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Abstract
Thanks to their visual processing system, humans can understand complex visual content
with remarkable speed and accuracy, grasping at just a single glance what is known as the
gist of a scene. With the term scene we refer to a view of a complex real-world environ-
ment where various objects are arranged in meaningful ways and humans can act within.
If we are to build intelligent systems, they should be equipped with the same fundamen-
tal capability to deeply understand their surroundings, which becomes the enabling factor
for higher-level tasks such as navigating and acting in the environment. This makes scene
understanding one of the primary goals of computer vision encompassing a multitude of
perceptual and semantic tasks; from recovering the 3D world from a 2D view to recognizing
and localizing objects, their attributes and their relationships.

In this dissertation, we address tasks related to the field of scene understanding by employ-
ing deep learning methods. First, we propose a fully convolutional residual architecture to
learn depth estimation from a single image in indoor and outdoor environments. Subse-
quently, we extend this architecture to semantic image segmentation. The potential of learn-
ing structure and semantics is further demonstrated by building a hybrid system for simulta-
neous localization and mapping. The outcome is a dense, real-scale and semantically mean-
ingful 3D reconstruction of the environment. We then move from scene-centric to object-
centric localization addressing two practical scene understanding scenarios in robotics, de-
tection and segmentation of articulated instruments and robotic grasp detection.

In the second part of the dissertation, we emphasize the importance of communication in
intelligent agents and thus address scene understanding from a perspective that lies on the
intersection of computer vision and natural language processing. One relevant application
for scene understanding is generating image descriptions, which is of high practical impact,
for example to assist visually impaired users. We propose an unsupervised way to tackle this
problem which allows to exploit varying text corpora and image sources without relying on
manually annotated paired data. In the core of our approach lies a multi-modal embedding
space in which visual and linguistic representations co-exist indistinguishably.

Despite remarkable progress in scene understanding, agents deployed in the real-world are
likely not going to be perfect at the task they have been designed for; for example, the agent
might come across objects it does not recognize. With our last contribution we address this
problem by enabling interaction between the user and the agent. We leverage human per-
ception, and specifically hints given by the user in natural language, and build a mechanism
to guide the network into re-evaluating its inference. We demonstrate this mechanism on
the task of semantic segmentation, though it can also find application in other tasks as well
as lifelong learning.
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Zusammenfassung
Dank seines visuellen Verarbeitungssystems kann der Mensch komplexe visuelle Inhalte
mit bemerkenswerter Geschwindigkeit und Genauigkeit wahrnehmen, verstehen und mit
einem einzigen Blick das Wesentliche einer Szene erfassen. Mit Szene bezeichnen wir eine
komplexe, reale Umgebung, in der verschiedene Objekte auf sinnvolle Weise angeordnet
sind und in der Menschen handeln können. Wenn wir intelligente Systeme bauen wollen,
sollten sie mit der gleichen Fähigkeit ihre Umgebung zu verstehen ausgestattet sein. Dies
ist der entscheidende Faktor für übergeordnete Aufgaben wie das Navigieren und Handeln
in der Umwelt. Damit wird das Verstehen von Szenen zu einem der primären Ziele des
Computer Vision, das eine Vielzahl von Wahrnehmungs- und semantischen Aufgaben um-
fasst; von der Wiederherstellung der 3D-Welt aus einer 2D-Ansicht bis zum Erkennen und
Lokalisieren von Objekten mit ihren Eigenschaften und Beziehungen.

In dieser Dissertation behandeln wir Herausforderungen aus dem Bereich des Szenenver-
ständnisses durch Einsatz von Methoden des tiefen Lernens (Deep Learning). Zunächst füh-
ren wir eine Netzarchitektur ein, um Tiefenschätzung von einem einzelnen Bild für Innen-
und Außenbereiche zu lernen. Anschließend erweitern wir diese Architektur für semanti-
sche Bildsegmentierung. Außerdem demonstrieren wir das Lernen von Struktur und Se-
mantik indem wir ein hybrides System zur simultanen Positionsbestimmung und Kartener-
stellung beschreiben. Das Ergebnis ist eine dichte und semantische 3D-Rekonstruktion der
Umgebung. Anschließend gehen wir von der szenenzentrierten zur objektzentrierten Loka-
lisierung über und befassen uns mit zwei praktischen Szenarien in der Robotik, der Erken-
nung und Segmentierung von gelenkigen Instrumenten und der Roboter-Greiferkennung.

Wir analysieren Agenten, die in der Lage sind, zu kommunizieren. Diese Aufgabe liegt
in der Schnittmenge von Computersehen und Sprachverarbeitung. Eine relevante Anwen-
dung ist die Generierung von Bildbeschreibungen, um beispielsweise sehbehinderten Be-
nutzern zu helfen. Wir schlagen eine unüberwachte Methode zur Lösung dieses Problems
vor, die es ermöglicht, verschiedenste Textkorpora und Bilder zu nutzen ohne manuell an-
notierte, gepaarte Daten zu verwenden. Im Kern unseres Ansatzes liegt ein multimodaler
Einbettungsraum, in dem visuelle und sprachliche Darstellungen ununterscheidbar neben-
einander existieren.

Trotz bemerkenswerter Fortschritte im Szenenverständnis, die in der realen Welt eingesetzt
werden, höchstwahrscheinlich nicht perfekt für die Aufgabe, für die sie konzipiert wurden;
so könnte der Agent beispielsweise auf Objekte stoßen, die er nicht kennt. Mit unserem letz-
ten Beitrag adressieren wir dieses Problem, indem wir Interaktion zwischen Benutzer und
Agenten ermöglichen. Wir nutzen die menschliche Wahrnehmung und sprachlichen Hin-
weise des Benutzers und leiten das Netzwerk dazu an, die Vorhersage neu zu bewerten.
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1Introduction

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.1 Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Scene Understanding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Outline of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1 Motivation
Artificial intelligence (AI) is a discipline that has attracted immense interest in the scientific
community since the birth of this term in 1956 (John McCarthy, Dartmouth Conference),
though the practical definition and goals of AI have evolved throughout the years. In the
early stages of AI, the problems that were addressed were easy to solve by computers, al-
though challenging for humans; these were formal problems that could be described by a
set of rules, such as proving theorems (Geometry Theorem Prover, H. Gelernter, 1959) or
playing checkers (A. Samuel, 1952) [361]. As more and more tasks were successfully solved
by machines, the type of problems that were regarded as requiring intelligence and the defi-
nition of intelligence itself changed. From then till the present day, we face a paradigm shift,
as AI research is now concerned with problems that are intuitive and natural to humans, but
difficult to address by machines; for example, effortlessly recognizing other people, objects
and structures and being able to reason.

Without a doubt, we are still very far — if even achievable — from human-level or general
AI, i.e. machines that are capable of sensing, understanding and learning tasks just as hu-
mans are able to; machines that can accomplish general tasks outside a narrow field of ap-
plication. Although to achieve this goal as a whole is challenging to say the least, it is now
possible to address intuitive problems or sub-problems, such as the ones mentioned above,
with reasonable success. The solution to such problems has its roots in machine learning,
i.e. we let machines learn abstract concepts from experience by providing them with several
training examples [128]. This brings us one step closer to intelligent agents which can act
autonomously, i.e. without relying solely on prior knowledge specified by the designer.

Regardless of the level of autonomy or which tasks are deemed to require “intelligence” at
a given point in time, an agent should have to ability to perceive its environment (through
sensors) and act upon it (through actuators). In this dissertation, we define and discuss a set
of fundamental capabilities that can be seen as a stepping stone for intelligent agents.
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Chapter 1: Introduction

1.1.1 Perception

“ perception, noun

1. the way you notice things, especially with the senses
2. the ability to understand the true nature of something
3. an idea, a belief or an image you have as a result of how you see or understand

something

— Oxford Advanced Learner’s Dictionary ”
Perception is the ability to understand or become aware of the environment using the senses,
or some sensory input when it comes to agents. In the context of this dissertation, we discuss
visual perception, although other kinds also exist (e.g. auditory or haptic).

In human beings, visual perception is the ability to interpret their surroundings through
vision. In biological vision, an image is formed on the retina as light reflected from the
surrounding world reaches the eye. Interpreting the visual input implies some form of con-
scious or unconscious understanding. According to Hermann von Helmholtz and his theory
on “unconscious inference” (1867), perception is not only a product of sensory information
on the retina but also of our learned experience about the world.

Making machines capable of perception has been the core objective in the field of computer
vision. Initially, in the early 1970s, visual perception was considered an easy first step to-
wards the more complicated AI problems. Marvin Minsky considered it to be doable as
a summer project for the undergraduate student Gerald Jay Sussman: “spend the summer
linking a camera to a computer and getting the computer to describe what it saw” [42]. Now,
50 years later, image understanding and visual perception is still not considered a solved
problem. We have, however made significant progress.

1.1.2 Communication

“ communication, noun

1. the activity or process of expressing ideas and feelings or of giving people informa-
tion

2. methods of sending information, especially telephones, radio, computers, etc. or
roads and railways

3. a message, letter or telephone call

— Oxford Advanced Learner’s Dictionary ”
Communication can be achieved through various means, from signs to electromagnetic sig-
nals; verbal communication, in particular, refers to conveying information through language,
spoken, written or gestured. If intelligent agents are to be used in collaboration with or to
assist humans, they will be often required to communicate their understanding about the
world, provide information or act as a conversational partner (e.g. chatbots). Further, they

4



1.1 Motivation

should be able to do so in a way that is interpretable by people, for example in a human
language.

Michael Halliday (1975) identifies seven functions of language in the early years of child-
hood [146]:

• Instrumental: to express and satisfy one’s needs
• Regulatory: to control the behavior of others or tell them what to do
• Interactional: to facilitate interaction with others and form relationships
• Personal: to express one’s personal opinions, feelings or identity
• Imaginative: to create imaginary content, such as telling stories
• Heuristic: to discover, to acquire knowledge about the world
• Representational: to communicate information to others

Halliday believes that, in children, language develops in order to satisfy motives related
to these functions. We argue that language can serve similar functionalities in intelligent
agents. In fact, an agent with language capabilities is fundamental for various reasons. We
can thus generalize the above definitions to machines capable of language as follows.

Representational: The use of language to convey information is central to intelligent sys-
tems. As an example, we can think of automatic generation of image descriptions to aid
visually impaired users [189, 228], conversational agents (chatbots) and voice-enabled home
assistants.

Heuristic: The use of language to acquire knowledge. One way to autonomy is an ever-
growing self-acquired knowledge base. Language is a critical skill that equips agents with
the potential of lifelong learning and continuously expanding their knowledge as they ex-
plore their environment, for example by asking questions about the world [294, 373, 424,
462], or parsing the web (e.g. Wikipedia).

Regulatory: Regulatory language has been used extensively even in early computers. The
user needs to know how to make the system work, what data it needs and which inputs it
requires; the more descriptive and accurate the language is (e.g. hints or error messages), the
better.

Imaginative: There already exist instances of artificially generated novels, poems, jokes or
textbooks1, which directly relate to the imaginative function. Due to the challenges of lan-
guage modeling, these are not yet strong enough to pass the Turing test. Recently, however,
significant progress has been made in language generation using extremely large language
models [48].

Interactional: This is the part of language that is currently mostly used in games. AI-
controlled characters that express themselves realistically towards the player create a greater
emotional connection between the user and the game. This naturally extends to other virtual
characters that we interact with. However, we are still only at the beginning of developing
systems that can naturally interact with humans.

1Besides language, there are also instances of computer-generated art, music, etc.

5



Chapter 1: Introduction

Personal: Without a doubt, computers do not have a “personality” in the way humans
do. However, the effort towards safe and explainable AI (XAI) requires systems that are
interpretable by design [122], perhaps systems that can generate an explanation of their own
behavior and decision making process in a human-readable format, e.g. natural language.
The ability of agents to express themselves can contribute to gradually building trust in
such systems, especially when it comes to safety-critical applications.

1.1.3 Interaction

“ interaction, noun

1. the act of communicating with somebody, especially while you work, play or spend
time with them

2. if one thing has an interaction with another, or if there is an interaction between two
things, the two things have an effect on each other

— Oxford Advanced Learner’s Dictionary ”
The ability to interact is of paramount important to intelligence. Interactive behavior might
involve acting and/or receiving feedback from the environment (or objects that lie within),
humans or other agents. There exist several manifestations of interaction in learning and
AI. This is, for example, the foundation of the fields of human-robot collaboration [30], rein-
forcement and imitation learning. In reinforcement learning [391], the agent interacts with
its environment to gather experience, i.e. taking actions that optimize a reward function.
On the other hand, the goal of imitation learning [177] is to teach an agent complex tasks
through demonstration.

These examples are outside the scope of this thesis and will not be discussed in detail. In
fact, it seems very hard to tackle such higher-level reasoning tasks without a solid scene
understanding system — which is in fact the focus of this dissertation. Thus, we hereby
address interaction from perspectives that are more related to visual perception and com-
munication.

From this perspective, when deployed into the real world, an agent will most likely not be
perfect for the task it is designed for, inevitably making mistakes, e.g. due to a distributional
shift, thus creating the problem of adaptation to the specifics of a new environment. For
instance, it might not be able to recognize some objects. Here, an interactive system is the
ideal bridge between the user and the algorithm. The goal is to leverage the superior capa-
bilities and experience of the human in order to overcome the agent’s limitations. Enabling
an interactive system means enabling the agent to identify its shortcomings (e.g. through
uncertainty), being able to communicate them to the user and finally process their feedback
for self-improvement.

6



1.2 Scene Understanding

1.2 Scene Understanding
In this dissertation, we will approach some aspects of the aforementioned principles and
provide solutions in the context of scene understanding. Scene understanding has been a
long-standing problem in computer vision and is so broad that it cannot be described with
a universal definition. Generally speaking, scene understanding is involved with analyzing
semantic and structural properties of a scene. Hereby we use the term scene to refer to a view
of a complex real-world environment in which various objects are arranged in meaningful
ways and entities (humans or agents) act within [450].

Human perception studies have shown that the visual system can process complex visual
content with remarkable speed and accuracy [105, 324, 325, 369, 406]. In pioneering work
conducted by Mary Potter [324, 325], presenting observers with a very quick succession of
visual content, experiments showed that it takes under 200ms to understand the type of a
scene and a lot of related visual information — such as the global structure and layout or
sometimes major objects existing in the scene. The visual information that is perceived with
just a quick glance is called the gist of the scene [310, 324]. The gist carries both perceptual
and conceptual (semantic) information. The perceptual gist is related to structural informa-
tion which is comprehended almost instantly during perception, while the conceptual gist is
related to semantic information that is understood during or after viewing a scene [310].

The distinction between perceptual and conceptual understanding is also seen in neuro-
science. The widely accepted two-streams hypothesis [127] describes the human vision sys-
tem as the combination of two pathways that begin from the occipital lobe of the cerebral
cortex. The “what pathway” (ventral stream) is responsible for object identification and
recognition, while the “where pathway” (dorsal stream) processes the object’s spatial loca-
tion relative to the viewer.

From a computational perspective, general and scalable scene understanding is considered
very challenging. For this reason, we can usually identify multiple levels of “understand-
ing”. These range from low-level perceptual tasks, such as detection of edges or intrinsic
image properties, to higher-level semantic tasks to tasks that require reasoning “behind”
the scene. The field of scene understanding is thus divided further into several dominant
sub-fields that deal with classifying the scene and its attributes (at a coarse level); or esti-
mating the structure or layout of the environment, recognizing and localizing objects and
understanding their affordances, physical properties or their in-between interactions (at a
finer level). Often part of the literature on total scene understanding addresses the problems
related to the spatial or 3D component of the scene [139, 162], while another part focuses on
visual recognition tasks [241]. Finally, unified scene parsing focuses on recognizing multiple
visual concepts from various “levels” in parallel, i.e. scene types, objects and their parts, and
also their material properties and textures [451].

It is important to note that truly understanding the scene goes far beyond recognition. The
human visual system does not just perceive visual information but has the ability to reason
about it. For example, using common sense, we can effortlessly infer other people’s ac-
tions or how these affect or are affected by their surroundings, reasoning about unobserved
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causes or future events. Common-sense reasoning is what makes the difference between a
machine that can only infer structural and semantic information and one that can answer
visual questions about the scene, such as “who is winning this football match?” or “will I
need an umbrella today?”. It is clear that to answer these questions the system would require
the ability to combine various cues and possess higher-level cognitive skills and situational
awareness.

Finally, it is worth noting that humans can rely on their abilities for compositionality and
transferability to solve higher-level reasoning problems. We divide complex problems into
individual components, some of which we have already learned for other tasks. Another
cornerstone of human reasoning comes in fact from other modalities, such as language, au-
dio or haptics, which are combined with and contribute to the learned visual knowledge and
understanding. While such high-level reasoning is not yet in reach for machine learning sys-
tems, this dissertation provides some building blocks towards machines that can holistically
understand the scene and communicate — about the scene — with humans.

1.3 Outline of Dissertation
The remaining chapters of this dissertation are organized and summarized as follows:

Chapter 2 A list of publications on which this dissertation is based.

Chapter 3 Deep learning is a major component of all methods presented in this
dissertation. Thus, before we present our algorithms in detail, we give
a brief introduction of the fundamental principles of deep learning and
neural networks that are used throughout this work.

Chapter 4 We first address image understanding by estimating the geometry and
semantics of a scene from visual data (single images). We introduce a
deep fully convolutional network for image-to-image translation prob-
lems, which we evaluate on the tasks of depth estimation and semantic
segmentation.

Chapter 5 Our next observation is that the learned geometry and semantic seg-
ments of the scene provide complementary information to geometric
approaches for simultaneous localization and mapping. We propose
an approach to reconstruct 3D environments from monocular videos
by integrating these two knowledge sources.

Chapter 6 In this chapter, we move from complex views down to scenes focused
on individual objects, thus discussing object-level understanding. We
present two problems where this is applicable: localization of instru-
ments (e.g. surgical, robotic) and localization of grasping points around
objects (e.g. as part of the visual perception system of a robotic arm.)

Chapter 7 Natural language is an essential skill for communication between users
and machines. Communicating about visual content, however, is a task
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that requires recognition and generation across two modalities. To relax
the need for aligned vision-and-language datasets, in this chapter, we
tackle unsupervised image captioning, without image-caption pairs.

Chapter 8 Another important skill for intelligent systems is interaction with hu-
mans, for example leveraging user’s feedback for self-improvement.
Here, we revisit the task of semantic segmentation and describe a mech-
anism to retrospectively improve the system’s performance, given hints
from the user in natural language or other forms.

Chapter 9 We conclude with a summary of the contributed research, discussion
of the limitations of current systems and future outlook.
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2Contributions
This dissertation is divided into two major thematic parts. In Part II we focus on visual
perception problems related to scene understanding, such as depth estimation and semantic
segmentation, which we address with novel deep learning techniques. This part builds on
the following authored and co-authored publications:

• Deeper Depth Prediction with Fully Convolutional Residual Networks
Iro Laina*, Christian Rupprecht*, Vasileios Belagiannis, Federico Tombari,
Nassir Navab.
In International Conference on 3D Vision (3DV), 2016.

• CNN-SLAM: Real-time dense monocular SLAM with learned depth prediction
Keisuke Tateno*, Federico Tombari*, Iro Laina, Nassir Navab.
In Computer Vision and Pattern Recognition (CVPR), 2017.

• Concurrent segmentation and localization for tracking of surgical instruments
Iro Laina*, Nicola Rieke*, Christian Rupprecht, Josue Page Vizcaino, Abouzar Eslami,
Federico Tombari, Nassir Navab.
In International Conference on Medical Image Computing and Computer-Assisted In-
terventions (MICCAI), 2017.

• Dealing with Ambiguity in Robotic Grasping via Multiple Predictions
Ghazal Ghazaei, Iro Laina, Christian Rupprecht, Federico Tombari, Nassir Navab,
Kianoush Nazarpour.
In Asian Conference on Computer Vision (ACCV), 2018.

The research listed above finds application in systems that require holistic visual perception,
such autonomous vehicles, home or industrial robotics, computer-aided surgery, etc.

Moving to Part III, our reasoning is that for intelligent visual systems to be used in collabo-
ration with or to assist humans, they must be often able to express and communicate their
understanding in a natural way. Thus, the second part of this dissertation focuses on prob-
lems that lie at the intersection of computer vision and natural language and builds on the
following publications:

• Towards Unsupervised Image Captioning with Shared Multimodal Embeddings
Iro Laina, Christian Rupprecht, Nassir Navab.
In International Conference on Computer Vision (ICCV), 2019.

* denotes equal contribution.
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• Guide Me: Interacting with Deep Networks
Christian Rupprecht*, Iro Laina*, Nassir Navab, Gregory D. Hager, Federico Tombari.
In Computer Vision and Pattern Recognition (CVPR), 2018.

Finally, the following co-authored publications will not be extensively discussed in this dis-
sertation:

• Learning in an Uncertain World: Representing Ambiguity Through Multiple Hypothe-
ses
Christian Rupprecht, Iro Laina, Robert DiPietro, Maximilian Baust, Federico Tombari,
Gregory D. Hager, Nassir Navab.
In International Conference on Computer Vision (ICCV), 2017.

• Peeking behind objects: Layered depth prediction from a single image
Helisa Dhamo, Iro Laina, Keisuke Tateno, Nassir Navab, Federico Tombari.
In Pattern Recognition Letters 125, 2019.

• Semantic Image Manipulation Using Scene Graphs
Helisa Dhamo*, Azade Farshad*, Iro Laina, Nassir Navab, Gregory D. Hager, Federico
Tombari, Christian Rupprecht.
In Computer Vision and Pattern Recognition (CVPR), 2020.
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3.1 Deep Learning
As mentioned in the previous chapter, we are currently able to design systems that alleviate
the need for prior knowledge provided by the designer, such as hand-crafted features and
rule-based programs. In fact, a truly autonomous system must be able to (continuously) ac-
quire its own knowledge about the world instead of being dependent on human-provided
knowledge. The field of machine learning deals with algorithmic or statistical solutions to
problems, which a computer system learns from representations of data (e.g. images or fea-
tures). Until recently, many tasks were addressed by designing and providing hand-crafted
features into simple machine learning algorithms. Instead, we can also let the computer
learn abstract concepts (features) in a hierarchical fashion, i.e. progressively discovering
more complex concepts (higher abstraction) by building on simpler ones, thus building deep
models which consist of many layers of abstraction; this gave rise to the now widely used
term deep learning [128].

In this chapter, we briefly introduce deep learning and neural networks as they are an inte-
gral part of the methods presented later in the dissertation. We focus on the building blocks
that will be used in our methods. For a detailed mathematical introduction to deep learning
we refer the reader to the book of Goodfellow et al. [128].

3.1.1 A Note on History
Deep learning is a term that was only recently popularized, but in fact it has existed un-
der different umbrella terms and perspectives since the 1940s. There have been three ar-
eas/waves in AI and deep learning.
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Chapter 3: Theory and Fundamentals

The first wave started with theoretical models of the brain, when McCulloch and Pitts [287]
introduced the artificial neuron which was modeled as a linear function. In 1958, Rosenblatt
[348] introduced the perceptron, which was the first practical implementation that enabled
training of a single neuron through potentiometers. However, it soon became clear linear
models have limitations; for example, as it was shown that in 1969, the perceptron cannot
learn the XOR function [293] — and with that came the first winter in AI as the great visions
of AI scientists could not be materialized.

The renaissance began in the 1980s with a movement known as connectionism, i.e. models
of inter-connected computational units (neural networks). From a biological perspective,
this corresponds to the nervous system, and from a computational perspective to hidden
units. A major contribution to the resurgence of AI was the use of the generalized delta rule
(back-propagation) [352] for training feed-forward neural networks — although not plausi-
ble learning rule from a biological perspective [285]. Back-propagation was a efficient algo-
rithm to adjust the weights of a neural network by back-propagating errors and remains to
date a core principle in deep learning. However, another AI winter followed as the ambi-
tions and promises turned out to be more complicated to carry out as initially thought.

The third wave of AI, which we are still experiencing now in the year 2020, began with with
deep belief networks by Hinton et al. [157] (2006). Powered by the increased availability
of data and as well as computational resources, researchers were now able to study and
prove the importance of depth in neural networks [78]. Finally, the big revolution reached
computer vision in 2012, when AlexNet [215], a deep architecture trained on GPUs, won
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), surpassing competing
methods by a significant margin (reducing the top-5 error from 26.1% down to 15.3%).

3.2 Neural Networks
Artificial neural networks (ANNs) are inspired by the biological brain. The main building
component of ANNs is the neuron, which acts as a logical threshold gate of a linear function
of the received input (x) ∈ RN, weights W ∈ RN×M and (optionally) a bias b ∈ RM.

f(W, x) = W1x1 + W2x2 + · · · + WNxN + b = WTx+ b (3.1)

The weights and biases of neurons are learnable, i.e. they can be adjusted as part of a training
process. Neurons connect to each other and form a network inspired by biological neural
networks. In feed-forward neural networks, the information flows from the input towards
the output (forward pass), without directed loops or cycles. Neural network units are typ-
ically structured into groups (layers). One example is the multi-layer perceptron (MLP),
which consists of an input and an output layer and one or more hidden layers.

However, if we use linear functions for neurons, the mapping of input to output through a
multi-layer network is equivalent to a single-layer network, because a composition of linear
functions is also a linear function. Thus, it is important to use non-linear activation functions
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…

a) Multi-layer perceptron

input layer output layer
hidden layers

b) Convolutional neural network c) Recurrent neural network
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Figure 3.1 Neural network architectures. a) An MLP as a fully-connected feed-forward neural network. b) A
CNN with 3×1 convolutions with zero padding and stride 1 and 2 respectively. A neuron in the second
layer has a receptive field of 5 and thus “sees” the entire input vector. The last layer is fully-connected.
c) A simple RNN; the hidden state ht depends on the state at time step t− 1.

ϕ(·) in between the layers. ϕ can for example be the sigmoid function, hyperbolic tangent or,
most commonly in convolutional neural networks (Section 3.2.2), the Rectified Linear Unit
(ReLU) [125, 304] — although other variations also exist [69, 152, 270].

3.2.1 Minimal Example
We will now build a simple two-layer example of a neural network to explain some funda-
mental concepts before moving to deep networks in the following sections.

Consider a function f(·) that maps an input x ∈ R100 to an output y ∈ R2. For example, x
could be some weather statistics and y the estimated temperature at day and night for this
day. With this example we will introduce the basics of machine learning.

We are given a dataset (e.g. weather observations) consisting ofN samples (x(i),y(i)) where
x(i) ∈ Rdx , y(i) ∈ Rdy and i ∈ {1, . . . ,N}; this is a case of supervised learning. The learn-
ing process consists in finding a mapping fθ(x) = ỹ with minimal error by observing the
training examples (x(i),y(i)). With θ we denote the learnable parameters of f. We can see
this process as finding an optimal set of parameters θ∗ as measured by a criterion or cost
function1 L on the training set:

θ∗ = argmin
θ

N∑
i=1

L
(
f(x(i)), y(i)

)
. (3.2)

In this example, since day and night temperature are continuous values, we are dealing with
a regression problem. A standard cost function for these types of problems is the L2 norm:

L2

(
f(x(i)), y(i)

)
= ∥f(x(i)) − y(i)∥2

2 , (3.3)

1we will also refer to this as a loss function throughout the dissertation
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i.e. minimizing the squared Euclidean distance between the predicted vector f(x(i)) and the
expected outcome y(i) for sample i.

However, the training error does not provide sufficient information about how well the
model will perform on previously unseen samples when deployed in the real world. During
training, it is common to withhold a subset of data (validation set) which are not used to
optimize the network, but to measure the network’s generalization performance on unseen
data. The term regularization refers to techniques that aim at improving the network’s
generalization performance, for example the L2-norm of the parameters can be used as a
regularizer R(θ) = ∥θ∥2

2 in addition to the cost function.

Other approaches include dropout (Section 3.2.2) or augmenting the data with various task-
specific transformations.

Optimization
Let us now define f(·) as a two-layer neural network to solve the weather prediction prob-
lem.

fθ(x) = W2ϕ(W1x+ b1) + b2 , (3.4)

with parameters θ = (W1,b1,W2,b2), where W1 and W2 are matrices and b1 and b2 are vec-
tors. As mentioned before, ϕ is a non-linear function. Here we have dropped the notation
of the i-th sample (x(i)) for simplicity.

To find the optimal θ∗, we need to update all parameters from their initial values given
the training samples. This is a difficult problem but gradient-based optimization can find a
locally optimal solution through gradient descent [53]:

θ(t+1) = θ(t) + λ
∂Ltotal

∂θ(t)
(3.5)

and
∂Ltotal

∂θ
=

∂

∂θ

N∑
i=1

L
(
f(x(i)), y(i)

)
(3.6)

In Equation (3.5), λ is called the learning rate and controls the step size of the update. If the
learning rate is too small, then the training might converge too slowly; if it is too large, we
might immediately observe divergence from the expected output. Training with gradient
descent is only guaranteed to find a local minimum of fθ, but not a global one2.

We now make two observations. First, from Equation (3.5) it arises that in order to perform
one update step, we first need to calculate the gradient of the cost on the entire training
set. This also suggests that the total cost function should be decomposable into a sum of
individual (per-sample) costs. Because training sets are large and one full pass over the
data is computationally expensive, stochastic gradient descent is more commonly used and
replaces the total cost with a stochastic estimate of it, computed on a randomly sampled

2Such solutions are generally acceptable if the validation cost function is sufficiently low.
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subset of the data, which we call a (mini-)batch. More variations of stochastic gradient
descent exist, for example [331, 389] introduce momentum, which acts as an acceleration of
gradient steps. Other recent optimizers are adaptive, i.e. they find individual learning rates
for each parameters, e.g. Adagrad [90] and Adam [202].

The second observation is that the computation of the gradient of cost L with respect to all
current parameters θ(t) is necessary. In neural networks and deep learning models, this is
achieved with an algorithm known as back-propagation.

Back-propagation
To better highlight the fact that the neural network is structured in layers, let us represent
f(x) (Equation (3.3)) as a composite function f(x) = f(2)(f(1)(x)), where f(1)(x) = ϕ(W1x +

b1) is the first layer and f(2)(x) = W2x+ b2 is the second layer.

Using the chain rule, the partial derivatives of a cost function L with respect to W1 and b1

are:

∂L

∂W1
=

(
∂L

∂f(2)

∂f(2)

∂f(1)

)
∂f(1)

∂W1
, (3.7)

∂L

∂b1
=

(
∂L

∂f(2)

∂f(2)

∂f(1)

)
∂f(1)

∂b1
. (3.8)

It becomes clear that earlier layers in the network rely on the computation of gradients in
later layers, i.e. gradients that are computed are propagated backwards. Back-propagation
is efficient because a lot of these computations will be shared — e.g. it is possible to com-

pute
∂L

∂f(2) and then store it and re-use it for all future computations. This extends to deep
networks with many layers.

3.2.2 Convolutional Neural Networks
There are several enabling factors that led to the widespread applicability of Convolutional
Neural Networks (CNNs) [232] in computer vision.

One reason is that images, as well as other types of data, are high-dimensional representa-
tions of raw signals. One major issue with the ANNs mentioned above is the full connec-
tivity of neurons among layers, i.e. every neuron is connected to every input unit. Because
of this, the number of parameters in the network can grow exponentially; given large input
data it can be prohibitive in terms of memory, training samples, required time, and prone to
over-fitting.

Additionally, images have inherent structure and local patterns (e.g. edges) that repeat over
the image. If we distorted the image by shuffling all pixels, it would now be unrecogniz-
able by humans, but it would make no difference for the weights of a fully-connected feed-
forward network. Instead, we can take advantage of structured inputs by learning smaller
weight matrices which are only locally connected and can be applied over the image in a
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sliding window fashion; this gives rise to the properties of translation equivariance and spatial
parameter sharing and can be in practice implemented by a convolution.

The input region that a neuron of a given layer “sees”, i.e. is connected to, is called receptive
field. It arises that units in deeper layers will thus have a larger receptive field than units in
earlier layers.

After AlexNet, for the next three years, major stepping stones in performance where driven
by improved architectures - still on the task of object recognition and the ImageNet chal-
lenge. AlexNet was followed by VGG [378], InceptionNet [394] and ResNets [151] which
kept on improving over each previous model. These architectures were then commonly
used as backbones for other tasks that were thus also improving. Next, we give a brief
overview of the most common layers in these modern, deep CNNs.

Convolution
Convolutional layers are the main building blocks of CNNs, as suggested by the name. A
convolution applies the dot product between a filter and a local region of the input data, slid-
ing over all spatial locations of the input. If the input is two-dimensional, so is the output. If
the input is three-dimensional, then typically a 3D convolution is applied (across channels),
thus also resulting in a 2D output — although other variations exist as well. Convolutional
filters can be also applied with stride, i.e. skipping spatial locations, resulting in a reduction
in the spatial dimensions.

The filters are usually small kernels (e.g. 3 × 3 spatially) and include learnable weights. At
every convolutional layer, we apply several filters, each of them learns to extract a different
feature from the input. Thus we usually refer to the output as feature maps (one per filter).

As mentioned earlier, activation functions are important to learn complex, non-linear map-
pings. Convolutions are almost always followed by an activation function and a common
choice in CNNs are ReLUs or their variants.

Pooling Layer
Pooling layers are most often used to perform sub-sampling, i.e. they are applied with stride,
through not necessarily. Typical pooling operations find the maximum or average with a pre-
specified window size, which is usually also small (e.g. 3 × 3), applied on the input data on
each channel (feature) independently.

By design, pooling layer do not include any learnable parameters. One reason why we
might want to include pooling layers and down-sample features in a network is efficiency,
especially when dealing with high-dimensional input data, such as images. One notewor-
thy property of pooling layers is also translation invariance, as the precise location where
features come from inside the pooling window is lost. While this was believed to be useful
in problems like image classification, later architectures usually replace most pooling layers
with strided convolutions [151].
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Dropout
Dropout [158, 382] is a regularization technique which was first used in AlexNet [215]. It
reduces the over-fitting of a network to the training data by preventing the co-adaptation
of neurons. This is done by setting the activations of a random set of neurons in a layer to
zero, thus they do not contribute to the subsequent layers. Dropout is usually inserted right
before the prediction layer(s) of a CNN.

Batch Normalization
Several normalization techniques have been proposed for CNNs [22, 215, 296, 363, 414, 448],
but in all methods discussed in this dissertation we use batch normalization [179]. The goal
of normalization is to facilitate convergence and decrease a network’s training time.

[151] shows that it becomes possible to train very deep networks using batch normalization
and residual connections. During training, batch normalization computes the mean and
standard deviation of each feature across the batch and then uses these statistics to normalize
the feature to zero mean and unit standard deviation. Then, it introduces two learnable
parameters per feature, a scaling factor γ and a shift β, which are applied to the normalized
feature. using the statistics of the batch.

The application of batch normalization differs at test time due to the lack of population statis-
tics. For this reason, an exponential moving average is updated with the estimated means
and standard deviations during training, which are then applied to the features during in-
ference.

Residual Blocks
There have been significant contributions in the design of deep architectures over the years,
which aim at improving performance and study the importance of the network width and
depth [151, 394] and the connections between layers [151, 167, 172, 453].

Of special interest in this thesis is the concept of residual learning, introduced by He et al.
[151]. Residual connections were introduced by [151] to enable better gradient flow inside
the network. The idea is to introduce a “shortcut” connection that skips over some layers
and sums to their output features of a previous layer. If we denote the desired mapping
through some non-linear layers as h(x)— where x is the input to this set of layers, which
could come from a previous layer — we have h(x) + x at the output of this building block.
This effectively means that we only need to learn a residual mapping. By stacking many
such layers, it is possible to build very deep architectures that alleviate the problem of van-
ishing gradients. Variants with 50, 101, 152 and 1000 layers are proposed in [150].

To account for strided convolutions that change the spatial dimensions of the feature maps
inside a residual block, “projection” connections are also introduced and use a 1 × 1 con-
volution on the shortcut branch to match the dimensions and make the element-wise sum
of features possible. In Chapter 4 we extend this idea to layers that perform feature up-
sampling.
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3.2.3 Recurrent Neural Networks
Recurrent neural networks (RNNs) are useful for learning problems with sequential data
x = (x1, · · · , xT ) (for example sentences in language models). An RNN consists of a hidden
state h and an (optional) output y. At each time step t, the hidden state is updated through
a non-linear function g:

ht = g(ht−1, xt), (3.9)

given the previous hidden state and the current input. A simple RNN “unrolled” over time
can be seen in Figure 3.1 (c). In “vanilla” RNNs, g can be very simple, e.g. a tanh-activation
of the weighted sum of the inputs. Because RNNs are trained with back-propagation through
time, when modeling long-term dependencies, the gradients which are back-propagated can
become very small and vanish.

