


Fakultät für Elektrotechnik und Informationstechnik

Lehrstuhl für Mensch-Maschine-Kommunikation

Computationally Modelling Human Visual Perception: Eye Movements and Saliency

                  Mikhail Startsev                 

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik

der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzende(r):     Prof. Dr. Sebastian Steinhorst

Prüfer der Dissertation: 

1. TUM Junior Fellow Dr.-Ing. Michael Dorr             

2. Prof. Dr.-Ing. Klaus Diepold

3. Prof. Dr.-Ing. Erhardt Barth

Die Dissertation wurde am       05.03.2020        bei der Technischen Universität München

eingereicht und durch die Fakultät für Elektrotechnik und Informationstechnik

am       21.09.2020        angenommen.



Abstract

With the goal of better analysing and understanding human visual perception, this work
focused on two related areas – eye movement event classification and saliency prediction.
For the former problem, we developed both supervised and unsupervised approaches,
substantially improving upon the state of the art. We especially focused on an important
but largely neglected eye movement type – smooth pursuit, improving its detection across
the board. We also expanded the applicability of saliency modelling by (i) designing
techniques to utilise 2D-image saliency models to produce high-quality predictions for
360◦ content; and (ii) proposing a novel type of video saliency analysis – separately
modelling attention exhibited as different eye movements classes. We found that e.g .
training to predict smooth pursuits yields more generalisable predictors of attention, thus
improving on learning to predict fixations, which is the traditional saliency formulation.
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Zusammenfassung

Mit dem Ziel eines besseren Verständnisses der menschlichen visuellen Wahrnehmung
hat diese Dissertation sich zum einen auf die Klassifikation und zum anderen auf die
Vorhersage von Augenbewegungen konzentriert. Für die erste Problemstellung haben wir
mithilfe von sowohl überwachten als auch unüberwachten Methoden des maschinellen
Lernens den Stand der Technik deutlich verbessert. Ein besonderer Schwerpunkt lag
dabei auf den langsamen Augenfolgebewegungen, eine wichtige, aber bisher in der Lit-
eratur aufgrund von technischen Schwierigkeiten weitgehend vernachlässigte Art der
Augenbewegungen. Für die zweite Problemstellung haben wir den Einsatzbereich und
die Leistung der im Bereich des maschinellen Sehens sehr populären Saliency-Modelle
erweitert, indem wir (i) neue Methoden entwickelten, um mit existierenden Algorith-
men für 2D-Bilder hochwertige Prädiktionen auf 360-Grad-Material zu erzielen; und
(ii) das Problem der Vorhersage informativer Bildbereiche für Videos durch Analyse
der Blickrichtung neu formulierten: unterschiedliche Augenbewegungen repräsentieren
unterschiedliche Komponenten der Aufmerksamkeit, die wir separat modellierten. Unter
anderem gelang uns der Nachweis, dass unsere neuen, nur mit den Daten langsamer Au-
genfolgebewegungen trainierten Modelle bessere Generalisierungseigenschaften aufweisen
als herkömmliche Modelle und diese dadurch sogar in der klassischen Problemstellung
der Vorhersage von Blick-Fixationen übertreffen können.
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Introduction

Human vision, as any part of a biological system, evolved under certain constraints –
how much energy it can consume and how much bandwidth it can utilise to deliver the
visual information to the brain. For example, [1] puts an estimate on the transmission
capabilities of the human retina at ca. 8 megabit per second. Constantly perceiving our
whole field of view at the highest level of detail available to the visual system would
quickly exceed this limit. Our picture of the world is, therefore, much sparser at every
single moment, and the task of inferring a consistent model of the whole scene around us
is passed on to the brain. In reality, humans only see the finest details when those are
projected onto a special area of the retina – the fovea, which covers only about one to
two degrees of visual angle, a tiny part of the visual field [2, Section 2.5.1].

Due to this limitation of the visual system, the eyes have to be redirected from one
area of the visual world to another in order to gather enough information for a detailed
understanding of the scene. Since humans rely on visual information throughout their
daily lives, the eye movements represent a very fundamental aspect of how we observe
the world around us. The precise nature and properties of this observation process can
reveal many seemingly unexpected details about the observer, from their level of interest
in the scene [3, 4, 5] to the information about their neurological health [6, 7, 2∗, 11†] or
professional expertise [8, 9, 10].

The notion of sparsity, which is inherent to human vision, is also very important in
developing computational methods for media analysis, where modelling human attention
helps compress images or video streams while maintaining high perceived quality [11,
12, 13, 14], improve e.g . action recognition [15] or video summarisation [16] systems,
reaching as well into human-robot interaction [17] and driver assistance [18, 19].

Deciphering the observer’s intent from their eyes could be seen either as a glimpse
of a dystopian future (hence the privacy considerations related to gaze data [20]), or as
getting close to obtaining the holy grail of human-computer interaction – communicating
one’s intention to an automatic system merely through moving the eyes. This would
not just immensely help those whose interaction capabilities are limited, by physical
abilities or situation [21, 22], but also increase the productivity of the workflow for regular
users [23, 24, 25, 26], potentially combined with other input modalities [27, 28, 29].
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1. Introduction

1.1 Eye Tracking

Eye tracking provides a vital tool for studying the attention and eye movement mech-
anisms, as it allows recording the patterns and directions of gaze. There are various
possible hardware implementations of an eye tracking system (cf . [2, Section 2.1]), but
they are essentially aiming to reveal where the observer (i.e. the person using the system)
is looking at any given time, in some frame of reference (e.g . relative to a computer
display, a virtual scene, the observer’s head, or the footage of a head-mounted camera).

In the context of this work, we will refer to the outputs of an eye tracking system as
gaze locations – a term we use interchangeably with “gaze points”, “gaze coordinates”,
“gaze samples”, or “points of regard”. These will have different numerical representations
depending on the coordinate system and use case. In the most common to date case of a
computer monitor-based coordinate system, gaze locations could be represented by pairs
of x and y coordinates. Depending on the frequency of a digital eye tracking system
(which can range from 30 Hz in a wearable eye tracker to 2000 Hz in a state-of-the-art
stationary system), these gaze locations are yielded once per a certain time interval (on
average), resulting in gaze location sequences. The time stamp for each recorded gaze
location can also be stored. The outputs of the gaze tracking system for an example of an
observer viewing an image, as well as two of the alternative ways of their representation,
can be seen in Figure 1.1. These representations highlight two aspects of the recorded
gaze location sequences – spatial and temporal.

The spatial characterisation, achieved here by aggregating gaze locations across
time (with added smoothing to account for the size of the fovea and the eye tracker
measurement uncertainty, as well as for easier interpretation), results in a saliency map –
an intensity matrix, with values corresponding to the density of gaze samples around
each location of the stimulus (e.g . every pixel of an image). These saliency maps can be
collected for either single individuals or populations, for both static images and videos.
In the latter case, the aggregation across time happens within the time interval, during
which each individual frame was displayed, resulting in a sequence of saliency maps, each
corresponding to a video frame.

Plotting gaze coordinates over time reveals the temporal dynamics of gaze – the
speed and size of the transitions between different locations on the scene, the amount of
jitter in the signal, etc.

1.2 Eye Movements

On the visualisations of gaze coordinates over time (Figure 1.1 on the bottom), distinct
patterns are visible that are following one another – periods of relatively static gaze
and periods of rapid changes in gaze locations. This represents the basic intuition for
eye movement analysis: The gaze signal contains “events” of different types, which can
be differentiated by some criteria: E.g . the events in Figure 1.1 could be distinguished
by the speed of gaze – i.e. how fast gaze moves from one location yielded by the eye
tracking system to the next.
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Figure 1.1: Eye tracking data representations: The spatial aspect of the data can be
examined by analysing the distribution of the gaze samples on the stimulus (e.g . on an
image or a video frame), corresponding to saliency map analysis. The temporal aspect of
the data can be visualised by plotting the gaze point coordinates over time, providing
the intuition for different events in the gaze data.

While there is only a limited number of event types defined in the literature, not
all of them are used by all groups, and their definitions (i.e. the differentiation criteria
from above) differ even from field expert to field expert, and from one eye tracking
experiment set-up to another [30, 31]. In this work, we mainly talk about eye movements
in the context of video viewing on a computer monitor, and we focus on eye movements
that have major contributions to perception, according to the literature. Fixations –
maintaining a relatively stationary gaze location, thus stabilising the image of the gaze
target on the retina – are the largest contributors to information extraction from our
surroundings (and traditionally seen even as the only contributors). Saccades – rapid
shifts of gaze direction that bring new objects or parts of objects onto the fovea – are
the means of quickly moving the gaze in the scene and are indispensable for exploration.
These two eye movements are often studied exclusively [32, 33, 34, 35], likely following
the tradition in the field, since dynamic stimuli have been gaining traction only in recent
years (for static stimuli, fixations and saccades do indeed account for almost all of the
gaze behaviour). There also seems to be a certain degree of interplay between fixations
and saccades [36], as we do not perceive the world around us as completely changed after
a large saccade, even though the image on the retina undergoes drastic changes.
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When dynamic stimuli are displayed to the participants, they can also perform smooth
pursuit (SP) – a tracking eye movement, when a moving target is maintained foveated
(i.e. its projection falls onto the fovea). This way, fine-grained visual information can be
extracted from the target even while it is moving. Highlighting the importance of this
eye movement type, recent research also examined and described its influence on our
perception [37, 38]. One of the contributions of this work is demonstrating that even
from a purely quantitative standpoint, the amount of time observers spend performing
SP rivals the time spent performing saccades in natural scene free-viewing [4∗].

The gaze samples that are not as closely related to perception – blinks, noise of the
oculomotor or the eye tracking system – we label together under the name of noise. The
definitions of the eye movements that we used in our works are laid out more precisely
in Section 2.1.1.

When the recording set-up is less restrictive than viewing content on a computer
monitor – e.g . watching 360-degree video on a head-mounted display, – the definitions
become more complex. Our work in [1∗] addressed the challenge of both systematically
denoting and manually annotating the eye movement classes in this context as well
(though it is not a part of this dissertation).

It is important to understand that the eye movement definitions are not universal
and can be introduced even on a case-by-case basis, they just have to (i) be well and
reproducibly described, and (ii) represent useful concepts in the scenario in which they are
used. For human-computer interaction, for example, defining a “fixation” as maintaining
gaze locations within an interactive element [39] is a useful definition, even though this
can include both periods of stationary gaze and small-magnitude gaze shifts. The same
definition would, of course, stop being useful when applied in the context of studying
“miniature” eye movements [40].

1.3 Eye Movement Classification

Whichever definitions are applied, however, many uses of eye tracking require (or assume)
a segmentation of the raw signal into discrete events as the first and essential step.
Often, doing this algorithmically is critical – either due to the interactive nature of the
application [41, 42], to make sure annotation is performed consistently in the same way for
all recordings [30], or because of the large volumes of data that need to be analysed [6∗],
as experts can take almost 20 times longer than the duration of recordings to label
these [30, 4∗]. Manual labelling effort only increases when the eye tracking data originate
from a more unconstrained scenario instead of standard monitor-based experiments,
e.g . for omnidirectional video viewing data with free head rotation, annotating just one
second of raw data could require about a minute of the expert’s time [1∗].

Whenever eye movement events in the gaze recording signal are labelled by an
algorithm, we talk about eye movement classification (the same achieved via expert
intervention would be manual eye movement classification). There is some debate in the
field about the correct naming of this process – “eye movement detection” is often used
instead. One argument for classification over detection is that “detection” somewhat
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1. Introduction

implies that what is being detected is well-defined and only needs to be localised, whereas
“classification” does not seem to make this assumption. As we have discussed above,
the definitions of eye movement events should suit their intended usage, and are not
set in stone. We will, therefore, prefer the term “classification”, but “detection” and
“segmentation” essentially refer to the same concept in this context.

It is important to note that not all gaze samples have to be assigned an eye movement
label – for example, an algorithm may exclusively detect one type of eye movements, in
which case we would be talking about e.g . fixation [43, 44, 45] or SP [7, 3†] classification.
Additionally, eye movement labels do not have to be constrained to just one label per
gaze sample – in [1∗], for instance, we utilised a two-label system to better describe not
just the movements of the eye, but some aspects of eye-head coordination as well.

1.3.1 Brief Taxonomy

To better understand this work, two ways of categorising eye movement classifiers could
be useful: which eye movements are considered by the algorithm, and which methods
are applied to achieve the desired classification. We will examine these in turn in the
two following sections.

1.3.1.1 Detected Classes

When considering the eye movements that are classified by the algorithms, we note that
comparatively early eye movement classifiers focused heavily on distinguishing between
fixations and saccades [32, 46, 47], though very specialised algorithms for particular (rarer)
eye movement classes existed in their respective fields for some time as well [48, 49, 50].

Recent years have seen a push for more granularity when distinguishing between
the different states of the oculomotor system, with post-saccadic oscillation (PSO) –
the physical oscillations in the eye after a quick deceleration when a saccade is finished
– being treated separately from both the saccade preceding it and the ensuing eye
movement [51, 52], or SP being more often included in the analysis [42, 53, 4∗]. More
general-purpose, “universal” eye movement classifiers, which would detect all the eye
movements of interest, and not just one or two types, have also become more frequent in
recent years [52, 54, 55, 3∗]. Part of the motivation for this is the fact that models can
struggle when an eye movement type unknown to them is present in the data, and the
detection of the main target of their analysis can suffer in quality [47].

The methods presented in this work belong to the very few approaches in the literature
that tackle the detection of SP – an eye movement type that is particular to the gaze
behaviour in dynamic scenarios (which are only too common in the real world, but have
been largely neglected in previous research). One of the methods [3∗] is general-purpose
by nature, and aims to classify every sample of each recording. Our main algorithmic
contribution in developing another approach [4∗] was targeting SP, but we built a
framework around it that detects all eye movement types we were working with.
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1.3.1.2 Computational Methods

Early classification models often relied on applying simple thresholds to certain statistics
of the gaze movement – speed and dispersion [32, 46], values derived from principle
component analysis [56], or statistics of gaze direction [57]. Both the features and the
rules for classification in these algorithms were hand-crafted. Some very recent methods
fall into this category as well [58, 59], with more sophisticated features and decision rules.

As the field progressed, the researchers started applying machine learning models
to the hand-crafted features that were often already in use – for instance, k-nearest
neighbours classification was used in [60], Bayesian classification – in [61], random forests
– in [62], and support vector machines – in [42].

The latest works added deep learning to the list of models used in the eye tracking
field [52, 63, 3∗]. These essentially rely on a deep network in jointly extracting the
relevant features and deriving a suitably optimised classification rule. The models in [52]
operate with minimal pre-processing of the eye tracking data (shifts of gaze positions
instead of their absolute values), while [63] used speed and acceleration features.

Our work in [3∗] tested both the unprocessed gaze signal and simple features extracted
from it used as input to the network. We found that hand-crafted feature extraction
substantially aided our model, perhaps because of its relatively small size. This will
undoubtedly be changing with more and larger eye tracking data sets becoming (publicly)
available [9†], where meaningfully training larger models will become feasible. Some
works aim at creating large synthetic data sets [52, 64], but the diversity of the “real”
data still plays a role even in this context.

1.3.2 Performance Measures

Given the multitude of algorithms and approaches for eye movement classification,
navigating this field requires objective metrics of their prediction quality. The detection
of some eye movement types can be in principle somewhat assessed without expert
annotations (e.g . saccades – via analysing the relationship between their magnitudes and
corresponding gaze speeds [65], or SP – by validating that detected pursuits coincide with
motion in the stimulus [58]). However, for a more robust and universal analysis, expert
labels are required. A separate discussion can be had on the subject of whether these
represent the “ground truth” [30, 31], but this is not essential for what is considered in
this section. We will, therefore, use “ground truth” as a stand-in for “expert labels”,
even though experts themselves may disagree on the labelling.

To evaluate the algorithmic labels against the ground truth, two levels of analysis are
widespread in the literature: comparing these on the level of individual gaze samples and
on the level of whole events of each considered eye movement class. Sample-level analysis
presents us with a classical problem setting, where two sets of labels for exactly the same
sets of entities need to be compared, i.e. every gaze sample has a true and an assigned
label (missing labels, if present, can be interpreted as a separate class). In this case,
all evaluation measures used in other fields can be – and have been – applied directly:
accuracy [47], Cohen’s kappa [52, 58], precision, recall, F1 scores [66, 67, 3∗, 4∗], etc.
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When it comes to evaluating whole detected events against those in the ground truth,
the comparison is compounded by the absence (or even the impossibility) of a definitive
one-to-one matching of the events in the ground truth and in the algorithmic labels.
Multiple intuitively understandable types of labelling errors can be named: For instance,
an algorithmically detected event might be shifted in time compared to the “true” event,
its duration can be under- or overestimated; an event could be missed, falsely inserted,
fragmented, or merged with a number of adjacent events, or simply the class label could
be wrongly assigned.

Especially if we also consider the possible combination of the error types above, it
becomes abundantly clear that no one metric could meaningfully quantify all of these
possibilities directly. The multitude of existing event-level evaluation strategies [14†]
broadly fall into two categories: (i) The ones used most frequently can be essentially
summed up as imposing a set of criteria to declare each considered pair of eye movement
events – one in the ground truth, one as detected by a model – a successful match.
The other matches are considered unsuccessful, and these decisions help populate the
confusion matrix (either in a binary sense – i.e. fixation vs . not a fixation – or for several
classes at once). Any evaluation metric that can be computed based on a confusion
matrix can, in this way, be applied to eye movement events. Examples in the literature
include F1 scores [30, 3∗] and Cohen’s kappa [52, 7∗] with various matching criteria.
Levenshtein distance (also known as “edit distance”) between the sequences of true and
detected events [52] could also be assigned to this type of evaluations, as computing this
measure effectively means finding the set of edit operations to transform one sequence
into the other, which implicitly establishes the correspondence between the events in the
two sequences (this matching is encoded in the algorithms calculating the distance).

The type (i) measures cannot directly quantify the quality (or other properties)
of registered matches between the two sets of events, however. That is precisely the
purpose of the evaluation strategies of category (ii): These focus on specific aspects of the
correspondence between the detected and the true events. For instance, relative timing
offset and deviation in [30] quantify the temporal shifts between the two event sets;
intersection-over-union ratio in [68, 3∗] quantifies the overlap between the true events and
their algorithmically detected counterparts. Reporting average properties of the detected
events of a certain class (e.g . duration, amplitude, etc.) is also popular [47, 59, 3∗].

While type (i) evaluation strategies are targeting quantifying the number of matched
events and are, by their nature, not tied to match quality, some hybrid strategies can
exist. For example, in [3∗] we proposed involving event match quality in the definition of
valid matches between events, thus also indirectly quantifying the quality of the detected
events (i.e. though the metric we used is F1 score, it would vary depending on the quality
of matched events and the pre-defined cut-off threshold for said quality).

1.3.2.1 Choosing a Suitable Performance Measure

Navigating the field (and, to some extent, a minefield) of possible evaluation approaches
for a single problem can be difficult, as not all of the proposed strategies are necessarily
viable. In [7∗], we implemented a handful of metrics used in the literature to date, and
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tested whether these could separate purpose-built eye movement classifiers from a set of
baselines we proposed, which were not assigning labels based on the gaze movements in
the considered recording. Before this work, no systematic way of examining a metric for
eye movement classification existed, partly since the first metrics aiming at event-level
evaluation beyond average event statistics started appearing in 2016 [66].

Our study [7∗] revealed that not all evaluation metrics are made equal, and that some
could possibly be wholly unsuitable for the purpose (depending on the set-up). We have,
therefore, proposed a novel metric (based on the hybrid approach to classifier testing
mentioned above), which we also tested to demonstrate its ability to avoid assigning
deceptively high performance scores to the baseline methods.

1.4 Saliency Modelling

We now transition to another use case of the eye tracking technology. Not only does it
allow us to analyse how the observers are looking at a scene, but also where they are
allocating their attention over time. We note that this work deals with human attention
in somewhat “naturalistic” conditions, i.e. where the presented stimuli resemble scenes
from real life. Modelling the distribution of attention is referred to as saliency prediction.
Saliency modelling determines, based on the image or video data alone, what regions of
these are informative to a human observer. The degree of informativeness is essentially
being quantified by how often the gaze would be directed to such regions. Usually, the
observers, whose gaze locations are recorded, are assumed to be free-viewing the stimuli,
i.e. are not given an explicit task [69, 70, 71, 72].

1.4.1 Stimuli Domains

Traditionally, images were presented during the gaze-based studies of task-free at-
tention [73, 74, 75]. The field has produced an ever-increasing number of predictive
models [76], established benchmarks [77], and large data collections [72, 78].

In recent years, modelling video saliency received growing interest [79, 80]. This
problem setting is, on the one hand, more challenging, as temporal dependencies have
to be modelled and taken into account. On the other hand, there are indications that,
as motion is a very important factor in video viewing, it could explain a large part of
human attention [81]. Several diverse large-scale data sets have been introduced in recent
years as well [70, 82], allowing for model development and testing across a wider range of
video types with their corresponding typical viewing behaviours. In cinematic material,
for example, a narrative and accompanying camera motion tend to induce the viewers
to focus on a certain character or object, leading e.g . to higher centre bias effect in
such content – the tendency of observers’ gaze to gravitate towards the centre of the
stimulus [83]. By comparison, the more real life-like scenes without intentional gaze
directing show lower biasing effect and correspondingly more dispersed gaze patterns [69].

Very recently, attention allocation in visual exploration of omnidirectional (360◦)
content has become a prominent part of saliency research [84, 85, 86, 87], covering

8



1. Introduction

both static and dynamic scenarios. The immersive nature of these stimuli deviates
from what was typically modelled by saliency prediction approaches before: There is no
“discontinuity” in the scene, compared to e.g . borders of the regular video or image stimuli.
Also, the full scene cannot be perceived at once as it surrounds the observer, adding extra
degrees of freedom (i.e. head rotation) to the observer’s visual behaviour, which have
to be accounted for in order to achieve high-quality realistic attention modelling [86].
Additionally, the saliency maps are much sparser compared to the 2D stimuli case, as
they represent a much larger field of view (compare to e.g . 48×27◦ for video viewing
in [69]). This leads to a much larger number of observers being required to construct
reliable ground truth maps [88].

Part of this work was to enable a more effortless transition from regular image saliency
to that in 360◦ images, while accounting for the differences between the domains [5∗]. In
particular, we were mostly dealing with image distortions in the omnidirectional content
represented in a common projection, and the border effects that should not be present
in continuous 360◦ stimuli. While other works in this domain deal with adapting the
existing computational methods (e.g . convolutional operations) to the 360◦ content [89],
the approach in [5∗] operates on the level of adapting the input data themselves instead.

1.4.2 Influence of the Eye Movements

Traditionally, saliency prediction is associated with predicting the locations of human
observers’ fixations [77]. For static stimuli (e.g . images), this is mostly sufficient, as
the eye movements there mostly consist of fixations and saccades. For animated or
video stimuli, however, such coarse classification is not sufficient, but the vast majority
of works on saliency prediction continue to utilise the fixation detectors that are built
into the eye trackers [71, 82]. Those, however, do not have any standard algorithms
that take smooth pursuit (SP) into account [2, Section 5.2], leading to the absence of
a clear understanding of what label will be assigned to those samples. Depending on
the algorithm and its parameters, SP samples can be attributed to both fixation and
saccade classes, inconsistent with the implied eye movement definitions.

The situation gets even more compounded in the case of omnidirectional content,
videos in particular – in this context, eye-head coordination comes into play, and the
labelling system becomes significantly more complicated [1∗]. While some data sets
even in this context talk about fixation-based attention, even if fairly large gaze speed
thresholds are utilised [87], a systematic way of formalising the concept of visual attention
is clearly needed.

In [6∗, 10†], we incorporated the information about eye movement types, classified
by a dedicated algorithm [4∗], directly into the saliency modelling pipeline. In these
works, we trained same-architecture models for the tasks of predicting either fixations or
SP in videos. Analysing the performance of these models revealed that training for the
prediction of the typically ignored eye movement type – SP – helped the models’ ability
to generalise to other data sets. These results demonstrated the potential of incorporating
the knowledge about the eye movement types into computer vision problems dealing
with human visual behaviour.

9



1. Introduction

1.4.3 Evaluation

To understand whether a saliency model is doing a good job at mimicking human
attention, its output needs to be compared to the ground truth – the distribution of
recorded fixations (or e.g . SPs) of a number of human observers (could be just one in
case of the egocentric video saliency [90, 91] or up to a hundred in 360◦ video saliency
data sets [88]). In order to numerically express the similarities or differences between the
model output and the target of its prediction, a number of metrics have been employed
in the literature [92]. We do not focus on the specific metrics for saliency prediction here,
though there are some recent developments in that area as well (e.g . reconciling saliency
model rankings produced according to different metrics [93]). Of primary interest to us
is the pipeline for the evaluation, and how it should be adapted based on the stimulus
domain and the considered eye movement types.

Specifically for videos, where SP constitutes a non-negligible part of the viewing
behaviour, data imbalance may arise: Certain frames can have no gaze samples that are
attributed to a certain eye movement class (usually SP due to its sparsity, but can also
apply to fixations on parts of the videos that heavily induce target following by presenting
one moving object of interest only). This means that frame-by-frame evaluation would
not be appropriate for such type of data, leading to the necessity of full-video evaluation.

Even in this context, however, an issue of imbalance arises when several eye movement
types are considered separately: Some videos could contain much less certain-type
attention examples than others (for an illustration, see Figure 1.2; note the variation
of SP percentage in the gaze behaviour during video viewing – from zero to almost
65%, depending on the clip). This makes the averaging of saliency evaluation metrics
between different videos in a data set potentially unfair. We examined this issue in [6∗],
proposing to re-weight the contributions of the individual video clips to the overall score
depending on the amount of each eye movement type in its corresponding recordings.
This has proven to be a significantly better estimate of the overall score, compared to
the traditional averaging employed in other works.

1.5 Contributions and Thesis Overview

Here we will summarise the main contributions of the thesis (the details can be found
in Chapter 2 and respective appendices). The discussion of the results obtained in the
context of this dissertation can be found in Chapter 3.

The contributions of this work can be broadly subdivided into two areas. For eye
movement classification, we:

• systematically annotated a large-scale data set of gaze recordings during dynamic
natural scene viewing [4∗, 2†, 6†], at the same time for the first time characterising
smooth pursuits occurring during free-viewing in this sizeable collection of eye
tracking data [4∗, 4†] (Sections 2.1.1 and 2.1.2, also Appendix B);

• developed a clustering-based method to detect smooth pursuit [3†] – the first approach
that takes the gaze patterns of several different observers into account, – further

10
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Figure 1.2: Fixation and pursuit shares (and their standard deviations) per video in the
844 test set clips of the Hollywood2 data set [94], as detected by our classifier [4∗]. The
remaining gaze samples are labelled as saccades or noise and are not represented here.

improving and analysing it in [4∗, 12†, 13†] (Section 2.1.3, also Appendices A and B);
• introduced deep learning to the field of eye movement classification [3∗, 7†, 8†],

developing a state-of-the-art model for gaze event classification that leverages the
temporal context by classifying the samples in a certain window of gaze samples at
once (Section 2.1.4, also Appendix C);

• extended the evaluation procedures for the problem of eye movement classification,
developing new event-level metrics that allow for more versatility [3∗] or overcome
the drawbacks of the previously used evaluation measures [7∗] (Section 2.1.5, also
Appendices C and D);

• introduced a general approach to testing the suitability of existing evaluation ap-
proaches – evaluating certain baseline methods that should by-design not be able to
achieve good performance figures [7∗] (Section 2.1.5.1, also Appendix D).

For saliency modelling, we:
• achieved state-of-the-art saliency prediction for omnidirectional images by developing

a set of techniques to transfer saliency predictors from conventional two-dimensional
images to the omnidirectional image domain [5∗] (Section 2.2.1, also Appendix E);
this approach won the corresponding 2017 IEEE ICME Grand Challenge [95];

• introduced the problem of smooth pursuit-based saliency prediction – supersaliency
– and tested our proposed models and literature approaches on this problem and
traditional saliency problem formulation [6∗, 10†]; we showed that training for
supersaliency leads to models that generalise better, even for the traditional saliency
task (Section 2.2.2, also Appendix F);

• amended the saliency evaluation pipeline used in the literature by introducing video-
wise re-weighting of the scores, and augmented it by a new metric quantifying how
well a given saliency model differentiates between the salient regions corresponding
to fixations and smooth pursuits [6∗] (Section 2.2.2, also Appendix F).
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Methods

This chapter will cover the methodology of the approaches developed in the context of
this dissertation. Just as the contributions of this work, it is subdivided into two parts:
eye movement classification (Section 2.1) and saliency modelling (Section 2.2).

2.1 Eye Movement Classification

2.1.1 Definitions and Manual Annotation

First of all, we address the definitions for the eye movements that we mostly used in this
work, as these are not universal and should be stated for a given context [30, 31]. In
these definitions, as for most of our experiments, we limited ourselves to monitor-based
gaze tracking set-ups, with the participant’s head being stationary (usually fixed by a
chin bar). In this context, we defined the following eye movements:

• Fixations are periods of slow or absent gaze point movement (i.e. relatively sta-
tionary gaze), not following any moving object in the video. We note that absolute
movement on the screen is meant here: an object that is stationary in the real world
could be moving on the screen due to camera motion, and a moving object followed
by the camera could be rendered stationary on the video surface.

• Saccades are rapid changes in the gaze point position, with the end of a saccade
being defined as the time when gaze position becomes stable again (without setting
a specific upper or lower limit on saccade amplitude).

• Smooth pursuits (SPs) are periods of time, when the gaze point is moving (slow
motion is acceptable), as long as it is following a moving object in the video (i.e.
gaze point moving at a similar speed and direction as the corresponding object).

• Noise, in our definition, refers to periods of lost or impaired tracking, which
includes e.g . blinks, gaze outside the stimulus area, or physiologically impossible
gaze movement signals.

These definitions were used for obtaining the “ground truth” for the eye movement
classification problem by the means of manual annotation in [4∗] (the annotators used
the graphical interface developed in [2†]).
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To differentiate between individual gaze samples with a certain label and uninterrupted
sequences of same-class samples, we refer to the latter as events or episodes.

2.1.2 Annotated Data Sets and Analysis

To give context to the descriptions of the pipelines below, we here describe the properties
of the data sets we used throughout this work. Example stimuli frames are provided in
Figure 2.1 to illustrate the typical video content. Additionally, the basic statistics of
these data sets in terms of the annotated eye movements are listed in Table 2.1.

All the data sets contain time series of on-screen gaze coordinates (relative to the top
left corner of the displayed video), and our algorithms operate in the same coordinate
system. The coordinates themselves are in pixel units, but these can be converted to
degrees of visual angle using what we call meta-information of the recordings (stimulus
resolution and physical size, plus the distance from the observer’s eyes to the monitor) –
the latter units are much more frequently used in the field of gaze event classification
as they lend a meaning to the eye movement characteristics that is independent of the
experiment set-up.

GazeCom Hollywood2-50 MN-RA-video

Figure 2.1: Representative examples of data set stimuli frames.

2.1.2.1 GazeCom

Most of our experiments were performed on this data set, as it is the largest available
annotated set of eye movement recordings, especially when it comes to smooth pursuit.
Overall, it contains over 4.5 h of gaze data, recorded for 18 short video clips (ca. 20 s each).
The data set was introduced in [69], and we collected the manual expert annotations
of eye movements for it in [4∗]. This data set contains the eye tracking recordings of
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Property GazeCom Hollywood2-50 MN-RA-video∗

Total duration 4.8 h 2 h 0.03 h
Number of clips 18 50 3
Average observers per clip 46.9 12.8 6
Sampling frequency 250 Hz 500 Hz 500 Hz
Number of samples 4,318,056 3,669,529 58,058

Fixation share 72.5% 62.4% 37.7%
Fixation events 38,629 14,643 163
Fixation samples 3,132,536 2,295,233 21,888

Saccade share 10.5% 9.1% 5.3%
Saccade events 39,217 15,082 244
Saccade samples 454,787 335,190 3098

SP share 11% 24.2% 52.2%
SP events 4631 5649 121
SP samples 475,817 878,779 30,306

Table 2.1: Summary of the eye movement data sets used in this work. Marked with ∗ –
each recording in MN-RA-video was labelled by two equivalent raters and is contained
in the data set twice, so the actual amount of unique data points and observers is
overestimated by a factor of two in this table.

participants free-viewing a set of natural dynamic outdoor scenes (see example frames in
Figure 2.1 on the left). These contain such moving targets as pedestrians, cars, cyclists,
and animals, portrayed at a variety of distances to the camera.

While there are comparatively few video clips, each was viewed by 52 observers
(though some recordings were discarded by the data set authors due to data loss [69]).
This is particularly helpful for our clustering-driven method for SP identification (in the
following Section 2.1.3), as it allowed us to thoroughly analyse the relationship between
the algorithm’s performance and the number of observers, whose data are analysed
simultaneously.

2.1.2.2 Hollywood2-50

In this work, we also analysed an annotated subset [9†] of the data set Hollywood2,
originally introduced in 2012 by Mathe et al . for the purpose of studying saliency [94].
The original data set (Hollywood2) contains over 22,000 gaze recordings for 1707 clips,
totalling over 70 h. We annotated a random 50-clip (2 h) subset of its test set for the
eye movement types we defined in Section 2.1.1. The full data set was used to train our
saliency models in Section 2.2.2, however, in combination with algorithmically produced
eye movement labels.

The video content of this data set is substantially different from GazeCom (see
examples in Figure 2.1): Unlike in that data set, the videos contain professionally shot
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and edited material with camera movement and scene cuts. Additionally, only four out
of the 16 observers were recorded in the free-viewing paradigm, while the other 12 were
given the task of recognising the actions appearing in the scene (from a limited set of
labels). Together, these factors influenced gaze behaviour, which is evident even from
the rudimentary statistics in Table 2.1 – at least based on the amounts of different gaze
events. Nonetheless, no specific gaze behaviour strategies were prescribed during the
data collection.

2.1.2.3 MN-RA-video

In contrast to Hollywood2, the subjects, whose eye movements were recorded for this
data set [51], were explicitly instructed to follow the moving objects in the videos. The
data set itself was collected in [51], and annotated by two experts in [51] and [47]. We
name it after the initials of the two annotators (MN-RA), and particularly focus on the
video-viewing subset (the full set also contains image viewing and following a moving
dot with the eyes). Examples of representative video frames can be seen in Figure 2.1 on
the right. This data set is much smaller than the other two, and we mostly used it for
validating our algorithm.

In addition to the three main classes we consider (fixations, saccades, SPs), the
experts labelled post-saccadic oscillations (PSOs) and blinks, with some samples not
attributed to any class as well. We only used the annotations of the three main classes
in our pipeline (merging PSOs and saccades to match the definitions we used).

2.1.3 Clustering-based Smooth Pursuit Detection

It has been known in the literature on eye movements that motion in video attracts
human attention [96] and, specifically, corresponds to the dense regions in the distribution
of the gaze points [69, 81]. Additionally, our own work [4∗] directly quantified the spatio-
temporal consistency of attention in GazeCom specifically for the smooth pursuit eye
movement, demonstrating that it was higher than for any other eye movement type.

These observations served as the chief motivation for our clustering-based approach
to detecting smooth pursuit [4∗, 3†] – the first work in the literature to fuse the gaze
signals of several observers to perform eye movement classification. The pipeline can
be briefly described as follows: (i) First, saccades and blinks are detected with an
approach developed in conjunction with the GazeCom data set (see Section 2.1.2.1) [69].
(ii) Fixations are then detected with a gaze speed- and dispersion-based approach,
together with some of the noise samples. (iii) All the remaining gaze samples are declared
pursuit candidates. Those are aggregated for all observers that have viewed a given
stimulus, and clustered in the three-dimensional space comprised of time and two spatial
axes defining the video frame surface (x and y). The samples that form dense clusters
are then classified as SP, with the rest labelled as noise. The paragraphs below detail
each of these steps.

The parameters of our fixation and pursuit detection methods were jointly optimised
via a random grid-search [4∗, 13†], and these optimised values are presented below.
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2.1.3.1 Saccade and Blink Detection

We detected saccades via a dual-threshold algorithm proposed in [69], where each saccade
is required to contain at least one point with a sample-to-sample gaze speed no lower
than the “fast” threshold (138◦/s), and its on- and offset are then determined by the
requirement that all samples in a saccade correspond to sample-to-sample speeds no
lower than the “slow” threshold (17◦/s). Additionally, thus detected saccades that are
too short (≤15 ms) or too long (≥160 ms) are discarded as noise, as well as samples with
unexpectedly high speeds (≥ 1030◦/s).

Blinks were identified as periods of missing eye tracking data, extended to potentially
include the saccades surrounding them, provided that those are within 25 ms from the lost
tracking samples (these “saccades” are the likely artefacts of the eyelid partially occluding
the eye in the process of a blink, which are common to video-based eye tracking [2,
Section 5.7]).

All thresholds listed above are the same as in the original paper [69]. We also note that
while the sample-to-sample speeds were used for GazeCom, for the data sets with higher
eye tracker sampling frequency (e.g . Hollywood2-50 or MS-RA-video, cf . Table 2.1), an
equivalent speed integration window was used (4 ms, equivalent to two sampling periods
of a 500 Hz system).

2.1.3.2 Fixation Detection

For detecting fixations, we designed a relatively simple thresholding-based algorithm that
is similar in principle to other modern fixation detection methods [32, 46, 56]: Fixations
are defined by the gaze being nearly stationary, which can be quantified in terms of gaze
speed (i.e. how far are the consecutive gaze samples from another, maybe with some
smoothing) or dispersion (i.e. how far are the samples in a certain time window from
one another).

In our approach, we considered inter-saccadic intervals (i.e. periods of time between
already detected saccades), and processed them independently. We immediately marked
those intervals with dispersion below 1.4◦ as fixations. For the rest of the intervals, a
sliding window of 100 ms was applied (with a step of one sample), in which the speed
was computed (as displacement between the start and the end of the window, divided by
time). When the speed fell below 2◦/s, a fixation onset was marked. When it rose above
the same threshold, a fixation offset was marked.

All intervals not labelled as either saccade, blink, fixation, or noise up to this point,
and lasting ≥140 ms, were kept as “pursuit candidates”.

2.1.3.3 Smooth Pursuit Detection

Pursuit candidates were pooled from all the observers that have viewed a particular
video, and henceforth processed together. For detecting dense clusters in this set of gaze
coordinates, we adapted DBSCAN (the abbreviation stands for “density-based spatial
clustering of applications with noise”) [97].
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2.1.3.3.1 Base Algorithm Choice We decided to build our approach on this algo-
rithm because of several of its properties. First, as the name suggests, it was designed
for the data that contain noise. In our scenario, we expected pursuit candidates to be
subdivided into either dense regions of gaze samples that correspond to the observers’ eyes
following the same objects, or sparsely distributes gaze points that are likely recording
noise (since those would have been left unmarked by the saccade and fixation detectors
in previous steps).

Second, DBSCAN does not assume that the clusters in the data can be described
as centroids. This is very important for SP detection, as their trajectories can be very
stretched and also depend on the motion in the stimulus, which does not have to be
linear (see example clusters in Figure 2.2).
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Figure 2.2: Clustering output example of our algorithm (for the “koenigstrasse” video of
the GazeCom data set [69]), with true positives, false positives (i.e. false alarms), and
false negatives (i.e. missed pursuit samples) marked in different colours (green, red, and
blue, respectively).

Lastly, this algorithm does not require knowing the number of clusters in advance.
As the number of SP targets in a video is unknown a priori, this a crucial point for
processing an arbitrary collection of pursuit candidates.

These properties set it aside from traditionally used clustering approaches such as
k-means [98] or mixture of Gaussians.

2.1.3.3.2 Original and Modified DBSCAN To separate densely clustered points
from noise, DBSCAN relies on the concept of point neighbourhood, in which the density is
estimated as the number of other data points. In classical DBSCAN, the neighbourhood
is defined by Euclidean distance. For a given data point p in RN , any point q ∈ RN is
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said to belong to the neighbourhood of p if the following inequality is satisfied:

ρ(p, q) =

√√√√ N∑
n=1

(pn − qn)2 ≤ ε, (2.1)

where ε is a parameter of the algorithm, defining the size of the neighbourhood.
Based on the point’s neighbourhood, it is attributed to one of three categories: (i) p is

declared a core point in a set of points P if its neighbourhood consists of at least minPts
points belonging to P (minPts is another parameter of DBSCAN). (ii) p is a border
point if it is not a core point itself, but its neighbourhood contains at least one core
point. (iii) Otherwise, p is an outlier point. Core and border points can be considered
as belonging to some cluster (with the neighbourhood relationship defining the cluster
identities), and outliers represent noise.

In the context of SP detection, data points are represented by triplets (time, x, y).
The detected outliers were labelled as noise in our approach, while the gaze points
belonging to clusters received an SP label.

As the feature space, in which we operate, consists of coordinates with different
units of measurement (seconds and pixels or degrees of visual angle), utilising Euclidean
distance would necessitate scaling the temporal and spatial coordinates to ensure their
balanced contribution to the distance measure. As there is no universally meaningful
constant to perform this scaling operation, we introduced two distance thresholds instead
of one (εtime and εxy instead of ε), effectively redefining the neighbourhood condition
expressed by the inequality (2.1) in the following way:{

ρtime(p, q) =
√

(ptime − qtime)2 ≤ εtime

ρxy(p, q) =
√

(px − qx)2 + (py − qy)2 ≤ εxy.
(2.2)

This can be seen as a case of a more general DBSCAN modification, where the set
of coordinates 1 . . . N is subdivided into K groups Gk = {gki 1 ≤ i ≤ Lk, g

k
i ∈ 1 . . . N},

k ∈ 1 . . . K such that ∀j 6= k : Gj ∩Gk = ∅ and ∪Kk=1Gk = {1 . . . N}. In that case, the
condition for point q belonging to the neighbourhood of p could be written out as

∀k ∈ 1 . . . K : ρGk
(p, q) =

√∑
i∈Gk

(pi − qi)2 ≤ εk, (2.3)

where εk, k ∈ 1 . . . K would be the parameters of the modified algorithm. In principle,
other distance metrics can be used as well, instead of the Euclidean distance.

2.1.4 Deep Learning-based Classifier

While our clustering-based algorithm for SP detection (Section 2.1.3) focused on one
eye movement type, using traditional algorithms to detect the rest, here we introduce a
deep learning-based approach that simultaneously labels all eye movement types in the
classified recording [3∗]. This effectively incorporates the idea that designing classification
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algorithms without accounting for other possibly occurring eye movement types can
harm their performance [47].

The input to our model is a fixed-length window of gaze samples’ features (either
simply their xy coordinates, or a combination of speed, direction, and acceleration of
gaze movement at several temporal scales). The expected output is a corresponding
window of labels (per-class probabilities, to be precise, with the most likely class label
chosen for every sample in order to obtain the final classification result). Accordingly,
we used categorical cross entropy as a loss function.

The architecture of our model consists of two parts: First, a stack of four convolutional
layers is used for feature extraction. We employed one-dimensional convolutions over
the time axis, as our data are sequential. Following these, we included a stack of two
bidirectional long short-term memory (BLSTM) structures. Long short-term memory
(LSTM) was introduced in [99], with the bidirectional aspects of temporal processing
explored in e.g . [100, 101]. In our architecture, the BLSTM layers are followed by
a temporally-distributed (i.e. the weights are shared across all time points) densely
connected layer, yielding the output of the system.

We note that the slightly different network originally introduced in [3∗] used an
additional fully-connected layer (also time-distributed) between the convolutional layers
and the BLSTM, but our subsequent experiments have shown its redundancy, and led
us to increase the number of the convolutional and BLSTM layers [8†], leading to the
network structure described here. In the same work, we also quantitatively validated
the usefulness of combining the forward and backward LSTM states in a bidirectional
manner for the eye movement classification.

2.1.4.1 Cross-Validation

An important part of the model testing pipeline is the way in which the available data
are used for training, validation, and testing. We trained our model on GazeCom (see
Section 2.1.2.1) – the largest available data set with smooth pursuit annotation. However,
while we additionally tested [3∗, 9†] our model on e.g . Hollywood2-50 and the much
smaller MN-RA-video data set (Sections 2.1.2.2 and 2.1.2.3), the amount of recordings
in GazeCom also makes it a preferred testing ground for any classification algorithm.
To utilise it for both purposes, and yet not unfairly inflate our model’s performance, we
used cross-validation – a commonly employed model testing technique. An overview of
typical validation schemes is given e.g . in [102].

In its basic form, all samples of the data set (in this case “samples” would constitute
windows of gaze data) are randomly split into K folds (in which case we talk about
K-fold cross-validation). This works, because data set samples are usually treated as
independent (which is perfectly adequate for e.g . image classification with typically
independent images, etc.). Some inter-dependency between the samples on a class
level is considered in stratified cross-validation, where class balance is preserved when
partitioning the data. The work in [102] also ensured that very similar same-class
samples are placed in different folds, adding another aspect of sample inter-dependency.
This measure was aimed at balancing the intraclass feature distributions between the
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validation folds, especially for the data sets with few samples.
In the context of eye movement classification, however, a different problem needs

to be addressed: Typical data sets are recorded for a fixed set of observers and stimuli,
meaning that even the individual recordings are related – different observers viewing
the same video clip show similar eye movement patterns [69, 7∗], and the recordings
of the same observer can share certain properties across stimuli (e.g . eye movement
characteristics can be used in biometrics [103, 104]).

In our work, we compared two ways of partitioning the available data into validation
folds: based on the observer identity or on the stimulus content. The former strategy
ensures that no observer’s recordings are contained in more than one fold. The latter, on
the other hand, partitions the data in such a way that all recordings for the same video
are contained in the same validation fold.

