypervisor (VMware, Palo Alto, CA, USA)
and configured eight cores and 36-gigabyte (GB) memory for each virtualized machine (VM). On each
server, we allocated four VMs. On the first server, we use one VM as a master node for Apache HDFS
and YARN, one VM for managing the cluster (i.e., Apache Ambari), one VM for storing monitoring
data, and one VM for initiating the benchmark applications. On the remaining four servers, we use
each VM as a worker node. We deployed the Hortonworks Data Platform to use Apache Spark, YARN,
and HDEFS. For HDEFS, we kept the default configurations including a replication factor of three and a
data block size of 128 megabytes (MB). For YARN, we configured 26 GB and six virtual cores (vCores)
per container, for Spark executors 22 GB as well as six cores. Since we experienced that not all cores were
utilized when running applications, we changed the resource calculator to be dominant and enabled
CPU scheduling to address this issue. For evaluating the prediction accuracy, we compare the metrics
response time and CPU utilization. For simulations, we captured the simulated mean response time
(MRT) as well as the simulated mean CPU utilization (MCPU) across the cluster. For the benchmark
measurements, applications were executed four times for each experiment to avoid any distortions.
Similarly, monitored MRT and monitored MCPU on the user-level were calculated. Monitored response
times are derived from the Spark monitoring API and monitored CPU measurements from the Ambari
Metrics System (2.6.0).

Tables 4 and 5 list all simulated and monitored MRT and MCPU results, the root mean square
errors (RMSE), and the relative prediction errors. They provide the basis for presenting and discussing
our experiments in the following.

Table 2. Software and hardware configuration of the test system.

Hortonworks Data Platform (2.6.3.0-235)

- Apache Spark (2.2.0)
Software platform ] Agache I—Ea doop (2.7.3)
4x - Apache Ambari (2.6.0)
Java virtual machine Oracle JDK (1.8.0_60)
Operating system CentOS Linux (7.2.1511)
Virtualization VMware ESXi (5.1.0), 8 cores, 36 GB RAM
CPU cores 48 x 2.1 GHz
CPU sockets 5% 4 x AMD Opteron 6172
Random access memory (RAM) 256 gigabyte (GB)
Hardware system IBM System X3755M3
Table 3. Data workload scenarios and configurations.
Application Scenario File Size Files Partitions Total Size
Random forest classification ~ Small 1.89 gigabyte 8 128 15.12 gigabyte
Large 3.58 gigabyte 8 232 28.64 gigabyte
Huge 5.52 gigabyte 8 360 44.16 gigabyte
Linear regression Small 1.86 gigabyte 8 120 14.88 gigabyte
Large 3.49 gigabyte 8 224 27.92 gigabyte
Huge 5.59 gigabyte 8 360 44.72 gigabyte




Appendix: Published/Accepted Version of Included Publications 181

Big Data Cogn. Comput. 2019, 3, 47 16 of 24

Table 4. Monitored and simulated mean response times (seconds).

Random Forest Classification Application Linear Regression Application
Worker Data Monitored Simulated Predicti Moni d Simulated Prediction
Nodes Workload MRT MRT RMSE Error MRT MRT RMSE Error

4 Small 264.79 262.71 4.47 0.78% 42.15 43.09 119 2.23%
Large 502.09 462.41 40.26 7.90% 71.96 76.60 4.73 6.45%

Huge 755.05 696.70 59.65 7.73% 12421 116.38 13.39 6.30%

8 Small 222.46 199.04 24,92 10.53% 35.28 32.95 2.65 6.59%
Large 378.31 322.54 56.62 14.74% 52.24 49.74 3.66 4.79%

Huge 534.12 486.34 48.48 8.94% 76.73 73.54 4.60 4.15%

16 Small 196.62 196.46 4.34 0.08% 37.84 37.33 222 1.34%
Large 287.38 285.20 11.56 0.76% 40.86 45.24 4.48 10.74%

Huge 373.74 396.38 25.97 6.06% 53.27 56.96 4.05 6.93%

Table 5. Monitored and simulated mean CPU utilization.

