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Abstract

Two Hybridizable Discontinuous Galerkin (HDG) schemes for the
solution of Maxwell’s equations in the time domain are presented.
The first method is based on an electromagnetic diffusion equation,
while the second is based on Faraday’s and Maxwell–Ampère’s laws.
Both formulations include the diffusive term depending on the con-
ductivity of the medium. The three-dimensional formulation of the
electromagnetic diffusion equation in the framework of HDG meth-
ods, the introduction of the conduction current term and the choice
of the electric field as hybrid variable in a mixed formulation are the
key points of the current study. Numerical results are provided for
validation purposes and convergence studies of spatial and temporal
discretizations are carried out. The test cases include both simulation
in dielectric and conductive media.
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1 Introduction

The field of computational electromagnetics has been gaining interest since
the first finite difference method for Maxwell’s equations was developed by
Yee in 1966 [1]. With the advent of more powerful computers, it was possible
to implement alternative methods such as finite element methods enabling to
overcome some of the shortcomings of the original finite difference method,
such as problems related to using unstructured meshes and difficulties in
achieving higher-order approximations.

The applications of computational electromagnetics are vast and can be
found in many engineering fields. Both direct and inverse problems were
investigated in the past, e.g., [2–6], to cite just a few. Examples of fields that
benefit from such methods are telecommunications, aeronautics, geophysics,
medical imaging and semiconductor industries.

Finite elements are generally more computationally expensive than finite
differences, but their ability to represent complex geometries and the possi-
bility to locally refine meshes, either via mesh refinement or by increasing
the polynomial order of the approximation, makes them very attractive for
the present application. The development of such methods greatly benefited
from the work of Nédélec on edge-based elements in [7, 8]. Among others,
these elements enable a correct representation of the null space of the curl
operator; see, e.g., [9].

In continuous Galerkin (CG) methods, the continuity between elements
is enforced strongly, such that it is therefore not possible to represent discon-
tinuities in the normal component of the electric (or magnetic) field at in-
terfaces between different materials or at domain boundaries. An alternative
way to solve this problem, retaining the geometric flexibility and high-order
capability, is to use discontinuous Galerkin (DG) methods. In such meth-
ods, the continuity between elements is relaxed, such that it is possible to
represent discontinuities at element interfaces. However, DG discretizations
lead to larger systems of linear equations as compared to CG discretizations.
However, to retain the good properties of DG methods, while addressing
their drawbacks, hybridized discontinuous Galerkin (HDG) methods were
proposed in [10]. Such methods are obtained from DG methods using flux
definitions that reduce the number of globally coupled unknowns and make
the solution of the equations faster, as a result. These methods perform
similarly to CG methods for matrix-based (see, e.g., [11]) and matrix-free
(see, e.g., [12]) implementations, if appropriate preconditioners are available.
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Our research focus on the simulation of electromagnetic diffusion problems
in underground strata formations, which might considerably benefit from the
advantages of HDG methods. The topic has been investigated using finite
differences, e.g., in [13, 14] and finite elements, e.g., [15, 4, 16–18]. While
HDG methods were developed for other electromagnetic applications in [5, 6],
to the best of our knowledge, they have never been applied to the direct (or
inverse) problem of electromagnetic diffusion in geological formations. We
focus on an efficient solution of the forward problem, which plays a funda-
mental role also in inverse problems. To achieve our goal, we first derive
and implement a complete HDG formulation for a mixed formulation and
validate it by computing test cases which solutions are available in analytical
or experimental form. We also derive a formulation based on an electromag-
netic diffusion equation that is typically the equation of choice for geophysical
applications.

We would like to point out the differences of our formulation to previous
ones proposed in [5, 6]. In [5], a formulation based on the displacement
current term was proposed, while in this paper the conduction current is
considered. Moreover, while a frequency-domain approach is used in [5], our
approach is formulated in the time domain. A crucial difference between the
mixed formulation presented in this paper and the one in [6] is related to the
definition of the hybrid variable. In [6], the hybrid variable is defined as the
tangential component of the magnetic field, and an equation is introduced to
enforce the electric field to be continuous, while in this paper the opposite
choice is made.

The paper is organised as follow: Section 2 introduces the constitutive
equations in their original form and in the form that will be used as a starting
point for our formulation. In Section 3, our formulation is derived in a form
that is general enough to allow the validation of the method with classical
test cases and to obtain the electromagnetic diffusion equation required for
subsequent research steps. Section 4 gives an overview of the chosen implicit
time-integration scheme and its implementation. In Section 5, numerical
examples for validating the implementation, including convergence studies,
are presented. Finally, Section 6 provides conclusions of this work.
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2 Governing equations

Classical electrodynamics is mathematically described by electric and mag-
netic field equations. In combined form, these equations are known as Maxwell’s
equations. A derivation of the equations as well as a thorough discussion of
their mathematical properties can be found, e.g., in [19].