We directly empirically compared the two techniques in [3∗] under similar conditions
(same number of folds and an identical training set-up) to determine whether they differ
in terms of leading to the overestimation of the model’s performance. We also argued
for the theoretical advantages of the video-based validation split, specifically for the
detection of stimulus-dependent SP.

2.1.5 Evaluation Metrics

Algorithmically producing eye movement labels could be regarded as a sample-wise
classification problem, with traditional corresponding quality measures (e.g . precision,
recall, F1 score, or Cohen’s kappa). However, the sequential aspect of the data leads
to another possibility: considering not individual gaze samples, but whole gaze events.
The evaluation in this domain is more in line with the intuitive understanding of the
experts who usually think in terms of episodes rather than individual samples. Despite
the intuitiveness of the concept, its formalisation may be ambiguous, especially for
determining which events in the ground truth and in the algorithmic labels should be
matched for evaluation.

Several approaches for matching the automatically annotated and the ground truth
event sequences have been proposed in the literature. E.g . in [66], the authors only
consider the ground truth event boundaries, and limit themselves to using individual
samples from the algorithm’s output in order to “vote” for the event label within the
boundaries. In [30], the earliest event in the algorithm’s labels to overlap with the ground
truth event is chosen, while in [52] the event with the largest overlap is chosen.

In our work, we proposed several improvements to the evaluation scheme for eye
movement classifiers. First, since the events of different classes inherently have different
durations (e.g . according to [2, Table 2.3] saccades typically last between 30 and 80 ms,
while typical fixations are 200–300 ms), the same amount of overlap for two possible
matches could reflect a different degree of overlap. For instance, if a ground truth saccade
of 50 ms overlaps by 25 ms with both an algorithmically detected saccade of 30 ms and a
fixation of 200 ms, the intuitive degree of overlap is higher for the pair of saccades. We
formalise this by making sure the event pair with the highest intersection-over-union
ratio (IoU) is chosen [3∗], instead of the highest overlap (i.e. intersection) that was used
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in [52]. For two events A and B, IoU is defined simply as A∩B
A∪B , both intersection and

union expressed in time units (IoU itself being, therefore, unitless).
Another technique we proposed was to only allow for the two events to constitute a

match if their IoU is above a certain threshold (we used 0.5 in [3∗], where we explained
the theoretical and practical benefits of this value). This set a “match quality threshold”,
meaning that the evaluation would only register as successful detections those event
pairs that have a higher IoU, thus avoiding weak matches.

We also extended this approach by testing models at a set of such IoU thresholds,
allowing to compare models’ performance over a range of match quality strictness levels.
This is similar to receiver operating characteristic (ROC) analysis, where models can be
compared e.g . in terms of their true positive rates at a variety of false positive rate values.
Similarly, when the IoU thresholds are systematically varied, models can be compared at
the respective detection quality cut-off levels.

Lastly, in [7∗] we proposed a novel evaluation metric, which we based on event-level
Cohen’s kappa in [52], combined with our IoU-thresholded matching scheme in [3∗]. We
experimentally justified a higher quality threshold, and modified the existing proce-
dure [52] for computing event-level Cohen’s kappa in order for the metric to represent the
same intuitive concept as on the level of samples – i.e. how good a model is at correctly
placing the labels it assigns, compared to randomly shuffling those. We reformulated this
intuition and proposed a way to estimate this value for eye movement episodes instead
of individual samples.

2.1.5.1 Metric Testing via Classification Baselines

To navigate the field of eye movement metrics, we proposed a systematic approach to
testing these, by evaluating a set of baselines for eye movement classification [7∗], which
we designed in such a way that their performance should not be comparable to designated
algorithms for eye movement detection.

All of the baselines are based on the premise that they cannot take into account the
eye tracking data, for which they are producing the labels. Within this paradigm, we
considered the following approaches: (i) randomly assigning event sequences, according
to average prior and transition probabilities between different classes, and drawing event
durations from corresponding realistic distributions; (ii) assigning to each gaze sample
the most frequent eye movement class label for the samples of all observers around the
corresponding time point; (iii) based on video features, predicting the most frequent eye
movement label of all observers for each stimulus video frame; and (iv) using the ground
truth labels of another observer to produce the eye movement labels for every recording.

Intuitively, these baselines should be inferior to a dedicated algorithm that is basing
its decisions on the gaze dynamics in the recording that is being processed (i.e. the data
which are ignored by the baselines). Surprisingly, this was not a trend we observed for
many metrics used in the literature, for event-level evaluation in particular. This way, the
baseline approaches we introduced allowed us to test whether a certain metric is suitable
to capture the differences between gaze-independent and gaze-dependent eye movement
classifiers. In [7∗], we analysed eight metrics from the literature and our proposed metric,
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discovering that only two of those separated the baselines from the dedicated models,
and pointing out a metric that favoured our baselines over most of the algorithms.

2.2 Saliency Modelling

2.2.1 Omnidirectional Saliency

One important step toward ubiquitous human attention modelling could be formulated as
transitioning from predicting the viewing patterns in monitor-based experiments to more
immersive and less restrained set-ups. While modelling human behaviour entirely “in
the wild” – i.e. moving around in the real world, including different modes of locomotion
and interaction – would be the perfect solution, this problem setting is difficult both to
accurately represent numerically and to model. Virtual reality (VR) can be seen as an
intermediate step towards full real-life attention while maintaining tractability.

In this domain, 360-degree content is an important part of the experience. Such
omnidirectional images and videos are gaining popularity both with the end users and
the researchers. In order to facilitate the transition from the vast number of traditional
two-dimensional saliency predictors to the 360◦ domain, which is often represented by
scenes in equirectangular projection [86] (see example in Figure 2.3a; note the distortions
towards top and bottom of the image), we proposed a set of techniques to allow the
application of any traditional saliency model without changing the model in any way [5∗].

To this end, we manipulated the input data instead. While a saliency model can be
directly applied to an image in an equirectangular projection, this leads to a few artefacts
in the resulting prediction. We aim to nivellate these with the following manipulations:
(i) To avoid vertical border effects (at the borders of the equirectangular image; no
such borders are observed in the ground truth maps as head rotation is allowed in all
directions), we run the saliency model to predict two saliency maps – one for the original
equirectangular representation, and one for the representation rotated by 180◦ around the
vertical axis (see Figure 2.3b). (ii) We also represent the 360◦ scene as a set of cube map
faces (Figure 2.3c) and compute the saliency maps for these separately, thus avoiding
the distortions in the images. (iii) Finally, combining the two previous manipulations,
we employed the cube map-based technique for the regions of the equirectangular image
that are most distorted (the top and the bottom faces of the cube), also computing the
two saliency maps as in (i). The respective input manipulations used for this combined
approach are highlighted in Figure 2.3.

For all the techniques (i)–(iii) above, several saliency maps are produced. All of these
were then re-projected onto the original coordinate space to match the input image. For
the rotated saliency map produced by (i), this simply meant the inverse rotation. For
the cube map faces, the inverse projection to spherical coordinates was performed.

After several saliency maps were produced in this way (by an unmodified saliency
model applied to the modified inputs), we combined these via a pixel-wise maximum
operation. Compared to averaging the values, this does not produce lowered saliency
scores at the locations close to the image borders on at least one of the manipulated inputs.
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(a) Original image (“front view”) (b) Rotated by 180◦ (“rear view”)

(c) Cube faces

Figure 2.3: Example of an original omnidirectional image (2.3a) and its manipulated
versions used in our work – rotated around the vertical axis (2.3b) and projected onto
the faces of a cube (2.3c). Green frames indicate the images used in the final model,
combining both approaches.

2.2.2 Smooth Pursuit-based Attention

In the domain of video stimuli, we experimented with the underlying problem setting of
saliency prediction. While “fixation prediction” is traditionally used as an equivalent of
“attention prediction”, most works consider saliency as a purely computational problem
(producing an output that is similar to the ground truth based on the input), without
going into detail as to what is represented by these “fixations” for dynamic video content.

Conversely, we specifically examined the different ways to formalise the concept of
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predicting human attention in video viewing, based on the eye movement category that
expresses this attention. We separate the problems of predicting the distribution of
fixations and of smooth pursuits (SPs) [10†], additionally considering posing the problem
of predicting the combined distribution of the gaze samples for both classes in [6∗].

To create the data set for our problem statement, we used our eye movement
classification approach [4∗] from Section 2.1.3. The fixation and SP gaze samples
detected by this algorithm on the full training set of the Hollywood2 data set [94] (on
which we based the Hollywood2-50 subset in Section 2.1.2.2) were then converted to
respective attention density maps by a spatio-temporal Gaussian filter.

We trained a slicing convolutional neural network (CNN) model [105] on these data
(a model with two-dimensional convolutional filters applied in different planes in order
to process the three-dimensional data of a video sequence), and compared the models
trained in the same way but on differing ground truth saliency data sources – fixation and
SP attention. We additionally trained an end-to-end deep model (the architecture based
on deep densely connected networks [106] and convolutional long short-term memory
(LSTM)-based encoder-decoder model in [107]). We then evaluated the performance
of the trained models on unseen data, including the algorithmically annotated [4∗]
Hollywood2-50 data set (Section 2.1.2.2) and the fixation and pursuit saliency maps
for GazeCom corresponding to the manual expert annotations of these eye movements
(Section 2.1.2.1), as well as CITIUS-R [71], an additional data set of video viewing.

For Hollywood2-50 and GazeCom, we tested our and literature models (including
two recent deep learning models – ACLNet [70] and DeepVS [82]) against both fixation
and SP ground truth. Meanwhile, CITIUS-R is a traditional saliency data set, with only
fixation onset data (detected by a standard algorithm) provided by the authors. We
also tested the models in a similar traditional saliency set-up on Hollywood2-50 and
GazeCom in order to test a scenario directly comparable to the pipelines in the literature
(though the results were very similar to testing against fixation samples detected by our
more complex algorithm that accounts for SP).

We used a variety of existing metrics to test the models [92], proposing, however, a
different averaging scheme for aggregating the scores between the videos in a data set –
weighting the scores proportionally to the number of corresponding ground truth attention
samples – i.e. fixation- or SP-labelled gaze points. We quantitatively demonstrated [6∗]
that e.g . for several receiver operating characteristic (ROC)-based metrics this is a
significantly closer approximation of the same measure computed over all the samples in
the data set, compared to simply averaging the scores for all videos.

We also directly evaluated the ability of different models to separate between video
regions likely to induce fixations and pursuits. To this end, we computed an area under
the curve (AUC) of an ROC, where the class samples are drawn from the respective sets
of fixation and SP locations in the video. The saliency scores yielded by each model were
considered as scores for choosing one of the classes over the other (e.g . SP over fixation).
The resulting AUC score would reflect how much the models “favour” one eye movement
class over the other (i.e. assign its corresponding locations higher saliency values). We
found that while most of the models favoured SP on average, and in principle the classes
were well-separable, the scores yielded by the tested models were relatively low.
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Discussion and Conclusions

3.1 Eye Movement Classification

The first area to which this dissertation contributed is the detection of various eye
movement classes. We were largely motivated by the identification of smooth pursuit
(SP) episodes, which were, prior to this work, (and often still are) neglected in the eye
tracking data processing pipelines.

To validate and optimise any algorithmic classification pipeline, some form of ground
truth data or expert knowledge are needed. Previous data sets of eye movement anno-
tations were modest in size [51, 61] and rarely accounted for pursuit. Larger-scale eye
tracking data sets were chiefly collected for the problem of saliency prediction, and were
accordingly automatically pre-processed into scanpaths that lack the temporal resolution
necessary for high-quality eye movement analysis [70, 86, 87]. In contrast to these, we
created a large-scale annotated set of eye movement recordings, where we labelled SP as
well as fixations and saccades [4∗]. This aligns with the general trend in the eye movement
research to explore more dynamic and naturalistic set-ups [38, 44, 68, 108, 109, 1∗, 9†],
where traditionally defined fixations and saccades do not constitute the only eye move-
ments of interest.

As to automatic eye movement detectors themselves, approaches developed in the
literature before the algorithms introduced here were, first, most frequently ignoring
SP entirely [32, 46, 47], and also relatively simple computationally – typically based
on thresholding or simple, mostly hand-crafted, statistics [56, 57, 61, 110]. This work
introduced two eye movement detection pipelines, both accounting for SP and both
furthering the state of the art in their own way. We will discuss these in turn below.

The first approach (described in Section 2.1.3) uses traditional methods to detect
fixations and saccades, while applying a clustering method to the gaze samples of several
different observers in order to jointly identify the likely smooth pursuits in these. To the
best of our knowledge, this is the only eye movement detector to date that utilises multiple
eye tracking recordings for the same stimulus in its classification pipeline. This work
has thus demonstrated that leveraging this multi-observer information can yield a useful
signal for eye movement classification. The particular algorithm we chose is, however,
close in nature to the hand-crafted approaches: We designed it to find dense groups of
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potential SP gaze samples according to a fixed set of rules. Future works could combine
the benefits of multi-observer data with modern machine learning methods [52, 67, 3∗]
that can learn features directly from data.

There are several things to note about our SP detection algorithm itself as well,
however. First of all, as it uses an unsupervised learning technique (clustering), it
has a different relationship with data, compared to other models. Thresholding-based
approaches (we apply this name to all models with pre-set parameters, either by an
expert or some statistics, but unchanging) have no dependency on data volumes, as all
their parameters are fixed in advance, and no new data would allow for altering those.
Data-driven methods employ some form of machine learning to perform the classification.
These algorithms require ground truth data to optimise the values of their parameters,
e.g . [52, 62, 3∗]. These models, especially those with many parameters, will be typically
improved as more ground truth data become available – training such a system on a larger
and more diverse data set usually leads to improved generalisation. Our experiments
showed, however, that the performance of our clustering-based approach (despite its fixed
parameters, which would render it a thresholding-based algorithm in this classification)
also improves when the recordings of more observers are analysed at the same time. An
important distinction here is that our model does not require the expert labels (the
“ground truth”), but merely the recordings themselves. Not needing manual annotation
to improve performance saves a lot of time, as annotation typically requires at least an
order of magnitude more time than the corresponding recording session lasts [30, 4∗].

We also note that our approach is not the first to use clustering in eye movement
classification [50, 111, 112], not even for SP detection [58]. The crucial distinction is that
while these works all used clustering, it was used within a single recording [111], and often
within a small temporal window (e.g . 200 ms in [112] or the duration of each respective
inter-saccadic interval in [58]). The approach in [50] operates on the whole recording,
clustering microsaccade candidate events into no fewer than two groups, from which
one is later selected based on a fixed criterion. This method could, for instance, benefit
from analysing longer recordings (thus accumulating more examples for a more robust
clustering), but not from analysing more recordings (unlike our clustering approach).
The former has to do with the initial experiment design, while the latter allows for
obtaining more eye tracking data post-hoc in order to improve classification.

The second algorithm for eye movement classification described in this dissertation
(see Section 2.1.4) relies on a deep learning architecture both to extract features more
complex than the hand-crafted filters and to perform simultaneous classification of
all considered eye movement types. Unlike other machine learning algorithms for eye
movement classification [60, 62, 63, 66], our model directly operates on windows of gaze
data, instead of classifying gaze samples individually. Thus, our architecture outputs a
sequences of labels. The authors of [67] recently employed a similar approach, achieving
temporal aggregation by the combination of convolutional and pooling operations,
compared to the long short-term memory (LSTM) layers we used. While they performed
other interesting analyses, no influence of classification window size on model performance
was reported. In our experiments, we demonstrated [3∗] that increasing the size of these
windows at the training stage improves the resulting model performance (especially for
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SP detection), meaning that this property of working on larger temporal contexts can
be immediately beneficial for eye movement classification.

A further argument for a model to produce windows of class probabilities has to do
with the potential for applying more complex loss functions, such as e.g . connectionist
temporal classification (CTC) [113], which accounts for the likelihood of the ground truth
sequence of events, given the class probabilities of the individual samples (opposed to
the typically employed loss functions that only evaluate individual sample classification).
This possibility is especially relevant given the recent increase in the interest for event-
level evaluation of the classifiers [30, 52, 68, 3∗, 7∗]. In a proof-of-concept study, we
used CTC loss together with traditional categorical cross entropy to demonstrate the
potential of this combination to improve both sample- and event-level classification [14†].

The last point we raise here concerns the data that serve as the basis for eye
movement classification. The importance of this issue becomes clear in connection to the
eye movement definitions and their annotation procedure. Experts often rely on stimulus
data when assigning the labels [44, 68, 1∗, 2†], while the vast majority of the algorithms
do not utilise any information about the stimulus [46, 47]. This discrepancy will likely
make correct classification unattainable for such automatic classifiers.

In our eye movement definitions and annotations (cf. Section 2.1.1), for example, we
used the correspondence of gaze movement to the moving targets in the video to deal
with potential ambiguities between noisy fixations and pursuits: Slow gaze motion that
does not correspond to a potential target movement in the scene would be labelled as a
fixation (likely affected by drift or other recording artefacts [114]), even if a pursuit-like
trend is observed in the gaze coordinates. Indeed, several cases like this (with e.g . gaze
motion perpendicular to the trajectories of all moving targets in the video) were present
in the recordings of the GazeCom data set [69], and had to be labelled accordingly.

The few algorithms that do incorporate stimulus information in their decisions
include [16] and [44], neither of which accounting for the gaze dynamics as well as the
stimulus content around the gaze point, thus neglecting to explicitly consider the actual
motion of the eye. The authors of [43] combined gaze movement features with static
video frame features at the gaze location, i.e. forgoing the possibility to verify whether
gaze and video motion are aligned.

To rectify this, dynamic gaze features and dynamic video content features should
be employed together. One of the gaze classification baselines that we proposed in [7∗]
(video-based baseline; also see Section 2.1.5.1) used whole-frame movement features
to determine whether most of the observers would pursue some target on this frame.
Similar features at the gaze location could be combined with gaze features either in a
rule-based [59] or machine learning [43] classification pipeline. The authors of [58] used
object tracking to find moving shapes in video, comparing their movement to gaze. They
only used this method for the purpose of testing an SP detector without any manual
annotation and not as a stand-alone classifier, however.

Nevertheless, joint video and gaze data processing does seem promising, especially
when de facto “standard” pre-trained video-processing deep networks emerge: A similar
development for image data [115] has allowed e.g . for the gaze event classifiers in [43, 44].
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3.2 Saliency Modelling

The second contribution area of this work is attention modelling. In particular, we
developed one of the early approaches for 360◦ saliency prediction, as well as proposed a
novel problem formulation for video attention, combining eye movement modelling with
saliency prediction, thus furthering a much more developed field of video saliency.

In [5∗] (also see Section 2.2.1) we introduced several techniques to allow for predicting
omnidirectional saliency using conventional saliency models. Our approach accounted
for the artefacts of 360◦ data representation, which necessarily arise if traditional models
and pipelines are applied (even if dedicated training is performed [116]). Our work
preceded such specialised computational tools as e.g . spherical domain-adapted convolu-
tions [89, 117] becoming efficient tools for saliency prediction [118] and other tasks [119].
Nevertheless, our approach provides an easy entry point for 360◦ saliency prediction,
being able to leverage any existing two-dimensional model. Due to its performance [95]
and ease of usage, our model has been often used in recent works as a reference ap-
proach [120, 121, 122, 123] or as a step in a data processing pipeline [124].

It also addressed several general challenges of working with omnidirectional content.
In fact, many new deep learning-based approaches are dealing with the same issues in
a similar way: E.g . [85, 125, 126] use cube map projections to avoid distortions. The
equirectangular image manipulations proposed in our work can also be used as a data
preparation stage for a specially trained predictor network.

The second saliency-related contribution of this dissertation is combining eye move-
ment class information with attention modelling (in the context of video viewing). Prior
to this work, the eye tracking data for video saliency prediction were treated in much
the same way as for image saliency – with the help of standard fixation detection
algorithms [70, 71], which were mostly developed for gaze movements in response to
static stimuli [32]. Our work laid the foundation for systematically utilising eye move-
ment classes in saliency prediction: We proposed a novel problem setting – smooth
pursuit-based saliency prediction, presented the factors differentiating it from traditional
fixation-based saliency (as well as the necessary evaluation pipeline modifications), and
demonstrated the practical benefits of training models for SP prediction. We have shown
that the models that are trained to predict the dynamic pursuit behaviour generalise
to unseen data sets better, compared to the same architectures trained for fixation pre-
diction. Our pursuit-predicting model showed state-of-the-art performance for saliency
prediction, on average across the data sets we considered. We hypothesise that its success
as well as the generalisation effects have to do with the sparsity of SP data combined
with its higher spatio-temporal density [4∗]. Compared to fixations, object tracking via
pursuit needs to be initiated and maintained, while fixations cannot be suppressed even
in the absence of stimuli or attention.

While there are other methods that can be attempted to filter out inattentive viewing
(e.g . approaches based on pupillometry [127], EEG [128], or even fMRI [129]), analysing
eye movements allowed us to separate the data into segments of gaze to keep or to discard
directly, without requiring an additional data modality.

The pursuit-based attention concept can also be expanded to the omnidirectional
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video domain by e.g . modelling the attention related to following targets with some
combination of eye and head movement. To automatically detect different patterns in
eye movements and eye-head coordination, we proposed a basic speed thresholding-based
algorithm in [1∗], which could be extended by verifying that the same object is being
looked at continually [44]. This type of eye tracking data processing could pave the way
to more insightful attention modelling in 360◦ or virtual reality stimuli, also aiding the
recent effort to connect brain activity, attention, and eye movements [108, 109].

3.3 Implications and Applications

While the contributions of this dissertation advanced the respective areas of human visual
perception modelling, they also lead to new possibilities in related research areas. A major
focus point of this work is eye movement classification, and smooth pursuit detection
in particular – both the classification systems themselves [3∗, 4∗, 2†, 12†], the data sets
needed to develop these [1∗, 4∗, 2†, 9†], and the evaluation methods [3∗, 7∗]. While
valuable in their own right, eye movement classifiers and their improved performance
contribute to better data processing in other areas, enabling new research questions and
problem settings. In principle, even a poor but somewhat systematic classifier could
yield enough information to perform a higher-level task based on the characteristics of its
imperfect outputs. In [62], however, the authors demonstrated e.g . that a higher-quality
eye movement classifier leads to a better-functioning biometric system. As noted in [47],
or as we have demonstrated in this work, the standard fixation and saccade detectors [32]
often perform poorly in the set-ups with dynamic stimuli. Therefore, an eye movement
classifier designed for a dynamic set-up is a prerequisite for a good-quality analysis.

For instance, many works dealing with neurological disorder classification based on
eye tracking (e.g . to support the diagnosis or for large-scale screening purposes) rely
on eye movement characteristics [130, 131, 132, 133, 134, 135, 136] or the attention
allocation strategies in relation to certain areas or objects in the stimulus [6, 137, 138,
139, 140]. Combined with this diagnostic capacity of eye movement data, bringing
reliable automated analysis to various dynamic experiment set-ups could advance these
and other clinical applications [7, 136, 141, 142, 2∗], enabling larger-scale studies and
new experiment designs. In [11†], for example, we examined the fixation patterns (with
fixations pre-detected via a standard algorithm) of typically developing and autism
spectrum disorder children during image viewing – a relatively standard static-stimulus
scenario. Our approach, which won the corresponding IEEE ICME 2019 Grand Challenge
“Saliency4ASD” [140], is based on the fixation sequence properties (duration and location
of fixations, transition amplitudes), augmented by saliency- and face-related features
(quantifying how well the fixation locations align with automatically predicted saliency
distribution and faces on the images). While this approach demonstrated promising
results, a richer, more dynamic data set (e.g . gaze patterns during movie watching [2∗],
locomotion [136], or virtual world exploration), would allow for a much more elaborate
analysis. Combining such data with e.g . our recent computational methods for both
analysing the gaze signal [1∗] and predicting saliency [5∗, 6∗] would help produce additional
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insights into the neurological and behavioural underpinnings of the visual system [108].
As another example, gaze-based interaction also often relies on eye movement clas-

sification [41, 42, 143, 144, 145, 146], and should benefit from the detector quality
improvement, similar to the biometric application in [62]. Extending the eye movement
analyses to new contexts – such as mobile or virtual reality eye tracking [43, 44, 68, 1∗] –
enables novel interaction concepts and methods [147, 148].

In [149], the authors proposed using the properties of the performed smooth pursuits
(with known synthetic targets) to assess the cognitive workload of the observer, discussing
the applicability of this analysis in conjunction with interfaces that incorporate moving
elements in order to e.g . perform real-time workload level adjustments. Being able to
analyse SP without knowing the targets in advance [3∗, 4∗], and potentially also in other,
more immersive contexts [1∗], would enable extending such systems to new domains,
keeping pace with the developments of visualisation interfaces [150, 151].

Overall, better understanding and modelling the visual system on different levels
should aid a variety of research fields, from those directly related to human vision
– e.g . detecting visual field abnormalities based on gaze patterns [135, 152, 153], to
computer vision – e.g . finding the particularly important or informative regions of the
stimuli [16, 154, 6∗], to – thanks to the ubiquity of vision – seemingly unrelated areas, such
as human-machine interaction [42, 144] or neurological disorder classification [136, 2∗].

3.4 Conclusions

The work presented here has expanded the scope of human visual perception analyses
undertaken in the literature, enabling and improving automated modelling on various
fronts: from eye movement classification to saliency analysis in new domains (in omni-
directional content or related to explicitly incorporating eye movement categories into
saliency prediction).

In particular, throughout this dissertation we have demonstrated that smooth pursuit
represents a significant part of human gaze behaviour, and should not be discarded or
ignored, and neither can it be treated in the same way as fixations. We have empirically
shown the properties of SP that set it aside from other eye movement types: (i) it
is more difficult to detect than the traditionally considered fixations and saccades, so
specialised detectors could be designed; (ii) training to predict SP-based saliency instead
of fixations improves attention model generalisability; (iii) the voluntary nature of SP
(compared to fixations, which cannot be suppressed) leads to its higher sparsity and,
consequently, requires adjusting the saliency evaluation pipeline for this eye movement
type, as different stimuli can have widely varying amounts of it.

All this once again points out that traditional eye movement analyses that do not take
SP into account are not suitable for dynamic stimulus content, even if solely fixation or
saccade detection is performed. Our pipelines for eye movement annotation, classification,
and evaluation, as well as saliency prediction and evaluation, were developed with pursuit
in mind, improving SP handling across the board.
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Smooth Pursuit Detection Based on
Multiple Observers

This paper introduced the idea of detecting smooth pursuit (SP) by aggregating inter-
observer information via clustering. In our pipeline, we first processed the recordings of
different observers independently, removing saccade, blink, and fixation gaze samples
from the data. We then collected all remaining gaze samples (“SP candidates”) from
all observers (for each stimulus video separately). These were processed with one of
the three clustering techniques we tested: DBSCAN [97], level-set tree [155], and graph
connectivity-based clustering.

Depending on the clustering method, some filtering of its outputs might be needed.
While DBSCAN was designed to discard low-density outliers, the level-set tree imple-
mentation of [156] includes methods to prune the cluster tree with fewer elements than
a given threshold (a relatively high threshold of 10% of the processed data was set
by default, leading to a high-specificity but low-sensitivity detector). For graph-based
clustering, we implemented cluster filtering based on the duration of the cluster (i.e. the
time between the earliest and the latest gaze point belonging to it) and its diversity (i.e.
how many different observers contributed samples to a given cluster).

The approach was tested on a 10% subset of the GazeCom data set [69], which we
crudely labelled (windows of 250 ms labelled with a single label – either “mostly pursuit”
or “mostly not pursuit”) for this study. We compared our method against two literature
models that represented the state of the art at the time ([54] and our re-implementation
of the algorithm in [56]), demonstrating the superior performance of our algorithm. While
DBSCAN and graph-based clustering performed similarly, the latter had ca. 70 times
shorter runtime, in part owing to our efficient implementation of the neighbourhood
relationship verification function for two gaze points.

This is a shared first authorship work with Ioannis Agtzidis, so some contributions
are shared. My personal contributions consist of (i) developing the idea of using clus-
tering to detect similar gaze movement patterns in the recordings of several observers;
(ii) implementing two of the three clustering algorithms for SP detection tested in this
work (graph-based clustering and level-set tree); (iii) participating in the data annotation
and labelling interface implementation, and (iv) co-writing the paper.
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Abstract

While many elaborate algorithms to classify eye movements into
fixations and saccades exist, detection of smooth pursuit eye move-
ments is still challenging. Smooth pursuits do not occur for the pre-
dominantly studied static stimuli; for dynamic stimuli, it is difficult
to distinguish small gaze displacements due to noise from smooth
pursuit. We propose to improve noise robustness by combining in-
formation from multiple recordings: if several people show similar
gaze patterns that are neither fixations nor saccades, these episodes
are likely smooth pursuits. We evaluated our approach against two
baseline algorithms on a hand-labelled subset of the GazeCom data
set of dynamic natural scenes, using three different clustering algo-
rithms to determine gaze similarity. Results show that our approach
achieves a very substantial increase in precision at improved recall
over state-of-the-art algorithms that consider individual gaze traces
only.

Keywords: eye movements, smooth pursuit, clustering

Concepts: •Applied computing→ Psychology;

1 Introduction

Humans constantly sample their visual surroundings by moving
their eyes, and where they look largely determines what visual
information will be processed. Naturally, eye movement patterns
are therefore of interest to researchers both inside and outside the
laboratory. In experiments that utilize static stimuli such as texts
or pictures of natural scenes, gaze data can be broadly classified
into two categories: fixations, relatively stationary phases that typ-
ically last several hundreds of milliseconds and during which vi-
sual information is processed from a specific image location; and
saccades, ballistic eye movements that last only 20-80 ms and
reach speeds of up to 800 deg/s. In principle, this classification
should be relatively easy because of differences in speed and disper-
sion; in practice, this distinction is more difficult because of arte-
facts in contemporary eye-tracking equipment, such as jitter, post-
saccadic oscillations [Nyström et al. 2013], or drift due to pupil size
changes [Drewes et al. 2012].

Further eye movement types such as optokinetic nystagmus and the
vestibular-ocular reflex are introduced in gaze recordings with more
naturalistic stimuli and tasks, e.g. with head-mounted eye trackers
and freely moving observers [Munn et al. 2008]. Even in the rela-
tively simple case of dynamic stimuli in an otherwise static setup,
i.e. videos on a computer screen, smooth pursuit eye movements

∗The first two authors contributed equally.
†e-mail: first.last@tum.de

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org. c© 2016 ACM.
ETRA ’16, March 14-17, 2016, Charleston, SC, USA
ISBN: 978-1-4503-4125-7/16/03
DOI: http://dx.doi.org/10.1145/2857491.2857521

may occur. Such pursuit movements serve to track and keep mov-
ing objects foveated, and may thus also be considered as a “fixation
on a moving target”. Because of their potentially low speed, smooth
pursuit eye movements are difficult to distinguish from fixations.
Nevertheless, several solutions for pursuit detection have been pro-
posed [Ferrera 2000; Berg et al. 2009; Larsson et al. 2013]. In the
absence of ground truth data, however, the choice of classification
thresholds must remain arbitrary to some extent; for example, to
detect smooth pursuit episodes with high specificity, one could set
high speed or duration thresholds under the assumption that fix-
ations are stationary and that noise artefacts should be transient.
However, this runs the risk of discarding short and slow pursuits.

Here, we propose to increase specificity of smooth pursuit detec-
tion with a more principled approach by using information from
multiple observers. Given a sufficiently large number of observers,
we assume that potential pursuit targets will be tracked by more
than one observer at a time. This means that our confidence that a
particular gaze trace at a certain spatio-temporal location is indeed
smooth pursuit is increased by the presence of similar gaze traces
at the same location. Eye-tracking artefacts such as noise or post-
saccadic oscillations, and other slow eye movement signals such as
glissades and vergence movements, on the other hand, should be
independent of pursuit targets and are thus less likely to occur in
the same spatio-temporal location and with similar direction across
multiple observers.

Figure 1: Example clustering for the ’ducks boat’ movie, which
shows ducks flying by a boat moored on a river. Each point repre-
sents an (x, y, t) gaze sample that was identified as neither fixation
nor saccade during prefiltering. Coloured areas indicate clusters,
i.e. video regions where such gaze samples from several observers
coincide and likelihood of pursuit is higher; remaining samples are
likely eye-tracking artefacts.

In this paper and as a proof of principle, we apply our technique to
detect smooth pursuit episodes in the GazeCom set of gaze record-
ings on dynamic natural scenes [Dorr et al. 2010]. Schematically,
this technique is illustrated in Figure 1. Every data point in the
spatio-temporal volume represents a gaze sample that could not
be identified as either fixation or saccade during an initial filtering
step. Highlighted in colour are those samples that fell into clusters,
i.e. where different observers showed similar gaze patterns outside
clearly marked fixations and saccades; for this example video, these
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clusters correspond to two ducks flying across the screen from left
to right (one from 5–10 s, with a briefly upward trajectory inbe-
tween; one from 11–13 s). For a dynamic visualization, please also
see the companion video to this paper.

2 Methods

2.1 Gaze data

We ran our offline analysis on the publicly available GazeCom eye
movement data set [Dorr et al. 2010] that contains gaze data from
54 subjects for 18 video clips of about 20 s duration each, totalling
about 40000 saccades. These video clips show outdoor scenes in
and around a city with a number of potential pursuit targets, such
as moving cars and pedestrians.

2.2 Data pre-filtering

If multiple observers fixate the same image region at the same time,
their gaze patterns will be similar even in the absence of smooth
pursuit. We therefore pre-filtered the raw data in order to remove
blinks, saccades, and clearly identified fixations. After blink re-
moval, saccades were detected using the dual-threshold method
from [Dorr et al. 2010] and subsequently removed. Following this,
fixations were removed in two steps: First, all inter-saccadic inter-
vals with a dispersion of less than 2 degrees were marked as fixa-
tions. Then, a temporal window of 50 ms width was shifted sample-
wise across the remaining data and a non-fixation onset (offset) was
marked every time speed rose above (fell below) 2 deg/s. Finally,
only episodes where non-fixation onset and offset were more than
50 ms apart were kept; overall, pre-filtering removed about 90% of
the raw gaze data.

2.3 Clustering

For the purpose of this paper, we were interested in similarities of
gaze trajectories across observers, i.e. spatio-temporal information
rather than spatial locations only. Therefore, we clustered gaze data
in three-dimensional (x, y, t) space. Whereas clustering often is
aimed at maximizing the compactness of clusters, we wanted to
maximize some notion of connectivity: pursuit targets in our data
set followed elongated trajectories with occasional changes of di-
rection.

In order to assess the robustness of our approach to variations
in clustering results, we evaluated three different clustering ap-
proaches. We had to make changes to the standard implementa-
tions of all of these algorithms because a priori, there is no optimal
scaling factor between space and time.

2.3.1 Graph-based clustering

This algorithm is not based on point density in the 3D space, but
on an empirical concept of ’neighbour points’. Gaze data are rep-
resented as a graph, and its connected components are determined.

The nodes of the graph are all the gaze samples, and the edges exist
between all the points that are close enough in the 3D space. Our
definition of ’close enough’ was points A and B are neighbours if
|A.t − B.t |≤ τ and the Euclidean distance between A and B in
XY-plane ρxy(A,B) ≤ R, with R=2 deg and τ=4 ms.

Since this clustering algorithm does not rely on density information,
many small and short clusters resulted; therefore, clusters with less
than 10% of all observers or a duration of less than 50 ms were
treated as noise.

2.3.2 DBSCAN clustering

The two following algorithms consider density as the main crite-
rion for cluster identification. The first is an adaptation of DB-
SCAN [Ester et al. 1996]; as spatio-temporal distance metric, we
used the spatial Euclidean distance for any point pair within a 40 ms
time slice. The DBSCAN parameters eps (analogous to R above)
and minPts were set to 2 degrees and the number of available ob-
servers per movie, respectively.

2.3.3 Level-set tree clustering

Finally, we also used the python implementation [Kent et al. 2013]
of the level set tree (LST) clustering algorithm [Chaudhuri and Das-
gupta 2010].

The algorithm treats the data as realization of a distribution with an
unknown density function in a d-dimensional space (d = 3 in our
case). As before, a separate treatment of time and space coordinates
was required; here, we subdivided the whole space into rectangular
parallelepipeds with ’height’ τ along the time axis and ’width’ R
along both spatial axes (same as above). Then, for each such paral-
lelepiped only its own and its neighbours’ gaze points were consid-
ered. For these points the time component was removed (resulting
in a projection onto the (x, y) plane) and the density was then esti-
mated with a kernel-density estimation with a Gaussian kernel.

3 Evaluation

We evaluated the performance of the proposed approach on a sub-
set of the GazeCom dataset against two state-of-the-art algorithms
[Berg et al. 2009] (provided through the authors’ toolbox) and our
own reimplementation of [Larsson et al. 2015]. SPs were hand la-
belled independently by three raters (the authors of this paper) and
the majority vote was computed for each sample.

Figure 2: Hand labelling GUI.

We first randomly chose one two-second interval from each video
and labelled gaze episodes as pursuit or non-pursuit for each ob-
server in these intervals. For efficiency, gaze samples were grouped
into non-overlapping temporal windows of 250 ms which were then
labelled as a whole. A Matlab interface was devised that presented a
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visualization of gaze trace and raw data x and y coordinates as well
as speed in deg/s over time. To provide video context that allowed
the raters to judge whether a fixated object was moving or not, gaze
traces were overlaid on the temporally averaged video frames in
the 250 ms window (see an example screenshot in Figure 2). Raw
data plots served raters to identify abrupt changes in gaze traces
that might be invisible at the coarser scale of the video frames. By
either a mouse click or a key press, raters classified each window
as SP or not; they were instructed to treat the whole window as SP
if more than half of the gaze samples could be regarded as part of a
SP.

For quantitative evaluation, we computed precision, recall, and F1
scores as well as false positive rate over the concatenation of all in-
tervals. Overall, about 70000 gaze samples out of 385000 (approx.
18%) were labelled as SP by at least two raters. Average pair-wise
inter-observer agreement rate was 89.3%.

4 Results

Evaluation results are presented in Table 1. It can be seen that both
graph-based clustering and DBSCAN yield a dramatic increase in
precision while substantially improving recall at the same time.
The number of false positive errors was decreased about fourfold.
LST clustering achieves a further considerable increase in precision
while having relatively low recall.

Table 1: Precision, recall, F1 and false positive rate (FPR)
throughout all the ground truth data.

Precision Recall F1 FPR
Graph-based 0.865 0.372 0.52 0.013
DBSCAN 0.88 0.361 0.512 0.01
Level-set tree 0.963 0.115 0.206 0.001
Berg et al. 0.599 0.306 0.405 0.045
Larsson et al. 0.54 0.235 0.327 0.044

For each of the 18 movies in the GazeCom data set, the propor-
tion of gaze samples that were labelled as pursuit is shown in
Figure 3. All of our algorithms detect no pursuit episodes at all
on several movies, whereas the reference algorithms never label
less than 3.5%/2.7% of samples as SP per video. The maximal
rate of gaze samples labelled as pursuit is 15% and 8% for graph-
based/DBSCAN and LST clustering, respectively and 16%/14% for
Berg et al./Larsson et al, respectively. Based on these results and
recall/precision figures from the evaluation stage, we can estimate
that observers spent about 2.5 s on average per movie doing smooth
pursuit. DBSCAN and graph-based clustering yielded very simi-
lar rates; based on LST clustering, fewer episodes were labelled as
pursuit, but the relative ranking of movies was similar for all three
algorithms. Graph-based clustering not only showed better results,
but also had the lowest computational cost (in our experiment, 21 s
vs. 470 s and 1440 s for LST and DBSCAN, respectively for the
entire GazeCom data set).

5 Discussion

Many sophisticated algorithms to automatically label raw eye
movement data with meaningful descriptors exist to date. How-
ever, eye-tracking devices still suffer from recording artefacts that
may differ between subjects and between different device manufac-
turers. Short of neurophysiological recordings, there is no ’objec-
tive’ ground truth what the visual system might have intended, and
thus any performance evaluations necessarily require at least some
assumptions. As a consequence, it is impossible to calibrate such

algorithms towards universally optimal parameters. Thus, it is still
considered good practice to manually inspect at least a sample of
automatically labelled data as a sanity check (and, if necessary, ad-
just the labels), which is time consuming and potentially introduces
individual biases.

For the problem of smooth pursuit detection, we here proposed a
more principled approach that is based on the idea that smooth pur-
suit targets will elicit similar gaze patterns across observers, while
noisy artefacts should be independent of these targets. Therefore,
we clustered those gaze episodes that were neither clearly identified
fixations nor saccades, and assigned the pursuit label to relatively
dense clusters.

Clearly, this approach also introduces some free parameters, e.g.
what constitutes sufficient similarity between gaze patterns dur-
ing clustering, or how many observers need to be represented in
a cluster to warrant a pursuit label. However, these parameters are
less susceptible to minor gaze signal perturbations than parameters
that are applied directly to the raw eye movement signal. While
stressing that this cannot be considered an objective ground truth,
we hand-labelled pursuit episodes in almost half an hour of gaze
recordings on naturalistic scenes, and evaluated three different clus-
tering algorithms. As a baseline, we also evaluated two state-of-the-
art algorithms that base their classification on the characteristics of
individual gaze traces only. Our results showed that level-set tree
clustering achieved almost perfect precision (0.96) at the cost of low
recall. DBSCAN and graph-based clustering still gave greatly im-
proved precision compared to the state of the art while also improv-
ing recall. It should be noted that we here only clustered raw (but
pre-filtered) gaze samples; in principle, the same approach could
be applied to the output of existing pursuit detection algorithms,
potentially further increasing robustness.

Under laboratory conditions, it has been shown that visual process-
ing is altered during smooth pursuit, e.g. motion perception is en-
hanced [Spering et al. 2011]. Pursuit behaviour may also be im-
paired in clinical populations [Nagel et al. 2007], and eye move-
ment features have been previously used successfully to support di-
agnosis of neurological disorders [Tseng et al. 2013]. To our knowl-
edge, however, smooth pursuit has not been specifically quantified
for dynamic natural scenes yet; the authors in [Li et al. 2010] trans-
lated natural image patches on an otherwise blank background to
assess the importance of target size and speed. Especially for clini-
cal purposes, it clearly would further be desirable to base any com-
parative evaluation only on those gaze episodes that very likely are
pursuit, and thus high precision may be more critical than recall.

In a first analysis, we therefore looked at the pursuit episodes iden-
tified by our approach. Naturally, these will be strongly determined
by the data set and the range of possible pursuit targets. The Gaze-
Com data set is limited in this regard with only 18 different scenes;
unfortunately, larger gaze corpora for dynamic stimuli are typically
based on professionally produced material with camera motion and
scene cuts. Nevertheless, some preliminary observations can be
made even on this data set already.

The relative rate of pursuit episodes was higher for movies with iso-
lated pursuit targets that suddenly appear (e.g. a duck flying by); in
contrast to this, the ’roundabout’ clip constantly shows many mov-
ing targets, but elicited fewer pursuits. Whether these results are
artefacts of the present data set or represent general preferences of
the oculomotor system remains to be addressed in future work.
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Figure 3: Rate of gaze samples labelled as smooth pursuit for each movie of the GazeCom data set.
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Characterizing and Automatically
Detecting Smooth Pursuit

This work deals with both manual and algorithmic annotation of eye movements in gaze
recordings. First, we here presented the manual expert annotations of the eye movements
in a large data set of eye tracking recordings – GazeCom [69], which contains over 4.5 h of
gaze data. We provided the definitions for the eye movement classes that we annotated,
and described the annotation pipeline (two novice annotators working in parallel, then
an expert annotator reconciling and amending their labels).

In the annotated data set, we, for the first time in the literature, characterised several
aspects of smooth pursuit behaviour in dynamic natural scene free-viewing. For example,
we quantified the spatio-temporal congruency of the annotated eye movement classes
between different observers. This quantification revealed that, while only accounting
for ca. 11% of the gaze samples, the samples attributed to smooth pursuits of different
video viewers are more densely allocated in video volume, compared to fixations (which
account for the vast majority of gaze data – over 70%).

Additionally, we first improved our previously proposed smooth pursuit detection
method ([3†] and Appendix A) via random grid-based parameter optimisation, then
implemented it in a form of a publicly available framework for eye movement detection.
This framework not only detects the eye movements that we considered in our research
(i.e. fixations, pursuits, saccades, and noise), but also implements a number of evaluation
metrics from the literature [30, 52, 66, 3∗, 7∗].

We additionally thoroughly evaluated our smooth pursuit detection method to
determine the influence of the number of observers, whose recordings are analysed at the
same time, on the algorithm’s performance. This directly demonstrated the benefits of
aggregating inter-observer information for eye movement classification.

This is a shared first authorship work with Ioannis Agtzidis, so some contributions
are shared. My personal contributions consist of (i) performing the spatio-temporal
congruence analysis in the labelled data set, (ii) performing algorithm parameter optimi-
sation, (iii) implementing the framework for eye movement classification, including all
eye movement detectors, evaluation methods, a console interface, as well as (iv) testing
the final model in various set-ups and (v) writing the larger part of the manuscript.
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Eye movements are fundamental to our visual
experience of the real world, and tracking smooth
pursuit eye movements play an important role because
of the dynamic nature of our environment. Static
images, however, do not induce this class of eye
movements, and commonly used synthetic moving
stimuli lack ecological validity because of their low scene
complexity compared to the real world. Traditionally,
ground truth data for pursuit analyses with naturalistic
stimuli are obtained via laborious hand-labelling.
Therefore, previous studies typically remained small in
scale. We here present the first large-scale quantitative
characterization of human smooth pursuit. In order to
achieve this, we first provide a methodological
framework for such analyses by collecting a large set of
manual annotations for eye movements in dynamic
scenes and by examining the bias and variance of human
annotators. To enable further research on even larger
future data sets, we also describe, improve, and
thoroughly analyze a novel algorithm to automatically
classify eye movements. Our approach incorporates
unsupervised learning techniques and thus
demonstrates improved performance with the addition
of unlabelled data. The code and data related to our
manual and automated eye movement annotation are
publicly available via https://web.gin.g-node.org/
ioannis.agtzidis/gazecom_annotations/.