Random Forest Classification Application Linear Regression Application
Worker Data Monitored Simulated Predicti Moni d Simulated Prediction
Nodes Workload MCPU MCPU RMSE Error MCPU MCPU RMSE Error

4 Small 48.96% 45.69% 3.31% 6.69% 48.86% 47.43% 2.53% 2.94%
Large 56.93% 48.70% 8.23% 14.45% 57.55% 52.06% 5.62% 9.53%

Huge 56.06% 49.66% 6.43% 11.42% 56.32% 55.45% 4.02% 1.54%

8 Small 35.23% 34.83% 0.91% 1,13% 36.03% 32.48% 3.72% 9.86%
Large 44.64% 39.60% 5.31% 11.29% 46.13% 42.51% 3.85% 7.85%

Huge 47.27% 40.66% 6.61% 13.98% 52.93% 48.15% 4.81% 9.04%

16 Small 22.65% 22.12% 0.84% 2.32% 22.05% 19.34% 2.91% 12.26%
Large 31.23% 27.61% 3.65% 11.57% 31.85% 28.99% 3.06% 8.97%

Huge 34.00% 30.72% 3.39% 9.63% 38.22% 35.59% 3.13% 6.89%

6.4. Collecting Resource Demands and Extracting Execution Architectures

The extraction and transformation process follows the overview illustrated in Figure 1. In order
to extract an Execution Architecture for one application, we monitor the application using our profiler
presented in Section 4.1 to extract stack traces and corresponding CPU times. Additionally, the Spark
framework itself monitors an application. As described in Section 4.2, execution components and
inter-component interactions are extracted using Spark’s interfaces. For each execution component,
CPU resource demands are generated by processing corresponding CPU times and interrelating them
with data input information of each component as explained in Section 4.3.

In order to evaluate the three proposed claims, we derive one initial PerTract-DSL instance for each
of the two machine learning applications that we use throughout all experiments. According to each
experiment and scenario, we adapt the PerTract-DSL instance and simulate it to derive predictions.

6.5. Evaluating Data Workload Changes

In order to evaluate our first claim that data workload changes can be modified independently,
we specified three different scenarios small, large, and huge for both applications. Table 3 shows the
corresponding number of files, file sizes, total partitions and total sizes for each scenario. The basis for
evaluating workload changes of each application provides one initial PerTract-DSL instance each. We
extracted this instance from a monitored experiment with a small data workload in a cluster of four
worker nodes. Afterwards, we changed the Data Workload Architecture according to the scenarios
large and huge and simulated the model instances. The simulation and monitoring results are part of
Tables 4 and 5.

The starting experiment (i.e., four nodes and small workload) shows a response time prediction
error of 0.78% for the RFC and 2.23% for the LR application. CPU prediction errors amount to 6.69%
and 2.94%. Changing the data workload according to the large and huge scenarios leads to a response
time prediction error of 7.90% and 7.73% for the RFC and 6.45% and 6.30% for the LR applications.
Similar to the prediction errors, the RMSE increased in both scenarios. For the huge scenario, Figure 5
illustrates the response time statistics of simulated and monitored Spark tasks for each stage. For both
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applications, we predict the median of the tasks for 16 of 21 stages with errors below 30%. However,
the monitored results show an increased deviation compared to the simulation results, especially,
for the LR application. This is due to the monitored delays and task processing, which showed great
variances. While we model delays with probability distributions, we only use the mean for estimating
CPU demands and did not depict this behavior. For the RFC application, tasks for stages 05, 07, 09,
and 11 also differ significantly. These stages contain reduce operations for which the input data size
does not exactly scale linearly with increasing data workload for this RFC application. However,
the error only has a minor effect on the overall application response time as stages for reduce tasks
consist of only eight tasks compared to 360 tasks for each of the other stages.

For the large and huge workload scenarios, the RMSE for CPU consistently remain below 9%. CPU
prediction errors amount to 14.45% and 11.42% for the RFC and 9.53% and 1.54% for the LR application.
Figure 6 illustrates the CPU utilization over time for one experiment run. In order to avoid illustrating
too many lines, we calculated the mean across the worker nodes. Although underestimating the CPU
utilization by 6.4% for the RFC application, the graphs of the simulated and monitored values map
very closely.

The results for response time and resource utilization show accurate prediction results based
upon averages for upscaling workload changes. Therefore, we validated the claim of being able to
change data workloads independent of Execution Architectures and Resource Architectures.