Long Short Term Memory
Long short-term memory units (LSTMs) were introduced by Hochreiter and Schmidhuber
[159] and provide a more complex implementation of g(·) using three gates (input it, output
ot and forget ft) and a cell state ct which represents the memory.

All W and U are weight matrices, t is the current time step, σ is the sigmoid activation
function and ⊙ denotes the Hadamard (element-wise) product between vectors. The input
gate controls how much information flows into the memory, while the output gate controls
how much of the information stored in memory will be used for computing the next hidden
state. The forget gate decides what information from the previous cell state will remain the
memory of the LSTM. This implementation (also seen in Figure 3.2) tackles the vanishing
gradient problem of vanilla RNNs.

ℎ𝑡−1

𝑥𝑡

𝜎

×

tanh
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Figure 3.2 Equations and schematic of an LSTM.

ft = σ (Wfxt + Ufht−1 )

it = σ (Wixt + Uiht−1 )

ot = σ (Woxt + Uoht−1 )

C̃t = tanh (WCxt + UCht−1 )

Ct = ft ⊙Ct−1 + it ⊙ C̃t

ht = ot ⊙ tanh(Ct)

(3.10)

Gated Recurrent Units
Gated recurrent units (GRUs) [66] are similar to LSTMs but have no output gate and fewer
parameters. The internal mechanism of such unit includes a reset gate and an update gate.
For the t-th step with hidden state ht, reset gate rt and update gate zt, a GRU functions as
follows.

In a GRU, similar to the LSTM, the update gate controls the information flow into the mem-
ory. On the other hand, the reset gate controls the information that leaves the memory, i.e. if
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Figure 3.3 Equations and schematic of a GRU.

rt = σ (Wrxt + Urht−1 )

zt = σ (Wzxt + Uzht−1 )

h̃t = tanh (W xt + U (rt ⊙ ht−1) )

ht = ztht−1 + (1 − zt) h̃t

(3.11)

it is zero, the previous state ht−1 is forgotten and the current state ht “resets” to the current
input.

3.3 Supervised and Unsupervised Learning
In terms of supervision, machine learning methods can be grouped into two categories: su-
pervised and unsupervised learning. In the earlier example on weather prediction, we were
looking at a supervised problem. This means that additionally to the input data x, we were
given labels y as the expected outcome. Generally, supervision comes through a set of known
labels (ground truth) that are associated with each data sample. This defines the task the we
need to learn explicitly, in the sense that given x we need to learn a mapping to predict the
corresponding y.

In unsupervised learning, we are only given the data x and no labels. In this case the task is
defined differently as it is no longer possible to measure and minimize a cost with respect to
expected output y. The algorithm has to discover properties of the data, learn its probability
distribution or group similar elements such as in clustering. Unsupervised learning is attrac-
tive since crowd-sourcing or generating labels for data by hand is very time consuming and
costly. Thus we want to exploit an abundance of data that is already available and can be
easily obtained — usually from the internet.

Currently, hybrid schemes (weakly or semi-supervised learning) are becoming more and
more attractive. The promise is that one can learn a good representation of the data with
very few or no labels using mostly unsupervised learning techniques. From this learned
representation one hopes to reduce the amount of supervision that is necessary to learn a
task. Currently, this is not the case — in almost all areas of machine learning, supervised
methods are still superior to their weakly or unsupervised counterparts. However, recently
more and more progress to match performance has been made.

Finally, the term self -supervised learning has become more popular although it lacks a clear
definition. As it stands now, self-supervision is a subclass of unsupervised learning, where a
proxy-task is derived from the data alone. This usually means removing some aspect from x
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and then learning a function f that recovers this information. The ideas is that, if the pre-text
task is chosen smartly, f learns a good representation of the data.

3.4 Transfer Learning
Transfer learning is the concept of adapting a machine learning model that has been trained
for one task to another task. Maybe the most common occurrence of transfer learning in
computer vision is when initializing a classification network [151, 215, 378] with weights
pre-trained on ImageNet [360]. The features of a network trained to recognize 1000 different
objects from 1.2 million training images are very generic and can then be used as initial-
ization and then fine-tuned on other tasks and data such as semantic segmentation, object
detection or medical images. It is possible to finetune the entire network or just the deeper
layers, thus learning “task-specific” weights.

Transfer learning should not be confused (but sometimes is) with the term domain adaptation.
While transfer learning is concerned about changing the task, i.e. the output, of the model,
domain adaptation describes the change in the input of the model. For example one has
learned depth estimation from synthetic data only; so domain adaption is needed to make
the model work also on real images.
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4.1 Introduction
The goal of scene understanding is to study objects not in isolation, but as part of a scene,
thus understanding the overall layout and appearance, as well as the spatial and semantic
interactions with other objects. In the first part of this dissertation we focus on extracting
information about geometry and semantics from single images. This chapter is based on our
previously published work on monocular depth estimation [227] and is subsequently also
extended to semantic image segmentation.

4.1.1 Motivation
Images are two-dimensional projections of the real three-dimensional world. As such, re-
covering the underlying scene geometry is a crucial part of understanding. In addition
to color, complementary 3D information holds the potential to improve several computer
vision tasks, such as reconstruction [306], semantic segmentation [93], human pose estima-
tion [402] or 3D object pose estimation [442]. Depth estimation is a crucial task in scenarios
where sensors for direct depth measurements are not applicable or not available. Thus it
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comes as no surprise that estimating depth from images has been a well-researched topic in
computer vision; related work will be extensively discussed in Section 4.2.

When it comes to humans, 3D perception is linked to binocular cues, i.e. cues about the
world as seen with both eyes. The underlying principle that allows to perceive 3D struc-
tures and which has also inspired computer stereo vision is disparity. Due to the horizontal
distance between the eyes of humans and most animals, each eye sees the same scene from a
sightly different viewpoint, thus different information about objects’ shapes or boundaries
is projected into each retina. The two different views are processed by the visual cortex
resulting in a 3D model of the environment [26, 121]. Analogously, in computer vision, clas-
sic approaches for depth estimation have relied on multiple-view geometry, estimating 3D
structures from 2D point correspondences in two or more images via triangulation [149].

On the other hand, depth perception from a single view, is an inherently ambiguous problem
as it requires inferring a 3D point from a color value alone. As a projection of the 3D world,
a 2D image corresponds to infinite 3D scene arrangements, which are, for example, subject
to scale. Nonetheless, humans can perceive depth with just one eye using monocular cues,
even though depth perception from monocular vision is indeed hindered when compared
to binocular vision. Examples of monocular cues include motion parallax, relative sizes of
objects or sizes of known objects/landmarks, texture gradients, shading, etc. As our world
is made up of known structures, humans can infer sizes and distances reasonably well from
previous experience In most cases, estimating depth from monocular cues is possible up to a
scale; however, knowledge of an object’s actual size can be used to infer its absolute distance
to the eye/camera.

Likewise, computer vision approaches that aim to infer 3D shapes (Shape-from-X) from
monocular cues only have traditionally relied on motion [413], shading [480], illumination
changes [443] or defocus [393]. It is important to note that although these methods do not
make use of multiple views simultaneously, they still require multiple images of the same
scene. On the other hand, traditional methods to recover depth information from just a
single image often necessitate the use of strong geometric priors [163, 195], symmetry [300,
408] or explicit modeling of monocular cues [366].

Most recently, the revolution brought to computer vision by big data and deep learning has
resulted in numerous learning-based methods — fully supervised or self-supervised — with
unprecedented quality in estimating 3D structure from a single image.

4.1.2 Contribution
In this chapter, we propose a novel CNN architecture to accurately estimate depth from a
single image. The method presented in this chapter was published in [227] and the code is
publicly available1 (2016).

1https://github.com/iro-cp/FCRN-DepthPrediction
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• We introduce a Fully Convolutional Residual Network (FCRN) that extends
the powerful idea of of residual connections [150] to up-sampling convolu-
tional operators; this design yields an encoder-decoder architecture based on
the successful ResNet architecture [150] which was originally proposed for im-
age classification.

• We show that the proposed architecture consists of fewer learnable weights
and requires fewer samples to train than previous work on this task.

• We also investigate different loss functions for the task of depth estimation.
We propose to use the reverse Huber norm as an objective function to train the
network and explain why it is well-suited for this task.

At the time of publication, our method delivered state-of-the-art results for monocu-
lar depth estimation and remains competitive up to date (2020).

KEY CONTRIBUTIONS

The developed architecture is designed to address high dimensional tasks, for example
image-to-image translation problems, with efficiency in mind. Therefore, in addition to
depth estimation, later in this chapter (Section 4.4), we also present an extension of the same
architecture to semantic image segmentation and in Chapter 6 to heatmap-based localization
in scenarios applied to robotics.

4.2 Related Work
Traditional methods for estimating depth were geometric and made use of stereo vision [289,
368, 380] which can yield unambiguous reconstructions of 3D structures via triangulation
from point correspondences in pairs of images. Despite its ill-posedness, there is also a vast
amount of literature related to single-view depth estimation. Since this is also the focus of
our approach, we will extensively discuss the single-view setting here. In absence of stereo
correspondences, earlier methods often rely on geometric assumptions in order to infer the
3D structure of a scene. More recently, there has been an abundance of deep methods that
tackle this problem by learning from a large amount of training examples; these have been
proven very powerful in monocular depth estimation, pushing the state of the art. This is
also partly due to the availability of large-scale, high-quality RGB-D data of unconstrained
environments, facilitated by the production of sensors such as Microsoft Kinect or LiDAR.

Shape-from-X
Shape-from-X is a family of methods classified as single-view, meaning that they do not
make use of multiple views at the same time. However, these methods use multiple images
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of the same scene that might come from different viewpoints, lighting conditions, etc., taken
in different points in time. Structure-from-motion (SfM) [104, 413, 444] is arguably the most
popular approach. SfM methods can reconstruct a rigid scene from multiple images (taken
at various viewpoints of the same scene) and point correspondences among them.

Other environmental assumptions have also been used to infer 3D structure. In shape-from-
shading [166, 480] one tries to infer the shape of an object or the geometry of the scene from
the observed shading. This often requires either multiple views or multiple images from the
same view with different lighting conditions.

Shape-from-symmetry [108, 299, 379, 407] makes use of the information contained in single
images of symmetric objects. A key step here is to discover the correspondences between
symmetric points on the object. Most work assumes these are given through user input,
though in [379] symmetries and correspondences are detected using feature descriptors in
the image. Very recently, the shape-from-symmetry has been brought back using deep net-
works to learn the 3D shape of whole object categories without supervision [446].

Classic Approaches
Classic approaches have used graphical models such as Markov Random Fields (MRF) to
address the problem of depth estimation from a single image. In the pioneering work of
Saxena et al. [366], depth is estimated by extracting local features representing monocular
cues and a MRF is trained to model neighbor dependencies in multiple scales. Their work
is later extended to Make3D [365], a method for 3D reconstruction and an accompanying
RGB-D dataset that is now a commonly used benchmark for depth estimation. Liu et al.
[255] incorporate semantic understanding into depth estimation by using predicted labels
to direct the geometric reconstruction. A separate depth estimation model is trained for each
semantic category and the predictions are then combined using another MRF. In a more re-
cent approach, Ladicky et al. [225] jointly predict semantics and geometry in a classification
approach, i.e. predicting the likelihood of a pixel to belong to a certain semantic category
and canonical depth.

Instead of inferring absolute depth values, Hoiem et al. [161, 163] propose a statistical
method to estimate coarse geometric categories (sky, ground, vertical) depending on the
orientation of image regions and use this rough estimation to reconstruct 3D models of out-
door scenery. Subsequently, the same authors focus on occlusion boundaries to improve
depth estimation for cluttered scenes [164]. Similarly strong assumptions are made about
the structure of indoor environments in [77], that finds floor-wall boundaries to yield a box-
like 3D reconstruction; however, this does not hold true for cluttered scenes. These methods
are consequently related to estimating scene layout, which is also addressed in contempo-
rary work [140, 154, 165].

Karsch et al. [190] follow a data-driven non-parametric approach to depth estimation. The
general direction of non-parametric methods is to search a large RGB-D database for the
closest neighbors to a query image and combine their corresponding depth maps to infer
the final depth map for the query image. The retrieval of similar RGB images is feature-
based, using handcrafted features such as GIST [309]. Karsch et al. [190] then warp the
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retrieved images and depth maps using SIFT Flow [256] and globally optimize the final
depth map. This approach inspired subsequent work. A computationally more efficient
approach is investigated in [211], by replacing SIFT Flow with median filtering over the
retrieved depth maps and cross-bilateral filtering on the combined depth. Later on, Liu et al.
[258] further improve performance by combining non-parametric methods and graphical
models, in particular, optimizing the fusion of the retrieved depth maps with a discrete-
continuous graphical model. These retrieval-based approaches rely on the assumption that
photometric similarities translate to similar absolute depth values.

Fully Supervised Approaches
In 2014, the seminal work of Eigen et al. [94] introduces a deep learning approach to monoc-
ular depth estimation. They propose a coarse-to-fine scheme, which is later also extended
to surface normals and semantic segmentation [93]. Our work is inspired by the potential
that this method demonstrated and further addresses network efficiency.

Since then, there has been a large body of work that learns depth predictors from single
images using RGB-D data. The general idea is to learn a mapping from color images to
depth maps, supervised by ground truth depth data. Most of the related work contributes
architectural improvements, gradually advancing the state of the art [64, 111, 148, 168, 240,
455]. Some methods focus on the combination of deep architectures and Conditional Ran-
dom Fields (CRFs), either as a post-processing step [238, 298, 432], operating on CNN fea-
tures [257] or integrated into the CNN for combining multi-scale information [455, 457]; in
[350] shallow networks are combined with random forests. While the majority of methods
address depth estimation as a regression problem, others formulate it as a classification [51,
461] or ordinal regression problem [111] or employ adversarial training [58]. To address
uncertainty in the context of depth estimation, Kendall and Gal [196] follow a Bayesian ap-
proach, while Yang et al. [461] directly predict multi-modal distributions.

Instead of data acquired by depth sensors, some approaches train networks for monocular
depth estimation using weakly labeled data or alternative means of supervision. For ex-
ample, sparsely annotated ordinal relations (DIW) are used for learning relative depth from
web data in [61]. Li and Snavely [246] generate ground truth data (MegaDepth) for web pho-
tos of landmarks using SfM and multi-view stereo techniques; Chen et al. [60] collect depth
information from YouTube videos via SfM and propose a network to judge whether the pro-
duced depth quality is acceptable; in [449] disparity maps are automatically generated from
stereo pairs on the web (ReDWeb); these datasets are then used to supervised relative depth
estimation networks. Other use synthetic data and domain adaptation techniques to bridge
the gap between synthetic and real data [21, 138, 305].

Unlike relative-depth methods, all of the previously discussed absolute-depth methods train
networks with implicit environmental assumptions, using either indoor or outdoor datasets,
but not both simultaneously. A recently emerging direction is to develop a single model for
both settings. Li et al. [243] tackle this task with an attention mechanism and by recasting
the output as depth classification. Facil et al. [100] propose a method that takes known
camera intrinsics into account and allows for generalization across different camera models
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and datasets. Very recently, Lasinger et al. [231] take a step further and propose a set of loss
functions for jointly training a model using diverse datasets and 3D movies in a multi-task
learning fashion. At test time, the model is able to transfer to previously unseen datasets.

Furthermore, there exist several methods that jointly learn depth prediction and seman-
tics [181, 185, 197, 298, 432] or explore other multi-task settings [201, 330, 456].

Self-supervised Approaches
In most cases, fully supervised methods require the acquisition of accurate ground truth
depth data, which is often challenging or expensive — especially in the case of outdoor
scenery. For this reason, learning depth in a self-supervised manner, i.e. using only image
data, has been a very active field in recent years. In this setting, self-supervision refers to
training by image reconstruction and the type of data used is either stereo image pairs, stereo
video streams or monocular video streams. In the case of monocular video, due to the lack
of a stereo setup, the camera pose between frames is unknown, which makes the problem
even less constrained and depth can be only estimated up to scale. Stereo data provides an
easier setting also due to the concurrent acquisition of images, which implies a momentarily
static scene. In both cases, depth typically arises from a latent representation which is used
to warp an image and synthesize a nearby view by minimizing the photometric reprojection
error.

Stereo Data Some of the first approaches to propose this setup are [452] that uses 3D
movies to train a model for disparity estimation, [116] that uses stereo pairs as supervision
for learning continuous depth and [126] that further improves performance with a left-right
consistency constraint. Further advances include adversarial training [4, 320] or extending
to trinocular views [322]. In [224], self-supervised learning is combined with full supervi-
sion from sparse depth maps.

Monocular Sequences Zhou et al. [488] propose to use monocular video, treating succes-
sive frames in the video sequence as pairs of a (small-baseline) stereo setup and assuming
mostly static scenery. In their approach, depth and camera motion are estimated and used
to warp input views to the target view, which is used as supervision. Thus, this method
is one of the first instances of deep SfM, which we will also thoroughly discuss in Chap-
ter 5. Such approaches are largely enabled by the differentiable bilinear sampling module
proposed in [180]. Yin and Shi [471] improve upon this setting by decoupling rigid and
non-rigid motion via optical flow estimation, thus being able to better account for dynamic
objects. Optical flow is also jointly estimated in [63, 266, 336, 492]. To improve the estimated
geometry, geometric consistency objectives are proposed in [37, 273] and consistency with
surface normals is used in [465], while [319] uses cycle consistency. To address the depth
scale ambiguity, [244, 477] use both stereo and temporal information. Using a differentiable
visual odometry module, Wang et al. [427] show that it is possible to learn depth without
predicting the camera motion.

When training with self-supervision and geometric/photometric constancy objectives, the
performance of models is generally lower than when directly regressing depth with super-
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vision. To tackle the challenges that arise in the self-supervised setting and bridge the gap
to fully supervised performance, several methods have used combined forms of supervi-
sion, in particular with dense or sparse depth “ground truth”. One such example is the
work by Kuznietsov et al. [224]. Some methods use SfM [208], visual odometry [14, 464]
or stereo matching [410] to obtain depth measurements from monocular videos or stereo
images and use that as an additional supervisory signal. In [437] depth hints obtained via
stereo matching are used in the loss function only under the condition that they reduce the
photometric reprojection error. On the other hand, [138, 268, 482] combine self-supervision
with synthetic data.

Enabled Applications
Recovering depth and thus scene geometry is a relatively low-level task in the hierarchy of
computer vision applications. This means that once it can be carried out sufficiently well, it
enables plenty of higher-level tasks that depend on a three-dimensional understanding of
the scene, for example in self-driving cars or robotic grasping.

Depth estimation can also be useful in medical applications such as in endoscopy [259, 275]
or to aid visually impaired users [31]. Further, cne can use the estimated depth map to
create compelling visual post-processing effects, such as artificial depth of field effects (de-
focus) or the Ken Burns effect when animating a camera pan for a still image [308]. Depth
estimation can also be used in conjunction with, or to enhance SLAM, as we will discuss ex-
tensively in Chapter 5. Since depth sensors, especially laser scanners, like LiDAR, produce
very sparse maps, a considerable amount of research has also been devoted to depth map
completion/densification [269].

Going one step further, in [82] we extend the 3D understanding of the scene from a single
depth map to two depth layers (foregound/background), thus completing objects that are
occluded by others. This idea is further extended by Dhamo et al. [81] to several object-
driven layers. This might enable robots or other agents that need to navigate the scene and
understand the 3D layout beyond a single depth map.

4.3 Depth Estimation from a Single Image
Next, we discuss our approach for monocular depth estimation and in Section 4.4 its ex-
tension to semantic segmentation. In Section 4.3.2 we propose a deep learning architecture
suitable for both tasks, elaborating on the specific design choices and layers. In Section 4.3.3
we discuss the objective function used to train our model for depth estimation.

4.3.1 Fully Connected versus Fully Convolutional
During the time this work was carried out (2016), the most influential CNN architectures
were developed for image classification. This essentially implies an encoding nature for
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these architectures, i.e. mapping input images into feature vectors through repeated convo-
lutions and pooling operations which cause the feature maps to shrink spatially. Stacking
convolutional and pooling operations creates deeper models and is necessary for modeling
higher levels of abstraction in the features, but also for obtaining sufficiently large receptive
fields and consequently allowing the model to capture global context with respect to the
input. Typically the head of the network consists of one or more fully-connected layers.

However, this type of architecture is not suitable for dense (per-pixel) prediction tasks. The
first work to address depth estimation with deep neural networks [93, 94] employs fully-
connected layers and the resulting output is subsequently reshaped to be two-dimensional.
In order to increase the resolution of this coarse output, non-learnable upsampling (e.g. bi-
linear) is applied. The upsampled output is fused together with the RGB input followed by
additional convolutional layers for further refinement. This approach closely follows “classi-
fication” architectures in that it does not get rid of fully-connected layers and consequently
vector outputs. However, since the upsampling operation is differentiable the full model
(coarse and fine stages) can be trained end-to-end.

There exist few instances of fully convolutional architectures prior to our approach. Long et
al. [260] directly treat the fully-connected layers of existing architectures [215, 378] as 1 × 1
convolutions which allows the model to operate on arbitrary input resolutions. This results
in small-resolution feature maps, e.g. 8 × 8, which are then upsampled using deconvolutional
operators, i.e. by reversing the forward and backward passes of a standard convolution. The
authors show that upsampling in multiple stages is more effective than a single increase of
resolution by an equal amount. Some of the first occurrences of deconvolutional networks is
by Zeiler et al. for unsupervised learning in [476] and visualizing already trained classifica-
tion networks in [475]. Dosovitskiy et al. [88] formulate the upsampling operation as a 2× 2
unpooling, which doubles the resolution of feature maps, followed by a 5 × 5 convolution.

4.3.2 Fully Convolutional Residual Network (FCRN)
In contrast to [93, 94], we introduce a fully convolutional network for depth estimation.
There are two important aspects to take into consideration. The first one is the effect that
the absence of fully connected layers has on the receptive field. The second is to ensure an
overall efficient network design, which could allow such models to be used in real-world
real-time applications.

Receptive Field
Intuitively, monocular cues that exist in the images hold important information about the
geometry of the scene that the model can exploit while learning from a lot of examples.
However, most monocular cues appear globally in the image, and not in isolated local re-
gions. Thus, the receptive field, i.e. the input region that a given neuron is connected to,
becomes an important aspect to consider in monocular depth estimation. In absence of full
connections, a full receptive field cannot be guaranteed.
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Figure 4.1 FCRN architecture. The architecture extends ResNet-50 to a fully convolutional model. The fully-
connected layer is replaced by the proposed up-sampling layers, which result in an output of (approx-
imately) half of the input resolution.

Next, we compute the receptive fields of successful ImageNet architectures, that are typi-
cally used in depth estimation through transfer learning. We calculate the receptive fields at
the last convolutional layer, before any full connections which would automatically yield a
full field of view. The receptive field at the last layer of AlexNet [215] is 151×151 pixels with
respect to the input. Similarly, each neuron at the last convolutional layer of VGG-16 [378]
is connected to 276×276 input regions. ResNets [150] have opened the way for even deeper
architectures, which have — as a by-product — larger receptive fields; ResNet-50 reaches a
receptive field of 483 × 483 pixels.

Eigen et al. [94] train their model with an input size of 304 × 228 pixels. We adopt the same
input resolution for the sake of fair comparisons. Given this input resolution, ResNet-50
achieves a full field of view without the need for fully connected layers, which is a desirable
property.

Given an input size of 304 × 228, the layers with the smallest spatial dimensions
(res5a-c) are 10 × 8 in resolution and consist of 2048 feature channels. As we show
later, our fully convolutional model that extends ResNet-50 yields an output resolution
of 160× 128 pixels. To achieve the same output size through full connections on top of
res5c we would require 10 ·8 ·2048 ·160 ·128 ≈ 3.355 billion parameters for this layer
alone. Hence, full connections limit the capabilities of deep networks in problems
with high dimensional outputs, due to the rapidly increasing number of parameters.
This could not only lead to detrimental over-fitting, but can even be prohibitive from
a hardware perspective.

NOTE: Number of parameters
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Being able to achieve a full field of view with fully convolutional models is important for
the task of depth estimation, as well as for other dense tasks that require reasoning at global
context. However, it is difficult to study the effect of the receptive field on this task in isola-
tion, as it cannot be easily decoupled from the higher discriminative power that each new
architecture is equipped with (ResNet > VGG > AlexNet).

Architecture
We build our model as a natural extension of ResNets to fully convolutional architectures,
by transferring the idea of residual connections to upsampling operations. The resulting
model is an encoder-decoder or U-shaped architecture that consists of residual blocks. We
hereby refer to this architecture as a fully convolutional residual network (FCRN). A de-
tailed representation of FCRN can be seen in Figure 4.1. The size of each feature volume
that is denoted in the figure is the result of the preceding operations given spatial input di-
mensions of 304 × 228 pixels. The encoding part of the architecture is based on ResNet-50
and initialized with weights pre-trained on ImageNet [360]. Our contribution lies in the de-
coding part, which consists of successive up-sampling layers that progressively increase the
spatial dimensions of the feature maps and finally yield a dense output. Next, we explain
the design of the decoding part in detail.

Up-Projection Layer
As previously discussed, deconvolution performs the reverse operation of a convolution
and is often used for increasing the spatial dimensions of feature maps with learnable pa-
rameters. We adopt the formulation of Dosovitskiy et al. [88], where the upsampling oper-
ation is described as a 2 × 2 unpooling followed by a convolution with 5 × 5 kernels and
ReLU activation. We refer to this operation as up-convolution; it can be thought of as the
reverse operation of convolution and pooling which is typically used in the encoding part
of architectures.

In s× s unpooling, the resolution of the feature maps is increased s times by interleav-
ing the elements of the input with s − 1 zeros. When s = 2, the size of the output is
double in resolution. In [88] each element of the input is placed in the top left corner of
a s × s zero matrix, while in [475] “switches” from the max-pooling operations of the
encoder are used to place the elements in the corresponding cell during upsampling.

NOTE: Unpooling

We extend this idea with residual connections for seamless integration with ResNets [150].
We refer to this new layer as up-projection, in consistency with the projection connection intro-
duced by He et al. [151], which can be seen in Figure 4.1. We thus follow the up-sampling op-
eration with a 3×3 convolution and introduce a second branch with another up-convolution.
Its output is summed element-wise with the output of the main branch. As the outputs need
to be of the same size (both should be upsampled), the unpooling operation is performed
prior to the residual layer, but the subsequent 5 × 5 convolutions split into the different
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4.3 Depth Estimation from a Single Image

Figure 4.2 Comparison of upsampling blocks. (a) Standard up-convolution. (b) Faster up-convolution. (c) The
proposed up-projection. (d) Faster up-projection.

branches and do not share weights. The up-convolution and up-projection layers are shown
in Figure 4.2 (a) and (c) respectively.

By design, each up-projection layer doubles the input resolution. With every up-sampling
layer, we halve the number of channels in the output. We stack four such blocks, resulting
in 16 times upscaling, while the encoding part of our architecture (ResNet) has a total stride
of 32. Assuming an input image of dimensions W × H, the bottleneck layer would have a
resolution of W/32 × H/32 and, accordingly, the output W/2 × H/2. As an aside, the input
dimensions that we use as an example in Figure 4.1 do not divide 32 exactly, thus the output
resolution is not exactly half. We did not observe a gain in performance when up-convolving
toW×Hwith a fifth layer, so we omit that in favor of computational efficiency; the last scale
up can be achieved with bilinear upsampling instead.

Faster Up-Convolutions
We further propose a computational modification to the up-convolutional layer, which re-
sults in approximately 15% global speed-up during training; this modification is naturally
extended to up-projections as well.

Our main observation is that 2 × 2 unpooling yields feature maps that consist of 75% zeros
(more for s > 2), which causes a lot of wasteful operations for the subsequent convolution.
In Figure 4.3, we present an alternative computation which is mathematically identical to
the up-convolution with 2 × 2 unpooling, 5 × 5 convolution. Instead of convolving the
upsampled feature map with the 5 × 5 kernels, we perform a set of “smaller” convolutions
on the lower resolution map (without unpooling). The kernel sizes are decided by the non-
overlapping pixel groups and offsets δ = (δx, δy) from the top left corner: (A) 3×3, δ = (0, 0),
(B) 2 × 3, δ = (1, 0), (C) 3 × 2, δ = (0, 1), (D) 2 × 2, δ = (1, 1). These are denoted with
different colors in Figure 4.3. We obtain exactly the same output as with the up-convolution,
by feature interleaving, i.e. spatially alternating the elements of all resulting feature maps, as
shown in the same figure. The faster variants of the up-convolution and up-projection layers
are shown in Figure 4.2 (b) and (d) respectively.
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Figure 4.3 Faster up-convolution. Top part: 2×2 unpooling, followed by a 5×5 convolution, resulting in a feature
map which is doubled in width and height. In a sliding window fashion, depending on the position
of the filter, there are four unique constellations (A,B,C,D), ignoring zero values. Bottom part: one
could convolve the low-resolution feature map with the four distinct filters — their shape is decided
by the non-zero pixel groups of the high-resolution feature map. It is then possible to interleave the
elements of the resulting feature maps to reach an equivalent outcome as the top part, while avoiding
zero multiplications. Note: A,B,C,D in the kernels only indicate pixel groups; the actual weight values
are not uniform.

4.3.3 Loss Function
Commonly used for optimization in supervised regression problems is the L2 loss func-
tion:

L2(y, ỹ) = ∥ỹ− y∥2
2 =

N∑
i=1

(ỹi − yi)
2, (4.1)

which computes the squared distance between prediction ỹ ∈ RN and ground truth data
y ∈ RN (with N being the number of pixels/elements in y).

However, the minimization of L2 assumes (optimally) data that follows a Gaussian distri-
bution. As one can see in Figure 4.4, this is not the case for the depth value distributions of
common RGB-D benchmarks, which are heavy-tailed.

Far-ranged depth values are not only scarce but also less reliable when pushing to-
wards the maximum working range of sensors, such as Kinect [199]. Kinect v2 has a
maximal sensing distance of 8 meters, but works optimally between 1.5 and 4.5 meters.

NOTE: Depth sensing
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4.3 Depth Estimation from a Single Image

(a) NYU Depth v2 (b) Make3D

Figure 4.4 Depth distribution in common benchmarks (a) NYU Depth v2 and (b) Make3D. We plot the his-
tograms of discretized depth values. The x-axis indicates depth in meters. In (b) the two spikes around
80m correspond to sky pixels.

Hence, in depth estimation L2 might not be the optimal choice. Eigen et al. [94] train their
model with L2 but overcome this issue by predicting log-depth instead, effectively trans-
forming a log-normal distribution to Gaussian.

Instead, we propose to use the reverse Huber function, which is also known as Berhu. In
[312, 493], Berhu has been used as a regularizer in combination with the robust Huber
norm as objective. Here, we use it as the objective function, thus minimizing LB(y, ỹ) =∑N
i=1 B(ỹi,yi) with:

B(ỹi,yi) =


|ỹi − yi| if |ỹi − yi| ⩽ α,

(ỹi − yi)
2 + α2

2α
otherwise.

(4.2)

𝑥

𝑓(𝑥)

ℒ2

ℒ1
ℒ𝐵

Figure 4.5 The Berhu function LB for α = 1
in comparison to L2 and L1.

According to Equation (4.2), the loss
amounts to the L1 norm when the absolute
difference between prediction and ground
truth is smaller than some constant α and
switches to quadratic when the difference is
large, lying outside the range [−α,α]. Equa-
tion (4.2) is continuous and first-order dif-
ferentiable at α, where the transition be-
tween the L1 norm and the L2 norm hap-
pens. Figure 4.5 shows a plot comparing
these three functions.

We set α = 0.2 · maxi |ỹi − yi|, where i in-
dexes all pixels with a valid depth in the
batch. Thus, at each training step we adap-
tively set the constant α to penalize values that are closer to the ground truth with L1 and
larger errors with L2, according to the maximum error that is observed in the current step.
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While Berhu behaves as L2 for higher residuals, it increases, at the same time, the back-
propagated costs of smaller residuals with L1. In other words, predictions that are already
very close to the ground truth depth value are encouraged towards zero with a larger weight,
that is, in Figure 4.5, when α is below one meter. This manifests itself more in image regions
at a closer range, since then the residuals will also be smaller — for example it is much more
likely to have an error of 0.1m when the target object surface lies at 2m than 8m — which
coincides with the density of the distributions in Figure 4.4. It is important to note that
the loss is not a robust loss, i.e. it does not ignore outliers (in this case, long ranges); this
is the effect that L1 alone would have on large residuals. Empirically, we observe that at
the beginning of training the constant α is around 2m and quickly reduces to 1m by the
end of the first epoch. At the same time, the percentage of pixels for which |ỹi − yi| ⩽ α

begins at 50% but increases to approximately 80 − 85% at the later stages of training. Thus,
the majority of small residuals will be penalized with L1, however for the large residuals a
stronger L2 gradient will be applied.

4.4 Semantic Segmentation
As discussed earlier in the introduction, holistic understanding of a scene requires the inte-
gration of different types of information that can be extracted from an image, both geometric
and semantic. This includes, for example, recognizing different object categories which are
present in the scene, as well as their position, orientation, interactions, etc.

Until now, we have discussed the extraction of 3D information from a single image, thus
addressing the geometric component of scene understanding. The estimation of metric depth
provides information about how different objects are arranged spatially with respect to each
other but also information about the scene layout as a whole. However, the notion of objects
here is still missing; using depth information alone we cannot accurately distinguish scene
elements from each other or even identify them based on functional properties or other
visual attributes. Thus, in this section we extend the proposed architecture to the task of
semantic segmentation, i.e. assigning each pixel of the image to a semantic label from a pre-
defined set of categories.

The abstraction of class labels can vary. For example in indoor datasets, commonly an-
notated classes include wall, floor, door, etc., but given a finer semantic detail it is also
possible to encounter classes such as pillow, book, clothes, i.e. smaller objects that are
found in a household. Often many objects might look similar although assigned to dif-
ferent categories — for example dining table and desk — or overlapping — for example
blinds and window.

NOTE: Common semantic categories

No matter the level of abstraction, semantic segmentation of the scene delineates detailed
boundaries of objects as well as classifying them, which is useful in many practical scenarios
in the context of robotics or augmented reality.
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4.4.1 Architecture Modification
When adapting the architecture which we have presented in Section 4.3 to semantic segmen-
tation, only slight modifications are necessary. Since semantic segmentation can be thought
of as pixel-wise classification, the number of channels in the output and therefore the num-
ber of the convolutional filters in the very last layer needs to change to match the number
of semantic categories C, that is ỹ ∈ RW

2 ×H2 ×C. To convert the raw output into a probability
distribution over class labels we use softmax(·) : RC → RC:

softmax(ỹi)c =
exp ỹi,c∑
j exp ỹj,c

, (4.3)

where c = 1, . . . ,C indexes the channels of the output. Now, each pixel i of the output can
be interpreted as a probability vector, with all its values lying between 0 and 1 and all vector
values summing to 1.

The architecture can be trained by minimizing the per-pixel cross-entropy loss between the
ground truth and the predicted distributions, which is equivalent to minimizing the nega-
tive log-likelihood:

LCE = −
1
N

∑
i

∑
c

yi,c log(softmax(ỹi)c). (4.4)

The use of the exponential function in softmax is convenient when training with log-
likelihood. In practice, in current deep learning frameworks, instead of Equation (4.3)
and Equation (4.4), the softmax function and log-likelihood calculation are merged in
a more numerically stable formulation.

NOTE: Softmax cross-entropy

4.5 Experimental Results
We experimentally evaluate the proposed architecture on two benchmark datasets, NYU
Depth v2 [306] and Make3D [365]. In this section, we present an ablation study with re-
spect to architectural components and objective functions. We then compare our method to
prior work in monocular depth estimation and semantic segmentation of indoor scenes and
showcase how predicted depth maps can replace range sensors in different applications.

Datasets
We experiment with datasets of both indoor and outdoor scenes (but train separate models
for the two cases).

NYU Depth v2 The raw NYU Depth v2 dataset consists of a total of 464 RGB-D sequences
of indoor spaces, which are captured with a Microsoft Kinect. There exist 249 training and
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215 test scenes. When training the depth prediction model, we only need single frames (no
temporal information). We pre-process the data using the toolkit that is provided with the
dataset to synchronize and align the image and depth data. Because subsequent frames are
very similar, we sample every tenth frame resulting in a subset of 12,000 RGB-D pairs that
we use for training the network for depth estimation.

Additionally, there exists a small subset of NYU Depth v2 which consists of 1449 images.
This subset contains depth maps where previously invalid depth regions (e.g. object bound-
aries or across specular surfaces and windows) are filled in using a colorization technique [236].
The subset is split into 795 training and 654 testing images. The latter is the set commonly
used among depth estimation methods for reporting and comparing performance on NYU
Depth v2.

