
Compositional abstraction for interconnected systems over Riemannian
manifolds: A dissipativity approach

Asad Ullah Awan, Samuel Coogan, and Majid Zamani

Abstract— In this work, we derive sufficient conditions under
which compositional abstractions of interconnected systems
evolving on Riemannian manifolds can be constructed using
the interconnection topology and joint differential dissipativity-
type properties of subsystems and their abstractions. This
allows for a much broader variety of systems than the ones
considered in the existing works defined over Euclidean spaces.
In the proposed framework, the abstraction, itself a control
system (possibly with a lower dimension), can be used as a
substitute of the original system in the controller design process.
We provide an example to illustrate the effectiveness of the
proposed differential dissipativity-type compositional reasoning
for interconnected control systems.

I. INTRODUCTION

Control and analysis of large-scale interconnected systems
has recently attracted significant attention because they ap-
pear in many modern applications such as transportation sys-
tems, power networks, and air traffic control. For those large-
scale interconnected systems, controller design to achieve
some complex specifications in a reliable and cost effective
way is a challenging task. One direction which has been
explored to overcome this challenge is to use a simpler
(e.g. lower dimension) (in)finite approximation (referred to
as abstraction) of the given system as a replacement in
the controller design process. This allows for a design of
a controller for the abstraction, which can be refined to the
one for the original complex system. The error between the
outputs of the original system and its abstraction can be
quantified a priori.

Many large-scale complex systems can be regarded as
interconnected systems consisting of smaller components.
Rather than treating the interconnected system in a mono-
lithic manner, an approach which severely restricts the capa-
bility of existing techniques to deal with many subsystems,
one can employ a “divide and conquer” strategy wherein
an abstraction of the original network can be provided by
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constructing abstractions of the subsystems and their inter-
connections. This is referred to as a compositional approach
for constructing abstractions. Recently, there have been sev-
eral results on the compositional construction of (in)finite
abstractions of deterministic control systems including [1],
[2], [3], and of a class of stochastic hybrid systems [4].
These results use a small-gain type condition to enable
the compositional construction of abstractions. However, as
shown in [5], this type of condition is a function of the size of
the network and can be violated as the number of subsystems
grows.

Recently in [6], a compositional framework for the con-
struction of infinite abstractions of networks of control sys-
tems has been proposed using dissipativity theory. In this re-
sult a notion of storage function is proposed which describes
joint dissipativity-type properties of control systems and their
abstractions. This notion is used to derive compositional
conditions under which a network of abstractions approx-
imate a network of concrete subsystems. Those conditions
can be independent of the number of the subsystems under
some properties on the interconnection topologies and joint
dissipativity properties of subsystems and their abstractions.
This approach was extended to a class of stochastic hybrid
systems in [7].

All the aformentioned results in the context of (in)finite
abstractions consider systems evolving over the Euclidean
spaces. The state-space of many systems constitute Rieman-
nian manifolds [8], and consequently their analysis requires
techniques from differential geometry [9]. In this work, for
the first time, we propose techniques for compositional con-
struction of infinite abstractions for interconnected control
systems evolving over smooth Riemannian manifolds. We
introduce a notion of so-called differential storage functions,
adopted from the notion of differential storage functions
introduced in the context of differential dissipativity [10],
describing joint differential dissipativity properties of control
subsystems and their abstractions. Given a network of control
subsystems and the differential storage functions between
them and their abstractions, we derive sufficient conditions
based on the interconnection topology, guaranteeing that
a network of abstractions quantitatively approximates the
original network of concrete subsystems.

II. CONTROL SYSTEMS

A. Notation
The sets of non-negative integer and real numbers are

denoted by N and R, respectively. Those symbols are sub-
scripted to restrict them in the usual way, e.g. R>0 denotes
the positive real numbers. The symbol Rn×m denotes the



vector space of real matrices with n rows and m columns.
The symbols ~1n,~0n, In, 0n×m denote the vector with all
its elements to be one, the zero vector, identity, and zero
matrices in Rn, Rn,Rn×n, and Rn×m, respectively. For
a, b ∈ R with a ≤ b, the closed interval in R is denoted
by [a, b]. For a, b ∈ N and a ≤ b, we use [a; b] to
denote the corresponding interval in N. Given N ∈ N≥1,
vectors xi ∈ Rni , ni ∈ N≥1 and i ∈ [1;N ], we use
x = [x1; . . . ;xN ] to denote the concatenated vector in Rn
with n =

