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Abstract: Global climate change associated with rapid urbanization is projected to cause a worsening
of environmental problems such as extreme heat and drought in cities. Urban trees play an essential
role in improving air quality, fixing carbon, mitigating environmental degradation, and providing
other ecosystem services. However, limited research has been conducted on belowground processes,
which hampers a comprehensive understanding of the effect of climate change and urbanization on
urban tree growth. Fine roots (<2-mm diameter) are the primary pathway for water and nutrient
uptake by plants, and they considerably contribute to the survival of urban trees under drought
stress. In this study, we conducted a controlled experiment on the development of fine roots of
Tilia cordata Mill ‘Greenspire’ and Tilia tomentosa Moench ‘Brabant’ in response to drought stress
via soil coring. Our results indicate that the two cultivars have different strategies for coping with
drought. Tilia tomentosa ‘Brabant’, originating from drier regions, gave allocation to deeper soil parts
priority probably to obtain more water. On the other hand, Tilia cordata ‘Greenspire’, which is native
in Central Europe, showed a negative response to water shortage and preferred a more horizontal
development of fine roots rather than a vertical development. Long-term studies are needed to gain a
better understanding of the belowground processes of urban trees to select tree species and cultivars
which are appropriate for planting in major cities, particularly with regard to future climate change.

Keywords: drought stress; fine root biomass; horizontal and vertical root growth; urban trees

1. Introduction

Global change including land-use change, elevated CO2 concentrations, increased temperature,
and increased rainfall variability is projected to have increasing impacts on the terrestrial ecosystem [1,2].
Simultaneously, urban areas around the world are expanding rapidly and will have more than 60% of
the estimated world population by the year 2030 [3,4]. In this light, extreme heat is more extensive [5,6]
and drought events can be exacerbated in urban areas due to many reasons, such as replacement of
vegetation, storage of more sensible heat, and anthropogenic heat emissions [7–9]. Higher temperatures
along with shifts in the precipitation rates may severely affect the urban environment of Central
European cities [10]. It is therefore essential for cities to find effective solutions to mitigate the negative
effects of climate change and accelerating urbanization [11].

Forests 2020, 11, 108; doi:10.3390/f11010108 www.mdpi.com/journal/forests

http://www.mdpi.com/journal/forests
http://www.mdpi.com
https://orcid.org/0000-0002-5301-0312
https://orcid.org/0000-0002-4958-1868
https://orcid.org/0000-0003-3780-7206
http://dx.doi.org/10.3390/f11010108
http://www.mdpi.com/journal/forests
https://www.mdpi.com/1999-4907/11/1/108?type=check_update&version=2


Forests 2020, 11, 108 2 of 14

Urban greening and trees can mitigate environmental degradation and provide ecosystem services
accompanying global change and rapid urbanization [12]. As rapid urbanization is destroying natural
ecosystems and degrading the environmental quality of towns and cities [13], trees can play a key
role in improving urban air quality, reducing noise, attenuating storm-water flooding, and conserving
energy, which have drawn increasing interest from researchers [14–18]. For example, Pretzsch et al.
found that the urban climate can both accelerate and slow down tree growth, depending on the climatic
zone of the given city [10]. In addition, Nowak et al. [19] studied how urban trees can filter pollutants
that have adverse effects on human health. Furthermore, how urban trees cope with drought has
attracted more and more attention. Roetzer et al. [20] showed that water deficit reduces photosynthetic
productivity and tree growth. Moser et al. [21] found marked growth reductions occurred after serious
drought events for some urban tree species.