Further, the aforementioned subset is annotated with dense semantic labels spanning 800
object categories. Thus, we use this small dataset for training and evaluating the semantic
segmentation network as well.

Make3D A commonly used dataset for outdoor scene depth estimation is Make3D [365].
This dataset consists of 400 training and 134 testing images which are acquired using a cus-
tom 3D scanner. The RGB images have a resolution of 1704 × 2272, however, due to the ca-
pacity of the 3D scanner, the corresponding depth data have a limited resolution of 305× 55
pixels.2

Error Metrics
Before moving on to the experiments, we introduce the evaluation metrics that are used in
the remaining of this section. We compute the following metrics:

• Absolute relative error (rel):
1
T

∑
i

|yi − ỹi|

yi

• Root mean square error (rmse):

√
1
T

∑
i

(yi − ỹi)2

• Mean log-error (log10):
1
T

∑
i

| log10(yi) − log10(ỹi)|

• Root mean square log-error (rmse(log)):

√
1
T

∑
i

(log10(yi) − log10(ỹi))
2

• Accuracy based on a threshold δj, that is the % of ỹi such that: max
(
yi

ỹi
,
ỹi

yi

)
< δj

with δj = 1.25j and j ∈ {1, 2, 3}.

T is the total number of (valid) ground truth depth values in a test set.

2More recently, due to the limitations of the depth sensor used for acquisition in Make3D, most methods have
turned to KITTI [117] for training and only use Make3D for evaluating generalization.
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4.5.1 Experiments on Depth Estimation
Next, we report the performance of several models trained for the task of depth estimation
on the two datasets.

Implementation Details
In all cases, the encoder of the architecture is based on an existing classification network
(AlexNet [215], VGG [378], ResNet [151]) and initialized with the weights of the correspond-
ing model pre-trained on the ImageNet classification challenge data (ILSVRC) [360]. All
new layers are instead initialized with weights sampled from a Gaussian distribution of
zero mean and variance equal to 0.01.

We use offline data augmentations to artificially increase the number of training samples,
i.e. we create a fixed set of randomly transformed samples and use this for training the
models. We augment NYU Depth v2 from 12,000 to approximately 95,000 samples (8 trans-
formations per sample) and Make3D from 400 to approximately 15,000 samples. For NYU
Depth v2 we first downscale all data to 320× 240 pixels and then take a center crop equal to
network’s input resolution. Then, we use the transformations proposed in [94]:

• Rotating in-plane by a random angle of [−5, 5] degrees.
• Scaling with a factor of [1, 1.5]. Scaling is equivalent to a zooming effect, i.e. when

scaling by a factor the depth ground truth must be divided by the same factor, making
the scene “move closer” (for s > 1).

• After scaling and rotation, we randomly crop a patch that matches the input resolution
(304 × 228 for NYU Depth v2).

• Color augmentations with a multiplicative factor in [0.8, 1.2] randomly sampled for
each channel.

• Horizontal flipping with 50% probability.

All augmentations (except color augmentations) are applied to both the input image and the
depth ground truth.

Unless random cropping is done symmetrically around the center of the image, it does
not preserve the scene geometry (as it effectively changes the camera), though Eigen
et al. [94] observed that small augmentations benefit the network training overall. This
is why we make crops as large as possible, thus retraining most of the image after the
crop while allowing only small translations. If, instead, we allowed large scale factors
(over 1.5) cropping patches of 304 × 228 would give image regions corresponding to
only a small portion of the original image and, if the crop is further away from the
image center, the associated depth values would be quite off.

NOTE: Preserving scene geometry

We use the same augmentations for Make3D, except for the random cropping. Prior to
augmentation we resize all data to 345 × 460, as originally suggested by Liu et al. [258],
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Architecture Loss #params rel rmse log10 δ1 δ2 δ3

AlexNet FC L2 104.4 × 106 0.209 0.845 0.090 0.586 0.869 0.967

LB 0.207 0.842 0.091 0.581 0.872 0.969

UpConv L2 6.3 × 106 0.218 0.853 0.094 0.576 0.855 0.957

LB 0.215 0.855 0.094 0.574 0.855 0.958

VGG-16 FC L2 113.8 × 106 0.288 0.132 0.105 0.362 0.658 0.832

LB 0.180 0.731 0.078 0.659 0.912 0.980

UpConv L2 18.5 × 106 0.194 0.746 0.083 0.626 0.894 0.974

LB 0.194 0.790 0.083 0.629 0.889 0.971

ResNet-50 FC LB 359.1 × 106 0.181 0.784 0.080 0.649 0.894 0.971

FC (64 × 48) LB 73.9 × 106 0.154 0.679 0.066 0.754 0.938 0.984

UpConv L2 43.1 × 106 0.139 0.606 0.061 0.778 0.944 0.985

LB 0.132 0.604 0.058 0.789 0.946 0.986

UpProj L2 63.6 × 106 0.138 0.592 0.060 0.785 0.952 0.987

LB 0.127 0.573 0.055 0.811 0.953 0.988

Table 4.1 Comparison of different architectures on NYU Depth v2. We compare different encoders
(AlexNet [215], VGG-16 [378], ResNet-50 [151]), up-sampling strategies (FC, UpConv, UpProj) and
loss functions (L2,LB). For the reported errors rel, rmse, log10 lower is better, whereas for the accura-
cies δj < 1.25j higher is better.

which is the resolution we also use for evaluation. However, as input to the network, we
downsample to half resolution, due to hardware considerations.

In all cases, we use bilinear upsampling to resize the output of the network to the resolution
used for evaluation by previous methods.

Training Details
We train separate models for indoor and outdoor scenes. In both cases, we optimize using
stochastic gradient descent with momentum of 0.9 in batches of 16 samples. The starting
learning rate is 0.01, which we decay when the validation error plateaus. We also apply
weight decay (L2 regularization) equal to 0.0005 and dropout (in the penultimate layer) with
probability 0.5. We train on NYU Depth v2 for 25 epochs and on Make3D for 30 epochs,
but select the model at the epoch with the best validation error. During training we only
compute and back-propagate the cost for valid depth pixels, where y > 0.

Ablation Experiments
In Table 4.1 we study the effect of the encoder and decoder of the architecture as well as
the choice of the objective function on the overall performance. As the encoder we com-
pare three architectures: AlexNet [215], VGG-16 [378] and ResNet-50 [151]. As the decoder
(which is the main contribution of this work), we compare for each base architecture a vari-
ant using fully connected layers (FC) against progressive upsampling with up-convolutions
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(UpConv). Finally, for the ResNet-based models, we also evaluate our fully convolutional
residual variant using the proposed up-projection blocks (UpProj).

Encoders It is easy to notice that, generally, with improved network design and increased
classification accuracy on ImageNet (ResNet > VGG > AlexNet) comes improved perfor-
mance on depth estimation as well. Thus, all ResNet variants perform better than the previ-
ous models.

Better ImageNet architectures also yield superior performance when transferred (fine-
tuned partly or in whole) to other tasks: this has been a common observation across
various tasks in the computer vision literature during the last few years. It was not,
however, until very recently that it was systematically studied by Kornblith et al. [213],
although the evaluation was only done for classification tasks.

NOTE: How do ImageNet architectures transfer to other tasks?

As an aside, we have also experimented with randomly initialized weights and found that
ImageNet-trained features are useful and constitute an important starting point for depth
estimation, especially in smaller datasets. All architectures (especially deeper ones) exhibit
very slow convergence and a significant drop in performance when trained from scratch
with random initialization.

Decoders Furthermore, we evaluate the effect of the decoder on both the performance and
the number of parameters. In Table 4.1, unless otherwise specified, FC layers are trained
with the same output resolution as the fully convolutional variant.

For AlexNet, FC layers result in slightly better performance than up-convolutions, which
could be accredited to the limited receptive field of this model, as discussed in Section 4.3.2.
Intuitively, this does not allow the model to exploit global information. However, when
combined with VGG-16 or ResNet-50, our up-sampling layers show a dramatic improve-
ment over the fully connected variants. The residual connections in UpProj yield a further
improvement in performance in comparison to UpConv.

We also experiment with two fully-connected variants on top of ResNet-50, one of which
yields a lower output resolution of 64×48 pixels. We also observe that this lower-resolution
model is better by a significant margin — which demonstrates the difficulty of training FC
layers as the resolution increases. In addition to the performance gain, we note the signifi-
cant reduction of network parameters when replacing fully connected layers with the fully
convolutional setup. We can now obtain a high output resolution while using only small
convolutional filters, which is necessary for scalability in several image-to-image transla-
tion problems. This is an important consideration given hardware limitations (e.g. limited
GPU memory). Another reason is that models with a large number of parameters are much
more difficult to optimize with limited data and are prone to over-fitting (as suggested by
the performance drop).
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RGB Image AlexNet VGG ResNet (FC) FCRN Ground Truth Eigen & Fergus

Figure 4.6 Depth predictions on NYU Depth v2. We compare the qualitative results among baselines AlexNet
(UpConv), VGG-16 (UpConv), ResNet-50 (FC), and the proposed FCRN. We further compare to the
publicly available predictions of Eigen and Fergus [93]. In the colormap, blue is near, while red is
far. For better comparisons, all predictions are shown with respect to the ground truth colormap, thus
respecting the real scale.

Loss function We train all models with two different objectives. In all experiments in
Table 4.1, the Berhu loss LB results in better performance than L2 and the difference in
relative error is bigger. The relative error also puts more weight on closer-range pixels than
longer-range pixels, thus the improvement due to the choice of the loss function is more
prominent here.

Computation time We also compare the processing time of a single up-convolutional block
(1.5 ms) with our up-projection (0.14 ms), during inference on a single image. The speed up
is approximately 10×. This is higher than the theoretical speed up of 4×, which is likely due
to using smaller filter sizes as well. Overall, one full forward pass on a single image takes
55ms with the proposed speed up and 78ms with up-convolutions. These experiments were
carried out on a single GPU, NVIDIA GeForce GTX TITAN X (Maxwell architecture). Real-
time processing speed is a major enabling factor for 3D reconstruction and SLAM, which we
discuss in the following chapter.

Comparisons to Prior Work (NYU Depth v2)
We compare the performance of our best model (FCRN) with previous work in Table 4.2,
setting a new state of the art. It is important to note that previous work often trains on
different amounts of data. For example, [93, 94] train on the full NYU Depth v2, while the
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NYU Depth v2 rel rmse rmse(log) log10 δ1 δ2 δ3

Karsch et al. [190] 0.374 1.12 - 0.134 - - -

Ladicky et al. [225] - - - - 0.542 0.829 0.941

Liu et al. [258] 0.335 1.06 - 0.127 - - -

Li et al. [238] 0.232 0.821 - 0.094 0.621 0.886 0.968

Liu et al. [257] 0.230 0.824 - 0.095 0.614 0.883 0.971

Wang et al. [432] 0.220 0.745 0.262 0.094 0.605 0.890 0.970

Eigen et al. [94] 0.215 0.907 0.285 - 0.611 0.887 0.971

Roy and Todorovic [350] 0.187 0.744 - 0.078 - - -

Eigen and Fergus [93] 0.158 0.641 0.214 - 0.769 0.950 0.988

ours (FCRN) 0.127 0.573 0.195 0.055 0.811 0.953 0.988

Table 4.2 Comparison to prior work on the NYU Depth v2 dataset. For the error metrics (rel, rmse) lower is
better, while for the accuracies δj higher is better.

CRF-based methods [238, 257, 432] create a lot of smaller training patches from the labeled
subset. We have calculated the number of parameters in Eigen and Fergus [93] to be 218
million (3.5 times more than our model), which further explains the need for the increased
amount of data.

In Figure 4.6 we also qualitatively compare the global accuracy and overall structure of the
predictions of various models. We show the fully convolutional variants of AlexNet and
VGG-16, as well as the FC-variant of ResNet. According to Table 4.1, ResNet-FC signifi-
cantly improves global accuracy over AlexNet and VGG-16; however, it completely lacks
structure, which FCRN is able to recover successfully. In the same figure, we also compare
to the publicly available predictions of [93], which is the closest method to our work. Since
they refine the initial coarse depth maps in a multi-scale architecture, they are also able to
recover image structures sufficiently well, however, sometimes high-textured image regions
can cause unwanted depth artifacts (e.g. fourth row). This is because the RGB image is con-
catenated to the initial depth prediction for further refinement.

To summarize, we show that fully convolutional encoder-decoder architectures can tackle
the problem of coarseness in depth prediction simply and efficiently, without the need for
CRFs or multi-scale architectures, as seen in previous work.

Comparisons to Prior Work (Make3D)
From Figure 4.4 it is easy to see that Make3D samples include several depth values of around
80 meters, which mostly correspond to sky pixels. Because of these inaccuracies, we train
and evaluate FCRN on Make3D for pixels that are assigned a depth value up to 70 meters, as
suggested by [258] — sky pixels are detected and excluded during training. During training
we mask the loss where y > 70 to avoid back-propagating errors.
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Figure 4.7 Depth Prediction on Make3D. Displayed are RGB images (first row), ground truth depth maps (mid-
dle row) and our predictions (last row). Pixels that correspond to distances > 70m in the ground truth
are masked out

Make3D rel rms log10

Karsch et al. [190] 0.355 9.20 0.127
Liu et al. [258] 0.335 9.49 0.137
Liu et al. [257] 0.314 8.60 0.119
Li et al. [238] 0.278 7.19 0.092

FCRN (L2) 0.223 4.89 0.089
FCRN (LB) 0.176 4.46 0.072

Table 4.3 Comparison with prior work on Make3D. We report the performance of our models trained with L2

and LB losses.

In Table 4.3, we report our results under the C1 criterion (y ⩽ 70) and compare to previous
work. In this dataset, the performance gain of LB over L2-training is even more prominent.
Finally, we show qualitative results of our network on Make3D in Figure 4.7.

Have We Learned Pure Geometry?
Besides the quantitative evaluations it is interesting to develop a deeper understanding
about what the depth prediction model has learned. We have extensively experimented
with our NYU-Depth-v2 model across various indoor settings. We have observed strong
generalization capabilities, using standard web cameras (i.e. not the same sensor the model
is trained with). The model performs surprisingly well, even in scenes that are not similar
to those used in training, for example scenes in which foreground objects are much closer to
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the camera or large spaces, e.g. auditoria, that extend beyond the typical maximum range of
the dataset (8–10 meters).

One question that arises is what makes the model generalize so well. A possible explanation
is that, although trained to predict geometry, the model learns representations that extend
beyond pure geometry. Indeed, if we vertically flip the camera, thus recording the same
scene upside down, the model completely fails to estimate the depth map of the scene — in
fact, the prediction does not even resemble the structure of the scene anymore, regardless of
its absolute value. A model with purely geometric understanding would not face this chal-
lenge. This possibly suggests that the model, instead, learns depth through semantics, for
example, by recognizing the floor and walls where objects usually lie on or against, as well
as the typical appearance and sizes and of common household objects (desks, sofas, beds,
etc.) with respect to their distance from the camera. When the viewpoint changes drasti-
cally and these structures cannot be accurately recognized, depth prediction also fails. Thus,
we believe that inherent to the model is a strong relation between geometry and semantics.
This is reminiscent of monocular cues in human perception, for example inferring depth
from known object sizes.

The Dollhouse Effect
A general limitation in monocular depth estimation is the implicit assumption of the scene
types used to train the algorithm. We have trained one model that specializes in indoor
scenes and one in outdoor scenes. Although more recently, some methods attempt to ad-
dress this limitation by using joint data sources [100, 231, 243], some challenges still persist.
For example, if one takes a realistic photo inside a dollhouse with miniature figures, there
is no way for current systems to correctly infer the absolute scale, even if relative distances
between objects are correct. Nevertheless, such a scenario would play tricks on the human
brain as well, and is in fact often used in movies. Although this challenge has not been
addressed, it is unlikely to cause a problem in practical real-world scenarios.

4.5.2 Applications of Depth Estimation
We now show some applications where estimated depth can be useful to better understand
the advantages and limitations of learned depth prediction as a replacement for depth sens-
ing.

Application to SLAM
Perhaps one of the most important applications of estimating geometry is 3D reconstruc-
tion of the environment. Here we briefly examine whether the depth predictions provided
by our model are accurate enough to be successfully used inside existing frameworks for
RGB-D Simultaneous Localization and Mapping (SLAM)3. The end-goal is dense scene re-
construction in 3D.

3A more comprehensive review of SLAM literature follows in Chapter 5.
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AlexNet (UpConv) VGG (UpConv) FCRN Ground Truth

Figure 4.8 3D scene reconstructions from an RGB-(learned) D SLAM framework. In contrast to standard SLAM
methods that require an RGB-D camera, we use monocular sequences and predict the corresponding
depth map for each frame using our method. The reconstructions are obtained for a kitchen sequence
of NYU Depth v2. We compare the reconstructions based on predictions from AlexNet, VGG, FCRN
as well as using the Kinect-v2 depth measurements provided by the dataset (ground truth).

We employ a framework inspired by [194, 198]. Camera tracking is carried out via a direct
approach with Gauss-Newton optimization, given the photometric differences between suc-
cessive pairs of frames, as in [198]. Similar to [194], updating the global 3D model of the en-
vironment with new depth estimates is carried out in real time via point-based fusion. Both
approaches assume RGB-D cameras, which allow to acquire depth measurements, which
are then gradually fused into the global model. Our modification is monocular, i.e. instead
of RGB-D sensors, we use the depth predicted by our model, frame-by-frame without ad-
ditional temporal constraints. To the best of our knowledge, this has been the first time to
apply monocular depth estimation to SLAM.

In Figure 4.8 we show the reconstructions that different depth prediction models yield in a
kitchen sequence from NYU Depth v2. We compare among AlexNet, VGG and the proposed
FCRN architecture. The superior quality of FCRN is not only clear in the single-image pre-
dictions of Figure 4.6, but now also in the overall reconstruction of the scene. Thanks to the
improved decoder design, FCRN exhibits sharper edges and structures and smoother flat
surfaces (such as walls), while AlexNet and VGG reconstructions are significantly affected
by the noise present in their depth predictions.

Even though the reconstructions are not yet comparable to the ones using real depth mea-
surements (or even depth computed through geometric SLAM or structure-from-motion
approaches that exploit temporal information), we believe that this is an interesting demon-
stration of depth prediction in such applications that merits further investigation. In fact,
when comparing the FCRN reconstruction to the one using ground truth depth acquired
by a Kinect-v2 sensor, it is immediately noticeable that the former reconstruction is denser.
This is because of sensor limitations that the depth prediction model has learned to over-
come, resulting in fully dense depth maps. Comparing to geometric methods, learned
depth prediction is also less likely to fail in estimating the depth across low-texture sur-
faces such as walls — especially since it relies on global image context. On the other hand,
geometric approaches can be significantly more accurate in regions with high intensity gra-
dients. Hence, we believe that considering the advantages and shortcomings of these two
approaches jointly is a subject of interest. In Chapter 5 we will thus revisit depth estimation

48



4.5 Experimental Results

Figure 4.9 Application to synthetic defocus. We predict a depth map from a single image and use it to render a
synthetically defocused image at various depths. The result is achieved by applying a bilateral filter
based on the distance to the plane set in focus by the user.

in the context of SLAM and 3D reconstruction and exploit the advantages of both geometric
and CNN-based approaches in a unified system.

Synthetic Defocus
We also demonstrate the applicability of the predicted depth maps in synthetic defocus.

Barron et al. [27] propose a method to simulate a shallow depth-of-field for images captured
with a mobile phone camera and produce high quality results similar to those captured with
DLSR cameras and low aperture. Their method produces disparity maps from stereo pairs
in a bilateral space (i.e. resampled pixel space). The estimated disparity is then used for
simulating blur for out-of-focus regions.

While the method relies on cellphones with dual rear cameras, here we use the predicted
depth maps from monocular images to directly render the artificially defocused image. We
show some examples of synthetic defocus using FCRN predictions in Figure 4.9. The defo-
cused image is rendered by applying a bilateral filter with dynamic strength and size, based
on the depth distance to the plane in focus. The focus point can be selected by the user.

4.5.3 Experiments on Semantic Segmentation
Next we evaluate the proposed architecture on the task of semantic segmentation.

Dataset
We use the labeled subset of NYU Depth v2 for our experiments, thus training the model on
only 795 samples. We additionally perform data augmentations similar to those described
in the previous section, but online. We experiment with 4-class and 40-class segmentation.
In 4-class, the scene is segmented into sub-ordinate (structure) classes: wall/vertical structure,
ground/floor, big structure (e.g. furniture) and small structure. The 40-class segmentation is
more fine-grained and includes the most common object categories found in indoor scenes,
e.g. bed, desk, toilet, window, etc. [142].

Evaluation Metrics
We evaluate our model following commonly used metrics from previous work [93, 260].
With nij we denote the number of pixels of ground truth class i that are predicted as class j
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Method (4-class) Data Pixel Acc. Mean Acc. Freq. Jaccard Avg. Jaccard

Gupta et al. [142] RGBD 78.0 - 65.0 64.0
Eigen & Fergus [93] RGBDN 83.2 82.0 - -

FCRN RGB 82.3 80.8 70.5 68.3
FCRN RGBD 83.0 81.5 71.4 69.4
FCRN RGBDN 83.5 81.4 72.1 70.0

Table 4.4 4-class semantic indoor segmentation (labeled NYU Depth v2). We compare to prior work that use,
additionally to the color image (RGB), depth (D) and surface normals (N) as input to the network.

Method (40-class) Data Pixel Acc. Mean Acc. Freq. Jaccard Avg. Jaccard

Gupta et al. [142] RGBD 59.1 28.4 45.6 27.4
Long et al. [260] RGB 60.0 42.2 43.9 29.2
Long et al. [260] RGBD 65.4 46.1 49.5 34.0
Eigen & Fergus [93] RGBDN 65.6 45.1 51.4 34.1
Mousavian et al. [298] RGB 68.0 51.2 - 38.4

FCRN (320 × 240) RGB 65.7 47.2 50.6 35.3
FCRN RGBD 66.9 48.9 52.1 36.5
FCRN RGBDN 67.2 48.4 51.7 36.2

FCRN (512 × 384) RGB 68.0 49.4 53.0 37.5
FCRN (640 × 480) RGB 68.5 49.5 53.7 38.2

Table 4.5 40-class semantic indoor segmentation (labeled NYU Depth v2). The performance of our model is
comparable to concurrent work [298]. 40-class is a much more challenging setting, which includes rare
of small object categories; we show that the size of the input image makes a significant difference with
respect to all metrics.

and with ti =
∑
j nij the total number of pixels of class i. Then we compute the following

metrics:

• Pixel Accuracy:
∑
i nii∑
i ti
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1
C

∑
i
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• Average Jaccard index:
1
C

∑
i

nii

ti +
∑
j nji − nii

• Frequency weighted Jaccard index:
1∑
k tk

∑
i

tinii

ti +
∑
j nji − nii

The average Jaccard index is also known as mean intersection over Union (mIoU), which is
perhaps the most commonly used metric in multi-class semantic segmentation.

Training Details
We train the semantic segmentation models for up to 200 epochs and choose the epoch with
the best validation accuracy for evaluation. We use a batch size of 16 and train with stochas-
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RGB
Ground Truth Prediction

4-class

Ground Truth Prediction
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Figure 4.10 Semantic segmentation on NYU Depth v2. We show 4-class and 40-class predictions and the corre-
sponding ground truth labels.

tic gradient descent with momentum equal to 0.9. The initial learning rate is 0.01 which we
decrease by half after 50 epochs. Unless otherwise specified, the input resolution is 320×240
pixels.

Besides RGB-only inputs, we also experiment with depth (RGBD) and surface normals
(RGBN) as additional information. We concatenate the additional channels to the RGB im-
age, resulting in 4 channels for RGBD and 7 channels in total for RGBN inputs. The normals
are extracted from the corresponding depth maps using the toolkit that is available with
the dataset. When training these multi-modal variants, we initialize the network with Ima-
geNet pre-trained weights, which consider only RGB inputs and first convolution only has
3 channels. We extract features from the remaining channels in parallel using a separate
convolutional layer with 64 filters, which are then added to RGB-extracted features (right
after the first layer).

Results
In Table 4.4 we report our experiments on 4-class semantic segmentation. Similar to [93],
we also study the effect of different modalities as input to the network. We observe a small
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gain in performance when using multi-modal information to train the network. Overall, our
method is comparable to [93] for RGBDN inputs.

Here we have adopted an early fusion scheme for integrating information from differ-
ent modalities into the network. There are, however, several approaches to this. One
way would be to concatenate RGB and/or depth and normal channels to the upsam-
pling layers which potentially has a more direct impact on the output.

NOTE: Multi-modal fusion

In Table 4.5 we also quantitatively evaluate and compare to previous methods on 40-class
segmentation. Here, in addition to the multi-modal input, we also experiment with different
input sizes. We emphasize that since the proposed architecture is fully convolutional, it does
not depend on a fixed input size. Our findings suggest that higher input resolutions (512 ×
384 and 640 × 480 pixels) improve performance significantly. Our method is comparable
to the concurrent work by Mousavian et al. [298] who train with a resolution of 512 × 512.
It is worth noting that [298] jointly estimates depth and semantic segmentation, and the
depth prediction is used to refine the semantic segmentation map in a CRF framework; this
significantly improves the performance of the base network.

We demonstrate the segmentation maps predicted by our model for both 4-class and 40-class
in Figure 4.10. The model is generally good at distinguishing object categories, even in the
more challenging 40-class case. A common source of errors is around object boundaries,
which is noticeable by zooming into the figure. The predicted segments do not have sharp
edges, especially when it comes to small or detailed structures. This is typically an issue
that related work has addressed using skip connections [23, 347] or atrous (dilated) convolu-
tions [55]. Skip connections allow to pass higher-resolution features from the encoding lay-
ers to the decoder, thus counteracting the loss of spatial information due to downsampling.
On the other hand, dilated convolutions replace downsampling altogether by increasing the
field of view of the convolutional with filters with “holes”.

4.6 Conclusion
Building a computer system that can understand a real-world 3D scene from just a single
view is a well-established problem in computer vision. There are several aspects that con-
tribute to visual perception, i.e. understanding what we see in a scene, which vary from un-
derstanding the scene as a whole down to understanding its individual components. Draw-
ing the analogy to visual information processing in the biological brain, these aspects are
related to inferring both geometric structures and the semantic meaning and properties of
the world around us.

Similarly, in computer vision, two of the most fundamental tasks related to visual perception
are depth estimation and semantic segmentation. The goal of the former task is to estimate
the distances from the camera to objects in the scene, as well as their structure. Although for
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many years this was considered to be an extremely challenging problem, due to its inherent
ill-posedness, deep learning methods — given sufficient training data — have led the way to
remarkable breakthroughs. One successful approach to this problem is to train deep mod-
els on RGB-D data, treating the depth as ground truth and training with full supervision.
In this chapter, we contribute to the state of the art on this problem by studying different
architectures and comparing fully-connected and encoder-decoder strategies. We propose a
fully convolutional residual network, trained with a reverse Huber loss, which, as we show,
is better suited for this task than the most common L2 objective. Subsequently, we extend
the proposed architecture to the semantic counterpart of scene understanding and address
the task of semantic segmentation, i.e. pixel-wise scene labeling, with a focus on indoor en-
vironments.

We have already shown in Section 4.5.2 that it is possible to use the estimated depth map to
build a point cloud out of the current view and a preliminary SLAM setup. In the following
chapter, we seek a way to improve this by deploying the model in monocular sequences,
while building and refining the global representation of the scene incrementally using tem-
poral measurements. If we then also fuse the predicted semantic labels into the global model,
it is possible to build a 3D representation of the scene which is semantically meaningful.
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5.1 Introduction to SLAM
Simultaneous Localization and Mapping (SLAM) is a fundamental problem in computer
vision. It aims at estimating a map of an environment (3D scene) and the relative position
and orientation of the moving agent (or camera) at the same time. SLAM is therefore a
chicken-and-egg problem, as accurate camera pose estimation is needed for mapping but
also a map is needed to infer the location of the agent.

Real-time SLAM algorithms have found a wide range of indoor and outdoor applications, in
particular for scene reconstruction and navigation of autonomous vehicles (e.g. self-driving
cars, unmanned aerial vehicles, etc.) or domestic robots (e.g. vacuum cleaners), but also in
augmented reality and computer graphics. Consequently, SLAM is likely to be a core part
of various future intelligent systems.

There exist several SLAM approaches dependent on different data acquisition sensors. The
more and the better the sensors that the system is equipped with, the easier the SLAM
problem becomes. Multiple cameras and range sensors can be used to directly acquire an
accurate RGB-D scan of the current scene. From there on, the main task of a SLAM system
is to find correspondences between scans throughout time to integrate them into an ever
evolving map. On the other side of the spectrum, SLAM is also possible without range
sensors, from a single RGB camera alone. Here one needs to estimate 2D correspondences
in the images over time and then use multiple observations of the same group of points
together with the theory of multiple view geometry to estimate the 3D configuration of the
points and the camera. In this setup one loses the ability to estimate the global scales of the
scene and is afflicted by some other limitations, such as the inability to reconstruct when
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there is only rotational camera motion. Within the context of this work we focus on visual
SLAM from a single RGB camera (no stereo camera setup).

Methods for single RGB cameras such as [76, 302], rely on 2D feature detectors and descrip-
tors. Naturally, feature descriptors and detectors find key-points and their correspondences
across images. Keypoints are points in the image, that are stable under viewpoint and light-
ing changes. Such points are usually edges or corners of objects and textures and are thus
sparse. This means that the 3D representation that can be reconstructed by those monocu-
lar SLAM algorithms will be sparse and mostly defined around corners and edges of objects.
Additionally, those methods can only reconstruct the scene up to an unknown scale factor.

Learning-based geometry estimation methods are usually trained on datasets with full 2.5D
or 3D supervision — e.g. Kinect ground truth data — and have the opposite characteristics.
Learning from real data allows the model to estimate the global scale of the scene. Addition-
ally, dense prediction methods are usually good in object centers; but as we have shown in
the previous chapter, they are blurry and uncertain around the edges of objects.

This means that both approaches can potentially complement the performance of each other
and motivates the approach that we discuss next. Moreover, the ability of modern CNNs
to predict semantic information such as object classes and instances can then be used as
auxiliary information to enhance the reconstruction and the final map.

We propose an approach to integrate deep depth prediction into keyframe-based
direct monocular SLAM that yields significant advantages over geometric-only sys-
tems:

• As the depth estimation gives dense outputs, we are able to densely reconstruct
the environment, even if it is texture-less.

• Depth estimation (Chapter 4) can provide the 3D reconstruction with an ab-
solute scale, which is now possible to learn from training data, and increase
usability in robotics or augmented reality applications.

• Our method is robust to pure rotational motion or slow camera movement,
because it does not rely solely on stereo matching (which in turn requires suffi-
cient translation from frame to frame).

• Our geometric reconstruction can be further augmented with semantic labels,
which give a meaning to the 3D map that goes beyond structure and appear-
ance.

KEY CONTRIBUTIONS

The contents of this chapter have been published in [399].
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5.2 Related Work
Visual SLAM has gained research interest since RGB cameras are widespread, compact and
cost-effective, thus suitable for practical systems. Typical components of a SLAM system
include initialization, tracking and mapping, relocalization, loop closure, pose graph op-
timization and bundle adjustment. These components are carefully designed and vary in
different methodologies.

In a nutshell, initialization amounts to defining a global coordinate system in which to per-
form camera pose and 3D estimation. Tracking and mapping are carried out continuously
for camera pose estimation. For tracking, correspondences are computed between a frame
and the already reconstructed 3D map of the environment and the current camera pose is
computed through projective geometry. Then the map is updated with the 3D estimation
of newly observed regions. Relocalization is important in case of temporary tracking failures
which might be, for example, the consequence of fast camera motion. Loop closure is used
to encourage consistency in the map by detecting when a region has been revisited and
computing the accumulated camera trajectory error in the detected loop. Usually, a graph
representation for camera poses is preferred and pose graph optimization [217] is used to find
an globally optimal configuration of poses and reduce errors.

Also related to SLAM are visual odometry and structure-from-motion (SfM). The difference
between visual SLAM and visual odometry is that the latter refers to methods for estimating
the pose of a moving camera that do not, however, optimize for global consistency in the
map. As we have discussed in the previous chapter, SfM usually refers to methods that
reconstruct a model from a collection of images taken at various viewpoints.

When it comes to the input modality, SLAM systems exist that rely only a single cam-
era/view — i.e. monocular — as opposed to stereo cameras or RGB-D sensors. Comparing
to other sensors, such as laser scanners, conventional cameras also only have a limited field
of view of the environment, which makes the problem more challenging. Another challenge
is that a single view does not properly capture scene geometry, making accurate reconstruc-
tion difficult due to scale drifts over time. At the same time, this very challenge constitutes a
significant advantage of monocular SLAM: it is scale-independent, thus the same algorithm
can operate on both indoor and outdoor environments and can even transition between
them.

Since there are no direct depth measurements in the monocular case, temporal information
can be exploited to estimate relative depth. As the camera moves over time, consecutive
views are considered as a stereo pair and depth can be estimated via small-baseline stereo
matching. To find the real scale of the environment, some approaches use 3D object detec-
tion given objects of known sizes [113]. In our case, we can inject an absolute scale into the
reconstruction a data-driven approach that learns the typical geometry of specific types of
environments, e.g. indoor spaces.

Depending on how the input frames are processed, monocular SLAM algorithms can be
distinguished as feature-based or direct (feature-less).
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Feature-based Approaches
Feature-based methods operate on distinct image key-points, extracted by descriptors such
as SIFT [261] or SURF [33], to estimate camera pose and geometry. The use of invariant
features — e.g. invariance to scaling, illumination or viewpoint — should allow for accurate
matching. On the other hand, a lot of information about the scene, that is not compliant with
the chosen feature characteristics, is discarded and the resulting depth maps are usually very
sparse. Common in feature-based methods is also bundle adjustment [411] which is used
to jointly optimize the geometry and camera poses by minimizing the map reprojection
error.

Originally, monocular SLAM was addressed by filtering, for example, extended Kalman
filters (EKF). The map is represented by a state vector consisting of the camera pose and 3D
locations of feature points and a co-variance matrix. The first approach was MonoSLAM [76].
The drawback of this method is the amount of computation required which is proportional
to the size of the environment.

One of the most representative feature- and keyframe-based methods is PTAM [207]. From a
computational perspective, PTAM proposes to separate tracking and mapping into parallel
threads. Decoupling mapping and tracking means that not all frames need to be used to
increment the map, but only a conservative number of selected keyframes, which are refined
via bundle adjustment. The original method was limited to small-scale environments.

ORB-SLAM [303] is one of the state-of-the-art approaches of this category. It uses ORB fea-
tures [351] which are fast to compute and match and invariant to viewpoint changes; these
are used in all modules, including loop closure and camera relocalization. Invariance to
viewpoint further improves bundle adjustment because it allows for large-baseline match-
ing. ORB-SLAM2 extends these ideas to RGB-D and stereo [302].

Direct Approaches
Direct methods (feature-less) perform camera pose and geometry estimation by directly opti-
mizing over image intensities and are able to create semi-dense 3D maps of the environment.
Such methods do not abstract images into features, but leverage all information available in
the image; therefore, they are typically more robust in low-textured environments, but com-
putationally more expensive. Furthermore, since their reconstructions are more detailed
they can be useful in various applications, for example in augmented reality. One downside
is that direct approaches assume mostly static scenes and rely on photometric consistency,
thus they can be sensitive to illumination changes.

One instance of these methods is DTAM [307], which computes fully dense depth maps in
real time on a GPU. Tracking in DTAM is formulated as a registration problem between a
frame and views from the dense 3D model. Depth estimation is carried out from a set of
frames through multi-baseline stereo, followed by total variation regularization so that the
predicted depth is smooth in uniform intensity regions.
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On the other hand, LSD-SLAM [97], which is based on the visual odometry work of Engel
et al. [98], proposes a probabilistic semi-dense map representation. Geometry is estimated
from high-intensity gradients only, which reduces complexity and runs in real time on a
CPU. The multi-level mapping algorithm [131] builds on LSD-SLAM improving its density
while retaining comparable efficiency.

Learning-based Approaches
While prior to the publication of this work [399] there had been little progress in combin-
ing machine learning with SLAM, it is now an emerging field and several methods have
been proposed that replace hand-designed components of traditional SLAM workflow with
learnable models. The advantage of deep learning models comes from the fact that they can
discover powerful representations for solving the task at hand. Consequently, apart from
monocular depth estimation, deep networks have been trained to predict camera motion,
optical flow and even end-to-end visual odometry. They can be also used to augment a
purely geometric reconstruction with semantic entities. Davison [75] refers to such hybrid
technology as “Spatial AI” as it allows embodied agents to build meaningful scene represen-
tations for smartly navigating and interacting with their environment in real time.