∑N
i=1 ni. Given a vector x ∈ Rn, we denote by

‖x‖ the Euclidean norm of x. Given matrices M1, . . . ,Mn,
the notation diag(M1, . . . ,Mn) represents a block diagonal
matrix with diagonal matrix entries M1, . . . ,Mn. Given a
function f : R≥0 → Rn, the (essential) supremum of f is
denoted by ‖f‖∞ := (ess)sup{‖f(t)‖, t ≥ 0}. A continuous
function γ : R≥0 → R≥0, is said to belong to class K if it
is strictly increasing and γ(0) = 0; γ is said to belong to
K∞ if γ ∈ K and γ(r) → ∞ as r → ∞. A continuous
function β : R≥0 × R≥0 → R≥0 is said to belong to class
KL if, for each fixed t, the map β(r, t) belongs to class
K with respect to r, and for each fixed non zero r, the
map β(r, t) is decreasing with respect to t and β(r, t) → 0
as t → ∞. An (n-dimensional) manifold Mn is a pair
(Mn,A+) where Mn is a set and A+ is a maximal atlas
into Rn, such that the topology induced by A+ is Hausdorff
and second countable. We denote the tangent space of Mn

at x ∈ Mn by TxMn, and the tangent bundle of Mn by
TMn =

⋃
x∈Mn

{x} × TxMn. A curve on the manifold
is a mapping γ : I ⊂ R → Mn. A distance (or metric)
d : Mn ×Mn → R≥0 on a manifold Mn is a continuous
positive function that satisfies d(x, y) = 0 if and only if x =
y for each x, y ∈ Mn, and d(x, z) ≤ d(x, y) + d(y, z) for
each x, y, z ∈ Mn. A (pseudo) Riemannian metric [11] on
a smooth manifold Mn is a smoothly varying inner product
on the tangent bundle TMn of manifold Mn. Given Mn,
and a matrix valued map G :Mn → Rn×n such that G(x)
is a positive (semi) definite matrix for each x ∈ Mn, the
(pseudo) Riemannian metric corresponding to the (pseudo)
Riemannian structure G is given by δxTG(x)δy for each x ∈
Mn, δx ∈ TxMn and δy ∈ TxMn. Given two points x, y ∈
Mn, a smooth curve γ : [0, 1] →Mn such that γ(0) = x,
and γ(1) = y, and a (pseudo) Riemannian structure G
defined on Mn, we define the (pseudo) Riemannian energy
functional as EG(γ) =

∫ 1

0
∂γ
∂s

T
(s)G(γ(s))∂γ∂s (s)ds. For two

points z1, z2 ∈ Mn, Γ(z1, z2) denotes the set of piecewise
continuous curves connecting z1 and z2: Γ(z1, z2) = {γ :
[0, 1] →Mn|γ is piecewise continuous , γ(0) = z1, γ(1) =
z2}. Given two points x, y ∈ Mn, a Riemannian structure

G defined on Mn, arg min
γ∈Γ(x,y)

∫ 1

0

√
∂γ
∂s

T
(s)G(γ(s))∂γ∂s (s)ds is

called a geodesic curve between x and y with respect to G.
The n-dimensional manifold Sn is defined by Sn = {x ∈
Rn+1 : ‖x‖ = 1}.

B. Control Systems

Now, we define the class of control systems investigated
in this paper.

Definition 2.1: The class of control sys-

tems studied in this paper is a tuple Σ =
(Mn,Rm,Rp,U ,W, f,Rq1 ,Rq2 , h1, h2), where
• Mn is an n-dimensional state manifold containing the

origin, while Rm,Rp,Rq1 , and Rq2 are the external
input, internal input, external output, and internal out-
put (Euclidean) spaces of dimension m, p, q1, and q2

respectively;
• U andW are subsets of sets of all measurable functions

of time taking values in Rm and Rp, respectively;
• f : Mn × Rm × Rp → Mn is the continuously

differentiable state evolution map. We assume that
f(0, 0, 0) = 0;

• h1 : Mn → Rq1 is the continuously differentiable
external output map;

• h2 : Mn → Rq2 is the continuously differentiable
internal output map.