Roots, especially fine roots, are the primary pathway for water and nutrient uptake. Although
fine roots constitute only about 2–3% of the total biomass, they are also a prominent, possibly the
most prominent, sink for carbon acquired in terrestrial net primary productivity [22–24]. It is therefore
essential to obtain quantitative information of root development of urban trees as plants spend a
considerable part of their energy on the production and maintenance of roots [25]. Multiple studies were
developed for the growth of roots in cities, e.g., resource limitation feedback between root and shoot
growth [26,27], factors impacting on root growth [28–30], root response to physical constraints [31,32]
and to soil chemistry and contaminants [33]. Some researchers reported that fine roots could be
invested more to enhance water uptake due to water shortage [34]. Stratópoulos et al. stated that
valuable information about root biomass and root: shoot ratio could be important selection criteria for
species and cultivars choice [35]. Hence, to acquire more knowledge of the development of fine roots
of urban trees will contribute to a better understanding of improving their ecosystem services in cities.

Although urban trees have received increasing attention for their ecosystem services [36–39]
and much attention has been paid to drought response of aboveground organs such as stems, twigs,
and leaves, little is known about the response of the root system to water shortage [27,40,41]. It is
crucial to obtain quantitative information of belowground processes especially in cities as the growth
conditions of urban trees are even more challenging to those in natural environments [10,42]. In this
paper, we designed a controlled experiment for two contrasting cultivars which are widely planted in
Europe to analyze the fine root biomass in response to drought stress, as it was reported that global
warming would most likely increase the frequency and duration of summer droughts in Central
Europe [43,44]. The objectives of this paper were to (1) explore the development of the fine root
biomass of two cultivars during the growing season; (2) investigate the development of fine roots in
both the vertical and horizontal directions; and (3) discuss the carbon allocation of the two cultivars
under drought.

2. Materials and Methods

2.1. Site Description and Cultivar Selection

The municipal nursery Munich-Laim (48◦08′05” N, 11◦28′47” E, 534 m a.s.l.) has an area of 42 ha
and is located in the Munich Gravel Plain in southern Germany. The study site provides homogenous
microclimatic and edaphic conditions. The annual mean temperature is 9.1 ◦C and the annual mean
precipitation is 959 mm (DWD, 2017). In this study, we selected two cultivars Tilia cordata ‘Greenspire’
Mill and Tilia tomentosa ‘Brabant’ for research because T. cordata ‘Greenspire’ is a local cultivar planted
widely in Central European cities while T. tomentosa ‘Brabant’ originates from drier regions of south-east
Europe, which was ideal for making a comparison. The cultivar T. cordata ‘Greenspire’ was grafted on
the same species and T. tomentosa ‘Brabant’ was grafted on the root system of Tilia platyphyllos Scop.
This species is often planted in central and south Europe and widely used for grafting, especially
hybridized with T. cordata as they had similar properties. To avoid the effect of transplanting shocks [45],
trees transplanted in spring 2014 were chosen as their root system should have adequate growth.
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2.2. Climate and Soil Moisture Measurements, Soil Samples

The data of air temperature, relative humidity, and precipitation were recorded with a weather
station (Davis Vantage Pro2; Davis Instruments, Hayward, CA, USA) which was placed 450–600 m
away from the research plots and sampled every 10 min. In addition, precipitation data were obtained
from the nearest weather station at Munich Airport from the German Weather Service (DWD) to
calibrate some abnormal values. Vapor pressure deficit (hPa; VPD) was calculated from 10-min time
interval air temperature as well as humidity data.

Soil samples were taken with a soil core in several locations around the trees. Afterwards, they
were transported to laboratory for further analysis. First stones were removed from the soil samples.
Then the samples were dried at 60 ◦C for 2 weeks to get the dry weight. At last large particles were
filtered. The rest was transferred to prefabricated analysis program and evaluated. A portable soil
moisture meter (UMP-1, UGT, Muencheberg, Germany) for point measurements in the upper 10 cm of
the soil was applied throughout the whole summer. The readings were made at defined distances
from all study trees. The soil moisture data was interpolated spatially for the two selected cultivars.

2.3. Drought Experiment in 2017

The individuals of T. cordata and T. tomentosa were planted in separate sites at 2 × 3 m spacing so
that all the individuals had enough distance to each other to avoid mutual effect. The selected trees all
had stem circumferences between 16 and 18 cm to obtain a similar initial status. In this way, eight
random individuals of T. cordata (Tc) and T. tomentosa (Tt) were selected, respectively.