Introduction

The rapid decrease of visual resolution away from
the fovea renders the movement of the eyes essential for
perception and action in our complex and dynamic

visual world. Segmentation of eye movements into
discrete events is an important part of eye movement
research and has been investigated for decades.
Although we discuss the definitions of the particular
eye movement types later in the paper, reliably
separating gaze events from one another enables a large
number of analyses of eye tracking data sets in order to
search for group differences or similarities (Dowiasch
et al., 2016; Silberg et al., 2019), find the differences in
viewing behavior for different stimulus types (Vig,
Dorr, Martinetz, & Barth, 2011), and many other
research applications, including media summarisation
(Salehin & Paul, 2017).

For both precise quantification of eye movements
and the development of automatic algorithms for their
detection, ground truth data are required. Such data
are typically acquired via manual annotation (Larsson,
Nyström, & Stridh, 2013; Santini, Fuhl, Kübler, &
Kasneci, 2016; Andersson, Larsson, Holmqvist, Stridh,
& Nyström, 2017; Steil, Huang, & Bulling, 2018), which
is a time-consuming process, often requiring the effort
of multiple raters. This problem led to a relatively small
scale of the previously conducted studies (for reference,
the data sets in the works listed above range 3–25 min).
I. T. C. Hooge, Niehorster, Nyström, Andersson, and
Hessels (2018) concluded that while experienced yet
untrained annotators often do not produce well-
agreeing fixation annotations, human expertise still
represents the gold standard for complex, ill-defined
cases, which could include setting borders between
fixations and postsaccadic oscillations or slow pursuits.

In order to quantify the eye movements with
dynamic naturalistic stimuli on a larger scale, we here
collected what is, to the best of our knowledge, the
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largest manually annotated eye tracking data set that
accounts for smooth pursuit (SP, foveating an object
moving relative to the observer via an eye movement).
We collected the manually annotated eye movement
class labels for a set of 18 dynamic natural scenes,
viewed by a multitude of observers in the established
GazeCom data set (Dorr, Martinetz, Gegenfurtner, &
Barth, 2010). The labelled data set amounts to a total
of over 4.5 hours of eye tracking data, all samples
assigned to one of the four categories: fixation,
saccade, smooth pursuit, and noise. The latter was
employed during blinks, out-of-monitor gaze, and
naturally impossible gaze traces (i.e., the likely
recording noise).

Although the size of other data sets in the literature
would be sufficient for small- to medium-scale gaze
pattern analysis and evaluation of eye movement
detection algorithms, such amounts of data do not
allow for meaningful algorithm parameter tuning,
especially where machine learning is involved. For deep
learning models specifically, with their thousands of
parameters (Startsev, Agtzidis, & Dorr, 2019; Zemblys,
Niehorster, & Holmqvist, 2019), the amount of
available data, as well as their diversity, are crucial for
the development and refinement of sophisticated
models that could further improve the state of the art in
eye movement classification. Our data set, with its
millions of annotated gaze samples and tens of
thousands of labelled events, sets a new yardstick for
data set scale and enables the meaningful training of
highly parametrized classification models, as well as
makes large-scale analyses of naturalistic viewing
behavior possible.

As spontaneously occurring pursuit behavior in
naturalistic video viewing has not been quantified in the
literature, we set out to characterise it in this study.
Having manually annotated the GazeCom data set
recordings, we report on the amount and properties of
SP in this large-scale eye tracking data set, describing
and discussing the relations between different eye
movements in this context. For example, in our free-
viewing gaze data we observed that pursuits cover a
nonnegligible percentage of recorded gaze samples (ca.
11%), even more than is covered by saccades. We
additionally explicitly explored the congruence between
the eye movements performed by different observers,
thus for the first time directly numerically characteriz-
ing the synchrony—in space and time—of fixations,
saccades, and pursuits. We found that, even though
most of the time the observers spent fixating, smooth
pursuits were performed by a larger number of people
at the same time and at the same place.

While this work presents a large-scale analysis of eye
movements in its own right, it also demonstrates that
considerable effort is required to obtain reliable
annotations. To facilitate studies involving eye move-

ments without the need to perform expert annotations
for every analysed recording, algorithmic eye move-
ment classification approaches are being constantly
developed and refined. This strive for robust and
accurate automatic analysis resulted in an impressive
number of algorithms for eye movements classification
that exist to date. Many of them rely on simple speed or
dispersion thresholding (Salvucci & Goldberg, 2000;
Komogortsev & Karpov, 2013), while others use more
elaborate analyses such as principal component anal-
ysis (Berg, Boehnke, Marino, Munoz, & Itti, 2009;
Larsson, Nyström, Andersson, & Stridh, 2015) or
Bayesian inference (Santini et al., 2016). Lately,
machine learning approaches have been applied to eye
movement classification (Vidal, Bulling, & Gellersen,
2012; Anantrasirichai, Gilchrist, & Bull, 2016; Zem-
blys, Niehorster, Komogortsev, & Holmqvist, 2018)
with promising results. Most recently, deep learning
models have emerged as the new state of the art for eye
movement detection (Startsev, Agtzidis, & Dorr, 2019;
Zemblys et al., 2019).

Traditionally, automatic analysis performed based
on the subjects’ eye movements relied either on
detecting fixations and saccades (Williams, Lough-
land, Gordon, & Davidson, 1999), or on analyzing the
recordings that correspond to synthetic stimuli
(Spering, Schütz, Braun, & Gegenfurtner, 2011),
where targets for smooth pursuit, for example, are
limited and have well-defined properties. Recent
works show a tendency towards naturalistic stimuli,
however, which include dynamic content as well
(Dowiasch et al., 2016; Silberg et al., 2019). For these,
even a seemingly simple analysis that is limited to
fixations and saccades may be prone to errors because
of the accidental inclusion of pursuit samples (Dorr et
al., 2010). In their recent review, Andersson et al.
(2017) indeed found that the algorithms designed
without SP in mind would often falsely detect fixations
instead. This accounted for the vast majority (over
70%) of misclassified gaze samples in their data, both
in synthetic and realistic stimuli, albeit with the
participants instructed to follow moving targets,
which exacerbated this particular problem.

All this leads us to the observation that even though
SP is an as important part of viewing behavior as are
e.g., saccades, it is substantially underrepresented and
often entirely overlooked in current eye movement
detection approaches (Olsen, 2012; Mould, Foster,
Amano, & Oakley, 2012; Kasneci, Kasneci, Kübler, &
Rosenstiel, 2014; Anantrasirichai et al., 2016; Steil et
al., 2018; Zemblys et al., 2019), highlighting the need
to develop accurate pursuit classification algorithms
(Andersson et al., 2017). It is of interest to note that
one common property of all eye movement classifica-
tion methods to date is that they only process one gaze
recording of a single observer at a time, thus never
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accounting for the element of synchrony in the eye
movements performed by various observers for the
same stimulus (Startsev, Göb, & Dorr, 2019). This
limitation has its benefits in terms of online applica-
bility and the absence of additional data set restric-
tions, and it also seems to be sufficient for detecting
saccades and fixations, which have relatively defined
speed and acceleration ranges. For SPs, however,
simple analysis of the speed of the gaze might not be
sufficient to differentiate them from drifts (Yarbus,
1967, Chapter VI, Section 2), noisy fixations, or slow
saccades (we present speed distributions later in the
paper). Some algorithms, therefore, include accelera-
tion thresholds in order to avoid misclassification of
slow saccades as pursuits (e.g., (Mital, Smith, Hill, &
Henderson, 2011) or the SR Research saccade detector
(SR Research, 2009)). Mital et al. (2011) then simply
combine all ‘‘nonsaccadic eye movements’’ into one
category. While this is sufficient for some applications,
various areas of eye movement research require
distinguishing between different ways of looking at the
gaze targets, in terms of execution or perception
(Schütz, Braun, & Gegenfurtner, 2011; Spering et al.,
2011; Silberg et al., 2019).

What additionally distinguishes pursuits is that they
normally require a target in order to be executed. In
artificial scenarios, where SP targets are generated with
predefined speeds and trajectories, accurate detection
of pursuit can be mostly achieved via matching the
position of the gaze and position of the target at each
given time. One should, of course, take catch-up
saccades into account, but these are relatively easy to
detect. In natural scenes, and in the absence of the
detailed information about all the moving targets
throughout the video, such matching is practically
impossible. Dowiasch et al. (2016) computed optical
flow of the video instead, using it as a substitute for
gaze target speed, but during manual annotation of our
data set we noticed that gaze samples were often offset
relative to the targets they were following, likely due to
tracking inaccuracy.

As a substitute for moving object detection in
natural scenes, we recently proposed (Agtzidis, Start-
sev, & Dorr, 2016b) an SP detection algorithm that is
based on a clustering of several observers’ partial
scanpaths, where fixation and saccade samples were
eliminated in advance. This approach is based on the
observation that multiple people will often track
(pursue) the same objects of interest in natural scenes,
as well as on the spatio-temporal eye movement
congruency analysis performed in this work. Individual
gaze traces will be noisy, so a significant portion of the
gaze samples that would not be labelled as saccades or
fixations could be attributed to recording or oculomo-
tor artefacts. This noise, however, will be uncorrelated
between the observers. If, on the other hand, several

participants show similar gaze traces that are neither
fixations nor saccades, these patterns are correlated and
therefore less likely to be noise. Following this logic, we
can obtain an indication of a reliably detected SP and
filter out noise. A preliminary implementation of this
approach (Agtzidis et al., 2016b) already demonstrated
promising results for SP detection.

Figure 1 illustrates the detection patterns of this
approach on an example of the ducks_boat video of the
GazeCom data set (this video has two ‘‘main’’ moving
targets—two ducks flying by—and several much slower
moving, floating ducks). Here, the true positives (i.e.,
SP detected as SP, green traces), false positives (i.e., not
SP labelled as SP, red traces), and false negatives (i.e.,
missed SP samples, blue traces) reveal both the benefits
and the downsides of our approach: While most of the
codirected pursuit episodes are successfully identified
by our method, the nature of clustering leads to
potential false detections where a dense group of
samples was not discarded by the preceding steps of the
algorithm, and potential missed detections, e.g., when
the target was pursued by a single observer only.

The use cases and implications of the work presented
in this manuscript extend beyond its immediate
contributions (quantifying human eye movements in a
large manually annotated data set and improving upon
the state of the art of eye movement classification). The
data presented in this work enables us and other
researchers for the first time to quantify natural video-
viewing behavior in terms of its constituent eye
movements and their interactions or similarity between
the observers (Startsev, Göb, & Dorr, 2019) on a
comparatively large scale. The algorithmic analysis we
propose allows for fully automated processing of the
eye-tracking data sets, the size of which would make it
difficult or well-nigh impossible to collect full expert
annotations. Such analyses could further the research
both in medical contexts (Lagun, Manzanares, Zola,
Buffalo, & Agichtein, 2011; Tseng et al., 2013; Silberg
et al., 2019), in computer vision applications dealing
with human attention (Marat et al., 2009; Startsev &
Dorr, 2018), and for attempting to understand the
nature of human smooth pursuit in general (Hashi-
moto, Suehiro, Kodaka, Miura, & Kawano, 2003;
Yonetani, Kawashima, Hirayama, & Matsuyama,
2012). Moreover, the unsupervised nature of our
pursuit detection approach brings a unique property
into the eye movement analysis field: This clustering-
based algorithm is capable of improving detection
quality and robustness by using more unlabelled data,
i.e., without the need for additional annotations.

The manually labelled data set we collected is freely
available via https://web.gin.g-node.org/ioannis.
agtzidis/gazecom_annotations/ together with both our
hand-labelling framework and automatic eye move-
ment detection software. A detailed description of the
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latter, including the particularly relevant parameters
and use cases, is provided in the Programmatic
interface section.

Methods

In this section we describe the methodological details
of the pipeline that we employed in order to collect a
large annotated data set and construct an automatic
tool for the segmentation of gaze traces into distinct eye
movements. We start by describing the terminological
and data-related background for this work, the
labelling process that was used by the manual raters for
the annotation of fixations, saccades, SP, and noise in
the GazeCom data set. We then describe the classifi-

cation and evaluation procedures of our eye movement
detection framework.

Addressing terminological ambiguity

Before we proceed to describe further details of this
work, we address several definitions that might be
ambiguous or context-dependent, as they may differ in
various set-ups of eye-tracking experiments or in
various subfields (Hessels, Niehorster, Nyström, An-
dersson, & Hooge, 2018).

For example, throughout this manuscript we use the
term ‘‘naturalistic’’ in order to describe the stimulus
scenes in our data set. We use this term in the meaning
of ‘‘imitating real life or nature’’ in accordance with

Figure 1. Visualization of clustering-based pursuit classification in one video of our data set (ducks_boat). Data points for all observers

are presented. Correctly detected smooth pursuit samples (in green) as well as detection errors (in red, false detections; in blue,

missed samples) of our SP detection algorithm in the sp_tool framework.
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other literature (Krieger, Rentschler, Hauske, Schill, &
Zetzsche, 2000; Torralba, Oliva, Castelhano, & Hen-
derson, 2006; Dorr et al., 2010; Tatler, Hayhoe, Land,
& Ballard, 2011; McIlreavy, Fiser, & Bex, 2012; Smith
& Mital, 2013; Parks, Borji, & Itti, 2015; Leder,
Mitrovic, & Goller, 2016; Ramkumar et al., 2016;
Foulsham & Kingstone, 2017; Schomaker, Walper,
Wittmann, & Einhäuser, 2017; White et al., 2017). We
describe our experimental set-up as naturalistic in part
to contrast it with synthetic stimuli with prescribed,
isolated eye movements often used for studies involving
smooth pursuit (Vidal et al., 2012; Santini et al., 2016):
Naturalistic stimuli represent a more complex set of
visual inputs that affect oculomotor behavior (Mon-
ache, Lacquaniti, & Bosco, 2019), and the idea that the
visual system is optimized to efficiently encode the
inputs that surrounded our ancestors during evolution
is well established (Field, 1987; Atick & Redlich, 1992).

Another terminological clarification we make (fol-
lowing the recommendations of (Hessels et al., 2018))
concerns the particular eye movement definitions we
used for this work. We note that in our data, the head
of the observer was always fixed, so when we talk about
motion, we mean movement on the monitor, which
necessarily implies movement relative to the observer in
this set-up. Also, the eye tracker yielded point-of-
regard coordinates relative to the monitor (i.e., in the
world coordinate system). In this setting, we limited
ourselves to four labels: fixations, saccades, smooth
pursuits, and noise. For convenience of terminology,
we refer to fixations as ‘‘eye movements’’ as well, even
though they are technically defined by the absence of
motion (‘‘gaze event’’ might be a more accurate, but
less common term).

The following definitions were employed: (a) Fixa-
tions were defined as periods of relatively stationary
gaze, which was not following the motion of any
moving object in the video. (b) Saccades were defined
as jumps to different on-screen positions, and no
specific amplitude bounds were utilized. The end of
each saccade was marked when the gaze had stabilized
again. Even though there is no clear definition for
postsaccadic oscillations (PSOs; I. Hooge, Nyström,
Cornelissen, & Holmqvist, 2015), our saccade end
interpretation considers them part of respective sac-
cades. If a different way of handling the saccade and
PSOs combination is desired, additional analyses have
to be carried out. (c) Special care was given to SP
labelling since it can be confused with other pursuit-like
motions. SP labels were assigned to the parts of the
gaze recordings where the gaze point was smoothly
moving itself and was following a moving object in the
video, i.e., the projection of the point of regard had
roughly the same velocity—speed and direction of
motion—as some moving object. The spatial location
of the gaze also had to approximately match that of the

assumed target (some offset was allowed to account for
the potential drifts in tracking). Contrarily, if the gaze
was moving, even in a pursuit-like fashion, without a
corresponding target, it was considered part of a
drifting or noisy fixation. We observed several instances
in the data where the gaze recording was smoothly
moving in a direction perpendicular or even opposite to
the velocity of the closest potential target. (d) Blinks,
gaze reported outside of the monitor, as well as
intervals where the eye tracker was yielding zero
confidence, along with naturally impossible gaze traces,
which could be attributed to tracking artefacts, were
labelled as noise. In this work, ‘‘noise’’ is used to name
the parts of the gaze recordings that are irrelevant to
the present study, and a more precise labelling scheme
might be required for different-context studies. This is
why this label was also assigned to blinks, for example,
even though these are a dedicated type of eye activity.

Additionally, we use the terms ‘‘event’’ and ‘‘epi-
sode’’ interchangeably when talking about eye move-
ments, both referring to a period of time where all the
gaze sample class labels (either in human annotations
or in the output of an algorithmic detector) are
identical. Thus, any gaze recording is subdivided into
nonoverlapping eye movement events (episodes), each
described by a corresponding label (in this study—one
of the labels defined above).

We further note that we refer to the manual labels as
the ‘‘ground truth’’ for eye movement classification,
even though expert annotations differ between them-
selves (I. T. C. Hooge et al., 2018), and even such basic
eye movements as fixations and saccades are differently
defined in the field (Hessels et al., 2018). Therefore, the
labels produced by hand-labelling the eye tracking data
can only be an approximation of the eye movements
that were taking place at the time. Nevertheless, we
maintain the ‘‘ground truth’’ name for this type of data
as this represents the state-of-the-art data source in eye
movement classification (Zemblys et al., 2018; Startsev,
Agtzidis, & Dorr, 2019; Zemblys et al., 2019), though
some automatic scoring pipelines are also being
developed (Larsson, Nyström, Ardö, Åström, & Stridh,
2016).

Original data set

Because the GazeCom (Dorr et al., 2010) data set
forms the basis on which we build our work, we briefly
describe its set-up and basic statistics here. The data set
comprises 18 short naturalistic video clips (20 s each),
depicting everyday scenes. These include beach scenes,
pedestrian and car-filled streets, boats, animals, etc.
There is little to no camera motion in the recorded clips
(11 out of 18 clips lack it completely, four have slow
panning camera motion, and the camera was slightly
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shaking in the other three), and the scenes themselves
contain both rigid (e.g., cars) and nonrigid (e.g., human
or animal) motion at a variety of speeds. These clips
thereby form a set of dynamic and relatively natural-
istic stimuli.

All video clips were presented at 1280 3 720 pixels,
29.97 frames per second, at a distance of 45 cm from
the observers. The frames covered an area of 48 3 27
degrees of visual angle. The gaze of 54 participants was
recorded at 250 Hz with an SR Research EyeLink II
eye tracker. Even though the eye tracker allowed for
small head motion, a chin rest was used to stabilize the
participants’ heads. Some recordings were discarded by
the authors of the data set due to frequent (over 5%)
tracking loss, leaving 844 recordings in the published
data set (46.9 per clip on average). These data total 4.5
hr of gaze tracking recordings, all of which we annotate
and analyze in the context of this work.

Manual eye movement annotation

We now focus on the manual annotation part of our
work, for which we used the software described in
(Agtzidis, Startsev, & Dorr, 2016a). The graphical
interface presents an annotator with four panels (see
Figure 2). The top left panel displays the video overlaid
with the gaze trace (current gaze sample plus gaze

positions 100 ms before and after it). The bottom left
panel, which was not used during our labelling, is
optional and displays the optical flow of the video. The
two panels on the right display the x and the y gaze
coordinates as time series, which are overlaid with
color-coded boxes that correspond to the time intervals
of different eye movements. These intervals could be
freely created or deleted, and their borders could be
freely adjusted by the manual annotators, who could
also scroll through the video (to observe object motion
patterns) and change the temporal scale of the
displayed gaze coordinates.

Prior to the hand-labelling process, the eye move-
ments were roughly prelabelled automatically with the
purpose of simplifying the annotation process (e.g., so
that the manual raters would not have to insert and
label as many eye movement episodes, mostly adjusting
their borders). For prelabelling we used the authors’
implementation of the saccade and fixation detection
algorithms of Dorr et al. (2010). The rest of the samples
were clustered in order to detect SP gaze samples by a
very early implementation of the Agtzidis et al. (2016b)
algorithm.

This technique of prelabelling the samples prior to
manual annotation allowed us to roughly double the
speed of the labelling process: For an expert annotator,
the labelling time decreased from ca. 10 to ca. 4 min on
average per single ca. 20 s recording (Agtzidis et al.,
2016a). The importance of these gains becomes evident

Figure 2. An example of the hand-labelling tool interface.
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when we consider the 4.5 hr of gaze recordings of the
GazeCom data set labelled by several annotators, thus
saving months of manual annotation time. Even
though any form of prelabelling introduces bias into
the resulting labels, we note the following: (a) Most of
the algorithms for eye movement detection, even the
simple threshold-based ones, detect fixations and
saccades reasonably well (Startsev, Agtzidis, & Dorr,
2019). Therefore, potential bias in the manual labels
should not constitute a large issue. (b) For smooth
pursuit, however, which is the focus point of this work,
and which is harder to detect algorithmically, we
specifically tested that our conclusions about the
performance of the SP detector we developed were not
unfairly affected by our labelling procedure (see the
Validity check for algorithmic detection evaluation
section).

The interface described above was used by three
human annotators in order to create a complete
manually labelled version of the GazeCom data set in
accordance to the eye movement definitions that were
given in the Addressing terminological ambiguity
section. The overall process involved two novice
annotators going through all the recordings twice,
followed by an expert who solved conflicts in their
annotations, but was still free to make any adjustments
in the labels in accordance with the provided eye
movement definitions.

The two novice annotators were paid undergraduate
students who received basic instructions about eye
movements and interpreting eye tracker data. Experts
in the eye movement field were available to answer their
questions at any point in the labelling process. Due to
their little prior experience with hand-labelling and
because we wanted their internal biases to stabilize,
these two annotators went through the data set for a
second time several months later. In the first pass they
were provided with the prelabelled suggestions and
instructed to change, add, or remove intervals accord-
ingly. In the second pass they were presented with their
own labelling and instructed to change it wherever they
thought it was not accurate (with respect to the eye
movement definitions). As a quality assurance measure,
a third (expert) annotator (one of the authors) re-
examined all the recordings in the data set with the
objective of resolving conflicts between the labels of the
first two annotators, also making changes where the
provided eye movement definitions were violated. We
report on the agreement between the raters later in the
paper.

In order to describe the eye movements in our data
set, we report several simple statistics. First, we
computed the overall speed of the events of each eye
movement class as episode amplitude divided by its
duration. Similarly, to characterize the directional
similarity of gaze movement within the individual eye

movement episodes, we computed the angular devia-
tion of sample-to-sample velocity vectors from the
overall direction of the corresponding episode. The
overall direction was computed as the vector pointing
from the start to the end position of gaze for each eye
movement episode. The deviations are then computed
as angles between the sample-to-sample shift vectors
and the respective overall direction vector. Such vectors
are visualized in Figure 3 for an example fixation of
GazeCom data.

To additionally quantify gaze behavior in naturalis-
tic dynamic video viewing, we also directly assessed
how synchronous were the eye movements (of the same
type) of different observers. To achieve this, we
computed the following for each of the eye movement
types considered here: (a) For each data point, we
determined the other data points belonging to its
spatio-temporal neighborhood (determined by the
parameters of the observer-driven clustering modifica-
tion of our approach, see Appendix, Observer-driven
clustering extension of DBSCAN—within 48 in the
monitor space and within 20 ms in time). (b) Among
these points, we computed the number of unique other
observers. (c) We then measured the percentage of gaze
samples (i.e., data points) that had no fewer than N
other observers’ gaze samples (of the same eye
movement type) in their neighborhood, and plotted this
over varying N (0 to 40 with a step of 1).

Figure 3. The sequence of gaze samples for an example fixation,

with the green vector marking the overall direction of the

episode and the red vectors corresponding to examples of

sample-to-sample gaze shift directions. The axes’ arrows

indicate the scale of the plot.
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Automatic eye movement annotation

Manually labelling eye movements is a tedious
process that requires a substantial amount of time, an
order of magnitude greater than the time required to
perform the recordings. Automating this process can be
desirable, as long as the algorithmically produced labels
offer qualitatively similar results to the manual ones.
The algorithm of Agtzidis et al. (2016b) forms the basis
for our automatic eye movement annotation approach.
Here we provide an in-detail description of the
algorithm and its implementation, which was devel-
oped in the context of this work. We further optimized
the parameters of our approach (see Appendix,
Parameter optimization), which has significantly im-
proved the algorithm’s performance (the values of the
optimized parameters are provided below). For rec-
ommendations regarding parameter adjustment when
the algorithm is to be applied to a different data set, see
Appendix, Parameter adaptation for other data sets.

Our approach first removes the confidently detected
saccades (along with blinks) and fixations from
consideration. Saccades were detected by the dual-
threshold saccade detector of Dorr et al. (2010).
Saccades nearest to the tracking loss intervals (but no
further than 25 ms) were marked as parts of a blink.
Fixations were removed based on sliding-window
analysis: All intersaccadic intervals with a gaze shift
magnitude below 1.418 were first marked as fixations
(value chosen via parameter grid search, see Appendix,
Parameter optimization). A 100 ms sliding window was
then applied to the remaining intervals to detect
fixation on- and off-sets when the average gaze speed in
the considered window fell below or raised above 28/s,
respectively.

After the prefiltering step, we clustered the remaining
‘‘pursuit candidate’’ samples with a variation of the
DBSCAN clustering algorithm (Ester, Kriegel, Sander,
& Xu, 1996). Importantly, the recordings of individual
observers were processed separately for saccade, blink,
and fixation detection, but the remaining SP candidate
samples were aggregated from all the available record-
ings for a given stimulus (between 37 and 52 in
GazeCom).

We employed DBSCAN in the 3D space consisting
of time and x, y coordinates. This algorithm effectively
finds densely populated areas of the considered space
by subdividing all the data samples into (a) cluster core
points, (b) border points, and (c) outliers. The concept
of the point’s neighborhood is important for these
definitions, and it is usually defined as all the data
points with a distance from the considered point not
exceeding a user-set value (parameter e). The core
points are defined as those having at least a certain
number (parameter minPts) of points in their respective
neighborhoods. Border points are those that do not

fulfil the requirements for core points but have at least
one core point in their neighborhood. All other data
samples are labelled as outliers (not a part of any
cluster) and receive a ‘‘noise’’ eye movement class label.

As there is no universal way of scaling distances in
time and in space, we proposed a slight modification of
the original DBSCAN algorithm by splitting coordi-
nates into groups that are considered together, and for
which an independently set threshold is used. For our
data, we grouped x and y and used the threshold exy¼
48 of visual angle. Time t represented the other
coordinate group, with the threshold et ¼ 80 ms. The
minPts parameter was set to 160 following the
optimization procedure in Appendix, Parameter opti-
mization.

An important distinction of DBSCAN from many
other popular clustering algorithms (e.g., k-means;
MacQueen, 1967, or Gaussian mixture models) is that
it does not assume that clusters can be represented by
centroids, but the cluster shape is arbitrary and only
determined by the data point density in the respective
space. This is particularly important for detecting the
grouping of smooth pursuit samples, as the trajectory
of the pursued target can be arbitrary, and the dynamic
nature of pursuit does not allow for its representation
as a centroid, which could be appropriate for fixations,
for example. Our implementation of DBSCAN not
only labels all the considered data points as either
belonging to a cluster or not, but also differentiates
between the individual clusters by assigning a corre-
sponding (unique) cluster ID to all the gaze samples
belonging to a particular cluster.

We also note that we additionally implemented a
more elegant, albeit less performant, version of the
algorithm, which clusters the data based on how many
unique observers have produced gaze samples in the
spatio-temporal vicinity of the considered gaze point,
instead of simply using the number of gaze samples
themselves. We describe this algorithm variant and
some analysis of its performance in more detail in
Appendix, Observer-driven clustering extension of
DBSCAN.

Programmatic interface

The implementation of our algorithm together with a
wide set of evaluation measures for eye movement
classification in general is available at https://web.gin.g-
node.org/ioannis.agtzidis/gazecom_annotations/ (ac-
companying the annotated GazeCom data set) or as
GitHub repository https://github.com/
MikhailStartsev/sp_tool. The implementation uses Py-
thon and several external libraries (e.g., for handling
ARFF data), which are listed as its dependencies. We
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will here briefly cover the functionality of the published
framework.

The framework can be used either as a Python
library that can be accessed from code or through an
executable file. In both cases, the framework user will
interact with the run_detection.py file and can set all the
parameters related to saccade, blink, fixation, and
pursuit detection as well as specify the path to input
and output directories. Implementation details of all
the detectors can be found in respective source files
(e.g., saccade_detector.py, etc.). The parameter set that
we recommend based on the results of the optimization
procedure in Appendix, Parameter optimization is
provided in the default_parameters.conf.json file, which
can be modified with any text editor, if necessary.

Two data formats can be loaded natively (without
preliminary conversion): ARFF (as described in
Appendix, Data format) and the original format of the
GazeCom data set (Dorr et al., 2010), also text-based,
with a header describing experiment set-up parameters.
We additionally provide conversion scripts for two
popular eye-tracking recording formats: text files
produced from binary SMI recording files and EyeLink
ASCII format (usually .asc files). These conversion
scripts also provide an example for programmatically
populating an ARFF file structure with any data and
can be found in the examples/ directory of the source
code.

Beyond this functionality, the framework provides
an implementation of a diverse set of metrics (see next
section), which can be computed for any ARFF data
(i.e., not necessarily GazeCom, not necessarily only the
eye movement types that are present in our data),
provided that some form of corresponding ‘‘ground
truth’’ and tested eye movement labels are available.
The implementation of the evaluation strategies can be
found in evaluate.py, and the evaluation script—
examples/run_evaluation.py—can be executed directly
from the command line.

Sample- and event-level evaluation

The widely used evaluation measures we imple-
mented include sample-level accuracy/precision/recall/
F1 scores (we recommend using F1 as a balanced
combination of precision and recall) and Cohen’s
kappa. Levenshtein distances between the true and the
predicted labelled sequences (of either samples or
events), as proposed by Zemblys et al. (2019), evaluate
the edit distances between the two sequences, though
these are a relatively weak evaluation measure that
might not be well suited for the eye movement
classification problem (Startsev, Göb, & Dorr, 2019).

As for event-level evaluation, there is no consensus
in the literature as to which measures should be used.

We therefore tested several different strategies pro-
posed in the field. We particularly want to point out the
F1 scores as computed by I. T. C. Hooge et al. (2018),
where the intersecting same-class episodes are matched.
It was modified in recent works: In Zemblys et al.
(2019), the events that have the largest intersection are
matched (rather than the temporally first intersecting
event being treated as a match, as in the original
matching scheme of I. T. C. Hooge et al., 2018), and the
event-level Cohen’s kappa scores are computed ac-
cordingly. In Startsev, Agtzidis, and Dorr (2019), a
threshold for the ‘‘quality’’ of the intersection was
recommended, which results in no more than one
potential match for each of the ‘‘true’’ episodes. In
Startsev, Göb, and Dorr, (2019) we additionally
proposed a new event-level Cohen’s kappa-based
statistic, which we developed after analyzing the
literature evaluation strategies in the context of eye
movement classification baselines. These and other
evaluation methods can be found as functions of the
framework we provide.

In this manuscript we will mostly rely on sample-
level F1 scores and event-level F1 scores of (I. T. C.
Hooge et al., 2018) for simplicity. A larger spectrum of
metrics for this and other literature models is reported
on the data repository page, however.

Algorithm evaluation

To put the performance of our detector in context,
we compare it with three other methods that detect SP:
the algorithms of Berg et al. (2009, implemented in
Walther & Koch, 2006) and Larsson et al. (2015,
reimplemented by our group and available for down-
load on the data repository page), as well as I-VMP
(San Agustin, 2010, implemented by Komogortsev,
2014). I-VMP, among others, was optimized in
Startsev, Agtzidis, and Dorr (2019) via an exhaustive
grid search of its parameters in order to deliver optimal
performance on the full GazeCom data set, so its
results represent an optimistic scenario. These three
models (plus the approach described here) were the best
nondeep-learning detectors tested in Startsev, Agtzidis,
and Dorr (2019), when ranked by the average per-class
sample- and event-level F1 scores. We use the same
metrics in this paper and test all models on the full set
of annotations of the GazeCom recordings that are
collected as described in this work.

Beside sample- and event-level F1 scores, we wanted
to computationally directly assess the properties of the
episodes (as detected by all the algorithms) and how
they compare to those of the ground truth episodes. We
consider duration as an example of a widely used
episode characteristic. As researchers might, for ex-
ample, use SP episode durations to distinguish between
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clinical populations (Silberg et al., 2019), it would be
useful to know which algorithms should be used for
automatic event detection in order to obtain episodes
that are closer to the ground truth in terms of the
properties of interest.

Instead of comparing just average episode statistics
(e.g., as in Komogortsev, Jayarathna, Koh, & Gowda,
2010), we represent episode duration distributions as
histograms (of 256 bins) and evaluate their similarity
with appropriate measures: Kullback–Leibler diver-
gence (KLD; Joyce, 2011) and histogram intersection
similarity (HSIM; Swain & Ballard, 1991).

Results

Eye movement properties

Overall, the GazeCom data set (in our final
annotation) contains 38,629 fixations, 39,217 saccades,
and 4,631 SP episodes. While the number of SP
episodes may seem small, especially for training a
balanced classification algorithm, there are more
pursuit than saccade samples: 11% versus 10.5%. As
expected, most samples were labelled as fixations
(72.5%), with another ca. 6% labelled as ‘‘noise.’’

In this section, we visualize some basic and
commonly used (e.g., Salvucci & Goldberg, 2000;
Komogortsev & Karpov, 2013; Santini et al., 2016;
Zemblys et al., 2018; Startsev, Agtzidis, & Dorr, 2019)
statistics (speed and directional deviation) of the
ground-truth fixations, saccades, and pursuits.

Figure 4 visualizes the distribution of the overall
speeds of the events of each eye movement class.
Notably, some average saccade speeds were lower than
expected because of the inclusion of PSOs in our
definition. Whereas fixations and thus-labelled saccades
have almost no intersection in their speed distributions,
pursuits demonstrate a sizeable overlap with the
fixation class, while also extending into the territory of
the speeds of slow saccades.

Figure 5 visualizes the distributions of sample-to-
sample velocity vector angular deviation from the
overall direction of the corresponding episode. We can
observe that the three eye movement types we consider
correspond to three distinct shapes of the direction
deviation distribution, with saccades having the most
pronounced peak (Figure 5c), followed by SPs (Figure
5b), followed by an almost uniform distribution for
fixations (Figure 5a). The direction deviation distribu-
tion for fixations is not perfectly uniform because the
deviations of direction are computed regardless of the
gaze shift magnitude (e.g., see Figure 3), and thus any
drift, however small, would result in the distribution
skewing. The fact that these distributions exhibit
different patterns for fixations, saccades, and pursuits
indicates that gaze movement direction could be a
useful feature for eye movement classification (which
was also demonstrated in Larsson et al. (2016) and
Startsev, Agtzidis, and Dorr (2019).

Figure 6 depicts the spatio-temporal interobserver
congruency of different eye movement types, demon-
strating that pursuit has the strongest synchrony
between the observers, closely followed by fixations,
followed by saccades, finally followed by samples
labelled as noise.

Figure 4. Overall per-episode speed distributions for fixations, saccades, and smooth pursuits. These are the (normalized) histograms,

which were computed for each eye movement type independently with 50 equal-sized bins covering each respective speed range.

These were then plotted here in log-scale (see x axis), with the y axis representing the share of episodes in each of the bins. The

dashed vertical lines visualize the quartiles (first and third) of the respective distributions. Note that since the horizontal axis is in log-

scale, it is difficult to visually compare the areas under different parts of the curves. For example, for fixations (red solid line), 50% of

the labelled episodes (between the first and third quartile lines) had an overall speed between 18/s and 38/s, as indicated by the left

and right vertical red lines, respectively.
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Hand-labelling statistics

Labelling the full Gazecom data set lasted the
equivalent of several months of full-time work (in-
cluding the two passes through the whole data set for
the first two annotators). On average for all three
annotators, labelling one GazeCom recording (usually
ca. 20 s) took between 5 and 6 minutes, which is
equivalent to a labelling time of 15–18 s for each second

of the recorded gaze signal. The labelling process also
benefited from prelabeling the gaze signal, which more
than doubled the labelling speed (see the Manual eye
movement annotation section).

In Figure 7 we illustrate the confusion matrix
between the prelabelled and hand-labelled eye move-
ment classes, thus reporting which and how many
algorithmically preassigned labels were replaced during
manual annotation. The algorithmically suggested

Figure 5. Directional deviation distributions for fixations (a), pursuits (b), and saccades (c), presented as circular histograms. The

height of each bar represents the share of the sample-to-sample velocity vectors with the given angular deviation from the overall

direction of their corresponding episode (see Figure 3). Zero deviation angle means perfect alignment with the overall direction of the

respective episode.

Figure 6. Visualization for the spatio-temporal congruency between same-type eye movements of different observers. The y axis

portrays the share of the respective eye movement samples that are located within 20 ms and a 48 radius from the same-type

samples that belong to at least as many different unique observers as denoted by the x axis.
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labels are represented by the matrix rows, while the
final ‘‘ground truth’’ labels are represented by the
columns. Note that the individual cells contain the
overall share of the samples that had a certain
suggested label and a certain final label, i.e., the whole
matrix sums to 1.0, but not the individual rows or
columns. The color of the cells indicates the degree of
the correspondence between the originally suggested
labels of each type and the final labels of each type (see
color bar in Figure 7; if the prelabeling were perfect,
only the diagonal would be populated). It can be
observed that fixations and saccades were very well
detected by the algorithms (over 90% of the final labels
of these types were correctly labelled by the algorithms
that were used for prelabeling). For pursuit, however,
most of the finally assigned SP labels corresponded to
originally suggested fixation labels (ca. 59%), only 27%
being prelabelled correctly. A large share of the final
noise labels (ca. 31%) correspond to prelabelled
saccades, with half of them very likely being a part of
blinks (closer than 200 ms to a tracking loss interval),
which is common in video-oculography (Holmqvist et
al., 2011, Section 5.7).

Figure 7 already reflects the proportions of samples
that were prelabelled or received a manual label of a
certain type (these numbers can be obtained by
summing either the matrix rows or columns, respec-
tively). We also separately report the label shares and
the number of respective uninterrupted episodes in
Table 1. It can be seen again that the amount of SP has

increased dramatically with the manual annotation
(from 3% to 11% of gaze samples, ca. 3000 to ca. 4500
episodes), whereas the amount of saccades and
fixations (in terms of both samples and episodes) was
prelabelled relatively accurately. This is indicative of
both fixation and saccade classes being more well
defined in the literature and the existing (even simple)
detectors being much more accurate for these classes.
Overall, we can say that the preassigned labels were
changed substantially during manual annotation,
mostly affecting the smooth pursuit class.

Interrater agreement

We here report how well the three annotators agreed
in their labels in terms of sample-level F1 scores; event-
level scores were quantitatively similar because humans
tend not to fragment intervals (data not shown). The
scores presented in Table 2 indicate that all the
annotator pairs have very high agreement levels for
fixations and saccades. For pursuits, however, the
agreement is substantially lower and the final annota-
tor, who was mostly resolving the conflicts between the
labels of the first two annotators, tended to mostly
agree with the labelling of the first annotator.
Interestingly, the agreement scores between each
annotator’s first and second pass labels (marked with ini

and final in the table) are similar in value to the
interrater agreement, confirming the difficulty of

Figure 7. Confusion matrix for the prelabelled and manually

annotated eye movement samples. Rows correspond to the

suggested eye movement labels, columns—to the final hand-

labelled classes. Cell color reflects the share of samples in the

final hand-labelling that were originally prelabelled as the

respective suggested classes (i.e., per-column normalization is

employed; cf. the color bar on the right).

Eye movement

type

Suggested label Final expert label

Share Episodes Share Episodes

Fixation 76.2% 39,293 72.6% 38,629

Saccade 10.7% 40,233 10.5% 39,217

SP 3.3% 2879 11% 4631

Noise 2.5% 6319 5.9% 3493

Unassigned 7.3% 27,165 0% 0

Table 1. The overall percentage of gaze samples and number of
episodes of all eye movement types in the algorithmically
suggested (‘‘prelabelled’’) labels and the final set of labels
produced in our annotation procedure.

Eye movement

type

1ini vs.

1final

2ini vs.

2final

1final vs.

2final

1final vs.

final

2final vs.

final

Fixation 0.950 0.977 0.933 0.975 0.949

Saccade 0.904 0.951 0.863 0.937 0.883

SP 0.787 0.796 0.629 0.904 0.697

Table 2. Agreement between the initial (1ini and 2ini) and final
(1final and 2final) annotations of the two nonexpert annotators,
and all annotator pairs in the form of sample-level F1 scores.
The ‘‘final’’ label refers to the annotations of the third (expert)
rater, who consolidated the labels of 1final and 2final.
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pursuit annotation in naturalistic stimuli, compared to
the labelling of fixations and saccades.

We will examine algorithmic detection in more detail
in the next section, but we report the same type of
agreement scores for our algorithm and all of the
individual annotators in Table 3. As our detector was
optimized for the final manual label, its own SP
detection outputs agree more with the final annotator,
but the differences are small. Generally, the agreement
of our algorithm with the manual raters is close to the
agreement between the raters themselves.

Algorithmic detector parameter optimization
results

We randomly sampled the multidimensional pa-
rameter space of our fixation and pursuit detectors (see
Appendix, Parameter optimization), which enabled us
to illustrate the performance range of our detector in
the form of a ROC-like plot in Figure 8. The
optimization procedure has substantially increased the
sensitivity of the sp_tool – from 0.46 for the prelimi-
nary parameter set in (Agtzidis et al., 2016b) to 0.59
after optimization—at the cost of minimally lowered
specificity (0.98 to 0.97). The optimization criteria did
not account for fixation detection quality. However,
this improvement in SP detection also comes with an
increase in the event-level F1 score for fixation
detection—0.75 for Agtzidis et al. (2016b) versus 0.81
for the sp_tool after parameter optimization—at a
small decrease of sample-level F1 (0.91 to 0.89).

Quantitative evaluation

In this section we report and discuss the various
performance statistics for our sp_tool detector in
comparison to the other methods in the literature,
which include the preliminary version of the multi-
observer SP detector (Agtzidis et al., 2016b) and the
algorithms of Berg et al. (2009), San Agustin (2010),
and Larsson et al. (2015). Our comparison is based on
several metrics: First of all, the sample- and event-level
F1 scores were computed. Then, we numerically
compared the distributions of automatically detected

SP episodes with those in the ground truth via KLD
and HSIM (see the Algorithm evaluation section). For
F1 scores and HSIM, higher values are better, with a
perfect algorithm scoring 1. For KLD, lower values are
better (as it is a measure of divergence), with the best
score of 0.

SP detection performance is separately addressed in
Table 4. From these statistics it can be seen that
parameter optimization positively affects both the F1
scores and the distributional metrics, more than halving
the KLD and increasing the HSIM score over 1.5 times,
compared to the Agtzidis et al. (2016b) version of the
algorithm. Overall, the biggest weakness of the Agtzidis
et al. (2016b) parameter set for the sp_tool lies in
generating a large number of short SP episodes, which
is reflected by the KLD and HSIM measures, ranking it

Eye movement

type

sp_tool

vs. 1

sp_tool

vs. 2

Sp_tool

vs. final

Fixation 0.883 0.882 0.886

Saccade 0.849 0.883 0.864

SP 0.626 0.602 0.646

Table 3. Agreement between our algorithmic eye movement
detection framework and all of the annotators in the form of
sample-level F1 scores.

Figure 8. Smooth pursuit detection performance range of our

framework, depending on the parameters.

Algorithm

Sample

F1 �
Event

F1 �

Duration

distr.

KLD �

Duration

distr.

HSIM �

Ours (sp_tool): optimized 0.646 0.527 0.620 0.679

Larsson et al. (2015) 0.459 0.392 0.693 0.647

I-VMP (optimized) 0.581 0.531 1.154 0.602

Agtzidis et al. (2016b) 0.571 0.415 1.280 0.440

Berg et al. (2009) 0.422 0.424 1.923 0.459

Table 4. Smooth pursuit detection evaluation results on the
entire GazeCom data set. Notes: The � symbol marks the
columns where the higher score is better; � where the lower
score is better. The rows are sorted by their average scores (KLD
taken with a negative sign). Best score in each column (or
within 0.01 of it) is bolded.
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on average below (Larsson et al., 2015) and I-VMP,
even though its F1 scores are mostly higher or on par
with these models. Parameter optimization led to a
significant performance increase that puts our frame-
work higher than the competition, yielding the best
results in all considered metrics except event-level F1
scores, where the score is slightly behind the optimized
I-VMP, but only by 0.004.

The sp_tool framework also detects fixations and
saccades as part of its pipeline, and we compared the
algorithms employed there to the same literature
models as in Table 5 for SP (for full evaluation tables,
see Startsev, Agtzidis, & Dorr, 2019). For saccade
detection, sp_tool and our reimplementation of Lars-
son et al. (2015) use the same saccade detector (Dorr et
al., 2010), which yields better sample- and event-level
F1 scores than the next best model for saccade
detection in our evaluation (Berg et al., 2009): 0.86 and
0.88 versus 0.70 and 0.86, respectively. In terms of
fixation detection, the sp_tool performance (0.89 and
0.81 for sample- and event-level F1 scores) is compa-
rable, though slightly behind the Larsson et al. (2015)
model with its scores of 0.91 and 0.87, respectively.
These results indicate that the sp_tool offers an
improvement to SP detection without sacrificing
fixation and saccade detection performance, thus
offering a balanced framework for eye movement
classification.