A control system Σ satisfies

Σ :


ξ̇(t) = f(ξ(t), υ(t), ω(t)),

ζ1(t) = h1(ξ(t)),

ζ2(t) = h2(ξ(t)),

(II.1)

for any υ ∈ U and any ω ∈ W , where a locally absolutely
continuous curve ξ : R≥0 →Mn is called a state trajectory
of Σ, ζ1 : R≥0 → Rq1 is called an external output trajectory
of Σ, and ζ2 : R≥0 → Rq2 is called an internal output
trajectory of Σ. We also write ξaυω(t) to denote the value
of the state trajectory at time t ∈ R≥0 under the input
trajectories υ and ω from initial condition ξaυω(0) = a,
where a ∈Mn. We denote by ζ1aυω and ζ2aυω the external
and internal output trajectories corresponding to the state
trajectory ξaυω .

Definition 2.2: Given any

Σ = (Mn,Rm,Rp,U ,W, f,Rq1 ,Rq2 , h1, h2),

the variational control system of Σ is given by the tuple

δΣ = (TMn,Rm,Rp,U ,W, δf,Rq1 ,Rq2 , δh1, δh2),

where for every [x; δx] ∈ TMn, u ∈ Rm, δu ∈ Rm, w ∈
Rp, and δw ∈ Rp:

δf(x, δx, u, δu, w, δw) :=
∂f

∂x
(x, u, w)δx+

∂f

∂u
(x, u, w)δu

+
∂f

∂w
(x, u, w)δw

δh1(x, δx) :=
∂h1

∂x
(x)δx

δh2(x, δx) :=
∂h2

∂x
(x)δx.

Remark 2.3: If the control system Σ does not have inter-
nal inputs and outputs, the definition of the control system
in Definition 2.1 reduces to the tuple

Σ = (Mn,Rm,U , f,Rq, h).

Correspondingly, the equation (II.1) describing the state and
output trajectories reduces to:

Σ :

{
ξ̇(t) = f(ξ(t), υ(t)),

ζ(t) = h(ξ(t)).
(II.2)



We use the notion of control system in (II.2) later to refer
to an overall interconnected control system. The variational
control system of Σ can be defined similar to Definition 2.2.

Definition 2.4: Let

Σ = (Mn,Rm,Rp,U ,W, f,Rq1 ,Rq2 , h1, h2),

and

Σ̂ = (Mn̂,Rm̂,Rp̂, Û , Ŵ, f̂ ,Rq1 ,Rq̂2 , ĥ1, ĥ2),

be two control subsystems with the same external output
space dimension. We define the augmented system

Σ̃ = (Mñ,Rm̃,Rp̃, Ũ , W̃, f̃ ,Rq1 ,Rq̃2 , h̃1, h̃2),

where Mñ = Mn × Mn̂, Ũ = U × Û , W̃ = W × Ŵ ,
m̃ = m + m̂, p̃ = p + p̂, q̃2 = q2 + q̂2, and for each x ∈
Mn, x̂ ∈Mn̂, u ∈ Rm, û ∈ Rm̂, w ∈ Rp, and ŵ ∈ Rp̂:

f̃(x̃, ũ, w̃) :=

[
f(x, u, w)

f̂(x̂, û, ŵ)

]
,

h̃1(x̃) := h1(x)− ĥ1(x̂),

h̃2(x̃) :=

[
h2(x)

ĥ2(x̂)

]
,

where x̃ = [x; x̂], ũ = [u; û], and w̃ = [w; ŵ].
Definition 2.5: Let Σ = (Mn,Rm,U , f,Rq, h) and Σ̂ =

(Mn̂,Rm̂, Û , f̂ ,Rq, ĥ) be two control systems without in-
ternal inputs and outputs, and with the same external output
space dimension. We define the augmented system Σ̃ =
(Mñ,Rm̃, Ũ , f̃ ,Rq1 , h̃), where Mñ = Mn × Mn̂, Ũ =
U × Û , m̃ = m + m̂, and for each x ∈ Mn, x̂ ∈ Mn̂,
u ∈ Rm, and û ∈ Rm̂:

f̃(x̃, ũ) :=

[
f(x, u)

f̂(x̂, û)

]
,

h̃(x̃) := h(x)− ĥ(x̂),

where x̃ = [x; x̂], and ũ = [u; û].

