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Abstract

Quantile regression is a field with growing importance for statistical modeling.
It has a broad range of applications and it emerged as a complementary method to
linear regression in many fields. Ever since the formal definition for quantile regres-
sion has been formulated, by Koenker and Bassett Jr (1978), there have been many
attempts to improve this methods shortfalls. The occurrence of quantile crossings
and the linearity assumption are just a few disadvantages of linear quantile regres-
sion.

One of the ideas how to overcome such shortfalls, is to use vine copula based
quantile regression. Vine-copulas allow highly flexible modeling of high-dimensional
dependence structures. The first work in this field by Kraus and Czado (2017), in-
troduced D-vine quantile regression for the subclass of D-vines. The idea how to
build the D-vine copula is based on the maximal improvement of the conditional log
likelihood in the next tree. Our first goal is to extend this method to the subclass of
C-vines, so that more flexible dependence structures can be modeled. The next step
is to introduce new algorithms for both D-vine and C-vine copulas, where we look
on the next two trees for the maximal improvement in the conditional log likelihood.
Furthermore, an additional goal is to be able to use these algorithms on big data
sets, and thus, we introduce some modifications in our two step ahead algorithm in
order to reduce the computational complexity.

At the end, we try to examine the performance of the algorithms through an
extensive simulation study, where we compare the proposed algorithms based on
several performance measures which include, among others, the out of sample mean
square error, conditional log likelihood and computational time.
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Chapter 1

Concept of copulas

In order to define the copula approach to multivariate data we will start with uni-
variate and multivariate distributions, and gradually define the concept of copulas,
vine copulas and its properties. In this section, we are following Czado (2019).

1.1 Univariate and multivariate distributions

In general, we denote random variables by capital letters and observed values by
small letters, i.e., we write X = x. We consider absolute continuous functions, so
that corresponding density functions exist. We use F for the distribution function
and f for the corresponding density.
Furthermore, the parameters of the distribution function of a random variable X
are unknown and need to be estimated. That can be done by considering a sample
x1, ..., xn of independent identically distributed (i.i.d.) observations of X. One way
to do such estimation, is to parametrically model X with a parameter vector θ ∈ Θ,
i.e., X ∼ f(·;θ), where Θ is the corresponding parameter space. The parameter
vector is most often estimated with maximum likelihood method in which we have

θ̂ := arg max
θ∈Θ

n∏
i=1

f(xi;θ).

So, the distribution function F (·;θ) is estimated by F (·; θ̂).
If one does not want to make any parametric assumptions, most often the empirical
distribution is being used.

Definition 1.1. (Empirical distribution function)
Let x1, ..., xn be an i.i.d. sample from a distribution function F , then the empirical
distribution is defined as

F̂ (x) :=
1

n+ 1

n∑
i=1

I (xi ≤ x) ,

for all x.
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Remark 1.2.

• I (xi ≤ x) is an indicator function, being equal to 1, when the condition xi ≤ x
is satisfied, and equal to 0, otherwise.

• Division by n+ 1 instead of n is used in order to avoid boundary problems.

• So, the distribution function F (x) is estimated by F̂ (x).

Now, we will continue talking about modeling the behaviour of multiple random
variables using multivariate distributions. In such a case, we distinguish between
marginal, joint and conditional distributions which arise from the multivariate dis-
tribution. The joint distribution consists of marginal and conditional distributions,
in a way that the marginals describe the behaviour of a single variable on its own,
and the conditional distributions describe the effect of a conditioning set of variables
over the conditioned variables. For each of them, we will use the following notation:

Definition 1.3. For a random vector X = (X1, ..., Xd)
T we define:

• joint distribution and density of X: F (x) and f(x) for x = (x1, ..., xd)
T ,

• marginal distribution and density function of Xj: Fj(xj) and fj(xj), for j =
1, ..., d,

• conditional distribution and density function of Xj given Xi: Fj|i(xj|xi) and
fj|i(xj|xi) for j 6= i.

Next, in order to be able to characterize the dependence between the random vari-
ables, we need to standardize them. Therefore each of the random variables Xj for
j = 1, ...d is standardized using the probability integral transform, defined as:

Definition 1.4. (Probability Integral Transform)
Let X ∼ F be a continuous random variable and let x be an observed value of X.
Then the transformation

u := F (x)

is called the probability integral transform (PIT) at x.

Remark 1.5. (Distribution of the probability integral transform)

• If X ∼ F , then U := F (X) is uniformly distributed, because

P (U ≤ u) = P (F (X) ≤ u) = P
(
X ≤ F−1(u)

)
= F

(
F−1(u)

)
= u,

holds for every u ∈ [0, 1].

• If F is estimated parametrically by F (·; θ̂) or nonparametrically by the empir-

ical distribution F̂ , then this holds only approximately.
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Now, if the parametric assumptions are to be avoided, we use the multivariate em-
pirical distribution function.

Definition 1.6. (Multivariate empirical distribution function)
Let xi = (x1i, ..., xdi) be an i.i.d. sample of size n from the multivariate d−dimensional
distribution F , then the multivariate empirical distribution function is defined as

F̂ (x) :=
1

n+ 1

n∑
i=1

1[x1i≤x1,...,xdi≤xd],

for all x := (x1, ..., xd)
T .

1.2 Copulas

The copula approach to multivariate data allows individual modelling of the marginal
distributions. Also, it separates the dependence between the components from the
marginal distributions. The dependence of a marginally standardised multivariate
distribution is modeled by a corresponding joint distribution function called a cop-
ula.

Definition 1.7. (Copula)
A d−dimensional copula C is a multivariate distribution function on the d−dimensional
hypercube [0, 1]d with uniformly distributed marginals.

Remark 1.8. (Copula density)
The corresponding copula density for an absolutely continuous copula, denoted by c,
can be computed by partial differentiation

c (u1, ..., ud) :=
∂d

∂u1...ud
C (u1, ..., ud)

for all u : =(u1, ..., ud)
T ∈ [0, 1]d.

One of the fundamental results in the copula methods is the Sklar’s Theorem. Sklar
(1959) proved the representation theorem for multivariate distributions in terms of
their marginal distributions and a corresponding copula. The proof can be found in
Nelsen (2007).

Theorem 1.9. (Sklar’s Theorem)
Let X : =(X1, ..., Xd)

T be a d−dimensional random vector with joint distribution
function F and marginal distribution functions Fi, i = 1, ..., d, then the joint distri-
bution function can be expressed as

F (x1, ..., xd) = C (F1(x1), ..., Fd(xd)) ,

with associated density or probability mass function

f (x1, ..., xd) = c (F1(x1), ..., Fd(xd)) f1(x1)...fd(xd), (1.1)
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for some d−dimensional copula C with copula density c. For absolutely continuous
distributions, the copula C is unique.
The inverse also holds: the copula corresponding to a multivariate distribution func-
tion F with marginal distribution functions Fi, i = 1, ..., d can be expressed as

C (u1, ..., ud) = F
(
F−1

1 (u1), ..., F−1
d (ud)

)
,

and its copula density or probability mass function is determined by

c (u1, ..., ud) =
f
(
F−1

1 (u1), ..., F−1
d (ud)

)
f1

(
F−1

1 (u1)
)
...fd

(
F−1
d (ud)

) .
Lemma 1.10. (Conditional densities and distribution functions of bivariate distri-
butions in therms of their copula)
The conditional density can be rewritten as

f1|2(x1|x2) = c12 (F1(x1), F2(x2)) f2(x2),

and the distribution function as

F1|2(x1|x2) =
∂

∂u2

(F1(x1), u2) |u2=F2(x2),

which we abbreviate by

∂

∂F2(x2)
C12 (F1(x1), F2(x2)) .

Proof. Using the definition of a conditional density and the equation (1.1) we have

f1|2(x1|x2) =
f12(x1, x2)

f2(x2)

=
c12(F1(x1), F2(x2))f1(x1)f2(x2)

f2(x2)

= c12(F1(x1), F2(x2))f1(x1)

=
∂2C12(u1, u2)

∂u1∂u2

|u1=F1(x1),u2=F2(x2)
∂u1

∂x1

=
∂

∂u2

(
∂

∂x1

C12(F1(x1), u2)

)
|u2=F2(x2).

Thus, we have

F1|2(x1|x2) =

∫ x1

−∞

∂

∂u2

(
∂

∂z1

C12(F1(z1), u2)

)
|u2=F2(x2)dz1

=
∂

∂u2

(∫ x1

−∞

∂

∂z1

C12(F1(z1), u2)dz1

)
|u2=F2(x2)

=
∂

∂u2

C12(F1(x1), u2)|u2=F2(x2).
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Remark 1.11. (Bivariate conditional copula and conditional distribution)

• Lemma 1.10 can be applied to the bivariate copula distribution C12. We denote
the conditional distribution and density as C1|2 and c1|2, respectively. We have
that

C1|2(u1|u2) =
∂

∂u2

C12(u1, u2) ∀u1 ∈ [0, 1].

• The relationship between F1|2 and C1|2 using Lemma 1.10 is given by

F1|2(x1|x2) =
∂

∂u2

C12(F1(x1), u2)|u2=F2(x2) = C1|2 (F1(x1), F2(x2)) .

• Using all of the above, the inverse function of the conditional distribution func-
tion is given as

F−1
1|2 (u1|x2) = F−1

1

(
C−1

1|2(F1(x1)|F2(x2))
)
.

The conditional distribution function C1|2 associated with a copula is also known as
a h function, notation introduced by Aas et al. (2009).

Definition 1.12. (h-functions of bivariate copulas)
For all (u1, u2) ∈ [0, 1]2 the h-functions that correspond to a bivariate copula C12 are
defined as

h1|2(u1|u2) =
∂

∂u2

C12(u1, u2),

and

h2|1(u2|u1) =
∂

∂u1

C12(u1, u2).

1.3 Dependence measures

In order to capture and quantify the dependence between random variables we in-
troduce dependence measures, such as Kendall’s tau and partial correlation, which
we later use to introduce our algorithms.

Definition 1.13. (Kendall’s tau)
The Kendall’s tau between two continuous random variables X1 and X2 is defined

as

τ(X1, X2) = P ((X11 −X21)(X12 −X22) > 0)− P ((X11 −X21)(X12 −X22) < 0) ,

where (X11, X12) and (X21, X22) are independent and identically distributed copies
of the pair (X1, X2).
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Lemma 1.14. (Kendall’s tau expressed in terms of the copula)
Let X1 and X2 be two continuous random variables, then Kendall’s tau can be ex-
pressed in terms of their bivariate copula C(u1, u2) as

τ = 4

∫
[0,1]2

C(u1, u2) dC(u1, u2)− 1.

Proof. This result follows directly from Definition 1.13 and the proof can be seen in
Czado (2019).

Remark 1.15. Kendall’s tau, τ is a rank-based dependence measure and it is in-
variant with respect to monotone transformations of the margins. Also, it can be
expressed in terms of the associated copula, as seen in the Definition 1.14, so its
values does not depend on the marginal distributions. That is why it is so suitable
dependence measure when working with copulas.

In the case of d variables we look into the dependence of every pair of variables. A
dependence measure between two variables after the effect of the remaining variables
is removed is called partial correlation.

Definition 1.16. (Partial correlation)
Let X1, . . . , Xd be random variables with zero mean and variance σ2

i for i = 1, . . . , d.
Let Id−(i,j) be the set {1, . . . , d} with removed indices i and j, for i 6= j. Define partial
regression coefficients bi,j;Id−(i,j)

for i < j as the quantities that minimize

E[(Xi −
d∑

j=2,j 6=i

ai,j;Id−(i,j)
Xj)

2].

Then, define the partial correlation ρi,j;Id−(i,j)
as

ρi,j;Id−(i,j)
: = sign(bi,j;Id−(i,j)

)×
√
bi,j;Id−(i,j)

× bi,j;Id−(i,j)
.

We use the following recursion formula for the computation of the partial correla-
tions, proved by Yule and Kendall (1950).

Theorem 1.17. (Recursion for partial correlations)
The partial correlation satisfy the following

ρi,j;Id−(i,j)
=

ρi,j;Id−1
−(i,j)
− ρi,d;Id−1

−(i,j)
ρj,d;Id−1

−(i,j)√
1− ρi,d;Id−1

−(i,j)
×
√

1− ρj,d;Id−1
−(i,j)

.

In order to examine the probability of the joint occurrence of extremely small or big
values we define the following coefficients

6



Definition 1.18. (Upper and lower tail dependence coefficient)
The upper tail dependence of a bivariate distribution with copula C is defined as

λupper = lim
t→1−

P
(
X2 > F−1

2 (t)|X1 > F−1
1 (t)

)
= lim

t→1−

1− 2t+ C(t, t)

1− t
,

and the lower dependence coefficient as

λlower = lim
t→0+

P
(
X2 ≤ F−1

2 (t)|X1 ≤ F−1
1 (t)

)
= lim

t→0+

C(t, t)

t
.

1.4 Bivariate copulas

We start with the introduction of parametric copulas in 2 dimensions. They are char-
acterized by the copula family and the corresponding parameter. We now introduce
various examples of bivariate parametric copulas. Depending on their construction,
we distinguish between elliptical copulas, based on elliptical distributions using the
inverse statement of Sklar’s Theorem 1.9, such as Gaussian and Student t copula,
and Archemedian copulas, constructed using a generator function φ.

Example 1.19. (Elliptical copulas)

• Bivariate Gaussian copula
Let Φ1(·) be the distribution function of a univariate standard normal distri-
bution, i.e. N(0, 1) and let Φ2(·) be the distribution function of a bivariate
standard normal distribution N

(
(0, 0)T ,Σ

)
, where Σ is a symmetric positive

definite 2× 2 correlation matrix with unit variance. Then, by applying the in-
verse Sklar’s theorem 1.9 we obtain the bivariate Gaussian copula (abbreviated
by Gauss. in later use)

C(u1, u2) = Φ2

(
Φ−1

1 (u1),Φ−1
1 (u2)

)
.

• Bivariate Student t copula
Let T1,v(·) be the distribution function of a univariate standard Student t dis-
tribution with v > 0 degrees of freedom, t1(v, 0, 1) and let T2,v(·) be the distri-
bution function of a bivariate standard Student t distribution, t2(v, (0, 0)T ,Σ),
where Σ is a scale parameter matrix , Σ ∈ [−1, 1]2×2. By applying the inverse
Sklar’s theorem 1.9 we obtain the bivariate Student t copula

C(u1, u2) = T2

(
T−1

1 (u1), T−1
1 (u2)

)
.

7



Example 1.20. (Archimedean bivariate copulas with a single parameter)

• Clayton copula

C(u1, u2) = (u−δ1 + u−δ2 − 1)−
1
δ ,

where 0 < δ <∞ is the parameter controlling the degree of dependence. Inde-
pendence correspond to δ → 0, while full dependence when δ →∞.

• Gumbel copula

C(u1, u2) = exp[−{(− lnu1)δ + (− lnu2)δ}
1
δ ],

where δ ≥ 1 is similarly the parameter controlling the degree of dependence.
Independence correspond to δ = 1, while full dependence when δ →∞.

• Frank copula

C(u1, u2) = −1

δ
ln

(
1

1− e−δ
[(1− e−δ)− (1− e−δu1)(1− e−δu2)]

)
,

where the parameter δ is in [−∞,∞] \ {0}.

• Joe copula

C(u1, u2) = 1−
(
(1− u1)δ + (1− u2)δ − (1− u1)δ(1− u2)δ

) 1
δ ,

where the parameter is δ ≥ 1.

Example 1.21. (Independence copula)
In order to model independence between two uniformly distributed variables U1 and
U2 we define the nonparametric (or parametric with parameter set to 0) independence
copula (abbreviated by Indep. in later use)

C(u1, u2) = u1 × u2.

Definition 1.22. (Rotated copulas)
In order to extend the range of dependence we use counterclockwise rotations of the
copula density c(·, ·) by

• 90 degrees: c90(u1, u2) : = c(1− u1, u2),

• 180 degrees: c180(u1, u2) : = c(1− u1, 1− u2),

• 270 degrees: c270(u1, u2) : = c(u1, 1− u2).

8



Remark 1.23. We also note that there is a one-to-one correspondence between the
copula parameter and the Kendal’s tau, as proved by Embrechts et al. (2003) for the
elliptical copulas, and by Hürlimann (2003) for the Archimedean copulas.

After defining many parametric bivariate copulas, we proceed with their estimation.
Since we are working with parametric copulas, we also need a way to estimate the
parameter for the copula. As a usual goodness of fit measure we will use log like-
lihood, Akaike information criterion (AIC) and the Bayesian information criterion
(BIC). We define them as follows:

Definition 1.24. (Conditional log likelihood)
Let C(·, ·) be a bivariate parametric copula with density c(·, ·) and parameter θ,
where |θ| denotes the dimension of θ. Also, consider a copula data with size n u =

(u
(i)
1 , u

(i)
2 ) for i = 1, . . . , n. The log likelihood, with and without the penalizations

AIC and BIC of the bivariate copula are defined as

• log likelihood:

l(θ, u) : =
n∑
i=1

log(c(u
(i)
1 , u

(i)
2 )),

• BIC penalized log likelihood:

lBIC(θ, u) : =−2l(θ, u) + log(n)|θ|,

• AIC penalized log likelihood:

lAIC(θ, u) : =−2l(θ, u) + 2|θ|.

9



Chapter 2

Introduction to C- and D-vine
copulas

In this section using the building blocks we defined in the previous chapter, the
bivariate copulas or the pair copulas, we continue with constructing multivariate
distributions using conditioning. The first approach developed was introduced by Joe
(1996) in which the construction of a multivariate copula was in terms of distribution
functions, while Bedford and Cooke (2001) independently developed constructions
in terms of densities. This method is known as pair copula construction (or PCC)
and is the building block for defining vine copulas. To illustrate this method we start
with an example, given in Czado (2019).

2.1 Regular vines

Example 2.1. (Pair copula construction in 3 dimensions)
Let X1, X2 and X3 are random variables and our goal is to write their joint density
f(x1, x2, x3) in terms of pair copulas and marginal densities.
We start with the recursive factorization formula for the joint density

f(x1, x2, x3) = f3|12(x3|x1, x2) f2|1(x2|x1) f1(x1). (2.1)

We continue with decomposing each term in the above expression. Consider f2|1(x2|x1)
and using the properties of conditional density and Sklar’s Theorem 1.9 we get

f2|1(x2|x1) =
f12(x1, x2)

f1(x1)

=
c12(F1(x1), F2(x2) f1(x1) f2(x2)

f1(x1)

= c12(F1(x1), F2(x2) f2(x2).

(2.2)

10



Next, we derive f3|12(x3|x1, x2). In order to do so, we consider the bivariate con-
ditional density f13|2(x1, x3|x2). The copula density associated with the conditional
distribution of (X1, X3) given X2 = x2 is denoted by c13;2(F1|2(x1|x2), F3|2(x3|x2);x2).
Thus, by Sklar’s Theorem 1.9 we have

f13|2(x1, x3|x2) = c13;2(F1|2(x1|x2), F3|2(x3|x2);x2) f1|2(x1|x2) f3|2(x3|x2). (2.3)

Plugging in equations (2.3) and into the conditional density f3|12(x3|x1, x2) we have

f3|12(x3|x1, x2) =
f(x1, x2, x3)

f(x1, x2)

=
f13|2(x1, x3|x2) f2(x2)

f12(x1, x2)

=
f13|2(x1, x3|x2)

f1|2(x1|x2)

=
c13;2(F1|2(x1|x2), F3|2(x3|x2);x2) f1|2(x1|x2) f3|2(x3|x2)

f1|2(x1|x2)

= c13;2(F1|2(x1|x2), F3|2(x3|x2);x2) f3|2(x3|x2)

= c13;2(F1|2(x1|x2), F3|2(x3|x2);x2) c23(F2(x2), F3(x3)) f3(x3).

(2.4)

Merging the results from equations (2.2)) and (2.4) into equation (2.1) we finally get
the pair copula decomposition in 3 dimensions

f(x1, x2, x3) = c13;2(F1|2(x1|x2), F3|2(x3|x2);x2) c12(F1(x1), F2(x2))

× c23(F2(x2), F3(x3)) f1(x1) f2(x2) f3(x3).
(2.5)

However, this decomposition of the joint density is not unique, we can decompose
f(x1, x2, x3) also in two other ways, by reordering the variables X1, X2 and X3.
Namely, the following decompositions are also valid:

f(x1, x2, x3) = f2|13(x2|x1, x3) f1|3(x1|x3) f3(x3),

and

f(x1, x2, x3) = f1|23(x1|x2, x3) f3|2(x3|x2) f2(x2).