Validity check for algorithmic detection
evaluation

Here we address the issue that was raised in the
Manual eye movement annotation section: Since a pilot
implementation of the clustering strategy described in
this work was used to algorithmically prelabel SP prior
to manual annotation (to speed up the tedious process),
it is possible that the potential correlation of the final
labels with the algorithmically suggested labels would
unfairly benefit our model’s evaluation scores. We
therefore tested our (postoptimization, see Appendix,
Parameter optimization) and literature SP detectors on

those gaze sample where the label was changed by the
manual raters during the annotation process.

Overall, the final manual annotator ‘‘disagreed’’ with
the algorithmically suggested labels in 18.5% of the
cases. This seems low, but this encompasses 72.9% of
the final SP labels, so the partial evaluation for this
class is meaningful. Table 5 presents the sample- and
event-level F1 scores for all the tested detectors on these
data. It can be seen that even in these conditions our
model outperforms the literature models by a notice-
able margin.

It has to be additionally noted that all the results
reported in this table are noticeably lower than the
corresponding values in Table 4 (for the full GazeCom
data set): Sample-level F1 scores in Table 5 are ca. 0.2
lower than on the full data set, event-level scores—
between 0.1 and 0.2 lower. This leads us to argue that
the SP episodes that were correctly prelabelled prior to
manual annotation represent a set of easily detectable
examples for any pursuit detector, so their preannota-
tion would not bias the evaluation in favor of our
approach.

Robustness to variations in the number of
observers

As the approach we take to SP detection is based on
analyzing the recordings of several observers at once,
we tested how much its performance depends on the
number of the observers whose gaze recordings are
available for processing.

To be able to compare the performances of our
model on the subsets of GazeCom with reduced
numbers of observers, as well as to alleviate the effects
of the random subsampling, we repeatedly sampled
reduced observer sets for each stimulus video clip
independently. We tested the subsets that included
between 5 and 45 observers and sampled (without
replacement) the respective number of recordings 20
times for each video. If the video had fewer recordings
than required, all of the available recordings were used
without duplication.

Figure 9 presents the sample- and event-level F1
scores for SP detection achieved by our algorithm
(parameters optimized for the full GazeCom set and
adjusted according to the recommendations in Appen-
dix, Parameter adaptation for other data sets, i.e.,
minPts scaled proportionally to the number of observ-
ers) and compares those to the results of I-VMP—the
literature model with the best respective scores (see
Table 4).

It can be observed that sample-level performance of
our model confidently exceeds that of I-VMP when 15
or more observers’ recordings are processed at once,
and keeps increasing. Event-level F1 scores for our

Algorithm SP sample F1 SP event F1

Ours (sp_tool): optimized 0.423 0.419

I-VMP (optimized) 0.382 0.399

Berg et al. (2009) 0.240 0.316

Larsson et al. (2015) 0.207 0.239

Table 5. Partial evaluation results (only on the labels that were
changed during the annotation), demonstrating that our
labelling procedure does not unfairly favor our model. Notes:
The rows are sorted by their average scores. Highest score in
each column is bolded.
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approach also increase with the number of observers,
but only reach performance levels comparable with I-
VMP when ca. 40 observers have viewed each clip.

We note that the observed dynamics in the (sample-
level) F1 scores were due to precision rapidly increasing
with the number of observers (from 0.47 to 0.7 for five
and 45 observers, respectively), while recall gradually
decreased (from 0.69 to 0.59). On the whole, the
increase in sample-level F1 scores becomes incremental
around the 15-observer mark. For event-level scores the
same is observed only at around 30–35 recordings per
stimulus.

Discussion

In this work we presented, first of all, the manual eye
movement annotations for the GazeCom data set
(Dorr et al., 2010). These represent, to the best of our
knowledge, the largest collection of expert eye move-
ment class labels where smooth pursuit is taken into
account. Other dynamic content viewing data sets that
are manually annotated are typically either small in size
(Andersson et al., 2017), or focus on synthetic stimuli
viewing (Santini et al., 2016). A recent work by Steil et
al. (2018) only annotates the data for determining
whether the gaze keeps following the same object
between recording frames, which does not differentiate
between fixations and pursuits, thus confounding static
and dynamic gaze behaviors in its definition of
‘‘fixation.’’ The data set presented in Agtzidis, Startsev,
and Dorr (2019) annotates smooth pursuit in 3608

video viewing as well, but it is much smaller in size (ca.
0.5 h). Kurzhals, Bopp, Bässler, Ebinger, and Weiskopf
(2014) manually annotated only the areas of interest
and not the eye movements themselves (fixations
detected by a standard algorithm are also provided).
The data set presented in this work will allow
researchers to acquire insights into certain aspects of
behavior during naturalistic video viewing, where
differentiating between fixations and pursuits is of
importance.

Eye movement behavior in dynamic natural
scenes

Our work provides the first quantitative character-
ization of human pursuit behavior in dynamic natural
scenes. Given the significance of this eye movement
type, we argue that researchers should take smooth
pursuit into account when analyzing gaze recordings
for dynamic stimuli. In our experiments ca. 11% of the
viewing time was spent performing smooth pursuit,
which is more than the time spent during saccades. This
is particularly impressive as the stimuli were not
designed to induce SP (unlike commonly used artificial
moving stimuli), and the participants were not
instructed to specifically ‘‘follow moving objects’’ as in
e.g., Larsson et al. (2013).

Examining the speed distribution of the occurring SP
episodes in the GazeCom data set—see Figure 4—
allows us to conclude that, at least for this data set,
achieving accurate ternary eye movement classification
(i.e., distinguishing fixations, saccades, and pursuits

Figure 9. The dynamics of the sample- and event-level F1 scores of the sp_tool pursuit detection depending on the number of

observers that are used for analysis simultaneously. Dashed lines indicate the scores achieved by the best other model (see Table 4).

The shaded areas correspond to 61 SD of the scores over 20 runs.
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from one another) via any number of speed thresholds
is impossible, as the three classes have an overlap in
their speeds. The particular challenge is presented by
the introduction of smooth pursuit: Fixations and
saccades, for example, have practically no overlap in
their overall speed, and could be almost perfectly
separated with a simple speed threshold (in the absence
of SP). SP, however, would be impossible to classify
correctly using speed thresholds only (as in I-VVT;
Komogortsev, Gobert, Jayarathna, Koh, & Gowda,
2010, for example), as there is a high degree of overlap
with fixations, as well as some intersection with the
saccade class. Of course, the speed distribution of SP is
directly stimulus-dependent: Unlike fixations and
saccades, which are only to some extent influenced by
the observed stimulus properties (faster paced scenes
could reduce average fixation durations, saccade
amplitudes depend on the spatial distribution of the
objects of interest on the video surface, etc.), pursuit
speeds are very close to the speeds of the corresponding
targets, at least up to about 1008/s (Meyer, Lasker, &
Robinson, 1985). This means that in a different data set
of stimuli, the overlap between the speeds of fixations,
pursuits, and saccades may look different. However, we
note the following: (a) The scenes in the GazeCom data
set are representative of the real world (albeit without
head rotation freedom for the viewer; in recording set-
ups with unrestrained head, nonnegligible head move-
ment is present for a large portion of the time—e.g., ca.
50% in (Agtzidis et al., 2019)). Therefore, our
observations should be generalizable to similar condi-
tions in other data sets. (b) The stimuli in our data
contained a variety of natural and man-made targets,
moving at a range of speed and directions. Since the
participants were not instructed to perform a specific
task or to exhibit specific viewing behavior during the
gaze recording session, we can conclude that the
observed SP properties are ‘‘natural’’ in the sense of not
being stressful to perform. This means that the pursuit
episodes in our data set cover some, but potentially not
all of the range for spontaneously occurring SP speeds
and directions, implying that the conclusions we make
about the difficulty of separating the considered eye
movement classes can only be underestimating this
difficulty in a more generic set-up.

Very similar observations can be made about the
plot of the directional deviations of different eye
movement types in Figure 5: For these distributions as
well, a typical pattern emerges—SP is somewhere ‘‘in-
between’’ fixations and saccades, noticeably compli-
cating classification. From the arguments above we
infer that simple thresholds of basic eye movement
statistics (speed, direction) are not optimal for smooth
pursuit classification. Hence combinations of simple
properties, higher order statistics, or either implicitly or
explicitly learned (e.g., via training machine learning

algorithms) complex features are more appropriate for
the detection of all eye movements occurring in
dynamic scene viewing. It is, however, unclear whether
the modalities characterizing the gaze traces alone
(speed and direction in this case) provide enough
information to distinguish the eye movements from one
another. Based on our previous experiments (Startsev,
Agtzidis, & Dorr, 2019), we can only claim that (a)
complex features learned from basic statistics on a
variety of time scales improve classification beyond
simple thresholding, and (b) analyzing large segments
of gaze traces is much more beneficial than analyzing
individual gaze sample characteristics, and increasing
the temporal context size for such analysis can
drastically improve the classifier.

In order to further examine the viewing behavior in
our data set, as well as to quantitatively motivate our
clustering-based smooth pursuit detection approach,
we computed spatio-temporal synchrony in the eye
movements of different types (see Figure 6). The results
matched our intuitive expectations about the eye
movements that are neither fixations nor saccades—the
congruence between the SP samples of different
observers is much higher than that for the noise
samples, which could be misinterpreted for potential
pursuits. In addition to this, we saw that pursuit
demonstrated the highest degree of synchrony between
the observers, separating it from the other classes
(though the percentages for fixations performed syn-
chronously are not much lower). Saccades, on the other
hand, are rarely performed at the same time and place
by different observers. Figure 6 allows us to directly
quantify the synchrony of the different eye movements
in our data set: Over 50% of smooth pursuit (fixation)
samples are in the immediate spatio-temporal neigh-
borhood of the samples of another seven (six) observers
in the GazeCom data. Bearing in mind that GazeCom
has an average of 46.9 unique observers’ recordings per
stimulus, we can see that 11% of smooth pursuit
samples belong to episodes that are synchronous
between over half of all the observers that watched the
videos. The same can be said about just 6% of fixation
samples. On the same data set as used in this work,
Dorr et al. (2010) previously made a broader observa-
tion that gaze congruency between observers is the
highest when a small number of moving objects are
present in the scene, though without considering
particular eye movement classes. Mital et al. (2011) also
reported that the clustering of gaze points was
predicted well by the motion in the video, meaning that
pursuit targets are likely to attract attention of multiple
subjects at the same time. In Startsev, Göb, and Dorr
(2019), temporal interobserver synchrony of the per-
formed eye movements is indirectly examined, but the
spatial aspect is not considered.
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Manual annotation and ‘‘ground truth’’

We further compare the annotation pipeline in our
work with a recent work by I. T. C. Hooge et al. (2018),
who observed that expert annotators often disagree in
their fixation annotations when they use their own
implicit definitions of the eye movements. Keeping
these findings in mind, we provided our annotators
with a set of instructions and validated their labels with
an additional correction by an expert. The first two
annotators in our procedure were not field experts, but
they received basic instructions regarding the eye
movement types and the labelling process, with only the
third annotator having prior experience and expertise
in the field. Nevertheless, they demonstrated high
agreement when it comes to fixation and saccade
episodes both between their two passes and with the
final annotator (event-level F1 scores for both classes �
90% for all annotator pairs), indicating that at least the
interpretation of the definitions of these eye movements
was consistent between raters. SP labelling, however, is
far more subjective, as it seems: Having received
identical instructions, the nonexpert annotators dis-
agreed about these labels much more than about the
other classes not only between themselves, but also
between the first and second pass of the same rater.
This disagreement is likely due to the fact that the SP
labelling instructions included somewhat intuitive
concepts, such as the gaze moving smoothly and the
motion of the gaze corresponding to the movement of
some target in the scene. The perception of both of
these can depend on the zoom level in the labelling
interface and the speed at which the rater scrolled
through the video frames, not to mention the subjective
thresholds and criteria for the presence of motion, its
smoothness, and trajectory correspondence. In subse-
quent versions of the annotation tool (Agtzidis et al.,
2019) we have, therefore, included gaze speed plots to
be able to set explicit thresholds for annotators (e.g., ‘‘a
sustained gaze speed of at least X8/s can constitute an
SP, provided that there is a target in the scene that
moves along a similar trajectory’’), thus somewhat
eliminating the rater-dependent bias and the depen-
dence on the zoom level.

In this context, it is an interesting question whether
the information that is typically presented to human
annotators is enough to yield quality eye movement
labels. The issue is actually two-fold: (a) Whether
enough information is provided to sufficiently charac-
terize the viewing behavior (e.g., should the annotators
see the gaze in relation to the stimulus) and (b) whether
human annotators (with their limited numerical infer-
ence possibilities and visual perception precision) can
efficiently use this provided information (with respect
to the visualization scale, the necessity to combine
information across different plots, or the units of the

visualized values, for instance). With respect to the
former, several works in the literature (Andersson et
al., 2017; I. T. C. Hooge et al., 2018) use an approach
where the expert is blind to the stimulus, and therefore
cannot assess, for example, the number of potential
gaze targets and the position of gaze with respect to
them, which could potentially help disentangle a series
of fixations in noisy data. In Andersson et al. (2017),
the gaze trace is shown at different scales, however, one
of which corresponds to the dimensions of the stimulus.
Pupil diameter was additionally visualized, which is
typically not taken into account by the algorithms. In
this work, however, we define smooth pursuit in
relation to following a moving (in world coordinates, as
the observer’s head is fixed in space) target, so we argue
that the visualization of gaze with respect to the video
frames is essential. Taken to the extreme, as in Steil et
al. (2018), a similar definition can be applied to
separate the eye movements into either focusing on a
target or not, regardless of whether the target is moving
relative to the observer (all denoted as ‘‘fixation’’ in that
work). This approach loses the granularity of eye
movement analysis, however.

As to the second point, we note the fixed (temporal)
scale and a somewhat unintuitive unit for gaze speed
(px/s2) of the visualizations in I. T. C. Hooge et al.
(2018). However, providing a speed signal to the
annotator could be a great help, especially when several
speeds have to be compared and combined for
meaningful classification (e.g., for the set-up with
unrestrained head motion; Kothari et al., 2017;
Agtzidis et al., 2019). As noted by Andersson et al.
(2017), any particular way of presenting gaze data to
annotators will inevitably bias their internal criteria for
distinguishing eye movement classes. However, until
bias-free ways of annotating eye movements are
developed, manual annotation remains an important
part of evaluating and training algorithmic detectors in
this field (I. T. C. Hooge et al., 2018).

Algorithmic annotation

In another branch of our analysis, we extended and
improved on our previously developed algorithm for
pursuit detection (Agtzidis et al., 2016b), which uses the
recordings of several observers to improve the detection
quality. The optimized parameter set demonstrated
excellent performance on the GazeCom data set, in
terms of both sample- and event-level measures,
including comparing basic episode statistics to the
manually annotated events. It also demonstrated its
generalizability on an independent data set of Anders-
son et al. (the video-viewing subset, 2017), for which
results were presented in Startsev, Agtzidis, and Dorr
(2019): The sp_tool model (with optimized parameters,
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adjusted according to Appendix, Parameter adaptation
for other data sets) yielded the best mean sample- and
event-level F1 score (averaged across fixations, sac-
cades, and pursuit). Its event-level F1 score for SP
(0.592) was at least 0.11 higher than that of the next
best models on that data.

We discuss the strengths and weaknesses of this
clustering-based SP detection approach on an example
of the visualization in Figure 1. First of all, it can be
seen that when the observers are following distinct
targets (the ‘‘main’’ targets that attract most of the
attention by their sudden motion onsets), SP is detected
relatively well (see the green clusters in Figure 1). Only
comparatively few SP episodes are missed in the
vicinity of these dense clusters. However, the use of
clustering here means that if certain fixation samples,
for example, were not detected by the fixation detector
beforehand and form dense groups, SP labels will be
assigned to them (see two red clusters at the bottom of
Figure 1). Similarly, if only a single observer is
following a target, the corresponding SP episode(s) will
likely be missed due to insufficient sample density (see
the continuous blue sample sequence at the top of
Figure 1).

The extensive evaluation performed in this work
demonstrated that pursuit detection quality increases
with the number of observers. This is not characteristic
to any other eye movement detection algorithm, since
recordings are usually processed independently. The
machine learning-based methods (e.g., Zemblys et al.,
2018; Startsev, Agtzidis, & Dorr, 2019; Zemblys et al.,
2019), also benefit from additional data, but they
require additional annotated data being provided to
improve the trained models, since supervised learning is
applied. Our method, on the other hand, only requires
additional data without annotations due to the unsu-
pervised nature of clustering. This means that the effort
required in order to improve pursuit detection quality
with our algorithm is much lower than in the case of
other data-driven approaches: Data annotation can
take up to 18 times longer than the recordings
themselves (cf. the Hand labelling statistics section and
I. T. C. Hooge et al., 2018); for mobile eye tracking
data, the overhead can be even larger (Munn, Stefano,
& Pelz, 2008).

Using several recordings per stimulus, of course,
imposes certain restrictions on the applicability of the
algorithm. First and foremost, there have to be several
observers viewing each stimulus. This, however, is
relatively typical for video-based eye tracking studies
(Itti & Carmi, 2009; Kurzhals et al., 2014; Andersson et
al., 2017). For experiments with synthetic stimuli,
researchers sometimes randomly generate the motion
of the target(s) for each observer (e.g., Santini et al.,
2016). Clustering cannot be applied in such cases, but

the method remains applicable when the same synthetic
sequences are presented to all of the participants.

Another issue with the approach that involves
clustering the gaze samples of several recordings is that
this processing can only happen when all the recordings
have already been collected, i.e., no online detection is
possible. However, the pipeline can be modified for
online detection of pursuit that occurs during the
viewing of the stimuli that have already been presented
to other observers. To this end, the already available
prerecorded data points are clustered beforehand, and
only the core points of the clusters should be retained.
The newly arriving gaze coordinates can then be tested
for proximity to the preclustered points in a real-time
fashion.

Our high-quality algorithmic analysis of eye move-
ment episodes enables automated processing of (large)
data corpora collected for dynamic stimuli. In Silberg
et al. (2019), for example, our eye movement classifi-
cation framework was used to automatically detect
pursuit in the recordings of 51 participants, who were
shown half of the videos of the GazeCom data set (ca.
2.5 hr of eye tracking data). In Startsev and Dorr
(2018), automatic eye movement classification via the
framework described here was used to produce training
data for saliency modelling in a more targeted way, i.e.,
focusing specifically on predicting human fixations or
pursuit. Providing enough training data for a deep
learning computer vision system would be impossible
without an automated detection system: The training
set of the Hollywood2 data set (Mathe & Sminchisescu,
2012), which was used in Startsev and Dorr (2018),
comprises well over 30 hours of eye tracking record-
ings. The fact that the Startsev and Dorr (2018)
saliency model that was trained on automatically
detected pursuit performed better than all of the
literature models when predicting ground truth pursuit
on the GazeCom data set validates the fact that the SP
detection method we developed here can be used to
study human pursuit patterns in a data-driven way even
without manual annotations.

Conclusions

In this work we presented our contributions to both
the manual and the automatic analysis of eye move-
ment events in eye tracking recordings. Firstly, we
collected a data set of manual eye movement annota-
tions for the entire GazeCom data set, which makes
this the largest data set where smooth pursuit was also
considered by the annotators. Based on this data set,
we, for the first time, quantitatively described and
characterized pursuit behavior in dynamic naturalistic
scene viewing without instructions or task. We found
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that the percentage of samples attributed to smooth
pursuit was slightly higher than that for saccades, thus
emphasizing the importance of this eye movement in
studies with dynamic stimuli. Pursuit also demonstrat-
ed the highest spatio-temporal interobserver congru-
ence across all eye movements we annotated, indicating
the importance of the targets that induce this type of
visual behavior. Motivated by the latter finding, we
additionally described and improved our multiobserver
smooth pursuit detection algorithm that outperforms
other approaches in the literature. We found that the
detection quality of our algorithm rises with the
number of observers in the data set, which sets it aside
from other detectors in the literature: The results of our
model can be improved simply by increasing the pool of
observers, without manual processing of the additional
recordings. The implementation of this algorithm is
provided as part of the sp_tool framework, which
detects all major eye movement types as well. The code
of our methods (including all the data handling
procedures, detectors, and several evaluation strategies)
is publicly available together with the manual labels we
assembled for the full GazeCom data set via https://
web.gin.g-node.org/ioannis.agtzidis/gazecom_
annotations/.

Keywords: smooth pursuit, data set, natural scenes,
eye movement classification, clustering, unsupervised
learning
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Appendix

Data format

In this section we present the Attribute-Relation File
Format (ARFF) that is used throughout our work for
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eye-tracking data representation. Its description should
facilitate the interpretation and usage of our data and
algorithms. ARFF is a popular file format in the data
mining/machine learning community but largely un-
known in the eye-tracking community. We will,
therefore, briefly explain it here. A more detailed
explanation is given in Agtzidis et al. (2016a). ARFF is
an extendible, text-based file format, where all of its
keywords are case insensitive and start with the ‘‘@’’
symbol. The ‘‘@attribute’’ keyword is needed to
describe each of the columns of the data in the file,
specifying its name and type (could be integer, real, or
categorical). After the attributes are defined, the
‘‘@data’’ keyword begins the section of the file that
contains the set of samples. Each line in this section is a
comma-separated list of values corresponding to all of
the declared attributes.

As this format does not allow for storing any
metadata that characterize the entire recording (e.g.,
the experimental set-up) and not each individual
sample, we extended this format. However, since we
wanted to maintain compatibility of our ARFF files
with third-party software, e.g., WEKA (Hall et al.,
2009), we introduced a special format for the comments
in the ARFF files (lines starting with ‘‘%’’), which starts
with ‘‘%@metadata’’ and contains the name and the
value of the described meta-attribute (e.g., ‘‘%@meta-
data width_px 1280’’). Such comments are corre-
spondingly processed by our software but are safely
ignored by other toolkits.

Using this notation enables the storage and extrac-
tion of the information specific to the eye tracking
experiment, such as the dimensions and properties of
the monitor and the eye tracking set-up by simply
adding meta-attributes to the header of the ARFF file.
We used the following attributes for each recording: the
dimensions of the stimulus displayed on the screen in
pixels (‘‘width_px’’ and ‘‘height_px’’) and millimetres
(‘‘width_mm’’ and ‘‘height_mm’’), as well as the
distance from the observer’s eyes to the monitor in
millimetres (‘‘distance_mm’’). These sufficiently define
the monitor-based experimental set-ups with fixed head
position to compute the pixels-per-degree (PPD) value,
which can be used to convert the on-screen gaze
position units to visual angle units. This format is
flexible enough to allow for effortless extensions to
more complex scenarios such as head-mounted display
experiments in (Agtzidis et al., 2019).

Parameter optimization

To optimize the parameters of our eye movement
classification framework, we tested a random subset of
a grid of plausible parameter combinations for our
fixation and pursuit detectors. We considered the

parameters of the fixation detector even though pursuit
detection was of main interest to us because our
clustering approach only processes the gaze samples
that were not labelled as fixations. If some pursuit
samples receive a label of fixation, there is no possibility
to retrieve them with our approach. For example, the
confusion matrix in Figure 7 demonstrates the perfor-
mance of a reasonable fixation detector from the
literature that has not been optimized together with the
subsequent SP detector. This detector labels just under
60% of the ‘‘true’’ SP samples as fixations, which would
result in very poor sensitivity.

For fixation detection, we optimized (a) the upper
limit for the gaze shift during an intersaccadic interval
(intervals with shifts below this threshold were marked
as parts of a fixation right away)—0.78 to 2.88, (b) the
lower limit on the intersaccadic interval duration that
sets the condition for applying sliding window-based
steps to it (intervals with lower durations ignored at
this step)—75 to 300 ms, (c) the moving average
window size that was applied to every remaining
intersaccadic interval to suppress recording noise—3, 5,
7, or 11 samples, (d) the length of the sliding window
that was used for analysis—35 to ca. 140 ms, (e) the
upper speed threshold for fixation samples—0.78/s to
48/s, as well as (f) the minimal plausible SP duration,
which was used to label as noise all nonfixation
episodes of a shorter duration—35 ms to ca. 140 ms.

For smooth pursuit detection (i.e., the parameters of
our DBSCAN modification), we optimized (g) the
spatial distance threshold exy—18 to 48, (h) the temporal
distance threshold et—0 to 160 ms, and (i) the minPts
parameter—20 to 320, as well as setting minPts to the
number of observers, whose recordings are being
processed for a given stimulus (the latter was the value
used in Agtzidis et al., 2016b).

The parameters marked with (a), (b), (d), (e), (f), and
(g) were randomly sampled on the logarithmic grid
with the base of

ffiffiffi

2
p

; those marked with (h) and (i), with
the base of 2. The grid was constructed to explore
parameter combinations with values both lower and
greater than in the parameter set of Agtzidis et al.
(2016b). A total of 2.25 million combinations of these
values are possible. We randomly sampled ca. 6500 of
those to assess the possible performance range of the
algorithm.

To make sure the parameter set we would choose
based on this optimization was relatively stable to
fluctuations in the data, as well as to ensure some
degree of the best parameters’ ability to be generalized,
we performed this optimization on two nonoverlapping
subsets of the data separately, and then selected a
parameter set that performed consistently well on both
subsets. Recordings were split based on the corre-
sponding stimuli (half of the GazeCom video clips in
each part). We split the recordings this way as we
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intuitively suspected that decreasing the number of
observers will have a negative impact on the algo-
rithm’s performance (we tested this experimentally in
the Robustness to variations in the number of
observers section). Splitting the data set by video clips
rather than by the individual observers has proven to
have another positive effect in our recent work
(Startsev, Agtzidis, & Dorr, 2019): We found that
optimizing an algorithm for all clips, but only a subset
of observers, leads to more prominent overfitting
behavior than optimizing it for all observers, but only a
subset of clips. This effect was especially noticeable for
SP detection, which is the main target of our
optimization here.

Therefore, out of the tested ca. 6500 parameter
combinations, we selected the top 25 (less than 0.5%)
for each of the two data subsets independently, ranked
by the F1 score for smooth pursuit samples. This
yielded six parameter combinations that were within
the selected percentile for both subsets simultaneously.
We chose the parameter set that resulted in the best
average F1 score across the subsets. We provide the full
parameter sets corresponding both to the original
method (Agtzidis et al., 2016b) and to the optimized
version, which we obtained here, together with the code
of our model on the code repository page.

Parameter adaptation for other data sets

Here we describe the adjustment that has to be made
to the parameters of our algorithm to adapt it to be
used with a different data set. The full set of parameters
is stored in a configuration file and can be accessed and
adjusted with a text editor.

Only a minor change is required to adapt the
clustering algorithm for a different use case, however. It
has to do with the minPts parameter, which defines the
number of gaze points in the spatio-temporal vicinity of
the considered gaze point that is necessary to make this
point a core point of a cluster. This number has a linear
dependency on (a) the sampling rate and (b) the
number of observers in the data set. The minPts
parameter has to be scaled accordingly. GazeCom has
the sampling rate of FGazeCom¼ 250 Hz and NGazeCom¼
46.9 observers per clip on average. Therefore, in order
to use our algorithm on a new data set with the
sampling frequency F̂ and N̂ observers for each clip, the
parameter has to be updated as follows:

minPts ¼ minPtsGazeCom �
F̂

FGazeCom

� N̂

NGazeCom
; ð1Þ

where minPtsGazeCom ¼ 160, taken from our optimized

parameter set. We used this correction formula for our
experiments with reducing the number of observers in
the Robustness to variations in the number of
observers section, and in Startsev, Agtzidis, and Dorr
(2019) to adapt the parameters of this method to the
data set of Andersson et al. (2017).

In case data quality is substantially different from
the GazeCom data, other parameters might need to be
altered as well. For example, it would make sense to
increase exy for noisy recordings, and larger et could be
advisable for lower frequency data.

Observer-driven clustering extension of DBSCAN

While the regular DBSCAN determines whether
each data point belongs to a dense cluster by
comparing the number of unique gaze samples in its
neighborhood to a fixed threshold, we propose
considering the number of unique observers with their
samples in this neighborhood (see Figure A1). The
number of unique observers’ gaze traces in the vicinity
of the considered gaze point will be then compared to a
threshold, to which we refer as minObservers, analo-
gously to the minPts parameter of the original
DBSCAN algorithm. In the sp_tool framework, the
minObservers parameter can be set either to an integer
(in which case it is directly used for thresholding) or to
a floating point value in the [0, 1] range (in which case it
indicates the share of the number of participants that
have viewed each individual stimulus). The actual
threshold in the latter case is then computed for each
stimulus individually. If the minObservers threshold is
set as a proportion of the total number of observers,
there are no parameter adjustments that need to be
made to adapt the clustering scheme to other data sets,
as this density criterion does not directly depend on the
absolute number of observers in the data set or the
sampling frequency of its recordings (though et might
need to be increased if the sampling rate is too low—the
optimal et for this version of the algorithm was 20 ms,
which is shorter than the sampling interval of some eye
trackers).

We optimized the parameters for this DBSCAN
variation in the same way as for its minPts version (see
Appendix, Parameter optimization) and provide the
optimal parameter set together with the source code.
The minObservers threshold that yielded the best
performance in our random search (values from 0.05 to
0.2 were tested, with the log-scale grid with the base of
ffiffiffi

2
p

) was 0.14 (for the full GazeCom data set this is on
average equivalent to six observers).

This parameter combination was additionally tested
on the subsets of the GazeCom data with a varying
number of observers (same as for the minPts version in
the the Robustness to variations in the number of
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observers section), without any parameter correction
required whatsoever. We observed performance pat-
terns similar to those in Figure 9, but the values for the
minObservers version of the algorithms were always
below those for the minPts variant: The sample-level F1
scores were typically 0.02 worse; the event-level scores,

ca. 0.1 lower. Based on this, we cannot recommend
using the observer-based modification of our algorithm
when detection performance is the key issue. It may,
however, serve as an easier generalizable solution and
an example of tailoring generic data analysis strategies
specifically to eye-tracking recording processing.

Figure 10. DBSCAN modification specifically for eye tracking recordings: In order to ascertain whether each considered data point (on

the left side, together with its spatio-temporal neighborhood) belongs to a cluster, traditional DBSCAN checks the number of (other)

data points in its vicinity (middle). Our proposed modification would consider the number of (other) observers’ gaze traces (right side)

in the neighborhood of the considered data point.
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1D CNN with BLSTM for Eye
Movement Classification

This work has proposed utilising deep learning for eye movement classification. We based
our architecture on a combination of convolutional and (bidirectional) long short-term
memory (LSTM) layers, as is common for video data processing in computer vision. The
model we developed operates on windows of gaze data, producing windows of per-class
probabilities as an output. We used four eye movement classes in this work – fixations,
saccades, smooth pursuits (SPs), and noise, but the model can be used for any set of
labels, e.g . to include post-saccadic oscillations (PSOs) [52], or expanded to produce
several labels per sample, as could be necessary in head-mounted display set-ups [1∗].

In this work, while keeping the model architecture constant, we performed a variety of
tests regarding the features extracted from the eye tracking data prior to it being passed
to the network. While the convolutional part of our network is capable of implicitly
learning useful representations from the x, y signal directly, it substantially benefited from
simple feature extraction. In particular, gaze speed (on five temporal scales) has proven
to improve the model’s performance, as well as its combination with gaze direction.

As our model can operate on arbitrary-length temporal windows of gaze data (given
the hardware constraints, and as long as it is trained and tested similarly), we analysed
the influence of the size of such windows on its performance. While increasing the
temporal context size improved the detection of all considered eye movement classes, it
particularly benefited SP, emphasising both the room for improvement for its detectors,
and their sensitivity to the temporal window, in which the analysis is performed.

We also developed a new event-level evaluation procedure for the considered problem,
matching the events in the ground truth and their detections based on the degree of
their overlap – intersection-over-union ratio (IoU) – rather than the absolute overlap
duration [52]. Finally, we proposed evaluating the models at a range of strictness degrees
for the event matching criterion, enabling a more rigorous evaluation.

My personal contributions include (i) the idea, design, and implementation of the full
learning pipeline, including the newly developed evaluation techniques, (ii) designing and
carrying out experiments on two data sets, (iii) developing and testing a cross-validation
procedure specifically for eye tracking experiments, and (iv) writing the manuscript.
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Abstract
Deep learning approaches have achieved breakthrough performance in various domains. However, the segmentation of
raw eye-movement data into discrete events is still done predominantly either by hand or by algorithms that use hand-
picked parameters and thresholds. We propose and make publicly available a small 1D-CNN in conjunction with a
bidirectional long short-term memory network that classifies gaze samples as fixations, saccades, smooth pursuit, or noise,
simultaneously assigning labels in windows of up to 1 s. In addition to unprocessed gaze coordinates, our approach uses
different combinations of the speed of gaze, its direction, and acceleration, all computed at different temporal scales, as
input features. Its performance was evaluated on a large-scale hand-labeled ground truth data set (GazeCom) and against 12
reference algorithms. Furthermore, we introduced a novel pipeline and metric for event detection in eye-tracking recordings,
which enforce stricter criteria on the algorithmically produced events in order to consider them as potentially correct
detections. Results show that our deep approach outperforms all others, including the state-of-the-art multi-observer smooth
pursuit detector. We additionally test our best model on an independent set of recordings, where our approach stays highly
competitive compared to literature methods.

Keywords Eye-movement classification · Deep learning · Smooth pursuit

Introduction

Eye-movement event detection is important for many
eye-tracking applications as well as the understanding
of perceptual processes. Automatically detecting different
eye movements has been attempted for multiple decades
by now, but evaluating the approaches for this task is
challenging, not least because of the diversity of the
data and the amount of manual labeling required for a
meaningful evaluation. To compound this problem, even
manual annotations suffer from individual biases and
implicitly used thresholds and rules, especially if experts
from different sub-areas are involved (Hooge, Niehorster,
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1 Technical University of Munich, Institute for Human-Machine
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Nyström, Andersson, & Hessels, 2017). For smooth pursuit
(SP), even detecting episodes1 by hand is not entirely trivial
(i.e., requires additional information) when the information
about their targets is missing. Especially when pursuit speed
is low, it may be confused with drifts or oculomotor noise
(Yarbus, 1967).

Therefore, most algorithms to date are based on hand-
tuned thresholds and criteria (Larsson, Nyström, Andersson,
& Stridh, 2015; Berg, Boehnke, Marino, Munoz, & Itti,
2009; Komogortsev, Gobert, Jayarathna, Koh, & Gowda,
2010). The few data-driven methods in the literature either
do not consider smooth pursuit (Zemblys, Niehorster,
Komogortsev, & Holmqvist, 2017), operate on data
produced with low-variability synthetic stimuli (Vidal,
Bulling, &Gellersen, 2012), or are not yet publicly available
(Hoppe & Bulling, 2016).

Here, we propose and make publicly available a neural
network architecture that differentiates between the three
major eye-movement classes (fixation, saccade, and smooth

1We use the terms “event” and “episode” interchangeably, both
referring to an uninterrupted interval, where all recorded gaze samples
have been assigned the same respective label, be that in the ground
truth or in algorithmic labels.
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pursuit) while also taking potential noise (e.g., blinks
or lost tracking) into account. Our approach learns from
data (simple features) to assign sequences of labels to
sequences of data points with a compact one-dimensional
convolutional neural network (1D-CNN) and bidirectional
long short-term memory block (BLSTM) combination.
Evaluated on a fully annotated2 (Startsev, Agtzidis, & Dorr,
2016) GazeCom data set of complex natural movies (Dorr,
Martinetz, Gegenfurtner, & Barth, 2010), our approach
outperforms all 12 evaluated reference models, for both
sample- and event-level detection. We additionally test our
method’s generalization ability on the data set of Andersson,
Larsson, Holmqvist, Stridh, and Nyström (2017).

Related work

Data sets

Despite the important role of smooth pursuit in our
perception and everyday life (Land, 2006), its detection in
free-viewing scenarios has been somewhat neglected. At the
very least, it should be considered in event detectors to avoid
false detections of other eye-movement types (Andersson
et al., 2017). Even when taking into account information
about gaze patterns of dozens of observers at once (Agtzidis,
Startsev, & Dorr, 2016b), there is a dramatic gap between
the performance of detecting saccades or fixations, and
detecting smooth pursuits (Startsev et al., 2016).

We will, therefore, use the largest publicly available
manually annotated eye-tracking data set that accounts for
smooth pursuit to train and validate our models: GazeCom
(Dorr et al., 2010; Startsev et al., 2016) (over 4 h of
250-Hz recordings with SR Research EyeLink II). Its data
files contain labels of four classes, with noise labels (e.g.,
blinks and tracking loss) alongside fixations, saccades, and
smooth pursuits. We maintain the same labeling scheme in
our problem setting (including the introduced, yet unused,
“unknown” label).

We additionally evaluate our approach on a small high-
frequency data set that was originally introduced by Larsson,
Nyström, and Stridh (2013) (data available via (Nyström,
2015); ca. 3.5 min of 500-Hz recordings with SensoMotoric
Instruments Hi-Speed 1250), also recently used in a larger
review of the state of the art by Andersson et al. (2017).
This data set considers postsaccadic oscillations in manual
annotation and algorithmic analysis, which is not common
yet for eye-tracking research.

2The recordings were algorithmically pre-labeled to speed up the
hand-labeling process, after which three manual annotators have
verified and adjusted the labeled intervals in all of the files.

Another publicly available data set that includes smooth
pursuit, but has low temporal resolution, accompanies the
work of Santini, Fuhl, Kübler, and Kasneci (2016) (avail-
able at Santini, 2016; ca. 15 min of 30-Hz recordings with a
Dikablis Pro eye tracker). This work, however, operates in a
different data domain: pupil coordinates on raw eye videos.
Because it was not necessary for the algorithm, no eye
tracker calibration was performed, and therefore no coordi-
nates are provided with respect to the scene camera. Post
hoc calibration is possible, but it is recording-dependent.
Nevertheless, the approach of Santini et al. (2016) presents
an interesting ternary (fixations, saccades, smooth pursuit)
probabilistic classifier.

Automatic detection

Many eye-movement detection algorithms have been
developed over the years. A simple, yet versatile toolbox
for eye-movement detection is provided by Komogortsev
(2014). It contains Matlab implementations for a diverse
set of approaches introduced by different authors. Out of
the eight included algorithms, five (namely, I-VT and I-
DT (Salvucci & Goldberg, 2000), I-HMM (Salvucci &
Anderson, 1998), I-MST (Goldberg & Schryver, 1995;
Salvucci & Goldberg, 2000), and I-KF Sauter, Martin, Di
Renzo, & Vomscheid, 1991) detect fixations and saccades
only (cf. Komogortsev et al. 2010 for details).

I-VVT, I-VMP, and I-VDT, however, detect the three
eye-movement types (fixations, saccades, smooth pursuit)
at once. I-VVT (Komogortsev & Karpov, 2013) is a
modification of the I-VT algorithm, which introduces a
second (lower) speed3 threshold. The samples with speeds
between the high and the low thresholds are classified as
smooth pursuit. The I-VMP algorithm (San Agustin, 2010)
keeps the high speed threshold of the previous algorithm
for saccade detection, and uses window-based scoring
of movement patterns (such as pair-wise magnitude and
direction of movement) for further differentiation. When the
score threshold is exceeded, the respective sample is labeled
as belonging to a smooth pursuit. I-VDT (Komogortsev
& Karpov, 2013) uses a high speed threshold for saccade
detection, too. It then employs a modified version of I-DT
to separate pursuit from fixations.

Dorr et al. (2010) use two speed thresholds for saccade
detection alone: The high threshold is used to detect the
peak-speed parts in the middle of saccades. Such detections
are then extended in time as long as the speed stays above
the low threshold. This helps filter out tracking noise and
other artifacts that could be mistaken for a saccade, if only

3Unfortunately, in the eye-movement literature, the term “velocity”
(in physics, a vector) often is used to refer to “speed” (the scalar
magnitude of velocity). Here, we try to be consistent and avoid using
“velocity” when it is not justified.
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the low threshold was applied. Fixations are determined
while trying to avoid episode contamination with smooth
pursuit samples. The approach uses a sliding window inside
intersaccadic intervals, and the borders of fixations are
determined via a combination of modified dispersion and
speed thresholds.

Similarly, the algorithm proposed by Berg et al. (2009)
was specifically designed for dynamic stimuli. Here, however,
the focus is on distinguishing saccades from pursuit. After
an initial low-pass filtering, the subsequent classification is
based on the speed of gaze and principal component analysis
(PCA) of the gaze traces. If the ratio of explained variances
is near zero, the gaze follows an almost straight line.
Then, the window is labeled either as a saccade or smooth
pursuit, depending on speed. By combining information
from several temporal scales, the algorithm is more robust
at distinguishing saccades from pursuit. The samples that
are neither saccade nor pursuit are labeled as fixations. The
implementation is part of a toolbox (Walther & Koch, 2006).

An algorithm specifically designed to distinguish between
fixations and pursuit was proposed by Larsson et al.
(2015), and its re-implementation is provided by
Startsev et al. (2016). It requires a set of already
detected saccades, as it operates within intersaccadic
intervals. Every such interval is split into overlap-
ping windows that are classified based on four criteria.
If all criteria are fulfilled, the window is marked as
smooth pursuit. If none are fulfilled, the fixation label is
assigned. Windows with one to three fulfilled criteria are
labeled based on their similarity to already-labeled windows.

Several machine learning approaches have been proposed
as well. Vidal et al. (2012) focus solely on pursuit
detection. They utilize shape features computed via a sliding
window, to then use k-NN based classification. The reported
accuracy of detecting pursuit is over 90%, but the diversity
of the data set is clearly limited (only purely vertical
and horizontal pursuit), and reporting accuracy with-
out information about class balance is difficult to interpret.

Hoppe and Bulling (2016) propose using convolutional
neural networks to assign eye-movement classes. Their
approach, too, operates as a sliding window. For each win-
dow, the Fourier-transformed data are fed into a network,
which contains one convolutional, one pooling, and one
fully connected layer. The latter estimates the probabilities
of the central sample in the window belonging to a fixa-
tion, a saccade, or a pursuit. The network used in this work
is rather small, but the collected data seems diverse and
promising. The reported scores are fairly low (average F1
score for detecting the three eye movements of 0.55), but
without the availability of the test data set, it is impossible
to assess the relative performance of this approach.

An approach by Anantrasirichai, Gilchrist, and Bull
(2016) is to identify fixations in mobile eye tracking via an

SVM, while everything else is attributed to the class “sac-
cades and noise”. The model is trained with gaze trace fea-
tures, as well as image features locally extracted by a small
2D CNN. The approach is interesting, but the description of
the data set and evaluation procedure lacks details.

A recently published work by Zemblys et al. (2017)
uses Random Forests with features extracted in 100–200-
ms windows that are centered around respective samples.
It aims to detect fixations, saccades, and postsaccadic
oscillations. This work also employs data augmentation to
simulate various tracking frequencies and different levels of
noise in data, which adds to the algorithm’s robustness.

Unfortunately, neither of these machine learning
approaches are publicly available, at least in such a form
that allows out-of-the-box usage (e.g., the implementation
of Zemblys et al. (2017) lacks a pre-trained classifier).

All the algorithms so far process gaze traces individually.
Agtzidis et al. (2016b) (toolbox available at Startsev et al.,
2016) detect saccades and fixations in the same fashion,
but use inter-observer similarities for the more challenging
task of smooth pursuit detection. The samples remaining
after saccade and fixation detection are clustered in the 3D
space of time and spatial coordinates. Smooth pursuit by
definition requires a target, so all pursuits on one scene
can only be in a limited number of areas. Since no video
information is used, inter-observer clustering of candidate
gaze samples is used as a proxy for object detection: If many
participants’ gaze traces follow similar paths, the chance of
this being caused by tracking errors or noise is much lower.
To take advantage of this effect, only those gaze samples
that were part of some cluster are labeled as smooth pursuit.
Those identified as outliers during clustering are marked as
noise. This way, however, many pursuit-like events can be
labeled as noise due to insufficient inter-observer similarity,
and multiple recordings for each clip are required in order
to achieve reliable results.

Our approach

We here propose using a bidirectional long short-term
memory network (one-layer, in our case), which follows
the processing of the input feature space by a series of 1D
convolutional layers (see Fig. 1). Unlike (Hoppe & Bulling,
2016) and the vast majority of other literature approaches,
we step away from single sample classification in favor of
simultaneous window-based labeling, in order to capture
temporal correlations in the data. Our network receives
and outputs a window of samples-level features and labels,
respectively. Unlike most of the methods in the literature,
we also assign the “noise” label, which does not force our
model to choose only between the meaningful classes, when
this is not sensible.
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Fig. 1 The architecture of our 1D CNN-BLSTM network. BN stands for “batch normalization”, FC – for “fully connected”. In this figure, the
input is assumed to contain the five different-scale speed features, and the context window size that is available to the network is just above 1 s

Features for classification

We used both the raw x and y coordinates of the gaze
and simple pre-computed features in our final models.
To avoid overfitting for the absolute gaze location when
using the xy-coordinates, we used positions relative to the
first gaze location in each processed data window. Our
initial experiments showed that a small architecture such as
ours noticeably benefits from feature extraction on various
temporal scales prior to passing the sequence to the model.
This is especially prominent for smooth pursuit detection.
With a limited number of small-kernel convolutional layers,
network-extracted features are influenced only by a small
area in the input-space data (i.e., the feature extracting
sub-network has a small receptive field, seven samples, or
28ms, in the case of our network). With this architecture
it would thus be impossible to learn motion features on
coarser temporal scales, which are important, e.g., for
detecting the relatively persistent motion patterns, which
characterize smooth pursuits. To overcome this, we decided
to use precomputed features; specifically, we included
speed, acceleration, and direction of gaze, all computed at
five temporal scales in order to capture larger movement
patterns on the feature level already.