2.1 Maxwell’s equations

Maxwell’s equations are given as follows:

∇× E = −∂B

∂t
, (1a)

∇×H = J+
∂D

∂t
, (1b)

∇ ·D = ρ, (1c)

∇ ·B = 0. (1d)

The variables that appear are: electric field E (V/m), magnetic field H

(A/m), electric displacement field D (C/m2), magnetic induction field B

(T), electric current density J (A/m2), and electric charge density ρ (C/m3).
Equations (1a)–(1d) are Faraday’s law, Maxwell–Ampère’s law, (electric)
Gauss’ law, and (magnetic) Gauss’ law, respectively.

The equation of continuity, stating conservation of charge, can be used
to relate the current i to the charge density:

∇ · i = −∂ρ

∂t
(2)

To close the system, it is necessary to add the following constitutive equa-
tions, valid for isotropic materials, to equations (1a)–(1d):

D = εE, (3)

B = µH, (4)

J = σE, (5)

with the following constitutive parameters: permittivity ε (F/m), perme-
ability µ (H/m), and conductivity tensor σ (S/m), which is the inverse of
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the resistivity tensor ρe (Ωm). Equation (5), which is a generalized form of
Ohm’s law, may be extended by adding a current-density source is:

J = σE+ is. (6)

In this paper, two different boundary conditions are considered. The
simplest boundary condition is a Dirichlet-type boundary condition on the
tangential component of the electric field, known as metallic or perfect

electric conductor (PEC) boundary conditions:

n× E = 0, (7)

where n denotes the outward-pointing unit normal vector to the surface.
Another, more complex set of boundary conditions are absorbing bound-

ary conditions (ABC). These boundary conditions are used to truncate phys-
ically unbounded domains to finite numerical domains, reducing unwanted
reflections. ABC are different in every field of application in which equations
enable wave propagation. We derive the ABC for the present problem in the
form of the Silver–Müller condition according to [2] as

√
εµ

(

∂E

∂t
× n

)

× n−∇×E× n = 0, (8)

obtaining

H× n+

√

ε

µ
(E× n)× n = Hinc × n+

√

ε

µ

(

Einc × n
)

× n = ginc, (9)

where H and E represent the total fields in the problem domain, while Hinc

and Einc represent external incoming fields.
Furthermore, initial conditions as

E0 = E (x, 0) , (10)

H0 = H (x, 0) , (11)

are prescribed, such that the initial fields are solutions of the Maxwell system;
see, e.g., [20]. To study the response to step-on sources, the initial fields are
set to zero everywhere. In geophysical applications, however, where usually
the response to step-off sources is of interest, the fields need to be initialized
to represent the solution of the static Maxwell equations by solving direct
current and magnetometric resistivity problems, as outlined, e.g., in [4, 14,
21]. A discussion of such initializations is beyond the scope of this paper,
and therefore, in this work, either zero fields or given analytical solutions are
used as initial conditions.
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2.2 Wave equations for electric and magnetic field

From equations (1a) and (1b), using constitutive equations (3), (4), and (6),
damped (vector) wave equations for conductive media can be derived for
both the electric field E and the magnetic flux density B:

ε
∂2E

∂t2
+ σ

∂E

∂t
+

1

µ
∇×∇×E = −∂is

∂t
, (12)

ε
∂2B

∂t2
+ σ

∂B

∂t
+

1

µ
∇×∇×B = ∇× is. (13)

Alternatively, the second wave equation may be formulated in terms of the
magnetic field H:

ε
∂2H

∂t2
+ σ

∂H

∂t
+

1

µ
∇×∇×H =

1

µ
∇× is. (14)

For subsurface applications, where typically electromagnetic (EM) signals
of very low frequency (up to f = 10Hz) are used, the conductivity is usually
much larger than the permittivity (e.g., nine orders of magnitude in rocks);
see, e.g., [22]. As a result, the displacement current becomes negligible with
respect to the conduction current. In this case, the damped wave equation
reduces to an EM diffusion equation:

σ
∂E

∂t
+

1

µ
∇×∇×E = −∂is

∂t
. (15)

The analogous equation for the magnetic field reads

σ
∂H

∂t
+

1

µ
∇×∇×H =

1

µ
∇× is. (16)

When the frequency goes to zero, the EM diffusion equation (15) reduces to
the Laplace/Poisson equation

1

µ
∇×∇×E = −∂is

∂t
, (17)

which describes potential-field methods. In this limit, intrinsic resolution
becomes almost nonexistent; see [22].