Stage 13 - »rIEEI ,,,,, 3
stage12 | ! T 3
Stage 11 -| I T
Stage 10 | ’;%ij
Stage 09 I e
Stage 08 ’;[[Ilf]"
Stage 07 — | D ;
stageos | 10 Stage 06 | [ I ‘
Stage 05 - | I stage0s - |, '
Stage 04 r}[ﬁ:l*:l ,,,,,,, | Stage 04 . [— [ i R, f
Stage 03 - s 1 Stage 03 — 0
e e \ stage 02 | T | \
stage01 + , Stage 01 | R . \
se0f 4 rom | smenq | | s L
0 5 10 15 20 25 30 0 1 2
Response time (seconds) Response time (seconds)
(a) Random forest classification (b) Linear regression

Figure 5. Response time statistics of Spark tasks for each stage (four worker nodes, huge data
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Figure 6. Mean CPU utilization of four worker nodes (huge data workload).

6.6. Evaluating Resource Changes

We increased the initial cluster size of four worker nodes by factors two and four in order
to evaluate our second claim that hardware resources can be changed independently of Execution
Architectures and Data Workload Architectures.
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Similarly, the evaluation is based on one initial PerTract-DSL instance for each application,
which is the same as for the data workload evaluation and was extracted from a monitored experiment
with four worker nodes. Afterwards, we increased the worker nodes to eight and 16 nodes in
the Resource Architecture. Additionally, we adapted the number of executors e in the application
configuration of the Execution Architecture to match the number of worker nodes. The simulation and
monitoring results are part of Tables 4 and 5.

In the previous subsection, we already discussed the same starting experiment, which does not
include any changes. For eight worker and 16 worker nodes, response time prediction errors amount
to 10.53% and 0.08% for the RFC application and 6.59% and 1.34% for the LR application, respectively.
Compared to the data workload changes, the RMSE is lower throughout the resource changes for
both applications. Figure 7 additionally shows the detailed response time statistics of Spark tasks
for each stage of the applications. Compared to the data workload evaluation, the median values of
simulated and monitored results lie closer together. The distance of the first and third quartiles are
also predicted more accurately for most stages of both applications. For a few stages such as Stage 01,
minimum, maximum, and quartiles differ significantly. Nonetheless, response time predictions errors
on application-level remain below 15% in total.

For eight worker and 16 worker nodes, CPU prediction errors come to 1.13% and 2.32% for the
RFC application and to 9.86% and 12.26% for the LR application, respectively. Figure 8 illustrates the
CPU utilization over time for one experiment run. For the RFC application, the simulated CPU usage
overestimates several peaks and underestimates negative peaks. However, it depicts the progression
of the monitored results overall. For the LR application, the predicted CPU utilization is very precise.

In total, the simulation results show accurate prediction results for upscaling hardware resource
changes with mean prediction errors below 15% and validate the claim that hardware resource can be
modified without changing Execution Architectures and Data Workload Architectures.
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Figure 7. Response time statistics of Spark tasks for each stage (16 worker nodes, small data workload).
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Figure 8. Mean CPU utilization of 16 worker nodes (small data workload).
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6.7. Evaluating Data Workload and Resource Changes

In order to evaluate our claim that data workload and hardware resources can be modified
without changing application Execution Architectures, we applied both upscaling scenarios together,
regarding data workload as well as worker nodes. The simulation and monitoring results are part of
Tables 4 and 5. Again, the evaluation is based on the same initially extracted PerTract-DSL instance for
each application.

For eight worker nodes and a large data workload, response time prediction errors amount to
14.74% for the RFC and 4.79% for the LR application. For huge data workload, the errors are 8.94% and
4.15%, respectively. For 16 worker nodes and a large data workload, response time prediction errors
come to 0.76% for the RFC and 10.74% for the LR application. With huge data workload, the errors
are 6.06% and 6.93%, respectively. The RMSE results consistently behave similarly to prediction
errors. The highest RMSE amounts to 56.62 s, which equals 14.97% of the corresponding monitored
response times. For all scenarios, prediction errors constantly remain below 15%. Figure 9 additionally
shows the response time statistics of results with 16 worker nodes and huge workload. Compared
to the two previous evaluations, the simulation results depict monitoring results as the closest for
both applications.
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Figure 9. Response time statistics of Spark tasks for each stage (16 worker nodes, huge data workload).