Therefore, we have two additional valid decomposition of the joint density of X1, X2, X3

in terms of pair copulas as

f(x1, x2, x3) = c12;3(F1|3(x1|x3), F2|3(x2|x3);x3) c13(F1(x1), F3(x3))

× c23(F2(x2), F3(x3)) f1(x1) f2(x2) f3(x3),

and

f(x1, x2, x3) = c23;1(F2|1(x2|x1), F3|1(x3|x1);x1) c13(F1(x1), F3(x3))

× c12(F1(x1), F2(x2)) f1(x1) f2(x2) f3(x3).
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In the first given pair copula decomposition (2.5) the copula density c13;2(· ·;x2)
depends on the value X2 = x2. However, a standard assumption in vine copula
theory is to ignore this dependence. In this case, we speak of making the so called
simplifying assumption:

c13;2(F1|2(x1|x2), F3|2(x3|x2);x2) = c13;2(F1|2(x1|x2), F3|2(x3|x2)). (2.6)

Assuming the simplifying assumption (2.6) on the right hand side of equation (2.5),
this decomposition can also be used in a constructive manner. We transform the
data on a copula level using the Probability integral transform, where Fi(xi) : =ui
for i = 1, 2, 3. We specify the copula family and parameter for each of the copulas
c13;2, c12 and c23. Since the margins f1, f2 and f3 on a copula level are uniform, we
define a three dimensional copula as

c(u1, u2, u3) = c13;2(C1|2(u1|u2), C3|2(u3|u2) c12(u1, u2) c23(u2, u3),

where C1|2(·|u2) and C3|2(·|u2) are the conditional distribution functions of U1 given
U2 = u2 and U3 given U2 = u2, respectively.

Furthermore, using Sklar’s Theorem 1.9 the copula density corresponding to the
distribution of (U1, U3) given U2 = u2 can be calculated as

c13;2(u1, u3;u2) =
c123

(
C−1

1|2(u1|u2), u2, C
−1
3|2(u3|u2)

)
c12(C−1

1|2(u1|u2), u2) c23 (u2, C
−1
3|2(u3|u2))

,

where the inverse conditional functions are given as

C−1
1|2(u1|u2) = F−1

1 (F−1
1|2 (u1|x2))

C−1
3|2(u3|u2) = F−1

3 (F−1
3|2 (u3|x2)).

Following this manner we can use the pair copula construction (PCC) method to
construct any d-dimensional multivariate distribution.

Definition 2.2. (Regular vine (R-vine) tree sequence)
The set of trees V = (T1, ..., Td−1) is a regular vine tree sequence on d elements if

1. Each tree Tj is connected, i.e. for all nodes a, b ∈ Tj, j = 1, ..., d − 1, there
exists a path (n1, ..., nk) ∈ Nk

j with a = n1 and b = nk.

2. T1 is a tree with node set N1 = {1, ..., d} and edge set E1.

3. For j ≥ 2, Tj is a tree with node set Nj = Ej−1 and edge set Ej.

4. For j = 2, ..., d− 1 and {a, b} ∈ Ej it must hold that |a ∩ b| = 1.

Remark 2.3. The property (4.) is called the proximity condition. It ensures that if
there is an edge e that connects nodes a and b in tree Tj, for j ≥ 2, then the edges
a and b in Tj−1 must share a common node in Tj−1.
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Now, we define some notation that will help us to define the regular vine distribution
and its properties.

Definition 2.4. (Complete union, conditioning and conditioned set)
Let V = (T1, ..., Td−1) be a regular vine tree sequence. For an edge e = {a, b} ∈ Ei
we define the following sets

• complete union Ae of the edge e

Ae : = {j ∈ N1|∃e1 ∈ E1, ..., ei−1 ∈ Ei−1 such that j ∈ e1 ∈ ... ∈ ei−1 ∈ e} ,

• conditioning set De

De : =Aa ∩ Ab,

• conditioned sets Ce,a and Ce,b

Ce,a : =Aa\De

Ce,b : =Ab\De

Ce : =Ce,a ∪ Ce,b.

We often abbreviate each edge e = (Ce,a, Ce,b;De) in the vine tree sequence by

e = (ea, eb;De).

Definition 2.5. (Regular vine distribution)
A joint distribution F for the d−dimensional random vector X = (X1, ..., Xd) is
called regular vine distribution, if we can find a triplet (F ,V ,B) such that:

1. Marginal distributions: F = (F1, ..., Fd) is a vector of continuous invertible
distribution functions, representing the marginal distribution functions of the
random variable Xi, i = 1, ..., d.

2. Regular vine tree sequence: V is an R-vine tree sequence on d elements.

3. Bivariate copulas: B = {Ce|e ∈ Ei; i = 1, ..., d− 1} where Ce is a symmetric
bivariate copula with density and Ei is the edge set of tree Ti in the R-vine
sequence.

4. Connection between tree sequence and bivariate copulas: For each
e ∈ Ei, i = 1, ..., d − 1, e = {a, b}, Ce is the corresponding copula to the con-
ditional distribution of XCe,a and XCe,b given XDe = xDe. Furthermore Ce(·, ·)
does not depend on the specific value of xDe, which is called the simplifying
assumption.

13



Definition 2.6. (Pair copula and copula density associated with edge e)
We will denote the copula Ce corresponding to the edge e by CCe,aCe,b;De and the
corresponding density by cCe,aCe,b;De. This copula is also called pair copula.

Definition 2.7. (Regular vine copula)
Let (F ,V ,B) be a regular vine distribution on the d−dimensional random vector
U = (U1, ..., Ud) where Uj ∼ U(0, 1) for j = 1, ..., d. Then the R vine copula can be
identified by the triplet (V ,B (V) ,Θ (B (V))) where

1. V denotes the vine tree structure,

2. B (V) gives all pair copula families associated with each edge in V,

3. Θ (B (V)) denotes the associated pair copula parameters to each member in
B (V).

Remark 2.8. Since we will consider only parametric pair copulas, we will denote
the parameter associated with copula CCe,aCe,b;De as θCe,aCe,b;De. For example θ1,2 is
the associated parameter with the copula C1,2 or θ1,2;3 is the associated parameter
with the copula C1,2;3.

2.2 C- and D-vine copulas

Next, we consider two important subclasses of regular vine tree sequence, drawable
(D-) vine and canonical (C-) vine tree sequence.

Definition 2.9. (D-vine tree sequence)
A regular vine tree sequence V = (T1, ..., Td−1) is called a D-vine tree sequence if for
each node n ∈ Ni we have | {e ∈ Ei|n ∈ e} | ≤ 2.

Remark 2.10.

• The proximity condition for the D-vine tree sequence implies that once the
first tree T1 in the sequence is defined, then all the other trees are determined,
T2, ..., Td−1.

• From a graph theoretical perspective, in the D-vine tree sequence all trees are
paths. The nodes whose degree equals 1, are called leaf nodes.

• Since the tree structure of a D-vine resembles a grape vine, Bedford and Cooke
(2001) called the linked tree sequence of Definition 2.9 a vine.
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T1 1 2 3 4

1,2 2,3 3,4

T2 1,2 2,3 3,4
1,3;2 2,4;3

T3 1,3;2 2,4;3
1,4;2,3

1,4;2,3

Figure 2.1: 4-dimensional D-vine.

Example 2.11. (Example of D-vine tree sequence in 4 dimensions)
Figure 2.1 shows the tree sequence of a 4-dimensional D-vine. As we already said
before, the first tree defines the whole tree sequence for a D-vine, V = (T1, T2, T3).

Definition 2.12. (C-vine tree sequence)
A regular vine tree sequence V = (T1, ..., Td−1) is called C−vine tree sequence if in
each tree Ti there is one node n ∈ Ni such that | {e ∈ Ei|n ∈ e} | = d− i. That node
is called the root node of tree Ti.

Remark 2.13.

• The proximity condition for the C-vine tree sequence implies that we can choose
the root node from d− i+ 1 nodes in tree Ti for i = 1, ..., d− 1.

• From a graph theoretical perspective, in the C-vine tree sequence all trees are
stars.

Definition 2.14. (Simplifying assumption for D- and C-vines)
If it holds that

cij;D
(
Fi|D(xi|xD), Fj|D(xj|xD);xD

)
= cij,D

(
Fi|D(xi|xD), Fj|D(xj|xD

)
for all xD and i, j and D are chosen to occur in , then the corresponding D-vine
(C-vine) is called simplified.
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T1 1

3

2

4

1,2

1,3

1,4

1,3

1,41,2T2

2,3;1

2,4;1

T3 23;1 24;1
3,4;1,2

3,4;1,2

Figure 2.2: 4-dimensional C-vine.

Example 2.15. (Example of C-vine tree sequence in 4 dimensions)
Figure 2.2 shows the tree sequence of a 4-dimensional C-vine. In the tree sequence
V = (T1, T2, T3) we can see that all trees are stars, where in each tree there a root
node connected to all other nodes in that tree level.

Theorem 2.16. (Drawable (D-vine) density)
The joint density f1,...,d can be decomposed as

f1,...,d (x1, . . . , xd) =
d−1∏
j=1

d−j∏
i=1

ci,i+j;i+1,...,i+j−1

(
Fi|i+1,...,i+j−1(xi|xi+1, . . . , xi+j−1),

Fi+j|i+1,...,i+j−1(xi+j|xi+1, . . . , xi+j−1)
)
·

d∏
k=1

fk(xk).

The distribution associated with this density decomposition is called a drawable vine
or shortened D-vine.

Next, using Bedford and Cooke (2001) we define the C-vine density.

Theorem 2.17. (Canonical (C-vine) density)
The joint density f1,...,d can be decomposed as

f1,...,d (x1, . . . , xd) =
d−1∏
j=1

d−j∏
i=1

cj,j+i;1,...,j−1

(
Fj|1,...,j−1(xj|x1, . . . , xj−1),

Fj+i|1,...,j−1(xj+i|x1, . . . , xj−1)
)
·

d∏
k=1

fk(xk).
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The distribution associated with this density decomposition is called a canonical vine
or shortened C-vine.

Example 2.18. (Simplified 4-dimensional D-vine and C-vine density)
The density of the D-vine from the Example 2.11 will be given as

f1,2,3,4 (x1, x2, x3, x4) =

[
4∏
i=1

fi(xi)

]
· c12(x1, x2) · c23(x2, x3) · c34(x3, x4)

=c13;2

(
F1|2(x1|x2), F3|2(x3|x2)

)
· c24;3

(
F2|3(x2|x3), F4|3(x4|x3)

)
=c14;23

(
F1|23(x1|x2, x3), F4|23(x4|x2, x3)

)
.

The density of the C-vine from Example 2.15 will be given as

f1,2,3,4 (x1, x2, x3, x4) =

[
4∏
i=1

fi(xi)

]
· c12(x1, x2) · c13(x1, x3) · c14(x1, x4)

=c23;1

(
F2|1(x2|x1), F3|1(x3|x1)

)
· c24;1

(
F2|1(x2|x1), F4|1(x4|x1)

)
=c34;12

(
F3|12(x3|x1, x2), F4|12(x4|x1, x2)

)
.

Definition 2.19. (D- and C-vine copula)
If a regular vine copula is based on a C-vine tree sequence V, we call it a C-vine
copula. If it is based on a D-vine tree sequence, it is called a D-vine copula.

2.3 Conditional distribution functions

Definition 2.20. (General notation of h-functions of bivariate copulas)
Given the bivariate copula Cij we define the h functions

hi|j : =
∂

∂uj
Cij(ui, uj),

hj|i : =
∂

∂ui
Cij(ui, uj).

Given the pair copula Cea,eb;De which corresponds to the edge ea, eb;De in a regular
vine tree sequence we use the following notation

hea|eb;De(w1|w2) : =
∂

∂w2

Cea,eb;De(w1|w2),

heb|ea;De(w2|w1) : =
∂

∂w1

Ceb,ea;De(w2|w1).

Remark 2.21. We are defining two versions of the h functions, because as a stan-
dard we use ordered notation in the index of the copula. For example, we would use
C12 instead of C21 for the joint distribution of (U1, U2), and out of C12 we would
calculate the conditional distribution functions C1|2 and C2|1.
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Theorem 2.22. (Recursion for conditional distribution functions)
Let l ∈ D and D−l : =D \ {l}. Then,

Ci|uD (ui|uD) = hi|l;D−l

(
Ci|uD−l

(
ui|uD−l

)
|Cl|uD−l

(
ul|uD−l

))
, (2.7)

where for i, j /∈ D, i < j, hi|j;D (u|v) and hj|i;D (v|u) are the h-functions associated
with the pair copula Cij;D.

Proof. The proof of Theorem 2.22 was first stated in Joe (1996) and is based on the
chain rule of differentiation.

In fact, Theorem 2.22 defines a recursion on the conditional distributions of a regular
vine over its tree sequences. Namely, consider uniformly distributed random variables
UD, where D = {1, . . . , p}, and an R-vine copula on UD , R = (V ,B,Θ). To express
the conditional distribution CUi|UD−i

for i = 1, · · · p, recursively following equation

(2.7) we need the pair copulas

Cik1 (·, ·) , and Cikj ;k1,...kj−1
(·, ·) for j = 2, . . . , p− 1,

where (k1, . . . kp−1) is a permutation of D−i. These pair copulas are essential in
obtaining the required h-functions for the recursion defined by Theorem 2.22. Fur-
ther, in order for the pair copulas of the form from equation (2.7) to be included
in B (V) we must have the corresponding edges included in the tree sequence V =
(T1, . . . , Tp−1). Namely it must hold that

(Ui, Uk1) ∈ T1 and
(
Ui, Ukj |Uk1 , . . . Ukj−1

)
∈ Tj for j = 2, . . . , p− 1.

This brings us to the following corollary:

Corollary 2.23. Let UD = (U1, . . . , Up), where D = {1, . . . , p}, be uniformly dis-
tributed random variables. Further, let R = (V ,B (V) ,Θ (B (V))) be an R-vine cop-
ula on UD. Then the conditional distribution CUi|UD−i

can be derived using The-

orem 2.22 and pair copulas from B (V) if and only if there exists a permutation(
Uk1 , . . . Ukp−1

)
of UD−i such that the edge (Ui, Uk1) ∈ T1 and the edges(
Ui, Ukj |Uk1 , . . . Ukj−1

)
∈ Tj for j = 2, . . . , p− 1.
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Example 2.24. Consider a R-vine copula R = (V ,B (V) ,Θ (B (V))) with tree se-
quence, V = (T1, T2, T3, T4), defined as in Figure 2.3.

1 2

3

4 5

1,2

1,3

3,4 3,5 1,5;3

1,4;3

2,3;1 2,4;1,3

4,5;1,3

T1 T2 T3 T4

1,2

1,3

3,53,
4

2,3;1

1,5;31,
4;

3

2,4;1,3

4,
5;

1,
3

2,5;1,3,4

Figure 2.3: 5-dimensional R-vine tree sequence.

We would like to illustrate Corollary 2.23 in this example, so we are interested in
expressing the conditional distributions of the copula C12345 using the recursion from
Theorem 2.22 and the pair copulas defined in B(V).

Lets first derive the conditional distribution C2|1345 using the recursion defined in
Theorem 2.22

C2|1345 (u2|u1, u3, u4, u5) = h2|5;134

(
C2|134 (u2|u1, u3, u4) |C5|134 (u5|u1, u3, u4)

)
= h2|5;134

(
h2|4;13

(
C2|13 (u2|u1, u3) |C4|13 (u4|u1, u3)

)
|

h5|4;13

(
C5|13 (u5|u1, u3) |C4|13 (u4|u1, u3)

))
= h2|5;134

(
h2|4;13

(
h2|3;1

(
h2|1|h3|1

)
|h4|1;3

(
h4|3|h1|3

))
|

h5|4;13

(
h5|1;3

(
h5|3|h1|3

)
|h4|1;3

(
h4|3|h1|3

)))
.

Note that due to easier fitting in one page, in the very last equation the arguments
of the hi|j for i, j = 1, . . . , 5 are not written, so instead of hi|j(ui|uj) we write hi|j.

Now, lets see whether we can derive all the h functions needed to calculate C2|1345

from the copulas defined in B(V) . Starting from the first h function h2|5;134, to derive
it we need the pair copula C25;134. We can see that the edge

(2, 5; 1, 3, 4) ∈ T4,

which consequently implies that C25;134 ∈ B(V).
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Next, for the h2|4;13 and h5|4;13 we require the copulas C24;13 and C45;13, respectively.
We can see in the third tree of Figure 2.3 that

(2, 4; 1, 3) ∈ T3 and (4, 5; 1, 3) ∈ T3,

so as these edges exist in the tree sequence, it follows C24;13, C45;13 ∈ B(V).

For h2|3;1, h4|1;3 and h5|1;3 we require the copulas C23;1, C14;3 and C15;3, and since in
the second tree of Figure 2.3 we have that edges

(2, 3; 1), (1, 4; 3), (1, 5; 3) ∈ T2,

thus it follows C23;1, C14;3, C15;3 ∈ B(V).

Similarly, for h2|1 we need C12 and edge (1, 2) ∈ T1, for h3|1 and h1|3 we require C13

and edge (1, 3) ∈ T1, thus C12, C13 ∈ B(V).

For h4|3 we need C34 and edge (3, 4) ∈ T1, for h5|3 we need C35 and edge (3, 5) ∈ T1,
so also C34, C35 ∈ B(V).

Therefore, we can conclude that using Theorem 2.22 and the bivariate copulas given
in B(V), we can derive the conditional distribution C2|1345. In a similar manner,
also C5|1234 can be calculated, because of the existence of the edge (2, 5; 1, 3, 4) and
the copula C2,5;1,3,4, and so on.

However, the conditional distributions C1|2345, C3|1245 and C4|1235 cannot be derived
using Theorem 2.22 and the copulas in B(V). Consider the conditional distribution
C1|2345. We can express it using four different h-functions, namely

C1|2345 (u1|u2, u3, u4, u5) =


h1|2;345

(
C1|345 (u1|u3, u4, u5) |C2|345 (u2|u3, u4, u5)

)
h1|3;245

(
C1|245 (u1|u2, u4, u5) |C3|245 (u3|u2, u4, u5)

)
h1|4;235

(
C1|235 (u1|u2, u3, u5) |C4|235 (u4|u2, u3, u5)

)
h1|5;234

(
C1|234 (u1|u2, u3, u4) |C5|234 (u5|u2, u3, u4)

) .
The h functions h1|2;345, h1|3;245, h1|4;235 and h1|5;234 can be derived from the pair
copulas C12;345, C13;245, C14;235 and C15;234, respectively. However, the edges

(1, 2; 3, 4, 5) , (1, 3; 2, 4, 5) , (1, 4; 2, 3, 5) , (1, 5; 2, 3, 4) /∈ Ti, for i = 1, 2, 3, 4,

consequently, also for the pair copulas we then have

C12;345, C13;245, C14;235, C15;234 /∈ B(V).

Therefore, using Theorem 2.22 and the pair copulas in B(V), one can not derive the
conditional distribution C1|2345. In a similar matter, the same result holds for C3|1245

and C4|1235.
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2.4 Simulating from C- and D-vines

Theorem 2.25. (Simulating from a multivariate copula)

First: Sample i.i.d. wj ∼ U [0, 1], j = 1, . . . , d

Then: u1 : =w1

u2 : =C−1
2|1(w2|u1),

...

ud : =C−1
d|d−1,··· ,1(wd|ud−1, . . . , u1)

Proof. The proof can be seen in Czado (2019).

Now, we explain the general case of simulating from a C-vine copula in d dimensions.
The vine tree sequence can be stored using matrix notation, and in this chapter we
use the matrix notation from Czado (2019).

Consider a C-vine tree sequence in d dimensions, where the root node of tree T1 is
1, the root node of tree T2 is 1, 2, ... , of tree Td−1 is d, d− 1; 1, . . . , d− 2. Then, Mc

will be a d× d dimensional matrix representation of this vine tree sequence as

Mc =


1 1 1 1 1 · · ·

2 2 2 2 · · ·
3 3 3 · · ·

4 4 · · ·
5 · · ·
· · ·

 .
To simplify notation in the following part of this section we will use the shortened
notation i : j, for i, . . . , j when j > i and ui:j for (ui, . . . , uj.
Then we define the matrix in which the copula parameters are stored. Let Θ be a d×d
dimensional, strict upper triangular matrix with entries {ηi,k} for i < k, k = 2, . . . , d,
where ηi,k : = θi,k;1:i−1 defined as:

Θ : =


θ1,2 θ1,3 θ1,4 · · ·

θ2,3;1 θ2,4;1 · · ·
θ3,4;1,2 · · ·

· · ·

 .
Using the matrix Θ we can calculate the conditional distribution functions, stored
in a upper triangular d× d dimensional matrix V with entries {vi,k} for i < k, k =
1, . . . , d, defined as

V : =


u1 u2 u3 u4 · · ·

C2|1(u2|u1) C3|1(u3|u1) C4|1(u4|u1) · · ·
C3|1,2(u3|u1, u2) C4|1,2(u4|u1, u2) · · ·

C4|1,2,3(u4|u1, u2, u3) · · ·
· · ·


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Now, we go back to how to calculate the conditional distribution functions. Using
Theorem 2.22 in the case of C-vines, we can express the conditional distribution
function Ci|1:i−k(ui|u1:i−k) as

Ci|1:i−k(ui|u1:i−k) =
∂Ci,i−k;1:i−k−1

(
Ci|1:i−k−1(ui|u1:i−k−1), Ci−k|1:i−k−1(ui−k|u1:i−k−1)

)
∂Ci−k|1:i−k−1(ui−k|u1:i−k−1)

,

(2.8)

for i = 1, . . . , d and k = 1, . . . , i− 1.
We use Cj|1:j−1(uj|u1:j−1) : =wj, i.e., vjj = wj for j = 1, . . . , d, from the Theorem
2.25. Then we rewritte expression (2.8) in terms of h functions as

Ci|1:i−k(ui|u1:i−k) = hi|i−k;1:i−k−1

(
Ci|1:i−k−1(ui|u1:i−k−1)|Ci−k|1:i−k−1(ui−k|u1:i−k−1)

)
.