In Section 3.2, the EM diffusion equation (15), along with boundary con-
ditions (7) and (9), as well as initial condition (10), will be considered, and
a hybridizable discontinuous Galerkin method will be derived.
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2.3 Mixed equations for electric and magnetic field

From equations (1a) and (1b), using the constitutive equations (3), (4), and
(6), the following mixed equations for the electric field E and the magnetic
field H may also be derived:

µ
∂H

∂t
+∇× E = 0, (18a)

ε
∂E

∂t
+ σE−∇×H = −is. (18b)

Assuming the conductivity to be much larger than the permittivity, as above,
the equations can be reduced to

µ
∂H

∂t
+∇× E = 0, (19a)

σE−∇×H = −is. (19b)

However, to keep the formulation more general, in Section 3.1, equations
(18a) and (18b), along with boundary conditions (7) and (9) as well as initial
conditions (10) and (11), will be considered, and a hybridizable discontinuous
Galerkin method will be derived.

3 Hybridizable discontinuous Galerkin method

for electromagnetic diffusion equation

3.1 Formulation based on mixed equations

The domain Ω is discretized with nel elements Ωe such that the collection
of all elements, Th, partitions Ω. The boundary of the domain is divided
in two disjoint portions, such that ΓA ∪ ΓD = ∂Ω. In these two portions,
different boundary conditions will be applied, i.e., ABC on ΓA and PEC
boundary conditions on ΓD. The boundary of the collection, ∂Th, consists
of all element boundaries ∂Ωe, where e = 1, ..., nel. The union of all interior
faces F , where an interior face denotes the intersection of the boundaries of
two neighboring elements i and j as F = ∂Ωi ∩ ∂Ωj , is denoted by E0

h. A
boundary face is defined as F = ∂Ωi ∩∂Ω, where i = 1, ..., nel, and the union
of such faces is denoted by E∂

h . The union of interior and boundary faces is
then given by Eh = E∂

h ∪ E0
h.

7



The space of polynomials of degree of at most m on D is denoted by
Pm(D), where D is an open domain in Rd, and L2(D) is the space of square
integrable-functions on D. Furthermore, we set Pd

m(D) ≡ [Pm(D)]d. The
approximation spaces for solution and weighting functions are then defined
as

Vh = {vh ∈ [L2(Th)]
d : vh|Ωe

∈ Pd
m(Ωe) ∀Ωe ∈ Th},

Mh
t = {ηh ∈ [L2(Eh)]d−1 : ηh|F ∈ Pd−1

m (Eh), (ηh · n)|F = 0 ∀Ωe ∈ Th},
Mh

t (f) = {ηh ∈ Mh
t : ηh × n = Π(f × n) on ΓD}.

where Π(f×n) is a projection of f×n onto Mh
t . Note that the space M

h
t has

a smaller dimension than Vh because the functions in the former are defined
on the faces of the elements, F , while the functions in the latter are defined
in the elements, Ωe.

Equations (18a) and (18b) are now multiplied by (discrete) weighting
functions (vh,wh) ∈ Vh ×Vh, respectively, and integrated over one element
Ωe with boundary ∂Ωe:

(

vh, µ
∂Hh

∂t

)

Ωe

+
(

vh,∇× Eh
)

Ωe

= 0, (20a)

(

wh, ε
∂Eh

∂t

)

Ωe

+
(

wh,σEh
)

Ωe

−
(

wh,∇×Hh
)

Ωe

= −
(

wh, ihs
)

Ωe

, (20b)

where (Eh,Hh) ∈ Vh ×Vh denote approximations of the fields E and H in
the element Ωe and ihs is a projection of is onto Vh.

Integration by parts yields
(

vh, µ
∂Hh

∂t

)

Ωe

+
(

∇× vh,Eh
)

Ωe

+
〈

vh × n, Êh
〉

∂Ωe

= 0, (21a)

(

wh, ε
∂Eh

∂t

)

Ωe

+
(

wh,σEh
)

Ωe

−
(

∇×wh,Hh
)

Ωe

−
〈

wh × n, Ĥh
〉

∂Ωe

= −
(

wh, ihs
)

Ωe

, (21b)

where the numerical traces Êh and Ĥh appear as additional variables.
As the next step, the hybrid variable Λh := Êh

t is introduced, defined as
the tangential component of the numerical trace Êh, such that Λh ∈ Mh

t (0).

Note that the tangential component can be obtained as Êh
t = n×

(

Êh × n
)

or
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as Êh
t = Êh−Êh

n, where Ê
h
n = n

(

Êh · n
)

. This formualation is similar to the

one in [6], with the difference that here the hybrid variable is defined as the
tangential component of the electric instead of the magnetic field. The main
motivation for this choice lies in the fact that the tangential component of
the electric field is always continuous. While charge density, surface currents
and material heterogeneity can induce discontinuities in any component of
the magnetic field or in the normal component of the electric field, Et is
always continuous, as emphasized in [19] (Chapter 4–5). There is not any
notable difference in dielectric media, where surface currents are not allowed,
but there might be one in conductive media, such as the ones encountered in
geophysical applications.