The speed of gaze is an obvious and popular choice
(Sauter et al., 1991; Salvucci & Goldberg, 2000; Komogort-
sev et al., 2010; Komogortsev & Karpov, 2013). Accelera-
tion could aid saccade detection, as it is also sometimes used
in the literature (Collewijn & Tamminga, 1984; Nyström
& Holmqvist, 2010; Behrens, MacKeben, & Schröder-
Preikschat, 2010; Larsson et al., 2013) as well as in SR
Research’s software for the EyeLink trackers.

The effect of using the direction of gaze is less obvious:
Horizontal smooth pursuit, for instance, is more natural
to our visual system (Rottach, Zivotofsky, Das, Averbuch-
Heller, Discenna, Poonyathalang, & Leigh, 1996). The
drifts that occur due to tracking artifacts are, however, more
pronounced along the vertical axis (Kyoung Ko, Snodderly,
& Poletti, 2016).

We consider five different temporal scales for feature
extraction: 4, 8, 16, 32, and 64 ms. The speed (in ◦/s)

and direction (in radians, relative to the horizontal vector
from left to right) of gaze for each sample were computed
via calculating the displacement vector of gaze position on
the screen from the beginning to the end of the temporal
window of the respective size, centered around the sample.
Acceleration (in ◦/s2) was computed from the speed values
of the current and the preceding samples on the respective
scale (i.e., numerical differentiation; acceleration for the
first sample of each sequence is set to 0). If a sample was
near a prolonged period of lost tracking or either end of a
recording (i.e., if gaze data in a part of the temporal window
was missing), a respectively shorter window was used.

We additionally conducted experiments on feature
combinations, concatenating feature vectors of different
groups, in order to further enhance performance.

Data sets

GazeCom

We used the GazeCom (Dorr et al., 2010; Startsev et al.,
2016) recordings for both training and testing (manual
annotation in Agtzidis, Startsev, & Dorr, 2016a), with a
strict cross-validation procedure. This data set consists of
18 clips, around 20 s each, with an average of 47 observers
per clip (total viewing time over 4.5 h). The total number of
individual labels is about 4.3 million (including the samples
still recorded after a video has finished; 72.5, 10.5, 11,
and 5.9% of all samples are labeled as parts of fixations,
saccades, pursuits, or noise, respectively). Event-wise, the
data set contains 38629 fixations, 39217 saccades, and 4631
smooth pursuits. For training (but not for testing) on this
data set, we excluded gaze samples with timestamps over
21 s (confidently outside video durations) and re-sampled
to 250-Hz recordings of one of the observers (SSK), whose
files had a higher sampling frequency.

We used leave-one-video-out (LOVO) cross-validation
for evaluation: The training and testing is run 18 times, each
time training on all the data for 17 videos and testing on all
the eye-tracking data collected for the remaining video clip.
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This way, the model that generates eye-movement labels on
a certain video had never seen any examples of data with
this clip during training. We aggregate the labeled outputs
for the test sets of all splits before the final evaluation.

There are two major ways to fully utilize an eye-tracking
data set in the cross-validation scenario, in the absence
of a dedicated test subset. The first, LOVO, is described
above, and it ensures that no video clip-specific information
can benefit the model. The second would ensure that no
observer-specific information would be used. For this, we
used a leave-n-observers-out (LnOO) procedure. In our
case, to maintain symmetry with the 18 splits of LOVO,
we introduced the same number of splits in our data, each
containing three unique randomly selected observers (54
participants in total).

We hypothesize that LOVO should be less susceptible
to overfitting than LnOO, since smooth pursuit is target-
driven, and the observers’ scanpaths tend to cluster in
space and time (Agtzidis et al., 2016b), meaning that their
characteristics for different observers would be similar for
the same stimulus. We test this hypothesis with several
experiments, where the only varied parameter is the cross-
validation type.

Nyström-Andersson data set

We used an independent set of recordings in order to addi-
tionally validate our model. For this, we took the manually
annotated eye-tracking recordings that were utilized in a
recent study (Andersson et al., 2017). These contain labels
provided by two manual raters: One rater (“CoderMN”)
originally labeled the data for Larsson et al. (2013), another
(“CoderRA”) was added by Andersson et al. (2017). The
annotations of both raters include six labeled classes: fix-
ations, saccades, postsaccadic oscillations (PSOs), smooth
pursuit, blinks, and undefined events.

The whole data set comprises three subsets that use moving
dots, images, and video clips as stimuli. We focus our eval-
uation on the “video” part, since our model was trained on
this domain.

We will refer to this subset by the abbreviations of
the manual labelers’ names (in chronological order of
publications, containing respective data sets): “MN-RA-
data”. In total, it contains ca. 58000 gaze samples (or about
2 min at 500Hz). Notably, only half of this data consists
of “unique” samples, the second half being duplicated, but
with different ground truth labels (provided by the second
rater). 37.7% of all the samples were labeled as fixation,
5.3% as saccade, 3% as PSO, 52.2% as pursuit, 1.7% as
blink, and 0.04% as “unknown”. Counting events yields
163 fixations, 244 saccades, 186 PSOs, 121 pursuits, and 8
blinks. The high ratio of pursuit is explained by the explicit
instructions given to the participants (“follow [...] moving

objects for video clips” Larsson et al. 2013) vs. free viewing
in GazeCom (Dorr et al., 2010).

As in Andersson et al. (2017), we evaluated all the
considered automatic approaches and both manual raters
against the “average coder” (i.e., effectively duplicating
each recording, but providing the “true” labels by MN in
one case and by RA in the other).

Model architecture

We implemented a joint architecture that consists of a
small one-dimensional temporal convolutional network and
a bidirectional LSTM layer, with one time-distributed dense
layer both before and after the BLSTM (for higher-level
feature extraction and to match the number of classes
in the output without limiting the number of neurons in
the BLSTM, respectively). In this work, we implement
multi-class classification with the following labels: fixation,
saccade, smooth pursuit, noise (e.g., blinks or tracking loss),
also “unknown” (for potentially using partially labeled
data), in order to comply with the ground truth labeling
scheme in Startsev et al. (2016). The latter label was absent
in both the training data and the produced outputs. The
architecture is also illustrated in Fig. 1 on an example of
using a five-dimensional feature space and simultaneously
predicting labels in a window equivalent to about 1 s of
250-Hz samples.

The network used here is reminiscent of other deep
sequence-processing approaches, which combine either
2D (Donahue, Anne Hendricks, Guadarrama, Rohrbach,
Venugopalan, Saenko, & Darrell, 2015) or, more recently,
3D (Molchanov, Yang, Gupta, Kim, Tyree, & Kautz,
2016) convolutions with recurrent units for frame sequence
analysis. Since our task is more modest, our parameter count
is relatively low (ca. 10000, depending on the input feature
space dimensionality, compared to millions of parameters
even in compact static CNNs (Hasanpour, Rouhani, Fayyaz,
& Sabokrou, 2016), or ca. 6 million parameters only for
the convolutional part (Tran, Bourdev, Fergus, Torresani, &
Paluri, 2015) of Molchanov et al., 2016).

The convolutional part of our architecture contains three
layers with a gradually decreasing number of filters (32, 16,
and 8) with the kernel size of 3, and a batch normalization
operation before activation. The subsequent fully connected
layer contains 32 units. We did not use pooling, as is
customary for CNNs, since we wanted to preserve the one-
to-one correspondence between inputs and outputs. This
part of the network is therefore not intended for high-level
feature extraction, but prepares the inputs to be used by the
BLSTM that follows.

All layers before the BLSTM, except for the very first
one, are preceded by dropout (rate 0.3), and use ReLU as
activation function. The BLSTM (with 16 units) uses tanh,
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and the last dense layer (5 units, according to the number of
classes) – softmax activation.

The input to our network is a window of a pre-set length,
which we varied to determine the influence of context size
on the detection quality for each class. To minimize the
border effects, our network uses valid padding, requiring its
input to be padded. For both training and testing, we only
mirror-pad the whole sequence (of undetermined length;
typically ca. 5000 in our data), and not each window. We
pad by three samples on each side (since each of the three
convolutional layers uses valid padding and a kernel of
size 3). For our context-size experiments, this means that
for a prediction window of 129 samples (i.e., classification
context size 129), for example, windows of length 135 must
be provided as input. So when we generate the labels for the
whole sequence, the neighboring input windows overlap by
six samples, but the output windows do not.

We balanced neither training nor test data in any way.
To allow for fair comparison of results with different

context sizes, we attempted to keep the training procedure
consistent across experiments. To this end, we fixed the
number of windows (of any size) that are used for
training (90%) and for validation (10%) to 50000. For
experiments with context no larger than 65 samples, we used
windows without overlap and randomly sampled (without
replacement) the required number of windows for training.
For larger-context experiments, the windows were extracted
with a step of 65 samples (at 250Hz, equivalent to 260ms).

We initialized convolutional and fully connected layers
with random weights from a normal distribution (mean 0,
standard deviation 0.05), and trained the network for 1000
iterations with batch size 5000 with the RMSprop optimizer
(Tieleman & Hinton, 2012) with default parameters from
the Keras framework (Chollet et al., 2015) (version 2.1.1;
learning rate 0.001 without decay) and categorical cross-
entropy as the loss function.

Evaluation

Metrics

Similar to Agtzidis et al. (2016b), Startsev et al. (2016),
and Hoppe and Bulling (2016), we evaluated sample-level
detection results. Even though all our models (and most of
the baseline models) treat eye-movement classification as
a multi-class problem, for evaluation purposes we consider
each eye movement in turn, treating its detection as a binary
classification problem (e.g., with labels “fixation” and “not
fixation”). This evaluation approach is commonly used in
the literature (Larsson et al., 2013; Agtzidis et al., 2016b;
Andersson et al., 2017; Hoppe & Bulling, 2016). We can
then compute typical performance metrics such as precision,
recall, and F1 score.

As for the event-level evaluation, there is no consensus in
the literature as to which methodology should be employed.
Hoppe and Bulling (2016), for example, use ground truth
event boundaries as pre-segmentation of the sequences:
For each event in the ground truth, all corresponding
individual predicted sample labels are considered. The
event is classified by the majority vote of these labels.
As Hoppe and Bulling (2016) themselves point out, this
pre-segmentation noticeably simplifies the problem of eye-
movement classification. Additionally, the authors only
reported confusion matrices and respective per-class hit
rates, which conceal the problem of false detections.
Andersson et al. (2017) only assess the detected events
in terms of the similarity of event duration distribution
parameters to those of the ground truth.

In Hooge, Niehorster, Nyström, Andersson, and Hessels
(2017), event-level fixation detection was assessed by an
arguably fairer approach with a set of metrics that includes
F1 scores for fixation episodes. We computed these for all
three main event types in our data (fixations, saccades, and
smooth pursuits): For each event in the ground truth, we
look for the earliest algorithmically detected event of the
same class that intersects with it. Only one-to-one matching
is allowed. Thus, each ground truth event can be labeled
as either a “hit” (a matching detected event found) or a
“miss” (no match found). The detected events that were not
matched with any ground truth events are labeled as “false
alarms”. These labels correspond to true positives, false
negatives, and false positives, which are needed to compute
the F1 score.

One drawback of such matching scheme is that the area
of event intersection is not taken into account. This way,
for a ground truth event EGT , the earlier detected event
EA will be preferred to a later detected event EB , even
if the intersection with the former is just one sample, i.e.,
|EGT ∩ EA| = 1, while the intersection with EB is far
greater. Hooge et al. (2017) additionally compute measures
such as relative timing offset and deviation of matched
events in order to tie together agreement measures and eye-
movement parameters, which would also penalize potential
poor matches. These, however, have to be computed for
both onset and offset of each event type, and are more
suited for in-detail analysis of particular labeling patterns
rather than for a concise quantitative evaluation. We propose
using a typical object detection measure (Everingham, Van
Gool, Williams, Winn, & Zisserman, 2010; Everingham,
Eslami, Van Gool, Williams, Winn, & Zisserman, 2015), the
ratio of the two matched events’ intersection to their union
(often referred to as “intersection over union”, or IoU). If a
ground truth event is labeled as a “miss”, its corresponding
“match IoU” is set to 0. This way, the average “match IoU”
is influenced both by the number of detected and missed
events, and by the quality of correctly identified events.
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We report this statistic for all event types in the ground
truth data, in addition to episode-level F1 scores of Hooge
et al. (2017) as well as sample-level F1 scores (for brevity,
F1 scores are used instead of individual statistics such as
sensitivity or specificity; this metric represents a balanced
combination of precision and recall—their harmonic mean),
for both GazeCom and MN-RA-data.

Another idea, which we adapt from object detection
research, is only registering a “hit” when a certain IoU
threshold is reached (Ren, He, Girshick, and Sun, 2015),
thus avoiding the low-intersection matches potentially
skewing the evaluation. The threshold that is often
employed is 0.5 (Everingham et al., 2010). In the case
of one-dimensional events, this threshold also gains inter-
pretability: This is the lowest threshold that ensures that no
two detected events can be candidate matches for a single
ground truth event. Additionally, if two events have the same
duration, their relative shift can be no more than one-third
of their duration. For GazeCom, we further evaluate the
algorithms at different levels of the IoU threshold used for
event matching.

We also compute basic statistics over the detected eye-
movement episodes, which we compare to those of the
ground truth. Among those are the average duration (in
milliseconds) and amplitude (in degrees of visual angle) of
all detected fixation, saccade, and smooth pursuit episodes.
Even though fixations are not traditionally characterized
by their amplitude, it reflects certain properties of fixation
detection: For instance, where does a fixation end and a
saccade begin?While this choice has relatively little bearing
on saccade amplitudes, it might significantly affect the
amplitudes of fixations.

Data set-specific settings

For MN-RA-data, we focused only on our best (according
to GazeCom evaluation) model.

Since MN-RA-data were recorded at 500Hz (compared
to 250Hz for GazeCom), we simply doubled the sample-
level intervals for feature extraction, which preserves the
temporal scales of the respective features (as described
in the “Features for classification” above). We also used
a model that classifies 257-sample windows at once (our
largest-context model). This way, the temporal context at
500Hz is approximately equivalent to that of 129 samples
at 250Hz, which was used for the majority of GazeCom
experiments. Notably, the model used for MN-RA-data
processing was trained on 250-Hz recordings and tested
on the ones with double the sampling frequency. Our
estimate of the model’s generalization ability is, therefore,
conservative.

Due to cross-validation training on GazeCom, and in
order to maximize the amount of pursuit examples in the

training data, we predict labels in MN-RA-data using a
model trained on all GazeCom clips except one without
smooth pursuit in its ground truth annotation (“bridge 1”).

Andersson et al. (2017) ignore smooth pursuit detection
in most of their quantitative evaluation (while separating
it from fixations is a challenging problem on its own),
and focus on postsaccadic oscillations instead (which our
algorithm does not label), so we cannot compare with the
reported results directly. However, on the MN-RA-data, we
additionally followed the evaluation strategies of Andersson
et al. (2017).

In order to compare our approach to the state-of-the-
art performances on MN-RA-data that were reported in
Andersson et al. (2017), we computed the Cohen’s kappa
statistic (for each major eye-movement class separately).

Cohen’s kappa κ for two binary sets of labels (e.g.,
A and B) can be computed via the observed proportion
of samples, where A and B agree on either accepting or
rejecting the considered eye-movement label, pobs , and the
chance probability of agreement. The latter can be expressed
through the proportions of samples, where each of A and
B has accepted and rejected the label. We denote those as
pA+, pA−, pB+, and pB−, respectively. In this case,

pchance = pA+ ∗ pB+ + pA− ∗ pB−, (1)

κ(A,B) = pobs − pchance

1 − pchance

. (2)

Cohen’s kappa can assume values from [−1; 1], higher
score is better. We also considered the overall sample-level
error rate (i.e., proportion of samples where the models
disagree with the human rater, when all six ground truth
label classes are taken into account). For this, we consider
all “noise” labels assigned by our algorithm as blink labels,
as blinks were the primary cause of “noise” samples in the
GazeCom ground truth. It has to be noted that all sample-
level metrics are, to some extent, volatile with respect to
small perturbations in the data—changes in proportions
of class labels, almost imperceptible relative shifts, etc.
We would, therefore, recommend using event-level scores
instead.

Baselines

For both data sets, we ran several literature models as
baselines, to give this work’s evaluation more context.

These were: Agtzidis et al. (2016b) (implementation
by Startsev et al. (2016)), Larsson et al. (2015) (re-
implemented by Startsev et al. (2016)), Dorr et al.
(2010) (the authors’ implementation), Berg et al. (2009)
(toolbox implementation Walther & Koch, 2006), I-VMP,
I-VDT, I-VVT, I-KF, I-HMM, I-VT, I-MST, and I-DT
(all as implemented by Komogortsev (2014), with fixation
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interval merging enabled). For their brief descriptions, see
“Automatic detection”.

Since several of the baselines (Dorr et al., 2010;
Agtzidis et al., 2016b, the used implementation of Larsson
et al., 2015) were either developed in connection with
or optimized for GazeCom, we performed grid search
optimization (with respect to the average of all sample-
and event-wise F1 scores, as reported in Table 2) of the
parameters of those algorithms in Komogortsev (2014) that
detect smooth pursuit: I-VDT, I-VVT, and I-VMP. The
ranges and the parameters of the grid search can be seen
in Fig. 2. Overall, the best parameter set for I-VDT was
80 ◦/s for the speed threshold and 0.7 ◦ for the dispersion
threshold. For I-VVT, the low speed threshold of 80 ◦/s and
the high threshold of 90 ◦/s were chosen. For I-VMP, the
high speed threshold parameter was fixed to the same value
as in the best parameter combination of I-VVT (90 ◦/s),
and the window duration and the “magnitude of motion”
threshold were set to 400ms and 0.6, respectively.

It is an interesting outcome that, when trying to optimize
the scores, half of which depend on events, I-VVT abandons
pursuit detection (by setting very high speed thresholds) in
favor of better-quality saccade and fixation identification.
If optimization with respect to sample-level scores only is
performed, this behavior is not observed. This indicates that
simple speed thresholding is not sufficient for reasonable
pursuit episode segmentation. We have, therefore, tried
different speed thresholds for I-VMP, but 90 ◦/s was still the
best option.

We have to note that taking the best set of parameters
selected via an exhaustive search on the entire test set is
prone to overfitting, so the reported performance figures
for these baseline methods should be treated as optimistic
estimates.

Since the fixation detection step of Dorr et al. (2010)
targeted avoiding smooth pursuit, we treat missing labels (as
long as the respective samples were confidently tracked) as
pursuit for this algorithm. We also adapted the parameters

of I-MST to the sampling frequency of the data set (for both
data sets).

Just as Andersson et al. (2017), we did not re-train any of
the models before testing them on the MN-RA-data.

For the model of Agtzidis et al. (2016a), however,
we had to set the density threshold (minP ts), which
is a parameter of its clustering algorithm. This value
should be set proportionally to the number of observers,
and the sampling frequency (Startsev et al., 2016). If
was, therefore, set to 160 ∗ Nobservers/46.9 ∗ 500/250,
where Nobservers is the number of recordings for each
clip (i.e., four for “dolphin”, six for “BergoDalbana”,
and eight for “triple jump”). GazeCom has an average of
46.9 observers per clip, and is recorded at 250Hz. MN-
RA-data, as mentioned already, consists of recordings at
500Hz. The resulting minP ts values were 28, 40, and 54,
respectively.

For both data sets, we additionally implemented a
random baseline model, which assigns one of the three
major eye-movement labels according to their frequency in
the ground truth data.

Results and discussion

Cross-validation procedure selection

We first address the cross-validation type selection. We con-
sidered two modes, leave-one-video-out (LOVO) and leave-
n-observers-out (LnOO, n = 3). If the two cross-validation
procedures were identical in terms of the danger of over-
fitting, we would expect very similar quantitative results. If
one is more prone to overfitting behavior than the other,
its results would be consistently higher. In this part of the
evaluation, therefore, we are, somewhat counterintuitively,
looking for a validation procedure with lower scores.

We conducted several experiments to determine the influ-
ence of the cross-validation procedure on the performance

a b c

Fig. 2 Grid search average F1 scores on GazeCom for I-VDT (2a), I-VVT (2b), and I-VMP (2c). Default parameters were (ordered as (x, y)

pairs): I-VDT – (70 ◦/s, 1.35 ◦), I-VVT – (20 ◦/s, 70 ◦/s), I-VMP – (0.5 s, 0.1). These are not optimal for our data set
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Table 1 Experiment on the choice of a suitable cross-validation
technique for our 1D CNN-BLSTM model with speed and direction
features and a context size of 129 samples (equivalent to ca. 0.5 s at
250Hz)

Metric LOVO LnOO

Fixations sample F1 0.937 0.939

Saccade sample F1 0.892 0.892

Pursuit sample F1 0.680 0.706

Fixations episode F1 0.888 0.887

Saccade episode F1 0.944 0.946

Pursuit episode F1 0.585 0.583

Fixations episode F1 (IoU >= 0.5) 0.854 0.855

Saccade episode F1 (IoU >= 0.5) 0.922 0.922

Pursuit episode F1 (IoU >= 0.5) 0.456 0.466

Fixations episode IoU 0.902 0.905

Saccade episode IoU 0.858 0.857

Pursuit episode IoU 0.521 0.549

LOVO refers to the leave-one-video-out approach, LnOO – to leave-
n-observers-out. Both methods split the data in 18 non-overlapping
groups of recordings in our case (18 videos in the data set, 18 groups of
three observers each). Differences no less than 0.01 are boldified. This
suggests that LOVO provides a more conservative estimate, compared
to LnOO

estimates (while keeping the rest of the training and testing
parameters fixed), all of which revealed the same pattern:
While being comparable in terms of fixation and saccade
detection, these strategies differ consistently and noticeably
for smooth pursuit detection (see the results of one of these
experiments in Table 1).

LnOO tends to overestimate the performance of the
models, yielding higher scores on most of the metrics.
We conclude that LOVO is less prone to overfitting and
conduct the rest of the experiments using this technique.
We note that overfitting seems to affect the detection
of the stimulus characteristics-dependent eye-movement
type—smooth pursuit—the most. For stimuli that only
induce fixations and saccades, the concern of choosing an
appropriate cross-validation technique is alleviated.

We conclude that excluding the tested stimulus (video clip,
in this case) must be preferred to excluding the tested
observer(s), if some form of cross-validation has to be
employed, especially if the evaluation involves highly
stimulus-driven eye-movement classes (e.g., smooth pursuit).

GazeCom results overview

An overview of all the evaluation results on the full
GazeCom data set is presented in Table 2. It reports the
models’ performance on the three eye movement classes
(fixations, saccades, and pursuits) for both sample- and

event-level detection. Table 3 additionally provides the IoU
values for all the tested algorithms. Bold numbers mark best
performance in each category.

Most of our BLSTM models were trained with the
context window of 129 samples (ca. 0.5 s) at the output
layer, as it presented a reasonable trade-off between training
time (ca. 3 s per epoch on NVIDIA 1080Ti GPU) and the
saturation of the effect that context size had on performance.

Individual feature groups

Looking at individual feature sets for our model (raw xy-
coordinates, speed, direction, and acceleration), we find
that speed is the best individual predictor of eye-movement
classes.

Acceleration alone, not surprisingly, fails to differentiate
between fixations and smooth pursuit (the largest parts of
almost 90% of the smooth pursuit episodes are covered
by fixation labels), since both perfect fixation and perfect
pursuit lack the acceleration component, excepting onset
and offset stages of pursuits. Saccade detection performance
is, however, impressive.

Interestingly, direction of movement provides a decent
feature for eye-movement classification. One would expect
that within fixations, gaze trace directions are distributed
almost uniformly because of (isotropic) oculomotor and
tracker noise. Within pursuits, its distribution should be pro-
nouncedly peaked, corresponding to the direction of the
pursuit, and even more so within saccades due to their much
higher speeds. Figure 3plots these distributions of directional
features for each major eye-movement type. The directions
were computed at a fixed temporal scale of 16ms and nor-
malized per-episode so that the overall direction is at 0.
Unlike perfect fixations, which would be completely sta-
tionary, fixations in our data set contain small drifts (mean
displacement amplitude during fixation of 0.56◦ of visual
angle, median 0.45◦), so the distribution in Fig. 3 is not uni-
form. Gaze direction features during saccades and pursuits
predictably yield much narrower distribution shapes.

Using just the xy coordinates of gaze has an advantage of
its simplicity and the absence of any pre-processing. How-
ever, according to our evaluation, the models that use either
speed or direction features instead generally perform bet-
ter, especially for smooth pursuit detection. Nevertheless,
our model without any feature extraction already outper-
forms the vast majority of the literature approaches.

Feature combinations

Experimenting with several feature sets at once, we found
that acceleration as an additional feature did not improve
average detection performance, probably due to its inability
to distinguish pursuit from fixation. The combination
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Table 2 GazeCom evaluation results as F1 scores for sample-level and episode-level detection (sorted by the average of all columns)

Sample-level F1 Event-level F1

Model average F1 Fixation Saccade SP Fixation Saccade SP

1D CNN-BLSTM: speed + direction+ 0.830 0.939 0.893 0.703 0.898 0.947 0.596

1D CNN-BLSTM: speed + direction 0.821 0.937 0.892 0.680 0.888 0.944 0.585

1D CNN-BLSTM: speed 0.808 0.932 0.891 0.675 0.877 0.942 0.529

(Agtzidis et al., 2016b) 0.769 0.886 0.864 0.646 0.810 0.884 0.527

1D CNN-BLSTM: direction 0.769 0.919 0.802 0.621 0.862 0.911 0.499

1D CNN-BLSTM: xy 0.752 0.913 0.855 0.517 0.861 0.932 0.435

(Larsson et al., 2015) 0.730 0.912 0.861 0.459 0.873 0.884 0.392

I-VMP∗∗ 0.718 0.909 0.680 0.581 0.792 0.815 0.531

(Berg et al., 2009) 0.695 0.883 0.697 0.422 0.886 0.856 0.424

(Dorr et al., 2010) 0.680 0.919 0.829∗ 0.381 0.902 0.854 0.193∗

1D CNN-BLSTM: acceleration 0.668 0.904 0.876 0.160 0.877 0.943 0.245

I-VDT∗∗ 0.606 0.882 0.676 0.321 0.823 0.781 0.152

I-KF 0.563 0.892 0.736 – 0.877 0.876 –

I-HMM 0.546 0.891 0.712 – 0.817 0.857 –

I-VVT∗∗ 0.531 0.890 0.686 0.000 0.778 0.816 0.013

I-VT 0.528 0.891 0.705 – 0.761 0.810 –

I-MST 0.497 0.875 0.570 – 0.767 0.773 –

I-DT 0.480 0.877 0.478 – 0.759 0.765 –

Random Baseline 0.201 0.750 0.105 0.114 0.098 0.121 0.020

CNN-BLSTM results are for the context window size of just over 0.5 s (129 samples), except where marked with + (1 s, 257 samples). The ∗ signs
mark the numbers where the label was assumed from context and not actually assigned by the algorithm – i.e. missing labels were imputed.
Performance estimates for models marked with ∗∗ are optimistic (thresholds were optimized on the entire test set). In each column, the highest
value is boldified

of direction and speed, however, showed a noticeable
improvement over using them separately, and the results for
these features we present in the tables.

We retrained the model that uses direction and speed
features for a larger context size (257 samples, ca. 1 s).
This model demonstrates the highest F1 scores (or within
half a percent of the best score achieved by any model)
for all eye-movement types in both evaluation settings. It

outperforms the nearest literature approach by 2, 2.9, and
5.7% of the F1 score for fixations, saccades, and smooth
pursuits, respectively. The gap is even wider (6.3 and 6.5%
for saccades and smooth pursuit, respectively) for episode-
level evaluation. Only for fixation episode detection, the
Dorr et al. (2010) model performs slightly better (by 0.004).
In terms of IoU values, our model improves the state-of-the-
art scores by 0.04, 0.05, and 0.09 for fixations, saccades,

-180 -90 0 90 180

Deviation (degrees)

0

0.1

0.2

0.3

Sh
ar

e

Distribution of direction deviation from overall episode direction

Fixation
Pursuit
Saccade

Fig. 3 Histogram of sample-level direction features, when normalized relative to the overall direction of each respective episode
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Table 3 GazeCom evaluation results for event-level detection as intersection-over-union values (sorted by the average of all columns)

Model Average IoU Fixation IoU Saccade IoU SP IoU

1D CNN-BLSTM: speed + direction+ 0.768 0.906 0.858 0.541

1D CNN-BLSTM: speed 0.763 0.885 0.856 0.547

1D CNN-BLSTM: speed + direction 0.760 0.902 0.858 0.521

1D CNN-BLSTM: xy 0.665 0.880 0.801 0.313

(Dorr et al., 2010) 0.663 0.815 0.808 0.367∗

(Agtzidis et al., 2016b) 0.663 0.742 0.799 0.448

1D CNN-BLSTM: direction 0.631 0.834 0.718 0.341

(Larsson et al., 2015) 0.625 0.789 0.809 0.277

I-VMP∗∗ 0.613 0.828 0.556 0.454

1D CNN-BLSTM: acceleration 0.606 0.906 0.834 0.077

I-VDT∗∗ 0.558 0.760 0.555 0.359

(Berg et al., 2009) 0.541 0.774 0.499 0.351

I-KF 0.504 0.842 0.671 –

I-HMM 0.501 0.870 0.633 –

I-VT 0.492 0.868 0.607 –

I-VVT∗∗ 0.477 0.863 0.567 0.000

I-MST 0.364 0.694 0.399 –

I-DT 0.313 0.592 0.347 –

Random baseline 0.055 0.077 0.071 0.017

CNN-BLSTM results are for the context window size of just over 0.5 s (129 samples), except where marked with + (1 s, 257 samples). The ∗ signs
mark the numbers where the label was assumed from context and not actually assigned by the algorithm – i.e. missing labels were imputed.
Performance estimates for models marked with ∗∗ are optimistic (thresholds were optimized on the entire test set). In each column, the highest
value is boldified

and pursuits, respectively, indicating the higher quality of
the detected episodes across the board.

We also varied the IoU threshold that determines whether
two episodes constitute a potential match, computing
episode-level F1 scores every time (see Fig. 4). From this
evaluation it can be seen that not only does our deep learning
model outperform all literature models, but it maintains
this advantage even when a stricter criterion for an event
“hit” is considered (even though it was trained to optimize
pure sample-level metrics). For fixations, while similar
to the performance of Dorr et al. (2010) at lower IoU
thresholds, our model is clearly better when it comes to
higher thresholds. For saccades, it has to be noted that
the labels of Dorr et al. (2010) were used as initialization
for the manual annotators in order to obtain ground truth
event labels for GazeCom. This results in a higher number
of perfectly matching saccade episodes for Dorr et al.
(2010) (as well as for Agtzidis et al. (2016b) and our
implementation of Larsson et al. (2015), both of which use a
very similar saccade detection procedure), when the manual
raters decided not to change the borders of certain saccades.

As mentioned already, a threshold of 0.5 has its theoreti-
cal benefits (no two detected episodes can both be matches
for a single ground truth event, some interpretability). Here,

we can see practical advantages as well, thanks to the Ran-
dom Baseline model. Due to the prevalence of fixation
samples in the GazeCom data set, assigning random labels
with the same distribution of classes results in many fixa-
tion events, which occasionally intersect with fixations in
the ground truth. In the absence of any IoU thresholding
(the threshold of 0 in Fig. 4), the F1 scores for fixations
and saccades are around 10%. Only by the threshold level
of 0.5 does the fixation event-wise F1 score for the Random
Baseline reach zero.

Common eye-trackingmeasures

In order to directly compare the average properties of the
detected events to those in the ground truth, we compute
the mean durations and amplitudes for the episodes of the
three major eye-movement types in our data. The results
are presented in Table 4. For this part of the evaluation,
we consider only our best model (referred to as 1D CNN-
BLSTM (best) in the tables), which uses speed and direction
features at a context size of roughly 1 s. We compare it to
all the baseline algorithms that consider smooth pursuit.

For both measures, our algorithm is ranked second, while
providing average fixation and saccade amplitudes that are
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Table 4 Average durations (in milliseconds) and amplitudes (in degrees of visual angle) of different event types, as labelled by manual annotators
(first row) or algorithmic procedures

Average event duration, ms Average event amplitude, degrees

Algorithm Fixation Saccade SP (rank) avg. � Fixation Saccade SP (rank) avg. �

Ground truth 315.2 41.5 405.2 0.56 6.84 2.38

1D CNN-BLSTM (best) 281.1 38.4 217.0 (2) 75.2 0.53 6.66 1.44 (2) 0.38

(Agtzidis et al., 2016b) 229.5 40.1 244.6 (3) 82.6 0.40 7.19 1.91 (1) 0.33

(Larsson et al., 2015) 335.3 41.0 320.1 (1) 35.2 0.70 7.45 3.15 (3) 0.51

I-VMP∗∗ 256.3 20.8 217.8 (4) 89.0 0.52 6.03 1.64 (4) 0.53

(Berg et al., 2009) 282.6 66.0 164.3 (5) 99.3 0.51 8.26 1.20 (6) 0.88

(Dorr et al., 2010) 340.3 41.7 68.2∗ (6) 120.7 0.53 7.41 1.09∗ (5) 0.63

I-VDT∗∗ 284.7 19.0 45.7 (7) 137.5 0.47 5.41 0.49 (8) 1.13

I-VVT∗∗ 261.1 21.4 0.5 (8) 159.7 0.64 6.11 0.04 (7) 1.05

In each column, the value with the lowest absolute difference to the respective ground truth value is boldified. The averages of these absolute
differences for event durations and amplitudes occupy the fifth and the last columns, respectively, along with the rank of each considered model
(lower is better). The rows are sorted as the respective rows of our main evaluation table – Table 2. The ∗ signs mark the numbers where the
label was assumed from context and not actually assigned by the algorithm – i.e. missing labels were imputed. Performance estimates for models
marked with ∗∗ are optimistic (thresholds were optimized on the entire test set)

the closest to the ground truth. We note that the approaches
with the average duration and amplitude of events closest to
the ground truth differ for the two measures (Larsson et al.,
2015; Agtzidis et al., 2016b, respectively).

From this evaluation, we can conclude that our algorithm
detects many small smooth pursuit episodes, resulting in
comparatively low average smooth pursuit duration and
amplitude. This is confirmed by the relatively higher event-
level false positive count of our algorithm (3475, compared
to 2207 for Larsson et al., 2015). Our model’s drastically
lower false negatives count (1192 vs. 2966), however,
allows it to achieve much higher F1 score for pursuit event
detection.

We also have to stress that simple averages do not
provide a comprehensive insight into the performance of
an eye-movement detection algorithm, but rather offer
an intuitively interpretable, though not entirely reliable,
measure of detected event quality. There is no matching
performed here, the entire set of episodes of a certain
type is averaged at once. This is why we recommend
using either the temporal offsets of matched episode pairs
as introduced by Hooge et al. (2017), or IoU averaging
or thresholding, as we suggest in “Metrics”. The latter
allows for evaluating episode-level eye-movement detection
performance at varying levels of match quality, which is
assessed via a relatively easily interpretable IoU metric.

Context size matters

We also investigated the influence of the size of the
context, where the network simultaneously assigns labels,
on detection scores (see Fig. 5). We did this by running the

cross-validation process at a range of context sizes, with five
speed features defining the input space. We tested contexts
of 1, 2 + 1, 4 + 1, 8 + 1, . . ., 256 + 1 samples. For the
GazeCom sampling frequency, this corresponds to 4, 12, 20,
36ms, . . ., 1028ms. Training for larger context sizes was
computationally impractical.

Context size had the biggest influence on smooth pursuit
detection. For speed features, when the context window size
was reduced from just over 1 s of gaze data to merely one
sample being classified at a time, the F1 scores for fixation
and saccade samples decreased (in terms of absolute values)
only by 2.8 and 5.1%, respectively, whereas smooth pursuit
sample detection performance plummeted (decreased by
over 40%).

For all eye movements, however, there is a general
positive impact of expanding the context of the analysis.
This effect seems to reach saturation point by the 1 s
mark, with absolute improvements in all detection F1 scores
being not much higher than 1% (except for smooth pursuit
episodes, which could potentially benefit from even larger
context sizes).

At the largest context size, this model is better at
detecting smooth pursuit (for both sample- and event-level
problem settings) than any baseline smooth pursuit detector,
including the multi-observer approach in Agtzidis et al.
(2016b), which uses information from up to 50 observers at
the same time, allowing for higher-level heuristics.

Generalizability

To test our model on additional independent data, we
present the evaluation results of our best model (speed and
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direction used as features) with the context size ca. 0.5 s
and all the literature models we tested on MN-RA-data set
as sample- and event-level F1 scores (Table 5), as well
as average IoU values (Table 6). This is the model with
the largest context we trained, 257 samples. The duration
in seconds is reduced due the doubling of the sampling
frequency, compared to GazeCom.

Table 7 combines our evaluation results with the
performances reported in Andersson et al. (2017) in the
form of Cohen’s kappa values and overall error rates for the
MN-RA-data (for video stimuli). Evaluation results from
Andersson et al. (2017) were included in the table if they
represent the best performance with respect to at least one
of the statistics that we include in this table. BIT refers to
the algorithm in van der Lans, Wedel, and Pieters (2011),
LNS—in Larsson et al. (2013).

For our model, performance on this data set is worse
compared to GazeCom, but even human raters show

substantial differences in labeling the “ground truth”
(Hooge et al., 2017; Andersson et al., 2017).

Nevertheless, the average out-of-the-box performance of
our algorithm compares favorably to the state of the art in
terms of sample-level classification (see Table 5). In terms
of episode-level evaluation, our model shows somewhat
competitive F1 scores (Table 5), but makes up for it in the
average intersection over union statistic, which accounts for
both the number of correctly identified episodes and the
quality of the match (see Table 6). While its error rate is
similar to that of I-VMP, the F1 and IoU scores are, on
average, higher for our model, and its Cohen’s κ scores are
consistently superior to I-VMP across the board.

Our algorithm’s 34% error rate may still be unacceptable
for many applications, but so could be the manual rater
disagreement of 19% as well. Our algorithm further
demonstrates the highest Cohen’s Kappa score for smooth
pursuit detection, and second highest for fixation detection.

a b

c

Fig. 4 Episode-level F1 scores at different IoU thresholds: At 0.0,
the regular episode F1 score is computed; At 1.0, the episodes have
to match exactly; The thresholds in-between represent increasing

levels of episode match strictness. The vertical dashed line marks the
threshold, which is typically used when considering IoU scores
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a b

c

Fig. 5 Detection quality plotted against the context size (in samples
at 250Hz; log-scale) that the network classifies at once. Dashed lines
represent individually chosen reference algorithms that perform best
with respect to each eye movement. For both sample- and event-level
F1 evaluation (5a and 5b, respectively), fixation detection results of
Dorr et al. (2010) are taken, for saccades – Startsev et al. (2016), for

pursuits – I-VMP. For event-level IoU evaluation (5c), “best other” fix-
ation detection IoU is taken from I-HMM, for saccades – Larsson et al.
(2015), for pursuits – I-VMP. We separately display the smooth pursuit
detection results of the multi-observer algorithm’s toolbox (Startsev
et al., 2016) (the dotted line), as it belongs to a different class of
algorithms

The best saccade detection quality is achieved by LNS,
which explicitly labels postsaccadic oscillations and thus
increases saccade detection specificity.

For sample-level F1-score evaluation (Table 5), our
model achieves second highest scores for fixation (with a
very narrow margin) and pursuit detection, outperforming
all competition in saccade detection.

Conclusions

We have proposed a deep learning system for eye-movement
classification. Its overall performance surpasses all con-
sidered reference models on an independent small-scale
data set. For the naturalistic larger-scale GazeCom, our
approach outperforms the state of the art with respect to

the three major eye-movement classes: fixations, saccades,
and smooth pursuits. To the best of our knowledge, this
is the first inherently temporal machine learning model for
eye-movement event classification that includes smooth
pursuit. Unlike (Agtzidis et al., 2016b), which implicitly
uses full temporal context, and explicitly combines infor-
mation across a multitude of observers, our model can be
adapted for online detection (by re-training without using
look-ahead features and preserving the LSTM states4). The
classification time is kept short due to the low—for deep-
learning models, at least—parameter count of the trained
models. Furthermore, we introduced and analyzed a new

4For online detection, one would need to either use a unidirectional
LSTM and process the samples as they are recorded, or assemble
windows of samples that end with the latest available ones and process
the full windows with a BLSTM model.
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Table 5 MN-RA-data evaluation results as F1 scores for sample-level and episode-level detection (sorted by the average of all columns). CNN-
BLSTM results here are for the window size of just over 0.5s (257 samples at 500Hz). The ∗ signs mark the numbers where the label was assumed
from context and not actually assigned by the algorithm – i.e. missing labels were imputed. In each column, the highest value is boldified

Sample-level F1 Event-level F1

Model average F1 Fixation Saccade SP Fixation Saccade SP

(Agtzidis et al., 2016b) 0.653 0.670 0.699 0.638 0.455 0.860 0.592

1D CNN-BLSTM: speed + direction 0.650 0.667 0.720 0.663 0.550 0.826 0.475

(Larsson et al., 2015) 0.633 0.609 0.698 0.424 0.741 0.871 0.456

(Dorr et al., 2010) 0.630 0.614 0.691 0.446∗ 0.710 0.841 0.476∗

I-VMP 0.572 0.593 0.699 0.739 0.455 0.564 0.385

(Berg et al., 2009) 0.533 0.609 0.625 0.176 0.683 0.730 0.374

I-VDT 0.474 0.595 0.694 0.222 0.443 0.561 0.329

I-KF 0.444 0.578 0.643 – 0.639 0.806 –

I-HMM 0.421 0.577 0.711 – 0.535 0.702 –

I-DT 0.381 0.573 0.439 – 0.599 0.678 –

I-VT 0.375 0.575 0.701 – 0.412 0.560 –

I-VVT 0.365 0.573 0.701 0.242 0.067 0.560 0.046

I-MST 0.363 0.560 0.444 – 0.603 0.568 –

Random Baseline 0.180 0.387 0.051 0.535 0.023 0.066 0.017

Table 6 MN-RA-data evaluation results for event-level detection as intersection-over-union values (sorted by the average of all columns)

Model Fixation ep. IoU Saccade ep. IoU SP ep. IoU

1D CNN-BLSTM: speed + direction 0.705 0.543 0.398

I-VMP 0.368 0.623 0.619

I-VDT 0.744 0.647 0.127

(Agtzidis et al., 2016b) 0.626 0.469 0.420

(Larsson et al., 2015) 0.754 0.514 0.215

I-VT 0.798 0.665 −
I-HMM 0.81 0.627 −
(Dorr et al., 2010) 0.646 0.461 0.284∗

I-KF 0.785 0.543 −
(Berg et al., 2009) 0.706 0.353 0.075

I-DT 0.628 0.328 −
I-VVT 0.181 0.665 0.023

I-MST 0.438 0.208 −
Random baseline 0.024 0.038 0.016

BLSTM results here are for the window size of just over 0.5s (257 samples at 500Hz). The ∗ signs mark the numbers where the label was assumed
from context and not actually assigned by the algorithm–i.e., missing labels were imputed. In each column, the highest value is boldified
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Table 7 Cohen’s kappa (higher is better) and overall error rates (lower is better) for the MN-RA-data set

Group Error rate Fixation κ Saccade κ SP κ

CoderMN 19% 0.83 0.94 0.83

CoderRA 19% 0.82 0.94 0.83

1D CNN-BLSTM: speed + direction 34% 0.41 0.70 0.41

I-VMP 34% 0.38 0.68 0.40

(Agtzidis et al., 2016b) 38% 0.43 0.68 0.40

(Dorr et al., 2010) 46% 0.25 0.67 0.20∗

(Larsson et al., 2015) 47% 0.23 0.68 0.19

I-VDT 53% 0.16 0.67 0.09

Random Baseline 56% 0.00 0.00 0.00

(Berg et al., 2009) 57% 0.21 0.60 0.07

I-VVT 55% 0.14 0.68 0.02

I-HMM∗∗ 59% 0.13 0.71 −
I-VT∗∗ 59% 0.13 0.76 −
I-DT 60% 0.09 0.40 −
I-MST 61% 0.04 0.43 −
I-KF∗∗ 62% 0.14 0.59 −
BIT∗∗ 67% 0.14 0.00 −
LNS∗∗ 92% 0.00 0.81 −

BLSTM here uses speed and direction features and the context of ca. 0.5 s (257 samples at 500Hz). The ∗ signs mark the numbers where the label
was assumed from context and not actually assigned by the algorithm—i.e., missing labels were imputed. The scores for the algorithms marked
with the ∗∗ were taken directly from Andersson et al. (2017). The rows are sorted by their error rate. In each column, the best value a chieved by
any algorithm is boldified (the first two rows correspond to manual annotators)

event-level evaluation protocol that considers the quality
of the matched episodes through enforcing restrictions on
the pair of events that constitute a match. Our experiments
additionally highlight the importance of temporal context,
especially for detecting smooth pursuit.

The code for our model and results for all evaluated
algorithms are provided at http://www.michaeldorr.de/
smoothpursuit.
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improved algorithm for automatic detection of saccades in eye
movement data and for calculating saccade parameters. Behavior
Research Methods, 42(3), 701–708.