III. DIFFERENTIAL STORAGE AND SIMULATION
FUNCTIONS

In this section, we introduce a notion of so-called differen-
tial storage functions, adapted from the notion of differential
storage function introduced in [10] in the context of differ-
ential dissipativity.

Definition 3.1: Consider two control subsystems

Σ = (Mn,Rm,Rp,U ,W, f,Rq1 ,Rq2 , h1, h2)

and

Σ̂ = (Mn̂,Rm̂,Rp̂, Û , Ŵ, f̂ ,Rq1 ,Rq̂2 , ĥ1, ĥ2)

and the corresponding augmented system

Σ̃ = (Mñ,Rm̃,Rp̃, Ũ , W̃, f̃ ,Rq1 ,Rq̃2 , h̃1, h̃2)

as in Definition 2.4. Let

δΣ̃ = (TMñ,Rm̃,Rp̃, Ũ , W̃, δf̃ ,Rq1 ,Rq̃2 , δh̃1, δh̃2)

be the variational control system of Σ̃ as defined in Definition
2.2. Suppose there exists some positive constants α and λ,

a matrix valued function G :Mñ → Rñ×ñ, such that G(x̃)
is a positive (semi) definite matrix for all x̃ ∈ Mñ, some
matrices W , Ŵ ,Xij , i, j ∈ [1; 2], of appropriate dimensions,
a function ψext ∈ K∞∪{0} and a continuously differentiable
function1 k :Mñ × Rm̂ → Rm which satisfies k(0, 0) = 0,
such that the following two conditions hold2:
• For any x̃ ∈Mñ:

G(x̃) � α

(
∂h̃1

∂x̃

)T (
∂h̃1

∂x̃

)
.

• For any [x̃; δx̃] ∈ TMñ, û ∈ Rm̂, and δû ∈ Rm̂, if
we choose u using the map u = k(x̃, û), then for any
w̃ ∈ Rp̃, and any δw̃ ∈ Rp̃:

δx̃T

(
∂f̃

∂x̃

T

G(x̃) +G(x̃)
∂f̃

∂x̃
+
∂G

∂x̃
f̃(x̃, ũ, w̃)

)
δx̃

+ 2δw̃T
∂f̃

∂w̃

T

G(x̃)δx̃+ 2δũT
∂f̃

∂ũ

T

G(x̃)δx̃

≤ −λδx̃TG(x̃)δx̃

+

[
Wδw − Ŵ δŵ
δy2 −Hδŷ2

]T [
X11 X12

X21 X22

] [
Wδw − Ŵ δŵ
δy2 −Hδŷ2

]
+ ψext(‖δû‖),

where δy2 = ∂h2(x)
∂x δx, δŷ2 = ∂ĥ2(x̂)

∂x̂ δx̂, δũ = [δu; δû],
and δu = ∂k

∂x̃δx̃+ ∂k
∂ûδû.

Then S(x̃, δx̃) = δx̃TG(x̃)δx̃ is a differential storage func-
tion from Σ̂ to Σ. We call Σ̂ (preferably with n̂ < n) an
abstraction of Σ if there exists a differential storage function
from Σ̂ to Σ.

Remark 3.2: For linear subsystems, one can use the dif-
ferential storage function given by

S(x̃, δx̃) = δx̃T

[
M̂ −M̂P

−PT M̂ PT M̂P

]
δx̃,

where M̂ ∈ Rn×n is a positive definite matrix, and P ∈
Rn×n̂, satisfying the conditions given in [6] together with
the associated linear interface map, for the construction of
abstractions of subsystems.
Now we introduce the notion of simulation functions used
in the paper.