Summing all contributions by individual elements, the following equation
is obtained:
(

vh, µ
∂Hh

∂t

)

T h

+
(

∇× vh,Eh
)

T h
+
〈

vh × n,Λh
〉

∂T h
= 0, (22a)

(

wh, ε
∂Eh

∂t

)

T h

+
(

wh,σEh
)

T h
−
(

∇×wh,Hh
)

T h
−
〈

wh × n, Ĥh
〉

∂T h

= −
(

wh, ihs
)

T h
. (22b)

The numerical trace of the magnetic field Ĥh is defined here as a sum of
Hh and a stabilization term, weighting the difference between the tangential
component of the discrete electrical field Eh and the hybrid variable Λh:

Ĥh = Hh + τ
(

Eh
t −Λh

)

× n, (23)

where τ is a stabilization parameter.
Via an additional equation, the continuity of the tangential component

of Ĥh across inter-element boundaries is enforced:

Jn× ĤhK = 0 on E0
h, (24)

with the definition

Jn× ĤhK := n+ × Ĥh+ + n− × Ĥh−

for interior faces, or simply

Jn× ĤhK := n× Ĥh

9



for boundary faces.
Definition (23) and condition (24), are required to close the system of

equations and ensuring the numerical trace Ĥh to be single-valued. As a
result, the method is locally conservative. To prove that (24) ensures a
single-valued numerical trace Ĥh, equation (23) is inserted in (24), yielding

Jn×HhK + τ+Eh+
t + τ−Eh−

t − (τ+ + τ−)Λh = 0, (25)

from which it is possible to obtain an equation for the hybrid variable:

Λh =
τ+Eh+

t + τ−Eh−
t

τ+ + τ−
+

1

τ+ + τ−
Jn×HhK. (26)

Substituting (26) in (23), the following equation is obtained

Ĥh = Hh + τ

(

Eh
t −

τ+Eh+
t + τ−Eh−

t

τ+ + τ−
− 1

τ+ + τ−
Jn×HhK

)

× n, (27)

eventually yielding

Ĥh− = Ĥh+ = Ĥh =
τ−Hh+

t + τ+Hh−
t

τ+ + τ−
+

τ+τ−

τ+ + τ−
JEh × nK. (28)

Note that to obtain (28), the relation n+ = −n− is used.
For an individual element boundary ∂Ωe, the variational form of (24),

with weighting function η
h, is given as

〈

η
h,n× Ĥh

〉

∂Ωe

= 0. (29)

To include the ABCs defined by (9), equation (29) is integrated over the
whole domain and the boundary condition terms are added as

− 〈ηh, Ĥh × n〉∂τh +
〈

η
h,

√

ε

µ
Λh

〉

ΓA

= −
〈

η
h, gh

inc

〉

ΓA

, (30)

where gh
inc is a projection of ginc onto Mh

t .
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Adding (30) to equations (22) yields

(

vh, µ
∂Hh

∂t

)

T h

+
(

∇× vh,Eh
)

T h
+
〈

vh × n,Λh
〉

∂T h
= 0, (31a)

(

wh, ε
∂Eh

∂t

)

T h

+
(

wh,σEh
)

T h
−
(

∇×wh,Hh
)

T h

−
〈

wh × n,Hh
〉

∂T h
−
〈

wh × n, τ
(

Eh
t −Λh

)

× n
〉

∂T h
= −

(

wh, ihs
)

T h
,

(31b)

−
〈

η
h,Hh × n

〉

∂T h
+
〈

η
h,n×

(

τ
(

Eh
t −Λh

)

× n
)〉

∂T h
+

〈

η
h,

√

ε

µ
Λh

〉

ΓA

= −
〈

η
h, gh

inc

〉

ΓA

. (31c)

Applying integration by parts to (31b) and rearranging the equations leads
to the final problem: find

(

Hh,Eh,Λh
)

∈ Vh ×Vh ×Mh(0) such that

(

vh, µ
∂Hh

∂t

)

T h

+
(

∇× vh,Eh
)

T h
+
〈

vh × n,Λh
〉

∂T h
= 0, (32a)

(

wh, ε
∂Eh

∂t

)

T h

+
(

wh,σEh
)

T h
−
(

wh,∇×Hh
)

T h
−
〈

wh × n, τEh
t × n

〉

∂T h

+
〈

wh × n, τΛh × n
〉

∂T h
= −

(

wh, ihs
)