Deep Visual Odometry and Depth Estimation One family of methods focuses on deep
visual odometry, i.e. replacing the conventional pose estimation pipelines, that heavily rely
on feature extraction and matching, with deep networks. DeepVO [433] and VidLoc [68]
estimate camera poses from a video stream in an end-to-end manner using CNN-RNN ar-
chitectures that are trained with pose supervision. In general, the CNN is used for extract-
ing per-frame features, while the RNN is responsible for learning temporal dependencies.
DeMoN [415] additionally predicts and iteratively refines depth maps with a single architec-
ture that is trained from stereo sequences. DeepTAM [485] conceptually follows its classic
counterpart DTAM [307], though the tracking and mapping modules are implemented with
neural networks. Comparing to other methods, it does not only perform visual odome-
try but also has a strong mapping component that refines the cost volume using multiple
frames.

To reduce the amount of annotations that are required, many authors have focused on the
self-supervised setup, i.e. using image reconstruction as supervision instead of direct regres-
sion. The focus of this line of work is the joint estimation of camera motion and depth — also
discussed in Section 4.2. Zhou et al. [488] propose one of the first approaches to learn camera
motion and depth simultaneously from just a video stream through differentiable warping
of RGB inputs based on the idea of spatial transformers [180]. Their method relies on the
assumption of small-baseline stereo between consecutive frames and thus can only estimate
relative distances. Following a similar approach, Li et al. [244] show that it is possible to use
stereo pairs at training time (while being monocular at test time) to yield predictions with
absolute scale instead. As such methods rely on photometric consistency as an objective
function — which might not hold true in practice — Zhan et al. [477] propose, in addition, a
feature reconstruction loss. However, the camera pose estimation of these methods is still
not as accurate as that of geometric approaches. For this reason, Yang et al. [464] propose a
semi-supervised method and exploit geometric methods to generate data for partial super-
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vision. Wang et al. [427] propose a module for differentiable visual odometry that can be
used within a network, initialized either by a predicted or the identity pose; their goal is to
decouple self-supervised depth estimation from ego-motion.

Learning Representations Focusing on dense reconstructions, CodeSLAM [41] proposes
to represent scene geometry with a compact, deep code that is optimizable; the representa-
tion is constructed by a variational auto-encoder (VAE) [203] on depth images that is further
conditioned on image features. The codes can be optimized during bundle adjustment to
achieve global consistency. Focusing on the mapping component, MapNet [155] introduces
a representation for 3D environments that is fully integrated with deep learning techniques.
In this work, an RNN performs map updates from an RGB-D inputs while optimizing local-
ization accuracy. Localization and registration are intuitively represented by dual operators:
a convolution and a deconvolution, respectively. Gupta et al. [141] also propose a deep
network to encode the environment into a latent spatial memory and further focus on navi-
gation with a differentiable planner.

Last but not least, related to our work is SemanticFusion [286], which also addresses the
fusion of CNN-predicted semantic labels into the geometric model.

5.3 Monocular Semantic SLAM
In the following, we explore how to integrate CNN predictions (e.g. from Chapter 4: ge-
ometry and semantics) into monocular SLAM to achieve semantic 3D reconstruction of a
scene.

An overview of the method is shown in Figure 5.1. Following keyframe-based SLAM frame-
works [97, 207, 303], we select only a few frames which contribute to the pose graph opti-
mization and from which we also infer dense depths maps using the previously discussed
learned approach. New keyframes are selected when the estimated camera pose is suffi-
ciently different from those of past keyframes. Estimating the camera pose is described
in detail in Section 5.3.1. To integrate a predicted depth map into the previously recon-
structed geometry, a confidence map is computed relative to the depth map of the nearest
keyframe (Section 5.3.2). However, as we have already seen, depth estimation tends to pro-
duce blurry results — especially around object boundaries — and particularly noisy planar
surfaces, such as walls, that yield sub-par reconstructions (Figure 4.8). Therefore, a crucial
stage of our approach deals with how to recover details in the predicted keyframe depth
maps (Section 5.3.3). Finally, semantic labels can be also fused into the global model, result-
ing in an incrementally built semantic scene reconstruction (Section 5.3.4).
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Figure 5.1 Overview of CNN-SLAM. A CNN predicts depth and semantics for keyframes, which are then fused
into a geometric SLAM framework for camera pose estimation and frame-wise refinement.

5.3.1 Camera Pose Estimation
To estimate the position and orientation of a moving camera, we closely follow the paradigm
of LSD-SLAM [97], where the structural elements are keyframes k1, .., kn ∈ K and their
respective poses Tki and depth maps Dki .

For every frame t, we want to estimate its relative camera pose with respect to the nearest
keyframe ki, Tkit = [Rt, tt] ∈ SE(3), where Rt ∈ SO(3) is the rotation matrix and tt ∈ R3 is
the translation vector. When the relative pose is known, the corresponding camera pose in
the world coordinate system can be computed as Tt = Tkit Tki .

We denote an image point as p = (x,y) ∈ Ω ⊂ R2 with a corresponding depth value
d = D(p). ṗ indicates homogeneous coordinates. Let K be the intrinsic camera matrix, then
the position of a point in 3D can be computed from the keyframe depth map Dkias

Vki(p) = K−1ṗDki(p). (5.1)

Furthermore, a projection function is used to map a 3D point to its 2D coordinates in image
space:

π
(
(x,y,d)T

)
= (x/d, y/d)T . (5.2)

Then, we can compute the transformation between the two images It and Iki by minimizing
the photometric error

r
(
p, Tkit

)
= Iki(p) − It

(
π
(
KTkit Vki(p)

))
, (5.3)

that is

min
T
ki
t

∑
p̃∈Ω

∥∥∥∥∥∥
r
(
p̃, Tkit

)
σ
(
r
(
p̃, Tkit

))
∥∥∥∥∥∥
δ

, (5.4)

where ∥ · ∥δ denotes the Huber norm and σ(·) computes the residual’s variance as in [97].
Equation (5.4) gives the maximum likelihood estimate for Tkit following Gauss-Newton op-
timization. In practice, since our depth maps are dense, we only use a subset of points
p̃ ⊂ p ∈ Ω when computing photometric errors; these are the pixels in high intensity gradi-
ent regions.
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5.3.2 Keyframe Processing
Depth Initialization If the estimated camera pose for the current frame is too far from that
of the nearest keyframe (as defined by a threshold [97]), a new keyframe is created and it
is then used for computing the relative pose of subsequent frames. For a new keyframe, a
dense depth map can be estimated using the single-image approach described in Chapter 4,
i.e. D ′

ki
= CNN(Iki). Temporal information is not taken into account.

As the sensor used during reconstruction might differ from the one used to acquire the data
that the CNN was trained with, we rescale the predicted depth map as

Dinit
ki

=
fcur

fpre
D ′
ki

, (5.5)

where fcur is the focal length of the current camera and fpre is the focal length used for
training the network. The importance of this adjustment can be observed in Figure 5.2 (a)
and (b).

Uncertainty Estimation Each keyframe ki, with its depth map Dki , is further linked to a
heatmap Uki that acts as an uncertainty proxy. We note that, here, we use the term uncer-
tainty not with a probabilistic meaning, but rather in the sense of reliability of the predicted
depth map. The initial value ofUki is set to the difference between the depth value of points
in the current keyframe ki and the corresponding points in the nearest keyframe kj. The dif-
ference can be computed after warping Dkj to be aligned with Dki using the estimated
relative pose Tkikj . Let p ′ be the warped coordinates from kj to ki, i.e.

p ′ = π
(
KTkikj Vki(p)

)
, (5.6)

then the uncertainty map for keyframe ki can be defined as

Uinit
ki

(p) =
(
Dinit
ki

(p) −Dkj(p
′)
)2

. (5.7)

By definition, this map holds information about how much the predicted depth varies across
slightly different views of a scene. A high value means that the predicted distance for the
same point has changed considerably between the two views — a phenomenon that, for
example, often occurs on wall surfaces and other low-texture regions. This implies thatDki
is less reliable in these regions. Low values indicate points where the depth is similar in the
two frames.

There are other ways to compute uncertainty for depth predictions — and generally
CNN models. One example is the Bayesian approach of [196] that models epistemic
and aleatoric uncertainties. However, this approach is too slow for real-time applica-
tions, because it requires on several forward passes for a single data point. Another
possibility is the multiple hypothesis framework of Rupprecht et al. [357], which we

NOTE: Uncertainty Estimation
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discuss in Chapter 6. In this case, prediction uncertainty can be approximated by com-
puting a variance map across multiple predictions for the same input.

Uncertainty Propagation and Depth Fusion The accuracy of a new keyframe depth map
can be improved using depth information propagated from the nearest keyframeDkj(p

′), as
the latter will have already been subject to refinement at this point (details in Section 5.3.3).

We also compute the propagated uncertainty map from the nearest keyframe kj:

Ũkj(p
′) =

Dkj(p
′)

Dinit
ki

(p)
Ukj(p

′) + σ2
p, (5.8)

where σ2
p is white noise variance [98]. Finally, the two depth maps are merged weighted by

the computed uncertainty. In regions where the current depth prediction is unreliable (high
uncertainty), we leverage depth propagated from the nearest keyframe instead, weighting
Dkj(p

′) by Uki(p), and vice versa. Therefore, the fusion scheme that yields the final depth
map and its corresponding uncertainty is:

Dki(p) =
Ũkj(p

′)Dinit
ki

(p) +Uinit
ki

(p)Dkj(p
′)

Uinit
ki

(p) + Ũkj(p
′)

(5.9)

Uki(p) =
Uinit
ki

(p) Ũkj(p
′)

Uinit
ki

(p) + Ũkj(p
′)

. (5.10)

Pose Graph Update When a new keyframe is created, a new node is also added to the
pose graph, with edges connecting to existing keyframes with a similar viewpoint. The
pose graph is continuously refined through pose graph optimization [217].

5.3.3 Depth Refinement
We have seen that the scene geometry is constructed by a set of depth maps which are
predicted for each keyframe. Frames that are not selected as keyframes contribute to the
refinement of the depth map of the current keyframe.

We follow the direct, semi-dense approach of Engel et al. [98] to estimate depth from video
using small-baseline stereo comparisons. This approach produces accurate, probabilistic
depth estimates (Dt,Ut) for image regions with high intensity gradients (semi-dense) and
thus can be seen as complementary to CNN predictions that are fully dense but suffer with
finer details around object boundaries.

For every frame t,Dt andUt are continuously used to refine the keyframe through a similar
fusion scheme as before, this time between Dki ,Uki and the current frame after it has been
warped with estimated pose Tkit .
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(A) Pose Trajectory Accuracy

(B) Depth Estimation Accuracy

(a) raw depth prediction

(b) w/ focal length adjustment

(c) w/ focal length adjustment 
and refinement 

ground truth

RGB (a) 34.0 % (b) 55.8 % (c) 64.5 %

Figure 5.2 Component evaluation. Comparison of reconstruction performance using (a) raw depth predictions,
(b) focal length adjustment (Equation (5.5)) and (c) adjustment and frame-wise depth refinement (Sec-
tion 5.3.3), in terms of (A) pose trajectory accuracy and (B) depth estimation accuracy. In the binary
maps (B), blue indicates correctly estimated depth (within 10 % of the ground truth depth values) and
red indicates wrong predictions. The comparison is shown on a sample sequence of the ICL-NUIM
dataset [147].

Triangulation, i.e. estimating a point in 3D space from image point correspondences,
requires a sufficient baseline between two camera views. In case of pure rotations (no
translation), or even very slow camera motion, a baseline between the two views can-
not be established, thus (inverse) depth cannot be estimated. Direct monocular SLAM
systems such as [97, 98] would fail, as they solely depend on stereo matching for es-
timating depth. On the other hand, a data-driven approach overcomes this failure;
in case of rotational-only motion the keyframe will simply retain the depth map esti-
mated by the CNN and will not be affected by unreliable stereo-matching estimates.

NOTE: Pure Rotational Motion

The effectiveness of this refinement on a sample sequence from the ICL-NUIM dataset is
demonstrated in Figure 5.2 (c).

5.3.4 Semantic Reconstruction
Apart from bringing an absolute scale to the reconstruction, one of the major advantages of
deep learning-augmented SLAM is the ability to enhance the estimated map of the environ-
ment with semantic meaning via object recognition and segmentation. This enables agents
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to not just navigate in an environment, but actually gain knowledge about individual objects
and their constellations and potentially also how to interact with them.

When semantic labels are available (for example after semantic segmentation of the scene
from single images), they can be incorporated into the 3D model of the scene, i.e. densely
labeling the geometric reconstruction. To achieve this, we modify the method proposed by
Tateno et al. [401] to incrementally fuse depth and semantic segmentation maps. Temporal
averaging of label assignments is performed for each 3D point to reduce noise occurring
from frame to frame and the most probable (most frequent) label is chosen for each point.
Hence, the resulting semantic labeling of the 3D model will generally be more accurate than
the individual CNN predictions. In [401] object segments are geometrically computed from
surface normal edges. Here, we use our proposed CNN architecture (Section 4.4) to predict
semantic segmentation maps frame by frame. While our model is trained with semantic la-
bels annotated for a limited amount of images on NYU-Depth-v2 [306], it generalizes well
even to out-of-domain data such as the synthetic scenes of ICL-NUIM [147] used in our
SLAM experiments. We use the 4-class segmentation model described in Section 4.5.3 to
segment scenes into the supercategories (floor, vertical structure, large structure, small struc-
ture).

5.4 Results and Evaluation
To evaluate our method, we carry out experiments on two benchmark datasets, ICL-NUIM
[147] (synthetic) and TUM-RGBD [387] (real). The datasets provide camera trajectories and
depth maps as ground truth, thus we are able to quantitatively evaluate our approach in
terms of tracking and reconstruction accuracy.

Implementation Details We use two separate CNNs for depth estimation and semantic
segmentation, both trained on NYU-Depth-v2 data [306] as discussed in the previous chap-
ter. The predicted maps are resized to a resolution of 320×240 pixels. Although the CNNs
are trained on a different dataset — some major differences being the acquisition sensor and
scene layouts — they show good generalization capability. Besides that, the predictions are
further improved within the SLAM framework (through frame-wise refinement for depth
estimation and temporal smoothing for the semantic segmentation).

Since the CNN forward passes are only required for new keyframes, the method is efficient
and runs in real-time with the CNN predictions carried out in parallel on a GPU and all
SLAM stages on CPU threads.

Comparison with State-of-the-art SLAM
In Table 5.1 we report quantitative comparisons among various methods — direct LSD-
SLAM1 [97], feature-based ORB-SLAM2 [303] and REMODE3 [321]) — on selected sequences

1https://github.com/tum-vision/lsd_slam
2https://github.com/raulmur/ORB_SLAM2
3https://github.com/uzh-rpg/rpg_open_remode
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Method ICL-NUIM TUM-RGBD

office0
office1

office2
liv

ing0
liv

ing1
liv

ing2
mean

seq1
seq2

seq3
mean

Absolute Trajectory Error (lower is better)

LSD [97] 0.528 0.768 0.794 0.516 0.480 0.667 0.626 1.826 0.436 0.937 1.066

LSD-BS [97] 0.587 0.790 0.172 0.894 0.540 0.211 0.532 1.717 0.106 0.037 0.620

ORB [303] 0.430 0.780 0.860 0.493 0.129 0.663 0.559 1.206 0.495 0.733 0.811

FCRN [227] 0.337 0.218 0.509 0.230 0.060 0.380 0.289 0.809 1.337 0.724 0.957

CNN-SLAM [399] 0.266 0.157 0.213 0.196 0.059 0.323 0.202 0.542 0.243 0.214 0.333

% Accurate Depth Pixels (higher is better)

LSD-BS [97] 0.603 4.759 1.435 1.443 3.030 1.807 2.180 3.797 3.966 6.449 4.737

REMODE [321] 4.479 3.132 16.708 4.479 2.427 8.681 6.651 9.548 12.651 6.739 9.646

FCRN [227] 17.194 20.838 30.639 15.008 11.449 33.010 21.356 12.982 15.412 9.450 12.615

CNN-SLAM [399] 19.410 29.150 37.226 12.840 13.038 26.560 23.037 12.477 24.077 27.396 21.317

Table 5.1 Comparison with state-of-the-art SLAM methods. We compare our full approach (CNN-SLAM) and
baseline (FCRN) with previous methods on two datasets (ICL-NUIM and TUM-RGBD) under two
metrics: absolute trajectory error (in meters) and the percentage of accurately estimated depth pix-
els. (TUM-RGBD seq1: fr3/long_office_household, seq2: fr3/nostructure_texture_near_withloop and
seq3: fr3/structure_texture_far.

RGB Ground Truth CNN-SLAM (66.2%)FCRN (57.2%)LSD-SLAM (11.9%) REMODE (12.3%)

Figure 5.3 Comparing depth map density and accuracy on the office2 sequence of ICL-NUIM. FCRN shows the
raw depth prediction for the selected frame, while CNN-SLAM is the result after keyframe refinement.
The reported % are the correctly estimated depth pixels on this frame.

of the two benchmark datasets. Since monocular SLAM methods only estimate depth up to
scale, we initialize the scale for [97] using the available ground truth depth maps (LSD-BS).
REMODE is a method focusing on dense reconstructions and requires the camera pose as
input, which we provide using LSD-BS.

Together with our full system (CNN-SLAM), we also evaluate the performance of a baseline
(FCRN) which simply uses the depth predictions as input to an RGB-D SLAM system [194]
without any refinement (qualitative results of this baseline are shown in Figure 4.8).

We evaluate all methods under two metrics; the absolute trajectory error is computed as
the root mean square error between predicted and ground truth camera translations, while
the percentage of accurate depth pixels refers to amount of depth values that fall within
10% of the ground truth depth and is used to evaluate both the density and accuracy of the
reconstruction.
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:Vertical	structure/Wall :Small	structure:Floor :Large	structure/furniture

Figure 5.4 Geometric and semantic reconstructions. We show the geometric and semantic reconstructions of
our method on three scenes: NYU-Depth-v2 bedroom_0115 (left), kitchen_0046 (middle) and an office
scene from a custom setup (right). Camera trajectory is shown in green.

LSD-SLAM CNN-SLAM Ground Truth

Figure 5.5 Reconstruction under pure rotational motion. We compare LSD-SLAM and CNN-SLAM reconstruc-
tions of a sequence (TUM-RGBD fr1/rpy) that consists of rotational motion.

Our approach of combining a direct SLAM system with a deep network for depth prediction
performs best under both metrics. In particular, the absolute trajectory error is even lower
than LSD-BS, even though ground truth information is used in the latter for bootstrapping.
As for the reconstruction accuracy, CNN-SLAM is significantly more powerful than LSD-BS
and REMODE as it is more dense, but also outperforms FCRN-based SLAM, suggesting the
effectiveness of the depth refinement scheme. A qualitative comparison in terms of depth
density and quality is also shown in Figure 5.3.

Qualitative Results
Qualitatively, 3D semantic scene reconstructions from our system are shown in Figure 5.4.
The left and middle scenes are sequences from the test set of NYU-Depth-v2 and the scene
on the right is acquired using an own setup. The predicted camera trajectory is shown in
green.
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CNN-SLAM LSD-SLAM 

Figure 5.6 Reconstruction scale. We augment an object (skeleton) in the reconstructed environments of LSD-
SLAM and CNN-SLAM to show the important of real-scale reconstructions in applications such as
augmented reality.

Pure Rotational Motion
To demonstrate the effectiveness of our approach under pure rotations, we show a qualita-
tive example in Figure 5.5. We compare the reconstructions of LSD-SLAM and CNN-SLAM
on the fr1/rpy sequence of TUM-RGBD which mainly consists of rotational motion. Under
this challenging scenario for monocular SLAM systems, our method remains robust thanks
to the CNN predictions that are unaffected by any kind of motion. However, the overall
quality of the reconstruction is lower as the blurry CNN predictions cannot get sufficiently
refined. Under pure rotational motion, the performance of the system becomes comparable
to the preliminary SLAM experiment that was discussed in Section 4.5.

Absolute Scale
Finally, in Figure 5.6 we qualitatively show that absolute-scale reconstructions are preferred
in applications such as augmented reality. Our method achieves a real-scale monocular re-
construction that is also very accurate, thus objects of known sizes can easily be augmented
in the scene, in contrast to geometric monocular SLAM approaches. One limitation of the
use of learning in SLAM is that, since absolute scale is inferred from training examples, the
network must be trained with scenes from the same type of environment (e.g. indoors).

5.5 Conclusion
Total scene understanding is central to applications such as navigation and localization in
both indoor and outdoor environments. In Chapter 4 we discussed a deep learning method
to address two fundamental tasks in scene understanding; depth estimation and semantic
segmentation. Crucially, this enables the recovery of geometric and semantic scene proper-
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ties from just a single image. In this chapter, we have demonstrated the advantage of this
approach in reconstructing the 3D model of the scene from a monocular sequence. In partic-
ular, we address this problem by considering two different perspectives and leverage their
complementary nature.

On one hand, traditional monocular SLAM systems rely on point correspondences or im-
age similarities between frames to estimate relative camera motion. Then depth information
can be estimated through projective geometry. Some challenges that arise in these methods
are low depth density (especially across texture-less image regions), failure under pure rota-
tional motion and absence of a metric scale.

On the other hand, deep learning models trained for monocular depth estimation can yield
dense depth maps from single images without relying on specific camera motion. Moreover,
it is possible to estimate an absolute scale for the scene, which the model learns from experi-
ence — provided many RGB-D examples from a specific type of environment (e.g. indoors).
Although significant progress has been made in the last few years to improve the structural
quality of depth maps, the disadvantage of learning approaches is that the predictions are
usually not sharp enough for scene reconstruction, which is further amplified when the
models are deployed in out-of-domain environments (e.g. scenes that are not similar to the
ones used during training).

The framework that we have presented in this chapter takes advantage of the complemen-
tary nature of the two approaches to tackle their respective shortcomings. We leverage
learned depth prediction on keyframes, which results in dense maps with absolute scale
and is robust to rotational motion and scenes with low texture. Taking advantage of the
temporal component, the predicted depth maps are continuously refined to recover depth
details via small-baseline stereo matching which is especially strong along image gradients.
We show that this combination yields dense and accurate 3D models of indoor environ-
ments, which is a direct application and an example of the usefulness of depth estimation in
higher-level tasks. Last but not least, integrating the semantic counterpart of our approach
into the geometric framework comes with the significant advantage that we can now give
meaning to the reconstruction. This is vital in applications that involve intelligent agents
navigating and acting within the scene.
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6.1 Motivation
So far we have presented solutions to computer vision problems that collectively help to
equip intelligent systems with a global understanding of real-world scenes. In the context
of this dissertation, a scene is considered to be a view of a (usually complex) environment
in the real world, which consists of several objects that interact with each other.

However, in real-world applications, it is often the case that the system might be tasked
with an object-centric problem. Perceptual tasks at object level might be different than those
at scene level. For example, when facing an entire scene, a human as well as a computer
might want to recognize the environment or how to navigate in it, based on the geometry,
affordances or other semantic properties of the objects that compose the scene as a whole.
On the other hand, when addressing problems at object level, the field-of-view is usually
more narrow and the focus is on specific objects, rather than entire scenes, as well as how
these objects interact with the scene or how an external agent might act upon them. Visual
perception at object level can be useful in several applied scenarios, providing more in-depth
understanding of their properties.

One such example is industrial robots. Although still dominated by rigid hand-engineered
programs, machine learning is rapidly revolutionizing industrial robotics, through object
recognition and imitation learning, helping teach robots manipulation tasks such as picking
and placing objects. The setting under which such robots operate is usually restricted to a
pre-specified workplace, which is very different to the busy, dynamic environment of natu-
ral scenes. In this case, it is more relevant to recognize individual objects and understand
their physical properties.

Another example is computer-aided medical interventions, where successful recognition
and tracking of surgical instruments is critical. In this case, although the overall “scene” is
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actually a very dynamic environment, the effective field of view is typically limited. The ob-
ject in focus is the surgical instrument(s) in view, while the scene is the underlying anatomy
that the instrument acts upon. The use of computer vision and machine learning in robotic-
assisted surgical systems allows for great control and assistance to the surgeon without ad-
ditional equipment, such as markers. For example, segmentation of surgical instruments
can be used to understand the region of interest for potential augmented reality overlays
(or displaying critical information) without occluding the surgeon’s view. Tracking of sur-
gical instruments can also improve surgical workflow analysis or provide information for
vision-based surgical robot control.

In this chapter, we discuss two applied scenarios of object-centric scene understanding. In
Section 6.2 we take a closer look into the medical scenario and propose a method for simul-
taneous segmentation of the surgical instrument and localization of its articulation mecha-
nism — for example joints of the end-effector. This method has been published in [226].

In Section 6.3 we delve into the application of robotic grasping. The ability to grasp and
manipulate objects is necessary in the field of personal robotics but also, as mentioned above,
in industrial manufacturing. Here we focus on vision-based grasp detection, i.e. accurately
localizing possible grasping points directly from image data, without the use of tactile or
depth sensors. Our method has been published in [118].

In the context of the aforementioned object-centric applications, we present two ap-
proaches to localization, taking into account the specific characteristics of each prob-
lem. Our contributions are the following:

• We cast localization as a spatial, high-dimensional problem, by representing
points of interest as heatmaps. We show that this formulation allows to better
exploit global image context and explicitly models the spatial uncertainty that
arises from ambiguous labeling.

• In surgical instrument tracking, we address the task of simultaneous segmenta-
tion and localization by adapting the previously proposed architecture (FCRN)
to this multi-task setting. We also thoroughly evaluate different variants to
justify the choices that lead to the heatmap-based formulation.

• In robotic grasping, we take an additional step to model the ambiguity of
the task. Since many grasp configurations might be plausible, we extend our
model to predict multiple grasping hypotheses. We show that this formula-
tion leads to more effective training of the model and gives the robot several
possibilities at test time.

KEY CONTRIBUTIONS
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Figure 6.1 Overview of the proposed method. We jointly predict a segmentation map and the landmark posi-
tions of a surgical tool by adapting FCRN.

6.2 Localization of Surgical Instruments
We propose a method for jointly predicting a segmentation map and tracking surgical in-
struments in two types of interventions: robotically assisted endoscopic surgery and retinal
microsurgery. An overview of the method is shown in Figure 6.1.

Due to the challenges associated with minimally invasive surgeries, such as hand-eye co-
ordination or the reduced field-of-view, computer-aided systems have been developed to
support the surgeon. In such systems, estimating the exact position and orientation of sur-
gical tools is a crucial component. One non-trivial specification of intra-operative systems
based on computer vision is robustness in handling challenging conditions such as strong
illumination changes, occlusions, smoke or motion blur [44]. Another important considera-
tion is that such systems must operate in real time. Thus, accurate localization and tracking
of surgical instruments has been an active topic of research in the medical/vision commu-
nity [7, 43, 44, 89, 219, 327, 340, 344, 345, 364, 395, 397, 440, 486, 487].

In previous work, segmentation and localization have been often addressed as two indepen-
dent tasks, with one following the other in a serial manner. In fact, segmentation has been
used both as a prerequisite for instrument localization in [6] and as a post-processing step
to improve an initial localization estimate in [341]. This suggests, as is also intuitive, that
these two tasks are highly correlated and we hypothesize that jointly learning both tasks can
bring both a computational speed-up and and a performance boost.

6.2.1 Methodology
Next we present our approach for joint segmentation and localization of surgical tools as
a multi-task adaptation of the fully convolutional architecture presented in Chapter 4 and dis-
cuss why addressing localization as high-dimensional image-to-image mapping is beneficial
in this setting.

We refer to segmentation as the pixel-wise labeling of the entire scene, either binary (fore-
ground/background) or semantic (into different parts of the tool, such as shaft, manipulator,
etc. or different tools). We refer to localization as the estimation of the 2D coordinates (on
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Figure 6.2 Concurrent segmentation and localization (CSL) architecture. We also show two baselines: the
single-task localization-only model (L) and the multi-task localization-and-segmentation model (SL)
where only encoder weights are shared among the two tasks. Instead, our proposed architecture CSL
treats the two tasks with the same output dimensionality and all weights in the network (expect for
the prediction layers) are shared.

the image plane) of specific landmarks of the articulated tool, as for example seen in Fig-
ure 6.1. Tracking is essentially achieved by continuously detecting the tool landmarks in
each frame.

Let (I,S,k) be a training sample as, where I ∈ RW×H×3 is the input image, and correspond-
ingly, k ∈ R(N×2) represents the annotated 2D coordinates of N landmarks (keypoints) and
S ∈ RW×H×C is the ground truth segmentation into C labels. W and H correspond to the
image width and height respectively.

In the following, we discuss our approach and two baseline architectures, which are all
illustrated in Figure 6.2. In all variants, the image encoder remains the same as in Chapter 4,
that is ResNet-50 up to res5c, without the final pooling and fully connected layers. This
backbone allows for real-time computation during inference, which is a requirement for
intra-operative procedures. We investigate the following three problem formulations and
discuss the decoder layers adapted for each scenario.

Localization (L)
We begin with a simple baseline of directly regressing the 2D coordinates of the tool land-
marks (ignoring the segmentation task). Thus, the setting here is single-task. We use the
image encoder described above and append one additional residual block with stride to fur-
ther reduce the spatial dimensions of the feature maps. The residual block is then followed
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by an average pooling layer and a fully connected layer that produces an output k̃ ∈ R2N

(reshaped to RN×2). We train the model with L2 loss to directly regress image coordinates.

Intuitively (and experimentally verified), the accuracy of this model improves when
reducing the resolution of the feature maps through the additional residual block in-
stead of using a larger window when average pooling. Large average pooling win-
dows introduce spatial invariance that negatively affects the network’s ability to local-
ize precisely.

NOTE: Localization precision

Segmentation and Localization (SL)
We then extend the setting to multi-task and predict 2D landmark coordinates and a segmen-
tation map simultaneously with a single network. To do so, the weights of the encoder are
shared but the architecture splits into two branches after res5c. Each branch is task-specific
and features a different output dimensionality. The localization branch follows the design
described above (L), while the segmentation branch consists of four residual up-sampling
layers, exactly as described in Section 4.3, predicting a pixel-wise probability distributions
over classes S̃ ∈ RH

2 ×W2 ×C. As in Section 4.4, the segmentation objective is softmax cross-
entropy and the total loss becomes:

LSL = LCE(S, S̃) + λL2(k, k̃), (6.1)

where λ is a factor to balance the contribution of the two terms.

Concurrent Segmentation and Localization (CSL)
Often, landmark locations cannot be annotated with painstaking precision as their exact
position might be ambiguous in an image of high resolution; most of the time, there exists
a small image region in which the annotation can be still considered valid. Despite this fact,
the previous two baselines are optimized against the annotated 2D coordinates, therefore
attempting to minimize the distance of a predicted location to an ambiguous annotation.

Recent work in the field of human pose estimation [35, 49, 409, 438] shows that it is prefer-
able to estimate joint positions by regressing a set of heatmaps, one for each joint, instead
of predicting the exact pixel location. Each heatmap is essentially a confidence map, repre-
senting the likelihood of the joint occurring in a spatial location. This approach seems more
natural than direct regression and allows to model the spatial ambiguity of the annotation.

Inspired by this, we model the problem of surgical tool localization in a similar way. This fur-
ther allows to lift both tasks to the same dimensionality and share weights not only across
the encoder but also across the decoding layers. This, in turn, achieves greater computa-
tional efficiency comparing to the SL-model and, as the tasks of segmentation and localiza-
tion are highly correlated, we expect performance to also benefit from the extended sharing
of parameters.
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Baxter [32] shows that shared parameters (or a common learned representation) can
lead to improved generalization, when the learning tasks are similar. This might not
be the case among tasks that are competitive. When sharing is justified — and we
believe this is the case here — the shared part of the model in a multi-task setting is
constrained towards values that generalize better [128].

NOTE: Multi-task learning and parameter sharing

We can now use FCRN, which is fully shared across both tasks. We also enhance the architec-
ture by introducing long-range residual connections between the encoder and decoder layers,
as shown in Figure 6.2. These connections enable lower-level (higher-resolution) informa-
tion passing directly from the initial encoder layers to the upper layers (of corresponding
spatial dimensions) through summation of the features. It is shown that information flow
through skip connections benefits tasks such as segmentation [347]. A convolution is intro-
duced in the skip connection to adjust that the number of feature maps to that of each de-
coding stage (the numbers are shown in the same figure). The two tasks are split only at the
prediction layers of the network which consist of 3×3 convolutional layers. For the segmen-
tation branch we append a convolutional layer with C filters to the last up-projection layer
and predict the segmentation class probabilities (softmax-ed) by optimizing LCE. For the
localization branch, we first append a convolutional layer of 32 filters to which we concate-
nate the output of the segmentation branch, thus using segmentation to guide the heatmap
regression. This is followed by ReLU activation and another convolution ofN filters, which
yields the dense localization output H ∈ RW

2 ×H2 ×N supervised by:

LH(k,H;σ) =
1

NHW

1√
2πσ2

N∑
n=1

H∑
i=1

W∑
j=1

(
exp

(
−
∥kn − (i, j)T∥2

2

2σ2

)
− Hi,j,n

)2

. (6.2)

In Equation (6.2) we have reformulated the localization target by placing a 2D Gaussian
distribution with its peak at the annotated landmark location kn and constant variance σ2

which controls the spread of the Gaussian around the peak. This is done for each landmark
independently. The overall objective is then given by:

LCSL = LCE(S, S̃) + λLH(k,H;σ) (6.3)

During inference, the tracked landmark location is the point of maximum confidence in the
corresponding predicted heatmap. When the model is uncertain (e.g. because of motion
blur) or if detection failure occurs, the predicted heatmaps show very high variance.

6.2.2 Results and Evaluation
We evaluate our method in two settings: in retinal microsurgery and endoscopic surgery.
These differ in the anatomy that is being operated, the tools used and the challenges in-
volved in the operation itself.

76



6.2 Localization of Surgical Instruments

Datasets
The Retinal Microsurgery (RM) dataset [344] consists of 18 in-vivo sequences, each with
200 frames of resolution 1920 × 1080 pixels, recorded at 25 fps. There are four different
instruments used in total over all sequences, which splits the dataset into four instrument-
dependent subsets. Provided are annotations of N = 3 tracked landmarks on the tooltips
and binary segmentations tool/background (C = 2).

For the endoscopic surgery we use the data from the EndoVis 2015 challenge. This is a chal-
lenge designed to evaluate segmentation and tracking methods for robotic instruments in
laparoscopic surgery. The training samples correspond to four ex-vivo 45s-long sequences,
while as testing samples the remaining 15s of the same sequences are used. There exist two
additional 60s sequences in the test set. The resolution of the sequences is 720 × 576 pixels.
There exist one or two (simultaneous) surgical instruments over all sequences, with only
N = 1 annotated landmark per instrument. The semantic classes are C = 3: manipulator,
shaft and background.

Implementation Details
All frames are first resized to 640 × 480 pixels, although as input to the network we choose
a resolution of 480 × 480. The following augmentations are randomly sampled and applied
online, during training:

• Rotations of [−5, 5] degrees.
• Scaling with a factor of [1, 1.2].
• Random crops of 480 × 480 pixels.
• Gamma correction with γ ∈ [0.9, 1.1].
• Multiplicative color transformations with a factor c ∈ [0.8, 1.2]3.
• Specular reflections (in EndoVis).

For the 2D Gaussians, we set σ = 5 for the RM dataset and σ = 7 for EndoVis in which the
surgical instruments are larger. We train all discussed models after initializing ResNet-50
weights from the ImageNet pre-trained models. We train with stochastic gradient descent
with a constant learning rate of 10−7 and momentum 0.9. The weight factor λ between
localization and segmentation objectives in SL and CSL is set to 1.

Evaluation Metrics
We evaluate the segmentation results using the following metrics (TP: true positives, FP:
false positives, TN: true negatives, FN: false negatives):

• DICE coefficient (binary case):
2TP

2TP + FP + FN

• Recall (Sensitivity):
TP

TP + FN

• Specificity:
TN

TN + FP
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Figure 6.3 Ablation experiments on the Retinal Microsurgery dataset. We plot and compare the localization
accuracy of the baseline models (L, SL), U-net [347] and the proposed method (CSL) for (a) the left tip,
(b) the right tip and (c) the center joint of the instrument.

The DICE score is similar to the Jaccard index. Recall measures the amount of positives that
are correctly classified, while specificity measures the amount of negatives that are correctly
classified.