Finally, inverting it for i = 1, . . . , d and k = 1, . . . , i = 1 we have

Ci|1:i−k(ui|u1:i−k) = h−1
i|i−k;1:i−k−1

(
Ci|1:i−k−1(ui|u1:i−k−1)|Ci−k|1:i−k−1(ui−k|u1:i−k−1)

)
.

(2.9)
By recursion on equation (2.9), we can calculate the entries of matrix V and obtain
a sample (U1, . . . , Ud). All of this is summarized in the following algorithm from
Stoeber and Czado (2017).

Input: Strictly upper triangular matrix Θ of copula parameters with
entries ηik = θki;1:k−1 for k < i and i, k = 1, . . . , d for the
d-dimensional C-vine.

Output: Sample from the C-vine copula.
begin

Sample i.i.d wi ∼ U [0, 1] , i = 1, . . . , d;
v1,1 : =w1;
for i = 2, . . . , d do

vi,i : =wi;
for k = i− 1, . . . , 1 do

vk,i : =h−1
i|k;1:k−1 (vk+1,i|vk,k, ηk,i);

end

end

end
return ui : = v1,i for i = 1, . . . , d;

Algorithm 1: Sampling from a C-vine copula.

Next, we explain how we can simulate data from a d−dimensional D-vine copula.
Consider a D-vine tree sequence in d dimensions, such that the ordering of the
nodes in the first tree T1 is 1, · · · , d and it determines all further trees of the vine
tree sequence. Then Md will be a d × d dimensional matrix representation of this
vine tree sequence as
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Md =


1 1 2 3 4 · · ·

2 1 2 3 · · ·
3 1 2 · · ·

4 1 · · ·
5 · · ·
· · ·

 .

Let Θ be a d× d dimensional, strict upper triangular matrix with entries {ηi,k} for
i > k, where ηi,k : = θi−k,i;i−k+1:i−1, for k = 1, . . . , d− 1 and i = k + 1, . . . , d defined
as:

Θ : =


θ1,2 θ2,3 θ3,4 · · ·

θ1,3;2 θ2,4;3 · · ·
θ1,4;2,3 · · ·

· · ·

 .
Now, we define two d× d dimensional matrices, V1, V2 with entries

{
v1
i,k

}
and

{
v2
i,k

}
for i ≤ k, k = 1, . . . , d, as following

V1 : =


u1 u2 u3 u4 · · ·

C2|1(u2|u1) C3|2(u3|u2) C4|3(u4|u3) · · ·
C3|1,2(u3|u1, u2) C4|2,3(u4|u2, u3) · · ·

C4|1,2,3(u4|u1, u2, u3) · · ·
· · ·

 ,

V2 : =


u1 u2 u3 u4 · · ·

C1|2(u1|u2) C2|3(u2|u3) C3|4(u3|u4) · · ·
C1|2,3(u1|u2, u3) C2|3,4(u2|u3, u4) · · ·

C1|2,3,4(u1|u2, u3, u4) · · ·
· · ·

 .
Using Theorem 2.22 the conditional distribution function in the case of D-vines,
Ci|k:i−1(ui|uk:i−1) , can be expressed as

Ci|k:i−1(ui|uk:i−1) =
∂Ci,k;k+1:i−1

(
Ci|k+1:i−1(ui|uk+1:i−1), Ck|k+1:i−1(uk|uk+1:i−1)

)
∂Ck|k+1:i−1(uk|uk+1:i−1)

,

(2.10)
for i = 3, . . . , d and k = 2, . . . , i − 1, i.e., i > k. This is the reason why we need
to define two matrices for the conditional distribution functions. In contrast to the
C-vine simulation here the second argument in equation (2.10) is not automatically
calculated. For example, in the case for D-vines we need to calculate both C1|2 and
C2|1 from C1,2, while for simulating from a C-vine, we only need to calculate one of
C1|2 and C2|1, depending on the choice of a root node.
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Recursive following equation (2.10) we can summarize this procedure in the follow-
ing algorithm, from Stoeber and Czado (2017).

Input: Strictly upper triangular matrix Θ of copula parameters with
entries ηik = θi−k,i;i−k+1:i−1 for k = 1, . . . , d− 1 and i = k + 1, . . . , d
for the d-dimensional D-vine.

Output: Sample from the D-vine copula.
begin

Sample i.i.d wi ∼ U [0, 1] , i = 1, . . . , d;
v1,1 : =w1;
v2

1,1 : =w1;

for i = 2, . . . , d do
vi,i : =wi;
for k = i− 1, . . . , 1 do

vk,i : =h−1
i|i−k;i−k+1:i−1

(
vk+1,i|v2

k,i−1, ηk,i
)
;

if i < d then
v2
k+1,i : =h−1

i−k|i;i−k+1:i−1

(
v2
k,i−1|vk,i, ηk,i

)
;

end

end
v2

1,i : = v1,i;

end

end
return ui : = v1,i for i = 1, . . . , d;

Algorithm 2: Sampling from a D-vine copula.

2.5 Estimation in regular vine copulas

Let there be given a i.i.d. d-dimensional sample of size n from a specified regular
vine copula with parametric pair copula families, i.e.

u : =(u1, ...,un)T where uk : =(u
(k)
1 , . . . , u

(k)
d ) for k = 1, . . . , n.

Let the parameter(s) of the pair copula Ci,i+j;i+1,...,i+j−1 are denoted by θi,i+j;i+1,...,i+j−1

for j = 1, . . . , d−1 and i = 1, . . . , d− j and let all the parameters of the vine copula
be collected in θ. Then the likelihood of a parametric D-vine and C-vine copula,
using Theorems 2.16 and 2.17, will be given as:

Definition 2.26. (Likelihood of D- and C-vines)
The likelihood of a parametric D-vine is given as

L(θ, u) =
n∏
k=1

d−1∏
j=1

d−j∏
i=1

ci,i+j;i+1,...,i+j−1

(
Ci|i+1,...,i+j−1(u

(k)
i |u

(k)
i+1,...,i+j−1),

Ci+j|i+1,...,i+j−1(u
(k)
i+j|u

(k)
i+1,...,i+j−1)

)
.
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The likelihood of a parametric C-vine is given as

L(θ, u) =
n∏
k=1

d−1∏
j=1

d−j∏
i=1

× cj,i+j;1,...,j−1

(
Ci|1,...,j−1(u

(k)
i |u

(k)
1,...,j−1), Ci+j|1,...,j−1(u

(k)
i+j|u

(k)
1,...,j−1)

)
.

Having the likelihood defined, now we proceed with estimating the regular vine
copula.

As seen in Definition 2.5 an R vine copula can be identified by the triplet (V ,B,Θ).
In our case let the vine tree structure V be given. In this section, we discuss how
we can estimate the copula families B and the copula parameters Θ for each pair
copula in the construction of the vine copula.
First, we consider the selection of copula family and parameters for pair copulas in
the first tree T1 ∈ V . Let e = (ae, be) be an arbitrary edge in T1. For the pair copula

associated with the edge e we consider the copula data u
(k)
ae and u

(k)
be

for k = 1, . . . , n.
Let Be be the set of possible parametric bivariate copula families for the edge e. For
each element of Be, we use the copula data u

(k)
ae and u

(k)
be

to fit a copula, either by
maximazing the likelihood estimate only or including the AIC or BIC penalizations,
with an associated parameter θ̂e. In a similar matter, we estimate all the pair copulas
in T1.
Next, for the copula family selection and parameter estimation for the edges in trees
Ti for i > 1 we use a sequential estimation approach. For an edge e = (ae, be;De) in
tree Ti for i > 1, we have pseudo-observations for the bivariate copula distribution
of (Uae , Ube) given UDe available, û

(k)
ae|De and û

(k)
be|De for k = 1, . . . , n defined as:

u
(k)
ae|De : =Cae|De(u

(k)
ae |u

(k)
De

) = hae|De(u
(k)
ae |u

(k)
De

),

u
(k)
be|De : =Cbe|De(u

(k)
be
|u(k)

De
) = hbe|De(u

(k)
be
|u(k)

De
).

Again consider a set of possible parametric bivariate copula families for the edge e,
Be. Using the pseudo data, we fit a copula, in the same matter as before, with an
associated parameter θ̂e. Similarly, we continue estimating all the pair copulas in
Ti. Using the selected pair copulas in tree Ti, we estimate the pseudo observations
needed for estimating the pair copula families and parameters in tree Ti+1.
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Chapter 3

Quantile regression

3.1 Introduction

In this chapter we aim to provide a basic overview of the idea and the concepts
behind quantile regression, a method disregarded up until the work of Koenker and
Bassett Jr (1978). The basic ideas on quantile regression can be traced back to the
mid-18th century and thus it predates the earliest work on the subject of least square
estimation. However, due to the extremely appealing computational tractability and
the optimality in case of a normally distributed noise of the least square methods
they have influenced much of the applied statistics.

Intuitively one can compare the setup of quantile regression to linear regression in the
sense that as linear regression provides models for estimation and inference about the
conditional mean functions, quantile regression provides equivalent statistical tools
for the full range of conditional quantile functions. The central and special case of
quantile regression estimators is the median regression estimator, which is obtained
in a similar framework as the linear regression estimators, with the difference that
instead of minimizing the sum of squared errors one has to minimize a sum of
absolute errors instead of squared errors. The other conditional quantile functions
are obtained by minimizing an asymmetrically weighted sum of absolute errors.

”What the regression curve does is give a grand summary for the averages

of the distributions corresponding to the set of x ’s. We could go further and

compute several different regression curves corresponding to the various per-

centage points of the distributions and thus get a more complete picture of

the set. Ordinarily this is not done, and so regression often gives a rather

incomplete picture. Just as the mean gives an incomplete picture of a sin-

gle distribution, so the regression curve gives a correspondingly incomplete

picture for a set of distributions.” by Mosteller and Tukey (1977).

Despite the similarities between linear regression and quantile regression there are
also substantial differences. First, as Mosteller and Tukey (1977) suggest, the ob-
tained estimates of the conditional mean functions are rarely satisfactory results
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themselves and computing a range of estimates for the conditional quantile func-
tions will inevitably provide a more complete picture of the stochastic relationships
among the random variables. On the other hand, while quantile regression gives a
better insight it comes with the price of increased computational intensity compared
to linear regression.

Nowadays quantile regression has found its way to a broad range of application set-
tings and emerged as a complementary method to linear regression in many fields,
from biostatistics to econometrics. In the rest of the chapter we follow Koenker
(2005).

3.2 Quantiles and quantile regression

Before we go on to formal defining quantile regression we first introduce the concept
of quantiles and ranks. Formally, given any univariate random variable X, it may
be characterized by its distribution function

F (x) = P (X ≤ x)

on the contrary, the ”inverse” function of F , for any 0 < α < 1, is given as

F−1 (α) = inf {x : F (x) ≥ α}= : qα (x)

and the αth quantile of X is defined as the quantity qα (x). To illustrate the concept
of quantiles more intuitively we consider a simple example of a group of students
taking an exam. A specific student scores the αth quantile of the exam distribu-
tion if he performs better then the proportion α of all students in the exam and
consequently worse then the (1− α) proportion of all students. More specifically,
the median, denoted by q0.5, of the exam distribution is the student who performed
better then half of the other students and worse then the other half.

Quantiles can also be defined from another perspective which turns out to be fun-
damental to quantile regression. Namely, quantiles arise from a rather simple op-
timization problem. Assume we want to solve a simple decision problem: a point
estimate for a random variable X with distribution function F . We describe the loss
function as a piecewise linear function, also know as check loss,

ρα(x) = x(α− I(x < 0)) =

{
xα x ≥ 0

x (α− 1) x < 0

for some α ∈ (0, 1).

Our goal is to find x̂ that will minimize the expected loss function:

arg min
x̂

E[ρα (X − x̂)]

which can be further written down as
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E[ρα (X − x̂)] =E [α (X − x̂)− I (X − x̂ < 0) (X − x̂)]

=

∫ ∞
−∞

(α (x− x̂)− I (x− x̂ < 0) (x− x̂)) f (x) dx

=

∫ x̂

−∞
(α− 1) (x− x̂) f (x) dx+

∫ ∞
x̂

α (x− x̂) f (x) dx

Differentiating E[ρα (X − x̂)] with respect to x̂, under certain regularity conditions
and following the formula for differentiation under the integral sign gives us

∂

∂x̂
E[ρα (X − x̂)] =

∂

∂x̂

∫ x̂

−∞
(α− 1) (x− x̂) f (x) dx+

∂

∂x̂

∫ ∞
x̂

α (x− x̂) f (x) dx

=
∂

∂x̂
x̂ (x̂− x̂) f (x̂) +

∫ x̂

−∞

∂

∂x̂
(α− 1) (x− x̂) f (x) dx

− ∂

∂x̂
x̂ (x̂− x̂) f (x̂) +

∫ ∞
x̂

∂

∂x̂
(α (x− x̂) f (x))dx

= (1− α)

∫ x̂

−∞
f (x) dx− α

∫ ∞
x̂

f (x) dx

= (1− α)

∫ x̂

−∞
dF (x)− α

∫ ∞
x̂

dF (x)

=F (x̂)− α

Now since the distribution function is monotone, any element of {x : F (x) = α}
minimizes the expected loss. If the solution is unique, then F (x̂) − α = 0, thus
x̂ = F−1(α), otherwise we have an interval of αth quantiles, from which the smallest
element is chosen, therefore the minimizer of this function is indeed how we defined
our target function qα (x) = inf {x : F (x) ≥ α}.
Now, we continue with quantile regression, for which we first define conditional
quantile function.

Definition 3.1. (Conditional quantile function for a continuous random variable)
The conditional quantile function for α ∈ (0, 1), for a continuous response variable
Y given the outcome of some predictor variables X1, ..., Xp for some number of
predictors p ≥ 1 is

qα (x1, ..., xp) : =F−1
Y |X1,...,Xp

(α|X1 = x1, ..., Xp = xp) .

Regression methods in general aim to characterize the behaviour of the response Y as
a deterministic function of the predictors values x1, ..., xp, of the random X1, ..., Xp,
and some additive random noise ε, i.e. Y = f (x1, ..., xp)+ε. Depending on the target
function, we define a corresponding loss function, such that the the minimizer of the
expected loss function is the target function. For example, if the target function is
the conditional mean E[Y |X1 = x1, ..., Xp = xp] the corresponding loss function is
the quadratic loss:

L (y, f(x1, ..., xp)) = (y − f(x1, ..., xp))
2 .
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The regression function minimizing the expected quadratic loss is indeed the condi-
tional mean, i.e.

arg min
f(x1,...,xp)

E[(y − f(x1, ..., xp))
2] = E[Y |X1 = x1, ..., Xp = xp].

Another example is if the target function is the conditional quantile function, we
defined above. As a loss function we use the check loss function, defined as

L (y, f(x1, ..., xp)) = ρα (y − f(x1, ..., xp)) .

The regression function minimizing the expected check loss is indeed the conditional
quantile function, i.e.

arg min
f(x1,...,xp)

E[ρα (y − f(x1, ..., xp))] = qα (x1, ..., xp) ,

for all α ∈ (0, 1), as proved in Koenker (2005).

3.3 Linear quantile regression

Linear quantile regression is the first quantile regression model introduced in Koenker
and Bassett Jr (1978). In a similar manner as ordinary linear regression, they assume
that the conditional quantiles to be linear in the predictors.

Definition 3.2. (Linear quantile regression model)
Let Y be a response variable depending on the set of predictors X1, ..., Xp for some
p ≥ 1. For every α the conditional quantiles of Y given X1 = x1, ..., Xp = xp are
given as

QY |X1,...,Xp (α|x1, ..., xp) : = β0(α) +

p∑
j=1

βj(α)xj.

Further, we can estimate the coefficients β̂(α) = (β̂0(α), β̂1(α), ..., β̂p(α)) ∈ Rp+1 for
every α ∈ (0, 1) by minimization of the empirical risk, given as an empirical mean
of the check losses.

Definition 3.3. (Parameter estimation for linear quantile regression)
Let y = (y1, ..., yn)t, xi = (x1i, ..., xni)

t ∈ Rn be observations of the response Y and
the predictors X1, ..., Xp. For every α ∈ (0, 1), the estimated regression coefficients
are defined as

β̂(α) : = arg min
β(α)

n∑
i=1

ρα (yi − xiβ(α)) ,

where xi : = (xi1, ..., xip.)
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This optimization problem might be solved by linear programming techniques, as
the simplex method or interior point methods, for example discussed in Vanderbei
et al. (2015).

However, linear quantile regression has drawn criticism for a few of its properties/as-
sumptions. A major drawback that Koenker himself points out is that the regression
lines of different quantile levels may cross, since they may have differing slopes, also
known as quantile crossing.

Definition 3.4. (Quantile crossing)
Let Q̂Y |X1,...,Xp(·|·) be the estimated quantile function for a response variable Y given
the predictors X1, ..., Xp. A quantile crossing in a point x : =(1, x1, ..., xp)

t ∈ Rp+1

occurs, if
q̂α1 (x1, ..., xp) > q̂α2 (x1, ..., xp)

for some 0 < α1 < α2.

Another drawback is its strong assumption of linear conditional quantiles. Bernard
and Czado (2015) highlight that the linearity assumption is almost never fulfilled.
As an example, assuming normal margins the only copula resulting in linear condi-
tional quantiles is the Gaussian copula, which is very restrictive.

In addition to this, this method also has other typical shortfalls of linear models,
such as multicollinearity and the potential need to include transformed variables
and interactions.
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Part II

C- and D-vine based quantile
regression
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Chapter 4

Vine based quantile regression

For the purpose of quantile regression one is interested in modeling the response
variable Y given the outcome of a set of predictors X1, X2, . . . , Xp, where Y ∼ FY
and Xj ∼ FXj , j = 1, . . . , p. More precisely, we want to estimate the conditional
quantile function

qα (x1, . . . , xp) : =F−1
Y |X1,...,Xp

(α|x1, . . . , xp) for α ∈ (0, 1) . (4.1)

In contrast to linear quantile regression, which models the conditional quantile func-
tion qα directly, the aim of regular vine based quantile regression models is to esti-
mate the conditional distribution of Y given X1, X2, . . . , Xp. Namely, we are inter-
ested in estimating the inverse of the right hand side of (4.1) defined as

FY |X1,...,Xp (y|x1, . . . , xp) = P (Y ≤ y|X1 = x1, . . . , Xp = xp) . (4.2)

We propose, similarly as Kraus and Czado (2017), to estimate this conditional dis-
tribution with the help of C-vine and D-vine copulas. For this we need to select the
C-vine (D-vine) tree sequence, the parametric pair copula families and their param-
eters. The parametric pair copulas are only defined on the unit square and therefore
we need to transform all variables to the u-scale. This is accomplished by defining
the random probability integral transforms (PIT) as

• V : =FY (Y ) and Uj : =FXj (Xj),

together with their corresponding observed PIT values as

• v : =FY (y) and uj : =FXj (xj).

Now we can rewrite equation (4.2) as

FY |X1,...,Xp (y|x1, . . . , xp) =

= P
(
FY (Y ) ≤ FY (y) |FX1 (X1) = FX1 (x1) , . . . , FXp (Xp) = FXp (xp)

)
= P (V ≤ v|U1 = u1, . . . , Up = up)

= CV |U1,...,Up (v|u1, . . . up) .

32



Here CV |U1,...,Up is the conditional distribution of V given Uj = uj and CV,U1,...,Up is
defined as the (p+ 1)-dimensional copula associated with the joint distribution of
(Y,X1, . . . , Xp) . Then the desired conditional quantile function can be derived by
inverting the expression, i.e

F−1
Y |X1,...,Xp

(α|x1, . . . , xp) = F−1
Y

(
C−1
V |U1,...,Up

(α|u1, . . . up)
)
.

Assuming the margins FY , FXj , for j = 1, . . . , p are known, we can obtain an esti-
mate of the conditional quantile function FY |X1,...,Xp by only estimating the copula
CV,U1,...,Up .