T h
, (32b)

−
〈

η
h,Hh × n

〉

∂T h
+
〈

η
h, τEh

t

〉

∂T h
−
〈

η
h, τΛh

〉

∂T h
+

〈

η
h,

√

ε

µ
Λh

〉

ΓA

= −
〈

η
h, gh

inc

〉

ΓA

. (32c)

for all
(

vh,wh,ηh
)

∈ Vh ×Vh ×Mh(0).
From these equations, the following matrix-vector formulation is obtained:

[

Am 0

0 Em

] [

Ḣ

Ė

]

+

[

0 Cm

Fm Gm

] [

H

E

]

+

[

Dm

Hm

]

Λ =

[

0

−Is

]

, (33a)

I
mH+ J

mE+ L
mΛ = 0. (33b)
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3.2 Formulation based on equations for electric field

The derivation of the second formulation is sketched here, and the final form
is given. The complete derivation closely follows the steps outlined above for
the mixed equations.

A new variable u = µ−1∇×E is introduced into the EM diffusion equation
(15), such that it can be split up into two equations as follows: of equations
is obtained:

µu−∇× E = 0, (34a)

σ
∂E

∂t
+∇× u = −∂is

∂t
, (34b)

with PEC boundary conditions (7). The new variable u is related to the
magnetic field H via equations (1a) and (4) as follows:

u = −∂H

∂t
, (35)

and vice versa,

H = −
∫

t

u dt. (36)

Note the differences of the present system of equations (34) to (18), wich was
the starting point for the derivation in the preceding section.

Based on the discretization already introduced above, the equations are
multiplied by (discrete) weighting functions (vh,wh) ∈ Vh×Vh, respectively,
and integrated over one element Ωe with boundary ∂Ωe:

(

vh, µuh
)

Ωe

−
(

vh,∇×Eh
)

Ωe

= 0, (37a)
(

wh,σ
∂Eh

∂t

)

Ωe

+
(

wh,∇× uh
)

Ωe

= −
(

wh,
∂ihs
∂t

)

Ωe

. (37b)

where (uh,Eh) ∈ Vh × Vh are the approximations of the fields u and E,
respectively, and ihs is a projection of is onto Vh.

Summing all contributions by individual elements, integrating by parts
and substituting the definitions

Λh := Êh
t ,

ûh = uh + τ
(

Eh
t −Λh

)

× n,
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yields

(

vh, µuh
)

T h
−
(

∇× vh,Eh
)

T h
−
〈

vh × n,Λh
〉

∂T h
= 0, (38a)

(

wh,σ
∂Eh

∂t

)

T h

+
(

∇×wh,uh
)

T h
+
〈

wh,n× uh
〉

∂T h

+
〈

wh, τ
(

Eh
t −Λh

)〉

∂T h
= −

(

wh,
∂ihs
∂t

)

T h

. (38b)

To close the system of equations the continuity equation

〈

η
h,n× uh

〉

∂T h
+
〈

η
h,n×

(

τ
(

Eh
t −Λh

)

× n
)〉

∂T h
= 0 (39)

is added.
The final problem reads: find

(

uh,Eh,Λh
)

∈ Vh×Vh×Mh
t (0) such that

(

vh, µuh
)

T h
−
(

∇× vh,Eh
)

T h
−
〈

vh × n,Λh
〉

∂T h
= 0, (40a)

(

wh,σ
∂Eh

∂t

)

T h

+
(

wh,∇× uh
)

T h
+
〈

wh, τEh
t

〉

∂T h

−
〈

wh, τΛh
〉

∂T h
= −

(

wh,
∂ihs
∂t

)

T h

, (40b)

−
〈

η
h,uh × n

〉

∂T h
+
〈

η
h, τEh

t

〉

∂T h
−
〈

η
h, τΛh

〉

∂T h
= 0, (40c)

for all
(

vh,wh,ηh
)

∈ Vh ×Vh ×Mh
t (0).

From this system of equations, the following matrix-vector formulation is
obtained:

[

0 0

0 Ee

] [

U̇

Ė

]

+

[

Ae Be

Fe Ge

] [

U

E

]

+

[

Ce

He

]

Λ =

[

0

−İs

]

, (41a)

I
eU + J

eE+ L
eΛ = 0. (41b)

Note that, even if the same notation is used, apart from I and J, the matrices
in (41) are different from the ones in (33). Note further the different structure
of the matrices in that a zero matrix apperas in the upper left block for the
non-time-dependent (H,E) 2× 2 system in (33), while it is observed for the
time-dependent (U̇, Ė) 2× 2 system in (41).
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4 Implicit time-integration

Due to the frequency content and high variability of the constitutive parame-
ters of the target application, the equation is very stiff in time [3]. Therefore,
in our implementation, an implicit time-integration is chosen, to avoid time-
step restrictions of explicit time-integration schemes. In this section, the im-
plicit time-integration for the formulation in Section 3.1 is shown, by using
a backward-Euler scheme for demonstration purposes. Previous matrix and
vector indices are neglected to simplify the notation. The implementation of
a higher-order time-integration scheme would follow a similar rationale.