Localization is evaluated using metrics from previous work [345, 395]. If for each landmark,
kn ∈ R2 are the coordinates of the ground truth and k̃n ∈ R2 the corresponding prediction
(with n = 1, . . . ,N used as the landmark index), then we define the following metrics:

• Threshold score: ∥kn − k̃n∥2 < T , where T ∈ R is a fixed threshold
• Keypoint Threshold Bounding Box (KBB): ∥kn − k̃n∥2 < αmax(h,w), where α ∈ R

and h,w are the height and width of the ground truth bounding box around the in-
strument.

Ablation Studies
We evaluate and compare all models (L, SL, CSL) on the RM dataset. We train on 9 sequences
and test on the remaining ones. We plot the results in Figure 6.3 for the localization accuracy
of the left, right and center tip of the instrument over different thresholds. The localization-
only baseline (L) shows the weakest performance. With the SL architecture, however, we
already see an improvement in localization performance, especially for strict thresholds,
which is solely thanks to the multi-task setting. We then evaluate the potential of localiza-
tion via heatmaps with the CSL architecture; the performance of this model surpasses the
baselines by a significant margin, reaching 90% accuracy for the right and left tool tips and
79% for the center joint (for threshold equal to 20 pixels). The performance gain here can be
attributed to both the improved multi-task supervision setting and the improved formula-
tion of the localization problem.

We also compare our model to the U-net [347], which is an architecture broadly used in med-
ical applications, especially for segmentation. We train U-Net with the same two objectives
as CSL. CSL consistently achieves higher localization accuracy and, as shown in Table 6.1,
higher segmentation accuracy as well.
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Figure 6.4 Comparisons on RM dataset. We compare our method to FPBC [396], POSE [344] and Online Adap-
tion [345]. Half Split: (a) to (c) correspond to the KBB scores of left tip, right tip and center joint. Cross
Validation: (d) shows the average KBB score for the center point over all folds.

Architecture DICE

U-net [347] 0.725
SL 0.737
CSL (w/o skip connections) 0.744
CSL 0.754

Table 6.1 Segmentation accuracy on the Retinal Microsurgery dataset. We compare the DICE scores of U-
net [347] and baselines SL and CSL without long-range skip connections to the proposed model (CSL).

State-of-the-art Comparisons
Retinal Microsurgery In order to fairly compare to previous work, we train on RM using
the first half of each of the 18 sequences and evaluate on the remaining half of the frames.
Quantitative results are shown in Figure 6.4, where we refer to this split as Half Split. In
addition, to evaluate the generalization ability of our method to unseen geometry, i.e. novel
instruments, we follow a leave-one-out cross-validation scheme on the subsets defined by
the 4 different instrument types. We refer to this experiment as Cross Validation and the
results are also shown in Figure 6.4.

EndoVis 2015 Following the guidelines for this challenge, we carry out leave-one-out ex-
periments and evaluate on the last 15s of the left-out sequence (for sequences 1–4). For
test sequences 5 and 6 we train on all available data. There is an additional challenge in
this dataset as there are sometimes two instruments present in the testing sequences (one
from the left and one from the right), while only a single tool (right) is present throughout
the training data. We deal with this challenge by augmenting the training data with ran-
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Segmentation Localization

Binary Shaft Grasper Tool 1 Tool 2

Sequence B.Acc Rec Spec DICE Rec Spec Rec Spec RMSE RMSE

1 91.9 85.0 98.7 88.5 79.2 99.1 76.2 98.7 39.0 30.8
2 94.8 90.0 99.7 93.0 90.9 99.8 82.0 99.8 9.7 N/A
3 94.7 90.1 99.3 91.6 89.1 99.5 86.8 99.7 10.9 N/A
4 91.1 83.1 99.0 85.8 82.9 99.2 65.4 99.6 13.0 N/A
5 91.5 84.2 98.8 87.3 82.8 99.1 75.9 99.2 38.4 60.0
6 91.7 84.9 99.0 88.9 78.0 99.3 78.1 98.4 36.4 63.9

CSL (mean) 92.6 86.2 99.0 88.9 83.8 99.3 77.4 99.2 24.8 51.6

FCN [115] 83.7 72.2 95.2 - - - - - - -
FCN+OF [115] 88.3 87.8 88.7 - - - - - - -
Pakhomov et al. [313] 92.3 85.7 98.8 - - - - - - -

Table 6.2 Quantitative comparisons on EndoVis 2015. We evaluate segmentation using recall (Rec), specificity
(Spec), balanced accuracy (B.Acc) and DICE scores. Binary evaluation is done after merging the two
semantic classes (shaft and grasper). We also report the localization error for the two tools as the
Euclidean distance between the predicted and the ground truth center joint of each tool.

Figure 6.5 Qualitative results on EndoVis 2015. The semantic segmentation (manipulator/shaft) and joint local-
ization are overlaid on the original image. Left: We show a representative frame from a test sequence
containing one tool. Right: Test sequence contains two tools, although only the right tool exists in the
training data. Due to proper augmentation during training, the model is able to generalize well.

dom horizontal flipping, which makes at least one instrument seen from both sides. When
flipping, we change the corresponding semantic labels, which allows for multi-tool segmen-
tation into C = 5 classes: left shaft, right shaft, left grasper, right grasper and background,
i.e. we are able to distinguish left and right instruments. Additionally, we can differentiate
between the left/right joint locations with N = 2 heatmaps. However, as the evaluation
protocol of the challenge supports only 3 classes, we then merge the left/right grasper and
and left/right shaft for reporting the quantitative results.

Another challenge of this dataset is strong specular reflections which cause the segmenta-
tion to fail for some frames. We have addressed this issue by artificially modeling specular
reflections along the shaft during training, thus encouraging the model to be more robust to
this condition.
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In Table 6.2 we report the segmentation and localization results and compare to previous
and concurrent work that also reports their performance on this challenge. In Figure 6.5
we show two qualitative samples from our method, including the challenging scenario of
segmenting a previously unseen instrument, which is tackled successfully by our model.

We have also used the proposed architecture and training scheme to participate in the
EndoVis 2017 challenge for semantic segmentation. Our method achieved the first
place in multi-class segmentation and third overall. The results of the challenge are
published in [5].

NOTE: EndoVis 2017

6.3 Localization of Grasping Points
Robotic grasp detection from visual data is another application of image understanding with
an object-centric character, that we explore in this chapter. Related to localization of surgical
instrument joints, one of the goals of robotic manipulation is to localize possible grasping
points around objects in a scene (instead of on the manipulator itself). As the nature of the
problem is quite similar, it is possible to leverage the same problem formulation as before.

Because of its vast applicability, the task of visual recognition in robotic grasping has at-
tracted a lot of research interest over the years. Some — especially earlier approaches rely on
primitive shapes and known object geometry to estimate the grasp position [290, 291, 474].
We refer the reader to the review of Bicchi and Kumar [38] for a more detailed overview
of past work on this topic. In the past, knowledge of the 3D model of a given object was
essential, due to the lack of RGB-D sensors or the incomplete depth measurements of stereo
cameras. However, nowadays, object geometry can be easily estimated, even for previously
unseen shapes, given enough training data, as we show in Chapter 4. Most recent methods
address robotic grasping via learning techniques (deep or not) [20, 67, 136, 184, 193, 218, 235,
237, 274, 290, 337, 367, 417, 422, 436]. When estimating grasp configurations from visual
data, the localization is usually done in image coordinates, which can then be converted
into real world coordinates given additional information. Then, given an estimated grasp
configuration the robot can proceed to planning and control.

Very common among related methods that estimate grasping points directly from visual
data is the use of a 5-dimensional representation, i.e. an oriented rectangle that represents
the grasp configuration. Because this representation is similar to the one used in object de-
tection [123, 124, 338, 342], some methods address this task by predicting candidate bound-
ing boxes around graspable locations. We take a different approach by reformulating the
problem again into heatmap regression, which allows us to model spatial ambiguities in the
configuration. We then make an interesting observation; as most objects can be grasped in
various ways, optimizing towards a specific grasp per object during training can be harmful.
We thus take a step further and model the ambiguous nature of this localization problem by
predicting multiple grasp hypotheses per object.
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6.3.1 Methodology
In [184, 235] robotic grasp detection is formulated as estimating the size, position and ori-
entation of a 2D rectangle, which results in a 5-dimensional representation (x,y, θ,h,w),
where (x,y) is the center of the rectangle of height h and width w and θ is its orientation
relative to the horizontal axis. The height and width depend on the gripper. The represen-
tation above is suitable for modelling a parallel plate gripper and is very frequently used in
related work [20, 136, 218, 235, 337, 436].

Heatmap Representation
Similar to the example of surgical tools, we can model and localize several joints on the end-
effector following our heatmap formulation, which can be extended toN-finger grippers. In
the general case, for anN-finger gripper, the heatmap can be constructed as a mixture model
of N bivariate Gaussian distributions fitted around each finger location. It is important to
note that here, although the end-effector is not part of the scene, it is implied that the grasp
(i.e. the localization outcome) is immediately related to the configuration of the gripper.

In Section 6.2 we have used one heatmap per joint, whereas here we use a combined
heatmap for both grasp points via a Gaussian mixture model. The reasoning behind
this is twofold. When we estimate the pose of tool joints, where the tools are actually
visible in the image, their identity can be unambiguously inferred. Here, the gripper —
the joints/fingers of which we are implicitly localizing — is not visible so its orienta-
tion cannot be inferred visually. The second reason is that many grippers are actually
symmetric or can rotate 360°, thus identifying the permutation of the two grasp points
is irrelevant.

NOTE: Heatmap as a Gaussian mixture

We reformulate the oriented rectangle representation as:

G(p) =

N∑
n=1

exp
(
− 1

2

(
p− µ(n)

)T
R(θ)Σ−1 R(θ)T

(
p− µ(n)

))
√

2πNσ(n)x σ
(n)
y

. (6.4)

In the above equation, p denotes pixel indices. The Gaussian distributions are parametrized
by the specifications of the gripper fingers. We define the means µ(n) = (µ

(n)
x ,µ(n)y )T with

n ∈ {1, . . . ,N} as the 2D centers of the gripper plates (in image coordinates). In the case of the
parallel gripper, the distance of the means ∥µ(1)−µ(2)∥2 is equivalent to the width (aperture)
w of the gripper. In contrast to the heatmaps of Section 6.2.1 which have a constant variance,
here, we create ellipsoidal Gaussian distributions with Σ = diag(σ(n)x ,σ(n)y )2 such that the
σ
(n)
x corresponds to the height (length) h of the gripper plates (while σ(n)y is constant). Fur-

ther, the mixture model is oriented by rotating the heatmap with rotation matrix R(θ). A
graphical representation of this adaptation is shown in Figure 6.6. In Figure 6.7 we show the
annotated grasp configurations for an image from the Cornell grasp detection dataset [235]
along with the heatmaps we generate using the ground truth rectangles.
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Figure 6.6 Reformulating oriented rectangles as heatmaps. The heatmaps are created as Gaussian mixtures
with the plate centers as means and the variance σx proportional to the gripper height (σy is a chosen
constant).

Figure 6.7 Multiple grasp configurations for an object. We show all annotated oriented rectangles for an image
of the Cornell grasp detection dataset [235] and the corresponding heatmaps (our representation).

Our representation holds the same information as the oriented rectangles used in prior work
and, in addition, it expresses the spatial uncertainty around a grasp. Thus, for a model
trained to predict grasp heatmaps, the likelihood of a predicted grasp is reflected in the
magnitude and variance of the predicted heatmap. For this reason, we find this a more
interpretable representation for this task and more easily generalizable to multi-finger grip-
pers comparing to the oriented rectangles.

Multiple Grasp Hypotheses
We train a FCRN architecture (Section 4.3.2) to learn the mapping from RGB images to grasp
heatmaps. Since we now represent the joints as mixture models, the output heatmap consists
of just a single channel, i.e. we predict G̃ ∈ RW

2 ×H2 , where W,H are the width and height of
the input image.

However, we are now facing the following challenge regarding the supervised training of
this model. For most objects there are several grasping possibilities and it is unlikely that
there is only a single configuration that leads to a successful grasp. This is also reflected
in related datasets, which include a variable number of grasp annotations per object (an
example shown in Figure 6.7). Ideally, we would like to learn from the distribution of grasp
locations rather from a single ground truth example. If we optimize the model towards
a pre-selected ground truth grasp per object, then we might penalize predictions that are
presumably valid grasping possibilities. In this case, the samples that the model learns from
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do not cover the entire distribution of grasps. This can make the model overfit to the specific
choices in the training set, which reduces its generalization capabilities.

Most of the related work does not address the ambiguity of robotic grasping. In [337],
a random ground truth is chosen at each training step and treated as a single valid
grasp. However, more recently and heavily inspired by Faster R-CNN [342] for object
detection, Chu et al. [67] predict and classify several grasp proposals per object.

NOTE: Related work

As we show later supervising our model with exactly one grasp — the most stable annotated
grasp per object — yields results that are far from optimal. Supervising with a randomly
selected grasp per training step is even worse, because the model learns the conditional
average of the grasp distribution, which is likely to fall in-between modes, often resulting
in an unsuccessful grasping outcome.

The way we propose to address this ambiguity in robotic grasping has its theoretical foun-
dation in our previously published work, which we refer to as Multiple-Hypothesis Predic-
tion (MHP) [357]. A common characteristic of previous methods in this field is addressing
ambiguity in the predictions of a model by allowing the model to produce multiple out-
comes [107, 144, 145, 178, 233, 247, 357]. This is necessary in tasks that might have several
plausible outcomes instead of a single definitive answer; for example, future prediction [107,
357], pose estimation [279, 357], segmentation [145, 247, 357], optical flow [178] or image cap-
tioning [145]. This is also the case here, although multiple-hypothesis learning has not been
yet investigated in the context of robotic grasping.

Our solution is to adapt the model to predict multiple grasp hypotheses simultaneously:

G̃ = {G̃(m)}, m ∈ {1, 2, ...,M}, (6.5)

where M is a hyper-parameter denoting the number of hypotheses. This can be done by
replicating the last layerM times, without weight sharing.

As in MHP frameworks, the model is trained by minimizing an oracle meta-loss M : RM → R,
which is a function of a task-dependent loss L. We independently compute the cost of each
output against the same ground truth G. Then, the oracle meta-loss can be interpreted as a
winner-takes-all loss as it selects the output with the minimum cost, that is

min
m=1,...,M

{
L(G̃(m), G)

}
. (6.6)

It arises that the loss for a given sample is the loss of the currently best hypothesis. When
training by back-propagation only the selected hypothesis will be updated at this step. How-
ever, this formulation can cause some hypotheses that did not receive updates early enough
during training to be weak, which in turn makes it less and less likely that they are selected
as the best hypothesis later on, thus causing them to collapse. As we discuss in [357], it
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is possible to overcome this issue with a soft approximation of the minimum loss and we
define M as:

M(G̃,G∗) =

(
1 − ϵ

M

M− 1

)
min

m=1,...,M

{
L(G̃(m),G∗)

}
+

ϵ

M− 1

∑
m

L(G̃(m),G∗), (6.7)

where ϵ is a small scalar (ϵ = 0.05). In the above equation, the oracle selects the best hy-
pothesis with weight 1 − ϵ, but allows small updates for all other hypotheses as well with a
shared factor of

ϵ

M− 1
.

In most ambiguous problems addressed by previous work, there is often only a single an-
notated ground truth. In Equation (6.6) we also make the assumption that there is a single
annotated ground truth G against which we compare all predictions. However, when sev-
eral annotations are available for the same image (as is the case in [235]), we can randomly
sample a target heatmap G∗ ∼ G (as in Equation (6.7)) among all available grasps G for a
given image every time it is seen during training. At the end of training, all hypotheses are
expected to be trained equally and, given that multiple target grasps have been now encoun-
tered during training, the hypotheses should model the real distribution of grasps.

Hypothesis Selection
If such model is to be integrated in a real robot, then being able to select a good grasp among
all hypotheses is vital. In the field of multiple-output learning, some methods propose selec-
tion algorithms to choose one of the predicted hypotheses as the output of the system [144,
247]; these are usually task-dependent.

Here a logical approach would be to reverse the process of generating grasp heatmaps. By
construction, the model is trained to predict a mixture model of multivariate Gaussian dis-
tributions. In order to rank the predictions, we propose to fit a two-component Gaussian
mixture to each hypothesis using finite mixture model estimation [288].

A mixture model of multivariate distributions can be defined as

p(x) =

K∑
k=1

ϕkN(x | µk,Σk),
K∑
k=1

ϕk = 1, (6.8)

where ϕk, µk and Σk are the mixing coefficient, mean and covariance matrix of component
k respectively. By determining the maximum likelihood of this model, we can find the
optimal values for these components. As estimating the maximum likelihood analytically is
intractable, we optimize the fit via the Expectation-Maximization (EM) algorithm [79].

EM is an iterative method to find a numerical solution to the maximum likelihood
problem. There are two main steps: (E) computes an expectation of component as-
signments for each given data point given the current parameters and (M) computes
a maximum likelihood estimation and subsequently updates the model parameters.
The algorithm iterates over these two steps until the error is below some threshold.

NOTE: EM algorithm
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When the fitting has converged, each hypothesis will be assigned a likelihood which can be
interpreted by how well it resembles a Gaussian mixture. We use the estimated likelihoods
to rank the hypotheses and choose the top-ranked one as the system’s output.

6.3.2 Results and Evaluation
We evaluate our approach on the Cornell Grasp dataset [235], that is a commonly used
benchmark for this task. Our point of focus is the benefit of a multiple-prediction versus the
single-prediction setting, but also the hypothesis selection criterion.

Dataset
The Cornell dataset [235] consists of 885 RGB-D images from 240 graspable objects with a
resolution of 640×480 pixels. Some samples from this dataset are shown in Figure 6.8. There
multiple grasping possibilities annotated as oriented rectangles for each object (Figure 6.7),
mostly assuming 2D grippers with parallel plates. There are 2 to 25 grasp rectangles per
object in different scales, orientations and locations, but the labels are not exhaustive.

Previous work [20, 136, 218, 235, 337, 436] uses two different splits as the evaluation proto-
col, with cross-validation for each split (five folds each). The image-wise data split contains
all possible objects in the training set, while the validation set consists of unseen views of the
same objects. This is to evaluate the intra-object generalization of the methods. The object-
wise split contains all views of the same object in the training set and novel objects in the
validation set. However, unseen objects are very similar in shape to the ones used for train-
ing. For example, there are several objects of different colors but of similar shape. Thus, the
overall performance of methods does not vary much compared to the image-wise split.

We believe that the object-wise split might not be representative of a method’s generalization
capabilities to novel shapes, although the shape of an object is the most important factor in
grasping. In order to study our model’s performance on truly novel shapes, we propose
an additional shape-wise split to ensure a larger variation in objects between train and test
set. We suggest a two-fold cross-validation experiment on the more challenging shape-wise
split with 20% of the objects used for validation in each fold. Here the validation set is
constructed from objects that are most dissimilar to the ones used for training.

Implementation Details
We train the model after offline augmentations on the dataset. The transformations we apply
are the following:

• Rotation with an angle of [−60, 60] degrees.
• Scaling with a factor of [0.9, 1.1].
• Center crops with an offset of [−20, 20] pixels.

Each image is augmented six times by randomly sampling from the above transformations,
which results in a total of 5310 training images after augmentation.
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Figure 6.8 The Cornell Grasp dataset [235]. We show some sample (center-croped) images from the dataset.

As the original images contain a lot of background around the objects, we crop them and the
corresponding ground truth heatmaps to 350 × 350 pixels and then bilinearly down-sample
the image to 256 × 256 and the ground truth to 128 × 128 (since the output of the network is
only half of the input resolution).

When training the single-prediction baseline we choose the most stable grasp as supervi-
sion, which is defined as the largest annotated grasp rectangle. When training the multiple-
prediction model, we randomly sample from the available ground truth heatmaps per im-
age. We optimize with stochastic gradient descent and a learning rate of 0.0005, momentum
of 0.9 and weight decay of 0.0005. We train for 50 epochs and a batch size of 5 and 20 for
training multiple and single prediction models respectively. For the MHP models, we also
introduce hypothesis dropout as regularization with a rate of 0.05, i.e. we randomly drop
a hypothesis with 5% chance. This is another step to ensure that a single hypothesis will
not be over-trained while others are never selected and collapse. For evaluation, we use the
top-ranked prediction after optimizing with EM for 1000 iterations.

Error Metric
We evaluate our results using the metric suggested by [184], which is also used in previous
work. According to this metric, we define grasp success when

• The intersection over union (IoU) between the ground truth bounding box and the
predicted bounding box is greater than 25%, and
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Grasp Estimation Accuracy (%)

Method Input Image-wise Object-wise Shape-wise

Lenz et al. [235] RGB-D 73.9 75.6 -

Wang et al.[436] RGB-D 85.3 - -

Redmon et al.[337] RGB-D 88.0 87.1 -

Asif et al.[20] RGB-D 88.2 87.5 -

Kumra et al.[218] RGB-D 89.2 89.0 -

Guo et al.[136] RGB-D, tactile 93.2 89.1 -

Kumra et al.[218] RGB 88.8 87.7 -

single M = 1 RGB 83.3 81.0 73.7

multiple M = 5 RGB 91.1 90.6 85.3

multiple (diversity) M = 5 RGB 89.1 89.2 82.5

multiple M = 10 RGB 91.5 90.1 86.2

Table 6.3 Comparison with the state of the art on grasp detection accuracy. Single predicts a single heatmap,
while multiple refers to our MHP models. The top-ranked hypothesis is evaluated for the MHP mod-
els.

• The difference in orientation between the ground truth rectangle and the predicted
rectangle is less than 30◦.

When these conditions are met towards any of the available ground truth rectangles, then the
predicted grasp is considered successful. We compute the percentage of successful grasps,
which we refer to as Grasp Estimation Accuracy.

It is clear that in order to compute this metric, we first need to convert the predicted heatmap
back to an oriented rectangle representation. The heatmaps are thresholded with t > 0.2.
The Euclidean distance between the means µ1 and µ2 of each Gaussian correspond to the
rectangle’s widthw. The major axis of the ellipse corresponds to the height h of the rectangle.
Finally, we compute the orientation θ as the angle of the major axis as arctan

(
d1
d2

)
, where

d1 and d2 are the vertical and horizontal distances between the centers of the two Gaussians
respectively.

Sometimes, when the variance of a predicted heatmap is high, we discard the hypothesis
as a rectangle cannot be reliably extracted. Thus, variance is often a prognostic of grasp
quality.

Quantitative Evaluation
We train models for M = 5 and M = 10 and compare them to the single-prediction base-
line (M = 1). The results are shown in Table 6.3. When modeling ambiguity with multiple
hypotheses we observe a significant improvement over the baseline. Increasing the num-
ber of hypotheses from 5 to 10 shows a smaller improvement. Although we only use RGB
data as input to the model, our approach surpasses the performance of previous methods
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Figure 6.9 Predicted heatmaps from our model with M = 5. We also compare to the single-prediction model
(right). A solid frame around heatmaps indicates a successful grasp, while a dashed line indicates a
missed detection. (✓) indicates the top-ranked hypothesis. The rectangles resulting from top-ranked
heatmaps are overlaid on the RGB image (magenta) against the closest ground truth (green).

that make use of RGB-D data (depth information usually adds a few points of performance).
Concurrently to our approach, some methods have extended Faster R-CNN [342] to grasp
detection resulting in superior performance [67, 489]. As we discuss later, the small perfor-
mance gap could be attributed to our selection mechanism, which does not always choose
the best hypothesis (Table 6.4).

We further report performance under the more challenging shape-wise split to better eval-
uate generalization to novel objects. In this case, the baseline accuracy drops by nearly 10
points comparing to the image-wise split. On the other hand, the multiple hypothesis mod-
els show a smaller decline with respect to the image- and object-wise accuracy. With an
increasing number of hypotheses, the performance gap over the single-prediction model is
highest for the shape-wise split, with over 12% increase in accuracy.

By proposing a new split on this data, we have attempted to show that models with
nearly perfect performance (under certain metrics) might not necessarily adapt well
to more challenging real-world scenarios, for example when encountering complex
object shapes that are not similar to those in the training distribution. This suggests
that to further advance the field, more challenging benchmarks and stricter evaluation
protocols might be necessary.

NOTE: Over-fitting to the training data

89



Chapter 6: Object-centric Understanding

Figure 6.10 Generalization to common household objects. We show the top-ranked heatmap predicted for sev-
eral self-recorded images. Objects 1-5 are similar in shape to the objects in the Cornell dataset, but
objects 6-12 show novel shapes and textures.

Qualitative Results
In Figure 6.9 we show predictions from our M = 5 model. We also compare to the single-
prediction model. We observe that for objects that can be clearly grasped in variety of ways,
our multiple prediction model can disentangle the various outcomes, resulting in diverse
predictions that successfully approximate the ground truth distribution. Perhaps the most
challenging among these objects are the scissors, for which some of the hypotheses do not
result in likely Gaussian mixtures. However, our ranking mechanism can alleviate this issue,
by selecting one of the more probable hypotheses.

We also highlight the ability of our model to generalize to real-world scenes (and new ob-
jects) by evaluating it qualitatively on self-captured images of common household objects
(Figure 6.10).

Diversity of predictions
It is important to understand how diverse the predicted grasp hypotheses are. Since we
aim to model the distribution of ground truth grasp configurations, ideally the hypotheses
should be representative of that distribution. In objects with many viable grasps are viable,
we expect to the model to predict many distinct outcomes. In addition to the heatmaps
shown in Figure 6.9, we also present the diversity of the predictions in the form of grasp
rectangles in Figure 6.11.

Moreover, we have attempted to encourage more diversity in the predictions explicitly, us-
ing a repelling regularizer [346]. The regularizing term is added to the oracle loss with
a weight factor of 0.1. We report this experiment in Table 6.3, noted as multiple (diversity)
(M = 5). However, the accuracy of this model is slightly worse than the MHP model with-
out the regularizer. To measure the similarity of the hypotheses in both cases, we compute
the cosine similarity among all hypotheses for each test image; the lower the similarity, the
better. The average similarity for the object-wise split without the regularizer is 0.435, which
is only slightly higher than the respective model with regularizer with a similarity score of

90



6.3 Localization of Grasping Points

Figure 6.11 Grasp rectangle prediction. We show the diversity of the predicted grasp configurations, after they
have been converted from heatmaps to oriented rectangles.

Method Image-wise Object-wise Shape-wise

lower limit (M = 5) 80.0 77.4 75.0

lower limit (M = 10) 76.5 73.3 72.1

upper limit (M = 5) 98.0 98.5 96.3

upper limit (M = 10) 99.2 98.4 99.1

Table 6.4 Average grasp estimation accuracy (%) across hypotheses. For the lower limit we evaluate all hy-
potheses; for the upper limit any correct hypothesis (oracle) leads to grasp success.

0.427. This suggests that the hypotheses are already sufficiently diverse and do not really
benefit from an explicit optimization of diversity.

Evaluation over Multiple Grasps
For a more in-depth evaluation of the grasping hypotheses, we compute the lower and up-
per limits in detection accuracy and report the results in Table 6.4. The word limit here is not
used in the mathematical sense.

Lower limit Instead of only evaluating the top-ranked hypothesis, we evaluate the aver-
age accuracy of all hypotheses, which corresponds to the lower limit in performance as it
takes into account the success rate of less likely heatmaps as well. For M = 5, the accuracy
for the shape-wise split drops to 75% from 85.3% (which corresponds to the top-ranked hy-
pothesis). For a larger number of hypotheses, the accuracy drops further, which suggests
noisier heatmaps overall. However, since the top-ranked score for M = 10 in Table 6.3 is
higher than for M = 10, we believe that the Gaussian mixture fitting helps eliminate poten-
tially bad hypotheses.

Upper limit Now we investigate whether the top-ranked hypothesis is indeed the best
prediction in terms of grasp estimation accuracy. To compute the upper limit in accuracy
we count grasp success is any of the hypotheses matches any of the ground truth rectangles,
thus using an oracle for selection. For M = 10 the upper limit exceeds 99% accuracy for the
shape-wise split, which implies that in almost all test samples there exists a successful grasp
among the hypotheses, but it is not always selected, as the top-ranked hypotheses yield
86.2% accuracy for the same model. Therefore, there is room for improvement regarding the
criteria for hypothesis selection.

91



Chapter 6: Object-centric Understanding

6.4 Conclusion
We conclude the first part of the dissertation having addressed both scene-centric and object-
centric problems. Object-centric understanding is as important as understanding scenes as a
whole. An intelligent system deployed in the real world will need the ability to navigate and
recognize its surroundings. However, it will be often also required to isolate target objects
and, for example, identify points of interest to track the objects or potentially interact with
them, especially when it comes to embodiment.

We have addressed this problem through two specific applications related to the field of
robotic vision. In both applications, the problem we address is related to localization: a) lo-
calization of articulated surgical instruments (robotic or not) and b) localization of grasping
points (e.g. as part of the visual processing system of a robotic gripper). In both applica-
tions, we cast the problem of localization into learning 2D heatmaps that represent points
of interest on or around objects with some spatial uncertainty that accounts for ambigu-
ous labeling. For example, in the first case precise labeling of surgical instrument joints is
difficult and somewhat subjective. In the second case, annotating all viable grasping config-
urations around objects might not be done exhaustively. To address this second challenge
in particular, we extend our model to predict multiple grasping hypotheses, thus allowing
several options to the robotic arm, ranked by confidence. We show that this formulation
significantly improves performance on this task.
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7.1 Introduction
We have so far studied scene understanding tasks from a perceptual point of view. Often
problems like recovering geometry and semantics are seen as lower-level tasks that enable
higher-level tasks, such as navigation and interaction; ultimately, higher-level understand-
ing and reasoning is the main goal towards intelligent agents. As lower-level visual percep-
tion problems are now being addressed by the research community with reasonable success,
we have started witnessing the emergence of multi-disciplinary fields, such as the intersec-
tion of computer vision and natural language processing.

7.1.1 Motivation
There are several reasons why computer vision and image understanding are often coupled
with natural language. First, a lot of information that is available on the web is in fact
multi-modal; visual data are often associated with descriptions (e.g. Alt-Text) and images
can be retrieved by search phrases or keywords. Other examples include books and their
corresponding movies or movies with subtitles, social media photos and tags, and so on.
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Second, priors, word co-occurrences, context or, in general, knowledge from human lan-
guage can be exploited to guide visual tasks [332] or vice versa [174]. Indeed, humans also
rely on compositionality and transferability to solve higher-level reasoning problems. Of-
ten knowledge for a task is transferred from other modalities, such as language — cooking a
recipe after understanding the ingredients and instructions.

The goal of scene understanding is to teach machines to understand and reason about the
world like human beings, which indeed involves multiple modalities. In this chapter, we
motivate the important of communicating machine understanding, which is a higher-level,
multi-disciplinary ability and is crucial in many practical scenarios that involve end-users,
for example in aiding visually impaired users [143, 447], user-agent interaction [74, 254] or
providing explanations and transparency into the system [176, 242].

We specifically focus on the task of automatically generating textual descriptions of images,
which is also known as image captioning. This is an interesting problem because instead
of restricting visual understanding to some limited-vocabulary representation (as in image
classification or segmentation), it allows to extend understanding to how humans reason
and talk about the world around them. Humans might look at a scene and very quickly
be able to compose a detailed description, even at a young age — for example, children’s
storybooks. On the other hand, automatically generating captions from images using a
computational system is considered an extremely challenging task as it requires joint and
compositional understanding on both image and language fronts. In other words, image cap-
tioning relies not only on an image model for scene understanding, but also on a language
model that converts a scene representation into sentences that are correct both with respect
to grammar rules and semantic visual entities (grounding). Due to these challenges, prior
to deep learning and the availability of large image-caption datasets the amount of existing
work on this task was limited [103, 216].

Image captioning has many potential applications in the real world. It is a crucial step to
increase accessibility for blind people to computer applications, the web and social media
or help them better understand their surroundings. There already exist wearable devices
that help blind people read books, navigate streets and recognize other people around them
by translating visual recognition into descriptions. Another example is the use of natural
language to enable communication between the user and the system, which can help in
gaining people’s trust and engagement when it comes to autonomous agents, such as self-
driving cars. Last but not least, image descriptions can serve as a means for visual content
search and image/video retrieval.

7.1.2 Contribution
The vast majority of existing methods on this task typically learns image captioning from
full supervision, i.e. using large datasets of image-caption pairs annotated by human users
on platforms such as Amazon Mechanical Turk (AMT). It is easy to notice the inherent ambi-
guity of such annotations, as there naturally exist many different ways to describe an image.
For this reason, each image is usually annotated with more than one description — for ex-
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ample, five in MSCOCO [253]. As turkers are usually paid per image, captions are quite
repetitive and of low effort, resulting in datasets that need a manual process of cleaning
and quality control. While it would be intuitive to mine the large amount of text already
available on the web, this is still an open problem and, thus, most captioning models are
developed on limited datasets alone that might be difficult to adopt in the real world.

More recently, researchers have started to move beyond curated datasets and explore var-
ious data sources and styles, by combining paired and unpaired sources. Following the
potential that unsupervised methods have shown in other tasks [86, 230, 376, 490], we pro-
pose an approach to image captioning that does not require paired image and caption data.
Unsupervised training can indeed benefit from an unlimited amount of unlabeled images
(or also weakly labeled images, e.g. tags) and large text corpora (books, articles, descriptions,
etc.). The absence of image-caption pairs givers rise to an interesting and challenging ques-
tion: how can we align the two domains? This is the question that we investigate in this
chapter, which has been published in [228].

• We propose an unsupervised approach to image captioning, which reduces
the dependency on paired image-caption data. At the time of publication, our
method outperforms other unpaired methods.

• We propose a training scheme to build a language model with a semantically
structured embedding space. In this space, sentences that describe similar vi-
sual content are encoded with similar embeddings.

• We thoroughly investigate several objectives for mapping images into the same
embedding space with the goal that embeddings coming from different do-
mains (image and language domain) are indistinguishable.

• Although visual recognition tools are necessary for establishing correspondences
between the two domains, we show that, thanks to visual word co-occurrences,
we can predict image descriptions that extend beyond the fixed vocabulary of
an object detector.

KEY CONTRIBUTIONS

It is important to note here that we classify our method as “unsupervised” with respect to
image-caption pairs. However, when the image and language domains are independent, a
weak supervisory signal — e.g. an off-the-shelf object detector — is in fact necessary for their
alignment, i.e. we need to be able to name entities detected in the images. Therefore, a purely
unsupervised approach in the image domain (e.g. unsupervised image classification [183,
416]) would not suffice. Nonetheless, as we show later, the co-occurrence statistics in the
two domains help discover more concepts than the visual recognition tool that is used for
the alignment.
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Finally, our approach makes it possible to leverage various language styles (e.g. funny, po-
etic, romantic, narrative) or combinations of those. Fully supervised approaches, instead,
would require obtaining such data through crowd-sourcing, which comes with its own chal-
lenges and limitations.

7.2 Related Work
The field of natural language generation from images has recently drawn a lot of attention.
We will first review the literature related to image captioning and multimodal embeddings,
which we divide as follows.

Pre-Deep Learning
Prior to the success of deep learning, several methods for generating image descriptions
were based on templates [96, 103, 216], i.e. fixed template sentences with slots that were
filled with objects, relationships or attributes detected in the image. While others address
captioning as a retrieval and ranking problem [160, 311], some approaches are in fact compo-
sitional [222, 223, 245], combining together candidate descriptions retrieved from the train-
ing data.

While all these methods were impressive at the time, the generated language is much more
rigid and constrained compared to the generative power that current neural networks al-
low.

Full Supervision
Some of the first approaches to use neural networks for image captioning were proposed by
Vinyals et al. [423] and Karpathy and Fei-Fei [188]. The models proposed by these authors
follow a similar concept: a CNN is used to encode an image into a representation which
is then used to initialize an RNN for language generation. The problem is formulated as
next-word classification by minimizing the cross entropy between the predicted and the real
distributions. As the problem is auto-regressive in nature — and would require sampling a
word at each step — one of the most common ways to train is with teacher forcing [36],
i.e. predicting the next word in a sequence, given previous ground truth tokens. This is a
well-established approach and several authors thereafter have used it as a basis for their
methods.

Video captioning [87, 421, 467] is similar in nature, while the architecture design is adjusted
to take temporal features into account. Also presented in [188], and later in [186], is a prob-
lem known as dense captioning, that is to caption several regions of an image individually
instead of generating a single description for the entire image.

A substantial part of literature on image captioning has focused on attention mechanisms,
following the seminal work of Xu et al. [459]. The purpose of attention is two-fold. First, it al-
lows to put different weight on different parts of the image while generating each word (thus
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regulating the focus of the decoder RNN), in a way that is implicitly learned. Second, it can
be used a means to visualize the grounding of generated words onto the image, thus improv-
ing the interpretability of such models. Several attention variants have been proposed since;
for example, semantic attention [472], spatial and feature-wise attention [57], top-down and
bottom-up attention [9], reviewer networks [466], visual sentinels that signify when (i.e. for
which words) to attend [264] or the nowadays broadly used self-attention [418].