Definition 3.3: Let Σ = (Mn,Rm,U , f,Rq, h) and Σ̂ =
(Mn̂,Rm̂, Û , f̂ ,Rq, ĥ) be two control systems without inter-
nal inputs and outputs and let Σ̃ = (Mñ,Rm̃, Ũ , f̃ ,Rq, h̃)
be the corresponding augmented control system as defined in
Definition 2.5. Let δΣ̃ = (TMñ,Rm̃, Ũ , δf̃ ,Rq, δh̃) be the
variational control system of Σ̃. Suppose there exist some
positive constants α and λ, some function ψext ∈ K∞∪{0},
some matrix valued function G :Mñ → Rñ×ñ, where G(x̃)
is a positive (semi) definite matrix for each x̃ ∈ Mñ, and
a continuously differentiable function k :Mñ × Rm̂ → Rm
which satisfies k(0, 0) = 0, such that the following two
conditions hold2:

1We refer to k as the interface map.
2Here, for brevity, we do not write the arguments of the partial derivatives

explicitly.



• For all x̃ ∈Mñ:

G(x̃) � α

(
∂h̃

∂x̃

)T (
∂h̃

∂x̃

)
. (III.1)

• For any [x̃; δx̃] ∈ TMñ, û ∈ Rm̂, and δû ∈ Rm̂, if we
select u using the map u = k(x̃, û):

δx̃T

(
∂f̃

∂x̃

T

G(x̃) +G(x̃)
∂f̃

∂x̃
+
∂G

∂x̃
f̃(x̃, ũ)

)
δx̃

+ 2δũT
∂f̃

∂ũ

T

G(x̃)δx̃

≤ −λδx̃TG(x̃)δx̃+ ψext(‖δû‖), (III.2)

where δũ = [δu; δû], and δu = ∂k
∂x̃δx̃+ ∂k

∂ûδû,

then

VG(x̃) = inf
γ̃∈Γ(x̃,0)

∫ 1

0

∂

∂s
γ̃(s)TG(γ̃(s))

∂

∂s
γ̃(s)ds,

is called a simulation function from Σ to Σ̂ with respect to
the (pseudo) Riemannian structure G.
The next theorem shows the usefulness of the existence of
a simulation function in quantifying the closeness of two
control systems.

Theorem 3.4: Consider two control systems Σ =
(Mn,Rm,U , f,Rq, h) and Σ̂ = (Mn̂,Rm̂, Û , f̂ ,Rq, ĥ).
Suppose VG, associated with the (pseudo) Riemannian struc-
ture G, is a simulation function from Σ̂ to Σ, and k is the
associated interface map, then there exists β ∈ KL, and
ψ̄ext ∈ K∞∪{0} such that for any x ∈ Rn, x̂ ∈ Rn̂, υ̂ ∈ Û ,
if we choose υ ∈ U using the interface map k, then the
following inequality holds for any t ∈ R≥0:

‖ζxυ(t)− ζ̂x̂υ̂(t)‖ ≤ β(VG(x, x̂), t) + ψ̄ext(‖υ̂‖∞). (III.3)
Proof: Consider two points x̃ = [x; x̂] ∈ Mñ and

0 ∈ Mñ, and a geodesic χ : [0, 1] → Rñ, with respect to
the (pseudo) Riemannian structure G, such that χ(0) = 0,
and χ(1) = x̃. The energy functional corresponding to this
geodesic is given by

VG(x̃) = EG(x̃, 0) =

∫ 1

0

∂

∂s
χ(s)TG(χ(s))

∂

∂s
χ(s)ds.

Let ξ̃x̃ν̃ = [ξxν ; ξ̂x̂ν̂ ] be the solution trajectory of Σ̃ for
any initial condition x̃ ∈Mñ, and under the input trajectory
ν̃ = [ν; ν̂], where ν(t) = k(ξ̃x̃ν̃(t), ν̂(t)), for all t ∈ R≥0,
for any ν̂ ∈ Û .

For a fixed t ∈ R≥0, consider the straight line η̂(s, t)
= sν̂(t) in s, where s ∈ [0, 1]. For any fixed t ∈ R≥0,
the curve η̂(·, t) : [0, 1] → Rm̂ is a geodesic, with respect
to the Euclidean metric, on Rm̂ joining η̂(0, t) = 0 and
η̂(1, t) = ν̂(t).