The trees were divided into two groups, one of which was set as the control group (c) and the other
one as the drought treatment (t) group. As a result, four trees form a group: Tilia cordata-control (Tc-c),
Tilia cordata-treatment (Tc-t), Tilia tomentosa-control (Tt-c), and Tilia tomentosa-treatment (Tt-t). For the
control group, all the individual trees were exposed to ambient climatic conditions. For the drought
treatment group, rainfall was excluded via rainout exclusion from May to November 2017. Therefore,
several waterproof, translucent tarpaulins were connected to build a tent with a size of 2 × 3 m for each
tree. This construction was waterproof and sufficiently large to create a totally precipitation-exclusive
environment. All of the tents were fixed using several 30-cm iron nails inserted into the ground to
prevent wind damage (Figure 1).
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tomentosa. The rooting zones of trees covered by the rainfall exclusion constructions were the drought
treatment group, whereas trees exposed to ambient weather conditions for the control group.
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2.4. Stem Growth and Leaf Area Index (LAI)

The diameter at a height of 1 m (nursery workers in Germany measure DBH at 1 m instead of
1.3 m) was measured using a digital caliper at the beginning of each month from April to November
2017. Measurements were conducted in two perpendicular directions (N–S, E–W) and averaged to
account for irregularities in the form of the trunks. We focused on the relative rather than the absolute
biomass increments to make the data independent of the initial biomass.

The leaf area index (m2 m−2; LAI) was determined using hemispherical photographs
(Nikon Coolpix P5100 camera with a fisheye lens and Mid-OMount) and analyzed with the programme
WinSCANOPY (Régent Instruments Inc., Quebec, QC, Canada). Data acquisition was performed
under conditions of a uniformly overcast sky in the middle of June, shortly after implementation of the
drought experiment.

2.5. Coring for Fine Root Biomass

Fine root coring campaigns were launched for all trees in May, September, and November,
i.e., at the beginning, middle, and end of the growing season. Due to the homogenous edaphic and
climatic conditions in the nursery, we hypothesized that all the trees of the two cultivars had a similar
growth condition. A pre-test coring campaign showed that the range of the root system was similar to
a cylinder with a 70-cm diameter and 35-cm height. Therefore, during every coring campaign, four
soil cores were collected for every individual tree, two at a distance of 15 cm to the trunk and the
other two at a distance of 30 cm, i.e., the inner and outer fine roots. The soil was sampled down to
a 30-cm soil depth using a soil auger with 30-cm length and 3-cm radius. Each sample was divided
into three horizons: 0–10, 10–20, and 20–30 cm soil depth, i.e., the upper, middle, and lowest layers
(Figure 2). Fine roots (<2 mm) were filtered using sieves (2-mm mesh size) and separated by forceps
in the laboratory. Then, the samples were carefully washed and dried in the oven at 65 ◦C for 72 h.
Finally, all the samples were weighed using a balance with an accuracy of four decimal digits to obtain
the dry weight. Fine root biomass at different depths was calculated using the dry weight divided by
the cross area of the auger.
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15 and 30 cm from the trunk.

2.6. Statistical Analysis

The software package R was used for statistical analysis [46]. To investigate the difference between
means (n = 4), two-sampled t-test and analysis of variance (ANOVA) with Tukey’s HSD test were used.
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In all cases the means were reported as significant when p < 0.05. Where necessary, data were log or
power transformed in order to correct for data displaying heteroscedasticity.

3. Results

3.1. Weather and Soil Conditions

Precipitation varied clearly between April and November in 2017, the total sum of this period was
564 mm. July and August had relatively abundant precipitation reaching 102 and 123 mm, respectively.
Other months were relatively dry, particularly during a 13-day period between 13 June and 25 June
during which no rainfall was recorded. Precipitation started to increase at the beginning of May and
showed a declining trend during early September. The site experienced a continuous warm period
from 30 June to 30 August with 19.6 ◦C average daytime temperature (Figure 3).
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Figure 3. Daily amount of precipitation (Prec.; mm), temperature (T; ◦C), and the vapor pressure deficit
(VPD; hPa) at the site for the year 2017.