Applying the backward-Euler scheme to (33), the following matrix-vector
system is obtained





1

∆t
A C D

F
1

∆t
E+G H

I J L









Hn+1

En+1

Λn+1



 =





1

∆t
AHn

1

∆t
EEn − In+1

s

0



 , (42)

where ∆t is the chosen time-step and the superscript n indicates that we are
referring to the solution at the time t0 + n∆t.

Condensation of the upper left 2 × 2 block yields a system of equations
for the degrees of freedom of the hybrid variable exclusively:

KΛn+1 = F, (43)

with

K = L−
[

I J
]

[

1

∆t
A C

F
1

∆t
E+G

]−1 [

D

H

]

(44)

and

F = −
[

I J
]

[

1

∆t
A C

F
1

∆t
E+G

]−1 [ 1

∆t
AHn

1

∆t
EEn − In+1

s

]

. (45)

After having solved (43), the interior degrees of freedom of the magnetic and
electric fields are computed elementwise as

[

Hn+1

En+1

]

=

[

1

∆t
A C

F
1

∆t
E+G

]−1([ 1

∆t
AHn

1

∆t
EEn − In+1

s

]

−
[

D

H

]

Λn+1

)

. (46)

The time-discretized formulation according to Section 3.2 can be obtained in
a similar way, but the derivation is here omitted for brevity.
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5 Numerical examples

In this section, four numerical examples demonstrate that our method is
able to reproduce physical phenomena such as wave propagation and scat-
tering correctly as well as the possibility to utilize unstructured meshes and
absorbing boundary conditions to bound numerical domains. The chosen
implicit time-integration scheme makes the solution of a system of linear
equations necessary for every time step of the simulation. There are several
approaches that can be used to solve a system of linear equations, which
efficiency depends upon the properties of the system itself. In this study, we
use SuperLU DIST [23, 24] within Amesos interface [25], which is sufficient
for the size of the systems of linear equations considered in the following
four examples. For larger problem sizes, iterative solvers will become nec-
essary. However, the development of specific solvers and preconditioners,
respectively, for the problems such as the present one will be the subject of
future work.

5.1 Cubic cavity with perfect electric conductor bound-

ary conditions

In this subsection, the solution of Maxwell’s equations in a cubic cavity with
perfectly conductive boundary conditions is presented. The domain is a unit
cube, discretized with hexahedral elements. The permittivity and permeabil-
ity are set to ε =

√
3F/m and µ =

√
3H/m, respectively.

The frequency of the resonant wave is given by

fmnp =
1

2
√
µε

[

(m

a

)2

+
(n

b

)2

+
(p

d

)2
]

1

2

, (47)

where m,n and p are integers that define the wave pattern in the domain,
and a, b and d are the dimensions of the cavity. The period of the wave can
then be obtained using the relation Tmnp = 1/fmnp, which is T111 = 2 s in
this test case.
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P1 P2
1/h Error Order Error Order
5 2.63e−2 − 2.05e−3 −
10 6.42e−3 2.04 2.67e−4 2.94
15 2.84e−3 2.01 7.96e−5 2.98
20 1.60e−3 2.01 3.37e−5 2.99
25 1.02e−3 2.00 1.73e−5 2.99
30 7.08e−4 2.00 1.01e−5 2.96

Table 1: Error table of the spatial convergence study.

The analytical solution for this mode reads

Ea =











Ea
x = − sin(πx) cos(πy) cos(πz) cos(πt),

Ea
y = 2 cos(πx) sin(πy) cos(πz) cos(πt),

Ea
z = − cos(πx) cos(πy) sin(πz) cos(πt),

Ha =















Ha
x = −

√
3 cos(πx) sin(πy) sin(πz) sin(πt),

Ha
y = 0,

Ha
z =

√
3 sin(πx) sin(πy) cos(πz) sin(πt).