Looking at the CPU results for eight worker nodes and a large data workload, prediction errors
amount to 11.29% for the RFC application and 7.85% for the LR application. For a huge workload,
the errors remain similarly with 13.98% and 9.04%. For 16 worker nodes and a large data workload,
the errors also remain 11.57% and 8.97%. With a huge data workload, they decrease a little to 9.63%
and 6.89%, similar to the response time prediction.

Figure 10 shows the CPU utilization over time of one run with 16 worker nodes and a huge
data workload. In case of the RFC application, the simulation graph depicts the progression of the
monitored measurements. However, it shifts as the response time differs. In case of the LR application,
the simulated CPU utilization is also slightly shifted due to the different response times. Otherwise, it
depicts the monitored utilization except for one peak at the beginning. This is due to overestimating
the CPU demand for Stage 00. Similarly, the task response time also significantly differs for Stage 00
for both applications throughout all experiments. The reason for the overestimation is that this stage
consists of only one task, which does not scale linearly with the dependent data size. This is a case that
we intentionally did not consider and could not cover as it requires metaknowledge of the application
that we do not expect in an automatic extraction process.
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Figure 10. Mean CPU utilization of 16 worker nodes (huge data workload).

Overall, the simulated results for response times on an application-level as well as CPU utilization
show accurate predictions for both data workload changes and hardware resources. The mean
prediction errors remained below 15% as well as the RMSE compared to the monitored results.
In performance evaluation literature, prediction errors of 30% across cluster sizes are expected [20].
Therefore, we validated the claim of being able to change data workloads and resources’ architectures
independent of Execution Architectures. Our approach enriches related work by predicting CPU
utilization across clusters and over time.

6.8. Threats to Validity

Although we applied some sophisticated machine learning applications, we generated data and
used only a set of sample applications from one benchmark suite. As they are far more complex
applications and have deviating data in praxis, this represents a threat to external validity [42].

Furthermore, we evaluated our approach only for one technology (i.e., Apache Spark) and one
type of application (i.e., batch). In previous work, we showed that our approach is also applicable for
Spark Streaming applications [11]. However, we claim that the DSL builds a foundation to specify
other technologies as well, such as Apache Flink and Apache Storm. Extensions might be required
(e.g., additional parameters) to support modeling and accurate predictions. We plan to evaluate this in
our future work.

We used several visualizations and statistical measures such as mean, standard deviation,
and relative error to ensure statistical conclusion validity. While the results of one measure can
be close to each other (e.g., mean), another measure can differ significantly (e.g., minimum value).

6.9. Assumptions and Limitations

We allocated one Spark executor to each node during our experiments. It is also possible to size
less cores and memory for Spark executors, which would enable Spark to allocate multiple executors
to one node. Although we are also able to model and simulate these scenarios, we did not evaluate
such a case. We evaluated our experiments in a virtualized, but exclusive cluster in which no other
applications were running in parallel and using any CPU, disk drives, or networks. For data analytics
applications, CPU is usually the bottleneck [37]. As HiBench and other industry benchmarks mainly
consist of only compute-intensive applications, we did not evaluate our approach for a wider variety
of applications.

Regarding our modeling approach, we specified the input of a subsequent Spark stage
probabilistically depending on the output data of a previous stage. Therefore, our prediction error will
increase, if the properties of the initial underlying data set change significantly (e.g., the number of
distinct words in case of a word count application). Another limitation is that we only include network
delays in our models and simulations, but did not simulate network throughput and bandwidth
yet. The same applies to disk drives. In addition, we also did not consider rack awareness in our
specification. Regarding big data features and PCM, Heinrich et al. [43] discuss current challenges and
potential solutions, for instance, for modeling data structures and continuous data flows.
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7. Conclusions and Future Work