Berg, D. J., Boehnke, S. E., Marino, R. A., Munoz, D. P., & Itti, L.
(2009). Free viewing of dynamic stimuli by humans and monkeys.
Journal of Vision, 9(5), 1–15.

Chollet, F., et al. (2015). Keras. https://github.com/keras-team/keras
Collewijn, H., & Tamminga, E. P. (1984). Human eye movements

during voluntary pursuit of different target motions on dif-
ferent backgrounds. The Journal of Physiology, 351(1), 217–
250.

Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M.,
Venugopalan, S., Saenko, K., & Darrell, T. (2015). Long-
term recurrent convolutional networks for visual recognition and
description. In The IEEE conference on computer vision and
pattern recognition (CVPR).

Dorr, M., Martinetz, T., Gegenfurtner, K. R., & Barth, E. (2010).
Variability of eye movements when viewing dynamic natural
scenes. Journal of Vision, 10(10), 28–28.

Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., &
Zisserman, A. (2010). The Pascal visual object classes (VOC)
challenge. International Journal of Computer Vision, 88(2), 303–
338.

Everingham, M., Eslami, S. M. A., Van Gool, L., Williams, C. K. I.,
Winn, J., & Zisserman, A. (2015). The Pascal visual object classes
challenge: A retrospective. International Journal of Computer
Vision, 111(1), 98–136.

78



572 Behav Res (2019) 51:556–572

Goldberg, J. H., & Schryver, J. C. (1995). Eye-gaze-contingent control
of the computer interface: Methodology and example for zoom
detection. Behavior Research Methods Instruments, & Computers,
27(3), 338–350.

Hasanpour, S. H., Rouhani, M., Fayyaz, M., & Sabokrou, M. (2016).
Lets keep it simple, using simple architectures to outperform
deeper and more complex architectures. CoRR, arXiv:1608.06037

Hooge, I. T. C., Niehorster, D. C., Nyström, M., Andersson, R., &
Hessels, R. S. (2017). Is human classification by experienced
untrained observers a gold standard in fixation detection?
Behavior Research Methods.

Hoppe, S., & Bulling, A. (2016). End-to-end eye movement detection
using convolutional neural networks. ArXiv e-prints.

Komogortsev, O. V. (2014). Eye movement classification software.
http://cs.txstate.edu/ok11/emd offline.html

Komogortsev, O. V., Gobert, D. V., Jayarathna, S., Koh, D. H., &
Gowda, S. M. (2010). Standardization of automated analyses of
oculomotor fixation and saccadic behaviors. IEEE Transactions on
Biomedical Engineering, 57(11), 2635–2645.

Komogortsev, O. V., & Karpov, A. (2013). Automated classification
and scoring of smooth pursuit eye movements in the presence
of fixations and saccades. Behavior Research Methods, 45(1),
203–215.

Kyoung Ko, H., Snodderly, D. M., & Poletti, M. (2016). Eye
movements between saccades: Measuring ocular drift and tremor.
Vision Research, 122, 93–104.

Land, M. F. (2006). Eye movements and the control of actions
in everyday life. Progress in Retinal and Eye Research, 25(3),
296–324.

Larsson, L., Nyström, M., Andersson, R., & Stridh, M. (2015).
Detection of fixations and smooth pursuit movements in high-
speed eye-tracking data. Biomedical Signal Processing and
Control, 18, 145–152.

Larsson, L., Nyström, M., & Stridh, M. (2013). Detection of saccades
and postsaccadic oscillations in the presence of smooth pursuit.
IEEE Transactions on Biomedical Engineering, 60(9), 2484–
2493.

Molchanov, P., Yang, X., Gupta, S., Kim, K., Tyree, S., & Kautz, J.
(2016). Online detection and classification of dynamic hand ges-
tures with recurrent 3D convolutional neural network. In The IEEE
conference on computer vision and pattern recognition (CVPR).

Nyström, M. (2015). Marcus Nyström — Humanities Lab, Lund
University. http://www.humlab.lu.se/en/person/MarcusNystrom

Nyström, M., & Holmqvist, K. (2010). An adaptive algorithm for
fixation, saccade, and glissade detection in eyetracking data.
Behavior Research Methods, 42(1), 188–204.

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN:
Towards real-time object detection with region proposal networks.
In Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M., &
Garnett, R. (Eds.) Advances in neural information processing
systems 28 (pp. 91–99). Curran Associates, Inc.

Rottach, K. G., Zivotofsky, A. Z., Das, V. E., Averbuch-Heller, L.,
Discenna, A. O., Poonyathalang, A., & Leigh, R. J. (1996).
Comparison of horizontal, vertical and diagonal smooth pursuit
eye movements in normal human subjects. Vision Research,
36(14), 2189–2195.

Salvucci, D. D., & Anderson, J. R. (1998). Tracing eye movement
protocols with cognitive process models. In Proceedings of the
20th annual conference of the cognitive science society (pp. 923–
928). Lawrence Erlbaum Associates Inc.

Salvucci, D. D., & Goldberg, J. H. (2000). Identifying fixations and
saccades in eye-tracking protocols. In Proceedings of the 2000
symposium on eye tracking research & applications, ETRA ’00
(pp. 71–78). New York: ACM.

San Agustin, J. (2010). Off-the-shelf gaze interaction. PhD thesis,
IT-Universitetet i København.

Santini, T. (2016). Automatic identification of eye movements. http://
ti.uni-tuebingen.de/Eye-Movements-Identification.1845.0.html
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D

A Novel Gaze Event Detection
Metric

In this work, we have for the first time proposed a way to systematically objectively
analyse evaluation metrics for eye movement detection. To this end, we suggested using
“baseline” eye movement classifiers, which would be designed in such a way that their
performance should be unsatisfactory (e.g . randomly assigning the labels, with some
plausibility constraints). If a certain metric would, for some baselines, yield a score that
is superior to that of a well-established detection algorithm, when tested against the
ground truth in a diverse and high-quality data set, the considered metric is likely not
adequately reflecting the actual performance of the classifiers in an intuitive way.

Having analysed the evaluation strategies in the literature (e.g . in [30, 52, 3∗]), we
discovered their biases and flaws. Some of the findings were to be expected – e.g . as the
classes are not balanced (the vast majority of samples would be typically labelled as
fixations), sample-level F1 scores for the most frequent class would be relatively high,
even if the labels were assigned randomly. Other findings, on the other hand, were more
unexpected – for instance, while quantifying the differences between the event sequences
in true and automatically labelled data via Levenshtein distance (the number of simple
sequence-editing operations required to transform one sequence into the other) would be
very intuitive [52], it turned out that this metric would rank six out of the seven tested
algorithms for smooth pursuit (SP) detection below a random baseline.

Having determined the strong and weak properties of existing metrics, we proposed
a new approach that combined the idea of applying Cohen’s kappa analysis to event-
level evaluation [52] with variable event matching strictness [3∗]. We re-formulated
the computation procedure for this event-level kappa score used in [52], aligning the
resulting metric with its intuitive definition (the advantage of the algorithm-assigned
event detections over randomly allocating those). Our proposed metric – adjusted
event-level Cohen’s kappa – yielded nearly zero scores for all the developed baselines.

My personal contributions consist of (i) designing, implementing, and evaluating
the baselines for eye movement classification (except for the implementation of the
“video-only” baseline) and the proposed novel metric, (ii) testing our pipeline on three
data sets in addition to the mainly used GazeCom [69], and (iii) writing the manuscript.
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ABSTRACT
Eye movement classification algorithms are typically evaluated ei-
ther in isolation (in terms of absolute values of some performance
statistic), or in comparison to previously introduced approaches. In
contrast to this, we first introduce and thoroughly evaluate a set
of both random and above-chance baselines that are completely
independent of the eye tracking signal recorded for each consid-
ered individual observer. Surprisingly, our baselines often show
performance that is either comparable to, or even exceeds the scores
of some established eye movement classification approaches, for
smooth pursuit detection in particular. In these cases, it may be
that (i) algorithm performance is poor, (ii) the data set is overly
simplistic with little inter-subject variability of the eye movements,
or, alternatively, (iii) the currently used evaluation metrics are in-
appropriate. Based on these observations, we discuss the level of
stimulus dependency of the eye movements in four different data
sets. Finally, we propose a novel measure of agreement between
true and assigned eye movement events, which, unlike existing
metrics, is able to reveal the expected performance gap between
the baselines and dedicated algorithms.
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1 INTRODUCTION
Eye movement classification or detection is a popular analysis tool
for eye tracking sessions. Often, the algorithms that are built into
the eye trackers are utilised, but developing specialised [Agtzidis
et al. 2016b; Larsson et al. 2015, 2013; Otero-Millan et al. 2014; Steil
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et al. 2018; Vidal et al. 2012] or generic [Berg et al. 2009; Hoppe
and Bulling 2016; Kasneci et al. 2015; Komogortsev and Karpov
2013; Nyström and Holmqvist 2010; Santini et al. 2016; Startsev
et al. 2018; Zemblys et al. 2018a,b] eye movement classification
approaches is a large and rapidly developing field of research in
its own right, which has recently seen the advent of deep learning
models [Startsev et al. 2018; Zemblys et al. 2018a].

Despite (or perhaps because of) the multitude of existing eye
movement classification methods (for a recent review, see [Ander-
sson et al. 2017]) and toolboxes [Komogortsev 2014; Santini 2016;
Startsev et al. 2016; Zemblys et al. 2018a], the field has a variety of
factors hindering its development, starting from the researchers
disagreeing [Hessels et al. 2018] on just what the most basic eye
movement types – fixations and saccades – should represent, to
the evergrowing number of metrics and evaluation procedures
that are to be employed to find “the best” model [Andersson et al.
2017; Hooge et al. 2017; Komogortsev et al. 2010; Komogortsev and
Karpov 2013; Startsev et al. 2018], to the question of which eye
movement classes should be detected at all (some consider post-
saccadic oscillations [Larsson et al. 2013; Zemblys et al. 2018a,b],
some – microsaccades [Engbert and Kliegl 2003; Engbert and Mer-
genthaler 2006; Otero-Millan et al. 2014]), to a lack of widely used
data sets or baselines.

The latter issue often leads to researchers either reporting per-
formance statistics of their model without a comparison to other
algorithms [Behrens et al. 2010; Vidal et al. 2012], or picking rela-
tively weak but easily implementable reference models [Hoppe and
Bulling 2016; Kinsman et al. 2012; Nyström and Holmqvist 2010;
Steil et al. 2018] such as I-VT or I-DT [Salvucci and Goldberg 2000].
[Startsev et al. 2018] consider random independent assignment of
eye movement labels, but this clearly is a very weak baseline, es-
pecially when event-level evaluation strategies [Hooge et al. 2017;
Startsev et al. 2018; Zemblys et al. 2018a] are employed.

In the field of saliency prediction [Judd et al. 2009] – i.e. attempt-
ing to computationally model human visual attention – which is
closely related to eye movement research, a substantial number
of baselines are used in order to give context to the models’ per-
formance [Judd et al. 2012]. Not only do these baselines provide
a set of performance levels, to which the trained models can be
compared, but they also reveal certain characteristics of the ground
truth data, and therefore the respective data sets in general. For
example, the performance of the “centre baseline” is directly tied
to the amount of centre bias in the ground truth saliency maps.
The fact that this baseline performs better than a large number of
saliency models [Judd et al. 2012] calls into question how much of
the claim that saliency models reflect the brain is really true. The
performance of the “one human” baseline, where the gaze locations
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Table 1: List of proposed baselines, with ∗ marking those selected for comparison to the dedicated eye movement classifiers.

Baseline name Description
Random independent samples Individual sample-level labels are generated with “correct” a priori probabilities
Random samples sequences Individual sample-level labels are generated with “correct” a priori and transition probabilities
Random independent events Plausible-duration events are generated with “correct” a priori probabilities
Random event sequences∗ Plausible-duration events are generated with “correct” a priori and transition probabilities

Majority label All observers’ gaze samples for each video frame are labelled with the same (most frequent) class
Majority label + sub-segmentation∗ Additionally split up overlong fixations and pursuits similar to random event sequences

Video-only A model predicting the majority baseline labels (pursuit vs. fixation) based on the video frames
Video-only + sub-segmentation∗ Additionally split up overlong fixations and pursuits similar to random event sequences

Inter-observer∗ Label each observer’s gaze samples with the ground truth labels of another observer

of a single human observer are compared to those of the whole set
of subjects relates to the level of congruency between individuals.

Some of the saliency baselines are either inapplicable (e.g. the
“centre baseline”), or very difficult and costly to estimate in the
context of eye movement classification (e.g. the “infinite humans”
baseline [Judd et al. 2012] would be equivalent to getting a very
large pool of annotators to label the recordings for all present eye
movements, then taking their consensus labels as predictions of this
baseline). Still, eye movement research can benefit from the works
on saliency prediction, especially since the latter profits from the
former by better distinguishing between the eye movement types
such as fixations and pursuits [Startsev and Dorr 2018]. Similar to
the saliency baselines, we here want to quantify how much useful
information do the existing algorithms extract from the gaze data,
and what can be achieved without directly analysing that data.

In this paper, we proposed several baselines for eye movement
classification. We draw inspiration from both the saliency baselines
and the assumptions and domain knowledge that human experts
implicitly incorporate in their annotations. Our set of baselines
includes (i) several random approaches, generating labels either on
the level of samples or whole events, with or without modelling the
transitions between label types, (ii) two baselines that are related
to the inter-observer similarity of the simultaneously performed
eye movements, as well as (iii) a purely video-content based eye
movement prediction method, which we implemented with the help
of hand-crafted features and a small deep architecture. Approaches
(i) and (iii) can be used regardless of how many observers viewed
the stimuli and whether their recordings are synchronised or not.

Just as the saliency prediction baselines, these methods we intro-
duced are not meant to be used in practice in place of dedicated eye
movement classifiers. They are intended exclusively (i) to reveal
certain properties of the eye tracking data sets (the scores of the
baselines depend on the characteristics of the data sets such as
variability in the eye movements performed by different subjects
simultaneously, etc.), and (ii) to be compared to the dedicated al-
gorithms in order to provide context for their performance (e.g.
how much does algorithmic classification gain over randomly la-
belling events?). We report the statistics on (i) for several data sets,
reflecting on their complexity and diversity, while testing (ii) by

comparing the performance of the developed baselines to both clas-
sical and state-of-the-art algorithms for eyemovement classification
with the help of 2 overall and 6 per-class literature metrics.

As a result, we concluded that current metrics are biased. We
therefore proposed a new metric κadjusted for evaluating algorithmi-
cally detected events in the eye tracking recordings, which adjusts
the event-level Cohen’s kappa computation for the observed biases.

2 METHODS
In this section we describe the baselines we proposed in order to test
the robustness of existing evaluation strategies. The overview of the
baselines can be found in Table 1. The individual sub-sections below
will first introduce our main data set, followed by the description
andmotivation of all proposed baseline methods in detail. The novel
metric we developed is described separately in Section 5, as it is
motivated by the observations on the existing literature evaluation
strategies in the context of our baseline methods.

2.1 Data
For the most part, we developed and evaluated our baselines on
the GazeCom data set [Dorr et al. 2010] of eye tracking recordings
with 18 dynamic natural scenes presented as stimuli. This data
set choice was motivated by its size (over 4.5 h in total; ca. 39,000
fixations and saccades, 5000 pursuits) and the publicly available
[Startsev et al. 2016] manual annotations. Since the data set is
relatively large, we will not have to run our random baselines
several times over to achieve a good estimate of their average
performance. Another property that interested us for the data set
selection was the presence of smooth pursuit in the stimulus, since
we were specifically targeting to distinguish fixation- and pursuit-
dominated video frames with our video-only baseline.

2.2 Random Baselines
The simplest baseline that we used randomly assigns labels to the
individual gaze samples, but with probabilities that are proportional
to the number of respective samples in real eye-movement data
(we consider fixation, saccade, and smooth pursuit samples). This
random independent samples baseline was used in [Startsev et al.
2018] as well in order to motivate a stricter event-level evaluation
procedure. Here, this was the least sophisticated baseline, so further
on we will test and discuss this and other evaluation techniques.
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Recent publications demonstrate a noticeable trend in the field
towards testing eye movement classification with event-level met-
rics [Hooge et al. 2017; Startsev et al. 2018; Zemblys et al. 2018a]. For
this class of measures, randomly assigning independent samples
will drastically overestimate the number of eye movement episodes,
yielding event sequences that very poorly match the “ground truth”
on any metric. To remedy this, we wanted to explicitly leverage
our (average) expectations of eye movement durations, and thus
simulate an expert assigning event classes with a knowledge of
their typical characteristics, but completely oblivious of the eye
tracking signal. To this end, we stored all the occurring durations
separately for all the considered eye movement classes in our data
set to generate plausible events by directly sampling this set of
realistically occurring durations (sampling from a fitted Gaussian
or algorithmically detected event duration distributions delivered
very similar results). We could then randomly generate events of
naturally-distributed durations one after another until each individ-
ual recording has been fully labelled. This is the random independent
events baseline. The a priori probability of each event type was com-
puted based on the frequency of such events in the ground truth.

Independently generating both samples and events means that
the resulting sequences are not controlled for their plausibility. For
random independent samples this leads to the distinct possibility
of generating “events” that last one sample only. For random inde-
pendent events, on the contrary, the problem lies in the possibility
of generating e.g. two events of the same class one after the other,
meaning that they will be merged into one, much larger, episode,
thus skewing the distribution of event durations. To solve both of
these issues, we proposed generating sequences of both samples
and events in a simple Markov chain process. To this end, we also
computed the conditional transition probabilities from a sample
or event of one class to a sample or event of another, respectively:
p (EMnext | EMcurrent), where EM stands for the eye movement
class label of a single sample or a whole event, depending on the
setting. We then generated the eye movement type only of the first
sample or event in each labelled recording with the respective a
priori distribution, and proceeded to generate all the subsequent
sample or event labels using the conditional transition probabilities.
We refer to this approach as generating random sample sequences
or random event sequences, respectively. This sequence generation
approach was partly inspired by the saccadic models (e.g. [Meur and
Liu 2015]) that generate scanpaths in a Markov process that is con-
ditioned by the oculomotor biases of human observers, which are
reflected in the distributions of saccade amplitudes and directions.

We consistently found that generating events results in bet-
ter overall performance than generating samples, and utilising
sequences of samples or events is preferable to generating them
independently, so for the purpose of brevity we will only report the
evaluation results for the random event sequences baseline.

2.3 Majority-label Baselines
Here we attempted to achieve the best performance without differ-
entiating between the subjects or explicitly taking gaze movement
data into account. This baseline “learns” from the annotated data:
For every stimulus video clip, it takes the majority label assigned to
any of the observers’ (min. 37, max. 52 in GazeCom) gaze samples

(at 250Hz) that occur during each video frame (at 29.97Hz). In case
of ties, the label with the lower numerical value (in the labelling
scheme of [Agtzidis et al. 2016a]) was preferred. This majority label
is then assigned to all of the considered samples for this frame,
regardless of the particular recording or gaze movement statistics.

This baseline, of course, works at the level of samples, so the
generated events are not plausibly distributed: E.g. we expected an
overwhelming number of samples to be labelled as part of a fixation
with this approach. However, it has been noted before that the
congruency between subjects’ gaze traces tends to increase when
a small number of moving objects are present in the scene [Dorr
et al. 2010], so the gaze samples (of different observers) that belong
to a pursuit of the same object will likely be clustered in space and
time [Agtzidis et al. 2016b]. [Mital et al. 2011] also noted that scene
motion is highly predictive of the clustering of the viewers’ points
of regard. We therefore also anticipated a non-negligible amount
of smooth pursuit assigned by this baseline.

2.3.1 Large Event Sub-segmentation. As explained above, the fixa-
tions (and, potentially, pursuits) typically produced by this baseline
will be exceedingly long (e.g. average “fixation” duration of ca. 3 s).
This is a significant downside of this method, especially in the
context of event-level evaluation. We therefore split large episodes
(more than one standard deviation above the respective mean, in
our implementation) into smaller, more plausible ones. We did this
in the same way as described for the random event sequences base-
line above, except for only using fixation and saccade events when
sub-segmenting fixations, and only smooth pursuit and saccade
events when processing overlong pursuit episodes.

We found that this post-processing step slightly lowered the
sample-level statistics, but increased all tested event-level measures,
sometimes more than threefold. Consequently, we only report the
results for the sub-segmented version of themajority-label baseline.

2.4 Video-only Baseline
To build on the majority-label baseline, which still uses the manual
annotations of the subjects, whose recordings it classifies, albeit
in an accumulated, “anonymised” fashion, we trained a machine
learning model to identify the frames in the video sequence that are
more likely to elicit smooth pursuits vs. those that are more likely to
elicit non-pursuit eye movements (we assumed those are fixations,
which is overwhelmingly the case in GazeCom anyway). We stress
that this is a proof-of-conceptmodel, and its generalisability to other
data sets (as a pre-trained predictor or via re-training, especially
for videos from head-mounted cameras) needs to be tested further.

For this classification, we used eight hand-crafted features, all
computed for the median-filtered (11 × 11 for 720 × 1280 frames)
optical flow between the current video frame and the previous one.
We typically observed one of three consistently occurring patterns
during the frames that have smooth pursuit as themost frequent eye
movement type: a moving object has recently entered the frame (e.g.
see Figure 1a), a singular moving object is traversing the otherwise
relatively static scene (e.g. see Figure 1b), or the camera itself is
moving (mostly in just one clip in GazeCom, e.g. see Figure 1c).

To create a feature that tests for an object that has recently en-
tered the frame, we first found the pixel with the highest magnitude
of the optical flow. With the assumption that this was the “main”

83



ETRA ’19, June 25–28, 2019, Denver, CO, USA M. Startsev et al.

(a)

(b)

(c)

Figure 1: Optical flow (on the left) and corresponding video
(on the right) frame examples, where most of the observers
are performing smooth pursuit. These illustrate the general
patterns we observed: (1a) an object has recently entered the
scene, (1b) a single target is moving on a mostly static back-
ground, and (1c) the camera is in motion.

moving object, we estimated the time that this pixel was already vis-
ible (1 feature) by assuming that it has been moving with a constant
speed – a vector equal to its current optical flow.

In order to somewhat describe the case of a single moving object
in the video while the rest is mostly motionless, we computed the
median and the maximum magnitudes of the optical flow vectors of
the frame (2 features). Ideally, these would describe the speed of the
moving object and the background scene motion, respectively. We
additionally separately computed the gradient of the optical flow in
vertical and horizontal axes, and extracted its maximal magnitude
(1 value) to test for strong edges in the optical flow frame.

We used the mean and standard deviation of the optical flow
(separately for its horizontal and vertical components) as features
to capture camera movement (4 features).

We tried several model types and configurations, discovering
that using a sequence of feature vectors (extracted for a sequence
of video frames) and processing those with a long short-term mem-
ory network (LSTM) [Hochreiter and Schmidhuber 1996] yields
better results. We eventually decided to use a small network that
consists of one LSTM layer with 16 units, followed by four fully-
connected layers (8 neurons in each, ReLU activations) and a final
fully-connected output layer (1 neuron, sigmoid activation func-
tion). We placed dropout [Srivastava et al. 2014] layers (0.5 rate) in

front of every fully-connected layer. We used binary cross-entropy
as loss and the Adam optimiser [Kingma and Ba 2014] with default
parameters (Keras version 2.1.6-tf [Chollet et al. 2015]). This model
was trained on sequences of 12 feature vectors to predict the label
(i.e. “pursuit” or “non-pursuit”) of the last considered frame. The
training was carried out for up to 200 epochs, but could be stopped
if no improvement in validation accuracy was observed for the last
20 epochs. We balanced the dataset so that both classes had roughly
the same number of examples by oversampling the “pursuit” class.

To produce the labels for our data set, we used a cross-validation
pipeline, where a separate model was tested for each video. The 17
remaining videos were split into the validation (first 3) and training
(another 14) sets. The model with the best validation accuracy
during training was then used for the prediction of the final labels
of the video-only baseline for the corresponding video.

For this baseline, just like for the majority-label above, we only
report the performance for its modification where we randomly
subdivided the overlong fixations and pursuits (see Section 2.3.1),
as the overall performance was consistently improved by this.

2.5 Inter-observer Baseline
This baseline tested the assumption that different observers will
make similar eye movements when viewing the same stimulus
(provided that their recordings are synchronised). Each recording
was matched to a random other observer’s recording for the same
stimulus (all recordings used as a match once). We then produced
the labelling of all the samples by using the matched recordings.

If the recorded gaze data were perfect, we could simply match
(one-to-one) each of the gaze samples (and, therefore, their eye
movement class labels) of one observer with all of the samples of the
other, as every such pair of samples would be recorded at precisely
the same time (relative to the stimulus onset), and no samples
would be missing. With real data, however, we have to deviate from
this procedure in two ways: First, we allowed for a temporal shift
between the matched pair of samples of up to ∆τ = 20ms. Second,
in case of missing samples (due to recording artefacts) we filled
the gaps by the last matched class label. The temporal tolerance
threshold ∆τ plays the role of limiting the boundaries of what could
be considered as temporal synchrony between two recordings and
should not noticeably alter the results of this baseline. The only
recommendation is not to set ∆τ below one half of the eye tracker’s
sampling interval, as the recordings could otherwise be temporally
misaligned in such a way that none of their samples can be matched.

3 EVALUATION
3.1 Algorithms and Data Sets
Since data-driven algorithmic annotation is not the focus point of
this work, we simply tested a large crop of algorithms that were
evaluated on the GazeCom data set in a recent work [Startsev et al.
2018] (correspondingly labelled files already provided via [Startsev
et al. 2016]). In our evaluation we only included the algorithms that
annotate smooth pursuit, which left us with the updated [Startsev
et al. 2016] version of the [Startsev et al. 2018] algorithm, the ap-
proaches by [Agtzidis et al. 2016b], [Larsson et al. 2015], [Berg et al.
2009], and [Dorr et al. 2010], as well as three more algorithms imple-
mented by [Komogortsev 2014]: I-VMP, I-VVT, and I-VDT. The last
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three were optimised in [Startsev et al. 2018] to deliver the best (on
average across eye movement types and metrics) performance on
GazeCom. We excluded I-VVT from our analysis since the optimi-
sation procedure resulted in it effectively ignoring smooth pursuit
detection in favour of better classifying other eye movement types.

We wanted to more extensively evaluate our inter-observer base-
line, since it is a very easy-to-implement approach that directly
relates to the diversity of salient targets in each individual stim-
ulus in the data set. To this end, we tested it on three mode data
sets (in addition to GazeCom, which we described Section 2.1) and
compared the results. We considered the video-viewing subset of
the data used in [Andersson et al. 2017], where we only used the
labels of one of the annotators (“RA”), since his labels are present
for a larger number of recordings, and it is important for the inter-
observer baseline to have a representative set of observers.

We also considered the [Santini et al. 2016] data set for an exam-
ple of fully artificial stimuli, but the mobile eye tracker recordings
for different participants are not synchronised and, furthermore,
the stimuli were randomly generated for each observer. Despite
these by-design differences between the observers’ recordings, we
still performed the inter-observer analysis on this data.

Finally, we manually annotated a subset (50 clips, ca. 13 ob-
servers per video) of the Hollywood2 [Mathe and Sminchisescu
2012] data set of high-frequency (500Hz) eye tracking recordings
We annotated approximately 13,000 fixations, 15,000 saccades, and
5000 pursuits following the methodology of [Agtzidis et al. 2016a].

3.2 Metrics
We selected a wide range of commonly used evaluation measures
from the literature. Sample-level Cohen’s kappa [Andersson et al.
2017; Hooge et al. 2017; Larsson et al. 2015; Santini et al. 2016;
Zemblys et al. 2018b] and F1 scores [Agtzidis et al. 2016b; Hoppe
and Bulling 2016; Kasneci et al. 2015; Startsev et al. 2018] (also in the
form of sensitivity and specificity [Larsson et al. 2013] and precision
and recall [Anantrasirichai et al. 2016; Santini et al. 2016] reported
separately) are frequently used by researchers, for example.

[Komogortsev et al. 2010] proposed a number of metrics for the
evaluation of eye movement classifiers, most of which (e.g. FQnS,
FQIS, SQnS) are only applicable when the stimulus is known and
controlled. The authors also used average fixation durations, sac-
cade amplitudes, and the number of eye movement events. Though
many works report such average statistics [Andersson et al. 2017;
Larsson et al. 2013; Nyström and Holmqvist 2010; Startsev et al.
2018; Zemblys et al. 2018b]), we did not include these in our evalua-
tion since most of our baselines were by-design generating roughly
“correct” numbers of episodes of each eye movement type with
durations similar to those in the ground truth, so comparing the
literature models to the baselines would be pointless. Additionally,
these metrics (unlike any of the others we compute) are easily inter-
pretable by field experts without an additional numerical yardstick.

Of course, just matching the number of events and their average
statistics is not sufficiently quantifying the quality of the detected
episodes. In addition to these measures, [Hooge et al. 2017] reported
relative timing offset (RTO) and relative timing deviation (RTD),
albeit for comparing human coders and not automatic detectors to
the ground truth, but the principle is exactly the same. These are

the mean and standard deviation of the difference in on- or offset
timing of the “true” and detected events. This requires matching
the events from the two labelled sets of eye tracking recordings, for
which [Hooge et al. 2017] proposed finding the (temporally) first
event in the second set that intersects with the considered event
in the first set. After such matching is performed, event-level F1
scores can be computed (used in our evaluation as well). As for the
RTO and RTD measures, they need to be reported separately for on-
and offset of every event type, resulting in many statistics that need
to be compared. Such an approach was appropriate in [Hooge et al.
2017], where only one event type (fixation) was considered, and the
main focus was not on a compact evaluation of performance, but
on finding systematic differences between human coders. [Startsev
et al. 2018] proposed using the intersection-over-union ratio (IoU)
statistic to compare the detected events to the ground truth ones in
a less interpretable but more concise fashion, which we employed in
our evaluation. Average IoU value across all ground truth episodes
of a certain type is computed, with 0.0 corresponding to the missed
events. This way, the quality of matched episodes as well as the
number of correctly matched ground truth events are assessed at
the same time, though not in an obvious combination.

Two very recent works [Startsev et al. 2018; Zemblys et al. 2018a]
both suggest modifications to the event-level evaluation strategy
of [Hooge et al. 2017]. [Zemblys et al. 2018a] mainly use Cohen’s
kappa for both sample- and event-level evaluation. For the event
evaluation, they modify the procedure of matching the algorithmi-
cally detected events to the eye movement episode in the manual
annotations. Instead of finding the earliest detected event that in-
tersects with the considered “true” event, they find the one with the
largest overlap area. We slightly modified this strategy by looking
for the largest IoU, rather than for the largest intersection only:
Suppose a case when a long fixation and a short saccade were de-
tected, both intersecting with a ground truth saccade by 1/3 of its
length. In terms of overlap size, these are indistinguishable, but the
IoU will give a clear preference to the shorter saccade.

Following the implementation of [Zemblys et al. 2018a], after
suchmatching is performedwe paired the unmatched events in both
the ground truth and the algorithmically detected sets with “empty”
phantom events, and then directly computed the Cohen’s kappa
value of the resulting aligned sequences. Additionally, [Zemblys
et al. 2018a] calculate sample and event “error rates”, computed
via normalising the Levenshtein edit distance (we divided it by
the length of the largest of the compared label sequences), so we
will refer to them as Lsample and Levent, respectively, and tested
our baselines against those measures as well. Contrary to what is
stated in [Zemblys et al. 2018a], normalised Levenshtein distance
between two sequences of equal length does not necessarily equal
the misclassification rate, but rather does not exceed it (since the set
of edit operations allowed under the Hamming distance definition
is a strict subset of the corresponding operations allowed under the
definition of the Levenshtein distance) [Navarro 2001].

We also followed the evaluation strategies of [Startsev et al.
2018], where the modification of the [Hooge et al. 2017] event
matching scheme consists of limiting the possible event matches
to those with the IoU no lower than a certain fixed threshold. The
value recommended for theoretical interpretability is 0.5, since at
this level no more than one match candidate can exist. For lower
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thresholds, the earliest-occurring of the matches is preferred (same
as in [Hooge et al. 2017]). [Startsev et al. 2018] further argue for the
practical preferableness of limiting acceptable IoU to values ≥ 0.5
by analysing the “random baseline” model (same as our independent
random samples baseline). Here we will test whether this matching
scheme is robust enough with our other random baselines as well.

To sum up, we used the following metrics: On the sample level,
we tested the algorithms and baselines with (i) per-class F1 scores,
(ii) per-class Cohen’s kappa statistic κsample, and (iii) normalised
Levenshtein distance measure Lsample. On the event level, we com-
puted (i) per-class F1 scores [Hooge et al. 2017], (ii) per-class Co-
hen’s kappa κevent [Zemblys et al. 2018a], (iii) normalised event-
level Levenshtein distance Levent, (iv) average per-class IoU ratio,
as well as (v) per-class F1 scores at a varying IoU threshold for
matched events, e.g. F1IoU≥0.5 [Startsev et al. 2018].

We also proposed a novel metric based on the event-level Co-
hen’s kappa of [Zemblys et al. 2018a]. We denote it κadjusted and
separately explain its details in Section 5 as its motivation and im-
plementation are drawing on the conclusions about other metrics.

4 RESULTS AND DISCUSSION
We computed all the selected metrics for the predictions of our
baselines and the considered literature algorithms on the GazeCom
data set. For space reasons, we only provide most of the values
for smooth pursuit evaluation (Table 2); full, sortable tables are
provided at https://github.com/MikhailStartsev/sp_tool/baselines.

4.1 Fixation and Saccade Detection
Wefirst examine the evaluation procedures in the context of fixation
and saccade detection (pursuit will be covered separately below).
We omitted the evaluation results for these eye movements from
Table 2 since they were not particularly surprising: All the baselines
performed worse than the literature algorithms, especially on the
saccade detection task, where the baselines’ sample- and event-level
F1 scores, for example, were between ca. 0.1 and 0.2 with all of the
literature models scoring between 0.65 and 0.95.

For fixations, however, which are by far and away the most
common eye movement label in GazeCom (72.5% samples), both
the sample- and the event-level F1 scores (computed without any
IoU thresholding) put the baselines very close to the scores of
data-driven models: 0.85 for the best baseline vs. 0.88 for the worst
literature model on the level of samples, and 0.73 vs. 0.79 on the level
of events. It has to be noted that introducing a 0.5 IoU threshold
makes this metric more discriminative (the score gap grows to ca.
0.4). Unlike the simplest random baseline in [Startsev et al. 2018],
however, all our selected baselines scored above 0.2 on the F1IoU≥0.5
metric for fixation detection. This means that the episode matching
criteria can and should be made even stricter (i.e. the IoU threshold
further increased): Event-level F1 scores for fixations only dropped
below 0.05 for our baselines at the much higher IoU threshold of 0.8.

The IoU metric itself as well as sample- and event-level Cohen’s
kappa scores are very well distinguishing between the baselines
and the other models in terms of fixation and saccade detection.
The event-level κevent exhibited slightly unusual behaviour when
evaluating saccade detection: Almost all of our baselines received a
negative score in the vicinity of −0.25. This is especially strange for

the baselines that randomly assign event labels and their sequences,
as this case should be the closest one can get to randomly assigning
event labels; with Cohen’s kappa this should correspond to a “per-
fect” zero-score. The current implementation of κevent [Zemblys
et al. 2018a], however, assumes a different source of randomness
– arbitrarily assigning labels to pre-segmented events rather than
arbitrarily labelling events in the signal, i.e. it is entirely possible
under these assumptions that a 20ms interval would be labelled
as a fixation. This inherently biases the evaluation of short events,
the timing of which is randomly offset: The probability of two such
events being matched is proportional to the product of their respec-
tive lengths. On average in the GazeCom data set, ground truth
fixations are 7 times longer in durations than saccades, meaning
that the randomly-positioned (in time) saccades are almost 50 times
less likely to match the “true” events of their own type.

4.2 Overall Performance and Smooth Pursuit
Detection

For the simultaneous evaluation of all sample or event labels we
used normalised Levenshtein distances (as proposed in [Zemblys
et al. 2018a]). While no baseline scored higher than any literature
model with respect to Lsample (though the closest scores were
very similar – 0.279 or 0.254 for the majority vote baseline with
or without sub-segmentation vs. 0.246 for the [Berg et al. 2009]
algorithm), all literature approaches except for the deep model of
[Startsev et al. 2018] had a larger event-level Levenshtein distance
to the ground truth than three out of four baselines in Table 2.
All but two models received a worse score than the video-only
baseline there, which does not take any eye tracking or ground truth
information into consideration. This leads us to argue that both
Levenshtein distances are relatively weakmetrics for eyemovement
detectors, which is likely due to equal assumed costs of mislabelling
and omitting a sample (an event): Deleting even one fixation from
a labelled sequence could lead to all of the subsequent labels not
corresponding to the gaze recording. This error is, however, treated
as equivalent to labelling this fixation as pursuit.

We now focus on the evaluation of smooth pursuit detection.
Table 2 highlights (in magenta) the instances where a data-driven
algorithm scored lower than at least one of the selectively presented
baselines (grey rows). For now, we ignore theκadjusted metric, which
we introduce together with our general recommendations about
the metrics that are to be used for eye movement classification
studies in Section 5. It can be clearly observed that a substantial
part of literature models’ scores are surprisingly worse than those
of the baselines we proposed. The only metric for which none of
the algorithms scored below any of the baselines is intersection-
over-union, IoU. Under any other evaluation conditions, I-VDT and
[Dorr et al. 2010] were consistently worse at detecting pursuit than
some of our baselines (not shown in Table 2: for sample-level F1,
the best baseline score was achieved by the majority vote baseline
without event sub-segmentation – 0.404). We note that the majority
voting with sub-segmentation as well as the inter-observer baseline
scored particularly well in the event-level evaluation part for the
detection of pursuit, with the video-only approach a little behind.

Among the tested data-driven algorithms, only the [Startsev
et al. 2018] approach was consistently ahead of the baselines, with
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Table 2: Sample- and event-level performance: for normalised Levenshtein distances, lower is better, for all other statistics,
higher is better. The baseline rows are highlighted in grey. Individual cells are highlighted in magenta if the corresponding
score is worse than at least one of the baselines evaluated here. Best algorithmic and baseline scores in each column are
boldified. The rows are sorted by average performance (mean of all columns, Levenshtein distances used with a negative sign).

All classes Pursuit samples Pursuit events
Model Lsample Levent F1 κsample F1 IoU F1IoU≥0.5 κevent κadjusted

[Startsev et al. 2018] 0.103 0.140 0.707 0.672 0.629 0.621 0.542 0.539 0.313
[Agtzidis et al. 2016b] 0.219 0.351 0.646 0.607 0.527 0.448 0.394 0.444 0.199
I-VMP (optimised) 0.167 0.331 0.581 0.536 0.531 0.454 0.427 0.418 0.181
[Larsson et al. 2015] 0.154 0.400 0.459 0.407 0.392 0.277 0.321 0.339 0.171
[Berg et al. 2009] 0.246 0.278 0.422 0.365 0.424 0.351 0.266 0.259 0.118
Majority vote + sub-segment. 0.279 0.245 0.379 0.328 0.439 0.128 0.115 0.216 0.007
[Dorr et al. 2010] 0.178 0.309 0.381 0.299 0.193 0.367 0.092 0.044 0.064
Inter observer 0.328 0.266 0.321 0.236 0.388 0.142 0.114 0.191 0.008
Video only + sub-segment. 0.342 0.289 0.317 0.208 0.282 0.166 0.069 0.105 0.003
I-VDT (optimised) 0.231 0.468 0.321 0.230 0.152 0.359 0.073 0.032 0.044
Random event sequences 0.355 0.251 0.118 0.005 0.162 0.052 0.030 0.028 -0.001

[Agtzidis et al. 2016a] and I-VMP only being subservient to the
baselines in one metric (Levent).

About the κsample scores we note in particular that these were
very close to zero for all of our random baselines. For non-random
baselines, however, these were sometimes higher than the corre-
sponding values for literature models (see Table 2), meaning that κ
scores are good at discerning randomness in label assignment, but
not necessarily so for comparing algorithms to one another.

4.3 Inter-observer Similarity of Eye
Movements in Four Data Sets

Much like [Dorr et al. 2010] and [Mital et al. 2011] analysed spatio-
temporal congruency of gaze points of multiple subjects, our inter-
observer baseline can be used to assess the amount of similari-
ties between the eye movements elicited by the same stimulus in
different participants. As can be seen from Table 3, even when
free-viewing video stimuli (GazeCom and Hollywood2 rows), the
directly stimulus-dependent eye movements (smooth pursuit, in
this case, since it cannot be performed without a moving target)
were, to a large extent, similarly performed and timed between
subjects, often resulting in performance better than dedicated algo-
rithms (see Table 2). However, the scores of the baseline were the
lowest on GazeCom, pointing towards its higher diversity.

When instructions are added to the video viewing (e.g. in the
data set used by [Andersson et al. 2017], where participants were
instructed to follow the moving objects in videos [Larsson et al.
2013]), the congruency further increases. We used a slightly differ-
ent (more recordings, but only annotated by one expert instead of
two) version of the data set than [Andersson et al. 2017], but since
the algorithms’ performance there is reported as largely similar
when compared to either of the experts, and the difference in the
metrics is fairly large, we feel confident in the generalisation of the
following: While none of the algorithms compared in [Andersson
et al. 2017] accounted for smooth pursuit, their best overall per-
formance (reported as error rates) on the video-viewing data was
at 61% disagreement rate, while the inter-observer baseline had a

Table 3: A selection of metrics for smooth pursuit detection
with the inter-observer baseline on multiple data sets. The
video-viewing subset of [Andersson et al. 2017] data set is
considered. The rows are sorted by the average score.

Data set κsample

sample
F1

event
F1

event
F1IoU≥0.5

[Andersson et al. 2017] 0.25 0.70 0.58 0.15
Hollywood2 0.30 0.50 0.53 0.15
[Santini et al. 2016] 0.25 0.36 0.54 0.20
GazeCom 0.24 0.32 0.39 0.11

better score of 43%. As for the detection of fixations, the best sample-
level Cohen’s kappa score for algorithmic detection as reported in
[Andersson et al. 2017] was 0.14, while the inter-observer baseline
scored 0.24. Several pursuit-detecting algorithms were evaluated
on the [Andersson et al. 2017] data in [Startsev et al. 2018]. The
inter-observer κsample score of 0.25 is better than that for six out of
nine approaches tested there. The corresponding F1 scores for this
baseline (see Table 3) were slightly inferior just to one algorithm in
either sample- or event-level setting: 0.7 vs. 0.74 for I-VMP or 0.58
vs. 0.59 for [Agtzidis et al. 2016b], respectively.

The recordings in [Santini et al. 2016] are not temporally syn-
chronised, and stimuli in this data set were uniquely generated for
each subject. Nevertheless, the similarities in the pseudo-randomly
generated sequences of artificial target movements allowed the
inter-observer baseline to come close (on some metrics) to the per-
formance of the I-BDT algorithm, which was developed together
with this data set: For the event-level F1 scores of [Hooge et al.
2017] for pursuit, I-BDT is only 0.06 higher than this baseline (0.6
vs. 0.54). When the IoU thresholding is applied, however, the differ-
ences were much more noticeable (0.53 vs. 0.2). Once again, these
results highlight the importance of the evaluation measure choice.
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Similar to the findings of [Dorr et al. 2010], we observed that
Hollywood2 recordings contain much less variation of eye move-
ment types (see Table 3), in addition to being less spatially variant,
compared to the naturalistic videos of the GazeCom data set.

The inter-observer baseline can be additionally interpreted as
the quality of labels one would get, if only one recording (of an
“average” observer) per stimulus was manually annotated. Alterna-
tively, if the stimuli are synthetic or observers receive instructions
regarding their viewing behaviour, the information about the likely
eye movements may be already available to the researchers and
could be used to “automatically” label the recordings. Comparing
algorithms to the inter-observer baseline would, in this case, char-
acterise the gain these methods deliver over simply assuming the
performed eye movement types based on this information.

When analysing a data set, we recommend assessing the diversity
of its recordings, for instance by testing the inter-observer baseline
on its labels, which would reveal how much similarity is shared
between the simultaneously performed eye movements of different
subjects. In some cases, a very simple assumption that participants
will perform the eye movements that they “should” (either based on
the nature of the stimuli or on the instructions) could yield greater
performance than a generic eye movement detection algorithm.

5 ADJUSTING THE COHEN’S KAPPA METRIC
Having evaluated our baselines on a number of existing metrics
from the literature, we focused on combining their strengths while
avoiding the observedweaknesses. Below,we first outline the advice
that can be drawn from our experiments and thus motivate the
introduction of a new evaluation strategy.

Based on the observations made in Section 4.2, we advise against
using Levenshtein distances. We also recommend using stronger
matching criteria for event-level evaluation, increasing the thresh-
olds for acceptable matches even further than in [Startsev et al.
2018], since the IoU scores themselves differentiated well between
baselines and dedicated models, but setting a threshold at 0.5 did
not achieve the desired strictness of event matching. Overall, it
seems that only evaluating the presence of event matches between
the detected and the “true” ones (e.g. as F1 scores or Cohen’s kappa
do) is not sufficient, and the quality of events needs to be assessed
with a special metric (e.g. IoU). IoU itself demonstrated the greatest
power to distinguish the baselines from the dedicated algorithms,
but there is no obvious interpretation of its way of reflecting on
both the quality of matched events and the amount of missed ones.