(48)

The intial conditions are obtained by (48), when setting t = 0.
The error considered here is a relative error computed on the electric field

in the L2-norm, which is defined as

‖Ea −Eh‖τh =

(

∑

τh

∫

Ωe
‖Ea − Eh‖2
∫

Ωe
‖Ea‖2

)1/2

. (49)

5.1.1 Spatial convergence

To make sure that the two sources of errors resulting from spatial and tem-
poral discretization do not interfere with each other, we study the spa-
tial convergence rates for a particularly very small time step. The chosen
time-integration scheme is only of first-order accuracy and therefore small
time steps are anyway recomended. The time-step length chosen here is
∆t = 10−4 s. Fig. 1 and Table 1 show that the expected spatial convergence
rate of the order p+ 1, where p is the order of the polynomial interpolation,
is indeed achieved.
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Figure 1: Spatial convergence plot (dt = 1e-4s). Convegence rates for first-
and second-order hexahedral elements.

5.1.2 Temporal convergence

In this convergence study, the spatial discretization is assumed constant and
fine enough such that the spatial discretization error is negligible. Second-
order hexahedral elements, with a characteristic element size of h = 1/15, are
used. Fig. 2 shows the expected first-order convergence rate, for a backward-
Euler time-integration scheme. In Table 2, the computed errors and conver-
gence orders are given.

5.2 Wave propagation

In this section, the propagation of a plane wave in free space is considered.
The simulation domain is a spherical portion of free space with radius R =
1.5m. The domain is discretised with about 40000 tetrahedral elements
and ABCs as defined in (9) are used to bound the numerical domain. The
total time for this simulation is Tmax = 3.33 × 10−8 s, and the time-step
length is ∆t = 10−11 s. The vacuum electromagnetic properties are ε0 =
8.854× 10−12 F/m and µ0 = 1.257× 10−6H/m.

The incoming wave propagates in the y-direction and has a frequency of
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Figure 2: Temporal convergence plot (h=1/15m). L2-error of backward-Euler
time-integration scheme.

f = 300MHz. The respective electric and magnetic fields are given as

Einc =











Einc
x = 0,

Einc
y = 0,

Einc
z = cos(

√
ε0µ0 ωy − ωt),

Hinc =















H inc
x =

√

ε0
µ0

cos(
√
ε0µ0 ωy − ωt),

H inc
y = 0,

H inc
z = 0,

(50)

where ω = 2πf is the angular frequency of the wave. The velocity of the
wave is given by c0 = 1/

√
ε0µ0 and coincides with the physical speed of light

in vacuum.
As in Section 5.1, it is possible to compute the error with respect to an

analytical solution of the plane wave as given by (50). The results of this
simulation can be used as a reference state for the scattering of a plane wave.
The error in the L2-norm of the electric field is ‖Einc − Eh‖τh = 0.16814 at
t = 10−8s, corresponding to about three periods of oscillation of the wave.
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1/∆t Error Order
25 3.61e−2 −
50 1.89e−2 0.93
100 9.67e−3 0.97
200 4.89e−3 0.98
400 2.46e−3 0.99
800 1.24e−3 0.99

Table 2: Error table of the time convergence study.

Figure 3: Wave propagation: DFT of Ez component for f = 300MHz.

Note that c0 = 1/
√
µ0ε0 ≈ 3× 108 m/s, such that in 10−8 s the wave travels

3 m, that is, the length of the domain.
To quantify the errors due to the spatial temporal discretizations, a second

simulation is run, using a time-step length of ∆t2 = 0.5∆t. The error is
computed at the same time ‖Einc − Eh‖τh = 0.15471, indicating that the
error is mainly due to the spatial approximation.

In Fig. 3, the real part of the Discrete Fourier Transform (DFT) of the
solution is shown for the frequency f = 300MHz, allowing for a comparison
with results in the frequency domain. The Fourier transform is computed
by a pointwise temporal transformation using Numpy’s FFT implementation
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(see, e.g., [26]) and normalized by 1/n, where n is the number of time-steps
used in the DFT. The normalization is required for enabling a comparison of
the numerical results to the analytical Fourier transform of the plane wave,
which is given by

Êinc(x, f) =
1

2
cos (

√
ε0µ02πf0x) δ(f0 − f), (51)

where f0 is the frequency of the wave and δ(f0− f) the Dirac delta function.
The Fourier transform of Ez for the frequency f0 = 300 MHz reads

Êinc
z (x) =

1

2
cos (

√
ε0µ02πf0y) , (52)

and it can be observed that the Fourier transform of the electric field is
related to the electric field itself by the relation

Êinc(x, f = 300MHz) =
1

2
Einc(x, t = 0). (53)

The numerical error in the L2-norm of Êh
z is ‖Êinc

z − Êh
z ‖τh = 0.2763.

Note that, in the simulations, the incoming wave is partially reflected by
the boundaries, reducing the accuracy of the solution especially in the region
of the positive y-axis.