Let us denote with ĈV |U1,...,Up the estimate of the conditional distribution CV |U1,...,Up

based on CV,U1,...,Up . Then the estimate q̂α of the conditional quantile function qα can
then be expressed as

q̂α (x1, . . . , xp) = F−1
Y

(
Ĉ−1
V |U1,...,Up

(α|u1, . . . up)
)
.

In fact, CV,U1,...,Up can be any multivariate copula which is a p + 1 dimensional
function to be estimated (and thus till now we have not reduced the complexity of
the initial problem). Estimating CV,U1,...,Up can be made more tractable by focusing
on a specific class of copulas. For the purpose of quantile regression we would like
to restrict CV,U1,...,Up to a flexible class of vine copulas, which are able to capture
asymmetric dependencies, heavy tails and tail dependencies between the variables.
As mentioned before, we chose to restrict CV,U1,...,Up to a subclass of C-vines and
D-vines. This way we still obtain a class of flexible vine copulas, since each bivariate
copula of the pair-copula construction can be modeled separately and the order of
predictors in the tree sequence remains a free parameter.

It is important to remember that while we focus on estimating the copula CV,U1,...,Up ,
our quantile regression target function remains the conditional distribution CV |U1,...,Up .
For regular vine copulas analytical expressions for conditional distributions in terms
of pair copulas are available as a result of Theorem 2.22. Ideally we would like to
use this result to calculate the conditional distribution CV |U1,...,Up . However, a closer
look at Theorem 2.22 reveals that the conditional distributions are provided as a re-
cursion indexed by regular vine tree sequences. Further, calculating CV |U1,...,Up from
the recursion of Theorem 2.22 is only feasible if the regular vine tree sequence of
the copula CV,U1,...,Up is chosen appropriately. A more detailed view on this topic is
provided by the following theorem:

Theorem 4.1. The conditional distribution CV |U1,...,Up can be derived using the re-
cursion defined in Theorem 2.22 if the copula CV,U1,...,Up with tree sequence V =
{T1, . . . , Tp} is

a) a D-vine copula such that V is a leaf in T1,

b) a C-vine copula such that for every Ti ∈ V , i = 1, . . . , p− 1 it holds that the
node containing the response variable V in the conditioned set is not the root
node of Ti.
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Proof. Suppose CV,U1,...,Up is a D-vine copula with tree sequence V = {T1, . . . , Tp},
such that V is a leaf in T1. Since V is a D-vine tree sequence there exists a permu-
tation (k1, . . . , kp) of (1, . . . , p) such that the order of nodes in T1 is

V − Uk1 − . . .− Ukp . (4.3)

Further, equation (4.3) and the properties of a D-vine imply that

(V, Uk1) ∈ T1 and
(
V, Ukj |Uk1 , . . . Ukj−1

)
∈ Tj for j = 2, . . . , p. (4.4)

Similarly, if CV,U1,...,Up is a C-vine copula such that for every Ti ∈ V , i = 1, . . . , p−1
it holds that the node containing the response variable V in the conditioned set is
not the root node of Ti, there exists a permutation (k1, . . . , kp) of (1, . . . , p) such
that Uk1Uk2 is the root node in T1 and

UkjUkj+1
;Uk1 , . . . , Ukj−1

is the root node of tree Tj for j = 2, . . . p.

Consequently, this implies also that V of the C-vine copula CV,U1,...,Up will satisfy
equation (4.4).

Thus, from Corollary 2.23 follows directly that, since CV,U1,...,Up satisfies (4.4), the
conditional distribution CV |U1,...,Up can be expressed using the recursion from Theo-
rem 2.22.

Example 4.2. Let CD = (VD,BD,ΘD) be a D-vine with node order in the first tree
given as V −U1−U2−U3. Then the conditional distribution of V given (U1, U2, U3),
using Theorem 2.22, can be recursively expressed as

CV |U1,U2,U3 (v|u1, u2, u3) = hV |U3;U1,U2

(
CV |U1,U2 (v|u1, u2) |CU3|U1,U2 (u3|u1, u2)

)
= hV |U3;U1,U2

(
hV |U2;U1

(
CV |U1 (v|u1) |CU2|U1 (u2|u1)

)
|

hU3|U1;U2

(
CU3|U2 (u3|u2) |CU1|U2 (u1|u2)

))
= hV |U3;U1,U2

(
hV |U2;U1

(
hV |U1 (v|u1) |hU2|U1 (u2|u1)

)
|

hU3|U1;U2

(
hU3|U2 (u3|u2) |hU1|U2 (u1|u2)

))
.

A simple inversion then yields the desired conditional quantile function

C−1V |U1,U2,U3
(α|u1, u2, u3) =

h−1V |U1

{
h−1V |U2;U1

[
h−1V |U3;U1,U2

(
α|hU3|U1;U2

(
hU3|U2

(u3|u2) |hU1|U2
(u1|u2)

))
|hU2|U1

(u2|u1)
]
|u1
}
.

Example 4.3. Let CC = (VC ,BC ,ΘC) be a C-vine with U1 as the root node in the
first tree, U2U1 the root node in the second tree and U3U2|U1 root node in the third
tree. Similarly as in Example 4.2, we can obtain the conditional distribution of V
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given (U1, U2, U3) as

CV |U1,U2,U3 (v|u1, u2, u3) = hV |U3;U1,U2

(
CV |U1,U2 (v|u1, u2) |CU3|U1,U2 (u3|u1, u2)

)
= hV |U3;U1,U2

(
hV |U2;U1

(
CV |U1 (v|u1) |CU2|U1 (u2|u1)

)
|

hU3|U2;U1

(
CU3|U1 (u3|u1) |CU2|U1 (u2|u1)

))
= hV |U3;U1,U2

(
hV |U2;U1

(
hV |U1 (v|u1) |hU2|U1 (u2|u1)

)
|

hU3|U2;U1

(
hU3|U1 (u3|u1) |hU2|U1 (u2|u1)

))
.

Again by inverting the conditional distribution we get the conditional quantile func-
tion as:

C−1V |U1,U2,U3
(α|u1, u2, u3) =

h−1V |U1

{
h−1V |U2;U1

[
h−1V |U3;U1,U2

(
α|hU3|U2;U1

(
hU3|U1

(u3|u1) |hU2|U1
(u2|u1)

))
|hU2|U1

(u2|u1)
]
|u1
}
.

In the Examples 4.2 and 4.3, taken from Czado (2019), we can see the consequences
of Corollary 4.1. In neither the C-vine CC nor in the D-vine CD we can derive the con-
ditional distribution CU1|V,U2,U3 using only the pair copulas defined by this specific
tree sequences VC or VD . For CU1|V,U2,U3 the first step of the recursion from Theo-
rem 2.22 would require an h-function of the form hU1|W1;W2,W3 where (W1,W2,W3)
is any permutation of (V, U2, U3). In order to derive hU1|W1;W2,W3 we need the pair
copula CU1,W1;W2,W3 . However, a pair copula of the form CU1,W1;W2,W3 is not included
in neither BC nor BD.

Following the results of Corollary (4.1) we define the C-vine and D-vine classes for
quantile regression as:

Definition 4.4. (C-vine and D-vine classes for quantile regression)
Let V, U1, . . . , Up be uniformly distributed random variables. Then the copula C =
(V ,B,Θ) belongs to the class of C-vine copulas for quantile regression on p predictors,
denoted as Cp, if

(i) C is a p+ 1 dimensional C-vine copula on the elements: V, U1, . . . , Up,

(ii) for every Ti ∈ V , i = 1, . . . , p−2 it holds that the node containing the response
variable V in the conditioned set is not the root node of Ti.

On the other side, C belongs to the class of D-vine copulas for quantile regression on
p predictors, denoted as Dp, if

(i) C is a p+ 1 dimensional D-vine copula on the elements: V, U1, . . . , Up,

(ii) V is a leaf node in the first tree of V.

For the sake of simplicity, in the rest of this chapter we suppose without loss of
generality that if C ∈ Dp then V is always the left leaf node of the first tree in V .
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Definition 4.5. (Order of C- and D-vine)
Let C = (V ,B,Θ) be a vine copula.

(i) Let C ∈ Cp, then we say that the C-vine C has order

OC (C) =
(
V, Ui1 , . . . , Uip

)
,

if Ui1 is the root node in T1, Ui2Ui1 is the root node in T2, and
UikUik−1

|Ui1 , . . . , Uik−2
is the root node in Tk for k = 3, . . . , p− 1.

(ii) Let C ∈ Dp then we say that the D-vine C has order

OD (C) =
(
V, Ui1 , . . . , Uip

)
,

if V is the first node of T1 and Uik is the (k + 1)−th node of T1.

Corollary 4.6. Let C = (V ,B,Θ) belong to the class Cp or the class Dp with order
O (C) = (V, U1, . . . , Up), then we can express the conditional distribution of V given
U1 as

CV |U1 (v|u1) = hV |U1 (v|u1) .

The conditional distributions of V given U1, . . . , Uk for k = 2, . . . , p can be expressed
with the recursion

CV |U1,...,Uk (v|u1 . . . , uk) =hV |Uk;U1,...,Uk−1

(
CV |U1,...,Uk−1

(v|u1, . . . , uk−1) |
CUk|U1,...,Uk−1

(uk|u1, . . . , uk−1)
)
.

Proof. Since C ∈ Dp (or Cp) with order O (C) = (V, U1, . . . , Up) it holds that

(V, U1) ∈ T1 and (V, Uj|U1, . . . Uj−1) ∈ Tj for j = 2, . . . , p.

Therefore,

CV U1 (·, ·) ∈ B (V) and CV U1|U1,...Uj−1
(·, ·) ∈ B (V) for j = 2, . . . , p.

Thus, CV |U1 (v|u1) can be derived using the pair copula CV,U1 . Similarly, using The-
orem 2.22 one can also recursively obtain CV |U1,...,Uj (v|u1, . . . , uj) using the pair
copulas CV Uj |U1,...Uj−1

.

With the conditional distributions defined in Corollary 4.6, we can formulate the
conditional density cV |U1,...,Up (v|u1, . . . , up) as

Corollary 4.7. Let C = (V ,B,Θ) belong to the class Cp or the class Dp with order
O (C) = (V, U1, . . . , Up). Then, the conditional density cV |U1,...,Up can be expressed as:

cV |U1,...,Up (v|u1, . . . , up) =cV,U1 (v, u1)

× cV,U2|U1

(
hV |U1 (v|u1) , hU2|U1 (u2|u1)

)
×

p∏
i=3

cV,Ui|U1,...,Ui−1

(
CV |U1,...,Ui−1

(v|u1, . . . , ui−1) ,

CUi|U1,...,Ui−1
(ui|u1, . . . , ui−1)

)
.

(4.5)

36



Proof. If C ∈ Cp, then, from Theorem 2.17 we can write the density of C

cV,U1,...,Up =

[
p∏
j=1

cV,Uj ;U1,...,Uj−1

]
·

[
p−1∏
i=1

p−i∏
j=1

cUj ,Uj+i;Uj+1,...,Uj+i−1

]

=

[
p∏
j=1

cV,Uj ;U1,...,Uj−1

]
· cU1,...,Up .

Thus, we have

cV |U1,...,Up =
cV,U1,...,Up

cU1,...,Up

=

p∏
j=1

cV,Uj ;U1,...,Uj−1
,

(4.6)

which is equivalent to (4.5). On the other hand, if C ∈ Dp, then, from Theorem 2.16
we can write the density of C

cV,U1,...,Up =

[
p∏
j=1

cV,Uj ;U1,...,Uj−1

]
·

[
p−1∏
i=1

p∏
j=i+1

cUj ,Uj+i;Uj+1,...,Ui−1

]

=

[
p∏
j=1

cV,Uj ;U1,...,Uj−1

]
· cU1,...,Up ,

and similarly as in (4.6) we obtain that the conditional density is equivalent to
(4.5).

4.1 Model setup

Our goal is to estimate the vine copula CV,U1,...,Up for a given set of observed n data
points. Let

• v : =
(
v(1), . . . , v(n)

)
,

and

• uj : =
(
u

(1)
j , . . . , u

(n)
j

)
, for j = 1, . . . , p

be n independent identically distributed observations from the random vector
(V, U1, . . . , Up)

T . As already stated, for the purpose of C- and D-vine quantile re-
gression we restrict the vine copula CV,U1,...,Up to the classes Cp and Dp, respectively.
Still, the order

O
(
CV,U1,...,Up

)
=
(
V, Ui1 , . . . , Uip

)
,

where
(
Ui1 , . . . , Uip

)
is any permutation of (U1, . . . , Up), remains a free parameter. It

is clear from the Definition 4.4 that we can chose O
(
CV,U1,...,Up

)
arbitrarily. However,
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the explanatory power of the fit will greatly depend on the chosen order. Therefore
we would like to be able to compare and quantify the explanatory powers of models
with different orders. For that purpose, we define the conditional log likelihood
function as a goodness of fit measure.

Definition 4.8. (Conditional log likelihood function)
Let C = (V ,B,Θ) belong to the class Cp or the class Dp with order O (C) =
(V, U1, . . . , Up). Additionally, assume that we are given n observations v and uj
for j = 1, . . . , p. Then the conditional log likelihood function is given as

cll (C,v, (u1, . . . ,up)) =
n∑
i=1

log cV |U1,...,Up

(
v(i)|u(i)

1 , . . . , u
(i)
p

)
.

Corollary 4.9. The conditional log likelihood of Definition 4.8 can be rewritten as

cll (C,v, (u1, . . . ,up)) =
n∑
i=1

[
log cV,U1

(
v(i), u

(i)
1

)
+ log cV,U2|U1

(
hV |U1

(
v(i)|u(i)

1

)
, hU2|U1

(
u

(i)
2 |u

(i)
1

))
+

p∑
i=3

log cV,Ui|U1,...,Ui−1

(
CV |U1,...,Ui−1

(
v(i)|u(i)

1 , . . . , u
(i)
i−1

)
,

CUi|U1,...,Ui−1

(
u

(i)
i |u

(i)
1 , . . . , u

(i)
i−1

))]
Proof. This follows directly from Corollary 4.7. Namely, taking the logarithm of
equation (4.5) we obtained the density in the desired form.

Corollary 4.10. Let C1 = (V1,B1,Θ1) belong to the class Cp or the class Dp with
order O (C) = (V, U1, . . . , Up). Further, let C2 = (V2,B2,Θ2) belong to Cp−1 if C1 ∈ Cp,
or Dp−1 if C1 ∈ Dp with order O (C) = (V, U1, . . . , Up−1). Then

cll (C1,v, (u1, . . . ,up)) = cll (C2,v, (u1, . . . ,up−1)) +
n∑
i=1

log cV,Up|U1,...,Up−1 (·, ·)

Proof. Writing out the cll (C1,v, (u1, . . . ,up)) as in Corollary 4.9 we obtain

cll (C1,v, (u1, . . . ,up)) =
n∑
i=1

[
log cV,U1 (·, ·) +

p∑
i=2

log cV,Ui|U1,...,Ui−1
(·, ·)

]

=
n∑
i=1

[
log cV,U1 (·, ·) +

p−1∑
i=2

log cV,Ui|U1,...,Ui−1
(·, ·)

+ log cV,Up|U1,...,Up−1 (·, ·)

]

= cll (C2,v, (u1, . . . ,up−1)) +
n∑
i=1

log cV,Up|U1,...,Up−1 (·, ·)
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However, using the conditional log likelihood as a goodness of fit measure, there is a
possibility of overfitting. Overfitted model is a statistical model that contains more
parameters than can be justified by the data. Therefore, as another goodness of fit
measure we will introduce penalized conditional log likelihood. A penalization that
is suitable for vine copula models is the Bayesian information criterion (or shortly
BIC).

Definition 4.11. (AIC/BIC penalized conditional log likelihood function)
Let C = (V ,B,Θ) belong to the class Cp or the class Dp with order O (C) =
(V, U1, . . . , Up). Additionally, assume that we are given n observations v and uj
for j = 1, . . . , p. Let the number of parameters of the vine copula models be |Θ|.
Then the AIC- and BIC-penalized conditional log likelihood functions are given as

cllAIC (C,v, (u1, . . . ,up)) = −2cll (C,v, (u1, . . . ,up)) + 2|Θ|,

cllBIC (C,v, (u1, . . . ,up)) = −2cll (C,v, (u1, . . . ,up)) + log(n)|Θ|.

In order to compare nested models and thus, decide whether adding a predictor to a
model will yield a significant improve in the fit, we introduce the following statistical
test:

Definition 4.12. (Conditional likelihood ratio test)
Let C1 = (V1,B1,Θ1) belong to the class Cp or the class Dp with order O (C) =
(V, U1, . . . , Up). Further, let C2 = (V2,B2,Θ2) belong to Cp−1 if C1 ∈ Cp, or Dp−1

if C1 ∈ Dp with order O (C) = (V, U1, . . . , Up−1). Additionally, assume that we are
given n observations on each of the considered variables, i.e. v,uj for j = 1, . . . p.
Then we define the conditional likelihood ratio test between the vine copula models
C1 and C2 as the test which rejects the null hypothesis

H0 : Adding Up to the model C2 does not improve the fit

at level α ∈ (0, 1), if

cll (C1,v, (u1, . . .up))− cll (C2,v, (u1, . . .up−1)) > χ2
1−α,|Θ1|−|Θ2|.

where χ2
1−α,|Θ1|−|Θ2| denotes the (1− α)−quantile of a χ2−distribution with |Θ1| −

|Θ2| degrees of freedom.

For more details about Definition 4.12, we refer to Shao (2003) and Cheng (2017).
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4.2 Estimation of margins

Up until now, we always supposed that the margins FY and FXi are known. However,
in a nonsimulated data set the margins are almost always unknown. For a copula
based approach to quantile regression knowing the margins is crucial for two reasons:

- First, FY or an estimate of FY are needed in order to be able to obtain the
conditional quantile function qα from the conditional distribution CV |U1,...,Up .

- Second, to estimate CV |U1,...,Up from a non uniform data set, one needs the
margins to transform the data on the u−scale.

There is a vast literature about the estimation of univariate conditional distribution
functions and generally we have two choices of how to fit the marginal distribution,
either parametrically or nonparametrically. Given that the bivariate copulas are to
be fitted parametrically, we can either have a full parametric or a semiparamet-
ric estimate of qα. Modeling the marginals and the copulas parametrically might
cause the resulting fully parametric estimator to be biased and inconsistent, if one
of the parametric models is misspecified (a detailed discussion in Noh et al. (2013)).
Therefore, for the purpose of quantile regression, we will use nonparametric esti-
mators F̂Y and F̂Xi of the margins. One of the simplest nonparametric estimation
methods for marginal distributions is the empirical distribution function, but due
to its discrete nature and the fact that we need inverses for calculating qα, we opt
against it. Instead we use the univariate local polynomial kernel density estimators.

Definition 4.13. (Univariate kernel density estimator)
Given a sample (x1, . . . , xn) from a random variable X, the univariate local polyno-
mial kernel density estimator is defined as

F̂ (x) =
1

nb

n∑
i=1

K

(
x− xi
b

)
, x ∈ R,

where K (x) : =
∫ x
−∞ k (t) dt with k (·) being a symmetric probability density function

and b > 0 is a bandwidth parameter.

We chose K to be a Gaussian kernel, i.e.

K (x) =
1√
2π
e−x

2/2,

and use the optimal bandwidth parameter b developed in Sheather and Jones (1991).

The bandwidth b controls the smoothness or complexity of the estimate F̂ (x). Thus,
b plays the main role in the bias-variance trade off of the estimator. To find the op-
timal bandwidth parameter cross validation is used, and for more details we refer to
Sheather and Jones (1991). The univariate local polynomial kernel density estimator
is implemented in the R library kde1d-package as the function kde1d.
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Chapter 5

Forward selection algorithms

Given a response variable V and p possible predictors, one would optimally want
to use the cll−optimal Cp or Dp vine model for the purpose of quantile regression.
However, that would mean estimating all possible Cp(Dp) vine models and thus,
also estimating the C- or D-vine copulas associated with the models. Although, the
number of possible regular vine models is drastically reduced by focusing only on
models from the classes Cp or Dp computing the cll− optimal model still remains
intractable for larger number of predictors.

The classes Cp or Dp contain exactly p! regular vine models with different orders
each. Consequently, since the order of a model uniquely defines the underlying tree
sequence and vice versa, there are also p! different vine copulas associated with the
different models from a class. Thus, we would like to have an algorithm that will
automatically choose the order of the predictors, so that the resulting model for the
prediction of the conditional quantiles will have the highest explanatory power.

Therefore, in the following section we introduce two algorithms that automatically
select the order of covariates. The first algorithm is based on the work of Kraus
and Czado (2017), who made an algorithm for the class of D-vines, Dp, and looked
sequentially which covariates to add, based on which covariate in each step yield
the highest improvement in the conditional log likelihood, i.e., they looked one step
ahead in the tree sequence. Following this idea, we implement the algorithm to the
class of C-vines, Cp. We present the implementation for both classes as a single al-
gorithm, in which we can choose whether we want a D-vine, or C-vine model, based
on the data set we and background knowledge of dependency structures.