Modeling and predicting the performance of big data applications are essential for planning
capacities and evaluating configurations. Automatically deriving models, specifying applications
tool-agnostic, and gaining insights into performance-relevant factors of system architectures and
dependencies are complex challenges. We present PerTract, an approach to automatically extract
model specifications and transform them to the model-based performance evaluation tool Palladio.
A PerTract-DSL allows the specification of (i) application execution architectures including components,
parametric dependencies, and resource demands, (ii) computing resources, and (iii) data workloads.
It is specifically designed for big data systems, decreases the complexity compared to full performance
models, and simplifies the changeability to users. We demonstrated the extraction of DSL instances by
the example of Apache Spark applications, Apache YARN resources, and Apache HDFS data. This is
the first white-box approach to present an automated way to integrate measurements and estimate
resource demands to produce performance models that can be simulated. We used two machine
learning applications of the HiBench benchmark suite in the evaluation and upscaled data sizes as well
as cluster sizes in different scenarios. We are able to predict mean response times on application-level
and CPU usage with accurate predictions errors below 15%.

In our future work, we plan to extract DSL instances from more technologies. We already provide
away to extract the execution architecture of Apache Flink applications, but need further investigations
to estimate accurate resource demands. Additional technologies include Apache Mesos for modeling
computing resources and Apache Kafka for characterizing data workload. We also plan to implement
direct transformations from the DSL to a scalable event-oriented discrete-event simulation as we
are reaching the limit for simulating continuous sources (data streams). Finally, we will extend the
specification of continuous data sources to include load intensity profiles that model variations in
arrival rates [44].
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Abbreviations

The following abbreviations are used in this manuscript:

CPU Central processing unit

DSL Domain-specific language
EMF Eclipse modeling framework
GB Gigabyte

HDFS Hadoop distributed file system
LAN Local area network

LR Linear regression

MB Megabytes

MCPU Mean CPU utilization

MRT Mean response time

PCM Palladio component model
PDF Probability density function
RDD Resilient distributed dataset
RDSEFF  Resource demanding service effect specification
RFC Random forest classification
RMSE Root mean square error

VM Virtualized machine



Appendix: Published/Accepted Version of Included Publications

187

Big Data Cogn. Comput. 2019, 3, 47 22 of 24
References
1. Schermann, M.; Hemsen, H.; Buchmiiller, C.; Bitter, T.; Krcmar, H.; Markl, V.; Hoeren, T. Big Data—An

10.

11.

12.

13.

14.

15.

16.

17.

18.

interdisciplinary opportunity for information systems research. Bus. Inf. Syst. Eng. 2014, 6, 261-266.
[CrossRef]

Brunnert, A.; Vogele, C.; Danciu, A.; Pfaff, M.; Mayer, M.; Krcmar, H. Performance management work.
Bus. Inf. Syst. Eng. 2014, 6, 177-179. [CrossRef]

Wang, K.; Khan, M.M.H. Performance Prediction for Apache Spark Platform. In Proceedings of the 17th
International Conference on High Performance Computing and Communications, New York, NY, USA,
24-26 August 2015; pp. 166-173.

Brosig, F.; Meier, P; Becker, S.; Koziolek, A.; Koziolek, H.; Kounev, S. Quantitative Evaluation of Model-Driven
Performance Analysis and Simulation of Component-Based Architectures. IEEE Trans. Softw. Eng. 2015,
41,157-175. [CrossRef]

Brunnert, A.; van Hoorn, A.; Willnecker, F.; Danciu, A.; Hasselbring, W.; Heger, C.; Herbst, N.;
Jamshidi, P; Jung, R.; von Kistowski, J.; et al. Performance-Oriented DevOps: A Research Agenda;
Technical Report SPEC-RG-2015-01; SPEC Research Group—DevOps Performance Working Group,
Standard Performance Evaluation Corporation (SPEC): Gainesville, FL, USA, 2015. Available
online: http:/ /research.spec.org/fileadmin/user_upload /documents/wg_devops/endorsed_publications/
SPEC-RG-2015-001-DevOpsPerformanceResearchAgenda.pdf (accessed on 8 August 2019).

Becker, S.; Koziolek, H.; Reussner, R. The Palladio component model for model-driven performance
prediction. J. Syst. Softw. 2009, 82, 3-22. [CrossRef]

KroB, J. PerTract. Available online: https://github.com/johanneskross/pertract (accessed on 7 August 2019).
Kro8, J.; Brunnert, A.; Prehofer, C.; Runkler, T.; Kremar, H. Stream Processing on Demand for Lambda
Architectures. In Computer Performance Engineering; Beltran, M., Knottenbelt, W., Bradley, J., Eds.; Lecture
Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2015; Volume 9272,
pp. 243-257.