For any s ∈ [0, 1], let φ̃(s, ·) : R≥0 → Rñ be the solution
trajectory of Σ̃ from initial condition χ(s) under the input

η̃(s, ·), where η̃(s, t) =

[
k(φ̃(s, t), η̂(s, t))

η̂(s, t)

]
,∀t ∈ R≥0.

Note that φ̃(0, t) = 0, and φ̃(1, t) = ξ̃x̃ν̃(t).

For brevity, we denote ∂
∂s φ̃(s, t) =: w̃(s, t). Note that

∂

∂t
w̃(s, t) =

∂2

∂t∂s
φ̃(s, t) =

∂2

∂s∂t
φ̃(s, t)

=
∂

∂s
f̃(φ̃(s, t), η̃(s, t)) =

∂f̃

∂x̃

∂

∂s
φ̃(s, t) +

∂f̃

∂ũ

∂

∂s
η̃(s, t)

=
∂f̃

∂x̃
w̃(s, t) +

∂f̃

∂ũ

[
∂k
∂x̃ w̃(s, t) + ∂k

∂û ν̂(t)
ν̂(t)

]
.

Define

l(t) =

∫ 1

0

w̃(s, t)TG(φ(s, t))w̃(s, t)ds,

i.e. l(t) is the energy functional of the curve φ̃(·, t), with
respect to G. We have

d

dt
l(t) =

∫ 1

0

∂

∂t
w̃(s, t)TG(φ̃(s, t))w̃(s, t)ds

=

∫ 1

0

w̃T

(
∂f̃

∂x̃

T

G+G
∂f̃

∂x̃
+
∂G

∂x̃
f

)
w̃ds

+ 2

∫ 1

0

[
∂k
∂x̃ w̃ + ∂k

∂û ν̂
ν̂

]T
∂f̃

∂ũ

T

Gw̃ds,

where, again, we have dropped explicit arguments for clarity
in the last expression. From (III.2), one has:

d

dt
l(t) ≤ −λ

∫ 1

0

w̃(s, t)TG(φ̃(s, t))w̃(s, t)ds

+

∫ 1

0

ψext

(∣∣∣∣∣∣∣∣∂η̂(s, t)

∂s

∣∣∣∣∣∣∣∣) ds
≤ −λ

∫ 1

0

w̃(s, t)TG(φ̃(s, t))w̃(s, t)ds

+ ψext(‖ν̂(t)‖)
∫ 1

0

ds

≤ −λl(t) + ψext(‖ν̂‖∞).

It follows from the comparison lemma [12] that

l(t) ≤ e−λtl(0) +
1

λ
ψext(‖ν̂‖∞).

Note that l(0) = VG(ξxν(0), ξ̂x̂ν̂(0)) = VG(x̃). Now us-
ing the fact that for any t ∈ R≥0, l(t) is not neces-
sarily the minimum energy functional corresponding to a
geodesic because φ̃(s, t) is not necessarily a geodesic, i.e.
VG(ξxν(t), ξ̂x̂ν̂(t)) ≤ l(t), one has:

VG(ξxν(t), ξ̂x̂ν̂(t)) ≤ e−λtVG(ξxν(0), ξ̂x̂ν̂(0))

+
1

λ
ψext(‖ν̂‖∞). (III.4)

For every x ∈ Rn, x̂ ∈ Rn̂, we use (III.1) and the Schwarz



inequality to obtain:

α‖h1(x)− ĥ1(x̂)‖2 = α‖h̃(x̃)‖2

≤ α

∫ 1

0

√
∂

∂s
χ(s)T

∂h̃1

∂x̃
(χ(s))T

∂h̃1

∂x̃
(χ(s))

∂

∂s
χ(s)ds

2

≤

(∫ 1

0

√
∂

∂s
χ(s)TG(χ(s))

∂

∂s
χ(s)ds

)2

≤
∫ 1

0

∂

∂s
χ(s)TG(χ(s))

∂

∂s
χ(s)ds = VG(x̃), (III.5)

where x̃ = [x; x̂]. Combining (III.5) with (III.4), one can
conclude that (III.3) is satisfied with β(r, s) =

√
r
αe−

λ
2 s

and ψ̄ext(r) =
√

1
αλψext(r),∀s, r ∈ R≥0.