For both the control and treatment groups of the two cultivars, all trees were grown in the same
soil environment, which consisted mainly of medium sand (Table 1). In terms of the soil moisture,
the drought treatment groups had significantly lower volumetric soil moisture contents (VWC; Vol.-%)
in comparison to the control plots (p < 0.001), with the roofed T. tomentosa showing the lowest average
value of 19.4% (Figure 4). In addition, we found that the VWC 1 m from the trees, and therefore closer
to the tent border, was significantly higher than that in the center of the roofs (p = 0.014). Therefore,
the data indicated the overall success of the drought experiment.

Table 1. Soil characteristics for both the control and drought treatment groups of T. cordata and T.
tomentosa.

Group n Fine Sand % Fine Silt % Grit % Coarse Grit % Medium Sand % Medium Silt %

Tc-c 4 15.8 ± 3.6 6.5 ± 1.1 9.0 ± 2.2 16.0 ± 1.2 27.3 ± 4.9 8.7 ± 3.3
Tc-t 4 22.6 ± 5.9 3.8 ± 1.3 7.7 ± 4.3 12.2 ± 2.7 33.4 ± 4.7 8.1 ± 1.3
Tt-c 4 14.2 ± 0.4 5.7 ± 2.5 11.2 ± 0.7 10.8 ± 2.3 23.7 ± 1.8 14.0 ± 4.3
Tt-t 4 14.0 ± 0.7 7.3 ± 0.9 11.6 ± 0.5 12.7 ± 2.3 23.1 ± 2.0 11.2 ± 1.0
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Figure 4. Maps (interpolated values) of the volumetric soil water contents (Vol.-%; VWC) at a soil depth
of 10 cm averaged over four measurement days in summer 2017 and collected at defined distances from
the study trees. The rooting zones of the tree individuals in the respective left graphics were covered
by the rainfall exclusion constructions (‘drought treatment’, Tc-t and Tt-t), whereas the individuals in
the right images belonged to the control groups (‘control’, Tc-c and Tt-c).

3.2. Relative Stem Growth and LAI

For both cultivars, stem growth in the control and treatment groups reached a peak during May.
After rapid growth during late spring, a tendency of decreased growth toward autumn for T. cordata
from both the control and treatment groups with considerably similar patterns was obvious. In contrast,
T. tomentosa individuals showed different developments between the control and drought treatment
groups after June. Tt-c had strong growth until September, whereas Tt-t was strongly affected by the
drought and showed a continuous growth decrease (Figure 5).
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Figure 5. Monthly relative stem increment (%) of control and drought treatment groups of T. cordata
and T. tomentosa from April to October 2017. Values denote the average of all trees per cultivar and
group ± the standard deviation.

T. cordata showed a quite fast development, i.e., this species unfolded its leaves earlier than T.
tomentosa that did not unfold their leaves until the third week of May. In summer, LAI of Tc-t under
drought was reduced in comparison to Tc-c (p < 0.05) while an opposite pattern was found for T.
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tomentosa, i.e., Tt-t was higher than Tt-c (p > 0.05). In autumn, individuals of Tc-t were leafless in the
middle of October while T. tomentosa had longer vegetation periods (Table 2).

Table 2. Leaf area index (LAI; m2 m–2) of the two tree cultivars from both the control and treatment
groups in June 2017.