Kro8, J.; Brunnert, A.; Kremar, H. Modeling Big Data Systems by Extending the Palladio Component Model.
In Proceedings of the 2015 Symposium on Software Performance, Munich, Germany, 4-6 November 2015.
Kro8, J.; Kremar, H. Modeling and Simulating Apache Spark Streaming Applications. In Proceedings of the
2016 Symposium on Software Performance, Kiel, Germany, 8-9 November 2016.

KroB, J.; Krcmar, H. Model-based Performance Evaluation of Batch and Stream Applications for Big
Data. In Proceedings of the IEEE 25th International Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems (MASCOTS), Banff, AB, Canada, 20-22 September 2017;
pp. 80-86.

Vianna, E.; Comarela, G.; Pontes, T.; Almeida, J.; Almeida, V.; Wilkinson, K.; Kuno, H.; Dayal, U. Analytical
Performance Models for MapReduce Workloads. Int. J. Parallel Program. 2013, 41, 495-525. [CrossRef]
Verma, A.; Cherkasova, L.; Campbell, RH. Profiling and evaluating hardware choices for MapReduce
environments: An application-aware approach. Perform. Eval. 2014, 79, 328-344. [CrossRef]

Zhang, Z.; Cherkasova, L.; Loo, B.T. Benchmarking Approach for Designing a Mapreduce Performance
Model. In Proceedings of the ACM/SPEC International Conference on Performance Engineering, Prague,
Czech Republic, 21-24 April 2013; ACM Press: New York, NY, USA, 2013; pp. 253-258.

Zhang, Z.; Cherkasova, L.; Loo, B.T. Performance Modeling of MapReduce Jobs in Heterogeneous Cloud
Environments. In Proceedings of the 2013 IEEE Sixth International Conference on Cloud Computing,
Santa Clara, CA, USA, 28 June-3 July 2013; IEEE: Washington, DC, USA, 2013; pp. 839-846.

Zhang, Z.; Cherkasova, L.; Loo, B.T. Exploiting Cloud Heterogeneity to Optimize Performance and Cost of
MapReduce Processing. SIGMETRICS Perform. Eval. Rev. 2015, 42, 38-50. [CrossRef]

Barbierato, E.; Gribaudo, M.; Iacono, M. Performance evaluation of NoSQL big-data applications using
multi-formalism models. Future Gener. Comput. Syst. 2014, 37, 345-353. [CrossRef]

Ardagna, D.; Bernardi, S.; Gianniti, E.; Karimian Aliabadi, S.; Perez-Palacin, D.; Requeno, J.I. Modeling
Performance of Hadoop Applications: A Journey from Queueing Networks to Stochastic Well Formed
Nets. In Algorithms and Architectures for Parallel Processing; Carretero, J., Garcia-Blas, J., Ko, R.K., Mueller, P,
Nakano, K., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland,
2016; pp. 599-613.



Appendix: Published/Accepted Version of Included Publications

188

Big Data Cogn. Comput. 2019, 3, 47 23 of 24

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

35.

36.

Lehrig, S. Applying Architectural Templates for Design-Time Scalability and Elasticity Analyses of SaaS
Applications. In Proceedings of the 2nd International Workshop on Hot Topics in Cloud Service Scalability,
Dublin, Ireland, 22 March 2014; pp. 2:1-2:8.

Ardagna, D.; Barbierato, E.; Evangelinou, A.; Gianniti, E.; Gribaudo, M.; Pinto, T.B.M.; Guimaraes, A.;
daSilva, A.P.C.; Almeida, ].M. Performance Prediction of Cloud-Based Big Data Applications. In Proceedings
of the ACM/SPEC International Conference on Performance Engineering, Berlin, Germany, 9-13 April 2018;
pp- 192-199.

Singhal, R.; Singh, P. Performance Assurance Model for Applications on SPARK Platform. In Performance
Evaluation and Benchmarking for the Analytics Era; Nambiar, R., Poess, M., Eds.; Lecture Notes in Computer
Science; Springer International Publishing: Cham, Switzerland, 2018; pp. 131-146.