The second algorithm we introduce, is an ”improvement” to the first algorithm, in a
sense that we look two steps ahead in search of the next covariate at each step. Ba-
sically, at every step we try each of the remaining covariates, and on that expanded
model, we look one more step ahead, at the second new tree showing up. Then, we
choose the covariate that has the greatest improvement in the next two trees. This
way, step by step the covariates are ordered, based on their power to predict the
response.

We also adapt this algorithm for large data sets, with many covariates. As imple-
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menting the algorithm on a large data set is computationally expensive, we include
some randomization, so that our models generalize better and are computationally
tractable. Furthermore, as done by Kraus and Czado (2017) an automated forward
selection procedure to choose a subset of the most influential covariates in the model
is introduced.

5.1 Algorithm 1: Forward selection of C- and D-

vine quantile regression models

Input: We start with a given data set where

y : =
(
y(1), . . . , y(n)

)
,

and

xj : =
(
x

(1)
j , . . . , x

(n)
j

)
, for j = 1, . . . , p

are n independent identically distributed observations from the random vector
(Y,X1, . . . , Xp)

T .

Data preprocessing:

• As already proposed in Section 4.2 we estimate the margins F̂Y and F̂Xj for
j = 1, . . . , p.

• With the margins estimated, then we compute the pseudo copula data by
applying the probability integral transform:

v̂(i) : = F̂Y
(
y(i)
)

and û
(i)
j : = F̂Xj

(
x

(i)
j

)
, for i = 1, . . . , n, j = 1, . . . , p.

Initialization:

• We have to decide beforehand with which vine copula we will model the data.
Namely, we have to choose between the classes Dp or Cp.

• The selection criteria for the estimation of pair copulas must be chosen and
the penalization method for the cll, if desired.

• The maximal number of predictors that can be included L has to be predefined.

Step 1:

• For all k = 1, . . . , p we calculate the conditional log likelihood of the bivariate
copulas Ck ∈ D1 (or C1) with order O (Ck) = (V, Uk), i.e.

cll (Ck, v̂, (ûk)) =
n∑
i=1

log cV,Uk

(
v̂(i), û

(i)
k

)
.
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• We define t1 as
t1 : = arg max

k=1,...,p
cll (Ck, v̂, (ûk)) . (5.1)

When a penalization from Definition 4.11 is desired, the arg max is taken over
the cllBIC or cllAIC , rather then over the cll of the copulas Ck in equation (5.1).

• As our current optimal fit, denoted by C∗, we choose the vine copula Ct1 . Thus
the order of C∗ after the first step is given by

O (C∗) = (V, Ut1) .

Step r:

• At the r−step our current optimal fit has order

O (C∗) =
(
V, Ut1 , . . . , Utr−1

)
.

• Further, for all k ∈ S : = {1, . . . , p} \ {t1, . . . , tr−1} we calculate the condi-
tional log likelihood of the vine copulas Ck ∈ Dr (or Cr) with order O (Ck) =(
V, Ut1 , . . . , Utr−1 , Uk

)
, i.e.

cll (Ck, v̂,
(
ût1 . . . ûtr−1 , ûk

))
= cll

(
C∗, v̂,

(
ût1 . . . ûtr−1

))
+

n∑
i=1

log cV Uk;Ut1 ,...,Utr−1

(
CV |Ut1 ,...,Utr−1

(
v(i)|u(i)

t1 , . . . , u
(i)
tr−1

)
,

CUk|Ut1 ,...,Utr−1

(
u

(i)
k |u

(i)
t1 , . . . , u

(i)
tr−1

))
.

Here we used the result of Corollary 4.10.

• We define tr as

tr : = arg max
k∈S

cll
(
Ck, v̂,

(
ût1 . . . ûtr−1 , ûk

))
. (5.2)

Similarly as in step 1, when a penalization from Definition 4.11 is desired,
the arg max is taken over the cllBIC or cllAIC , rather then over the cll of the
copulas Ck in equation (5.2).

• We update the optimal fit C∗ with the vine copula Ctr . Thus, the order of C∗
after the r−step is given as

O (C∗) = (V, Ut1 , . . . Utr) .

Stopping: We continue the iteration as described above until we select a preferred
number L of covariates or until the conditional log likelihood no longer yields a sig-
nificant increase compared to the previous step, for which we utilize the conditional
log likelihood ratio test from Definition 4.12.

Output: A vine copula C∗ ∈ Dd
(
or Cd

)
with order

O (C∗) = (V, Ut1 , . . . , Utd) ,

where d ≤ L and represents the number of significant predictors found by the
algorithm.
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5.1.1 Illustration of Algorithm 1

In this section, we give a step by step illustration of the algorithm introduced in
Section 5.1 on a simulated 6-dimensional non-gaussian data set. Further, detailed
estimates of pair copulas and their corresponding log likelihoods are provided, as
well as the intermediate optimal models at each step.

Input:

We consider a six dimensional data set
(
v(i), u

(i)
1 , u

(i)
2 , u

(i)
3 , u

(i)
4 , u

(i)
5

)T
, i =

1, . . . , 500, sampled from (V, U1, U2, U3, U4, U5) which follows a six dimensional
D-vine copula distribution CV,U1,U2,U3,U4,U5 .

The pair copulas of the D-vine CV,U1,U2,U3,U4,U5 are given in Table 5.1.

Tree Edge Conditioned ; Conditioning Family Tau
1 1 V , U1 ; Clayton 0.60
1 2 U1, U2 ; Joe 0.80
1 3 U2, U3 ; Gumbel 0.50
1 4 U3, U4 ; Gauss 0.13
1 5 U4, U5 ; Indep. 0
2 1 V , U2 ; U1 Gumbel 0.80
2 2 U1, U3 ; U2 Frank 0.65
2 3 U2, U4 ; U3 Joe 0.49
2 4 U3, U5 ; U4 Gauss 0.13
3 1 V , U3 ; U1, U2 Joe 0.60
3 2 U1, U4 ; U2, U3 Frank 0.55
3 3 U2, U5 ; U3, U4 Gauss 0.19
4 1 V , U4 ; U1, U2, U3 Clayton 0.50
4 2 U1, U5 ; U2, U3, U4 Gauss 0.06
5 1 V , U5 ; U1, U2, U3, U4 Indep. 0

Table 5.1: Pair copulas of the D-vine CV,U1,U2,U3,U4,U5 .

Data preprocessing:

The data is already on the copula scale, thus estimation of margins and trans-
forming the data is not necessary.

Initialization:

To model the given data we decide to use a vine copula model from the D-vine
class Dp with p ≤ 5.

Step 1:

To add the first predictor to the model the conditional log likelihood of the
candidate models Cj with order

O (V, Uj) , for j = 1, . . . , 5,

has to be calculated.
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T1 V Uj

VUj

Figure 5.1: We are searching for a model from the class Dp, thus V is already set as
the first node (black) in T1. In the 1-st step of the algorithm we add a new predictor
Uj (gray). The gray copula V Uj has to be estimated.

To calculate the cll of Cj we first estimate the pair copulas CV Uj for j =
1, . . . , 5. For this we use the function bicop from the package rvinecopulib,
using the default selection criteria for bivariate copula estimation BIC.

Pair copulas ĈV U1 ĈV U2 ĈV U3 ĈV U4 ĈV U5

Family Joe(180) Gumbel(180) Clayton Gauss Gauss
Parameter 3.87 2.79 1.29 0.54 0.26
Loglik. 322.58 327.78 126.61 86.90 18.97

Table 5.2: Estimated bivariate copulas with their parameters.

In the first iteration step the conditional log likelihood of the candidate models
Cj is equal to the log likelihood of the pair copula ĈV Uj .

Since the candidate model C2 has the greatest conditional log likelihood, i.e.
the pair copula ĈV U2 has the greatest log likelihood, we update the current
optimal fit order with U2. Namely, we set the current optimal fit to be the
D-vine copula model for quantile regression C∗ ∈ D1 with order

O (C∗) = (V, U2) .

The conditional log likelihood of the model C∗ is 327.78.

Before we continue with the second step, we estimate the pseudo copula data
needed for fitting the pair copulas in the second tree

û
(i)
V |U2

= hV |U2

(
v̂(i)|û(i)

2

)
.

This is done using the function hbicop from the package rvinecopulib.
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Step 2:

In order to estimate the condition log likelihood of the vine copulas Cj ∈ D2

with order O (Cj) = (V, U2, Uj), for j = 1, 3, 4, 5, we first have to fit the pair

copulas ĈU2Uj and ĈV Uj ;U2 .

T1 V U2 Uj

T2 VU2 U2Uj

VUj;U2

Figure 5.2: Extending the current D-vine (black) by adding Uj in the 2-nd step of
the algorithm. Thus, the gray pair-copulas need to be estimated.

The pair copulas ĈU2Uj have to be estimated in order to obtain the pseudo
copula data

û
(i)
Uj |U2

= hUj |U2

(
û

(i)
j |û

(i)
2

)
We give the estimates of these pair copula in Table 5.3.

Pair copulas ĈU2U1 ĈU2U3 ĈU2U4 ĈU2U5

Family Joe Gumbel Gumbel Gauss
Parameter 8.91 2.04 1.60 0.29

Table 5.3: Estimated bivariate copulas with their parameters.

After estimating of the pair copulas ĈU2Uj we can estimate ĈV Uj ;U2 using the

pseudo copula data û
(i)
V |U2

and û
(i)
Uj |U2

. For the pair copulas ĈV Uj ;U2 we also give

their corresponding log likelihoods since they contribute to the cll, while the
pair copulas ĈU2Uj do not contribute to the cll directly.

Pair copulas ĈV U1;U2 ĈV U3;U2 ĈV U4;U2 ĈV U5;U2

Family t t Gauss Indep.
Parameter -0.49, 2 -0.11, 5.67 0.16 0
Loglik. 123.97 12.25 6.24 0

Table 5.4: Estimated bivariate copulas with their parameters.
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Now we can calculate the conditional log likelihood of the copulas Cj which is
given as

cll (Cj, v̂, (û2, ûj)) = cll (C∗, v̂, (û2)) + l
(
ĈV Uj ;U2

)

Candidate models C1 C3 C4 C5

Conditional log likelihood 451.75 340.02 334.02 327.78

Table 5.5: Conditional log likelihood of candidate D-vine models.

Further, we apply the conditional likelihood ratio test from Definition 4.12 to
the copula model with the greatest conditional log likelihood. That is we check

cll (Cj, v̂, (û2, ûj))− cll (C∗, v̂, (û2)) > χ2
0.95,1.

Since copula C1 has the greatest conditional log likelihood it follows that

cll (C1, v̂, (û2, û1))− cll (C∗, v̂, (û2)) = 123.97 > 5.99 = χ2
0.95,2.

Thus, it is justified to add U1 to the model.

We update our optimal fit C∗ to be the candidate model C1. This means that
we add U1 as the next predictor, thus our estimated D-vine copula model after
the second step is the C∗ ∈ D2 with order

O (C∗) = (V, U2, U1) .

The conditional log likelihood of the model C∗ is 451.78.

Again we calculate the pseudo copula data needed for the next step,

û
(i)
V |U2,U1

= hV |U1;U2

(
û

(i)
V |U2
|û(i)
U1|U2

)
.
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Step 3:

For j = 3, 4, 5, in order to estimate the condition log likelihood of the candidate
models Cj ∈ D3 with order O (Cj) = (V, U2, U1, Uj), we first have to fit the pair

copulas ĈUjU1 , ĈUjU2;U1 and ĈV Uj ;U2,U1 .

T1 V U2 U1 Uj

T2 VU2 U2U1 U1Uj

T3 VU1;U2 U2Uj;U1

VUj;U1,U2

Figure 5.3: Extending the current D-vine (black) by adding Uj in the 3-rd step of
the algorithm. Thus, the gray pair-copulas need to be estimated.

Similarly as in Step 2, the pair copulas ĈUjU1 and ĈUjU1;U2 are fitted only to
obtain the pseudo copula data

û
(i)
Uj |U2,U1

= hUj |U2;U1

(
û

(i)
Uj |U1
|û(i)
U2|U1

)
, (5.3)

and their estimates are given in Table 5.6.

Pair copulas ĈU3U1 ĈU3U1;U2 ĈU4U1 ĈU4U1;U2 ĈU5U1 ĈU5U1;U2

Family t Frank Gauss Clayton(180) Gauss Frank
Parameter 0.86, 5.14 -4.41 0.58 0.39 0.24 1.23

Table 5.6: Estimated bivariate copulas with their parameters.

With the pair copulas from Table 5.6 the pseudo copula data from equation
(5.3) can be calculated. Then, we can estimate ĈV Uj ;U2,U1 with the pseudo data

û
(i)
V |U2,U1

and û
(i)
Uj |U2,U1

.

We calculate the conditional log likelihood for the candidate models Cj as

cll (Cj, v̂, (û2, û1, ûj)) = cll (C∗, v̂, (û2, û1)) + l
(
ĈV Uj ;U2,U1

)
.
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Pair copulas ĈV U3;U2,U1 ĈV U4;U2,U1 ĈV U5;U2,U1

Family t Frank Indep.
Parameter 0.20, 6.33 -0.76 0
Loglik. 16.10 3.47 0

Table 5.7: Estimated bivariate copulas with their parameters.

Candidate models C3 C4 C5

Conditional log likelihood 467.84 455.22 451.75

Table 5.8: Conditional log likelihood of candidate D-vine models.

Obviously C3 has the greatest conditional log likelihood. Again, we have to
apply the conditional likelihood ratio test which yields

cll (C3, v̂, (û2, û1, û3))− cll (C∗, v̂, (û2, û1)) = 16.10 > 5.99 = χ2
0.95,2.

Thus, it is justified to add U3 to the model.

We update our optimal fit C∗ to the candidate model C3. Thus, our estimated
D-vine copula model after the third step is the C∗ ∈ D3 with order

O (C∗) = (V, U2, U1, U3) .

The conditional log likelihood of the model C∗ is 467.84.

Again, we calculate the pseudo copula data needed for the next step,

û
(i)
V |U2,U1,U3

= hV |U3;U2,U1

(
û

(i)
V |U2,U1

|û(i)
U3|U2,U1

)
.

Step 4:

Similarly as in the previous steps, in order to estimate the condition log like-
lihood of the candidate models Cj ∈ D4, for j = 4, 5, there is a number of pair

copulas to be estimated. Namely, in this step, those pair copulas are ĈUjU3 ,

ĈUjU1;U3 , ĈUjU2;U1,U3 and ĈV Uj ;U2,U1,U3 .

The pair copulas ĈUjU3 , ĈUjU1;U3 and ĈUjU2;U1,U3 are fitted to obtain the pseudo
copula data

û
(i)
Uj |U2,U1,U3

= hUj |U2;U1,U3

(
û

(i)
Uj |U1,U3

|û(i)
U2|U1,U3

)
.

Further, we estimate ĈV Uj ;U2,U1,U3 for j = 4, 5 with the pseudo copula data

û
(i)
V |U2,U1,U3

and û
(i)
Uj |U2,U1,U3

.
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Pair copulas ĈU4U3 ĈU4U1;U3 ĈU4U2;U1,U3 ĈU5U3 ĈU5U1;U3 ĈU5U2;U1,U3

Family Gauss Gumbel Frank Gauss Frank Gauss
Parameter 0.24 2.56 -2.14 0.21 0.80 0.22

Table 5.9: Estimated bivariate copulas with their parameters.

Pair copulas ĈV U4;U2,U1,U3 ĈV U5;U2,U1,U3

Family Indep. Indep.
Parameter 0 0
Loglik. 0 0

Table 5.10: Estimated bivariate copulas with their parameters.

Both pair copulas, ĈV U4;U2,U1,U3 and ĈV U5;U2,U1,U3 , are estimated to be the In-
dependence copula.

Thus, adding either of the covariates, U4 or U5, to the model will not change
the conditional log likelihood and therefore we do not include any of them in
the model. Not including any new predictors also stops the iteration process.

Output: The optimal D-vine copula model C∗ ∈ D3, lastly updated at Step 3 and
has order

O (C∗) = (V, U2, U1, U3) ,

with conditional log likelihood

cll (C∗, v̂, (û2, û1, û3)) = 467.84. (5.4)

T1 V U2 U1 U3

T2 VU2 U2U1 U1U3

T3 VU1;U2 U2U3;U1

VU3;U1,U2

Figure 5.4: D-vine tree sequence of the optimal fit
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5.2 Algorithm 2: Two step ahead forward selec-

tion of C- and D-vine quantile regression mod-

els

Input: Again as with Algorithm 1 from Section 5.1, we start with a given data set
where

y : =
(
y(1), . . . , y(n)

)
,

and

xj : =
(
x

(1)
j , . . . , x

(n)
j

)
, for j = 1, . . . , p

are n independent identically distributed observations from the random vector
(Y,X1, . . . , Xp)

T .

Data preprocessing:

• Following Section 4.2 we estimate the margins F̂Y and F̂Xj for j = 1, . . . , p.

• With the margins estimated, the pseudo copula data is computed by applying
the probability integral transform:

v̂(i) : = F̂Y
(
y(i)
)

and û
(i)
j : = F̂Xj

(
x

(i)
j

)
for i = 1, . . . , n, j = 1, . . . , p.

Initialization:

• We have to decide beforehand with which vine copula we will model the data.
Namely, we have to choose between the classes Dp and Cp.

• The selection criteria for the estimation of pair copulas must be chosen and
the penalization method for the cll, if desired.

• Further, the number of candidates k and the maximal number of predictors
which can be included in the model L have to be predefined.

Step 1:

• Obtain estimates of Kendall’s τ values τV Uj for j = 1, . . . p based on{
v(i), u

(i)
j |i = 1, . . . , n

}
.

• Choose k ≤ p highest estimates |τ̂V Uj | and identify the indices p1, . . . , pk, where

|τ̂V Up1 | ≥ |τ̂V Up2 | ≥ . . . ≥ |τ̂V Upk |.

We take the covariates Up1 , . . . , Upk as our candidate predictors at step 1 and
we define the set of candidate indices as K = {p1, . . . , pk}.
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• For all candidates, i.e., c ∈ K, we consider the p − 1 two step ahead copula
models. That is, for j ∈ {1, . . . , p}\{c} we consider the models Cc,j ∈ D2 (or C2)
with order O (Cc,j) = (V, Uc, Uj) and we calculate the conditional log likelihood

cll (Cc,j, v̂, (ûc, ûj)) =
n∑
i=1

[
log cV,Uc

(
v̂(i), û(i)

c

)
+ log cV,Uj |Uc

(
h
(
v̂(i)|û(i)

c

)
, h
(
û

(i)
j |û(i)

c

)) ]
.

• We define as mCc the maximal two step ahead cll for each of the candidate
predictors, i.e.,

mCc : = max
j∈{1,...,p}\{c}

cll (Cc,j, v̂, (ûc, ûj)) , ∀c ∈ K. (5.5)

• Then we define t1 as

t1 : = arg max
c∈K

mCc.

• When a penalization from Definition 4.11 is desired, the max is taken over the
cllBIC or cllAIC , rather then over the cll of the copulas Ck in equation (5.5).

• As our current optimal fit, denoted by C∗, we choose the vine copula Ct1 with
order

O (C∗) = (V, Ut1) .

Step r:

• At the r−step, the current optimal fit has order

O (C∗) =
(
V, Ut1 , . . . , Utr−1

)
.

• To include the next covariate we first compute the empirical partial correlations
ρV,Uj ;Ut1 ,...,Utr−1

for j ∈ {1, 2, . . . , p} \ {t1, . . . , tr−1}.

• We choose the k indices p1, . . . , pk with the largest values of |ρ̂V,Uj ;Ut1 ,...,Utr−1
|

as the candidate set K for the r-th covariate node.

• We are interested in the conditional log likelihood of the (r + 2)−dimensional
D-vine or C-vine model. More precisely, we are considering the conditional log
likelihood of the two step ahead models Cc,j with order

O
(
V, Ut1 , . . . , Utr−1 , Uc, Uj

)
,

for all c ∈ {p1, . . . , pk} and j ∈ {1, 2, . . . , p} \ {t1, . . . , tr−1, c}. This yields
k (p− r) candidate models in the r-th step of the algorithm.
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• Following Corollary 4.10 we compute the conditional log likelihoods for the
copulas Cc,j as

cll (Cc,j, v̂,
(
ût1 . . . ûtr−1 , ûc, ûj

))
= cll

(
C∗, v̂,

(
ût1 . . . ûtr−1

))
+

n∑
i=1

log cV Uc;Ut1 ,...,Utr−1

(
CV |Ut1 ,...,Utr−1

(
v(i)|u(i)

t1 , . . . , u
(i)
tr−1

)
,

CUc|Ut1 ,...,Utr−1

(
u(i)
c |u

(i)
t1 , . . . , u

(i)
tr−1

))
+

n∑
i=1

log cV Uj ;Ut1 ,...,Utr−1 ,Uc

(
CV |Ut1 ,...,Utr−1 ,Uc

(
v(i)|u(i)

t1 , . . . , u
(i)
tr−1

, u(i)
c

)
,

CUj |Ut1 ,...,Utr−1 ,Uc

(
u

(i)
j |u

(i)
t1 , . . . , u

(i)
tr−1

, u(i)
c

))
.