Cultivar Group n LAI (m2 m−2 ± SD)

T. cordata
Control 4 2.53 ± 0.49
Treatment 4 2.13 ± 0.48

T. tomentosa
Control 4 2.92 ± 0.21
Treatment 4 3.11 ± 0.55

3.3. Total and Vertical Fine Root Biomass

Fine root biomass of the two cultivars was different from May to November. During the beginning
of the growing season, T. cordata and T. tomentosa showed no significant difference between the control
and drought treatment groups (PT. cordata = 0.066, PT. tomentosa = 0.526). The fine root biomass of Tc-c
increased by 36.5% to 161.4 g m−2 from May to September and remained stable at 162.2 g m−2 from
September to November, while that of Tc-t decreased by 18.1% to 145.7 g m−2 during the first four
months (from May to September) but had a slight growth of 7.0% to 155.8 g m−2 during the last three
months (from September to November). For T. tomentosa, the individuals of the control group behaved
quite differently from the drought stressed group (Figure 6). The initial fine root biomass of the control
and treatment groups was nearly similar at 99.5 and 108.2 g m−2, but in the course of the experiment,
Tt-c increased to 259.8 g m−2, (161.2%) from May to September while Tt-t increased to 165.6 g m−2.
Over the period from September to November, Tt-c showed a remarkable decrease to 205.7 g m−2

while Tt-t remained at 163.9 g m−2.
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For vertical development, the fine root biomass in the three layers developed differently between
the control and drought treatment groups of both cultivars (Figures 6 and 7). For T. cordata, fine root
growth was observed highest in the 20–30 cm layer from May to September in the control group.
In the drought treatment group, the fine root biomass from both the 0–10 and 10–20 cm layers sharply
decreased by 77.1% and 57.4%, respectively. In the deep layer (20–30 cm) we observed contrasting
development that it increased to a peak of 105.8 g m−2 during September and decreased to 76.8 g m−2

during November.
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For T. tomentosa, Tt-c continued growing in the 20–30 cm layer while the fine roots from the 0–10
and 10–20 cm layers decreased by 40.3% and 43.4%, respectively. For Tt-t, the fine root biomass in
the three layers developed significantly differently from Tt-c during the whole period (p = 0.039).
In 0–10 cm depth the fine root biomass decreased from 39.5 to 7.3 g m−2 during the first four months
and increased to 28.2 g m−2 during the last three months. The fine roots in the 10–20 cm layer showed
only slight fluctuations for the whole period. The fine root biomass in the deep layer was initially very
low (11.6 g m−2) and steeply increased to 107.4 g m−2 by September. In contrast, the same layer in the
control group decreased by 29.3%.

3.4. Horizontal Development of Fine Root Biomass

The horizontal development of fine roots of the two cultivars was different when exposed to
drought (p < 0.05) (Figure 8). The fine root biomass of Tc-c steadily increased at a distance of 15 cm
from the stem, whereas it decreased at a distance of 30 cm from May to November. Tc-t decreased its
fine root biomass at a distance of 15 cm from 235.7 to 140.7 g m−2 from May to September, whereas the
biomass at a distance of 30 cm slightly increased over measurement time.
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For T. tomentosa, drought had an impact on the fine root growth from May to September. It reduced
the fine root biomass by 23.7% at a distance of 15 cm and by 11.4% at a distance of 30 cm in the control
groups, and by 52% and 55% in the treatment groups, respectively. From September to November,
Tt-c decreased from 303.7 to 249.7 g m−2 at a distance of 15 cm and from 215.9 g m−2 to 161.6 g m−2 at a
distance of 30 cm, which had a similar trend in Tt-t.

4. Discussion

In this study, we studied the fine root biomass of T. cordata and T. tomentosa cultivars in response
to drought stress. We found different growth patterns under water shortage between the two cultivars
in both the vertical and horizontal directions reflecting clear differences in the carbon allocation within
a tree for the two cultivars.

4.1. Total Fine Root Biomass

Effects of drought manipulations are very complex [47]. In this study, we found that drought had a
relatively small impact on fine root growth of T. cordata and it invested less energy than T. tomentosa on
belowground growth, the fine root biomass only slightly varied between control and drought treatment
trees. Moser et al. [21] found that T. cordata showed a continued decrease in aboveground growth
after a drought event while our results showed the congruent growth for belowground processes.
This implies that the belowground part did not actively react to cope with drought stress.