Venkataraman, S.; Yang, Z.; Franklin, M.; Recht, B.; Stoica, I. Ernest: Efficient Performance Prediction for
Large-Scale Advanced Analytics. In Proceedings of the 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 16), Santa Clara, CA, USA, 13-17 March 2016; USENIX Association:
Santa Clara, CA, USA, 2016; pp. 363-378.

Alipourfard, O.; Liu, HH.; Chen, J.; Venkataraman, S.; Yum, M.; Zhang, M. CherryPick: Adaptively
Unearthing the Best Cloud Configurations for Big Data Analytics. In Proceedings of the 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 17), Boston, MA, USA, 27-29 March
2017; USENIX Association: Boston, MA, USA, 2017; pp. 469-482.

Witt, C.; Bux, M.; Gusew, W.; Leser, U. Predictive performance modeling for distributed batch processing
using black box monitoring and machine learning. Inf. Syst. 2019, 82, 33-52. [CrossRef]

Castiglione, A.; Gribaudo, M.; Iacono, M.; Palmieri, F. Modeling performances of concurrent big data
applications. Softw. Pract. Exp. 2014, 45, 1127-1144. [CrossRef]

Niemann, R. Towards the Prediction of the Performance and Energy Efficiency of Distributed Data
Management Systems. In Proceedings of the ACM/SPEC International Conference on Performance
Engineering, Delft, The Netherlands, 12-16 March 2016; pp. 23-28.

Casale, G.; Ardagna, D.; Artac, M.; Barbier, F; Nitto, E.D.; Henry, A.; Iuhasz, G.; Joubert, C.; Merseguer, J.;
Munteanu, V.I; et al. DICE: Quality-driven Development of Data-intensive Cloud Applications.
In Proceedings of the Seventh International Workshop on Modeling in Software Engineering, Florence, Italy,
16-24 May 2015; pp. 78-83.

Guerriero, M.; Tajfar, S.; Tamburri, D.A.; Di Nitto, E. Towards a Model-driven Design Tool for Big Data
Architectures. In Proceedings of the 2nd International Workshop on BIG Data Software Engineering, Austin,
TX, USA, 2016; pp. 37-43.

Gomez, A.; Merseguer, J.; Di Nitto, E.; Tamburri, D.A. Towards a UML Profile for Data Intensive Applications.
In Proceedings of the 2Nd International Workshop on Quality-Aware DevOps, Saarbriicken, Germany,
21 July 2016; pp. 18-23.

Ginis, R.; Strom, RE. Method for Predicting Performance of Distributed Stream Processing Systems.
U.S. Patent 7,818,417, 19 October 2010.

Steinberg, D.; Budinsky, F; Paternostro, M.; Merks, E. EMF: Eclipse Modeling Framework, 2nd ed.;
Addison-Wesley: Boston, MA, USA, 2009.

King, B. Performance Assurance for IT Systems; Auerbach Publications: Boston, MA, USA, 2004.

Brandl, R.; Bichler, M.; Strobel, M. Cost accounting for shared IT infrastructures. Wirtschaftsinformatik 2007,
49, 83-94. [CrossRef]

Brunnert, A.; Kremar, H. Continuous Performance Evaluation and Capacity Planning Using Resource
Profiles for Enterprise Applications. J. Syst. Softw. 2017, 123, 239-262. [CrossRef]

Zaharia, M.; Chowdhury, M.; Das, T.; Dave, A,; Ma, J.; McCauley, M.; Franklin, M.J.; Shenker, S.;
Stoica, I. Resilient Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster Computing.
In Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation, San Jose,
CA, USA, 25-27 April 2012; USENIX Association: Berkeley, CA, USA, 2012; p. 2.

Apache Spark. Lightning-Fast Cluster Computing. Available online: https://spark.apache.org (accessed on
19 February 2018).



Appendix: Published/Accepted Version of Included Publications

189

Big Data Cogn. Comput. 2019, 3, 47 24 of 24

37.

38.

39.

40.

41.

42.

43.

44.

Ousterhout, K.; Rasti, R.; Ratnasamy, S.; Shenker, S.; Chun, B.G. Making Sense of Performance in Data
Analytics Frameworks. In Proceedings of the 12th USENIX Symposium on Networked Systems Design
and Implementation, Oakland, CA, USA, 4-6 May 2015; USENIX Association: Oakland, CA, USA, 2015;
pp- 293-307.