• We define as mCc the maximal two step ahead cll for each of the candidate
predictors, i.e.,

mCc : = max
j∈{1,2,...,p}\{t1,...,tr−1,c}

cll
(
Cc,j, v̂,

(
ût1 . . . ûtr−1 , ûc, ûj

))
, ∀c ∈ K. (5.6)

• Further, we define tr as

tr : = arg max
c∈K

mCc.

• Again, when a penalization from Definition 4.11 is desired, the max is taken
over the cllBIC or cllAIC , rather then over the cll of the copulas Ck in equation
(5.6).

• We update the optimal fit C∗ with the predictor Utr . Thus, the order of C∗
after the r−step is given by

O (C∗) = (V, Ut1 , . . . Utr) .

Stopping: We continue the iteration as described above until we select a preferred
number L of covariates or until the conditional log likelihood no longer yields a sig-
nificant increase compared to the previous step, for which we utilize the conditional
log likelihood ratio test from Definition 4.12.

Output: A vine copula C∗ ∈ Dd
(
or Cd

)
with order

O (C∗) = (V, Ut1 , . . . , Utd) .

where d ≤ L and represents the number of significant predictors found by the
algorithm.
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5.2.1 Illustration of Algorithm 2

In this section, we give a step by step illustration of the algorithm introduced in
Section 5.2 on a simulated 6-dimensional non-gaussian data set. Further, detailed
estimates of pair copulas and their corresponding log likelihoods are provided, as
well as the intermediate optimal models at each step.

Input:

We consider the same 6-dimensional data set as in Subsection 5.1.1.

Data preprocessing:

The data is already on the copula scale, thus estimation of margins and trans-
forming the data is not necessary.

Further, we set the number of candidates k = 2 and the maximal number of
predictors that can be included to L = 5.

No penalization of the conditional log likelihood is used and the pair copula
selection criteria is set to ”BIC”.

Initialization:

To model the given data we decide to use a vine copula model from the D-vine
class Dp with p ≤ 5.

Step 1:

To obtain the candidates in the first step, we estimate first the Kendall’s tau
values between the response and all possible predictors, denoted by τ̂V Uj for
j = 1, . . . 5 based on {

v(i), u
(i)
j |i = 1, . . . , 500

}
.

For this we use the function cor from the package stats.

τ̂V U1 τ̂V U2 τ̂V U3 τ̂V U4 τ̂V U5

0.62 0.71 0.39 0.37 0.17

Table 5.11: Estimated Kendall’s tau values.

k = 2 predictors with the greatest estimated absolute Kendall’s tau values are
chosen as candidate predictors. In this case, that are U2 and U1 as can be seen
from Table 5.11, and the set of candidate indices is then K = {2, 1}.
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T1 V Uc Uj

T2 V Uc UcUj

VUj;Uc

Figure 5.5: We are searching for a model from the class Dp, thus V is already set as
the first node (black) in T1. In the 1-st step of the algorithm we are extending it for
candidate Uc (gray) and predictor Uj (blue). The gray and blue pair-copulas need
to be estimated.

For c ∈ K the conditional log likelihoods of interest are those of the two-
step ahead copulas Cc,j ∈ D2 for j ∈ {1, . . . , 5} \ {c} with order O (Cc,j) =
(V, Uc, Uj). Those cll’s are obtained as

cll (Cc,j, v̂, (ûc, ûj)) = l
(
ĈV Uc , (v̂, ûj)

)
+ l
(
ĈV Uj ;Uc ,

(
ûV |Uc , ûUj |Uc

))
, (5.7)

where ûV |Uc and ûUj |Uc are the pseudo copula data defined as

ûV |Uc : =hV |Uc (v̂|ûc) and ûUj |Uc : =hUj |Uc (ûj|ûc) .

In order to obtain the desired conditional log likelihoods equation (5.7) implies
that we have to estimate the pair copulas CV Uc and CV Uj ;Uc because their log
likelihoods contribute to the cll. However, we have also to estimate the pair
copulas CUcUj , since they are needed to obtain the pseudo copula data ûUj |Uc
which is used in the estimation of CV Uj ;Uc .

Pair copulas CU2U1 CU2U3 CU2U4 CU2U5

Family Joe Gumbel Gumbel Gauss
Parameter 8.91 2.04 1.60 0.29

Pair copulas CV U2 CV U1;U2 CV U3;U2 CV U4;U2 CV U5;U2

Family Gumbel(180) t t Gauss Indep.
Parameter 2.79 -0.49, 2 -0.11, 5.67 0.16 0
Loglik. 327.78 123.97 12.25 6.24 0

Table 5.12: Estimated pair copulas for c = 2.
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Pair copulas CU1U2 CU1U3 CU1U4 CU1U5

Family Joe t Gauss Gauss
Parameter 8.91 0.86, 5.14 0.58 0.24

Pair copulas CV U1 CV U2;U1 CV U3;U1 CV U4;U1 CV U5;U1

Family Joe(180) Gumbel Frank Frank Frank
Parameter 3.87 4.83 -2.36 0.89 1.10
Loglik. 322.58 592.46 33.35 5.44 8.34

Table 5.13: Estimated pair copulas for c = 1.

The loglikehoods of the copulas CUcUj were omitted since they are not con-
tributing to the cll of the models.

Following equation (5.7) we calculate then the conditional log likelihoods of
the two step ahead vine models

Candidate models C2,1 C2,3 C2,4 C2,5

cll 451.75 340.03 334.02 327.78

Candidate models C1,2 C1,3 C1,4 C1,5

cll 915.04 355.93 328.02 330.92

Table 5.14: Conditional log likelihood of the candidate models.

Since the greatest cll is associated with the candidate model C1,2 the corre-
sponding candidate predictor, U1, is added first to the D-vine model. Conse-
quently, the current optimal fit C∗ ∈ D1 is the D-vine copula with order

O (C∗) = (V, U1) .

The cll of C∗ is 322.58. Note that the cll of the current optimal fit C∗ is not
equal to the cll of the candidate model C1,2. This is due to the fact that C1,2

is the two step ahead model from the class D2 and has order O (V, U1, U2),
while C∗ has only one predictor included in the order and consequently one
pair copula less contributing to its cll.

Step 2:

In the second step, the candidates are obtained using the empirical partial
correlations. Namely, we choose the k = 2 candidates based on |ρ̂V,Uj ;U1| for
j = 2, 3, 4, 5.
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ρ̂V,U2;U1 ρ̂V,U3;U1 ρ̂V,U4;U1 ρ̂V,U5;U1

0.68 -0.35 0.13 0.12

Table 5.15: Estimated partial correlations .

The partial correlations are calculated using the function pcor from the pack-
age ppcor.

Since U2 and U3 have the greatest absolute partial correlations with V , they
are the candidates predictors at step two and the set of candidate indices is
consequently K = {2, 3}.

T1 V U1 Uc Uj

T2 V U1 U1Uc UcUj

T3 VUc;U1 U1Uj;Uc

VUj;U1Uc

Figure 5.6: Extending the current D-vine (black) by adding candidate Uc (gray) and
Uj (blue) in the 2-nd step of the algorithm. Thus, the gray and blue pair-copulas
need to be estimated.

The conditional log likelihoods of interest now are those of the two-step ahead
copulas Cc,j for c ∈ K and j ∈ {2, 3, 4, 5} \ {c}, with order

O (Cc,j) = (V, U1, Uc, Uj) .

The cll’s of interest are then calculated as

cll (Cc,j, v̂, (û1, ûc, ûj)) = cll (C∗, v̂, (û1)) + l
(
ĈV Uc;U1 ,

(
ûV |U1 , ûUc|U1

))
+ l
(
ĈV Uj ;U1,Uc ,

(
ûV |Uc;U1 , ûUj |U1;Uc

))
.

(5.8)

The pseudo copula data is obtained as

ûV |U1 : =hV |U1 (v̂|û1) , ûUc|U1 : =hUc|U1 (ûc|û1) , ûUj |Uc : =hUj |Uc (ûj|ûc) ,
(5.9)

and

ûV |Uc;U1 : =hV |Uc;U1

(
ûV |U1|ûUc|U1

)
, ûUj |U1;Uc : =hUj |U1;Uc

(
ûUj |Uc |ûU1|Uc

)
.

(5.10)
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In order to be able to estimate the pseudo copula data from equation (5.9)
and (5.10) and consequently the cll, the pair copulas associated with the h-
functions need to be estimated. Namely, the associated pair copulas with the
h-functions of equation (5.9) are CV U1 , CUcU1 and CUjUc , respectively. The
associated pair copulas with the h−functions of equation (5.10) are CV Uc;U1

and CUjU1;Uc respectively.

Additionally, also the pair copulas whose log likelihood contributes to the cll
need to be estimated. Those pair copulas are CV Uj ;U1,Uc and CV Uc;U1 , as can be
seen from equation (5.8).

The pair copulas CV U1 and CUcU1 are already estimated in step 1 and can
be found in the Table 5.13. The pair copulas which need to be additionally
estimated we give in the Table 5.16 and Table 5.17.

Pair copulas CU2U3 CU2U4 CU2U5 CU3U1;U2 CU4U1;U2 CU5U1;U2

Family Gumbel Gumbel Gauss Frank Indep. Indep.
Parameter 2.04 1.60 0.29 9.55 0 0

Pair copulas CV U2;U1 CV U3;U1,U2 CV U4;U1,U2 CV U5;U2

Family Gumbel Joe Clayton(90) Indep.
Parameter 4.83 3.95 0.52 0
Loglik. 592.46 347.88 38.00 0

Table 5.16: Estimated pair copulas for c = 2.

Pair copulas CU3U2 CU3U4 CU3U5 CU2U1;U3 CU4U1;U3 CU5U1;U3

Family Gumbel Gauss Gauss Gumbel Gumbel Gauss
Parameter 2.04 0.24 0.21 3.63 2.56 0.80

Pair copulas CV U3;U1 CV U2;U1,U3 CV U4;U1,U3 CV U5;U1,U3

Family Frank Frank Frank Gumbel(180)
Parameter -2.36 9.96 -1.30 1.10
Loglik. 33.35 303.66 10.09 7.95

Table 5.17: Estimated pair copulas for c = 3.

The conditional log likelihood of the two step ahead models are calculated and
given in Table 5.18.
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Candidate models C2,3 C2,4 C2,5

cll 940.33 630.46 592.46

Candidate models C3,2 C3,4 C3,5

cll 337.01 43.44 41.30

Table 5.18: Conditional log likelihood of the candidate models.

The greatest cll is associated with the candidate model C2,3. Thus, we check
whether updating the current optimal fit C∗ ∈ D1 with order O (C∗) = (V, U1)
to C2 ∈ D2 with order O (C2) = (V, U1, U2) will increase the cll significantly.
Namely, we employ the conditional log likelihood ratio test, and since

cll (C2, v̂, (û1, û2))− cll (C∗, v̂, (û1)) = 592.46 > 3.84 = χ2
0.95,1,

we reject H0 at level 0.05. Thus, updating the optimal fit to C2 will improve
the models fit significantly.

We update our optimal fit C∗ to the candidate model C2. Thus, our estimated
D-vine copula model after the second iteration step is the C∗ ∈ D2 with order

O (C∗) = (V, U1, U2) .

The cll of C∗ is 915.04.

Step 3:

In the third step the candidates are obtained using the empirical partial cor-
relations. Namely, we choose the k = 2 candidates based on |ρ̂V,Uj ;U1,U2| for
j = 3, 4, 5.

ρ̂V,U3;U1,U2 ρ̂V,U4;U1,U2 ρ̂V,U5;U1,U2

-0.11 0.02 -0.01

Table 5.19: Estimated partial correlations .

Since U3 and U4 have the greatest absolute partial correlations, they are chosen
as the candidates predictors at step three and the set of candidate indices is
consequently K = {3, 4}.
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T1 V U1 U2 Uc Uj

T2 V U1 U1U2 U2Uc UcUj

T3 VU2;U1 U1Uc;U2 U2Uj;Uc

T4 VUC ;U1U2 U1Uj;U2Uc

VUj;U1U2Uc

Figure 5.7: Extending the current D-vine (black) by adding candidate Uc (gray) and
Uj (blue) in the 3-rd step of the algorithm. Thus, the gray and blue pair-copulas
need to be estimated.

The conditional log likelihoods of interest now are those of the two-step ahead
copulas Cc,j for c ∈ K and j ∈ {3, 4, 5} \ {c}, with order

O (Cc,j) = (V, U1, U2, Uc, Uj) .

The cll’s of interest are then calculated as

cll (Cc,j, v̂, (û1, û2, ûc, ûj)) = cll (C∗, v̂, (û1, û2))

+ l
(
ĈV Uc;U1,U2 ,

(
ûV |U2;U1 , ûUc|U1;U2

))
+ l
(
ĈV Uj ;U1,U2,Uc ,

(
ûV |Uc;U1,U2 , ûUj |U1;U2,Uc

))
,

(5.11)

where

ûV |U2;U1 : =hV |U2;U1

(
ûV |U1 |ûU2|U1

)
and ûUc|U1;U2 : =hUc|U1;U2

(
ûUc|U2|ûU1|U2

)
(5.12)

and

ûV |Uc;U1,U2 : =hV |Uc;U1,U2

(
ûV |U2;U1|ûUc|U1;U2

)
,

ûUj |U1;U2,Uc : =hUj |U1;U2,Uc

(
ûUj |U2;Uc|ûU1|Uc;U2

)
.

(5.13)

Again, similarly to step 2, the pair copulas needed to estimate the pseudo data
from equations (5.12) and (5.13) as well as the pair copulas needed to calculate
the cll from equation (5.11) have to be estimated.
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Pair copulas CU3U2 CU3U4 CU3U5 CU3U1;U2 CU2U4;U3 CU2U5;U3

Family Gumbel Gauss Gauss Frank Joe Gauss
Parameter 2.04 0.24 0.21 9.55 2.68 0.23

Pair copulas CU1U4;U2,U3 CU1U5;U2,U3

Family Frank Frank
Parameter 6.86 -0.81

Pair copulas CV U3;U1,U2 CV U4;U1,U2,U3 CV U5;U1,U2,U3

Family Joe Clayton Gauss
Parameter 3.95 1.72 -0.17
Loglik. 347.88 197.90 7.68

Table 5.20: Estimated pair copulas for c = 3.

Pair copulas CU4U2 CU4U3 CU4U5 CU4U1;U2 CU2U3;U4 CU2U5;U4

Family Indep. Gauss Indep Clayton(180) Gumbel Gauss
Parameter 0 0.24 0 0.14 2.22 0.32

Pair copulas CU1U3;U2,U4 CU1U5;U2,U4

Family Frank Frank
Parameter 8.72 -0.69

Pair copulas CV U4;U1,U2 CV U3;U1,U2,U4 CV U5;U1,U2,U4

Family Clayton(90) Frank Gauss
Parameter 0.52 1.20 5.00
Loglik. 38.00 124.24 3.28

Table 5.21: Estimated pair copulas for c = 4.

The conditional log likelihood of the two step ahead models are calculated and
given in Table 5.22.

Candidate models C3,4 C3,5

cll 545.78 355.56

Candidate models C4,3 C4,5

cll 162.24 41.28

Table 5.22: Conditional log likelihood of the candidate models.
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The greatest cll is associated with the candidate model C3,4. Thus, we check
whether updating the current optimal fit C∗ ∈ D2 with orderO (C∗) = (V, U1, U2)
to C3 ∈ D3 with order O (C3) = (V, U1, U2, U3) will increase the cll significantly.
Namely, we employ the conditional log likelihood ratio test, and since

cll (C3, v̂, (û1, û2, û3))− cll (C∗, v̂, (û1, û2)) = 347.88 > 3.84 = χ2
0.95,1,

we reject H0 at level 0.05. Thus, updating the optimal fit to C3 will improve
the models fit significantly.

We update our optimal fit C∗ to the candidate model C3. Thus, the current
optimal fit is D-vine copula model C∗ ∈ D3 with order

O (C∗) = (V, U1, U2, U3) .

The cll of C∗ is 1262.92.

Step 4:

Now only two more possible predictors are left, and since the number of possi-
ble predictors is less or equal to k we do not calculate the partial correlation.
Instead we take all remaining possible predictors as candidates. Thus, now
K = {4, 5}.

T1 V U1 U2 U3 Uc Uj

T2 V U1 U1U2 U2U3 U3Uc UcUj

T3 VU2;U1 U1U3;U2 U2Uc;U3 U3Uj;Uc

T4 VU3;U1U2 U1Uc;U2U3 U2Uj;U3Uc

T5 VUc;U1U2U3 U1Uj;U2U3Uc

VUj;U1U2U3Uc

Figure 5.8: Extending the current D-vine (black) by adding candidate Uc (gray) and
Uj (blue) in the 4-th step of the algorithm. Thus, the gray and blue pair-copulas
need to be estimated.
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The conditional log likelihoods of interest now are those of the two-step ahead
copulas Cc,j for c ∈ K and j ∈ {4, 5} \ {c}, with order

O (Cc,j) = (V, U1, U2, U3, Uc, Uj) .

The cll’s of interest are then calculated as

cll (Cc,j, v̂, (û1, û2, û3, ûc, ûj)) = cll (C∗, v̂, (û1, û2, û3))

+ l
(
ĈV Uc;U1,U2,U3 ,

(
ûV |U3;U1,U2 , ûUc|U1;U2,U3

))
+ l
(
ĈV Uj ;U1,U2,U3,Uc ,

(
ûV |Uc;U1,U2,U3 , ûUj |U1;U2,U3,Uc

))
.

As in the previous steps, numerous pair copulas have to be estimated in order
to obtain the cll despite only two pair copulas contributing to the cll. Again,
most of the pair copulas are estimated only to obtain the needed pseudo ob-
servations. We give all additionally estimated pair copulas in Table 5.23.

Pair copulas CU4U2;U3 CU5U3;U4 CU4U1;U2,U3 CU5U2;U3,U4 CU5U1;U2,U3,U4

Family Joe Gauss Frank Gumbel Indep.
Parameter 2.68 0.21 6.86 1.23 0

Pair copulas CV U4;U1,U2,U3 CV U5;U1,U2,U3,U4

Family Clayton Indep.
Parameter 1.72 0
Loglik. 197.90 0

Table 5.23: Estimated pair copulas for c = 4.

Pair copulas CU5U2;U3 CU4U3;U5 CU5U1;U2,U3 CU4U2;U3,U5 CU4U1;U2,U3,U5

Family Gauss Gauss Frank Clayton(180) Frank
Parameter 0.23 0.24 -0.81 1.86 6.17

Pair copulas CV U5;U1,U2,U3 CV U4;U1,U2,U3,U4

Family Gauss Frank
Parameter -0.17 -2.82
Loglik. 7.68 48.36

Table 5.24: Estimated pair copulas for c = 5.

The conditional log likelihoods of the candidate models are given in Table 5.25.
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Candidate models C4,5 C5,4

cll 197.90 56.04

Table 5.25: Conditional log likelihood of the candidate models.

Once more we employ the conditional log likelihood ratio test. We check
whether updating the current optimal fit to the candidate model C4 ∈ D4

with order O (C4) = (V, U1, U2, U3, U4). Since it holds that

cll (C4, v̂, (û1, û2, û3, û4))− cll (C∗, v̂, (û1, û2, û3)) = 197.90

> 3.84 = χ2
0.95,1,

the test implies that U4 should be added to the model.

We update our optimal fit C∗ to the candidate model C4. Thus, the current
optimal fit is D-vine copula model C∗ ∈ D4 with order

O (C∗) = (V, U1, U2, U3, U4) .

The cll of C∗ is 1460.82.

Step 5:

At this point only one predictor is remaining. Thus, we can not calculate any
two step ahead cll’s and the only thing left is to decide whether to add U5 to
the model or not.

The copula ĈV U5;U1,U2,U3,U4 is estimated to be the Independence copula as can
be seen in Table 5.23.

Thus, adding U5 to the model will not change the conditional log likelihood
and therefore we do not include U5 in the model.

Output: The optimal D-vine copula model C∗ ∈ D4, lastly updated at Step 4 and
has order

O (C∗) = (V, U1, U2, U3, U4) ,

with conditional log likelihood

cll (C∗, v̂, (û1, û2, û3, û4)) = 1460.82. (5.14)
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T1 V U1 U2 U3 U4

T2 V U1 U1U2 U2U3 U3U4

T3 VU2;U1 U1U3;U2 U2U4;U3

T4 VU3;U1U2 U1U4;U2U3

VU4;U1U2U3

Figure 5.9: D-vine tree sequence of the optimal fit.