There is a significant amount of methods addressing various other aspects of image cap-
tioning. Wu et al. [445] and Yao et al. [468] use attributes and Yao et al. [469] detect visual
relationships in the form of ⟨subject, predicate, object⟩ to create more explicit representations
for the decoder.

When training with maximum likelihood estimation, the generated descriptions are usually
rigid, unnatural and lack variability and the typically used metrics for evaluation do not pe-
nalize that. Thus, some approaches are based on Generative Adversarial Networks [71, 239,
374] or Variational Autoencoders [431] and aim to improve the naturalness and the diversity
of the generated captions. However, GANs and VAEs are notoriously difficult to train due
to the discreteness of the language domain and the auto-regressive nature of the decoder.
To tackle this problem, and also to bridge the gap between training and testing modes1,
some methods [71, 343], inspired by reinforcement learning, propose to train using policy
gradients [441]. Another advantage of these methods is that they can directly optimize for
non-differentiable evaluation metrics, such as SPICE [12] or CIDEr [419].

Despite these noteworthy efforts, most methods have aimed at advancing the state of the
art on common benchmarks such as MSCOCO which provide mostly factual descriptions of
images. Thus, another line of work deals with stylized captioning to generate descriptions
that can be more appealing to humans [114, 283, 284, 377]. SentiCap [284] proposes to use
positive and negative sentiments and StyleNet [114] romantic or humorous style; Shuster
et al. [377] condition on a large set of personality traits, such as romantic, charming, arrogant,
etc. Notably, these methods rely on crowd-sourcing to annotate training data accordingly,
while [283] follow a semi-supervised approach that we will discuss later.

Novel Object Captioning
The task of novel object captioning has been defined to address the shortcomings of caption-
ing models in generating descriptions with previously unseen visual entities, i.e. that are not
included in the paired image-caption training data. To achieve this, several methods exploit
the fact that an abundance of visual categories are simultaneously present — although un-
paired — in large-scale object recognition datasets (e.g. ImageNet [360]) and readily available
text corpora. Their performance is usually evaluated on a held-out subset of MSCOCO.

Mao et al. [282] propose a few-shot learning approach to learn from just a few annotated
pairs of images-captions that include novel concepts. Yao et al. [470] re-design the RNN
architecture with a copying mechanism to exploit large-scale visual object recognition. Be-
sides the paired captioning model, Hendricks et al. [17] train separate visual and linguistic

1The gap arises from teacher forcing with ground truth during training and the decoder being exposed to its own
predictions in auto-regressive testing (known as exposure bias).
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models and learn a transfer function between categories that appear in the paired data and
the novel (unpaired) categories, which also resembles a copying mechanism. Venugopalan
et al. [420] improve upon this idea by employing joint, end-to-end training of all models. Lu
et al. [265] revisit the older concept of template-based captioning (Baby Talk [216]) and fill
in sentence slots with the outputs of an object detector. Finally, as an alternative to training
with concepts that are not part of the paired data, Anderson et al. [10] modify beam search
to constrain generation on a set of word targets.

The majority of these methods bear some similarity with our approach, as they try to lever-
age available imagery and large text sources independently, aside from paired datasets; how-
ever, the focus is on novel object categories, while the base captioning model is still fully
supervised.

Partial Supervision
Most recently, a new and challenging avenue is being explored, which is closer to our work,
that is to generate image captions in an unpaired or unsupervised manner. In this case, the
partial supervision might refer to a number of things, such as adapting to different styles or
languages without paired data.

Cross-domain captioning is the task of transferring a captioner trained on a source domain
to a different domain, perhaps one in which paired data is not available. Chen et al. [59]
address this task with an adversarial approach using two critics, one to account for the do-
main shift and one for the relevance of the description given an input image. Instead, Zhao
et al. [483] formulate this problem with a cycle loss, i.e. reconstructing images from their de-
scriptions. Instead of domain adaptation, unpaired text corpora of different styles are used
in [283] to decouple captioning and stylization, where the styled text comes from romance
novels. Interestingly, their method is not adversarial. Instead, [137] uses the already existing
paired and stylized datasets, but in an unpaired way, and adopts an adversarial approach.

Anderson et al. [11] formulate the problem of image captioning as completing sequences of
partially observed data — e.g. a set of object labels given by an object detector — using finite
state automata, which is a more general approach to novel object captioning. This approach
allows to perform captioning in an unpaired way, but is mainly shown in the context of
describing new visual concepts. A different dimension of unpaired training is seen in [132],
that captions images in a different language (without parallel data) by leveraging supervised
machine translation [24] via a pivot language for which paired data do exist.

There is a crucial difference between the aforementioned methods and the approach that we
will later describe in this chapter: in all previous cases, a base captioning model must be
trained using parallel data and full supervision in a source domain, before it reaches its end-
goal where there are limited or no paired data. Instead, our approach is unsupervised in the
sense that it does not entail a dependency on a paired image-language domain; concurrent
work [106, 133] has a similar objective. In this case, we can make use of large text corpora
with the only constraint being that they are sufficiently descriptive in terms of visual con-
cepts, thus suitable for describing visual content. Similar to our method, Feng et al. [106]
only make use of an object detector to recongize visual entities in the images and create a set

100



7.2 Related Work

of pseudo-captions for training. On the other hand, Gu et al. [133] use scene graphs, which
is a much stronger supervisory signal, as it includes enough information (objects, relation-
ships and attributes) to induce accurate descriptions even without aligned data.2

Multimodal Embeddings
A significant contribution of our approach is the translation of visual and linguistic represen-
tations into a common multimodal space, without using parallel data. Thus, we also discuss
existing work related to multimodal embedding spaces.

In particular related to image captioning, there exist methods that operate on a multimodal
space. Instead of directly decoding a visual representation into captions, multimodal meth-
ods create a shared latent space for images and captions and decode features from this space.
In pioneering work, Kiros et al. [204] extend log-bilinear models (originally proposed in
[297] for language modeling) to learn a joint embedding space, which can be then used for
either image or caption retrieval as well as caption generation. In follow-up work [206], they
propose an encoder-decoder approach, where a sentence encoder is modeled by an LSTM
and the decoder is a neural language model that predicts both sentence structure and con-
tents and can be trained using text corpora only. Karpathy et al. [189] break down images
and sentences into “fragments” via an object detector and dependency trees [381] respec-
tively and learn multimodal embeddings from both global and fragmented levels. Fang et
al. [102] generate candidate sentences by predicting common visual words in images and
use a multimodal similarity model to rank the candidates. Faghri et al. [101] propose an
improvement to the standard ranking loss for multimodal embeddings by considering hard
negatives. Focusing on word level, DeViSE [110] is a visual-semantic embedding model
that is trained by using the last layers of an image encoder to predict word vector represen-
tations with a ranking objective. Different to all other approaches, Chen and Zitnick [62]
propose a bi-directional mapping by additionally predicting visual features from text data.
Similarly, multimodal embeddings have been also used for related problems, such as video
captioning [314], book-movie alignment [491] and visual question answering [200].

More recently, in the field of unsupervised machine translation, although dealing with lin-
guistic representations only (unimodal), [229, 230] learn an aligned latent space from non-
parallel monolingual corpora with a reconstruction objective in both languages. As we show
later, in (unsupervised) image captioning, we have two modalities with quite different prop-
erties; thus, to improve their alignment, we create representations in a way that is specifi-
cally directed by visual cues.

Sentence Representations and Topic Modeling
Another key component of our method is creating sentence representations that are (mostly)
unaffected by syntactic structures and encode visual information instead. This topic has
been previously studied in [381] using dependency tree relations and constructing sentence
representations by operating on word representations in a bottom-up approach.

2The scene graphs have been created from image descriptions in the first place.
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Image Domain → Visual Concepts

The motor cycle rider is going through a stop sign.

A person on a motorcycle between two trees. 

. . . 

“A man riding a motorcycle 

next to a traffic sign”

. . . 

A small dog is catching the red frisbee.

The dog is holding a frisbee in its mouth.

. . .

A man about to hit the ball with the tennis racket.

A person on a court with a tennis racket.

. . .

Language Domain → Visual Word Co-occurrence

man mantennis ball dog

tennis racquet

frisbee

grass
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Figure 7.1 Method overview. We learn a joint embedding space of text and image features from disjoint language
and image domains. The embedding space is structured by visual concepts and their co-occurrence.
In the language domain, visual words are underlined. A shared decoder can decode image and text
embeddings in the same manner and thus unsupervised captioning can be achieved when the two
domains are aligned.

Sequence-to-sequence models are a well-established approach to encoding (and decoding)
sentences [390]. There exist several other methods that deal with unsupervised learning of
sentence representations [156, 205] and topic modeling [40]. These methods are not related
to the visual domain.

7.3 Unsupervised Image Captioning
In the following, we present our approach to unsupervised image captioning. The key idea
is to learn a shared embedding space into which we can map vectors from the visual domain
and text corprora independently. In this space, image representations and sentence represen-
tations should be indistinguishable; this effectively means that the decoder of a language
model — pre-trained on the text corpus — can decode embedded images just as if they were
embedded sentences instead. Thus, as a broad overview our model consists of two parts;
the language model and the alignment between the two domains in the embedding space,
without image-caption correspondences. This overview is also illustrated in Figure 7.1.

In Section 7.3.1 we present our language model and elaborate on why imposing a semantic
structure is more suitable for the task at hand. In Section 7.3.2 we first create initial noisy
correspondences between the two domains that will then act as pseudo-supervision and
then present the full model and training objectives that are used to translate visual features
to textual representations, thus bringing multi-modality into the embedding space.

We will first introduce some general concepts and notation that will be used throughout the
chapter. Let I be the visual domain that contains images Ii ∈ I, where i is used to index
image samples. We also represent each image by the set of visual entities depicted in it:

Vi = {vk | k ∈ N, 1 ⩽ k ⩽ Ni}, (7.1)

102



7.3 Unsupervised Image Captioning

whereNi is the total number of visual entities. Within the context of our work, visual entities
mostly refer to object categories, but can be extended without loss of generality to object
interactions (predicates), attributes, etc.

Independently, there exists a language domain (text corpus) C and sentences sj ∈ C, where
j is used to index sentence samples. We choose a similar representation for sentences as we
did for images, i.e. we use a set Wj of “visual” words:

Wj = {wk | k ∈ N, 1 ⩽ k ⩽Mj}, (7.2)

where Mj is the number of relevant words in sentence j. It is important to note that not
all words in Wj are actually needed to represent the sentence, for example we disregard
prepositions, articles, etc.

In computer vision, the term bag of visual words has been used to represent images as
collections of features (e.g. SIFT [261]), in particular for tasks such as image classifica-
tion. In the context of this dissertation, we refer to visual words with a literal meaning,
i.e. words in our text corpus that have a visual meaning and can be explicitly grounded
in imagery (as in [265]).

NOTE: Visual words

Here we are specifically interested in visual nouns. We extract these from the sentences
using the Stanford part-of-speech tagger [281] and a lookup table provided with the Visual
Genome dataset [214]. In practice, this lookup process results in synsets (WordNet [292]),
which we prefer over raw words so that synonyms, plural forms, etc. still refer to the same
entities (e.g. bike and bicycle are the same concept).

Although our method does not depend on paired data, we must make the assumption that
the image domain and language domain are somewhat related. This is simply because we
cannot expect to generate image descriptions if we use, for example, text corpora of legal
matters or political speeches. Therefore, we select the language domain(s) such that there
exists a set of visual concepts that is shared between images and text corpora, i.e.Ω = V ∩ W

andΩ ̸= ∅.

7.3.1 Language Model
The first step of our approach exclusively involves the language domain, that is to pre-train
a language model and learn meaningful sentence representations that will form the basis for
the subsequent alignment of the image and language domains.

Sequence-to-Sequence Models
We build on sequence-to-sequence models [390] and train encoder-decoder RNNs with max-
imum likelihood estimation. This is the standard approach to sequence learning that maps
an input sentence s to a d-dimensional latent vector using an encoder f(·) and then decodes
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JJ VBNN NN NNNN

“An old man riding a bike on the side of the road” man.n.01

bicycle.n.01

side.n.01

road.n.01

JJ NNVB

NNNNVBNN

“Two men sitting by the water with their bicycles

parked next to a rusty bench”
man.n.01

bicycle.n.01
bench.n.01

water.n.01

𝑊1 ∩𝑊2 = 2

𝑊1

𝑊2

𝑠1

𝑠2

Figure 7.2 Bags of visual words. We show two sample sentences and simplified part-of-speech tagging. We
extract synsets from the detected visual nouns to create bags W1,W2 and use those to denote the
two sentences as positive to each other since they have two synsets in common (man.n.01 and
bicycle.n.01).

this vector into a target sentence using decoder g(·). In our case, the target sentence is the
same as the input sentence, i.e. we formulate the training task as sentence reconstruction as
a means for unsupervised representation learning.

f(s) = ϕ, g(ϕ) = s̃, ϕ ∈ Φ ⊆ Rd. (7.3)

The most common choices for f and g are LSTMs [159] or GRUs [66]; we choose the latter.
The goal is to compute the conditional probability of the output

p(s̃ | ϕ) =

T∏
t=1

p(s̃t | ϕ, s̃1, . . . , s̃t−1), (7.4)

where t is used for indexing sentence tokens and p(s̃t) is a distribution over words from
a fixed-size vocabulary. The model is trained to minimize the negative log-likelihood of a
correct reconstruction of the input sentence:

LCE(s, s̃) = −

T∑
t=1

logp(s̃t = st | s1, . . . , st−1) (7.5)

Since Equation (7.4) implies an autoregressive nature for the decoder — each output token is
conditioned on the previous ones — it also involves non-differentiable token sampling. As
we discussed previously, to address this, language models are trained with teacher forcing,
i.e. given ground truth words s1, . . . , st−1 as input at each time step, the goal is to predict the
next word; which brings us to Equation (7.5).

Visually Structured Language Model
Given the nature of the task we are dealing with, here we are specifically interested in
learning representations that encode (visual) semantics. Instead, we have observed that
the model described above learns embeddings that are sensitive to grammatical and syn-
tactic structures, such as active/passive voice. Our observation aligns with the findings of
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Encoder 

Decoder 

An old man riding a bicycle on the road

Two men sitting on a bench with their
bikes parked on the side

A dog catching a frisbee in the park

An old man riding a bicycle on the road

𝝋+

𝝋−

𝝋

Figure 7.3 Language model. We build an encoder-decoder language model which, in addition to sentence re-
construction, is trained with sentence triplets. The triplet loss creates an embedding space that is
structured by the visual concepts that are present in the language domain.

[381]. While this structure might be important for other tasks, we argue that for image cap-
tioning it would optimal if sentences with similar visual representations also have similar
embeddings, i.e. a small distance in the embedding space. Therefore, our goal is to learn a
language model that can recognize words with visual grounding and encode abstract visual
concepts that stem from the co-occurrence of these words.

To achieve this, we create sentence (and therefore embedding) triplets (ϕ,ϕ+,ϕ−), where
ϕ+ corresponds to a sentence with similar visual content as ϕ, while ϕ− has dissimilar
content. Visual awareness can emerge in the embedding space by minimizing the triplet
loss

Lt(ϕ,ϕ+,ϕ−) = max(0, ∥ϕ− ϕ+∥2
2 − ∥ϕ− ϕ−∥2

2 + m). (7.6)

The triplet loss is minimized when the distance between the anchor embedding ϕ and its
positive pair ϕ+ is lower than the distance between ϕ and the negative pair ϕ− by at least a
marginm ∈ R+.

Since the positive and negative pairs depend on the similarity of visual contents among
sentences, it naturally follows that for a sentence sj the set S+j of positive candidates can be
defined as the sentences that have at least some visual words in common with sj:

S+j = {sk | k ∈ N, k ̸= j, |Wk ∩Wj| ⩾ 2} . (7.7)

On the other hand, the set S−j of negative candidates can be defined as the sentences that
have nothing in common with sj:

S−j = {sk | k ∈ N, Wk ∩Wj = ∅} . (7.8)

According to Equation (7.7) we have defined sentences as similar when the number of visual
words in common is at least two. A single word overlap is not enough to define similarity,
since it cannot be used to model more complex scenes. For example, all sentences that
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contain the word person or a synonym would be a positive to each other disregarding all
context. We illustrate this process with an example in Figure 7.2.

Given the above definition, the sentence
“Two men sitting by the water with their bicycles parked next to a rusty bench”
is positive to the sentence “An old man riding a bike on the side of the road”
and also to “A bench surrounded by water”
due to the underlined visual nouns, but it is negative to

“A dog running after a frisbee in the park”.

NOTE: Example

In the previous example, we see that a sentence can be assigned positives that depict sub-
stantially different scenes, which allows us to learn more abstract concepts from visual word
compositions and partial overlap.

The total objective we use to train the language model becomes

LLM(sj) = LCE(g(ϕ), sj ) + λt Lt(ϕj,ϕ+
j ,ϕ−

j ), (7.9)

thus the cross-entropy loss operates on the output space while the triplet loss operates on
the latent space of the language model and its contribution is weighted by factor λt. For a
given training sample sj, a positive sentence s+j ∈ S+j is sampled from a multinomial distri-
bution at each iteration of training with probability proportional to the number of common
concepts (such that sentences with more synsets in common are more likely to be selected as
positive). From s+j the same encoder extracts ϕ+

j . Negative sentences s−j ∈ S−j are sampled
uniformly and features ϕ−

j are extracted.

Our language model is shown in Figure 7.3. We further show the effect of the triplet loss
on the manifold of sentence embeddings in Figure 7.9, by comparing the visually unaware
(trained with Equation (7.5)) and visually aware (trained with Equation (7.9)) language mod-
els. As image captioning is related to understanding and describing visual content, we ex-
pect (and experimentally verify in Section 7.4) that a visually structured embedding space
is better suited for this task.

7.3.2 Domain Alignment
We have so far learned a language model, the encoder of which is able to map sentences
into a semantically structured embedding space and the decoder translates these embed-
dings into sentences. However, since our end-goal is image captioning, we need a way to
decode image vectors into sentences instead. The key idea is to translate images into the
same embedding space and make them indistinguishable from the sentence vectors, such
that they can be decoded interchangeably using the same decoder. We do so by creating
pseudo-correspondences between the image and language domains based on detected vi-
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Visual Concept
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Discriminator

Trained on 
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Sentence 
embedding

Trained on 
image domain

Image 
embedding

Pre-trained

Objective
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A motorbike parked next to a stop sign

A man riding a motorcycle … 
. . .  

real (text feature) / 
fake (image feature)

ℒadv (WGAN-GP)

+

Translator

CNN
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𝜑𝐾

ℎ(𝜓)

Sentence reconstruction ℒCE

𝜓

Figure 7.4 Domain alignment model. For each image we sample a set of candidate sentences, which are encoded
using the previously trained language model. The image features are projected into the same embed-
ding space, minimizing a robust loss towards the sentence embeddings, a conditional adversarial loss
and the sentence reconstruction loss.

sual concepts and using these correspondences as training pairs to supervise the full model
for domain alignment.

Cross-Domain Correspondences
To create initial correspondences between the two domains, we build a bipartite graph
G(C, I,P) with images Ii and sentences sj as nodes and edges Pi,j that denote a weak pairing
between Ii and sj. The edges are weighted by the number of visual concepts that images
and connected sentences have in common, i.e.

Pi,j = |Vi ∩Wj|, (7.10)

which are determined based on Equation (7.1) for images and Equation (7.2) for sentences.
When training for domain alignment, we use these pairs as pseudo-supervision and sample
for each training image Ii a sentence sj with probability

p(sj | Ii) =
Pi,j∑
k Pi,k

. (7.11)

We note that for training we only consider pairs with p(sj | Ii) > 0, while those that have
nothing in common are excluded from training. It also follows that candidate pairs with
many visual concepts in common will be sampled with higher probability.

We have already discussed how bags of visual concepts Wj are extracted in the language
domain. In the image domain, visual entities are extracted using any pre-trained image
recognition method — which can be, for example, either multi-class, multi-label classifica-
tion [151, 378] or object detection [342]. Crucially, using recognition networks trained on
datasets such as ImageNet [360] or OpenImages [221] allows to identify a large number of
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visual categories that can boost the quality of the pseudo-assignments. However, directly
searching for sentences that include specific object category names (e.g. “person”) produces
only limited matches. Therefore, we expand the search using lexical relations from the Word-
Net ontology [292], specifically synsets (synonyms) and hyponyms (subordinates) of the
predicted object categories. For example, when person is detected in an image, potential sen-
tence candidates (or their bags Wj) may contain the synset person.n.01, but also possibly
man.n.01, woman.n.01, child.n.01, and so on.

The use of a pre-trained image recognition network is the only form of supervision we use
in our approach and is necessary for naming entities in images and therefore for translating
the visual world to words.

Learning to Align Image and Text Embeddings
Having built correspondences between the image and language domains allows us to learn
a mapping from images to sentences (descriptions). The simplest way to do so would be
in the fashion of fully supervised methods such as [423] with the only difference being that
our dataset (Ii, sj),∀ i, j is stochastic and we sample a different sentence as the target at
each training step. It is to be expected that a lot of the sentence candidates will only have
a weak to almost no relation to the actual image content, which is a bad supervisory sig-
nal. In fact, the more detailed a sentence is, the less fitting it might be for a given image.
Surprisingly though, this approach forms a strong baseline. The model mainly learns the co-
occurrence of visual concepts and eventually eliminates noisy context. On the other hand,
this behavior makes it prone to simpler sentences that are repeatedly generated for many
similar images.

We propose an improvement over this naïve approach by building a multi-modal embedding
space where image and text features co-exist, instead of directly decoding image representa-
tions. The basis of this shared embedding space is the latent space created after training the
encoder-decoder language model in Section 7.3.1.

Next, letψi ∈ Ψ ⊆ Rc be an image vector extracted from Ii using a standard feature extractor
(such as a CNN), with c denoting the vector dimensions. Then, our goal is to map this vector
into the embedding space Φ using a translation function h : Ψ→ Φ, which can be modeled
as a multi-layer perception (MLP).

The full model can be seen in Figure 7.4, though modules that appear as blue or gray are not
updated in this step. To learn the mapping from images to shared embeddings using this
setup, we also propose the following training objectives.

Robust Alignment A straightforward way to align image and sentences embeddings would
be to minimize a notion of distance, for example using

L2(ψi) =
∑
j

∥h(ψi) − ϕj∥2
2, (7.12)
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person

dog
frisbee

car

Ground Truth

a black and white dog jumping into the air to catch a frisbee

Candidate Examples

a dog is catching a frisbee mid air above the grass.

a woman in a car with a dog sitting on her

a woman on a skateboard walks her dog on a leash

the man found the frisbee by the parked cars

a man next to open car trunk and a horse

a couple of people sit on a motorcycle next to a white car

Figure 7.5 Example on image-caption correspondences. The image is overlaid with detected object categories
from MSCOCO. The candidate sentences are real annotations from MSCOCO. Although all of them
have at least two entities in common with the image, they exhibit very different degrees of correlation.

treating embeddings ϕj as ground truth and not back-propagating through the language
model. Equation (7.12) aims to minimize the distance between a single image embedding
and all pseudo-assigned sentences. Then, the optimal solution for h would be the condi-
tional average h∗(ψi)=

∑
j p(ϕj | Ii) ϕj.

There is an intuitive explanation as to why this is actually far from ideal, which we also
illustrate with an example in Figure 7.5. Due to the assignments being rather approximate
and solely dependent on visual entities with no notion of saliency, i.e. which entities in the
image are actually relevant to describe, candidate feature vectors ϕj might be scattered all
over the embedding space. For example, for the image shown in Figure 7.5, we observe
different degrees of relevancy to ground truth MSCOCO captions, with “a dog is catching
a frisbee mid air above the grass” accurately describing the image and “a couple of people sit
on a motorcycle next to a white car” being entirely out of context, despite having the same
probability to be sampled during training. In this example, the latter sentence is perhaps
part of a cluster related to traffic scenes, while the former belongs to a cluster of sentences
that might be overall a preferable match for this image. Learning the conditional average h∗

can be detrimental when mapping images into the embedding space as it is directly affected
by candidates that lie in different “visual clusters”, potentially pushing the translated image
feature away from better candidates.

To tackle this issue, we propose a robust formulation for the alignment objective:

LR(ψi) = min
ϕj∼p(sj|Ii)

∥h(ψi) − ϕj ∥2
2 . (7.13)

The minimum formulation encourages the image features to land near the sentence embed-
ding that is already the closest (in Euclidean distance) in the embedding space. In practice,
since the number of sentence candidates for a given image is usually quite high, we only
sample a sub-batch of K sentences at each iteration of training, based on their corresponding
probabilities. Then we approximate Equation (7.13) by computing the minimum between
h(ψi) among the K feature vectors. Only the minimum-distance sentences contribute to
each iteration of training, which is a more robust criterion.
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Adversarial Training To further encourage the alignment of the translated image vectors
with the existing sentence embeddings, we propose to use adversarial training. Training
with adversaries for image captioning would typically require sampling an entire sentence
at the output of the generator and trying to fool a discriminator into believing this is a real
caption for a given image [71]. It is well known that this is a non-trivial problem due to
the instabilities of both minimax adversarial training and the non-differentiable sampling
which needs to be addressed with reinforcement learning [392, 441]; thus this approach is
usually combined with standard maximum-likelihood training.

Instead, we follow the example of [388] and perform adversarial training in feature space,
which significantly increases stability during training. Effectively this means that the dis-
criminator is trained with a set of real and fake features as input, where the real features
come from the language domain (sentence embeddings ϕ) and the fake features come from
the image domain (translated image embeddings h(ψ)). The discriminator is optimized for
accurately classifying these, which pushes the translator h into producing more and more
realistic embeddings.

In fact, we observed that this is not sufficient and the discriminator can easily tell apart real
sentence embeddings from translated ones. In this case the goal of the discriminator would
be equivalent to identifying real sentences in the discrete case, unconditionally. Naturally,
sentence generation is conditioned on images when it comes to image captioning. In a simi-
lar fashion, we choose to condition the feature discriminator on visual concepts to learn not
only “realistic” features but also the kind of image content that they could possibly describe.
We condition the discriminator by concatenating a binary vector of the visual concepts Vi de-
tected in the image to the feature vectors. This conditioning then encourages the translator
to better encode image concepts in its output.

We use the formulation of Wasserstein GAN with gradient penalty (WGAN-GP) [134]. With
this formulation the discriminator D : Φ × Ω → R has the role of a critic, i.e. it outputs a
score that denotes how real the input is instead of a probability. D can be implemented as a
simple MLP. The critic loss is:

Lcrt = Eψ,V∼Pψ [D(h(ψ), V)] − Eϕ,V∼Pϕ [D(ϕ, V)] λgpEϕ̃,V∼Pϕ̃

[
(||∇ϕ̃D(ϕ̃, V)||− 1)2] , (7.14)

where ϕ̃ are random linear interpolations between text features and translated (image) fea-
tures: ϕ̃ = ϵϕ+ (1 − ϵ) ∗ h(ψ) and ϵ is a random number between 0 and 1. λgp controls the
strength of this gradient penalty term.

Finally, h which plays the role of the generator is trained with:

Ladv = −D(h(ψi), Vi), (7.15)

i.e. maximizing the discriminator’s score for mapping the image features into the embedding
space.
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Maximum Likelihood Estimation The previous objectives aim at creating a multi-modal
space, where image and text features are indistinguishable. Nevertheless, since the align-
ment cannot be perfect, it is necessary to update the decoder g such that it co-adapts to
the new embedding space. We do so by finetuning the pre-trained decoder with maximum
likelihood estimation, i.e. using LCE against the ground truth sentence that is the minimizer
of Equation (7.13) for each image at each training iteration. The initial hidden state of the
decoder is now set to h(ψ) instead of ϕ.

Total Objective The full model, which can be seen in Figure 7.4, is trained with all the
above objectives:

Ltotal = λCE LCE + λR LR + λadv Ladv, (7.16)

where λCE, λR, λadv ∈ R balance the contribution of each loss term.

7.4 Experiments and Results
We have conducted experiments under two settings, the unpaired MSCOCO setting and an
unsupervised setting. When using the unpaired setting we make use of images and captions
from MSCOCO, however we do not consider any correspondences between the two. We use
this setting to perform ablation experiments and fair comparisons to previous work. In the
unsupervised setting we make cross-dataset experiments using different text corpora, such as
captions from the Conceptual Captions dataset (GCC) [371], questions from VQA-v2 [19] or
book narratives.

7.4.1 Implementation Details
Before evaluating our method and reporting results, we give important implementation
details.

Sentence Pre-Processing
We tokenize all sentences and add special tokens ⟨start⟩ and ⟨end⟩ to denote the beginning
and end of each sentence. Infrequently occurring words are replaced with the ⟨unk⟩ token.
We set the frequency threshold to 50 for MSCOCO and GCC.

At the same time, the bag representations are created by parsing each sentence with the
Stanford CoreNLP toolkit [281], extracting the nouns and then converting them to synsets
using the lookup table from Visual Genome [214]. This process results in a vocabulary com-
prised of visual synsets (for example, 1415 for MSCOCO and 3030 for GCC). We use these to
define positive and negative pairs of sentences when pre-training the language model with
the triplet loss.
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It is possible to augment the model with visual relationships that define interactions be-
tween visual entities (such as wearing, riding, below, etc.). These are usually not nouns,
thus one could also consider verbs or prepositions when parsing the sentences and
add them to the visual synset vocabulary.

NOTE: Visual Relationships

Language Model
We use GRUs [66] for the implementation of the encoder and decoder of the language model,
with 200 hidden units each. Input to the encoder are 200-dimensional word embeddings
from the GloVe implementation [317]. A linear layer maps the last hidden state of the en-
coder to a 256-dimensional feature vector ϕ. This then becomes the initial hidden state of
the decoder. Another linear layer followed by softmax maps the output of the decoder into
a probability distribution over all words in the vocabulary (3463-d for COCO and 14305-d
for GCC).

The language model is trained from scratch on the selected text corpus with a batch size of
64 for 70 epochs using Adam optimization [202]. The initial learning rates are set to 10−4 for
the encoder and 10−3 for the decoder. The weight factor for the triplet loss is λt = 0.1 and
the marginm = 0.2.

Visual Concept Extraction
To extract visual concepts from images we use Faster R-CNN [173, 342] trained on Open-
Images v4 [221], which consists of 1.74 million images and includes 600 object categories.
This model is pre-trained and publicly available.3 This dataset allows for much more fine-
grained recognition than detectors trained on MSCOCO, which includes just 80 classes. The
choice of the detector is crucial as it defines all the identifiable entities and therefore has an
impact on the quality of the initial assignments between the image and language domains.
However, we only need class labels and do not actually make use of the bounding box co-
ordinates. This is a choice we have made in order to minimize the annotation effort that is
actually required overall in our framework.

Domain Alignment Model
The (fully supervised) baseline for our image captioning approach is Show-and-Tell [423],
with ResNet-101 [151] acting as the image encoder. This is equivalent to our model without
the multi-modal embedding space. The sentence encoder and decoder come from the previ-
ously trained language model. The encoder weights are not updated; it now only serves as
a feature extractor. The architecture for the translator h is an MLP with two hidden layers
of 512 units each that project input features ψ ∈ R2048 to ϕ ∈ R256. The discriminator is an
MLP with a single hidden layer of 200 units followed by leaky ReLU.

3https://github.com/tensorflow/models/tree/master/research/object_detection
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Before training the full model for domain alignment, we pre-train the image encoder on
MSCOCO with sigmoid cross-entropy for multi-label classification. We then freeze the en-
coder and use adaptive average pooling on the last layer to extract a 2048-dimensional fea-
ture vectors from images. We then jointly train the translator, discriminator and decoder
using the aforementioned objectives with λCE = λR = 1, λadv = 0.1 and K = 10 (unless oth-
erwise noted). We use Adam with a learning rate of 10−4 for the translator and decoder and
10−5 for the discriminator and a batch size of 64. We train for up to 150 epochs but choose
the epoch that gives the best validation performance.

Evaluation Metrics
To evaluate our method we use the official COCO evaluation code. In the following ex-
periments we report our method’s performance under commonly used metrics: BLEU 1-4
(B1-4) [66], ROUGE (R) [250], METEOR (M) [80], CIDEr (C) [419], SPICE (S) [12] and WMD
(W) [220].

7.4.2 Unpaired Setting
We first experiment with unpaired images and captions from MSCOCO to evaluate the con-
tribution of each proposed component in our approach and to compare to the state of the art
on unsupervised image captioning. We follow the split suggested by Karpathy and Fei-Fei
[188], which results in 113,287 training, 5,000 validation and 5,000 test images. Every image
in MSCOCO is annotated with 5 captions, which results in over 560k training captions in
total.

Ablation Study
Ablation experiments are reported in Table 7.1 evaluating all proposed components. In these
experiments, we use the ground truth MSCOCO object categories as visual concepts in the
image domain. We do so to eliminate any influence of object detector errors on the ablation.
Since our dataset preparation relies on matching images and captions via visual synsets,
only 150k unique captions remain in our language domain (the rest contain words that were
not matched to MSCOCO categories).

We compare and discuss the following variants.

Supervised The supervised baseline builds on the model of [423]. We use the same speci-
fications for the image encoder and language decoder as in the rest of our experiments. The
model is trained on the full, paired MSCOCO dataset.

Oracle To get an idea on the performance of the weak image-caption assignments of the
graph G we build as supervision, we evaluate an oracle that selects the most likely candidate
caption for each image, i.e. the caption that has the most visual concepts in common with
the image. However, by construction, there usually exist many captions with equally high
probability for an image, thus we randomly sample among them and report the results
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Component Evaluation Metrics

Abbreviation LCE L2 LR Ladv B1 B2 B3 B4 M R C S W

Supervised 67.4 50.0 35.4 24.8 22.6 50.1 80.2 15.9 17.9
Oracle 49.1 31.2 21.2 16.0 18.7 38.7 50.4 12.2 14.5

MLE only ✓ 59.9 40.2 26.0 17.1 19.1 43.7 57.9 11.6 13.0
Alignment only

baseline ✓ 47.0 25.4 11.5 5.2 15.5 35.9 29.4 8.7 9.1
robust ✓ 53.1 31.8 17.9 10.5 17.5 40.1 42.3 10.3 11.3
adversarial ✓ ✓ 55.1 33.2 19.0 11.2 17.1 39.8 42.7 10.4 11.5

Joint
baseline ✓ ✓ 59.7 40.2 25.8 16.6 18.3 43.1 53.8 10.8 12.6
robust ✓ ✓ 61.0 42.2 28.1 19.0 19.4 44.7 61.3 12.3 13.9
robust (λt=0) ✓ ✓ 60.7 41.1 26.7 17.6 18.3 43.8 55.6 11.0 13.0
adversarial ✓ ✓ ✓ 61.7 42.8 28.6 19.3 20.1 45.4 63.6 12.8 14.4

Table 7.1 Ablation experiments on MSCOCO test set [188]. We do not use pairs of images and captions when
training. MSCOCO ground truth object categories are used as visual concepts in the image domain.
All proposed components positively add to the performance on the captioning task.

for the best out of 100 runs. Although this baseline directly chooses among ground truth
captions, all metrics except for WMD are lower than those of our trained model because the
initial assignments are actually very noisy. This experiment further suggests that our model
is able to learn concepts beyond the initial weak assignments and filter out the irrelevant
ones.

MLE only We train the model in a “supervised” fashion, with cross entropy as the objec-
tive function (and teacher forcing), but we sample our training data from the weak image-
caption assignments instead of using the real pairs. In this model, there is no constraint
enforcing a multi-modal embedding space. The model is prone to biases often observed in
MLE models, for example limited novel captions or repeating sub-phrases. Nevertheless, it
is a surprisingly strong baseline.

Alignment only In this set of experiments we train only the translator h to learn the map-
ping of images into the embedding space created by Φ, thus forming a multi-modal space.
We keep the decoder weights fixed after pre-training the language model, i.e. we do not
finetune the decoder with image features. We compare the baseline that simply minimizes
the L2 distance between features to our robust (LR) and adversarial (LR + Ladv) objectives,
which do indeed bring a considerable improvement over the baseline. Overall, we observe
that the alignment is successful in that major visual concepts from the images are described
in the output sentences. However, the performance remains worse than MLE training for all
metrics. This is because the decoder cannot adapt to the differences between the translated
image features and the real sentence features it had seen during training, producing cap-
tions that are grammatically and syntactically incoherent. To better illustrate this behavior,
we also show some qualitative examples in Figure 7.6.