Apache Hadoop. Welcome to Apache Hadoop! Available online: https://hadoop.apache.org/ (accessed on
1 January 2017).

Dean, J.; Ghemawat, S. MapReduce: Simplified Data Processing on Large Clusters. Commun. ACM 2008,
51,107-113. [CrossRef]

Hevner, A.R;; March, S.T,; Park, J.; Ram, S. Design Science in Information Systems Research. MIS Q. 2004,
28,75-105. [CrossRef]

Huang, S.; Huang, J.; Dai, J.; Xie, T.; Huang, B. The HiBench benchmark suite: Characterization of the
MapReduce-based data analysis. In Proceedings of the 26th International Conference on Data Engineering
Workshops, Long Beach, CA, USA, 1-6 March 2010; pp. 41-51.

Wohlin, C.; Runeson, P.; Host, M.; Ohlsson, M.C.; Regnell, B.; Wesslén, A. Experimentation in Software
Engineering; Springer: Berlin/Heidelberg, Germany, 2012.

Heinrich, R.; Eichelberger, H.; Schmid, K. Performance Modeling in the Age of Big Data—Some Reflections
on Current Limitations. In Proceedings of the 3rd International Workshop on Interplay of Model-Driven
and Component-Based Software Engineering, Saint-Malo, France, 2 October 2016; pp. 37-38.

Kistowski, J.V.; Herbst, N.; Kounev, S.; Groenda, H.; Stier, C.; Lehrig, S. Modeling and Extracting Load
Intensity Profiles. ACM Trans. Auton. Adapt. Syst. 2017, 11, 23:1-23:28. [CrossRef]

@ (© 2019 by the authors. Licensee MDP]I, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution
[

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).



	Abstract
	Acknowledgement
	Contents
	List of Figures
	List of Tables
	List of Listings
	List of Abbreviations and Acronyms
	Part A
	1 Introduction
	1.1 Motivation and Problem Statement
	1.2 Research Goal and Research Questions
	1.3 Thesis Structure

	2 Conceptual Background
	2.1 Big Data Frameworks and Systems
	2.2 Software Performance Management
	2.3 Model-based Performance Evaluation

	3 Research Methodology
	3.1 Research Design
	3.2 Research Methods
	3.3 Publications


	Part B
	4 Towards a Model-driven Performance Prediction Approach for Internet of Things Architectures
	4.1 Introduction
	4.2 Model-driven Performance Prediction
	4.3 Related Work
	4.4 Conclusion and Future Work

	5 Stream Processing On Demand for Lambda Architectures
	5.1 Introduction
	5.2 Stream Processing On Demand
	5.3 Experimental Validation
	5.4 Related Work
	5.5 Conclusion and Future Work

	6 Modeling Big Data Systems by Extending the Palladio Component Model
	6.1 Introduction
	6.2 Modeling Big Data Systems
	6.3 Related Work
	6.4 Conclusion and Future Work

	7 Modeling and Simulating Apache Spark Streaming Applications
	7.1 Introduction
	7.2 Related Work
	7.3 Modeling and Simulation Approach
	7.4 Controlled Experiment
	7.5 Conclusion and Future Work

	8 Model-Based Performance Evaluation of Batch and Stream Applications for Big Data
	8.1 Introduction
	8.2 Related Work
	8.3 Big Data Applications and Systems
	8.4 Modeling and Simulation Approach
	8.5 Evaluation
	8.6 Conclusion and Future Work

	9 PerTract: Model Extraction and Specification of Big Data Systems for Performance Prediction by the Example of Apache Spark and Hadoop
	9.1 Introduction
	9.2 Related Work
	9.3 Modeling Approach
	9.4 Extracting Model Instances by the Example of Apache Spark, Apache YARN and Apache HDFS
	9.5 Transformation to Performance Models
	9.6 Evaluation
	9.7 Conclusions and Future Work


	Part C
	10 Summary of Results and Discussion of Implications
	10.1 Summary of Results
	10.2 Limitations
	10.3 Contribution to Research
	10.4 Contribution to Practice
	10.5 Future Research

	References
	Published/Accepted Version of Included Publications