5.3 Note on the Illustrations of Algorithm 1 and

2

Let us denote the optimal fit of the D-vine quantile regression model, from subsec-
tion 5.1.1, obtained by Algorithm 1 (”Forward selection of C- and D-vine quantile
regression models” Section 5.1) as

CA1 ∈ D3, with order O (CA1) = (V, U2, U1, U3) ,

and the optimal fit, from subsections 5.2.1, obtained by Algorithm 2 (”Two step
ahead forward selection of C- and D-vine quantile regression models” Section 5.2)
from subsections 5.2.1 as

CA2 ∈ D4, with order O (CA2) = (V, U1, U2, U3, U4) . (5.15)

The data was simulated from the six dimensional D-vine copula, C6, whose pair
copulas given in Table 5.1. The order of the nodes in the first tree of C6 is

V − U1 − U2 − U3 − U4 − U5.

From Table 5.1 we see that the first four covariates, U1, U2, U3 and U4, have a strong
influence on V and thus, should be included in a good model. On the other hand
the influence of U5 is rather small, especially conditioned on the first four covariates,
and can be left out.

Algorithm 2 follows exactly what we described about the D-vine copula C6. The four
important predictors, U1, U2, U3 and U4, in the data were identified by Algorithm 2
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and U5 was left out as it was not increasing the cll significantly. Even the order of the
predictors in the first tree of the D-vine quantile regression model CA2 is identical to
the order of covariates in the D-vine copula C6, as indicated by its order in equation
(5.15).

On the other hand, Algorithm 1 failed to identify one of the important predictors.
From its order it is also apparent that the order of predictors included in the D-vine
quantile regression model CA1 is different from the order of covariates in the first
tree of C6.

Clearly Algorithm 2 has produced a better fit of the D-vine copula C6 than Algorithm
1. That is also confirmed by the conditional log likelihoods of the respective models,
given in equations (5.4) and (5.14),

cll (CA1) = 467.84 and cll (CA2) = 1460.82.

Algorithm 2 achieved an almost 3 times better conditional log likelihood.

In Appendix A detailed illustrations of the estimation procedures for both proposed
forward selection methods for C-vine copulas are provided on five dimensional Gaus-
sian data sets.

We conclude that there are data sets on which the two step ahead forward selection
of C- and D-vine quantile regression models works better that the forward selec-
tion of C- and D-vine quantile regression models. We will further investigate the
performance of both methods in the simulation study of Part III.

66



Chapter 6

Forward selection algorithms and
large data sets

6.1 Computational complexity

The earlier proposed algorithms both work on a principle of sequentially growing the
models at each step. This means, instead of estimating regular vine copulas at each
step, the algorithms are just extending the already existing vine copula from the step
before. The extensions at each step only require additional estimation of the bivariate
copulas. In order to be able to quantify and compare the computational complexity,
we express it as the number of pair copulas that need to be estimated during each
approach. A valid representation of the computational complexity of each algorithm
is obtained since the complexity of bivariate copula estimation, given in Section 2.5,
remains the same regardless of the algorithm used. Now, we express the computa-
tional complexity of finding the cll optimal fit, as well as those of ”Algorithm 1:
Forward selection of C- and D-vine quantile regression models” (Section 5.1) and
”Algorithm 2: Two step ahead forward selection of C- and D-vine quantile regression
models” (Section 5.2) , in terms of the number of pair copulas to be estimated. For
this purpose, we consider a C- or D-vine quantile regression model on p predictors.

- cll-optimal fit: As already stated, to compute the cll-optimal fit one needs
to estimate p! C- or D-vine copulas. Since for each p dimensional vine copula,
p(p−1)

2
pair copulas are estimated, the overall computational complexity is then

p! · p (p− 1)

2
.

- Algorithm 1: The first algorithm computes at the r-th step the cll-optimal
submodel on r predictors given that the first r−1 predictors are chosen already.
In order to do that the model needs to be extended by one predictor for each
of the remaining predictors. To obtain the desired extension for one of the
remaining predictors r pair copulas need to be estimated. Since there are
p− (r − 1) choices for the extension, one has to estimate in total r · (p− r + 1)
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at step r. All together the computation complexity is

p∑
r=1

r · (p− r + 1) , (6.1)

which is equivalent to:
1

6
p3 +

1

2
p2 +

1

3
p. (6.2)

- Algorithm 2: The second algorithm on the other hand computes at each step
r the cll-optimal submodel on r+1 predictors given that the first r−1 predic-
tors are chosen already. For this first k candidates are chosen based on partial
correlations. We suppose that the estimation of margins is computationally
negligible compared to the bivariate copula selection. Further, for each of the
k candidates the model is extended one step further for each of the remaining
non-chosen predictors. That means, to estimate a two step ahead model one
needs a total of

p−1∑
r=1

(2r + 1) ·min {k, p− r + 1} · (p− r) + 1 (6.3)

bivariate pair copula selections. In equation (6.3), r represents the number of
bivariate copulas required to be selected at step r. The term min {k, p− r + 1}
represents the number of candidates at each step. The minimum is taken to
avoid instabilities in the case when the number of remaining covariates is less
than the number of candidates and one can not choose k candidates. Finally,
p − r corresponds to the number of remaining predictors at step r, without
the candidate for which the two step ahead extension is being estimated for.
Equation (6.3) is equivalent to:

p3k

3
+
p2k

2
− pk3

3
+ pk2 − 3pk

2
+
k4

6
− 5k3

6
+

4k2

3
− 2k

3
. (6.4)

From equations (6.2) and (6.4) we can see that the estimation complexity of Algo-
rithms 1 and 2, in terms of bivariate copula selection, are O (p3) and O (p3k + k4),
respectively. This means that, in terms of the number of predictors, p, both algo-
rithms are of order p3. However, an increase in the number of predictors will more
heavily impact Algorithm 2, due to the presence of k multiplying the term p3 in its
computational complexity. On the other hand, a full maximum likelihood approach
will have complexity O (p!). As already discussed before, such an approach would
only be feasible if p < 10, or similar.
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Num. of predictors p 5 10 15 20 50 100
cll-optimal fit 1200 163 296 000 - - - -
Algorithm 1 35 220 680 1 540 22 100 171 700
Algorithm 2 180 1 705 5 855 13 880 213 405 1 689 280

Table 6.1: Number of estimations of bivariate copulas for p = 5, 10, 15, 20, 50, 100,
k = 5.

In Table 6.1 we see how quickly the number of pair copula estimations rises with
the number of predictors for both algorithms. Despite the low computational inten-
sity of the pair copula estimation process, the high number of estimations needed,
especially for Algorithm 2, can become a problem when the number of predictors is
big. As already discussed before, efficient methods for the estimation of pair copulas
are developed and implemented. However their computational complexity depends
on the sample size n. An increase in the sample size will inevitably lead to a propor-
tional increase in the computational time of the pair copula selection. This implies
that also the computational complexity of our algorithms will greatly depend on
the sample size. As it is the case with the cll-optimal fit, also Algorithms 1 and 2
eventually become computationally too intensive for big values of p and n.

As an example, fitting a pair copula for the data vectors u1 and u2 with 300 rows
each requires approximately 0.3 seconds on a commercial machine. On a data set
with 300 data points this means, disregarding everything but the pair copula esti-
mation, that Algorithm 1 would take at least 15 minutes to estimate a model on 20
predictors, while for 50 predictors the estimation process would last about 2 hours.
It gets even worse for Algorithm 2, where one needs 1 hour for 20 predictors and
almost 10 hours for 50 predictors. Data sets with more than 100 predictors would
as a reference take more than 24 hours to compute the model.

6.2 Batch algorithms

Modern day big data sets contain hundreds of predictors and up to a million data
points. Obviously, in such scenarios the proposed algorithms are computationally too
intensive. Therefore, we want propose an alternative way of estimating models from
the classes Dp and Cp, when p is big. Ideally we would like to make the computational
complexity independent from p. This would allow us to chose L out of p predictors in
a time independent of p, but only dependent on the number of candidates k, sample
size n and possibly other hyper-parameters.

With the intent to optimize the computational complexity of such algorithms, we
consider the two step ahead forward selection algorithm from Part 5. Considering an
iteration step r of the two step ahead forward selection, we have the set of candidates
{Ui}i∈K and the set of remaining predictors {Ui}i∈R where

K : = {p1, . . . , pk} and R : = {1, . . . , p} \ {t1, . . . , tr−1} ,
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where {t1, . . . , tr−1} represent the indexes of the predictors chosen up to step r.
Additionally, we define the set R−c as

R−c : =R \ {c} .

To include the next predictor in the model, the cll’s of the two step ahead models
Cc,j with order

O
(
V, Ut1 , . . . , Utr−1 , Uc, Uj

)
c ∈ K, j ∈ R−c

are computed. The next predictor included in the model is chosen based on the cll
of the two step ahead models Cc,j. To extend the current optimal fit of step r, C∗,
to Cc,j for given c and j, additional r + 2 pair copulas need to be fitted. Thus, to
compute the cll for all two step ahead models Cc,j at step r one has to fit a total

(2r + 1) · |K| · |R−c|

pair copulas, as already indicated by equation (6.3). Obviously, the number of pair
copulas needed for the extensions can not be changed. Furthermore, since we already
control the size of K, the only way to reduce the computational complexity of the
algorithm is to reduce the size of R−c. With the ideas to approximate the two step
ahead algorithm while reducing the computational complexity we introduce two new
algorithms:

• Batch maximum algorithm: Here the idea is instead of computing all pos-
sible models Cc,j for c ∈ K and j ∈ R−c at a step r, to compute the models

Cc,i, for c ∈ K, i ∈ Bc,

where Bc is a random subsample of R−c of size b. We define mCc as the maximal
two step ahead cll for each of the candidate predictors, i.e.,

mCc : = max
i∈Bc

cll (Cc,i) , ∀c ∈ K.

Then, the index of the next predictor to be added, tr, is obtained as

tr : = arg max
c∈K

mCc.

• Batch average algorithm: Similarly as with the batch maximum approach,
instead of all possible models Cc,j at step r, only the models

Cc,i, for c ∈ K, i ∈ Bc,

where Bc is a random subsample of R−c of size b, are computed. Further, we
define the average conditional log likelihood of a candidate predictor Uc as

acll (Uc) =
1

b

∑
i∈Bc

cll (Cc,i) .

Finally, the index of the next predictor to be added, tr, is obtained as

tr : = arg max
c∈K

acll (Uc) .
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The above defined Batch maximum and Batch average algorithms estimate the cll
optimal fit for step r on the space K ×R−c with the cll optimal fit on the subspace
K × Bc for each candidate. Furthermore, these algorithms also solve the problem
of computational complexity to some extend. The number of pair copulas to be
estimated at step r, for both of the algorithms, is given by

(2r + 1) · |K| · |B| = (2r + 1) · k · b.

This means, to estimate a C- or D-vine model for quantile regression on p covariates
with the above defined algorithm, a total of

p−1∑
r=1

(2r + 1) · b ·min {k, p− r + 1} + 1 ≈
p−1∑
r=1

(2r + 1) · b · k (6.5)

pair copula fits is needed. With this approach the computational complexity, in
terms of the number of pair copula fits, reduces to O (p2kb).

At first, this is not a big reduction of computational complexity since for huge data
sets it will still be hardly tractable. However, up until now we only considered the
case when we want to model the response with all predictors. Often this is not the
case, especially when several hundreds of possible predictors are available, and one
want to model the response only with the most influential L predictors. In this case,
the computational complexity will be appropriately smaller. The exact number of
pair copula estimations needed if there is L out of p predictors to be chosen can be
obtained by changing the upper summation limits in equations (6.1), (6.3) and (6.5)
to L. This yields computational complexities of

O
(
L2p
)
, O

(
L2pk + k4

)
and O

(
L2kb

)
(6.6)

for Algorithm 1, Algorithm 2 and the batch algorithms, respectively. From equation
(6.6) we can see that the complexity of the Batch algorithms is the only one indepen-
dent of p. Thus, both of the above define Batch algorithms give an approximation of
the Two step ahead forward selection of C- and D-vine quantile regression models
(Section 5.2). For the values of p < 100 one can apply Algorithm 1 and Algorithm
2 with enough resources. But for larger values of p Algorithms 1 and 2 can quickly
become intractable. On the other hand, if one wants to chose only L predictors out
of p one can do this approximately with the same complexity for arbitrary values of
p, when keeping k and b constant.
However, the Batch algorithms are approximating Algorithm 2 and the quality of
the approximation depends on the subsample sizes b chosen. But, if L and b can be
kept small the Batch algorithms can handle, in terms of computational complexity,
data sets with p up to 500.

Suppose we have a data set with up to 500 possible predictors, a sample size of
n < 2000, further we set the batch size to b = 50 and the number of candidates to
k = 25. Additionally, suppose a pair copula estimation time of 0.1 seconds, which
is available on commercial machines. The Batch algorithms could efficiently deter-
mine the 20 to 30 most important predictors with a computational time of about
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12 hours. If p is smaller then one can decrease b and increase n while keeping the
same computational complexity. With the rapid increase of computational power
and cluster computing becoming more popular, both the Batch algorithms as well
as the Forward selection algorithms, can be parallelized and with enough resources
computed in hours for an even bigger set up then the one described before.

It is clear that in terms of computational complexity the Batch algorithms are prefer-
able to Algorithm 2 and even Algorithm 1 with bigger data sets. We have not yet
discussed the performance in terms of cll, order and other goodness of fit measures,
of the Algorithms 1 and 2, which is further discussed in the simulation studies in
Part III.
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Part III

Simulation study

73



Chapter 7

Introduction to simulation study

After defining the two algorithms for an automated forward selection of C- and
D-vine quantile regression models from Chapter 5 and the batch algorithms from
Section 6.2, we continue with comparing the performance of the algorithms through
a simulation study. Before we formally define the set up of our simulation studies,
we introduce the notation for the algorithms considered.

1. Algorithm 1. Forward selection of C- and D-vine quantile regression models
(Section 5.1).

Indices: D − A1 for D-vine models, C − A1 for C-vine models.

2. Algorithm 2. Two step ahead forward selection of C- and D-vine quantile
regression models (Section 5.2).

Indices: D − A2 for D-vine models, C − A2 for C-vine models.

3. Batch maximum algorithm. Two step ahead forward selection of C- and
D-vine quantile regression models with maximum batch (Section 6.2).

Indices: D −Bmax for D-vine models, C −Bmax for C-vine models.

4. Batch average algorithm. Two step ahead forward selection of C- and D-
vine quantile regression models with average batch (Section 6.2).

Indices: D −Bavg for D-vine models, C −Bavg for C-vine models.

5. Linear quantile regression (introduces in Section 3.3).

Index: QLin .
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The simulation study is divided in 2 different case studies, in which we compare
the algorithms performance based on several measures. In the first case study, we
simulate the data from a D-vine copula distribution and apply the D-vine based
algorithms, while in the second case study, we simulate data from a C-vine copula
distribution and apply the corresponding C-vine based algorithms. Detailed descrip-
tion of the simulation methods is given in Section 2.4.

Given a data set D of size n, within a simulation scenario, we divide it into two
subsets, training and testing set. The training set Dtrain is used for model selec-
tion. On the testing set, Dtest, the best chosen model for the training set, is being
applied. The performance on the testing set is an indication how good the models
estimated on the training set can generalize, i.e., how good the models will perform
on new data. Given a C- or D-vine copula distribution C on p possible continuous
predictors X1, . . . , Xp for continuous response variable Y , a replication k = 1, . . . r
within a scenario consists of simulating a data set D(k), of size n, from the copula
distribution C. Further, we split D(k) into

D
(k)
train =

({
x

(k)
i,j,train

}
i=1,...,p; j=1,...,ntrain

,
{
y

(k)
j,train

}
j=1,...,ntrain

)
,

where ntrain = |Dtrain| and

D
(k)
test =

({
x

(k)
i,j,test

}
i=1,...,p; j=1,...,ntest

,
{
y

(k)
j,test

}
j=1,...,ntest

)
,

with ntest = |D(k)
test|. We test the performance of the competing algorithms based on

several goodness of fit measures.

Conditional log likelihood is used as a goodness of fit measure of the models
obtained from different algorithms as defined in Definition 4.8.

Order of the models obtained from the vine based algorithms is compared with the
order of the nodes in the vine copula from which the data was simulated. The order
of a C- or D-vine model is defined in Definition 4.5.

Out of sample mean square error (OMSE) Given an estimated quantile re-
gression model Ĉ, its OMSE is computed as

OMSE(Ĉ, α) =

1

r

r∑
k=1

[
1

ntest

ntest∑
j=1

(
q̂α(x

(k)
1,j,test, . . . , x

(k)
p,j,test)− qα(x

(k)
1,j,test, . . . , x

(k)
p,j,test)

)2
]
,

where q̂α is the α-level prediction function of the quantile regression model Ĉ and
qα is the true quantile function.
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In sample mean square error (IMSE) Given an estimated quantile regression
model Ĉ, its IMSE is computed as

IMSE(Ĉ, α) =

1

r

r∑
k=1

[
1

ntrain

ntrain∑
j=1

(
q̂α(x

(k)
1,j,train, . . . , x

(k)
p,j,train)− qα(x

(k)
1,j,train, . . . , x

(k)
p,j,train)

)2
]
,

where q̂α is the α-level prediction function of the quantile regression model Ĉ and
qα is the true quantile function.

Computational time of the estimation procedures of every algorithm are com-
pared.

All computations in the following case studies are conducted using the statistical
language R. The one step ahead forward selection of D-vine regression models is
already implemented in the library vinereg. For the purpose of the following case
studies we developed special libraries for both the two step ahead and one step
ahead C- and D-vine algorithms, following their corresponding definitions from Sec-
tions 5.1 and 5.2. The linear quantile regression implementation can be found in the
package quantreg.
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Chapter 8

Simulation studies

8.1 Case Study I: D-vine regression models

In the first case study, we sample a data set D of n = 400 data points from a random
vector (V, U1, . . . , U20) following a 21-dimensional D-vine copula distribution C21 with
order

O (V, U1, U2, U3, . . . U20, U21) . (8.1)

To make sure there is significant dependence between the response variable and the
predictors we define the following pair copulas of the D-vine C21

Pair copula Family Kendall’s τ
CV,U1 Frank 0.7
CV,U2;U1 Clayton 0.7
CV,U3;U2,U1 Gumbel 0.7
CV,U4;U3,U2,U1 Frank 0.3
CV,U5;U4,U3,U2,U1 Clayton 0.5
CV,U6;U5,U4,U3,U2,U1 Clayton 0.4
CV,U7;U6,U5,U4,U3,U2,U1 Frank 0.4

Table 8.1: Pair copulas defining the dependence between the response and the first
seven predictors.

For the dependence in-between the first ten predictors of the order, the pair copu-
las were sampled from a set of families containing the Clayton, Gumbel and Frank
copula with parameters corresponding to Kendall’s τ between 0.2 and 0.6, except
the pair copulas already defined in Table 8.1 . All other pair copulas were sampled
from a set containing Gaussian copulas with τ < 0.15 and the independence copula.
These choices were maintained for all replications

After obtaining the data set D we split it into a training set, Dtrain and a testing
set, Dtest, of sizes 300 and 100, respectively. In this case study, we employ the four
algorithms developed in Chapter 7 and linear quantile regression from Section 3.3.
All algorithms, from Chapter 7, were set to choose a model from the D-vine quantile
regression class D21 and include all possible predictors. The bivariate pair copula
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selection criteria is set to maximum log likelihood and no penalization on the condi-
tion log likelihood is used. The number of candidates for the two step ahead forward
selection is set to k = 5 and the batch size for the maximum and average batch
method is b = 5. All together r = 20 replication of case study one were run with
seeds from 1 to 20 and all the results are averaged over the 20 iterations.

In Figure 8.1, a pairs plot is given of the train data set D
(9)
train, where k indicates the

number of iteration and the seed number, as they are the same.

Figure 8.1: Pairs copula plot between the response and the predictors U1, . . . , U7

of data set D
(9)
train, with contour plots of the pair copulas, Kendall’s tau values and

u-plots.
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First, we look at the conditional log likelihood of the four competing algorithms for
D-vine quantile regression. The cll of each individual model is computed at each of
the 20 iterations and an average is provided in Table 8.2. A higher value of the cll
indicates a better fit of the model.

Algorithm D − A1 D − A2 D −Bmax D −Bavg
Max cll 537.98 778.45 738.11 549.11
Min cll 416.68 524.88 424.76 399.89

Mean cll 495.85 695.68 589.80 485.75
Standard deviation of cll 33.06 60.26 120.94 41.26

Table 8.2: cll statistics of Algorithms 1-4 from Case study I.