114



7.4 Experiments and Results

For the following experiments we found that it is necessary to jointly train the decoder and
domain alignment module (thus we refer to this as Joint training).

Joint, baseline In addition to training with MLE, we create a multi-modal feature space by
minimizing the L2 distance between h(ψ) and ϕ. However, this naïve approach to domain
alignment does not actually improve over the MLE-only baseline.

Joint, robust We then train the model with the proposed robust loss (LR) and K = 10
samples. This adds several points of improvement in performance under all metrics.

Joint, robust (λt=0) At this point, we also evaluate the importance of a visually structured
embedding spaceΦ by learning the alignment using sentence embeddings from a language
model that was trained without the triplet loss (LLM := LCE). Comparing to the previous
experiment, this results in worse performance, verifying our intuition that visual-semantic
awareness in the embedding space is helpful for this problem.

Joint, adversarial Finally, we present our model trained with all three objectives, which
achieves the best performance with a significant margin. In fact, this model reaches perfor-
mance close to our fully supervised variant and early methods on image captioning.

Comparison to Previous Work
Image captioning without image-caption pairs has been only addressed very recently in lit-
erature. We compare our approach to existing methods in Table 7.2 under the same unpaired
setting as [106]. To extract visual concepts from the images and draw correspondences be-
tween images and captions we use the detector trained on OpenImages (OID). The predicted
object categories are also used to condition the discriminator during training. The detector
is not used during the testing phase, unless otherwise state (e.g. in targeted beam search). To
fairly compare our method, we generate captions using beam search with a beam size of 3.
We have included the method of Gu et al. [132] for completeness although it is not directly
comparable to ours, as the authors deal with a different unpaired problem (using an inter-
mediary language). On the other hand Feng et al. [106] address exactly the same problem.
Our method outperforms prior work.

During greedy sampling, we sample the highest probability word from the output of
the decoder at every step of the generation. When the ⟨end⟩ token is sampled, it
signifies the completion of the sentence. Beam search [209] is a heuristic method that
allows to rank multiple sentences according to their likelihood. Instead of greedily
choosing the most probable word, beam search considers the kmost likely next words
for each candidate sentence and selects the k most likely candidates overall before
moving on to the next step.

NOTE: Beam Search

It is possible to leverage object detections at test time to boost performance without any
changes to our model. Instead of conventional beam search we follow an approach similar
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Method Metrics

B-4 M R C S

Gu et al. [132] 5.4 13.2 - 17.7 -
Feng et al. [106] 18.6 17.9 43.1 54.9 11.1

Ours 19.3 20.2 45.0 61.8 12.9
Ours (targeted) 18.7 20.9 45.1 64.1 13.5
Ours (targeted, ground truth) 19.0 21.4 45.5 70.2 14.3

Table 7.2 Comparison with the state of the art on COCO test set [188]. We evaluate under the unpaired setting
of [106], using OID [221] object categories for visual concept extraction. We use beam search of size 3
and in the last two rows we further constrain it on target words (object categories) for an additional
improvement.

to [10] to enforce certain words to be included in the output sentence. We refer to this
experiment as targeted beam search and report results in the last two rows of Table 7.2. In
particular, during beam search decoding we set object class names as target words and pick
the highest probability sentence that satisfies the inclusion criteria. We get optimal results
when constraining the generation with two target categories — those that were predicted
with the highest probability. We further see a significant improvement when assuming a
“perfect” object detector, i.e. using ground truth categories (MSCOCO annotations) instead;
in this case we pick the two categories that cover the maximum area in the image.

Qualitative Results
We show qualitative results of our approach in Figure 7.6 (alignment-only model) and Fig-
ure 7.7 (joint model).

Alignment Model In Figure 7.6 we compare predicted captions between models trained
with L2-based alignment and our proposed objectives. It is important to note that in this
case we only train the translation from the image domain to embedding space Φ, while the
decoder is not updated from its pretrained state. We obtain higher fidelity captions, i.e. there
is a clear improvement in the output semantics when training with the robust and adversarial
objectives. However, the inability of the decoder to adapt to the domain shift leads to sub-
optimal generation with prominent wording issues. Overall, the features seem to encode
the right concepts but the decoder cannot not properly describe the scene.

Joint Model Joint training of both the decoder and the translation model solves the afore-
mentioned problem. In Figure 7.7, we show qualitative results of our joint model under the
unpaired setting, trained with two different visual concept extractors: one on COCO, that
uses 80 object categories and results in a total of 150k candidate captions, and one on OID,
that uses 600 object categories resulting in 294k candidate captions.

Both variants describe the image contents accurately, but the OID model further benefits
from the richer pool of object categories that is used for learning the alignment. An interest-
ing example can be seen in the last image. The COCO model generates a description about
a man. This is expected because the closest annotated object category in MSCOCO is person
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a zebra is flying in the back next to a fencebaseline (𝓛𝟐)

ours 𝓛𝐑 + 𝓛𝐚𝐝𝐯 a herd of sheep getting about to some field

a man seated holding a laptop on a cell phone and a cat

a woman sitting on a couch using and a cell phone

a man pulls out a highway sign in front of a bus

a man drives a bike at a red train

a trey plate of a computer on table with a black and coffee

a fork cutting a cake with a plate and on a table

a clock tower set in the front of a clock tower

a peacock clock on the side of next to a building

a glass vase of flowers in a blue area

glass vase with leaves of a white flowers next to ita cat peeks sitting on a plate and its side of wine

a zebra cow in brown and a dog standing in the field

baseline (𝓛𝟐)

ours 𝓛𝐑 + 𝓛𝐚𝐝𝐯

a dog carrying cow standing in front of a green and window

a cat kittens inside of a sink and shower

Figure 7.6 Image captioning with the alignment-only model. We show predicted captions for MSCOCO test
images. For this model we only train the translation from image features to the shared embedding
space but do not finetune the decoder. The proposed objectives (LR and Ladv) perform better at this
mapping than the L2 baseline.

and all its hyponyms that exist in the sentence corpus are considered equivalent. Therefore,
we cannot make the distinction between man and woman, making this model prone to con-
textual gender bias. Since genders are distinct categories in OID, the corresponding detector
allows for more fine-grained matching between images and sentences when learning the
alignment. Thus, the OID model is able to resolve this ambiguity and predicts “a woman
holding a tennis racket on a tennis court” — without using object detections at test time.

Gender bias is common in MSCOCO and machine learning models, including caption-
ing models, are known to exploit bias in the training data. This has been thoroughly
studied in [18]. For example, they discuss that women are much more likely to ap-
pear in a “kitchen” than men (ratio: 0.946 for a 1:3 woman:man ratio overall in the
dataset). Unsupervised models are no exception to this and in fact they rely on corre-
lations (good or bad) which are present in the training data. As an aside — and in all
cases — inferring gender from visual content alone is also problematic.

NOTE: Gender bias

Interestingly, although the amount of known visual concepts is important, the model has
the ability to extrapolate from what is labeled in the image domain thanks to common co-
occurrences between different concepts. For example, in Figure 7.7 the generated words
airport, tracks, tower, passenger, grass are unlabeled concepts that the model is able to infer
from contextual information and labeled concepts such as train, airplane, clock, etc. This is
a positive example of the model exploiting correlations present in the data, yet we do need
mechanisms to overcome harmful biases that potentially come with it.
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a traffic light on the side of the street

a traffic light and a street sign on a pole

traffic sign on a street

what color is the traffic light on the right?

a teddy bear is sitting on a chair

a cat lying on a bed with a teddy bear

a teddy bear with a cat

is the cat in the tub?

a passenger train that is travelling down the tracks 

a train travelling down train tracks next to a tree

train station

is the train on the track?

a building with a clock on the side of it 

a large building with a clock tower on it 

a clock tower in the city

what time is on the clock?

a man holding a tennis racket on a tennis court

a woman holding a tennis racket on a tennis court

tennis player and a ball during a match

is the tennis player wearing a headband?

a cat sitting on top of a laptop keyboard

a cat laying on top of a laptop on a desk

a cat with a laptop

is the cat on the laptop?

a large passenger jet sitting on top of an airport tarmac

a large airplane flying through the sky

a passenger plane on the runway

is this plane in the air?

a giraffe is standing in the grass near a tree

a giraffe standing in the grass near a tree

a zebra in a giraffe

is the giraffe standing straight?

COCO

OID

GCC

VQA

COCO

OID

GCC

VQA

Figure 7.7 Image captioning with the joint model. We show predicted captions for MSCOCO test images.
COCO and OID are results from our unpaired model, while GCC and VQA refer to the unsupervised
model trained on MSCOCO images using as sentence corpus the Conceptual Captions and VQA-v2
datasets respectively.

7.4.3 Unsupervised Setting
We now move on to the unsupervised setting, where the image domain and text corpus are
independent, the only link between them being a set of common concepts Ω. The choice of
the language domain in this case is not trivial, as it should still contain a sufficient amount
of visual concepts and descriptions. Thus in the following experiments we mostly deal
with corpora that are related to visual content. During the unsupervised experiments, all
hyperparameters remain the same as before.

MSCOCO/GCC/Flickr30k Quantitatively, we evaluate two cross-dataset experiments: a)
MSCOCO (image domain) and GCC (language domain) and b) Flickr30k (image domain)
and MSCOCO (language domain). When using GCC as the language domain, we are able
to find correspondences between the image domain and approximately 1 out of 3 million
captions using the detected OID categories. In Table 7.3 we report the performance of our
joint model with and without adversarial training. Also here, we notice that adversarial
training improves performance. However, there is still a considerable gap in performance
comparing to the unpaired setting. This drop in performance does not necessarily come
from bad quality descriptions, but is a by-product of the differences in vocabulary, style and
context among different datasets (domain shift). Thus, quantitative evaluations in this case
are not fully reliable.

We also show qualitative examples of the unsupervised setting (GCC) in Figure 7.7 and
Figure 7.8. Our findings suggest that the image-caption correspondences used for training
in this case are much more noisy (when compared to the unpaired setting on MSCOCO)
and as the model learns to discard as much irrelevant information as possible, the resulting
captions are often short. Nevertheless, the model is able to learn more abstract concepts,
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Method Metrics

B-4 M R C W

Flickr Images ↔ COCO Captions
Ours (w/o adv) 5.9 10.9 31.1 8.2 7.0
Ours 7.9 13.0 32.8 9.9 7.5

COCO Images ↔ Conceptual Captions
Ours (w/o adv) 5.5 11.1 30.1 20.8 6.7
Ours 6.5 12.9 35.1 22.7 7.4

Table 7.3 Evaluation under the unsupervised setting. Image and captions come from independent sources.

which we have not observed in the unpaired setting; for example, disambiguating between
a plane flying in the sky or being parked on a runway.

VQA-v2 To show the potential of our method while moving beyond combinations of cap-
tioning datasets, we also experiment with VQA-v2 [19] as the language domain. We use
only the questions that are provided in this dataset as our corpus and train the model to ask
questions about images. While there is not much linguistic complexity involved in this task,
we find the generated questions quite relevant. We believe this can be an interesting direc-
tion regarding human-machine interaction. Qualitative results are also shown in Figure 7.7
and Figure 7.8 (VQA). We have again observed bias towards the word man, which seems to
be the subject of the question when there is a person in the image regardless of whether this
person is a man, woman or child.

J. R. R. Tolkien Finally, in a much more challenging scenario, we experiment with books
by author J. R. R. Tolkien4 as the text corpus. We create one data point from two sentences
at a time to create a more narrative style. This is a complex language domain with many
rare words and long sequences, so our simple language model is not very successful at re-
constructing the original inputs or learning a sentence embedding space with strong visual
cues. Although all components of our model could be upgraded to accommodate for the
difficulty of this task, we wish to show the different nature of the descriptions that are gen-
erated in this challenging case, in which there is only a very weak connection between the
two domains (as defined by the common visual concepts). Qualitative results are shown in
Figure 7.8.

7.4.4 Visualization of Embedding Space
A major component of our approach is learning an embedding space structured by a visual
vocabulary. Next, we visualize this embedding space using t-SNE projections [271]. The
text corpus used for these visualizations is MSCOCO captions.

4Available at https://github.com/jblazzy/LOTR
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a) Language Domain: GCC

b) Language Domain: VQA-v2

c) Language Domain: J.R.R. Tolkien

young woman holding 

a glass of wine

little boy playing

with a teddy bear

young man working on 

a laptop in the office

giraffe eating leaves 

from a tree

portrait of a young woman

holding a tennis racket

young man holding a 

surfboard on the beach
sheep grazing in the snow

a man in a 

baseball cap

is the man on the bench

wearing headphones?

is the teddy bear

wearing glasses?

is the elephant in a zoo?

what is the shape 

of the cake?

is the plane landing?

are the sheep in danger?

is there any cheese on 

the pizza?

what is the man holding

in his hand?

the houses looked large 

and strange to them. 

Sam stared up at the 

inn with its three <unk> 

and many windows, 

and felt his heart sink.

I know what you mean. There 

might be all the difference 

between an old cow sitting 

and thoughtfully chewing 

and an <unk>; and the 

change might come suddenly.

the tree rustled, and there 

was no sign of the elves.

it was a large <unk>,

and they were set to

the other side

the boy drew himself 

up proudly. I am

bergin son of 

beregond of the 

guards, he said

Figure 7.8 Additional results on unsupervised captioning. We show more examples from three different sen-
tence corpora.
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Colormap
(common visual co-occurrences)

(a) Visually structured language model (w/ triplet loss) (b) Unstructured language model (w/o triplet loss)

(plate, food, table)

(bus, street, city)

(stop, sign, street)

(train)

(sink, bathroom, toilet)

(baseball, player, bat)

Figure 7.9 Visualization of the language model’s embedding space. We compare the t-SNE embeddings of the
latent space created by our language model with a) visually structured training with the triplet loss
and b) standard maximum likelihood training.

First, we analyze the unimodal embedding space that is created by our language model in
two scenarios, as seen in Figure 7.9. We compare the standard maximum likelihood training
(LCE) with our visually structured approach based on sentence triplets (LCE and Lt). It
is important to note that we learn the language model in an unsupervised manner and the
categories seen in the colormap of Figure 7.9 are not used for supervision. We have manually
(and not exhaustively) annotated sets of concepts that often occur together for visualization
reasons only. The result verifies our intuition that standard maximum likelihood training
(b) leads to an embedding space with no particular (visual) structure, while our approach
(a) is clearly superior for visual tasks.

Second, we wish to check whether the multimodal embedding space, i.e. translating image
features into the same space as text features, is also meaningful. In Figure 7.10 we jointly
visualize the t-SNE embeddings of sentence features [L] and translated image features [I].
The latent space retains its initial visually aware structure and we further observe that the
image features are well-integrated into this space, i.e. it is difficult to distinguish images
from sentences in the feature space. In Figure 7.10 we zoom into a baseball-related cluster,
where features from both domains are semantically close to each other. For points coming
from the language domain we visualize the input to the encoder, while for points coming
from the image domain we visualize a ground truth sentence associated with the encoded
image.

7.5 Limitations and Discussion
Despite the encouraging results, image captioning without supervision is a difficult task and
there are several limitations and challenges that we wish to discuss.

Maximum Likelihood Trade-off As discussed previously, joint maximum likelihood train-
ing of the alignment model and the decoder significantly boosts performance. Despite its
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[L] a baseball player holding a baseball bat 

standing on home plate

[L] a baseball player holding a bat 

getting ready to swing

[I] a man on a field 

throwing a baseball

[I] a baseball playing in 

an orange jersey taking a 

swing

[I] a little kid swinging a bat in 

a baseball game

[I] a girl with a bat 

standing in a field

[I] a batter umpire and referee in a 

game of baseball

[I] a baseball player swings a 

bat at a baseball

[I] a baseball player wearing a 

chatchers mitt on a field

[I] a boy in a helmet and 

uniform holding a bat

[I] baseball players catching a 

ball in a field

(bat, baseball, player)

(skateboard, 

skateboarder)

(stop, sign, 

street)

(dog, puppy)

(cat, kitten)

(plate, food, table)

(kitchen, stove, microwave)

(room, sofa, table)

(airplane)

(kite)

(beach)

(computer, mouse)

Figure 7.10 Visualization of the shared embedding space. We show the t-SNE projection of the multimodal
embeddings. Zooming into one cluster we show that sentences embeddings [L] lie in visual-semantic
groups with image embeddings [I].

advantage, maximum likelihood training is responsible for the rigidity of the captions in
Figure 7.7. On the other hand, learning only the alignment holds more potential for nat-
uralness and diversity but produces overall lower quality captions that suffer from both
semantic and grammatical errors (Figure 7.6). Thus, we are faced with a trade-off between
performance and naturalness. One solution to this problem can be reinforcement learning
approaches to train the decoder in an auto-regressive mode, such as [343]. However, even
those methods are usually combined with MLE.

Compositionality One major limitation is the ability of the model to describe scenes with
novel or atypical compositions of objects. With respect to this, we believe there are two
factors that affect the model’s behavior. Naturally, the first factor is the choice of the archi-
tecture itself, even in the supervised setting. We cannot expect unsupervised training to
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overcome limitations that exist even for the supervised case. This is prominent in our case
since the chosen baseline model [423] also exhibits rigid and repetitive captions and lacks
in compositionality. In fact, we found that 20% of the captions generated by our model are
unique and 16% are novel (not in the training set), which is similar to the findings of Vinyals
et al. [423]. An object detector used during inference, similar to [265], could explicitly en-
courage compositionality.

The second factor is related to the discoverable visual concepts, i.e. concepts that are not nec-
essarily labeled categories but can be anyway discovered through common co-occurrences.
For instance, it is not possible to tell the difference between a whole pizza and a slice of pizza, if
only pizza is known as a labeled concept and slice does not appear in any other context (in the
sentence corpus). Other concepts are simply ambiguous; when a person and a bicycle are de-
tected in the image, there are several possible scenarios about their interaction, for example
predicates that link them could be riding, carrying or parking. This creates compositionality
issues, since it is not possible to describe complex or unusual compositions without hav-
ing an understanding of individual concepts or how they relate to each other. Thus, as the
model learns from correlations existing in the training data, it would often produce the most
probable description which is likely not a good description in the case of atypical scenes.

Intuitively, using more concepts to learn the alignment between domains allows for greater
flexibility. For example, it is possible to employ relationship or attribute predictions to enrich
the visual concept set on the image domain and consequently enrich the search space of
sentence candidates. However, this approach would require additional supervision and
thus constitutes another trade-off.

Visual Concept Overlap One last limitation of our approach is the heavy dependency on
the overlapping visual concepts between the image and language domain. Nevertheless,
this seems like a reasonable (and unavoidable) requirement when the goal is to describe
visual scenes. To better deal with sentence corpora of different styles (e.g. Tolkien) that have
limited combinations of visual concepts or use uncommon words to describe imagery, it
is possible to exploit WordNet ontologies more extensively. Another solution to domains
with limited overlap is to learn from a combination of multiple text corpora with different
contents and styles.

7.6 Conclusion
In this chapter, we have focused on integrating scene understanding and natural language.
In comparison to learning geometry or semantics, the intersection of natural language pro-
cessing and scene understanding refers to a family of problems that are more challenging
since they require holistic understanding of images, inferring abstract concepts as a com-
position of individual entities and being able to communicate about the visual world. The
ability to communicate introduces the additional challenges from the field of natural lan-
guage processing, for example related to syntax, semantics and pragmatics.
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One extensively studied research problem in the intersection of computer vision and natural
language is image captioning. Learning to generate image descriptions has traditionally
relied on annotated pairs of images and captions. This often leads to corpora (captions)
that are limited to a specific image database, factual (stating the obvious) and repetitive due
to crowd-sourcing. The nature of the annotated captions introduces language priors that
trained models often exploit instead of fully seeing and understanding the image.

We have presented an approach that alleviates the need for supervision, i.e. image-caption
pairs. Our model can be trained from independent image databases and text corpora in two
steps. In the first step, we train a language model on the text corpus alone and impose a
“visual” structure in latent space with a triplet loss that pulls embeddings of sentences with
similar visual words together and pushes dissimilar sentences apart. In the second step, our
goal is to transform this unimodal embedding space into a shared, multimodal embedding
space by embedding images into it such that they cannot be distinguished from the sentence
embeddings of the previous step. If this mapping is successful, then images can be decoded
into sentences by the same language model. The only supervisory signal that is used in
our method is image/object labels, so that entities detected in the images can be named.
These labels are used to obtain some weak correspondences between images and sentences to
“supervise” the alignment of the two domains. We further propose a set of objectives (robust,
adversarial, reconstruction) that make this possible in absence of real ground truth.

Our approach improves the state of the art on the unsupervised image captioning task, but
as an unsupervised method it still falls behind fully supervised performance. Neverthe-
less, we believe that unsupervised (or semi-supervised) image captioning is an upcoming
research direction with a lot of potential because it allows to better exploit large text cor-
pora (of various styles) that are available on the web. Currently, the unsupervised approach
has a worse understanding of what things are, which (again) leads the model to exploit lan-
guage biases without really seeing. A carefully crafted semi-supervised and compositional
approach could exploit the best of both worlds and potentially has the capability to surpass
supervised performance.
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8.1 Introduction
In the previous chapter, we discussed the role of natural language in higher-level scene
understanding, which enables the communication of knowledge between a user and a smart
system. We focused on the task of image captioning, i.e. using natural language in the output
of the system with the goal of describing imagery, which implies information flow from the
system to the user. In this chapter, we will look into the reverse problem of using natural
language as input to a visual system, thus providing spoken or written human knowledge
to the system.

Indeed, there are several tasks where this is useful. Some recent examples are agents that
navigate [13, 109] or execute household activities [328], based on a set of instructions that
they receive in natural language which is then transformed into a set of actions to take in the
environment. The approach that we present in this chapter uses natural language as input
with the goal of providing auxiliary information to the visual system. The contents of this
chapter have been published in [354].
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8.1.1 Motivation
We have already seen that numerous computer vision applications are dominated by the use
of convolutional neural networks, which continue to grow and push performance bound-
aries on various tasks. However, most approaches train models on datasets which are con-
structed for specific problems and it is thus likely that, when deployed in the wild, these
models will face challenges due to domain shift or other unfamiliar scenarios. In practice,
these models are often deployed statically inside a system and treated as black boxes. Non-
expert users do not have access to or knowledge about the inner workings of the model.
Therefore, when the system makes erroneous predictions, a user might observe this but still
have no influence over the outcome. Now if it were possible to dynamically incorporate the
user’s feedback into the system, it could be also possible to improve its performance either
in this specific instance or for the long term. We believe that for intelligent systems to be
successfully deployed in the real world, this is a feature they should be equipped with.

To further motivate the idea behind our approach, imagine the example of image gener-
ation and editing. Indeed, the success of generative models (GANs) has contributed as-
tonishing results in automatic image synthesis. Somewhat related to the topics discussed
here, there exist methods for generating images from natural language descriptions [333,
339, 478]. Given the difficulty and ambiguity involved in this task, it is likely that the out-
come will not be perfect and manual interaction might be needed from the user’s side to
refine it. The same goes for image editing. For example, in photo editing software that ex-
tracts segmentations before applying a desired operation, if the segmentation is wrong, the
outcome will not be optimal. Instead of hand-drawn corrections, the user could type some
hints about what went wrong to sway the outcome to their needs; alternatively they could
directly request semantic changes by editing an intermediary scene representation known as
scene graph [84].

This is the inspiration of our approach. However, there is a crucial difference to generative
methods that synthesize and modify images based on iterative user requests [65, 84, 95, 372].
We instead propose interaction with systems trained for discriminative tasks. Starting from a
model that is trained for a specific task which does not depend on user input (e.g. semantic
segmentation), we introduce a module that can optionally influence the model’s predictions
conditioned on user input.

There exist many possibilities where this is useful, which go far beyond the image generation
and editing example. For example, in high-risk scenarios such computer-aided diagnosis,
the experience of medical practitioners is an asset that must be taken into account, especially
when they disagree with the output of the system. Allowing them to interact with an al-
gorithm in a natural way can be useful for second-order analysis tasks that, for instance,
depend on a successful segmentation outcome. In another example, allowing users to inter-
act with the algorithm can speed up cumbersome labeling tasks, because the annotators can
focus on correcting major mistakes instead of providing detailed hand-drawn masks for ev-
ery single object [3, 412]. A final example are embodied agents that are tasked with navigating
in an environment, searching for objects and answering questions [73]. This is an interactive
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Figure 8.1 Overview of user-network interaction for semantic image segmentation. We introduce a module ca-
pable of improving the predictions of a CNN by guiding its activations conditioned on user-provided
hints. The means of communication is natural language which is processed by an RNN. In this exam-
ple, the base model mistakenly labels the top of the image as sky instead of clouds. When the user
indicates this mistake, inference is revisited and the prediction is updated accordingly without any
change of the network’s parameters.

problem in itself where the user can guide the agent to prevent it from following a wrong
goal.

8.1.2 Contribution
In this chapter, we investigate the question: is it possible to still improve a model’s perfor-
mance after it has been trained? With this goal in mind, we present a novel approach to
enable interaction between a user and a deep network based on feedback given by the user
at test time. While most interactive approaches position the user on the input side, i.e. they
depend on some initialization to deliver an output, in our method user input is used as
auxiliary information a posteriori. We propose a module, that we hereby refer to as the
guide, which modulates the network’s activations spatially and semantically conditioned
on optional user feedback. The means of communication is natural language (textual hints
written by the user), but can be generalized to different types of input. The guide is in this
case dynamic (unlike static model parameters) and acts directed by an annotator such as a
human-in-the-loop.

As a testbed for the guiding idea we use the task of semantic segmentation. An overview of
our method can be seen in Figure 8.1. It is noteworthy, that our method does not depend on
additional annotation (besides the original segmentation task) and can thus be trained on
the standard benchmark datasets. In our results we can show the proposed module is able
to learn a semantic correlation between the language and the visual domain.
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• We propose a novel method for spatio-semantic modulation of a network’s
activations after the network has been trained and deployed.

• We show that, by bringing a human into the loop, the guide helps to improve
performance during inference, without distracting the model from its original
task, i.e. the model operates as intended even without the user.

• Since there exists no annotated dataset for this problem, we propose a scheme
for programmatically generating user hints to train the guide.

KEY CONTRIBUTIONS

8.2 Related Work
The approach that we discuss in this chapter is related to several fields in computer vision,
namely interactive segmentation, feature modulation and dialogue-based visual tasks.

The task of semantic segmentation is extensively studied in computer vision [23, 55, 112,
252, 260, 323, 481]. Our goal is to build on established models [55, 260] and augment them
with an interactive module that would allow the user (or an oracle) to request changes in
their predictions.

In the following, we discuss the most prominent literature of related fields.

Interactive Image Segmentation
Human-machine interaction in the context of (semantic) image segmentation is a well re-
searched topic. Before deep learning, popular methods for interactive image segmentation
were based on graph cuts [45, 326], random walks [129], geodesic distances [25, 70], geodesic
star convexity [135] and active contours [191]. The input given by the user was typically in
the form of seed points [45, 326, 434], scribbles [25, 28, 129, 454], bounding boxes [130, 234,
349], yes/no interaction [54, 356], eye gaze [153], or a combination of multiple cues [458].
These are all effortless ways for a user/annotator to seed the algorithm for pixel-wise la-
beling. Some of these methods are based on active learning, i.e. the algorithm queries the
user (or an oracle) [28, 54, 356, 384] about certain regions, usually based on uncertainty
measures.

In the deep learning era, interaction-based segmentation has been studied mostly in the
context of weakly supervised learning and has moved from foreground/background seg-
mentation to semantic categories. The weakly labeled data most often consist of image-level
labels [316, 329, 375, 430, 439], but also again user-specified clicks (seeds) [34, 210, 460], scrib-
bles [251, 398], contours [353] or bounding boxes [72, 334]. However, this family of methods
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are not active as they do not depend on a human in the loop and only require a form of
annotations once as input to the algorithm.

Collaborative deep learning frameworks have been proposed as well; they iteratively alter-
nate between human and machine and incorporate user feedback continuously to refine the
output of the system while reducing annotation effort. The vast majority of these interac-
tive frameworks deal with segmenting individual objects [1, 52, 248, 249, 272, 276, 280]. In
medical imaging, where expert knowledge is required from the annotators, this is an inter-
esting direction and several methods aim to minimize the amount of interaction required
to relieve doctors from time-consuming manual labeling [8, 362, 428, 429]. Very recently,
some methods have been proposed to tackle full image segmentation with interaction [3,
412], reporting performance gains over single object interactive segmentation. Similar to
our approach, annotations (seeds, scribbles, etc.) are typically simulated during training,
since integrating an actual user in the training loop is infeasible.

There is a major conceptual difference to our method. The aforementioned approaches are
trained specifically for the task of interactive segmentation, taking an image and the user
feedback as input to a CNN and predicting an output segmentation. During inference, the
network parameters are fixed and the system behaves exactly as it is trained for. In our
approach, we consider (a) a model which is pre-trained and fixed at test time and (b) an
additional mechanism, the purpose of which is to improve the performance of the fixed
model without updating its weights. As such, the guiding mechanism is not specific to
semantic segmentation and can be generalized to various tasks and means of interaction.
We present our method in two cases: through a learnable guiding module and guiding by
back-propagation. After the publication of our approach, Jang and Kim [182] explore some
similar ideas and refine predictions by back-propagating into their guidance maps. Instead,
Kontogianni et al. [212] improve the network’s initial predictions by interpreting user hints
as training annotations and updating the model’s parameters. Also related is the earlier
approach of Wang et al. [429] that focuses on image-specific network finetuning at test time
in the medical domain.

User interaction with machines, and in particular interactive labeling, is not limited to se-
mantic segmentation. Some other examples include user-guided colorization of grayscale
images [479], object instance localization where the system chooses the best task to assign
to the human annotator [359] or fine-grained classification through interactively given at-
tributes [39, 46].

Feature Modulation
In our method, the way we approach the problem of guiding a fixed model has its roots
in feature modulation. Feature-wise transformations have been originally discussed, to the
best of our knowledge in the concurrent work of Vries et al. [426] and Perez et al. [318]. The
main idea is to modulate the features of a network through affine transformations given
some additional input. This then becomes a type of conditioning or fusing information from
an additional source, which has proven to be more flexible and effective than more naïve
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forms of conditioning — for example, concatenation-based. This is also the inspiration for
our method.

In [318, 426] feature modulation is used for VQA tasks using a language processing network
(RNN) to condition the visual processing network (CNN) on the question. Perez et al. [318]
propose specific layers (FiLM) to modulate CNN features and jointly train these layers with
the network. On the other hand, [426] formulate this idea as conditional batch normaliza-
tion [179] and learn modulation vectors while keeping the (pre-trained) network parameters
fixed. Strub et al. [386] propose an improvement by iteratively switching between language
processing and feature modulation, an approach that performs better for longer linguistic
sequences and dialogues.

Other early demonstrations of this idea are known as conditional instance normalization in
the context of style transfer [91, 120]. The main difference is that in this case modulation is
tied to normalization layers (conditioning them on the style), which can be seen as a special
case of [318]. In the same context, adaptive instance normalization [175] does not use learnable
modulation parameters, but directly computes them from the style image using the same
network architecture.

Subsequently, feature modulation has been adopted in many different tasks. Recently, gener-
ative methods have also used this type of class conditioning [47, 295]. In image recognition,
it is mostly seen as self-conditioning [167, 383], i.e. using the network’s own activations to
learn modulation vectors instead of using additional inputs.

The aforementioned methods can modulate features across channels, but lack a spatial com-
ponent. Thus, in image synthesis and image-to-image translation tasks, that require high
fidelity outputs, the modulating parameters vary also spatially. Bau et al. [29] learn a pertur-
bation model to adjust the top layers of a generator to specific image content in the context of
photo editing. Another example is SPADE [315], a state-of-the-art model in conditional im-
age generation, that uses the conditioning semantic maps to guide the features of a generator,
thus better preserving semantic information in the generation process. In a similar manner,
Wang et al. [435] preserve texture in image super-resolution. In [463], spatio-semantic mod-
ulation is also used for video object segmentation by guiding features of the segmentation
network using an annotated target object from the first frame. Feature guiding techniques
are also used for few-shot learning [335] and in the context of meta-learning [301].

Dumoulin et al. [92] have contributed a detailed analysis of the mechanics and and a review
of the literature utilizing the feature modulation principle across different domains.

Vision-and-Language Tasks
Our goal is to allow for user interaction with deep learning models in a straightforward and
natural way, which makes such systems approachable also for non-expert users. Thus, we
follow an approach that uses natural language as an interface for interaction.

This makes our approach loosely related to several visual tasks that include some form of
dialog. Apart from image captioning, which we have already discussed in the previous
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chapter, such problems include but are not limited to: visual question answering [2, 15, 16,
169, 187, 263, 277, 278, 484], where the user poses a question about an image and the sys-
tem replies in natural language; embodied question answering [73] that focuses on agents
that must navigate in a real environment and understand their surroundings in order to
answer the question; visual and language-based navigation [13, 109] where the agent has
to follow instructions; and visual dialog, where the user engages in conversation with a
bot [74, 262, 385, 425]. Finally, referring expression comprehension is the task of visually
grounding phrases on images [192, 267, 473] and can be used for segmentation [171] or ob-
ject retrieval [170, 425].

The main difference between our approach and most of the related literature is the final task
of the system. Our output is neither an answer nor an image caption — it is visual and not
textual. We do not change the task of the interactive CNN, we only augment it to allow user
input. A further aspect is that we do not need to rely on vision-text correspondences such as
paired questions-answers or captions. Our model simulates the user interaction via textual
expressions are automatically generated.

8.3 Interaction as Feature Guiding
Next, we present two different (but related) approaches for enabling interaction between a
human user and deep learning models. In Section 8.4 we exploit user-provided clicks and
use them as targets for optimizing the model’s activations (but not its parameters) through
back-propagation. In the second approach (Section 8.5), we modulate the model’s activa-
tions through learnable vectors that are conditioned on natural language inputs. By modu-
lating activations, we are able to improve the model’s performance at a certain task during
inference with an additional source of information — provided by the user or an oracle —
without additional training samples.

Hereafter we will refer to the interaction mechanism as the guide. The guide receives auxil-
iary information about the task, which we will refer to as the hint and operates on the deep
model’s features. In the general case, the hint can be an arbitrary modality with arbitrary
dimensionality that might require its own processing unit (learnable or not). We insert a
guiding module in a pre-specified layer of the network that we want to guide, which splits
the network in two parts, as seen in Figure 8.1: the head h(· , θ(h)), parametrized by θ(h),
which precedes the guide, and the tail t(· , θ(t)), parametrized by θ(t), that has as input the
guided features for the remaining operations of the network. If x is the input and ỹ is the
prediction, we can then formally write this as

ỹ = t(h(x)). (8.1)
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Guiding Module
The purpose of the guiding module is to receive hints from the user and translate them into
a latent representation that is used to guide a model that is already trained for some task.
We consider this model fixed, i.e. we do not update its weights further.

One question that arises is: what is a suitable latent representation for this purpose? The
intuition behind the guide, and feature modulation in general, is that as the network en-
codes different task-specific aspects in each feature map of a specific layer, feature-wise re-
weighting can emphasize or dampen these aspects according to an input signal.

In the example of image recognition, different abstract visual concepts are encoded in
the higher layers of a CNN trained for this task. Some of them can be highly correlated
with one or more labeled categories. By selectively down-weighing the contribution of
certain units, one could affect the ability of the network to predict the corresponding
category. The field of feature visualization makes heavy use of these ideas to visualize
what a network has learned, thus this re-weighting scheme is a sensible choice for the
task at hand.

NOTE: Feature representations

LetA be a feature representation inside the network defined as h(x) = A ∈ RH×W×C, where
W is the width,H is the height andC is the number of channels. We define the act of guiding
as an affine perturbation of A with a multiplicative vector γ(s) ∈ RC and an additive vector
γ(b) ∈ RC:

A ′
c = (1 + γ(s)c )Ac + γ

(b)
c , (8.2)

where c ∈ [1, . . . ,C] is used to index the channels of the feature representation and the
guiding representation γ = (γ(s),γ(b)). γ has the role of re-weighting feature maps, or the
in the extreme case acts as a switch. When γ = (0, 0), the guiding vectors have no effect. If
γ
(s)
c = −1 and γ(b)c = 0, feature c is suppressed with all its units set to 0. When γ(s)c > 0, the

activation of feature c increases in magnitude. Values γ(s)c < −1 effectively invert feature
map c by emphasizing negative elements that would have been otherwise cut-off by an
activation function such as ReLU and silencing units with a positive value.

Our design for the guiding module resembles the design of ResNet [151] that builds
on residuals, i.e. we do not re-weigh the feature map directly, but rather modify it with
residual updates.