IV. INTERCONNECTED SYSTEMS

Here we define the interconnected system consisting of
control subsystems interconnected via a constant intercon-
nection topology.

Definition 4.1: Consider N ∈ N≥1 control subsystems

Σi = (Mni ,Rmi ,Rpi ,Ui,Wi, fi,Rq1i ,Rq2i , h1i, h2i),

where i ∈ [1;N ], and an interconnection matrix M
of appropriate dimension defining the coupling of these
subsystems. The interconnected control system Σ =
(Mn,Rm,U , f,Rq, h) denoted by I(Σ1, . . . ,ΣN ), follows
byMn = ΠN

i=1Mni , m =
∑N
i=1mi, q =

∑N
i=1 q1i, and the

functions

f(x, u) =
[
f1(x1, u1, w1); . . . ; fN (xN , uN , wN )

]
,

h(x) = [h11(x); . . . ;h1N (xN )],

where u = [u1; . . . ;uN ], x = [x1; . . . ;xN ], and with the
internal inputs constrained by

[w1; . . . ;wN ] = M [h21(x1); . . . ;h2N (xN )].
In the next theorem, the proof of which is omitted due to

lack of space, we derive sufficient conditions under which
an interconnection of abstractions of control subsystems,
interconnected via another (possibly simpler) interconnection
topology, is an abstraction of the original interconnected
system.

Theorem 4.2: Consider the interconnected control system
Σ = I(Σ1, . . . ,ΣN ), induced by N control subsystems and
a coupling matrix M . Suppose each subsystem Σi admits
an abstraction Σ̂i with a corresponding differential storage
function Si. If there exists µi ≥ 1 and the matrix M̂ such
that the following matrix (in)equalities hold:[

WM
Iq̄

]T
X(µ1X1, . . . , µNXN )

[
WM
Iq̄

]
� 0, (IV.1)

WMH = ŴM̂, (IV.2)

where q̄ =
∑N
i=1 q2i and

W = diag(W1, . . . ,WN ), Ŵ = diag(Ŵ1, . . . , ŴN ),

H = diag(H1, . . . ,HN ),

X(µ1X1, . . . , µNXN ) =

µ1X
11
1 µ1X

12
1

. . . . . .
µNX

11
N µNX

12
N

µ1X
21
1 µ1X

22
1

. . . . . .
µNX

21
N µNX

22
N


,

then

VG(x̃) = inf
γ̃∈Γ(x̃,0)

∫ 1

0

∂

∂s
γ̃(s)TG(γ̃(s))

∂

∂s
γ̃(s)ds,

is a simulation function from the interconnected control
system Σ̂ = I(Σ̂1, . . . , Σ̂N ) with coupling matrix M̂ to Σ,
where

G(x̃) =


µ1G1(x̃1) 0 . . . 0

0 µ2G2(x̃2) 0
...

. . .
...

0 . . . 0 µNGN (x̃N )

 ,
x̃ = [x̃1; . . . ; x̃N ], and x̃i = [xi; x̂i] ∈ Mni ×Mn̂i ∀i ∈
[1;N ].

V. EXAMPLE

Consider an interconnection of N ∈ N subsystems
Σi, i ∈ [1;N ], where each Σi is given by Σi =
(Sni ,Rni ,Rni ,Ui,Wi, fi,R,Rni , h1i, h2i), where for each
θi = [θi1; . . . ; θini ] ∈ Sni , ui ∈ Rni , wi ∈ Rni :

fi(θi, ui, wi) :=
1

ni


∑ni
k=1 sin(θik − θi1)

...∑ni
k=1 sin(θik − θini)

+ wi + ui,

h1i(θi) := θi1

h2i(θi) := θi.

The variational control system of Σi is given by the tuple
δΣi = (Sni×Rni ,Rni ,Rni ,Ui,Wi, δfi,R,Rni , δh1i, δh2i),
where for each [θi; δθi] ∈ Sni × Rni , ui ∈ Rni , δui ∈ Rni ,
wi ∈ Rni , and δwi ∈ Rni , δfi, δh1i, and δh2i are defined in
(V.1). We assume that the interconnection topology is given
by

M =



−2 1 0 0 . . . 1
1 −2 1 0 . . . 0
0 1 −2 1 . . . 0
...