In contrast, starting from May T. tomentosa showed a vigorous fine root growth in both control and
drought treatment groups, i.e., T. tomentosa invested or gave the priority to the belowground growth.
Radoglou et al. [48] also found that T. tomentosa with sufficient water supply reacts dynamically with
fine root growth. Under water shortage, our results showed that the fine root biomass growth of Tt-t
decreased compared to Tt-c from May to September, however, there was still a distinct growth over the
whole growing season. Combined with the results of Stratópoulos et al. [49], T. tomentosa originating
from dry regions was proved to be a drought-resistant species that could cope well with water shortage.
Based on our observations, the main strategy of T. tomentosa could be the steady and continuous
investment in the belowground growth under drought stress, which could prove the vitality of the fine
roots of T. tomentosa undertook the ability of water absorption in response to the dry environment.

4.2. Vertical Development of Fine Root Biomass

Despite the fact that the total fine root biomass of the control and treatment groups for T. cordata
trees were similar, the fine root biomass of the three layers showed different patterns. Tc-c exposed
to normal conditions slowly increased their growth in the deep layer and decreased it in the upper
layer, which was consistent with previous results [50,51]. However, in response to drought, the fine
root biomass in the upper and middle soil layers of Tc-t sharply decreased. Simultaneously, the deep
fine roots of Tc-t developed stronger than the fine roots of Tc-c probably to obtain water from deeper
soil parts. During autumn (from September to November), the fine root development in all the soil
layers was completely different compared to summer. The deep roots decreased whereas the roots in
the upper and middle soil layer initiated growth. Accounting for the steady total fine root biomass,
the preferential development of fine roots in different soil layers may reflect specific allocation to soil
layers with reserve water over the course of the season. Gillner et al. found that T. cordata recovered
after decreasing growth resulting from a drought event, which could be explained by the resumptive
growth of the fine roots in the upper and middle soil layers [52]. Less energy was invested by T. cordata
in the belowground processes in all the soil layers to obtain enough growth, especially during a drought
event. This might lead to a growth balance between the shallow and deep fine roots.

For T. tomentosa, without a water shortage, fine roots vigorously developed in all the soil layers
of the control group during the first four months, whereas it was different for the upper and middle
layers in the dry treatment group. The roots in the middle layer showed no growth and the shallow
roots almost died because of the drought. However, simultaneously the deep fine roots exhibited
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strong growth, which was even higher than the growth in the control group. This was considered
as an essential step to adapt to drought. During autumn, for both the control and treatment groups,
the fine roots in each layer had opposite growth patterns than those earlier in the season. We did not
only observe that the shallow roots had a similar growing tendency to that of the fine roots in the
middle layer but also found a dynamic balance for all fine roots, in the way that if the fine roots in the
upper and middle layer increased or decreased, the deep fine roots decreased or increased accordingly.

Recent research has shown that deep roots can be of pivotal importance to alleviate water stress in
many plants [53]. They particularly play a central role in drought tolerance in tropical and subtropical
environments [54]. Our results proved this with the development of the deep fine roots of T. tomentosa,
which originated from drier regions than those of T. cordata. Schenk proposed that the rooting
profiles of plant communities tended to be as shallow as possible and as deep as needed to meet
the evapotranspiration demand [55]. The idea is that plants need less energy for the construction
of shallow roots than of deep roots, although the balance of allocation of carbon to roots and the
acquisition of water are central to tree survival. Moreover, soil close to the surface can provide high
water and nutrient availability for root growth most of the time. In addition, shallow soils have
lower soil strength, which usually avoids the possibility of oxygen deficiency for the roots. Generally,
the growth of deep roots can even be a drain for downward hydraulic redistribution [56].