5.3 Wave scattering

In this test case, the scattering of a plane wave by means of a dielectric
sphere is computed. The domain Ω1 is spherical, with radius R = 1.5m,
and contains a sphere Ω2 of radius r = 0.5m and dielectric material, as
shown in Fig. 4. On the boundary of Ω1, ABCs of Silver–Müller type with
the components of the wave defined in (50) are prescribed. The spatial
discretization is the same as in Section 5.2. The material properties in Ω1

are also the same as in 5.2, while in Ω2, it is assumed that ε2 = 2 ε0 and
µ2 = µ0.

For this test case, two different simulations frequencies are considered.
Fig. 5 shows the scattering of a wave oscillating with a frequency f = 300MHz
on the left-hand side and f = 600MHz on the right-hand side. Again, For
f = 300MHz, the time-integration parameters are the same as in Section
5.2, that is Tmax = 3.33× 10−8 s and ∆t = 10−11 s. For f = 600MHz, due to
the higher frequency of the wave, both simulation time Tmax, and time-step
length ∆t are halved, such that Tmax = 1.67× 10−8 s and ∆t = 5× 10−12 s.
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Figure 4: Computational domain for wave-scattering simulation, with scat-
tering caused by the dielectric sphere in center of domain.

Figure 5: Wave scattering: DFT of Ez component, f = 300MHz on the
left-hand side and f = 600MHz on the right-hand side.
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5.4 Cubic cavity with perfect electric conductive bound-

ary conditions in conductive media

To validate the formulation for problems in conductive environments, such
as those that can be found in geophysical applications, a numerical example
based on a manufactured solution is used. In this test case, permittivity and
permeability values are set to ε =

√
3F/m and µ =

√
3H/m, respectively,

and a non-zero conductivity value is introduced: σ = 1.429 S/m. This
conductivity is inspired by values used in [4] as exemplary conductivities of
seabed models.

The manufactured solution aims at enforcing the analytical solution (48)
in the mixed equations (18), yielding

is = −σEa, (54)

as a constraint for the forcing term. As a result, if is satisfies (54), the
analytical solution (48) will satisfy equations (18).

The time discretization is the same as in Section 5.1.1, that is, ∆t = 10−4

and Tmax = 5 × 10−4. Different spatial discretizations are used to simulate
the proposed problem. First, hexahedral elements within structured meshes
are used. A spatial convergence study is carried out by discretising the
domain with the meshes used in Section 5.1.1. The obtained error values
and spatial convergence rates are identical to the ones shown in Table 1,
indicating that the conductivity term is not critical in terms of the accuracy
of the discretization scheme.

Additionally, the domain is dicretised using tetrahedral elements within
an unstructured mesh, as exemplary depicted in Fig. 6. A convergence study
is carried out using increasingly finer meshes, and the results are reported in
Table 3. As expected, the convergence rate only approximates the conver-
gence rate expected for linear elements, due to the non uniform element size
across the domain.

6 Conclusions

Two implicit Hybridizable Discontinuous Galerkin formulations for the so-
lution of Maxwell’s equations in three-dimensional domains have been pre-
sented. The formulations are designed to be used in domains with diffusive
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Figure 6: Midsection of unstructured mesh for the cubic cavity with conduc-
tive media (characteristic element size approximately h = 1/20).

P1
1/h Error Order
5 3.34e−2 −
10 8.20e−3 2.03
15 4.40e−3 1.84
20 2.58e−3 1.85

Table 3: Error table of the spatial convergence study of a cubic cavity with
conductive media.
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mediums, and therefore, the conductivity term is present in both formula-
tions. While the formulation for the electric field only takes into account the
conduction current, the formulation for the mixed equations is more general
in that it retains both displacement and conduction currents.

The formulation for the mixed equations has been validated for three well-
known test cases, such as the resonance in a cubic cavity, wave propagation
and scattering, and for a manufactured solution to particularly take into
account the conductivity term. Spatial convergence studies have been carried
out for the wave-resonance test case in dielectric media, and the expected
convergence rates have been obtained. Solutions of wave propagation and
scattering have been proposed in time and frequency domain, allowing for
comparisons with different solution methods. The case of a resonant cavity
with conductive media has also been simulated, and the accuracy of the
results turned out to be identical to the test case with dielectric media.

The diffusive term in the equations will be particularly investigated in
future work on applications in the field of geophysics, that is, for transient
electromagnetics in three-dimensional diffusive earth media, as were already
considered before, e.g., in [4, 16]. Future research will also focus on solvers
and preconditioners for HDG methods for electromagnetics. Moreover, a
comparison between implicit and explicit time-integration will be investi-
gated. Numerical evidence shows that, even though explicit schemes can
have severe time-step restrictions, explicit implementations may still be more
efficient than implicit ones in the end; see, e.g., [27], where such a compari-
son was carried out for HDG methods in the context of problems of acoustic
wave propogation, which exhibit similarities to the present problems.
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