We, therefore, proposed a novel event evaluation strategy to
overcome the shortcomings of the existing approaches. Our main
motivation sources were (i) making event matching stricter while
maintaining the clear separation between how events are matched
and how the matched events are evaluated (like IoU thresholding
and unlike IoU averaging in [Startsev et al. 2018]), (ii) clearly sepa-
rating baselines and algorithmic approaches by their performance,
as well as (iii) obtaining close-to-zero scores for the random base-
lines, as κsample does, while (iv) avoiding the bias of the [Zemblys
et al. 2018a] κevent against short event detection (see Section 4.1).

To this end, we combined the event-matching strategy of [Start-
sev et al. 2018] with the modified Cohen’s kappa scoring procedure
of [Zemblys et al. 2018a]: First of all, two events can be matched

only if they have an IoU over a certain threshold, which we set
to 0.8 (see Section 4.1 for the source of this value; this is a pa-
rameter that might need to be increased as algorithmic detection
improves further), meaning that no more than one algorithmically
detected eye movement episode can form a potential match with
one event of the ground truth set. Second, to obtain the chance-level
performance (to normalise the observed agreement between the
true and detected events, just as in the traditional Cohen’s kappa
formula) we randomly re-shuffled the detected events, preserving
their type and duration. This can be repeated several times, but
on the large GazeCom data set we did not observe large inter-run
variance. Lastly, if a certain eye movement type label is evaluated,
the “agreement” between the two sets of labels was computed by
considering only the events of this class, since correctly match-
ing the timing of the negative-label events should not contribute
to the performance estimate of the positive-label event detection.
We provide the implementation of this and all other metrics at
https://github.com/MikhailStartsev/sp_tool.

Table 2 demonstrates that no baseline performed better than any
considered algorithm with respect to this metric, κadjusted, with the
lowest score for a literature algorithm over five times higher than
the highest baseline score. Also, all of our random baselines scored
between −0.002 and 0.002 on this metric for all eye movement
types, so we do not observe any eye movement-specific bias either.

As to the limitations of the proposed metric, its high IoU thresh-
old might render κadjusted unsuitable for being used as the basis for
a loss function for gradual parameter tuning of machine learning
models: If the initial score is poor, it is unlikely to change with small
parameter alterations. We would recommend gradually increasing
the IoU threshold as the training progresses, similar to learning
rate decay [Smith et al. 2018], or combining this metric with others.

6 CONCLUSIONS
Here, we first proposed and tested several eye movement classifi-
cation baselines that either only randomly model the sequences
of samples or events of different eye movement types, or make
no distinction between individual recordings. Notably, none of our
baselines are gaze data-dependent, i.e. the properties of the recorded
eye tracking signal are never considered.

We then further tested the baseline that directly leverages the
(likely stimulus- or instructions-driven) similarities between the
eye movements of different subjects on three more independent
data sets, which allowed us to compare their inter-observer diver-
sity, as well as obtain some context for the algorithmic performance
on these, since this baseline approach approximates sparsely anno-
tating the recordings and re-using the labels for other recordings
on the same stimuli.

The results of the gaze data-free baselines reflect, in part, on the
metrics used for evaluating the classification models and reveal
their shortcomings. To avoid the observed weaknesses and biases
of currently used measures, the new κadjusted metric should be used
for the evaluation of eye movement event classification algorithms.
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360-aware Saliency Estimation

This work has contributed to the field of saliency prediction in the omnidirectional domain.
Our approach produces high-quality saliency maps for equirectangular 360◦ images by
applying traditional, two-dimensional image saliency models to a set of manipulated
versions of the original 360◦ image. Combining this general idea with an ensemble of
three existing saliency predictors [74, 157, 158] (without any re-training) demonstrated
excellent performance, winning the corresponding IEEE ICME “Salient360!” Grand
Challenge in 2017 [95] (best head and eye movement prediction).

In particular, we focused on two major problems with saliency prediction directly in
equirectangular content: (i) the discrepancy between immersive nature of the stimulus
and the presence of borders in the image representation and (ii) the distortions resulting
from projecting a spherical image onto a rectangular shape. We utilised two approaches
to overcome these artefacts: (i) Rotating the spherical image before projection and
(ii) projecting the spherical scene onto a set of six cube faces instead of a single image.

In traditional saliency predictors, pixels near image borders often receive noticeably
lower saliency scores, compared to pixels further away from the borders, regardless of
the depicted content. Predicting the spherical saliency at several different rotations
(approach (i) above) ensures that equirectangular image borders would correspond to
different locations on the sphere. When aggregated via pixel-wise maximum, these
saliency predictions form a final output with greatly diminished border artefacts.

The second approach allows to undistort the equirectangular projection images,
producing more traditional views of the depicted objects. We countered the appearance
of many additional borders artefacts as a result of this (near the borders of each of the
cube faces) via a rotation procedure similar to the one describe above.

For the final model, we combined the two proposed approaches, computing the
saliency maps from both the rotated input image (around the vertical axis only) and the
top and bottom cube faces, i.e. where distortions are most severe. This approach was
demonstrated to outperform the two individual manipulation strategies above.

My personal contributions include (i) designing and implementing the equirectangular
image manipulation methods; (ii) integrating our proposed pipeline with the saliency
model implementations of [74, 157, 158], slightly modifying those to avoid unnecessary
central biasing, normalisation, and quantisation; (iii) writing the manuscript.
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A B S T R A C T

This work explores saliency prediction for panoramic 360◦-scenes stored as equirectangular images, using
exclusively regular ‘‘flat’’ image saliency predictors. The simple equirectangular projection causes severe
distortions in the resulting image, which need to be compensated for sensible saliency prediction in all viewports.
To address this and other arising issues, we propose several ways of interpreting equirectangular images and
analyse how these affect the quality of the resulting saliency maps. We perform our experiments with three
popular conventional saliency predictors and achieve excellent results on the ‘‘Salient360!’’ Grand Challenge
data set (ranked 1st among the blind-test submissions in the Head–Eye Saliency Prediction track).

1. Introduction

Even though we seemingly perceive our entire surrounding as a
whole, this is impossible because of the physical constraints of our visual
system. Only a small part of our visual field is projected onto a high-
resolution part of the retina — the area called fovea. This foveation
reduces the computational load on the visual cortex and bandwidth
requirements on the optic nerve, but forces our eyes to constantly
scan the scene to obtain the ‘‘full picture’’. This means that from such
fragmented input our brain has to reconstruct a comprehensive model
of what surrounds us. The strategy of visual exploration is therefore
an important factor of human adaptation, which had both social and
environmental factors impact its development.

Being able to predict or model the process of this ‘‘biologically-
approved’’ attention allocation can aid various computer vision-related
areas in the struggle for sparsity [1,2], help action recognition [3,4] and
semantic segmentation [5], or even potentially shed light on and aid
diagnosis of mental disorders [6,7]. With 360◦-content becoming more
and more widespread on popular image- and video-sharing platforms,
as well as with the rise of consumer-oriented virtual reality applications
and 360-camera set-ups, the saliency models for such stimuli can
facilitate its analysis and compression, for example in order to enhance
user immersion.

Working with the panoramic image scenario is generally beneficial
for understanding attention. First of all, whereas conventional 2D
image saliency data sets are often recorded under restrictive laboratory
conditions, the free head motion of 360◦-recordings means this scenario
is much closer to real-life viewing behaviour.

* Corresponding author.
E-mail address: mikhail.startsev@tum.de (M. Startsev).

Just as regular image or video saliency, this scenario does not
yet introduce the social aspects of attention, such as avoiding either
prolonged eye contact with strangers [8] or even looking at people when
they are close-by in a genuine social context altogether [9], or seeking
out familiar faces in crowds. But the prioritisation of observers’ attention
has a different component to it, making it two levels deep: first the head
rotation, and then the eye gaze direction.

Compared to fully-unconstrained complex recording scenarios, static
360◦-stimuli allow us to analyse common objects and regions of interest
for multiple observers without having to match the contents of the
foveated patches with one another, or deal with depth perception or
occlusions. This eases the transition from numerous readily available 2D
image saliency predictors, which have much larger data sets that could
be used for training and evaluation. This work explores the possibilities
and needed image transformations to perform this very transition.

In this work we have, therefore, proposed a range of transformations
of the input equirectangular images, which we call ‘‘interpretations’’,
that allow us to predict 360◦ saliency using any existing 2D attention
model. In our experiments, we used three publicly available saliency
prediction algorithms that model different levels of the visual processing
hierarchy. Our approach demonstrated excellent results on a data set of
omnidirectional images without any training or parameter adjustments.

In contrast to the work in [10,11], for example, which presents a
CNN-based approach, where the network is fitted for the available set of
the equirectangular images, and several strategies to prevent overfitting
had to be applied as a consequence of the data set size, our approach
does not require any additional training and can be used with any
conventional pre-trained saliency model. In [12], an approach involving

https://doi.org/10.1016/j.image.2018.03.013
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(a) (b)

Fig. 1. Equirectangular image example 1(a) and its ground-truth saliency map 1(b).

(a) (b)

Fig. 2. Distortion visualization for equirectangular projection 2(b) and the set of corresponding cube map faces 2(a). Note that the red bottom and top stripes in
2(b) each represent just one disk on top and bottom faces of 2(a).

an idea similar to what we here call ‘‘interpretations’’ was applied for
predicting salient viewports as a post-processing step for conventional
saliency predictors’ outputs, but it does not get rid of all the issues
that arise for the eye gaze-based saliency prediction, originally only
addressing the centre bias.

2. Proposed approach

Dealing with omnidirectional images is a challenge on its own, as
the ‘‘perfect’’ way to store and process them is yet to be developed: So
far, there is always a trade-off between efficiency, visual interpretability,
and convenience of use. The data set that we use in this work (described
in Section 3.1) employs equirectangular projection, so we first examine
its artefacts, and then describe how they can be mitigated for a better
saliency prediction via proposed interpretations.

2.1. Motivation

Aside from the obvious unnatural visual stretching of the objects at
the top and the bottom of any equirectangular image (for an example,
see Fig. 1(a)), there are several issues that are particularly prominent
when such an image is being processed automatically, for instance
by attention predictors (for an example of an empirical ground truth
saliency map, see Fig. 1(b)). In [13], a similar data set to the one
used here was introduced, and the authors reported some preliminary
findings regarding the equirectangular image peculiarities in the context
of subjective and objective quality evaluation. In [12], the authors in-
vestigated the prediction of head rotation-based saliency and examined
the artefacts occurring in such ‘‘head saliency maps’’.

A regular saliency predictor expects its input to be a 2D image, and
does not rely on any additional information about it. Below we describe
several reasons why directly applying a saliency prediction models to
equirectangular images might not be wise. First, the already mentioned
image structure distortions might result in irregular feature responses.
A significant part of an image produced through equirectangular pro-
jection suffers little to moderate shape distortion, but the parts close to
its top and bottom are noticeably malformed, enough for a human not

to recognise a shape right away (see an example image pair for a set
of simplest shapes in Fig. 2; also, can you recognise a human head in
Fig. 1?).

The second issue is related to the well-known centre bias effect,
observed at least as early as 1935 [14], which is very noticeable
in regular image saliency data sets (see Fig. 3(a)), and is extremely
persistent across different data sets, tasks, image feature distributions, or
forced first fixation location for static images [15], as well as for videos
of dynamic natural scenes [16,17].

This effect is very different for 360◦ images (see Fig. 3(b)). Instead,
we see attention bias along the vertical axis, with the central, the top-
most, and the bottom-most locations of the equirectangular images all
accumulating significant portions of the overall saliency distribution.
This was also observed in [18], as well as in [12], in that case even more
prominently so for the head-only saliency. The term ‘‘equator bias’’ was
used in the latter to describe this effect, and a general way to overcome
the centre bias tendency in regular saliency predictions was introduced.

The two issues described above lead in turn to a third problem.
The border artefacts that could be neglected for regular image saliency
prediction, in part due to the centre bias (on average, only a small
part of saliency is allocated close to the image borders), can be ne-
glected no more. From the theoretical standpoint, there were no actual
borders in the stimulus, the viewport never contained a discontinuous
image during recording. Now from the practical point of view, directly
applying a regular saliency model to an equirectangular stimulus will
most likely generate some border effects, both vertical (i.e. neglecting
horizontal continuity; the object right behind the starting point of the
observation is basically cut in half and is not seen as a set of closely
located pixels by the saliency predictor) and horizontal (which means
that the most prominent parts of the average ground truth empirical
saliency map in Fig. 3(b) are likely to fall into the border effect zone).
Example saliency maps produced by the three saliency predictors we
use in our experiments (see Section 3) can be found in Fig. 4.

2.2. Outline

We propose to deal with these issues with what we call ‘‘interpreta-
tions’’ of the equirectangular image format. In our approach (see Fig. 5
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(a) (b)

Fig. 3. ‘‘Centre bias’’ visualized as empirical mean saliency maps for the MIT1003 data set [19] of regular 2D images 3(a) and for the ‘‘Salient360!’’ [18] training
set 3(b).

(a) (b) (c)

Fig. 4. Example saliency map predictions directly on an equirectangular image with the three existing predictor models we use in Section 3.3: GBVS [20] 4(a),
eDN [21] 4(b) and SAM-ResNet [22] 4(c). Here we take the image in Fig. 1(a) as input. The ground-truth saliency map in Fig. 1(b) has its highest values along the
bottom border, and the vertical borders neither on the left nor on the right side affect the continuity of the central ‘‘saliency strip’’. Both these observations do not
hold for either of the directly predicted saliency maps.

Fig. 5. The sequence of steps in our approach (top row). Example data samples from each stage are presented towards the bottom of the figure.

for the overview of its stages), we first create a set of intermediary
images derived from the input image (this derivation is what we mean by
‘‘interpretation’’). For these, respective saliency maps are predicted and
subsequently re-projected into the equirectangular space corresponding
to the input image, before they are combined into a final saliency map.

In order to combine several overlapping saliency maps into one, the
final map is produced by taking the greatest predicted value in each
individual pixel (i.e. applying the pixel-wise maximum operation). If we
were to use the mean of predicted values, the pixels that were affected by
border-related effects at least in one of the intermediary saliency maps
would be at great disadvantage, compared to pixels that were never
close to saliency map borders. Since we cannot guarantee the uniformity
of the individual, interpretation-, model-, and content-dependent border
effects across all pixels of the final saliency map, a reasonable solution
would be to ignore the saliency values that were affected by being
too close to borders. Using pixel-wise maximum achieves just that,
discarding the very low intermediate saliency scores along the borders,

provided that the respective values have been re-computed in any of the
other saliency maps with a higher estimated saliency score.

The resulting saliency map is always smoothed with a Gaussian filter
(𝜎 proportional to the image size, 𝜎 = 16 𝚙𝚡 for input image height of
1024 𝚙𝚡), and normalized to contain only non-negative values that sum
to 1 over the entire map.

The following sections provide a detailed description of the several
interpretation techniques we have explored.

2.3. Continuity-aware interpretation

To address the artefacts occurring at the left and the right borders of
the input equirectangular images, we can use the knowledge that those
edges can be seamlessly stitched. We therefore compute the saliency
maps both for the original image without any preprocessing, and an
image that has its left and right halves swapped (this is equivalent
to looking in the direction opposite to the starting gaze direction,
i.e. backwards). The reverse transformation is applied to the respective
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Fig. 6. Saliency map computation via continuity-aware interpretation. The
final saliency map is obtained with a pixel-wise maximum operation on the
two saliency maps on the right, which counteracts the artefacts seen on each
of the two maps as dark to light blue vertical stripes either at the left and right
borders, or near the dotted cut line.

saliency map (the ‘‘original projection’’ step in Fig. 5). The idea is
graphically explained in Fig. 6.

This is similar to the Fused Saliency Map post-processing method
in [12], where the equirectangular input was translated horizontally
several times before saliency maps were predicted, and weighted av-
eraging was applied to the prediction results in order to cancel out the
centre bias effect of individual predictions. Here we need fewer rotations
(2 instead of 4), since we attempted to switch off the centre bias for our
models, where possible, so we mostly needed the rotation just to deal
with the border artefacts of our saliency predictors, i.e. help preserve
local scene context for feature computation near the borders.

2.4. Cube map-based interpretations

The continuity-aware interpretation only deals with left and right
input image borders. Projection distortions, as well as the top and
bottom border artefacts are not addressed. To remove the distortions
of the equirectangular projection, we can convert the input 360-image
to six faces of the cube centred around the camera position. The reverse
projection brings the saliency maps from the cube map domain back
into the equirectangular one.

Another benefit of this interpretation can be inferred from Fig. 2. For
example, since the entire bottom stripe of the equirectangular image is
produced from just one disk in the centre of the bottom cube map face,
the saliency values in this stripe will be extracted from the middle of
the respective cube face, which is unaffected by any potential border
effects. As a result, the equirectangular saliency map produced with this
interpretation in mind will be devoid of the top and the bottom border
artefacts (for an example, see Fig. 7(a)).

The use of cube maps for omnidirectional scenes is not novel:
In [23], several sphere-to-planar projections were examined in search
for alternatives to the equirectangular format, in order to reduce bitrate
or increase video quality at a given bitrate. Even though the cube map

was not the best one overall, it was still an improvement over the
equirectangular projection, while being natively supported by modern
software. The authors of [24] also looked at a set of projections in
the context of using the geometric structure of the projection layouts
to select the ‘‘Quality Emphasized Regions’’ (QOR) for full-quality
rendering. The quality of the respective spherical video presented to
the observer was evaluated at a fixed bit-rate. The cube map layout
yielded the best results in this study. Using saliency maps to prioritize
different viewports was also suggested there (for selecting the QORs,
adapted to scene content). This generally indicates that the cube map
‘‘interpretation’’ is not foreign to the field of 360◦-scenes.

We explored multiple ways of leveraging this particular interpreta-
tion of the scene. First, we directly generated the saliency maps for all
the cube faces and assembled them into an equirectangular saliency map
(an example can be seen in Fig. 7(a)). This approach, however, loses the
global context and introduces as many as 24 smaller border artefacts (4
for each face) that greatly deteriorated the quality of the final saliency
prediction.

To compensate for these borders, one can generate a larger set of
intermediary images and respective saliency maps by extracting the
faces at several different rotations of the underlying cubic representa-
tion. This way we shift the borders between the stitched faces around
the equirectangular saliency map (after the re-projection step), thus
lessening the effect of these borders on the final map (see Fig. 7(b)).
We take five different cube orientations: its original orientation, rotated
by 45◦ relative to each axis separately, and rotated by 45◦ relative to
the first two axes at the same time.

We can observe that the resulting saliency map does not exhibit
any artefacts around its borders (e.g. the lower border accumulates
significant amount of saliency, just as in the ground truth saliency map
for this input in Fig. 1(b)). The context of the full scene is, however, still
lost for the saliency predictors, since they only process one individual
cube face at a time.

To preserve all the original image information and context in one
image, one can assemble a cube map cutout, which will look similar to
that in Fig. 2(a), with the faces replaced with pixels from the ‘‘main’’
cutout – the highlighted part – of Fig. 8(b). This does not fully get
rid of the border artefacts, since five out of the six faces have at least
two problematic edges either at the image border or due to bordering
with an empty part of the cutout (only face ‘‘C’’ in Fig. 8(a) would
have no discontinuities at its borders). A filled cutout, which is an image
consisting of a grid of 3 × 4 cube faces stitched together (see the shaded
areas of Fig. 8(a)), just like the central rectangle around the main cutout
in Fig. 8(b), resolves only part of the border issues (four of the six main
cutout faces are still at the image border). To further minimize these,
we introduce an extended cutout, which augments the ‘‘main’’ and the
‘‘filled’’ cutouts in such a way that all of the six original cube map faces
share all their borders with another face (see the additional ‘‘E’’ and ‘‘B’’
faces to the left and right of the centre row, and the inverted ‘‘E’’-faces
at top and bottom in Fig. 8(a)).

We then compute the saliency map for the whole extended cutout
at once (see Fig. 9(a)), extract the maps for all the cube faces of the

(a) (b)

Fig. 7. An example of an equirectangular saliency map assembled from the individual saliency maps for the cube faces 7(a) and a combination of five such maps,
produced at different cube rotation angles 7(b).
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(a) (b)

Fig. 8. Extended cutout construction scheme 8(a) and an image example 8(b). The ‘‘main’’, not-extended cutout is highlighted in light green on 8(a) and in red
on 8(b). A filled cutout consists of all the shaded cube faces in 8(a).

(a) (b)

Fig. 9. An example extended cutout raw saliency map 9(a) and its respective equirectangular projection 9(b).

(a) (b) (c)

Fig. 10. For the input image in Fig. 1(a): saliency maps for its top and bottom cube faces 10(a), their combined projection onto the partial equirectangular map
10(b), and the final saliency map 10(c), achieved by taking a pixel-wise maximum of the maps in Figs. 6 and 10(b), plus blurring. Note that value ranges for Figs. 6
and 10(b) are different.

‘‘main’’ cutout and project them back onto the equirectangular map (see
Fig. 9(b)).

This approach preserves the global context of the scene, even though
it over-represents parts of the panorama (in particular, the top and
the bottom faces are repeated more than the rest; if these contain
highly salient objects, this can have noticeable effects on the final
prediction). Distortions are cancelled out, but the stitching in Fig. 8(b)
is not perfect (e.g. ‘‘A’’ in Fig. 8(a) wrongly borders on rotated versions
of itself in order to fulfil continuity constraints for ‘‘B’’ and ‘‘D’’). This
interpretation also has the scene continuity information built into the
cutout, since the objects at the borders of the main cutout are now
augmented with the scene parts from the neighbouring cube faces, thus
preserving local context. These trade-offs and limitations can be partly
visually observed in the saliency maps produced with this interpretation
(see Fig. 9).

We experimentally concluded that the extended cutout was the best
cube map-based interpretation we considered (see Section 4.2).

2.5. Combined interpretation

With this interpretation, we try to combine the benefits of both
ideas above: the continuity-aware interpretation makes use of all the
available contextual information in an equirectangular image without
any artificial over-representation, while the cube map interpretation
helps undo the distortions introduced by the projection, as well as does
away with border effects at the top and the bottom of the input image.

The idea here is to now use the cube map interpretation for the two
most distorted cube faces only: the top and the bottom ones (‘‘A’’ and
‘‘F’’ in Fig. 8(a)). The two resulting saliency maps (see Fig. 10(a)) are
projected onto the partial equirectangular map (see Fig. 10(b)), and then
combined (see Fig. 10(c)) with the full saliency map produced by the
continuity-aware approach (as in Fig. 6). This interpretation was used
to give example visualizations for the pipeline of our approach in Fig. 5,
so it can be consulted for a better overview.

This way, the resulting map (in Fig. 10(c)) has no left or right vertical
border artefacts due to the continuity-awareness, and no horizontal
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Table 1
The overview of the used 2D image saliency models’ performance, as the rank of each respective model in the
MIT300 benchmark [27].

KLDa rank CCa rank NSSa rank AUCa rank Balanced AUC rank

GBVS 9 27 28 22 14
eDN 43 35 39 18 7
SAM-ResNet 59 4 2 5 30

a These metrics were also used in the ‘‘Salient360!’’ Grand Challenge [18,25].

border artefacts due to the top and the bottom cube map faces being
processed separately. The distortions are addressed where it is needed
the most, and the scene context was not disbalanced during prediction.

3. Experimental methods

In this section we outline the experiments we performed and the
evaluation procedures employed in the context of this work.

3.1. Data set

The data sets used in this work were provided by the ‘‘Salient360!’’
Grand Challenge at the IEEE International Conference on Multimedia
& Expo (ICME) 2017 [18,25]. For head–eye saliency (i.e. for each
viewport, the direction of eye gaze was considered; this is a natural
extension of regular 2D saliency for the 360◦-image domain), a training
set of 40 images and corresponding scanpaths and fixation heat maps
were provided. During the eye tracking recordings, the images were
presented for 25 s with identical starting observation direction for all
observers (at least 40 for each image). The stimuli were presented with
an HMD Oculus-DK2 at 75 Hz and with a resolution of 960 × 1080 px per
eye. Gaze data was recorded binocularly with an SMI tracker at 60 Hz.

The test set consisted of 25 spherical images, with their respective
ground truth collected under conditions identical to those of the training
set. Both the test image set and its ground-truth empirical saliency maps
were hidden at the time of submission to the Grand Challenge.

All the 360◦ images and heat maps were represented as flat 2D images
through the equirectangular projection. Scanpath coordinates were also
given relative to this projection. An example image of the data set that
visualizes this projection is shown in Fig. 1, along with its empirical
saliency map.

3.2. Evaluation

For evaluation, the Grand Challenge used four saliency map met-
rics [18,25]: (i) two density-based metrics, which compare the entire
saliency map to the empirical ‘‘ground truth’’ map: Kullback–Leibler
divergence (KLD) and Correlation Coefficient (CC), and (ii) two location-
based metrics, which consider only a set of selected locations on the
saliency map: Normalized Scanpath Saliency (NSS) and Area Under the
Curve (AUC, no class balancing; it technically considers the entire set
of pixels of the saliency map by sampling all the possible locations, but
the thresholds for building the Receiver Operating Characteristic (ROC)
only iterate through the values at fixated locations).

3.3. Saliency predictors

As for this work we focused on already existing pre-trained models
for image saliency prediction, we took three different, well-performing
open-source models from the MIT300 image saliency benchmark
[26,27] (probably the most widespread and established benchmark
for image saliency; the ground truth saliency maps are not publicly
available, and each submitted model is evaluated by the benchmark
organizers, after which the scores with respect to eight popular quality
metrics are published on the website). No additional training was
performed.

Small modifications were applied to all the models (where pos-
sible and necessary) in order to (i) support varying image ratios by
implementing adaptive downscale parameter choice (since the original
images are 1:2, and our input interpretations in Section 2 additionally
produce 1:1, 3:4 and 5:6 images, scaling all of them to one size would
impede accurate saliency prediction); (ii) yield saliency maps without
any post-processing, such as blurring and normalization (which would
otherwise make the saliency values incomparable when combining sev-
eral saliency maps into one); and (iii) store saliency maps to disk using
matrix-based formats instead of images to avoid 8-bit quantization.

Below we describe the three literature models that were used in
this work, in chronological order. Graph-based visual saliency (GBVS)
was introduced in 2006 [20]. This approach uses a set of Gabor filter
responses, local contrast, and luminance maps as features on several
spatial scales. The feature maps are heavily downsampled, after which
sophisticated activation and normalization steps are applied.

Ensemble of deep networks (eDN), introduced in 2014 [21], was
a precursor of the deep learning methods for saliency prediction that
have afterwards become very popular. The model’s architecture can be
represented as a combination of six multilayer structures (one to three
layers) of operations that were inspired by their biological counterparts
that take place in the visual cortex. Both the final combination and
each individual layered structure of the richly-parameterized operations
were obtained through hyper-parameter optimisation. A simple linear
classifier is used to distinguish salient and non-salient image locations.

Saliency Attentive Model (SAM) is a recently (in 2016) introduced
model [22] that extracts image features via a dilated ResNet architec-
ture [28] (in the version used for this work; the framework also includes
an option to use dilated VGG-16 [29] for feature extraction). It then
employs a convolutional Long Short-Term Memory (LSTM) network,
which recurrently attends to different locations of the feature tensor.

As saliency prediction is a multifaceted problem, there is no one
definitive metric for model evaluation, and hence no one best model.
If we use the well-established MIT300 benchmark [26,27] to compare
the three models listed above, each of them comes out on top of the
others according to at least one metric. Table 1 contains an overview of
the models’ performance in the form of their ranks (out of 74 models)
with respect to several metrics [30] (the ranking snapshot was taken
on the date of the Grand Challenge submission deadline, May 2017). It
can be seen that all the models have their strengths and weaknesses, but
SAM-ResNet is probably the more consistently well-performing one.

To enhance the performance of our saliency prediction, we also
combined the final saliency maps generated by the three models above.
The benefits of combining several saliency predictions into one have
been thoroughly discussed in [31], as well as earlier in [32]. Taking
the mean of the predicted saliency maps falls under the category
of non-learning based approaches described in [31], and was shown
to outperform all of the baseline saliency models, especially when
averaging only over a small set of best performers. The work in [32]
only considered summation (with different weighting schemes) and
multiplication approaches, concluding that the simple mean performed
best. We therefore computed the average of the final saliency maps
produced with all three base saliency predictors (after the normalization
step).
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Table 2
Training-set performance of the cube map interpretation variations (with eDN as saliency predictor)

Metric Filled cutout Cube faces Cube faces (5 rotations) Extended cutout

KLD 0.76 ≺ 0.74 ≺ 0.71 ≺ 0.69
CC 0.28 ≺ 0.33 ≈ 0.33 ≺ 0.35
NSS 0.30 ≺ 0.31 ≺ 0.40 ≺ 0.50
AUC 0.59 ≈ 0.59 ≺ 0.61 ≺ 0.64

The symbol ≺ indicates inferiority of the number on the left to the number on the right (i.e. greater for KLD and
lower for the rest of the metrics).

Table 3
Saliency maps evaluation results, depending on the equirectangular image in-
terpretation and the saliency predictor model. Best results for each metric are
boldified.

Metric Predictor Continuity-aware Extended cutout Combined

KLD GBVS 0.67 0.76 0.66
eDN 0.67 0.64 0.62
SAM-ResNet 0.55 0.74 0.48
average 0.50 0.58 0.45

CC GBVS 0.35 0.29 0.35
eDN 0.41 0.40 0.43
SAM-ResNet 0.54 0.31 0.56
average 0.55 0.41 0.58

NSS GBVS 0.73 0.46 0.64
eDN 0.75 0.63 0.67
SAM-ResNet 0.84 0.56 0.70
average 0.92 0.69 0.81

AUC GBVS 0.71 0.64 0.70
eDN 0.72 0.68 0.69
SAM-ResNet 0.75 0.67 0.71
average 0.75 0.69 0.73

3.4. Experiments

In our work we tested various combinations of interpretations (see
Section 2) and saliency predictors (see Section 3.3). Most of the prelimi-
nary experiments were performed with eDN, whereas the final selection
of interpretations was tested with all the models. We selected a subset
of interesting combinations for submission to the Grand Challenge.

4. Results and discussion

First, we here discuss the limitations and related preliminary ex-
periment of each interpretation group. Section 4.4 summarises the
performance figures of all evaluated saliency predictors.

4.1. Continuity-aware interpretation

This is the simplest approach of the ones we have used, which essen-
tially changes the location of the vertical border in the equirectangular
image by rotating the spherical image representation by 180◦ in the
horizontal plane. Since we do not know whether any objects happen
to be located at the stitching line, neither before nor after the rotation,
we simply combine the saliency maps produced for the original image
and the shifted one.

Another approach here could be finding such a stitching point on
the image, where no object would be bisected, and only predicting
the saliency map for one equirectangular image. It is, however, not
guaranteed that such a point always exists, and the resulting saliency
map would still have noticeable visually unnatural artefacts near the
stitching line.

A similar approach could be additionally applied to eliminate ver-
tical borders, but this requires more complex spherical image ma-
nipulations (e.g. converting to a cube map, rotating by 90◦ in the
respective plane, and projecting back onto the equirectangular surface,
with corresponding reverse transformations taking place after saliency
prediction), whereas this interpretation was intended as the simplest
way of incorporating additional information into the prediction process.

4.2. Cube map interpretations

As described in Section 2.4, there are multiple ways to use a cube
map to produce equirectangular saliency maps. We evaluated (on the
training set) four of them to find the best one: individual cube faces
(as in Fig. 7(a)), individual cube faces at five different rotations of the
spherical image (same as in Fig. 7(b)), filled cutout (the shaded areas
in Fig. 8(a)), and extended cutout (all cube faces in Fig. 8(a)). Their
performance figures are summarised in Table 2. The trend is the same for
all the four metrics: a filled cutout is inferior to using the individual cube
map faces, which is in turn improved by using several rotated versions
of the cube map, and the extended cutout outperforms the rest (marked
in bold in the table).

4.3. Combined interpretation

For this interpretation, we have additionally experimented with the
way of computing the saliency maps for the top and the bottom cube
faces: either separately, or as part of an extended cutout. The former
approach proved to outperform the latter with big margins (on the
training set, with eDN used for saliency prediction): 0.65 vs. 0.57 AUC,
0.36 vs. 0.29 CC, 0.68 vs. 0.75 KLD, 0.53 vs. 0.24 NSS, respectively.

One adjustment we had to make for this approach was concerning
one of the saliency predictors (namely SAM-ResNet), which in this set-up
tended to over-represent the top and bottom cube planes (see Fig. 11(b)),
probably because of the lacking context. We therefore attempted to
quantitatively examine this disbalance. To this end, we split each of
the resulting saliency maps in two parts: part A — the middle third
(horizontally) — and part B — the rest of the map. We then computed
the ratio of the maximal saliency value in part B to that in part A for
each individual saliency map.

It turned out that the ground truth maps and both the eDN and the
GBVS saliency maps (produced via the combined interpretation) all had
the mean of these ratios around 1 (0.73 for the ground truth to 1.16
for GBVS). For the SAM-ResNet saliency maps it was, however, 4.51.
We therefore divided all the values in the partial (for the top and the
bottom cube map faces, see Fig. 10(b)) equirectangular SAM saliency
map by this coefficient prior to combining it with the continuity-aware
saliency maps (see Fig. 11(c)). The improvement of this rescaling is
again quantitatively noticeable: 0.68 vs. 0.62 AUC, 0.53 vs. 0.4 CC,
0.51 vs. 0.7 KLD, 0.48 vs. 0.1 NSS, with and without this modification,
respectively.

4.4. All results

For a more complete evaluation of our approach, we can consider
using each of the selected 360◦-image interpretations (i.e. continuity-
aware, extended cutout and combined) with each of the employed saliency
predictors (i.e. GBVS, eDN, SAM-ResNet, and their average) in turn. The
full table for all results of our predictor–interpretation pairs can be found
in Table 3.

Additionally, to any of the resulting saliency maps we can optionally
add the mean ground truth saliency map (of the training set) with a
certain weight. We empirically determined 0.2 to be a good choice. This
way, we explicitly take into account the ‘‘vertical centre bias’’ that was
observed in Fig. 3(b). This gives us a total of 24 models.
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(a) (b) (c)

Fig. 11. The input image 11(a), the respective SAM-ResNet saliency maps produced with the combined interpretation without 11(b) and with 11(c) the rescaling
factor for the partial saliency map.

(a) (b)

Fig. 12. Performance summary of all the models, split by the saliency predictor: correlation coefficient 12(a) and normalized scanpath saliency 12(b). A similar
trend is observed for the other metrics as well.

(a) (b)

Fig. 13. Performance summary of all the models, split by the input image interpretation: Kullback–Leibler divergence (13(a), similar results for correlation coefficient)
and area under the curve (13(b), similar results for normalized scanpath saliency).

To better analyse the evaluation results, we can differently group
them: If we group the entire set of models by the saliency predictor, we
can see that the ‘‘newer’’ model’s performance is consistently superior
to that of an ‘‘older’’ one, while the average model outperforms all of
the individual models (see Fig. 12).

If we now group by the interpretation method, the conclusions
become less clear-cut. For both density-based metrics, the combined

interpretation performs best, followed by the continuity-aware interpre-
tation (see Fig. 13(a)). For both location-based metrics, the continuity-
aware interpretation is now the one in the lead, closely followed by the
combined interpretation (see Fig. 13(b)).

For the average saliency predictor, however, it turned out that some
of these differences were not statistically significant, and so the combined
interpretation with the average saliency predictor was ranked 1st for all the
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Table 4
The ‘‘Salient360!’’ Grand Challenge official unbiased results for the Head–Eye Saliency track, top-5 snippet and our extended cutout interpretation-based model. The
rank (within each metric) was only increased if the difference between the respective sets of performance figures was statistically significant. 16 models were submitted
to the challenge in total, with the worst average rank of 14.25.

KLD (rank) CC (rank) NSS (rank) AUC (rank) mean rank

Combined interp. + avg. saliency model + centre bias 0.42 (1) 0.62 (1) 0.81 (1) 0.72 (1) 1
Combined interp. + avg. saliency model 0.45 (1) 0.58 (1) 0.81 (1) 0.73 (1) 1

Zhu et al. [33] 0.48 (1) 0.53 (6) 0.92 (1) 0.74 (1) 2.25
Ling et al. [34] 0.51 (5) 0.54 (6) 0.94 (1) 0.74 (1) 3.25

Continuity-aware interp. + avg. saliency model 0.50 (5) 0.55 (6) 0.92 (1) 0.75 (1) 3.25
. . . . . . . . . . . . . . . . . .
Extended cutout interp. + avg. saliency model 0.58 (5) 0.41 (12) 0.69 (8) 0.69 (6) 7.75

metrics in the ‘‘Salient360!’’ Grand Challenge [25], for some metrics tied
in the first place with several other approaches, including the continuity-
aware interpretation with the average saliency predictor (see Table 4).

It is also interesting to note that the worst (on average) saliency pre-
dictor – GBVS – in combination with the best (on average) interpretation
– combined – performs better than the best (on average) predictor –
SAM-ResNet – with the worst (on average) interpretation – the extended
cutout.

All the qualitative results were reproduced both on the training
and the test set. We see that the optimal choice of the interpretation
can depend on the metric choice, but the combined interpretation
generally fares rather well, delivering the best-ranked results (out of the
models submitted before the test set was released) for all metrics at the
‘‘Salient360!’’ Grand Challenge in the ‘‘Head–Eye saliency prediction’’
track [18,25]. It also yields the best (in terms of absolute values) average
scores for KLD and CC metrics across all submitted models.

Naturally, saliency prediction can benefit from specialized models,
which were trained with the information about the equirectangular
format of the images and the 360◦ nature of the scenes in mind, so
training a dedicated model for this kind of stimuli is still worthwhile.
It seems, however, that using pretrained state-of-the-art image saliency
predictors to tackle the 360◦-scene saliency prediction problem could
suffice, at least as a first approximation, for some applications. For
a minimal-effort model, one can therefore focus on an appropriate
stimulus interpretation rather than on developing and training a whole
new prediction model. Combining input interpretations and dedicated
training procedure may yield even better results.

The source code of our approach is publicly available at http://www.
michaeldorr.de/salient360.

5. Conclusion

In this work we have explored the applicability of regular image
saliency models for the panoramic image case with a full 360◦ field
of view. To this end we proposed several ways of ‘‘interpreting’’ the
input equirectangular image, which would deal with the projection-
related issues. We used three well-performing regular 2D image saliency
predictors (and their combination via averaging). Our best-performing
input interpretation is a combination of the continuity-aware and the
cube map approach, and requires computing four saliency maps: one for
the frontal equirectangular view, one for the ‘‘rear view’’ (i.e. looking
backwards from the starting viewing position), and one saliency map
for each of the top and the bottom cube map faces. Combined with
the average saliency predictor, this took the first prize at the Head–Eye
Saliency Prediction track of the ‘‘Salient360!’’ Grand Challenge.
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Supersaliency: Predicting Smooth
Pursuit-based Attention

As a foundation of this work, we have noted that while saliency prediction for videos
is often referred to as “fixation prediction”, smooth pursuit (SP) is responsible for a
non-negligible part of dynamic viewing behaviour [47, 53, 4∗, 9†]. Fixation detectors used
in the literature to create the ground truth are often supplied with the eye tracker [71, 82]
or never described in the respective papers [70, 94]. Given the relative rarity of SP
detectors, and the fact that SP is almost never mentioned in the saliency data set or
model articles (and never, as of yet, detected by the eye trackers’ software), it is clear
that the fields of video saliency and eye movement classification have developed mostly
in parallel, with the most recent advancements in the latter field not affecting the former.

To amend this lack of synchronisation, we used our recent eye movement classification
framework [4∗] in order to systematically differentiate between gaze events in the eye
tracking recordings, which form the ground truth sets for saliency prediction. Having
obtained the labels of this algorithm, we proposed to separately consider two formulations
of the video attention prediction problem: fixation prediction and SP prediction. We
refer to these as saliency and supersaliency prediction, the latter name owing to the much
greater selectivity of SP, as well as its other properties that we described in this paper.

We tested two different saliency model architectures (proof-of-concept and end-to-end
deep networks), training these to predict either saliency or supersaliency ground truth
maps. For both architectures, training to predict SP yielded saliency predictors with
better generalisation properties: When tested directly without fine-tuning, the scores
of supersaliency-trained models on two independent unseen data sets were consistently
higher than the corresponding scores for the saliency-trained version of the same model.
This demonstrates the potential of principled eye movement class separation for saliency
modelling, and, in particular, the benefits of accounting for SP in the analysis.

My personal contributions consist of (i) conceiving the hypothesis and experimental
design for this work; (ii) re-processing the saliency data sets to separate fixations and SPs
in their ground truth; (iii) developing and testing the predictive models; (iv) motivating
and performing adjustments in the saliency evaluation pipeline that is traditionally used
in the literature in order to account for the sparsity of SP; (v) writing the manuscript.
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ABSTRACT Predicting attention is a popular topic at the intersection of human and computer vision.
However, even though most of the available video saliency data sets and models claim to target human
observers’ fixations, they fail to differentiate them from smooth pursuits (SPs), a major eye movement type
that is unique to perception of dynamic scenes. In this work, we strive for a more meaningful prediction and
conceptual understanding of saliency in general. Because of the higher attentional selectivity of smooth
pursuit compared to fixations modelled in traditional saliency research, we refer to the problem of SP
prediction as ‘‘supersaliency’’. To make this distinction explicit, we (i) use algorithmic and manual annota-
tions of SPs and fixations for two well-established video saliency data sets, (ii) train Slicing Convolutional
Neural Networks for saliency prediction on either fixation- or SP-salient locations, and (iii) evaluate our
and 26 publicly available dynamic saliency models on three data sets against traditional saliency and
supersaliency ground truth. Overall, our models outperform the state of the art in both the new supersaliency
and the traditional saliency problem settings, for which literature models are optimised. Importantly, on two
independent data sets, our supersaliency model shows greater generalisation ability than its counterpart
saliency model and outperforms all other models, even for fixation prediction. Furthermore, we tested an
end-to-end video saliency model, which also showed systematic improvements when smooth pursuit was
predicted either exclusively or together with fixations, with the best performance achieved when the model
was trained for the supersaliency problem. This demonstrates the practical benefits and the potential of
principled training data selection based on eye movement analysis.

INDEX TERMS Eye movements, saliency, smooth pursuit prediction.

I. INTRODUCTION
Saliency prediction has a wide variety of applications, be it
in computer vision, robotics, or art [1], ranging from image
and video compression [2], [3] to such high-level tasks as
video summarisation [4], scene recognition [5], or human-
robot interaction [6]. Its underlying idea is that in order to
efficiently use the limited neural bandwidth, humans sequen-
tially sample informative parts of the visual input with the
high-resolution centre of the retina, the fovea. The prediction
of gaze should thus be related to the classification of infor-
mative and uninformative video regions. However, humans
use two different processes to foveate visual content. During
fixations, the eyes remain mostly stationary; during smooth

The associate editor coordinating the review of this manuscript and
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pursuit (SP), in contrast, a moving target is tracked by the
eyes to maintain foveation. Notably, SP is impossible without
such a target, and it needs to be actively initiated and main-
tained. For models of attention, this is a critical distinction:
Because the eyes are stationary (‘‘fixating’’) in their default
state, ‘‘spurious’’ fixations may be detected even if a subject
is not attentively looking at the input; SP, however, always
co-occurs with attention. In addition, visual sensitivity seems
to be improved during SP (e.g. higher chromatic contrast
sensitivity [7] and enhanced visual motion prediction [8]).

The ultimate goal of all eye movements and perception is
to facilitate action in the real world. In a seminal paper [11],
Land showed that gaze strategies, and SP in particular, play a
critical role during many everyday activities. Similar results
have been found for driving scenarios, where attention is
crucial. Studies show that tangential [12] and target [13]
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FIGURE 1. Empirically observed neurological differences between
fixation and smooth pursuit: Large brain areas (highlighted) show
significantly increased activation levels during pursuits compared to
fixations (detected by [9]) in the studyforrest data set [10]; none
demonstrate the inverse effects. A set of representative slices along
orthogonal planes for a model brain is presented in this figure (slice
numbers labelled on the figure) for the visualisation of the differences
between fixation and pursuit conditions. Significance was determined via
analysing the ‘‘standard score’’, or ‘‘Z-score’’ values.

locations during curve driving are ‘‘fixated’’ with what actu-
ally consists, in part, of SP. In natural driving, roadside objects
are often followed with pure SP, without head motion [14].
Following objects that are moving relative to the car with
gaze (by turning the head, via an SP eye movement, or a
combination of both) is a clearer sign of attentive viewing,
compared to the objects of interest crossing the line of sight.

In practice, it is difficult to segment the – often noisy –
eye tracking signal into fixations and SPs, and thus many
researchers combine all intervals where the eyes are keeping
track of a point or an object into ‘‘fixations’’ [15]. Nev-
ertheless, it is well established that e.g. individuals with
schizophrenia show altered SP behaviour [16], [17], and
recently new methods for gaze-controlled user interfaces
based on SP have been presented [18]–[20]. This demon-
strates some of the practical benefits of carefully separating
the eye movements that make up the human gaze behaviour.

FIGURE 1 and FIGURE 2 show two analyses corroborat-
ing the importance of SP for models of attention in the context
of a more tractable task of video watching. In FIGURE 1,
data from the publicly available studyforrest data set1 [10],
which combine functional brain imaging and eye tracking
during prolonged movie watching, were comparatively eval-
uated for SP vs. fixation episodes in a preliminary study. The
highlighted voxels show that large brain areas are more active
during SP compared to fixations; notably, no brain areas were
more active during fixation than during SP. In other words,
SP is representative of greater neurological engagement. The
sparser selectivity of SP is demonstrated in FIGURE 2, where
the relative share of SP and fixation gaze samples is plotted
for 50 randomly selected clips from Hollywood2 [22]. Even

1These data were obtained from the OpenfMRI database. Its accession
number is ds000113d.