During the beginning of drought events, however, deep roots can uptake more water which
is an advantage compared with a shallow rooting system because lower maintenance costs tend to
counter-balance the high construction costs of deep roots [57,58]. Fine root turnover increases with soil
depth because the roots are probably strongly modulated by a combination of environmental factors,
e.g., soil moisture and texture [59,60]. In the study of Stratópoulos et al. [49], T. tomentosa showed
strong resistance against drought whereas T. cordata performed negatively. In this study, the fine roots
of T. cordata showed a minor reaction to drought. T. tomentosa, however, developed new fine roots
in the vertical direction especially in the deep soil layers in summer, which could be regarded as an
effective solution in coping with drought stress. Moreover, when the availability of water was high,
T. cordata did not show vigorous growth, whereas T. tomentosa developed abundant deep roots which
probably aimed to prevent the risk of drought damage.

4.3. Horizontal Development of Fine Root Biomass

Different tree species have different distribution patterns of fine roots in the horizontal direction [51].
Similarly, we found that under normal conditions fine root development of T. cordata was more
stem-centered whereas T. tomentosa showed no priority for inner root growth. Under drought stress,
this tendency was reversed. The outermost fine roots did not decrease any further, whereas the inner
fine roots died because of water shortage. This could be a strategy of T. cordata trees to expand their
root system to acquire more water by decreasing the support of the fine roots at a distance of 15 cm.
For the T. tomentosa individuals of the control group, both the inner and outer fine roots underwent
similar growth from May to November, which was also found for the trees in the treatment group.
Both the fine roots of T. tomentosa in the control and treatment groups had an increase in innermost
area during the first four months and a decrease in outermost fine root biomass during the last three
months. This implies that drought did not affect horizontal expansion and no priority was given to the
fine roots in horizontal direction.

4.4. Carbon Allocation under Drought Stress

Figure 5 displays that the relative stem growth of both T. cordata and T. tomentosa reached the
peak in May which is similar to the results of Rahman et al. [61]. In general, annual stem growth
predominantly occurs from May to July [62]. During this period, temperature and water availability
are the main determining factors for radial growth [52,63]. However, for different tree species and
cultivars, the patterns can be distinct [52]. We found similar trends in stem development for T. cordata
in the control and drought treatment groups during the whole growing season. This could be explained
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by the mechanism of anisohydric behavior, i.e., that T. cordata reduced leaf water potential under
drought stress [64]. There was no significant difference in the stem and root growth between the
control and drought treatment groups, because the high levels of stomatal conductance preserved stem
and root growth [65]. For T. tomentosa, the stem growth in the drought treatment group decreased
compared with that in the control group. However, the fine root biomass simultaneously developed
strongly, which implied that T. tomentosa prioritized belowground processes to obtain water under
drought stress.

5. Conclusions

We found that the fine root growth showed different responses to drought stress in two cultivars
widely planted in Europe. We hypothesized that both the two cultivars had a similar initial growth
condition and the development of their fine root could reflect the underground strategy. T. cordata
trees showed little growth that similar growth patterns for stem and total fine root biomass were
observed under drought stress. However, increased outer fine roots for horizontal expansion could be
the potential reason for its living. For T. tomentosa, it invested more on roots, particularly deep roots in
order to absorb water, which suggests a strategy of prioritizing belowground processes regarding the
decrease of the stem growth. In conclusion, the two cultivars displayed different reactions to water
shortage that T. cordata tended to support the expansion of fine roots horizontally while T. tomentosa is
assumed to develop deep fine roots.

Thus, under the background of global change with higher temperatures, altered precipitation
patterns, and more extreme weather events (e.g., drought), city planners should consider providing
enough space when planting trees in streets and squares. The development of fine roots of urban
trees should be considered when planting urban trees. The horizontal expansion of fine roots of
some tree species and cultivars could alleviate water shortages; however, this could result in damage
to pavements. This suggests the necessity of sufficient space for tree species and cultivars such as
T. cordata ‘Greenspire’. Tree species and cultivars with an active reaction to drought stress could be
prioritized in urban management. Those with a deep root strategy such as T. tomentosa ‘Brabant’ could
be an appropriate and economic choice as they are adaptable to drought stress. Long-term observations
of fine root growth patterns are needed to provide more in-depth information and quantify the root
development of different trees species and cultivars in urban surroundings.
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