NOTE: Residual learning

So far our guiding approach is similar to that of [318] and lacks a spatial component. This
means that the modulation is performed uniformly across the spatial dimensions of the ac-
tivation map. As a consequence, it is only possible to encourage semantic changes in the
features, but not spatial ones. As an example a spatial change could be related to a hint that
mentions the top right part of the image. We wish to change that to achieve more fine-grained
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control that could be beneficial, especially for pixel-wise tasks, such as semantic segmenta-
tion. Thus, we extend the guiding module to include a spatial representation, similar to
attention mechanisms [459]. However, inside a network, feature maps typically consist of
many elements, especially in the case of architectures for high-dimensional tasks that aim
to preserve spatial resolution, thus avoiding bottleneck layers. To prevent the exponential
growth of guiding parameters for large feature maps, instead of element-wise control, we
propose to use vectors α ∈ RH and β ∈ RW across the vertical and horizontal dimensions of
the feature map respectively. Thus, the guided activations become:

A ′
i,j,c = (1 + αi + βj + γ

(s)
c )Ai,j,c + γ

b
c , (8.3)

with i ∈ [1, . . .H] and j ∈ [1, . . .W].

Then, the output of a guided network can be written as

y∗ = t
(
(1 ⊕ α⊕ β⊕ γ(s))⊙ h(x) ⊕ γ(b)

)
, (8.4)

where vectors α, β, γ are first tiled and summed by ⊕ and then multiplied element-wise
with the feature maps with a Hadamard product ⊙. We have omitted the dependency on
parameters θ = {θ(h), θ(t)} for simplicity.

We thus achieve a trade-off between fine-grained control and the number of guiding param-
eters that are required using a grid-like spatial modulation. This can be also useful when
estimating the guiding vectors with a lower capacity module, where an increased number
of units could lead to over-fitting.

One further observation is that in fully convolutional architectures the size of the input and
consequently the size of the feature maps (H, W) can vary. Therefore we do not want α and
β to depend on a fixed resolution, which can be a problem when using another network
to predict these vectors — thus its output size must be fixed. Instead, since α and β repre-
sent spatial attention (and not semantic adjustment like γ), it seems reasonable to specify
a preferred vector size and linearly interpolate when the the spatial dimensions of the fea-
ture map to be guided are different. This further suggests that we effectively can define any
granularity level for the spatial guides.

In the following, we present two different ways of employing this guiding module in the
context of semantic image segmentation. Conceptually, the guide is not task-specific and
can be useful in various applications. However, depending on the task, the form of the hints
and therefore the guiding module, as a processing unit, can vary.
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8.4 Guiding by Back-propagation
When guiding by back-propagation we formulate the problem of finding suitable param-
eters α, β, γ as an energy minimization problem. While the parameters of the guide are
optimizable there is no learning involved.

8.4.1 Method
Let (xk,yk) be a training pair, where xk is the input and yk is the target, and k = [1, . . . ,N],
with N being the total number of training samples. Then, consider a deep learning model
trained for a certain task by minimizing a task-specific loss L(·, ·):

θ∗ = argmin
θ

1
N

N∑
k=1

L
(
t
(
h(xk, θ(h)), θ(t)

)
, y

)
, (8.5)

where θ = {θ(h), θ(t)}. In the task of semantic segmentation, L can be the cross-entropy loss
and the segmenter can be any state-of-the-art model, e.g. [55].

After the model has reached its optimal state θ∗, it is unlikely that it can deliver results with
zero error, especially for unseen samples. Our goal is now to find guiding parameters that
improve the network’s output, while keeping the model parameters θ fixed. Let ŷ be a given hint.
For example, in semantic segmentation, the hint could be user-specified click(s) that indicate
the correct category for one or more pixels in the image. Then ŷ can be represented similarly
to ground truth y, but sparse. We can then optimize the previous objective, towards param-
eters α, β and γ instead of θ:

α∗,β∗,γ∗ = argmin
α,β,γ

(
m̂⊙ L(y∗, ŷ)

)
, (8.6)

where y∗ is given by Equation (8.4). Optimization here plays a corrective role instead of
learning. In the above equation, m̂ is a binary mask that indicates the spatial coordinates
where a hint is given. Masking is necessary to optimize the objective only based on this
additional source of information and prevent the contribution of unknown parts to the opti-
mization process. The guiding parameters, which lie between head and tail, are initialized
to 0, which makes the outcome equivalent to the baseline segmenter.

We then only optimize the guiding variables for the current, single input x and hint ŷ, while
the network’s weights remain constant. Conditioned on the hint, this minimization con-
verges to vectors α∗,β∗,γ∗, resulting in an overall improved prediction.

Since all components discussed this far are differentiable, the optimization of Equation (8.6)
can be achieved via gradient descent and back-propagation.

As we later show in our experiments, the optimization process can be repeated for multiple
hints, i.e. the user can iteratively give seed-based hints and the guiding parameters are al-
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ways initialized by their previous state (initial state being α = β = γ = 0). This allows for
boosting the segmentation accuracy even further.

Guiding by back-propagation is a flexible method that can be applied to any network at any
layer. It does not require any further training. However, it does require several gradient
steps until convergence, which is why in Section 8.5 we adopt a learnable approach.

After the publication of our approach, a few recent methods have investigated the back-
propagation technique for interactive image segmentation. Instead of optimizing modula-
tion parameters by back-propagation, in [182], they update interaction maps that are fed as
input to the baseline model. In [212] they directly update the model’s parameters to adapt
to a test image/sequence based on the user hints and masked objective.

8.4.2 Experiments
Next, we evaluate the effect of guiding by back-propagation on a pre-trained CNN with
fixed parameters. As a baseline model we use a fully convolutional architecture (FCN-
8s) [260] trained on the PascalVOC 2012 dataset [99] for semantic segmentation. The architec-
ture is built on top of a pre-trained VGG-16 [378] with up-sampling layers. The mean inter-
section over union (mIoU)1 of this model on the PascalVOC 2012 validation set is 62.6%.

We select the layer with the lowest spatial resolution, i.e. bottleneck, as the guiding location.
We then modulate the activations of that layer with spatial attention vectors α and β, as
well as with semantic multiplicative vectors γ(s) and biases γ(b). We initialize all vectors to
zeros.

To enable interaction with the network we follow a scheme similar to the 20-question game
of Rupprecht et al. [356]. First, given an input image, the network performs a forward pass
resulting in an initial estimate. Depending on the outcome, the user can directly click on
certain points and specify their semantic category (if mistaken) — thus providing seeds for
the back-propagation algorithm. Here, instead, we allow the network to first enquire the
user about the class of single pixels for which it is most uncertain. We define uncertainty
as the difference in the output probability between the two most confident categories for
each pixel. Therefore, the pixel with the smallest difference between the top two classes is
the most uncertain one, because it is the most likely one to change its label. While a real
user can in theory answer the model’s enquiry, for automating the evaluation we use the
ground truth provided by the dataset to specify the correct label for each queried pixel. In
most cases, these pixels will correspond to object boundaries. After the answer has been
provided, a backward pass is performed and only the guiding parameters are updated until
convergence (usually around 200 steps). The process can be repeated multiple times, updat-
ing the guiding vectors further with each queried pixel.

In Table 8.1 we report the performance after 0, 1, 5, 10, 15 and 20 queries, with 0 denoting
the base model prior to guiding. After just 20 interactions, we observe an improvement in

1averaged over 20 classes
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#questions 0 1 5 10 15 20

mIoU 62.6 65.3 73.1 76.9 77.3 81.0

pixel accuracy 91.1 91.8 94.1 95.3 96.0 96.3

Table 8.1 Performance after a number of pixel queries. We apply guiding by back-propagation on a pre-trained
FCN-8s [260] on the PascalVOC 2012 val set [99]. We evaluate the model in terms of mean intersection
over union (mIoU) and pixel accuracy after a number of interactions, observing constant improve-
ment.

mIoU of nearly 20 points. Please note that the architecture we have chosen for this experi-
ment is not the currently best performing method on the leaderboard of PascalVOC 20122,
which is nearly saturated in terms of performance. One of the current top entries, DeepLab-
v3+ [56], reaches 87.8% in mIoU. However, our goal with this experiment is not to achieve
state-of-the-art performance but to show the performance gain that is achievable through
simple interactions and guiding by back-propagation. This finding can be extremely useful
in human-machine collaboration for accelerating labeling tasks.

8.5 Guiding in Natural Language
Guiding by back-propagation is a straightforward way to improve a model’s predictions
that does not require any further training and can thus be applied to any architecture out-of-
the-box. However, the hint is expected to be in the same domain as the output and, although
this is easy to achieve when it comes to semantic segmentation, it might not be generalizable
to other problems or settings. Further, as previously discussed, a desirable property for
real-world intelligent systems is the ability to communicate with human users. Hence, in
the following, we extend the idea of guiding to a natural language interface between the
deep learning model and the user. The guide then becomes a learnable module that can
be plugged in on top of any pre-trained model and enables auxiliary information in natural
language to flow from the user to model.

Although here we address this problem with written hints, it is possible to ease com-
munication even further through speech and voice-to-text tools (or directly designing
an audio-encoding module).

NOTE: Natural language: spoken or written?

8.5.1 Method
The following sections detail the additional model that we learn to translate from textual
hints to the guiding parameters of the model. Further, we will show a way to automati-

2PascalVOC 2012: segmentation challenge with additional data
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Figure 8.2 Guiding a network with natural language hints. The word embeddings of the hint sequence are
encoded by an RNN, producing the guiding vectors α, β, γ (biases omitted from the visual illustration
for simplicity). The guiding vectors modify the CNN features of a chosen layer, thus forcing a change
in the final prediction, without any other parameter update. While a real user can interact with the
network at test time, during training we simulate the user by programmatically generated hints.

cally generate synthetic hints during training such that no task-specific human annotation
is necessary.

Training with Natural Language Hints
Similar to the previous chapter, we use a mapping function f(s, θf) ∈ RD to encode text
sequences s into aD-dimensional embedding. f(s) can be again modeled as an simple RNN.
We use a word embedding matrix, pre-trained on a large corpus, to embed each word into
a fixed-length representation before feeding it to the RNN. A linear layer follows the final
hidden state of the RNN to map the encoded sequence into the guiding vectors α, β and γ
with projection matrixW ∈ RD×(H′+W ′+2C):

[α; β; γ(s);γ(b)] = WT · f(s), (8.7)

where [· ; ·] denotes the concatenation of the vectors. We use H ′ and W ′ to emphasize that
the dimensionality of the spatial vectors α and β does not need to match that of the fea-
ture maps (H,W), and it suffices to linearly interpolate each vector before any element-wise
operation with the features. Since the textual hints are usually short, this simple language
modeling approach is enough for producing the guiding parameters.

To train the guiding module, we first make one forward pass through the base model, with-
out the guide, which gives an initial prediction ỹ. Then, a natural language hint is automat-
ically generated with a process that we will describe shortly. The hint can be for example
a phrase such as “there is no sky”. We denote as ŷ the semantic category that is associated
with the hint; in the previous example, that is sky. The guiding parameters are predicted
by processing this hint and modulate the activations of a specific layer of the base model
resulting in a new guided prediction y∗. We train by optimizing the following objective:

Lg(y, ỹ, ŷ,y∗) = M(ŷ, ỹ,y) ⊙ L(y∗,y) (8.8)

where M is weight mask with
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initial prediction

ground truth

 bottom left 

 right error mask

 a remote is missing on the right 
category operation location

-

Query Generator

Figure 8.3 Query Generator. We illustrate the process to automatically generate queries to substitute the user
during training.

M(ŷ, ỹ,y) =


1, if ŷ = y

0.5, if ỹ = y

0, otherwise.

(8.9)

The goal here is twofold; we want the guide to improve the performance of the base model,
but also to condition changes on semantic categories. Thus, we weigh the loss with a factor
of 1 for pixels whose ground truth label matches the mentioned semantic category (ŷ = y).
The role of this mask is crucial in training the guide, as it forces the alignment between the
verbal categories (i.e. what is mentioned in the hint) and the visual categories (i.e. output
labels). Only then the guide can learn to make improvements which are actually conditioned
on the hint. We also allow pixels whose label was correctly predicted in the first place
(ỹ = y) to contribute to the loss with a reduced factor of 0.5. This discourages the corruption
of correctly labeled parts of the image. Finally, pixels that were wrongly predicted but not
mentioned in the hint do not contribute to the loss, to avoid polluting the gradient signal
with improvements in unrelated semantic categories.

Simulating User Hints
We will now explain how to automatically generate natural language hints; this is neces-
sary to mimic the user during the training phase. While most work on the intersection
of vision and language relies on crowd-sourced annotations — e.g. captions, referring ex-
pressions, questions/answers — we argue that in this case “interaction” annotations are not
only difficult to acquire but also require strong assumptions about the base model’s errors.
Instead, we propose a scheme for automatic generation of textual hints from vision-only
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labels, i.e. by comparing the initial prediction and the ground truth labels at each training
iteration. This allows to adapt the hints online, while training the guide, according to the
behavior of the model.

To generate the hints, we create a set of sentence templates with placeholders that corre-
spond to functional operations, semantic categories and spatial cues. An example can be seen in
Figure 8.3.

Naturally, the functional operations are task-specific. In the case of semantic segmentation,
we define and use two directions that can improve the outcome. The first one is to find and
label visual categories that were initially missing from the output, but are part of the ground
truth segmentation. These are the categories for which:

(v ∈ y) ∧ (v /∈ ỹ), v ∈ V (8.10)

∧ denotes the logical and operator and V is the set of visual categories. We later refer to this
operation as find. The second type of hint is related to suppressing spurious predictions
or removing wrongly predicted labels, that is

(v /∈ y) ∧ (v ∈ ỹ), v ∈ V (8.11)

We will refer to this type of hint as remove. Removal hints indicate the visual category that
should not be there, but do not specify which class to replace it with. Nevertheless, as we
also show later this is often possible to infer from image context.

We first extract all erroneous labels, ignoring those that do not meet a certain area threshold
(amount of pixels they cover). We then sample a visual category from this set with probabil-
ity proportional to its potential for improvement. This means that larger errors (in area) will
be sampled with higher probability. To fill in the slots in the template sentence we use the
semantic name of the sampled category and the associated operation, e.g. creating the hint

“a remote is missing” in Figure 8.3. Then, we attempt to narrow down the error spatially. We
divide the output into a 3×3 grid and depending on the grid cells that the errors falls in, we
verbalize the location using one of the following phrases: “on the top”, “on the top left/right”,
“on the bottom”, “on the bottom left/right”, “on the left”, “on the right”, “in the middle”. When the
location cannot be uniquely defined, e.g. because the same category covers more than one
region, then we omit spatial indications from the hint.

To summarize, we have now shown that it is possible to automatically generate sentences to
provide semantic information about the image that the network has initially missed. Cru-
cially, this is done using only existing vision labels instead of manually annotating sets of
images/predictions/hints, which would be costly and inefficient. However, at test time any
person (even non-experts) can take the place of the simulated user.
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8.5.2 Experiments
We now adopt a more challenging setting than the PascalVOC semantic segmentation chal-
lenge [99] so that even state-of-the-art models have room for improvement, thus making a
human in the loop a justifiable choice.

To evaluate our approach, we conduct experiments on the COCO-Stuff 10k dataset [50], which
is a subset of MSCOCO [253] comprised of 10,000 images from the 2014 train set. COCO-
stuff is split into 9,000 train and 1,000 test images and contains pixel-wise labeling of 91
things (same as MSCOCO) and 91 stuff classes. The list of categories and the corresponding
colormap used in this section can be seen in Table 8.5.

Implementation Details
Base Model As our base model we use DeepLab [55] with ResNet-101 [151] as the back-
bone. We train the model on half of the COCO-Stuff train set, which consists of 4,500 images.
The input images are of size 321 × 321 × 3. Due to the challenging setting and few training
data, the base model achieves a mIoU score of just 30.5%.

Language Encoder and Guiding Module We save the remaining 4,500 training images to
train the guide to improve the base model conditioned on user hints. The hints — generated
as previously described — are embedded using a 50-dimensional GloVe word embedding
matrix [317]. The word embeddings are fed as input to a GRU with 1024 hidden units. The
linear layer that follows the GRU projects the 1024-dimensional final hidden state of the
GRU into a vector that depends on the number of features in the layer where the guide is
inserted. For example, in layer res4a, γ(s) and γ(b) are 1024-dimensional to match the
number of feature maps. The spatial resolution in the same layer is 41× 41 and we choose α
and β to be 41-dimensional. However, it is important to note that their sizes can be chosen
freely (to represent a level of granularity), as their elements can be resized with bilinear
interpolation. We train all parameters related to the guide for approximately 100k steps,
while keeping the weights of the base model fixed. For optimization we use SGD with a
learning rate of 0.01, momentum of 0.9 and weight decay 0.0005.

Ablation Experiments
Next, we present several experiments to quantitatively study the guiding module, the im-
portance of its position inside the base model, the functional types of hints and the effect of
repeated guiding. Similar to training, we simulate the user hints for automatic evaluation.
The scores reported for all experiments are the average performance over five evaluation
runs to account for the randomness involved during the hint generation.

Guiding Module We experiment with different implementations of the guiding module
and compare the results of the models guided by find-hints in Table 8.2. We compare three
variants: a) the FiLM layer of Perez et al. [318], b) a dense (3D) guidance map and c) our
proposed approach of semantic and spatial guiding vectors.
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By design, the FiLM layer only guides semantically, i.e. by recalibrating feature channels.
Our approach generalizes this idea to more dimensions, thus allowing the guide to learn
spatial attention as well. As seen in the following table, this further improves performance
by a small margin (mIoU from 33.31% to 33.56%, while mIoU before guiding is 30.5%). It is
intuitive that the biggest gain comes from semantic guiding because these are the modula-
tion parameters that relate to the object representations. α and β mostly learn to relate the
location information provided by the user to spatial attention; however, spatial hints are not
always applicable, thus we observe a smaller amount of improvement. Additionally, we ex-
periment with a dense version of the modulation parameters, e.g. predicting a 41×41×1024
map — which does not perform better. This suggests that 2D spatial attention is perhaps
over-parametrized and it is harder to learn meaningful guiding maps.

We have also tried “wrapping” the modulation layer is a residual block, as in [318], but per-
formance slightly dropped; thus in the following experiments we apply the guiding vectors
directly, without a residual block.

mIoU

Guiding module w/ res-block w/o res-block

FiLM [318] 33.08 33.31
dense 33.03 33.29
ours 33.11 33.56

Table 8.2 Guiding module variations. We report the mean intersection over union (mIoU) metric for different
implementations of the guiding module. In all experiments we guide layer res4a using find hints.

Guiding Location Next we experiment with the guiding location, that is which layer is bet-
ter to guide. We note that after the layer’s activations have been modified, all subsequent
layers will be affected although the network parameters are not updated. From our experi-
ments, we observe that a deeper layer (close to the prediction layer) results in local changes
when guided, while guiding earlier layers affects larger regions of the output. This is a prod-
uct of the receptive field. In semantic segmentation (and generally classification problems),
we observe that a change in the deeper layers of the network has a more immediate effect
on the prediction, presumably because deeper layers contain higher-level information. A
comparison over several layers can be seen in Table 8.3. The performance increases as we
move the guide closer to the prediction layer.

Layer res3a res4a res5a res5c

mIoU 32.21 33.56 35.97 36.50

Table 8.3 Guiding location. We evaluate the effect of different guiding locations (layers) in terms of mIoU
performance. In all experiments find hints are used.
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For tasks such as depth estimation, we often require a global change in the output
(e.g. the overall metric scale) from just a few sparse measurements. Taking this into
account, earlier (or bottleneck) layers are more effective when guided.

NOTE: Guiding location depends on the task

Hint Functionality Finally, in Table 8.4, we study different hint functionalities. The guide
is trained only with find hints, only with remove hints or their combination. Using find

hints alone, the simulated user points out missing classes. Instead, remove hints only point
out that an object category should not be part of the prediction. In the former case, we
essentially tell the network what we are looking for; as a result, find hints yield over 3
points gain in performance comparing to remove hints. This is because remove is more
ambiguous than find. Even if the network is able to remove a class from its own predic-
tion — following the hint — it might often not know what to replace it with. This will also
become clear in the qualitative examples that follow.

Guiding location

Hint type res4a res5a

remove 31.53 32.56
find or rmv 32.22 33.73
find 33.56 35.97

Table 8.4 Hint functionality. We compare the performance gain when training guides with different types of
hints and their combination.

Qualitative Results
We present qualitative results for user-network interaction in Figure 8.4 (using find hints)
and Figure 8.5 (using remove hints). In both figures, we show both the initial prediction
and the refined prediction which is the result of guided feature modulation after the user
provides a hint about an erroneous label. The colormap used in shown in Table 8.5.

In Figure 8.4 we observe that the guided model is able to address several shortcomings of
the base model. When given find hints, the guided model can successfully recover from
mistakes ((e) fridge/laptop and ambiguities ((f) dining table/table), recover the segmentation
of only partially predicted objects ((i) banner) and discover smaller scale ((a) car, (b) bottle) or
heavily occluded objects ((g) chair) that are usually missing from the initial estimate. As a
by-product of modulating the activations, some segments other than the target class might
be also slightly affected. However, it is clear that the guide has learned to translate the input
sentences to meaningful modulation vectors, thus the changes in the prediction are strongly
related to the target class. If the target class does not actually exist in the image, then the
prediction is not be affected, i.e. the system is robust to erroneous user input.
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Figure 8.4 Qualitative results using find hints. The guided network is able to recover from ambiguities and
difficult cases, such as heavily occluded objects, and also refine partially predicted segments.

On the other hand, remove hints do not specify the correct category. Sometimes the correct
category can be inferred from the neighborhood or image context, e.g. Figure 8.5 (b)-(e). In
the last rows of Figure 8.5 we see some failure cases of this type of hint, as the objects which
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Figure 8.5 Qualitative results using remove hints. While the user specifies which category to remove, they do
not specify what to replace it with. In most cases this is inferred by context.

were initially wrong can still not be recovered after the hint. The network does not have
sufficient information to recognize the objects mostly due to viewpoint and thus guesses
another wrong class when replacing the initial prediction.
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person bicycle car motorcycle airplane bus train

truck boat traffic light fire hydrant street sign stop sign parking meter

bench bird cat dog horse sheep cow

elephant bear zebra giraffe hat backpack umbrella

shoe eye glasses handbag tie suitcase frisbee skis

snowboard sports ball kite baseball bat baseball glove skateboard surfboard

tennis racket bottle plate wine glass cup fork knife

spoon bowl banana apple sandwich orange broccoli

carrot hot dog pizza donut cake chair couch

potted plant bed mirror dining table window desk toilet

door tv laptop mouse remote keyboard cell phone

microwave oven toaster sink refrigerator blender book

clock vase scissors teddy bear hair drier toothbrush hair brush

banner blanket branch bridge building bush cabinet

cage cardboard carpet ceiling ceiling tile cloth clothes

clouds counter cupboard curtain desk dirt door

fence marble floor floor stone floor tiled floor wooden floor flower

fog food fruit furniture grass gravel ground

hill house leaves light mat metal mirror

moss mountain mud napkin net paper pavement

pillow plant plastic platform playing field railing railroad

river road rock roof rug salad sand

sea shelf sky skyscraper snow solid stairs

stone straw structural table tent textile towel

tree vegetable brick wall concrete wall wall panel wall stone wall

tiled wall wooden wall water water drops window blind window wood

Table 8.5 Semantic categories of COCO-Stuff. We visualize all semantic categories in the dataset as well as the
colormap used in the remaining figures.

Can we Guide Repeatedly?
As in Section 8.4.2 (Table 8.1), we are interested in studying the effect of repeated guiding
of the network with sequential hints. We guide layer res5a with find or rmv hints and
report the performance for increasing number of hints in Table 8.6. With every hint we tackle
a mistake of the most recently produced output. We find that two hints yield the best results.
From there on, we see a drop in the performance gain. At this point, it is important to note
that the guide is only trained with perform a single update. The modulated activations must
then still be “recognizable” by the fixed parameters of the network, otherwise the prediction
would not improve. However, if we guide the network multiple times certain features might
get modulated beyond values that subsequent layers can “tolerate”, which explains the drop
in performance gain. This can be mitigated by also using sequential hints when training the
guide. A qualitative example of repeated guiding is shown in Figure 8.6.

8.5.3 Visualization of Guiding Vectors
Finally, it would be visualize the embedding space that the guiding vectors form, in par-
ticular the semantic vector γ. Intuitively, these vectors must primarily encode the object
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# hints 0 1 2 3 4

mIoU 30.53 34.04 35.01 34.24 31.44

Table 8.6 Repeated guiding. We guide the network repeatedly with several find or rmv hints, each one
depending on the latest prediction. After three hints, the performance gain decreases because the
guide,which has been only trained with a single hint, over-modulates the features.

there are no
clouds on 

the top

input original prediction

ground truth

on the bottom, 
the playing field

is missing

remove the
ground

hint #1 hint #2 hint #3

clouds

sky

playing field

ground

Figure 8.6 Qualitative example of repeated guiding. We provide multiple hints to the network to keep correct-
ing mistakes with respect to confused classes sky/clouds, playing field/ground.

category that is mentioned by the user. Thus the vectors should be distinct for different
object categories and likely form clusters with related object categories. In other words, if
we assume that visually similar categories (e.g. laptop and keyboard) also have similar feature
representations, then their guiding vectors must also be similar (for the same functional
operation).

We visualize the t-SNE projection [271] of the γ-vectors in Figure 8.7. Each point represents
the γ-vector of each object category in the dataset (182 in total) as predicted by the guide
based on the same find hint, e.g. “there is ...”. The colors used to label the points in the
figure represent super-categories and they are only used for visualization purposes. We eas-
ily observe that the guiding vectors of semantically similar words cluster together, which is
an indication that the guide has learned to correlate the verbal categories with their visual-
semantic counterpart. Categories that lie very close to each other have similar guiding vec-
tors — these are categories that the network cannot easily disambiguate (e.g. mud and sand)
either before or after guiding.

In addition to the semantic vectors, we also visualize the combination of all three vectors,
including the spatial dimensions, in Figure 8.8. Here we tile and average the three guiding
vectors to form a 2D map for visualization purposes. This essentially represents the mag-
nitude of feature modulation across spatial locations. In the example shown in the figure,
we guide the network with two hints. In (b), we show a hint that leads to a failure case —
the guided network is still not able to find the surfboard after the user hint. Although the
heatmap suggests that the correct region of the image is targeted by the guiding vectors, the
change in activation might not be enough to cause a change in the output.
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Figure 8.7 Visualization of γ-vectors. We show the t-SNE plot of the learned semantic vectors for all categories in
COCO-Stuff. In this plot the same find hint is encoded for each category. The colormap corresponds
to super-categories.

Figure 8.8 Visualization of all guiding vectors. We tile the guiding vectors to visualize them as a 2D heatmap.
Two examples are shown: (a) Given the hint, the refined prediction is correct. (b) The missing category
is not recovered, even after the hint, although the heatmap suggests that the guide has the right focus.

8.6 Conclusion and Outlook
In this chapter we have discussed a guiding mechanism that enables a human user to inter-
act with deep networks. Our main goal is to enable the interaction in a most natural way,
for example through human language; but as we have shown earlier in this chapter other
forms of interaction are possible, for example user clicks, or scribbles.
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Specifically, we address the problem of semantic segmentation. When augmenting a seg-
mentation framework with a guiding mechanism we can think of the outcome as interactive
segmentation. This can be a particularly useful approach to reduce human labor in the con-
text of image labeling, which is necessary for training supervised learning algorithms. In
this case, the machine provides an initial estimate to the annotator. The annotator’s role is
to help the machine improve upon its initial prediction and, therefore, it is not required to
hand-draw detailed object contours from scratch.

The goal of our work is to pave the way towards interactive agents, though the current
system does not come without limitations. First, the simulated user hints presented so far
are restricted in terms of variability. In practice, real users might use different phrases for the
same goal or even refer to a concept with different words. If the guide has not been exposed
to these (e.g. as opposed to a language model trained on rich text corpora), it will most likely
not be able to understand new vocabulary or sentence structure. Thus, in the future, apart
from simulated hints, text corpora must be considered to learn a proper language model
in addition to the guiding task. Another way to enrich hint vocabulary and variability is
by using instance annotations. We can then distinguish between different instances of the
same class, some of which might be erroneous while others are accurately predicted. This
would allow to generate more specific hints, such as “there is a person lying on the bed” — to
selectively refer to this particular person, when there are more people in the room.

Another limitation is that for an agent deployed in a real environment, interacting with the
user can be a way to experience new concepts. Thus, we ideally want the agent to learn from
this experience over time, instead of improving its performance only momentarily during
the interaction. This is also the goal in the field of active learning [370], where the agent
queries the user (or an oracle) to obtain information while exploring its environment. More
recently, some methods have proposed to learn by asking questions [294, 462].

Overall, we deem this as an important future direction with practical impact in various
fields. For example, in medical imaging it can give physicians a means to influence a com-
puter system and directly incorporate expert knowledge — prior to subsequent analysis of
the data. Interaction with the user, as well as learning from it, is also a powerful tool for
embodied agents [73] and merits future research.
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9.1 Summary of Findings
In this dissertation we have addressed various topics related to scene understanding which
are all considered as the foundation for supporting higher-level intelligence. We will now
revisit the three principles that we introduced in Chapter 1 to group and summarize our
contributions.

Perception
For a system to be able to act intelligently, it should be first of all capable of perceiving its
environment. This means that it is vital not only to receive some sensory input (e.g. image
data), but more significantly to be able to interpret this information and develop an under-
standing for what is taking place in the surrounding environment — hence scene understand-
ing. For example, this is a necessary first step for an agent to navigate in the environment
and interact with objects that lie in it.

We address some of the core goals of scene understanding in Chapters 4 and 5. We study
depth estimation from single images as an alternative (or complementary) to depth sens-
ing. This is an important field of research which has attracted a lot of attention in computer
vision, together with depth completion. It allows to predict dense depth maps of the envi-
ronment where sensors might yield noisy or sparse measurements or just be too costly or
bulky to use. We address the problem of depth estimation with a deep architecture, which
at the time of publication [227] delivered state-of-the-art performance. Since then, the pro-
posed architecture and objective loss function have been adopted by future work that builds
upon our initial publication. While this method addresses scene understanding from a geo-
metric standpoint, it provides only partial information about the environment. The second
part comes, as is also the case for the human brain, from semantic knowledge; thus we also
extend the method to address the task of semantic scene segmentation.

Then, to build a basis for problems such as navigation and localization, we integrate the
learned geometric and semantic cues into a hybrid SLAM framework. Crucially, we build a
unified framework in which we leverage the complementary nature of the learned models
and traditional monocular localization and mapping techniques to better tackle the chal-
lenges that arise in each approach when addressed individually. The outcome is a dense,
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real-scale 3D map of the environment that additionally holds meaningful semantic informa-
tion. This model represents the basis for a holistic understanding of the scene as it includes
the 3D structure, camera pose and objects contained within.

Last but not least, we conclude the first part of the dissertation by moving from a scene-
centric down to an object-centric viewpoint and address scene understanding applications
in the context of robotic tools or arms (Chapter 6). We show that additional information can
be recovered when analyzing objects for their physical affordances, for example predicting
how to grasp individual objects present in the scene.

Communication
In the second part of the dissertation, we emphasize the ability of an agent to communicate
in human language bidirectionally, i.e. to both speak and understand it. We deem this essen-
tial for two reasons. First, it might be required by the task itself that the agent is designed
for; this is for example the case in conversational agents, home assistants, systems to aid
visually impaired users or assistive technologies in general. Second, it is easier for such
systems to be adopted by society and grow if they can communicate their understanding or
their decision making process, hold conversations or ask questions about their environment,
making them more user-friendly.

It is clear that the last example relies on the ability to perceive as well. Fortunately, as rapid
progress has been made over the last years in the field of computer vision, visual recognition
has now matured enough to open the door to such inter-disciplinary problems; e.g. combin-
ing disciplines in vision and natural language processing. Thus, in the second part of the
thesis, we are interested in problems that lie on the intersection of these fields. One such
problem is image captioning, which is a generative task that requires joint understanding
on both image and language domains, i.e. recognizing objects and their interactions while at
the same time generating coherent sentences. Due to the difficulty of the task, most progress
has been made on curated datasets of manually labeled image-caption pairs. In Chapter 7,
we present an alternative approach and address image captioning in an unsupervised man-
ner; this allows to exploit large unpaired sources of images and text corpora. The only
form of supervision comes in that we use visual recognition tools (e.g. an object detector) to
identify and name the entities that are present in the image domain, bridging the gap to se-
mantics (i.e. the meaning of things). Our findings suggest that it is possible to map images to
captions even without training pairs thanks to common concept co-occurrences in both do-
mains. However, we believe that this problem would significantly benefit from combining
available unpaired sources with some additional constrains coming from paired data.

Interaction
Finally, an agent that is made to act in human environments will most certainly require the
ability to interact with humans, which is of course also dependent on the previous point,
i.e. the ability to communicate. As an example, one can think of an agent deployed in the
real world; it will inevitably come across objects or situations it does not recognize, either
because of unfamiliar environmental conditions (e.g. it has never seen this object before in
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a similar scene or from this viewpoint) or because it encounters a new concept altogether.
In these cases, the agent can ask the human for help — and potentially even learn from this
experience.

In Chapter 8 we discuss the potential of a mechanism that enables a human user to provide
feedback to a deep model during inference. Crucially, the model initially does not rely on
input from the user to perform the task it is designed for. The interaction mechanism is in-
troduced to guide the model’s behavior retrospectively, especially when it makes a mistake,
and the goal is to improve the output. With respect to the form of interaction, we see vari-
ous possibilities, some of which are task-dependent. Perhaps one of the most natural ways,
though challenging for a computer, is interacting in human language; this is the approach
we follow here. We use the task of semantic segmentation as testbed, but the idea of guiding
a model is general enough and applicable to other problems as well — for example, revisit-
ing the problem of depth estimation, an interesting application is to guide the recovery of
scene geometry with sparse depth inputs or semantic knowledge.

9.2 Future Outlook
We live in an era that sees tremendous, fast-paced achievements in AI which transform
technologies in various fields and several aspects of society; from unprecedented progress
in machine translation to self-driving cars to solving global environmental challenges. As a
personal viewpoint, the future of AI is grounded in research that lies on the intersection of
computer vision, machine learning and natural language processing.

In this dissertation, we have addressed problems which deal with the ability of machines
to perceive their environment holistically and communicate their understanding to human
users. Developing such systems has not only theoretical but also practical implications, as
they are being deployed into the real world, in autonomous driving, medicine and assistive
technology. One future direction would be to study how different problem definitions can
influence each other and address all related tasks in a unified framework that allows us to
exploit knowledge from multiple domains.

However, currently it is often the case that methods are developed under “sterile” condi-
tions and curated benchmarks. As significant progress has been now achieved in supervised
settings, it is important to start addressing problems in the wild and draw attention towards
hybrid approaches — supervised, unsupervised and reinforcement learning. Unsupervised
learning is an important future direction because it enables learning strong representations
from large, readily available data sources without the need to explicitly annotate everything
in the world.

Defining and annotating all possible situations that an agent might encounter is indeed in-
feasible. As intelligent agents move into the real world, they will most likely come across
visual objects, semantic or physical properties and relationships that they might not recog-
nize. For this reason, the visual processing machinery of such agents must be equipped
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with mechanisms that enable lifelong learning and common sense reasoning. In Chapter 8
we discussed an interaction mechanism between human users and machines. As part of
future research we would like to extend this mechanism to active learning so that the agent
will pose enquiries to the user, when in uncertain situations, and continue to grow through
this interaction.

I hope that the methods presented and discussed in this dissertation will evolve and inspire
future research towards holistic scene understanding and the development of increasingly
intelligent machines.
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5.2 Component evaluation. Comparison of reconstruction performance using (a)
raw depth predictions, (b) focal length adjustment (Equation (5.5)) and (c) ad-
justment and frame-wise depth refinement (Section 5.3.3), in terms of (A) pose
trajectory accuracy and (B) depth estimation accuracy. In the binary maps (B),
blue indicates correctly estimated depth (within 10 % of the ground truth depth
values) and red indicates wrong predictions. The comparison is shown on a
sample sequence of the ICL-NUIM dataset [147]. . . . . . . . . . . . . . . . . . 64
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6.6 Reformulating oriented rectangles as heatmaps. The heatmaps are created as
Gaussian mixtures with the plate centers as means and the variance σx propor-
tional to the gripper height (σy is a chosen constant). . . . . . . . . . . . . . . 83
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7.1 Method overview. We learn a joint embedding space of text and image features

from disjoint language and image domains. The embedding space is structured
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8.1 Overview of user-network interaction for semantic image segmentation. We
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