FIGURE 2. Behavioural differences between fixation and smooth pursuit:
Saliency metrics typically evaluate against fixation onsets, which,
as detected by a traditional approach [21] (green line), are roughly
equally frequent across videos. However, applying a more principled
approach to separating smooth pursuit from fixations [9] reveals great
variation in the number of fixation (red bars) and pursuit (blue bars)
samples (remaining samples are saccades, as well as blinks and other
unreliably tracked samples).

though the number of traditionally detected fixations (but not
their duration) is roughly the same for all clips, the amount of
SP ranges from almost zero to half of the viewing time.

Taken together, these observations let us hypothesise that
SP is used to selectively foveate video regions that demand
greater cognitive resources, i.e. contain more information.
In practice, automatic pursuit classification as applied to the
studyforrest and Hollywood2 data sets may not be perfect,
but the results in FIGURE 1 corroborate that even with
potentially noisy detections, SP corresponds to higher brain
activity, and thus to more meaningful saliency.

Therefore, explicitly modelling SP in a saliency pipeline
should benefit the classification of informative video regions.
Beyond a better understanding of attention, there might
also be direct applications of SP prediction itself, e.g. in
semi-autonomous driving (verification of attentive supervi-
sion), telemedicine (monitoring of SP impairment as a vul-
nerability marker for schizotypal personality disorder [23],
e.g. during TV or movie watching [17]), or gaze-based inter-
action (analysis of potential distractors in user interfaces
for AR/VR).

Despite the fundamental differences between SP and
fixations, however, available saliency data sets ignore this
distinction, and the computational models naturally follow
suit [24], [25]. In fact, not one of the video saliency models
we came across mentions the tracking of objects performed
via SP, and the only data set we found to purposefully attempt
separating SP from fixations is GazeCom [21], which simply
discarded likely pursuits in order to achieve cleaner fixation
detection.

We argue that processing the eye tracking recordings in
a systematic and comprehensively described way in order
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FIGURE 3. Overview of the proposed pipeline.

to extract moments of attention, be that fixations or smooth
pursuits, is a vital first step in any pipeline of modelling
human attention. This would allow for saliency to be treated
not as a purely computational challenge of predicting some
heat map frames for a video input, but as a task that could
help us better understand human perception and attention.

In this manuscript, we extend our previous work [26]
and make the following contributions: First, we introduce
the problem of smooth pursuit prediction – supersaliency,
so named due to the properties separating it from tradi-
tional, fixation-based saliency (e.g. see FIGURE 1 and FIG-
URE 2). In this problem setting, the saliency map values
correspond to how likely a certain input video location is
to induce SP. We then provide automatically labelled [9],
large-scale training and test sets for this problem (building on
the Hollywood2 data set [22]), as well as a manually labelled,
smaller-scale test set of more complex scenes in order to
test the generalisability of saliency models (building on the
GazeCom data set [21], [27]). For both, we provide SP-only
and fixation-only ground truth saliencymaps.We also discuss
the necessary adjustments to the evaluation of supersaliency
(and video saliency in general) due to its high inter-video

variance, introducing weighted averaging of individual clip
scores.

Furthermore, we propose a deep dynamic saliency model
for (super)saliency prediction, which is based on the slic-
ing convolutional neural network (S-CNN) architecture [28].
After training our proposed model for both saliency and
supersaliency prediction on the same overall data set,
we demonstrate that our models excel at their respective
problems in the test subset of the large-scale data set, com-
pared to over two dozen literature models. Finally, we show
that training for predicting smooth pursuit reduces data set
bias: The supersaliency-trained model better generalises to
two independent sets (without any additional training) and
performs best even for traditional saliency prediction. We
demonstrate the same pattern with an additional, end-to-end
video saliency model we introduce in this work.

The overview of the (super)saliency modelling pipeline we
are proposing in this work can be seen in Figure 3.

II. RELATED WORK
Predicting saliency for images has been a very active research
field. A widely accepted benchmark is represented by the
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MIT300 data set [29], [30], which is currently dominated
by deep learning solutions. Saliency prediction for videos,
however, lacks an established benchmark. It generally is a
challenging problem, because, in addition to larger compu-
tational cost, objects of interest in a dynamic scene may be
displayed only for a limited time and in different positions
and contexts, so attention prioritisation is more crucial.

Taking this prioritisation principle to the extreme, works on
salient object detection typically attempt to identify an object
of interest in each frame (usually the same throughout a pro-
cessed video clip). Saliency prediction, on the contrary, is not
attempting to identify a single attention centre in the video,
but aims at predicting the overall distribution of attention in
the video as a heat map sequence. The salient object detection
task is, therefore, much closer to segmentation at its core,
with the added aspect of automatically selecting the dominant
object in the scene. Despite the difference in problem for-
mulations, both video saliency prediction and salient object
detection essentially belong to the class of video-to-video
transformation tasks, so some methodology can be shared
between the two. We therefore include several works on both
problems in our literature overview, when the methods are
either directly or potentially applicable to the problem posed
in this study.

Somewhat bridging these two saliency-related areas, [31]
enabled attention shifting in the domain of salient object
detection. That work directly tied the annotated objects of
interest to human gaze directions, and therefore allowed for
the objects to become or stop being salient as the scene
unfolds.

A. SALIENCY PREDICTION
A variety of algorithms has been introduced to deal with
human attention prediction [1]. Video saliency approaches
broadly fall into two groups: Published algorithms mostly
operate either in the original pixel domain [2], [24], [32],
[33] and its derivatives (such as optic flow [34] or other
motion representations [35]), or in the compression domain
[25], [36], [37]. Transferring expert knowledge from images
to videos in terms of saliency prediction is consistent with
pixel-domain approaches, and the mounting evidence that
motion attracts our eyes contributed to the development of
compression-domain algorithms.

Traditionally, from the standpoint of perception, saliency
models are also separated into two categories based on
the nature of the features and information they employ.
Bottom-up models focus their attention (and assume human
observers do the same) on low-level features such as lumi-
nance, contrast, or edges. For videos, local motion can also be
added to the list, together with the video encoding informa-
tion. Hence, all the currently available compression-domain
saliency predictors are effectively bottom-up.

Top-down models, on the contrary, use high-level, seman-
tic information, such as concepts of objects, faces, etc. These
are notoriously hard to formalise. One way to do so would
be to detect certain objects in the video scenes, as was done

in [22], where whole human figures, faces, and cars were
detected. Another way would be to rely on developments in
deep learning and the field’s endeavour to implicitly learn
important semantic concepts from data. In [38], either RGB
space or contrast features are augmented with residual motion
information to account for the dynamic aspect of the scenes
(i.e. motion is processed before the CNN stage in a hand-
crafted fashion). The work in [39] uses a 3D CNN to extract
features, plus an LSTM network to expand the temporal
span of the analysis. Other researchers use further additional
modules, such as the attention mechanism [40] or object-to-
motion sub-network [41]. In [42], a modified convolutional
LSTM (using multi-scale dilations) is employed to accurately
detect salient objects in video sequences. In a similar vein
of research, [43] also modified the typical convolutional
LSTM structure for video-to-video prediction by developing
a parallel multi-dimensional extension of this structure. This
modification allows for a much more complete utilisation of
the relevant past information for each pixel. While our work
does not focus on the architecture design, it would doubtlessly
be interesting to explore the effects of systematically differ-
entiating between fixations and smooth pursuits in the context
of saliency predictionwith awider spectrum of computational
models (our work tested two different approaches).

Whereas using a convolutional neural network in itself
does not guarantee the top-down nature of the resulting
model, its multilayer structure fits the idea of hierarchical
computation of low-, mid-, and high-level features. A work
by Krizhevsky et al. [44] pointed out that while the first con-
volutional layers learned fairly simplistic kernels that target
frequency, orientation, and colour of the input signal, the
activations in the last layer of the network corresponded to a
feature space, in which conceptually similar images are close,
regardless of the distance in the low-level representation
space. Another study [45] concluded that, just like certain
neural populations of a primate brain, deep networks trained
for object classification create such internal representation
spaces, where images of objects in the same category get
similar responses, and images of differing categories get
dissimilar ones. Other properties of the networks discussed in
that work indicate potential insights into the visual processing
system that can be gained from them.

B. VIDEO SALIENCY DATA SETS
A broad overview of existing data sets is given in [46]. Here,
we dive into the aspect particularly relevant to this study – the
identification of ‘‘salient’’ locations of the videos, i.e. how did
the authors deal with dynamic eye movements. For the most
part, this question is addressed inconsistently. The majority
of the data sets either make no explicit mention of separating
smooth pursuit from fixations (ASCMN [47], SFU [48], two
Hollywood2-based sets [22], [49], DHF1K [40]) or rely on
the event detection built into the eye tracker, which in turn
does not differentiate SP from fixations (TUD [50], USC
CRCNS [51], CITIUS [24], LEDOV [41]). IRCCyN/IVC
(Video 1) [52] does not mention any eye movement types at
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all, whereas IRCCyN/IVC (Video 2) [53] only names SP in
passing.

There are two notable exceptions from this logic. First,
DIEM [54], which comprises video clips from a rich spec-
trum of sources, including amateur footage, TV programs,
and movie trailers, so one would expect a hugely varying
fixation–pursuit balance. The respective paper touches on
the properties of SP that separate it from fixations, but in
the end only distinguishes between blinks, saccades, and
non-saccadic eyemovements, referring to the latter as generic
foveations, which combine fixations and SPs.

GazeCom [21], on the other hand, explicitly acknowledges
the difficulty of distinguishing between fixations and smooth
pursuits in dynamic scenes. The used fixation detection algo-
rithm employed a dual criterion based on gaze speed and dis-
persion. However, the recently published manually annotated
ground truth data [27] show that these coarse thresholds are
insufficient to parse out SP episodes.

Part of this work’s contribution is, therefore, to provide a
large-scale supersaliency (SP) and saliency (fixations) data
set based on Hollywood2, as well as establishing a pipeline
for (super)saliency evaluation.

III. SALIENCY AND SUPERSALIENCY
In this section, we describe the methodology behind the
(super)saliency prediction in this work. Our approach relies
on two main components: A large-scale data set of human
video free-viewing, where the raw eye tracking data are avail-
able, and a computational model. Such data set would allow
us to analyse the gaze recordings to parse out the episodes of
either fixations or smooth pursuits. The detected samples of
the two eye movements can be then directly used to train the
proposed model.

A. DATA SETS AND THEIR ANALYSIS
GazeCom [21], which we used because it is the only

saliency data set that also provides full manual annotation
of eye movement events [27], [55], contains eye tracking
data for 54 subjects, with 18 dynamic natural scenes used
as stimuli, around 20 seconds each. At over 4.5 total hours
of viewing time, this is the largest manually annotated eye
tracking data set that accounts for SP. A high number of
observers and the hand-labelled eye movement type informa-
tion make this a suitable benchmark set. FIGURE 4a displays
an example scene, together with its empirical saliency maps
for both fixations and smooth pursuits, and the same frames
in saliency maps predicted by different models.

Hollywood2 [22], selected for its diversity and the sheer
amount of eye tracking recordings, contains about 5.5 hours
of video (1707 clips, split into training and test sets), viewed
by 16 subjects. The movies have all types of camera move-
ment, including translation and zoom, as well as scene
cuts. While the full training subset was used, we randomly
selected 50 clips from the test subset (same as in FIGURE 2)
for testing all the models. Example frames and respective
(super)saliency maps can be seen in FIGURE 4b. Since

manual labelling is impractical due to the data set size (over
70 h of total viewing time), we used our publicly available
toolbox [27] implementing a state-of-the-art SP and fixation
detection algorithm [9], [55]. A large-scale evaluation of this
toolbox was performed in [56], where it demonstrated excel-
lent performance when compared to the GazeCom ground
truth data, and generalised well to an independent data set.

CITIUS [24] was recently used for a large-scale evaluation
of the state of the art in connection with a novel model
(AWS-D). It contains both real-life and synthetic video
sequences, split into subcategories of static and moving cam-
era. For our evaluation, we used the real-life part, CITIUS-R
(22 clips totalling ca. 7 minutes, 45 observers). Only fixation
onset and duration data are provided by the authors, so SP
analysis was impossible.

By definition, fixations are almost stationary, so that a
single point (usually, mean gaze position placed at temporal
onset) sufficiently describes an entire fixation. In line with
the literature, we evaluated the prediction of such fixation
onsets in the ‘‘onset’’ condition (detected by a standard algo-
rithm [21] for GazeCom and Hollywood2, provided with the
data set for CITIUS-R). Notably, the reference models are
likely optimised for this problem setting.

To describe the trajectory of an SP episode, however, all its
gaze samples need to be taken into account. Accordingly, both
the GazeCom ground truth and the toolbox [27] we used for
Hollywood2 provide sample-level annotations. These annota-
tions were used for evaluating the prediction of pursuit-based
attention in the ‘‘SP’’ condition, i.e. model predictions were
tested against the set of individual pursuit gaze samples. The
‘‘FIX’’ condition utilised individual fixation samples as well
(similar to [54]), and is, in principle, not very different from
‘‘onset’’. By directly mirroring the implementation of the
‘‘SP’’ condition, however, it allowed for a fairer comparison
between the two.

B. SLICING CNN SALIENCY MODEL
We adopted the slicing convolutional neural network
(S-CNN) architecture [28]. To achieve saliency prediction,
we extended patch-based image analysis (e.g. [57] for
image saliency, and [38] for individual video frames) to
subvolume-based video processing. This way, we are still
able to capture motion patterns, while maintaining a rel-
atively straightforward binary classification-based architec-
ture – (super)salient vs. non-salient subvolumes. Initially,
we did not use more complex end-to-end approaches in order
to keep the proof-of-concept implementation of fixation- and
pursuit-based training as straightforward as possible, without
intermediate steps of having to convert locations of cor-
responding samples into continuous saliency maps. These
steps would introduce additional data parametrisation and,
potentially, biases into the pipeline. However, we additionally
validate the idea of supersaliency prediction with an end-to-
end model in Section IV.

S-CNN [28] takes an alternative approach to extract-
ing motion information from a video sequence. Instead of
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FIGURE 4. Frame examples from GazeCom (a) and Hollywood2 (b) videos (first row), with their respective empirical ground truth fixation-based saliency
(second row) and smooth pursuit-based supersaliency (fourth row) ground truth maps. Algorithmic predictions (all identically histogram-equalised, for
fair visual comparison) occupy the rest of the rows. The choice of saliency models for visual comparison was based on best average performance on the
respective data set.

handcrafted motion descriptors [38], 3D convolutions [58],
or recurrent structures [39], S-CNN achieves temporal inte-
gration by rotating the feature tensors after initial individual
frame-based feature extraction. This way, time (frame index)
is one of the axes of the subsequent convolutions. The archi-
tecture is based on VGG-16 [59], with the addition of dimen-
sion swapping operations and temporal pooling. The whole
network would consist of three branches, in each of which the
performed rotation is different, and the ensuing convolutions
are performed in the planes xy (equivalent to no rotation), xt ,
or yt (branches are named respectively). Due to the size of
the complete model, only one branch could be trained at a
time. We decided to use the xt-branch for our experiments
(see FIGURE 5), since it yielded the best individual results
in [28], and the horizontal axis seems to be more important
for human vision [60] and SP in particular [61]. We also
tested the other branches separately and the late fusion of their
results, but the xt branch was the best individual performer,

FIGURE 5. The xt branch of the S-CNN architecture for binary salient vs.
non-salient video subvolume classification. Temporal integration is
performed after the swap-xt operation via the convolutions operating in
the xt plane and temporal pooling.

and the fusion did not produce sufficient performance gains
to justify the tripled computation time. Therefore, we do not
report these results in this paper. Similarly, our preliminary
tests with 3D-CNN architectures, similar to results in [28],
led us to opt for the better-performing S-CNNs instead.

As input to our model, we used RGB video subvol-
umes 128px × 128px × 15frames (px denoting pixels)
around the pixel to be classified. Similar subvolumes were
used in [62] for unsupervised feature learning. Unlike [38],
we did not extract motion information explicitly, but relied
on the network architecture entirely without any further input
manipulations in order to achieve a simpler data processing
pipeline.

To go from binary classification to generating a continuous
(super)saliency map, we took the probability for the positive
class at the soft-max layer of the network (for each respective
surrounding subvolume of each video pixel). To reduce com-
putation time, we only did this for every 10th pixel along both
spatial axes. We then upscaled the resulting low-resolution
map to the desired dimensions. For GazeCom and Holly-
wood2, we generated saliencymaps at 640×360px, whereas
for CITIUS-R, the original resolution of 320×240 was used.

C. TRAINING DETAILS
Out of 823 training videos in Hollywood2, 90% (741 clips)
were used for training and 10% for validation. Before
extracting the subvolumes centred around positive or nega-
tive locations of our videos, these were rescaled to 640 ×
360 pixels size andmirror-padded to reduce boundary effects.
In total, the 823 clips contain 4,520,813 unique SP and
10,448,307 unique fixated locations. To assess the influ-
ence of the eye movement type in the training data, we fit-
ted the same model twice for two different purposes. First,
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we trained the S-CNN SPmodel for predicting supersaliency,
so the positive locations were those where SP had occurred.
Analogously, for the S-CNN FIX model predicting purely
fixation-based (i.e. excluding SP) saliency, the input video
subvolumes where observers had fixated were labelled as
positive.

For both S-CNN SP and S-CNN FIX, the training set con-
sisted of 100,000 subvolumes, half of which were positives
(as described above, randomly sampled from the respective
eyemovement locations in the training videos), half negatives
(randomly selected in a uniform fashion to match the number
of positive samples per video, excluding the subvolumes
already in the positive set). For validation, 10,000 subvol-
umes were used, same sampling procedure as for the training
set.

Convolutional layers were initialised with pre-trained
VGG-16 weights, fully-connected layers were initialised ran-
domly. We used a batch size of 5, and trained both models
for 50,000 iterations with stochastic gradient descent (with
momentum of 0.9, learning rate starting at 10−4 and decreas-
ing 10-fold after every 20,000 iterations), at which point both
loss and accuracy levelled out.

D. ADAPTIVE CENTRE BIAS
Since our model is inherently spatial bias-free, as it deals
purely with individual subvolumes of the input video,
we applied an adaptive solution to each frame – the gravity
centre bias approach of Wu et al. [34], which emphasises not
the centre of the frame, but the centre of mass in the saliency
distribution. At this location, a single unit pixel is placed on
the bias map, which is then blurred with a Gaussian filter
(σ equivalent to three degrees of the visual field was chosen)
and normalised to contain values ranging from 0 to the highest
saliency value of the currently processed frame. Each frame
of the video saliency map was then linearly mixed with its
respective bias map (with a weight of 0.4 for the bias, and
0.6 for the original frame, as in [34]).

IV. VALIDATION WITH A MORE COMPLEX MODEL
As discussed in Section II-A, more sophisticated architec-
tures have been developed over time to better handle both
the spatial and the temporal aspects of deep video process-
ing. While the slicing CNN model we used in Section III-B
allowed us to avoid any additional steps when going from
concept to implementation, end-to-end architectures provide
a more modern and efficient tool for saliency prediction.

In order to investigate whether the benefits of supersaliency
hold for an end-to-end model, we implemented an architec-
ture combining two recent works: (i) the fully-convolutional
deep DenseNet from [63] for efficient information extraction
from each 2D frame, and (ii) the introduction of several
convolutional LSTMs into an encoder-decoder network [64]
for temporal integration. Thus, we replaced the encoder part
of the network in [64] with a DenseNet structure as in [63],
keeping the decoder simple. The dense blocks were modified
to process the video frames in a time-distributed fashion

FIGURE 6. The outline of the end-to-end architecture we used for
additional testing of our pipeline. In this scheme, ‘‘c’’ stands for the
concatenation operation, ‘‘+’’ – for addition. In our experiments, ground
truth saliency is provided as related to solely fixations, solely smooth
pursuits, or both eye movements together.

(i.e. identical operations applied to all frames). The model
is sketched in FIGURE 6. A detailed model description can
be found in the supplementary material.

A. TRAINING DETAILS
The Hollywood2 training set was randomly subdivided in the
following way: 770 clips (ca. 200,000 frames) were used
for training, 53 clips (ca. 15,000 frames) – for validation.
The ground truth saliency map sequences were generated
in the same way as for evaluation (see Section V-B). For
this experiment, we trained the model to predict the saliency
maps produced either for fixation or smooth pursuit samples
only, or for the combination of both. The first two conditions
correspond to purely fixation-based (traditional) saliency and
purely pursuit-based supersaliency; the latter is very simi-
lar to only removing the saccades, and aggregating all the
remaining gaze samples, as e.g. in [54].

We used Kullback-Leibler divergence as loss on the
three-dimensional tensors of saliency (time × x × y),
and trained the model for 10 epochs (500 iterations in
each) with Adam optimiser [65] with default parameters
(cf. Keras 2.2.4). The final model was selected based on the
validation loss. Due to GPU memory constraints, we lim-
ited the input to this relatively large model to sequences
of 12 frames (at 128 × 72px) and used a batch size of 4.
During training, the model produced sequences of 12 cor-
responding saliency frames for each input sequence. During
testing, no video subdivision was performed.

Since this model operated on relatively low-resolution
clips, we did not expect its saliency prediction to achieve
benchmark-beating performance, but separately evaluated
it and used its results to support our argument about the
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potential of the supersaliency problem setting, and the impor-
tance of the smooth pursuit eye movement for saliency in
general.

V. EVALUATION
A. REFERENCE MODELS
We compared our approach to a score of publicly avail-
able dynamic saliency models. For compression domain
models, we followed the pipeline and provided source code
of Khatoonabadi et al. [25], generating the saliency maps for
all videos at 288 pixels in height, and proportionally scaled
width for PMES [66], MAM [67], PIM-ZEN [68], PIM-MCS
[69], MCSDM [70], MSM-SM [71], PNSP-CS [72], and a
range of OBDL-models [25], as well as pixel-domain GBVS
[32], [73] and STSD [74]. Instead of the static AWS [75]
that was used in [25], we evaluated AWS-D [24], its recent
extension to dynamic stimuli (for GazeCom, after downscal-
ing to 640 × 360px due to memory constraints, other data
sets – at their original resolution).We also computed the three
invariants (H, S, and K) of the structure tensor [76] at fixed
temporal (second) and spatial (third) scales. For Hollywood2,
the approach of Mathe and Sminchisescu [77], combining
static (low-, mid-, and high-level) and motion features, was
evaluated as well.

Deep models for saliency prediction on videos are much
scarcer than such models for static images. As of yet,
the problem of finding reference models in this domain
is further confounded by the absence of publicly avail-
able code or data of some approaches, e.g. [39], and the
popularity of salient object detection approaches and data
sets, e.g. [78]–[80]. Included in our set of reference models
are two recent approaches: DeepVS (OMCNN-2CLSTM)
[41] – code available via [81] – and ACLNet [40] – code
available via [82]. We ran both with default parameters on
all three data sets.

B. BASELINES
The set of baselines was inspired by the works of
Judd et al. [29], [30]: Chance, Permutation, Centre, One
Human, and Infinite Humans (as a limit). The latter two
cannot be computed unless gaze data for each individual
observer are available (i.e. not possible for CITIUS). All the
random baselines were repeated five times per video of each
data set. The ground truth saliency maps were obtained via
superimposing spatio-temporal Gaussians at every attended
location of all the considered observers. The two spatial
sigmaswere set to one degree of visual angle (commonly used
in the literature as the approximate fovea size, e.g. [29], [83];
[77] uses 1.5◦). The temporal sigma was set to a frame count
equivalent of 1/3 of a second (so that the effect would be
mostly contained within one second’s distance).

C. METRICS
For a thorough evaluation, we took a broad spectrum of
metrics (all computed the same way for fixation samples

and onsets – saliency – and smooth pursuit samples – super-
saliency – for the data sets described in Section III-A),
mostly based on [83]: AUC-Judd, AUC-Borji, shuffled
AUC (sAUC), normalised scanpath saliency (NSS), his-
togram similarity (SIM), correlation coefficient (CC), and
Kullback-Leibler divergence (KLD), as well as Information
Gain (IG) [84]. We additionally computed balanced accuracy
(same positive and negative location sets as for AUC-Borji;
accuracy at the equal error rate point).

In our implementation of sAUC and IG, in order to obtain
salient locations of other clips, we first rescaled their tem-
poral axes to fit the duration of the evaluated clip, and then
sampled not just spatial (like e.g. [24]), but also temporal
coordinates. This preserves the temporal structure of the
stimulus-independent bias: E.g. the first fixations after stim-
ulus display tend to have heavier centre bias than subsequent
ones in both static images [85] and videos [86].

For GazeCom and Hollywood2, we fixed all saliency maps
to 640 × 360px resolution during evaluation, either for
memory constraints, or for symmetric evaluation in case of
differently shaped videos. For CITIUS, the native resolution
of 320× 240px was maintained.

1) METRIC AVERAGING
Due to its selectivity (i.e. observers can decide not to pursue
anything), SP is sparse and highly unbalanced between videos
(see FIGURE 2). Simply averaging the performance scores
across all videos of the data set could introduce artefacts for
many metrics. For AUC-based metrics, for example, there
exists a ‘‘perfect’’ aggregated score, which could be com-
puted by combining the data over all the videos before com-
puting the metric, i.e. merging all positives and all negatives
beforehand. This is, however, not always possible, as many
models use per-video or even per-frame normalisation as the
final step, either to allow for easier visualisation, or to use the
full spectrum of the 8-bit integer range, if the result is stored
as a video. To demonstrate this averaging problem, we ran-
domly sampled non-trivial subsets of video clips (100 times
for all the possible subset sizes) of all three utilised test sets,
and computed per-clip AUC-Borji and sAUC scores for our
S-CNN SP model (without any normalisation of its outputs).
We combined these via either regular or weighted (according
to the number of SP- or fixation-salient locations samples,
depending on the problem setting) averaging. This combina-
tion is then compared to the perfect score, as described above.
We found that averaging per-video AUC scores is a signif-
icantly poorer approximation of the ideal score than their
weighted mean (p � 0.01, for (super)saliency prediction on
GazeCom and Hollywood2, see Table 1).

We will, therefore, present the weighted averaging results
for supersaliency prediction. Since fixations suffer from this
problem to a lesser extent, this adjustment is not essential
there. However, in the data sets with great variation of fixation
samples’ share (e.g. Hollywood2: 30% to 78% in our 50-clip
subset), we would generally recommend using weighting for
fixation prediction evaluation as well. Conventional mean
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TABLE 1. Means and standard deviations of the absolute error of ‘‘perfect AUC’’ estimation with regular and weighted averaging, as well as one-sided
two-sample Kolmogorov-Smirnov test p-values (with the null hypothesis that regular averaging, as a way to estimate the perfect AUC score, produces
absolute errors that are smaller than or equal to those of weighted averaging). Except for CITIUS-R, weighted averaging always demonstrates a
statistically significant (p� 0.01) advantage over regular averaging.

results for fixations are, nevertheless, presented for compa-
rability with the literature (weighted results reveal a similar
picture).

2) CROSS-AUC
Another point we raise in our evaluation is directly dis-
tinguishing SP-salient from fixation-salient pixels based on
the saliency maps. To this end, we introduced cross-AUC
(xAUC): The AUC is computed for the positive samples’
set of all pursuit-salient locations, with an equal number
of randomly selected fixation-salient locations for the same
stimulus used as negatives. The baselines’ performance on
this metric will be indicative of how well the targets for these
two eye movements can be separated (in comparison to the
separation of salient and non-salient locations). If a model
scores above 50% on this metric, it on average favours (i.e.
assigns higher saliency scores to) pursuit-salient locations
over fixation-salient ones (since SP is chosen as the pos-
itive class). For the purpose of distinguishing the two eye
movement types, the scores of 70% and 30% are, however,
equivalent: Such scores would reveal that a model favours
either SPs over fixations, or vice versa, respectively, with
the same bias from not displaying any preference whatsoever
(and the corresponding xAUC of 50%).

VI. RESULTS AND DISCUSSION
A. SLICING CNN RESULTS
We tested the outputs of 26 published dynamic saliency mod-
els, including two deep learning-based solutions, as well as
our own S-CNN models – SP and fixation predictors both
with and without the additional post-processing step of grav-
ity centre bias. For brevity and because there is no principled
way of averaging different metrics numerically, we present
the results as average ranks (over the 9 metrics we used –
see Section V-C) in Table 2. Complete tables of all metric
scores for all 7 data types (corresponding to the columns of
Table 2) and 35 baselines and models can be found in the
supplementary material.

Traditional saliency prediction commonly evaluates only
one sample per fixation, as we did in the ‘‘onset’’ condition.
For supersaliency, however, all gaze samples need to be

predicted individually, and for consistency we did the same
for fixations in the ‘‘FIX’’ condition. In principle, this should
give greater weight to longer fixations with more samples,
but our results show that differences between evaluating in
the ‘‘FIX’’ and ‘‘onset’’ conditions are small in practice
(cf. respective columns in Table 2).

On average, our pursuit prediction model, combined with
adaptive centre bias (S-CNN SP + Gravity CB), performs
best, almost always making it to the first or the second
position (and always in the top-4). Remarkably, this holds
true both for the prediction of smooth pursuits and the pre-
diction of fixations, despite training exclusively on SP-salient
locations as positive examples. The success of our pursuit
prediction approach in predicting fixations can be potentially
attributed to humans pursuing and fixating similar targets, but
the relative selectivity of SP allows the model to focus on the
particularly interesting objects in the scene. Even without
the gravity centre bias, both our saliency S-CNN FIX and
supersaliency S-CNN SPmodels outperform the models from
the literature on the whole, with their average rank at least two
positions better than that of the next best model (ACLNet).

The fact that all our S-CNNmodels consistently outperform
the traditional ‘‘shallow’’ reference models for both saliency
and supersaliency prediction on all data sets demonstrates the
potential of deep video saliency models. This is in line with
the findings in e.g. [39], [87], where a deep architecture has
shown superior fixation prediction performance, compared to
non-CNN models. On Hollywood2, due to the very centre
biased nature of the gaze locations [21], for example, only
the deep learning models (S-CNN, ACLNet, and DeepVS)
rank higher than the Centre Baseline or achieve non-negative
information gain scores (cf. Table 2 and the tables in the
supplementary material).

Only in the fixation prediction task on theHollywood2 data
set, the results of our best model are inferior to the two
deep reference approaches (and only to those) – DeepVS and
ACLNet. On both other data sets (GazeCom and CITIUS-R),
as well as for supersaliency prediction on Hollywood2, our
model is outperforming all reference algorithms. The two
evaluated deep literature approaches are particularly weak on
the GazeCom data set, and especially in the task of predicting
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TABLE 2. Evaluation results, presented as the mean of rank values for all the metrics we compute (except for xAUC). ‘‘Onset’’ refers to evaluation against
fixation onsets (‘‘traditional’’ saliency). Where marked with ∗, ranking was computed for the weighted average of the scores. The rows with gray
background correspond to baselines. Top-3 non-baseline results in each category are boldified.

pursuit-based supersaliency. Qualitatively, we observed that
their predicted saliency distributions tend to miss moving
salient targets, unless these are close to the centre of the
frame.

Both with and without the gravity centre bias, our super-
saliency S-CNN SPmodels perform better than our respective
saliency S-CNN FIX models (with the difference in average
rank values of ca. one position). We emphasise that these
models were only trained on the Hollywood2 training set. On
the Hollywood2 test set, maybe not surprisingly, the fixation-
predicting models perform better for fixation-based saliency
and SP-predicting models perform better for pursuit-based
supersaliency. On the two other data sets, however, the mod-
els that were trained for SP prediction generally perform
better than their fixation-trained counterparts, indicating their
greater generalisation capability.

To find informative video regions, we use humans as a
yardstick, since they clearly excel at real-world tasks despite
their limited perceptual throughput. Smooth pursuit is more
selective than fixations and thus likely restricted to particu-
larly interesting objects. The use of such sparser (yet more
densely concentrated [27]), higher-quality training data could

explain the superior generalisability of the supersaliency
models to independent data sets.

For visual comparison, example saliency map sequences
are presented in FIGURE 4a and FIGURE 4b for select
GazeCom and Hollywood2 clips, respectively. It can be seen,
for example, that our S-CNN FIX model differentiates well
between fixation-rich and SP-rich frames in an example Hol-
lywood2 clip.

B. END-TO-END VALIDATION
To additionally highlight the importance of pursuit and
supersaliency in the context of a more state-of-the-
art-like architecture, we trained a model encompass-
ing both DenseNet and convolutional LSTM elements
(see Section IV) in several set-ups: While keeping the
training pipeline the same, we differently generated the
ground truth saliency maps. We examined three conditions:
(i) fixation-only attention, (ii) fixation- and pursuit-based
attention, and (iii) pursuit-only attention. Taking the perfor-
mance in the first condition as a baseline, we plot the absolute
improvements of the saliency metrics in other conditions in
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FIGURE 7. Absolute improvement in the scores of our end-to-end saliency prediction model (see Section IV) due to the type of training data used (see x
axis). FIGURE 7a reports the improvements of fixation-based saliency prediction, while FIGURE 7b depicts the same improvements for pursuit-based
supersaliency prediction. Including pursuit-based attention into training (FIX+SP condition) is beneficial for the vast majority of metrics, compared to
training for predicting purely fixation-based attention (FIX condition). Notably, training the model for the supersaliency problem directly (SP condition)
always benefited our model, when tested for both the traditional saliency (7a) and supersaliency (7b) tasks.

FIGURE 7 (full absolute performance scores can be found in
the supplementary material).

In these plots, the models trained in one of the three
conditions are tested on the task of either fixation prediction
(FIGURE 7a) or smooth pursuit prediction (FIGURE 7b). For
both of the tasks, on GazeCom and Hollywood2 data sets
alike, the values of performance measures are almost always
improved when pursuit samples are added to fixation-only
attention modelling (transition from ‘‘FIX’’ to ‘‘FIX+SP’’
conditions in the figures). Most importantly, performance of
the model is invariably and noticeably improved when only
pursuit samples are used for training. Only AUC-Judd on
the GazeCom data set is just slightly improving between
these conditions, because the metric is not class-balanced
and is saturating at high saliency map resolutions. Evaluation
at a lower resolution of saliency maps yields much more
noticeable performance improvements for AUC-Judd as well
(data not shown).

The results on CITIUS-R are qualitatively and
quantitatively similar, and are not depicted for better fig-
ure readability. This again points to the greater across-data set
generalisation capability of amodel that was trained to predict
supersaliencymaps, compared to an identically trainedmodel
for saliency map prediction.

C. DISTINGUISHING FIXATION AND PURSUIT TARGETS
In the task of separating SP- and fixation-salient locations
(the xAUC metric), most models yield a result above 0.5 on
GazeCom, which means that they still, by chance or by
design, assign higher saliency values to SP locations (unlike
e.g. the centre baseline with xAUC score of 0.44, which
implies that fixations on this data set are more centre biased
than pursuits). Probably due to their emphasis on motion
information, the top of the chart with respect to this metric
is heavily dominated by compression-domain approaches

(top-7 non-baseline models for GazeCom, top-4 for
Hollywood2, cf. tables in the supplementary material). Even
though in the limit (Infinite Humans baseline) this metric’s
weighted average can be confidently above 0.9, the best
model’s (MSM-SM [71]) result is just below 0.74 for Gaze-
Com, and below 0.6 for Hollywood2. This particular aspect
needs more investigation and, possibly, dedicated training:
Notably, the models proposed in this work were not trained to
maximise xAUC, but rather to achieve better general-purpose
saliency prediction, conditioned on one eye movement type
or the other.

D. GENERAL IMPLICATIONS
The work presented here points out a major methodological
concern: While smooth pursuit comprises a significant part
of the viewing behaviour, is has never been systematically
analysed in the context of saliency prediction. This lack of
specialised analysis means that the gaze samples correspond-
ing to the form of attention expressed as smooth pursuit will
be either discarded in the analysis, or labelled inconsistently.

Analysing attention means analysing both fixations and
smooth pursuits, with a caveat: Fixations are not always
intentional and can correspond to inattentive viewing or mind
wandering [88], [89]. Typical works on saliency prediction
only talk about fixations, never accounting for what can be
called their attentiveness. Our work, on the contrary, demon-
strates that using only smooth pursuit gaze samples – i.e.
those when the eye movements reveal attentive viewing by
following a moving target – can help improve on traditional
saliency approaches.

This, however, is not the end of the story: We only consider
pure eye movement information to uncover something about
the observer’s attention. Instead, e.g. pupil size can be used to
infer attention (see e.g. [90] for a review of the works on con-
necting pupil size dynamics to a variety of perception aspects;
[91], [92]), though the analysis might be more complex. If an
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EEG signal is recorded simultaneously with eye tracking
data, this can be analysed to infer periods of attentive viewing
as well [93], [94]. Recent technological advancements have
enabled simultaneous fMRI and eye tracking recording [10],
[95], which could open the next frontier for analysing atten-
tion allocation with the help of brain imaging.

Directly tying together pursuit, saliency, and brain activity,
albeit with synthetic stimuli and single-neuron recordings,
[96] examined neuron spiking in monkeys, comparing the
extent to which different regions in the brain encode visual
saliency (in a low-level sense). Generalising such conclusions
to more naturalistic [97] and realistic visual stimuli would
require a better method to analyse naturally occurring smooth
pursuit, and could further our understanding of what exactly
contemporary saliency models learn.

VII. CONCLUSION
In this paper, we introduced the concept of supersaliency
– smooth pursuit-based attention prediction. We argue that
pursuit exhibits properties that set it apart from fixations in
terms of perception and behavioural consequences, and that
predicting smooth pursuit should thus be studied separately
from fixation prediction. To this end, we provide our pipeline
and the ground truth for saliency and supersaliency problems
for the large-scale Hollywood2, as well as for the man-
ually annotated GazeCom at https://gin.g-node.
org/MikhailStartsev/supersaliency.

To better understand a model’s behaviour on supersaliency
data, we introduced the cross-AUC metric that assesses
an algorithm’s preference for pursuit vs. fixation locations,
thus describing its ability to distinguish between the two.
Whereas the human data showed that there are clear system-
atic differences between the two target types, it remains an
open question how to reliably capture these differences with
video-based saliency models.

Finally, we proposed and evaluated a deep saliency model
with the slicing CNN architecture, which we trained for both
smooth pursuit and fixation-based attention prediction. In
both settings, our model outperformed all 26 tested dynamic
reference models. Importantly, training for supersaliency
yielded better results even for traditional fixation-based
saliency prediction on two additional independent data sets.
The same trend was observed with an additionally intro-
duced deep end-to-end saliency model, further validating our
conclusions that supersaliency demonstrates better general-
isability. These findings demonstrate the potential of smooth
pursuit modelling and prediction.
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[34] E. Kasneci, G. Kasneci, T. C. Kübler, and W. Rosenstiel, “The applicability
of probabilistic methods to the online recognition of fixations and saccades in
dynamic scenes,” in Proceedings of the Symposium on Eye Tracking Research and
Applications, ser. ETRA ’14. New York, NY, USA: ACM, 2014, pp. 323–326.
[Online]. Available: http://doi.acm.org/10.1145/2578153.2578213

[35] G. Bird, C. Press, and D. C. Richardson, “The role of alexithymia in reduced
eye-fixation in autism spectrum conditions,” Journal of Autism and Developmental

119

http://doi.acm.org/10.1145/2876456.2876462
http://doi.acm.org/10.1145/2876456.2876462
http://doi.acm.org/10.1145/3239060.3239084
https://doi.org/10.1145/3317956.3318154
http://doi.acm.org/10.1145/355017.355028
http://doi.acm.org/10.1145/2578153.2578213


References

Disorders, vol. 41, no. 11, pp. 1556–1564, Nov 2011. [Online]. Available:
https://doi.org/10.1007/s10803-011-1183-3

[36] D. Melcher and C. L. Colby, “Trans-saccadic perception,” Trends in
Cognitive Sciences, vol. 12, no. 12, pp. 466–473, 2008. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1364661308002325
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[38] M. Spering, A. C. Schütz, D. I. Braun, and K. R. Gegenfurtner, “Keep your
eyes on the ball: Smooth pursuit eye movements enhance prediction of visual
motion,” Journal of Neurophysiology, vol. 105, no. 4, pp. 1756–1767, 2011. [Online].
Available: http://jn.physiology.org/content/105/4/1756

[39] A. M. Penkar, C. Lutteroth, and G. Weber, “Designing for the eye:
Design parameters for dwell in gaze interaction,” in Proceedings of the
24th Australian Computer-Human Interaction Conference, ser. OzCHI ’12.
New York, NY, USA: ACM, 2012, pp. 479–488. [Online]. Available:
http://doi.acm.org/10.1145/2414536.2414609

[40] R. Engbert and R. Kliegl, “Microsaccades uncover the orientation of covert
attention,” Vision Research, vol. 43, no. 9, pp. 1035–1045, 2003. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0042698903000841

[41] A. Esteves, E. Velloso, A. Bulling, and H. Gellersen, “Orbits: Gaze interaction
for smart watches using smooth pursuit eye movements,” in Proceedings of the
28th Annual ACM Symposium on User Interface Software & Technology, ser.
UIST ’15. New York, NY, USA: ACM, 2015, pp. 457–466. [Online]. Available:
http://doi.acm.org/10.1145/2807442.2807499

[42] S. Schenk, P. Tiefenbacher, G. Rigoll, and M. Dorr, “SPOCK: A smooth
pursuit oculomotor control kit,” in Proceedings of the 2016 CHI Conference
Extended Abstracts on Human Factors in Computing Systems, ser. CHI EA
’16. New York, NY, USA: ACM, 2016, pp. 2681–2687. [Online]. Available:
http://doi.acm.org/10.1145/2851581.2892291

[43] N. Anantrasirichai, I. D. Gilchrist, and D. R. Bull, “Fixation identification for
low-sample-rate mobile eye trackers,” in 2016 IEEE International Conference on
Image Processing (ICIP), Sep. 2016, pp. 3126–3130.

[44] J. Steil, M. X. Huang, and A. Bulling, “Fixation detection for head-mounted
eye tracking based on visual similarity of gaze targets,” in Proceedings of the
2018 ACM Symposium on Eye Tracking Research & Applications, ser. ETRA
’18. New York, NY, USA: ACM, 2018, pp. 23:1–23:9. [Online]. Available:
http://doi.acm.org/10.1145/3204493.3204538

120

https://doi.org/10.1007/s10803-011-1183-3
http://www.sciencedirect.com/science/article/pii/S1364661308002325
http://dx.doi.org/10.1167/11.5.9
http://jn.physiology.org/content/105/4/1756
http://doi.acm.org/10.1145/2414536.2414609
http://www.sciencedirect.com/science/article/pii/S0042698903000841
http://doi.acm.org/10.1145/2807442.2807499
http://doi.acm.org/10.1145/2851581.2892291
http://doi.acm.org/10.1145/3204493.3204538


References

[45] P. Blignaut, “Fixation identification: The optimum threshold for a dispersion
algorithm,” Attention, Perception, & Psychophysics, vol. 71, no. 4, pp. 881–895,
May 2009. [Online]. Available: https://doi.org/10.3758/APP.71.4.881

[46] O. V. Komogortsev, D. V. Gobert, S. Jayarathna, D. H. Koh, and S. M. Gowda,
“Standardization of automated analyses of oculomotor fixation and saccadic behav-
iors,” IEEE Transactions on Biomedical Engineering, vol. 57, no. 11, pp. 2635–2645,
Nov 2010.

[47] R. Andersson, L. Larsson, K. Holmqvist, M. Stridh, and M. Nyström, “One
algorithm to rule them all? An evaluation and discussion of ten eye movement
event-detection algorithms,” Behavior Research Methods, vol. 49, no. 2, pp.
616–637, Apr 2017. [Online]. Available: https://doi.org/10.3758/s13428-016-0738-9

[48] A. Mihali, B. van Opheusden, and W. J. Ma, “Bayesian microsaccade detection,”
Journal of Vision, vol. 17, no. 1, pp. 13:1–13:23, 01 2017. [Online]. Available:
https://doi.org/10.1167/17.1.13

[49] M. Juhola, “Detection of nystagmus eye movements using a recursive digital filter,”
IEEE Transactions on Biomedical Engineering, vol. 35, no. 5, pp. 389–395, May
1988.

[50] J. Otero-Millan, J. L. A. Castro, S. L. Macknik, and S. Martinez-
Conde, “Unsupervised clustering method to detect microsaccades,” Journal
of Vision, vol. 14, no. 2, pp. 18:1–18:17, 02 2014. [Online]. Available:
https://doi.org/10.1167/14.2.18

[51] L. Larsson, M. Nyström, and M. Stridh, “Detection of saccades and postsaccadic
oscillations in the presence of smooth pursuit,” IEEE Transactions on Biomedical
Engineering, vol. 60, no. 9, pp. 2484–2493, Sept 2013.

[52] R. Zemblys, D. C. Niehorster, and K. Holmqvist, “gazeNet: End-to-end eye-
movement event detection with deep neural networks,” Behavior Research Methods,
vol. 51, no. 2, pp. 840–864, Apr 2019.

[53] V. I. Nicholls, G. Jean-Charles, J. Lao, P. de Lissa, R. Caldara, and S. Miellet,
“Developing attentional control in naturalistic dynamic road crossing situations,”
Scientific Reports, vol. 9, no. 1, p. 4176, 2019.

[54] D. J. Berg, S. E. Boehnke, R. A. Marino, D. P. Munoz, and L. Itti, “Free viewing
of dynamic stimuli by humans and monkeys,” Journal of Vision, vol. 9, no. 5, pp.
19:1–19:15, 05 2009.
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