. . .
. . .

1 0 0 . . . 1 −2


.

For each Σi, we consider that the abstract subsystems are
given by the tuple Σ̂i = (S,R,R, Ûi, Ŵi, f̂i,R,R, 1, 1),
where for each θ̂i ∈ S, ûi ∈ R, and ŵi ∈ R:

f̂i(θ̂i, ûi, ŵi) = − 1

ni
sin(θ̂i) + ŵi + ûi.

The variational control system of Σ̂i is given by δΣ̂i =
(S × R,R,R, Ûi, Ŵi, δf̂i,R,R, δĥ1i, δĥ2i), where for each



δfi(θi, δθi, ui,δui, wi, δwi)

:=


− 1
ni

Σnik=1 cos(θik − θi1) 1
ni

cos(θi2 − θi1) . . . 1
ni

cos(θini − θi1)
1
ni

cos(θi1 − θi2) − 1
ni

Σnik=1 cos(θik − θi2) . . .
...

. . .
...

1
ni

cos(θi1 − θini) . . . − 1
ni

Σnik=1 cos(θik − θini)


 δθi1...
δθini


+ δwi + δui

δh1i(θi, δθi) := δθi1

δh2i(θi, δθi) := δθi (V.1)

[θ̂i; δθ̂i] ∈ S × R, ûi ∈ R, δûi ∈ R, ŵi ∈ R, and δŵi ∈ R,
δf̂i, δĥ1i, and δĥ2i are given by:

δf̂i(θ̂i, δθ̂i, ûi, δûi, ŵi, δŵi) := − 1

ni
cos(θ̂i)δθ̂i + δŵi + δûi

δĥ1i(θ̂i, δθ̂i) := δθ̂i

δĥ2i(θ̂i, δθ̂i) := δθ̂i.

Consider the following differential storage function with
constant pseudo Riemannian structure:

Si(δθi, δθ̂i) =
[
δθi1 . . . δθini δθ̂i

]
Gi


δθi1

...
δθini
δθ̂i

 ,
where

Gi =


1 0 . . . −1
0 1 . . . −1
...

. . .
−1 −1 . . . ni

 .
For each i ∈ [1;N ], we choose ui = [ui1; . . . ;uini ] ∈ Rni
according to the following interface map:

uij = − 1

ni
Σnik=1 sin(θik − θij)−

1

2ni
θij −

1

ni
sin(θ̂i)

+
1

2ni
θ̂i + ûi,

where uij represents the j-th element of the vector ui, and
θij represents the j-th element of the vector θi, j = [1;ni]. It
can be shown that Si is a differential storage function from
Σ̂i to Σi with the following parameters

Wi = Ini , Ŵi = ~1ni , Hi = ~1ni , X
11
i = X22

i = 0ni ,

X12
i = X21

i = Ini , αi = 1, λi =
1

ni
, ψiext = 0,

where 0 represents the zero function. By selecting µ1 =
· · · = µN = 1, and M̂ appropriately, it can be shown that
(IV.1) and (IV.2) are satisfied and therefore one can conclude
that

VG(θ̃) = inf
γ̃∈Γ(θ̃,0)

∫ 1

0

∂

∂s
γ̃(s)TG

∂

∂s
γ̃(s)ds,

where θ̃ = [θ1; θ̂1; . . . ; θN , θ̂N ], θi ∈ Sni , θ̂i ∈ S,∀i =
[1;N ], and

G = diag(G1, . . . , GN ),

is a simulation function, with respect to G, from
I(Σ̂1, . . . Σ̂N ) to I(Σ1, . . . ,ΣN ), with the interconnection
matrix for Σ̂ given by M̂ . For example, for N = 3, ni =
50,∀i = [1;N ], (i.e. M ∈ R150×150), one can choose

M̂ =

−2 1 1
1 −2 1
1 1 −2

 .
VI. CONCLUSION

In this work, we derived sufficient compositional condi-
tions under which abstractions of interconnected systems
evolving on smooth Riemannian manifolds can be con-
structed. Construction of abstractions for different classes of
nonlinear subsystems evolving on Riemannian manifolds is
a subject of future research.
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