From Table 8.2 we can see that in this set up, regarding the conditional log likeli-
hood, the two step ahead forward selection algorithm, labeled D − A2, has shown
the best result. We see that the D−A2 algorithm has on average the greatest cll as
well as the greatest maximal and greatest minimal cll over the 20 iterations. For the
other algorithms, the batch maximal algorithm has the next best cll statistic. The
worst models, regarding the cll are the one step ahead forward selection and the
batch average algorithm. Regarding the standard deviations of the conditional log
likelihoods, the algorithms D−A1, D−A2 and D−Bavg showed small values and
are consistently achieving a similar cll on average. Algorithm D − Bmax showed a
considerably bigger standard deviation than the other three algorithms and never-
theless, scored a better cll statistics than two of the tree more stable algorithms.

The AIC penalized cll values show a similar behavior as the cll. From Table 8.3 we
see that, according to the AIC penalized cll values as the goodness of fit measure,
the two step ahead forward selection has delivered the best performing models. For
the cllAIC , smaller values indicate better performing models. One additional inter-

Algorithm D − A1 D − A2 D −Bmax D −Bavg
Max cllAIC -181.35 -398.38 -177.25 -133.35
Min cllAIC -441.35 -894.07 -809.84 -437.64

Mean cllAIC -336.20 -721.13 -511.68 -298.68
Standard deviation of cllAIC 70.47 119.89 247.84 84.92

Table 8.3: cllAIC statistics of Algorithms 1-4 from Case study I.

esting thing is that according to both measures the batch maximum algorithm was
able to provide some of the best performing fits in certain iterations, while in other
iterations it delivered some of the worst models. With best and worst performing
models we refer to the models with highest and lowest cll values. The one step ahead
algorithm and the batch average algorithm were not able to find these fits, as can
be seen from the maximum and minimum cll and cllAIC values in Tables 8.2 and

79



8.3.

Next, we look at the order of the estimated D-vine regression models obtained from
algorithms 1-5, respectively. We know from the underlying distribution that the pre-
dictors U1, U2, U3 have an approximate dependence on V of 0.75, in terms of Kendall
tau values, and thus, should be included relatively early in the order of a good fit.
Additionally, U1, U2, U3 are the next connecting nodes to V in the true underlying
D-vine tree sequence, which is also an indicator of strong dependence and predicting
power. The next of importance, considering the same criteria as for U1, U2, U3, is the
group U4, U5, U6, U7. To asses how good the order of each fit is, we will count for
each algorithm how many times the group G1 = (U1, U2, U3) was within the first 3
elements of the true order, given in equation (8.1), for each iteration. For the group
G2 = (U4, U5, U6, U7) we will count how many times the members of G2 are among
the first 7 predictors in the order obtained by the algorithms. Additionally, we count
the number of times the true order of the underlying D-vine tree sequence of C21,
i.e. (V, U1, U2, . . . , U19, U20), has been reproduced by the models up to the first 3
elements. Finally, the number of different orders on the first 4, 5 and 6 predictors of
the models has been counted.

Algorithm D − A1 D − A2 D −Bmax D −Bavg
G1 among first 3 predictors 14 20 15 19
G2 among first 7 predictors 12 6 6 1

# misspecified first predictors 20 2 9 20
# of true orders < 3 predictors 0 2 8 0
# of true orders > 3 predictors 0 16 3 0

Different orders up to 4 4 5 8 5
Different orders up to 5 12 9 13 7
Different orders up to 6 13 15 18 17

Table 8.4: Order statistics of the fits obtained from Algorithms 1-4 from Case study
I.

Considering only the first 7 elements from the orders of the fitted models is moti-
vated by two reasons. First, from the underlying D-vine distribution of the simulated
data we know that only 7 of the 20 possible predictors have a significant dependence
with the response. The second source of motivation comes from Definition 4.8, which
defines a split of the cll into summands of log likelihoods of the conditional distri-
butions cV |U1,...,Ui for i = 1, . . . 20. As an example, the cll of the two step ahead
model from iteration 14 can be split up into log likelihoods of the corresponding
pair copulas as

cll(M
(14)
D−A2) = 208.95 + 180.68 + 154.15 + 155.56 + 12.26 + 12.37 + 17.48 + 2.38 + . . .
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where the first summand corresponds to the log likelihood of the conditional distri-
bution cV |U1 , the second to the log likelihood of cV |U1,U2 and so on, details can be
found in Table B.1. In this particular example, the first 8 log likelihoods contributed
to over 97% of the total 752.12 cll. A similar behavior is seen across all models in
this set up which indicates that most models are giving the highest weight to the
first few predictors chosen in the order. Since the predictors after the seventh or
eight place in the order have no significant effect on the cll for most models, we can
conclude that there is almost no information loss when considering only the first
seven predictors of the order of each model.

Additionally, the orders of the fitted models also indicate how consistent the algo-
rithm is. Similar orders reproduced many times in the iterations are a strong sign
that the algorithm is very consistent. From Table 8.4 we see that for the first 4 pre-
dictors all algorithms have only 4 or 5 different orders, except the batch maximum
algorithm which had already 8 different orders on the four predictors. Further, from
Table 8.4 we see that all algorithms have included almost every time the predic-
tors of group G1 as the first three predictors in the models. Thus, all algorithms
are very consistent in including the most important predictors into the models very
early and therefore giving them the greatest importance in the model. The orders
between algorithms were very different, but for a given algorithm and for the first
four predictors the orders of the obtained models were consistent and had minimal
variation. Next, the order of the nodes in the first tree of the underlying D-vine
distribution is compared to the order of predictors in the obtained models. The one
step ahead regression model did not match the true order at any iteration due to the
fact that either U2 or U3 was chosen as the first predictor of the order. On the other
hand, the two step ahead matched the order of the first 5 predictors to the true
order in 12 out of the 20 iterations. The batch algorithms have more inconsistencies
in their orders, which was expected due to the additional randomness added in the
estimation procedure. For further analysis, the first seven elements of the orders
from the models in each iteration together with additional summary statistics are
given in Appendix B.

We conclude the analysis of the order, by considering the relationship between the
order of a model and its conditional log likelihood. From the summary statistics of
the batch maximum algorithm from Table B.3, which had the biggest variations in
terms of order and cll, we see that the models of iterations 1, 3, 7, 11, and 17 had
the correct order of the first five predictors and their cll was over 700. On the other
hand, the models at iterations 4, 8, 13, and 19 have more deviating orders than the
true order and a cll of below 500. Similar trends can be observed in other algorithms
as well. The two step ahead algorithm has the most accurate orders and the best
cll. Additionally, the best cll’s were achieved in models with correct order on more
than five predictors.

After the order, we now take a look at the out of sample mean square error (OMSE)
and the in sample mean square error (IMSE). The OMSE characterizes how well
the model predicts on new data sets with the same distribution as the training data.
To calculate the OMSE for the specific models we use the test set Dtest and the
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formula defined in Chapter 7. The IMSE is computed on the training set Dtrain and
characterizes how well the model has fitted the training data. Tables 8.5 and 8.6
give the OMSE and IMSE for the competitor models.

α 0.05 0.1 ytrue 0.9 0.95
D − A1 0.0635 0.0445 0.0208 0.0528 0.0727
D − A2 0.0182 0.0128 0.0052 0.0125 0.0182
D −Bmax 0.0452 0.0317 0.0140 0.0349 0.0491
D −Bavg 0.0711 0.0501 0.0222 0.0543 0.0765
QLin 0.0250 0.0251 0.0254 0.0258 0.0259

Table 8.5: Out of sample mean square errors.

α 0.05 0.1 ytrue 0.9 0.95
D − A1 0.1744 0.1205 0.0506 0.1287 0.1826
D − A2 0.0476 0.0326 0.0132 0.0353 0.0519
D −Bmax 0.1273 0.0872 0.0340 0.0929 0.1335
D −Bavg 0.2063 0.1414 0.0544 0.1427 0.2048
QLin 0.0636 0.0638 0.0646 0.0655 0.0658

Table 8.6: In sample mean square errors.

The OMSE and IMSE are evaluated at the values α = 0.05, 0.1, 0.5, 0.9, 0.95. Assume
predicted q0.5 as a prediction of ytrue. For α = 0.5 the true values of the response
in the test data set were used, while for the other values of α the quantiles were
estimated from the test set and the known true underlying distribution. The smaller
the value of either the OMSE or the IMSE indicates a better performance on the
respective data set.

The values of the OMSE and IMSE from Tables 8.5 and 8.6 indicate that the two
step ahead model performs the best in both, predicting the response of the test set,
as well as fitting the training set. Linear regression had the second best score, while
the next best scores were from the one step ahead algorithm and the batch maximum
algorithm. For the D-vine copula based approaches there is again a relationship be-
tween the measures of the obtained models. Namely, the summary statistics from
Table B.1 shows that for the two step ahead algorithms, the estimated models at
iterations 1, 10, 14 and 19 showed the best OMSE and IMSE scores among the mod-
els from the 20 iterations. Further, they were also among the best performing cll
and cllAIC models, while also estimating the true order up to at least five predictors
correctly. On the other hand, the worst OMSE and IMSE scores were obtained by
models 2 and 15, which were also the two lowest scoring models according to cll,
cllAIC and order. Tables B.2, B.3 and B.4 show the same behavior for the models
independently of the applied algorithm.
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Finally, in order to better compare the OMSE and IMSE score of the competitor
methods relative to two step ahead forward selection we also consider the relative
out of and in sample mean square error of algorithm A, defined as

RoMSEA =
OMSEA
OMSE

RiMSEA =
IMSEA
IMSE

,

where OMSE and IMSE represent the OMSE and IMSE score of the two step
ahead algorithm while, OMSEA and IMSEA represent the OMSE and IMSE score
of algorithm A. Values greater than one imply a worse relative performance com-
pared to the two step ahead algorithm

α 0.05 0.1 ytrue 0.9 0.95
RoMSED−A1 3.489 3.477 3.925 4.224 3.995
RoMSEQLin 1.373 1.961 4.793 2.064 1.423

α 0.05 0.1 ytrue 0.9 0.95
RiMSED−A1 3.664 3.696 3.833 3.646 3.518
RiMSEQLin 1.336 1.957 4.902 1.855 1.268

Table 8.7: RoMSE and RiMSE values for the one step ahead algorithm and linear
quantile regression.

Table 8.7 shows that the two step ahead has performed on average twice better than
quantile linear regression and four times better than the one step ahead algorithm,
both on the test and train data sets.

We conclude the review of the results with a short note on the computational time
of each algorithm. Averaged over the 20 iteration, the following computational times
were recorder

One step ahead Two step ahead Batch algorithms
x.x minutes 5.90 32.19 19.33

Table 8.8: Average computational times given in minutes.

As already discussed in Section 6.1, the much larger computational intensity of the
two step ahead algorithm is expected. The two step ahead algorithm pays a price
for the better fit, being six times slower than the one step ahead approach. The
batch algorithms are considerably faster than the two step ahead algorithm, but
still fail to reach the time of the one step ahead algorithm by far. For the purpose
of obtaining these values the algorithms were run on a commercial machine and can
be drastically reduced if larger computational power is available at hand.
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8.2 Case Study II: C-vine regression models

For the second case study, we sample a data set D of n = 400 data points from a
random vector (V, U1, . . . , U20) following a 21-dimensional C-vine copula distribution
C21 with order

O (V, U1, U2, U3, . . . U20, U21) . (8.2)

To make sure there is significant dependence between the response variable and the
predictors we define the following pair copulas of the C-vine C21

Pair copula Family Kendall’s τ
CV,U1 Clayton 0.8
CV,U2;U1 Gumbel 0.8
CV,U3;U2,U1 Joe 0.6
CV,U4;U3,U2,U1 Clayton 0.6
CV,U5;U4,U3,U2,U1 Frank 0.8
CV,U6;U5,U4,U3,U2,U1 Joe 0.6
CV,U7;U6,U5,U4,U3,U2,U1 Frank 0.6

Table 8.9: Pair copulas defining the dependence between the response and the first
seven predictors.

For the dependence in-between the first ten predictors of the order, the pair copulas
were sampled from a set of families containing the Clayton, Gumbel, Joe and Frank
copula with parameters corresponding to Kendall’s τ between 0.4 and 0.7, except
the pair copulas already defined in Table 8.9 . All other pair copulas were sampled
from a set containing Gaussian copulas with τ < 0.3 and the independence copula.

After obtaining the data set D we split it into a training set, Dtrain and a testing
set, Dtest, of sizes 300 and 100, respectively. In this case study, we employ the four
algorithms developed in Chapter 7 and linear quantile regression from Section 3.3.
All algorithms, from Chapter 7, were set to choose a model from the C-vine quantile
regression class C21 and include all possible predictors. The number of candidates
for the two step ahead forward selection is set to k = 5 and the batch size for
the maximum and average batch method is b = 5. Again, no cll penalization was
used, however the bivarite copula selection criteria is set to BIC for the two step
ahead models, and log likelihood for the one step ahead model. All together r = 20
replication of case study one were run with seeds from 1 to 20 and all the results
are averaged over the 20 iterations.

We give a pairs plot of the train data set D
(9)
train in Figure 8.2.
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Figure 8.2: Pairs copula plot between the response and the predictors U1, . . . , U7

of data set D
(9)
train, with contour plots of the pair copulas, Kendall’s tau values and

u-plots.

As in case study one, we first look at the cll and AIC penalized cll values of the
estimated models. Tabels 8.10 and 8.11 give a summary of the cll and cllAIC values
averaged over the 20 iterations for each of the algorithms.
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Algorithm C − A1 C − A2 C −Bmax C −Bavg
Max cll 1731.62 1073.44 1085.65 1095.93
Min cll 1211.98 959.02 890.89 990.18

Mean cll 1338.40 1020.93 1003.81 1034.66
Standard deviation of cll 118.96 26.32 48.66 28.11

Table 8.10: cll statistics of Algorithms 1-4 from Case study II.

Algorithm C − A1 C − A2 C −Bmax C −Bavg
Max cllAIC -1795.95 -1743.44 -1580.02 -1809.76
Min cllAIC -2821.24 -1959.87 -1991.05 -1998.84

Mean cllAIC -2026.30 -1861.22 -1822.28 -1893.09
Standard deviation of cllAIC 237.31 49.92 100.82 51.70

Table 8.11: cllAIC statistics of Algorithms 1-4 Case study II.

For the cll higher values indicate a better fit, while for the cllAIC lower values indicate
a better fit. Both goodness of fit statistics indicate that the best model comes from
the one step ahead algorithm. From Tables 8.10 and 8.11 we see that by far the
best values were achieved by the one step ahead algorithm, while the other three
algorithms had approximately the same values in both statistics.

Next, as in case study one, we look at the order of the estimated models. We check
how consistent the orders of the models are and how close the estimated orders came
to the true order given in equation (8.2). Again, we look only at the order of the
first seven included predictors, since we expect this seven predictors to be again the
most influential. From the definitions of the pair copulas between the response and
the first seven predictors of the true order, we see that the predictors U1, U2, U5 have
the strongest dependence with the response. The next predictors in line, according
to dependence, are U3, U4, U6, U7, while the other predictors have comparably small
dependence with the response.

When it comes to the true order, in this case study, all four algorithms could not
estimate the true order after the second or third predictor. All algorithms constantly
include U1 as the first predictor of the order. The two step ahead algorithms included
U5 as the second predictor most of the time, while the one step ahead algorithm has
managed to fit the correct order up to the third predictor in about 50% of the
iterations.
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Algorithm C − A1 C − A2 C −Bmax C −Bavg
Different orders up to 3 2 5 12 2
Different orders up to 4 2 8 17 4
Different orders up to 5 6 13 18 10

Table 8.12: Order statistics of the fits obtained from Algorithms 1-4 from Case study
II.

Table 8.12 shows the number of different orders up to 3, 4 and 5 predictors for the
20 models obtained through the 20 iterations of one algorithm. It is apparent that
the most consistent orders are obtained by the one step ahead algorithm. Up to 5
predictors, only 6 different orders were estimated in the 20 iterations. The next best
two models were the two step ahead algorithm and the batch average, while the
batch maximum, as expected due to the randomness, did by far the worst.

We conclude the discussion about the order by looking if we can find the same
relationship between the correct order and the cll, as showed in case study one.
Since the two step ahead based algorithms showed almost no standard deviation in
the cll we look only at the one step ahead algorithm. From Table B.7 we see that
the best cll performing models, 13, 14, 16 and 18, had also an order very close to the
true order. However, due to the inconsistent order estimates and the small variation
of the cll we can neither confirm nor deny any correlation.

After the order, we now take a look at the out of sample mean square error (OMSE)
and the in sample mean square error (IMSE). Again, as in case study one, the OMSE
and IMSE are evaluated at the values α = 0.05, 0.1, 0.5, 0.9, 0.95. For α = 0.5 the
true values of the response in the test data set were used, while for the other values
of α the quantiles were estimated from the test set and the known true underlying
distribution. The smaller the value of either the OMSE or the IMSE indicates a
better performance on the respective data set. Tables 8.13 and 8.14 give the OMSE
and IMSE for the competitor models.

α 0.05 0.1 ytrue 0.9 0.95
C − A1 0.0496 0.0483 0.0464 0.0468 0.0471
C − A2 0.0326 0.0307 0.0280 0.0341 0.0369
C −Bmax 0.0474 0.0444 0.0358 0.0309 0.0307
C −Bavg 0.0302 0.0287 0.0262 0.0284 0.0294
QLin 0.0371 0.0371 0.0371 0.0371 0.0371

Table 8.13: Out of sample mean square errors.
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α 0.05 0.1 ytrue 0.9 0.95
C − A1 0.1490 0.1450 0.1374 0.1387 0.1395
C − A2 0.0982 0.0930 0.0867 0.1024 0.1101
C −Bmax 0.1514 0.1403 0.1123 0.0959 0.0957
C −Bavg 0.0953 0.0904 0.0817 0.0867 0.0899
QLin 0.1166 0.1166 0.1166 0.1166 0.1166

Table 8.14: In sample mean square errors.

The values of the OMSE and IMSE from Tables 8.13 and 8.14 indicate that the
two step ahead algorithm and the batch average algorithm performed the best in
predicting the response of the test set, as well as fitting the training set. The second
best score was obtained by the linear quantile regression algorithm, while the batch
max and one step ahead algorithms were the worst according to both OMSE and
IMSE scores.

The OMSE and IMSE are contradicting the cll statistics on which model performed
the best. According to both OMSE and IMSE, the two step ahead and batch average
algorithms have performed much better than the one step ahead algorithm, despite
having considerably smaller conditional log likelihoods. This indicates that the one
step ahead algorithm may have over-fitted the models despite the cllAIC from Table
8.11 do not indicate over-fitting. To further investigate whether the one step ahead
algorithm over-fitted the data we take a look at the BIC penalized conditional log
likelihood, cllBIC , of the models.

Algorithm C − A1 C − A2 C −Bmax C −Bavg
Max cllBIC -568.29 -1420.12 -1206.39 -1493.85
Min cllBIC -1632.32 -1613.54 -1657.25 -1659.39

Mean cllBIC -821.64 -1526.71 -1479.07 -1566.72
Standard deviation of cllBIC 237.86 48.98 110.15 48.77

Table 8.15: cllBIC statistics of Algorithms 1-5 for Case study II.

With the cllBIC the same rule applies as with the cllAIC , smaller values of the cllBIC
indicate a better fit. From the cllBIC of Table 8.15 we see now a completely different
trend than with the cllAIC . According to the BIC penalized log likelihood the two
step ahead algorithms performed significantly better than the one step ahead algo-
rithm. The best two algorithms according to the cllBIC were, as also indicated by the
OMSE and IMSE, the batch average algorithm and the two step ahead algorithm.
On the other hand, the cllBIC indicates that the one step ahead algorithm has over-
fitted the models significantly. The one step ahead algorithm had an approximately
two times smaller cllBIC than the other algorithms, while it had by far the best cll.
The hypothesis that the one step ahead algorithm is over-fitting the data in this
case study is supported by the relatively bad OMSE and IMSE scores.
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The over-fitting indicated for the one step ahead algorithm in comparison to the two
step ahead algorithms is partially coming from the different pair copula selection
criteria. The one step ahead was set to fit the pair copulas based on the log likelihood,
while the two step ahead algorithms were fitting the pair copulas using the BIC
criteria. Note that here only the pair copula selection was penalized by the BIC and
not the cll.

Again we conclude the review of the results with a short note on the computational
time of each algorithm. Averaged over the 20 iteration, the following computational
times were recorded

One step ahead Two step ahead Batch algorithms
x.x minutes 5.55 30.64 18.46

Table 8.16: Average computational times given in minutes.

We see almost the same computational times as in Table 8.16 for case study one,
which was also expected since there is not much difference in estimating C- and
D-vines.
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8.3 Summary of results

The main focus of our simulation study is examining the performance of the newly
introduced two step ahead algorithm compared to other methods. In the simula-
tion study from Kraus and Czado (2017), they have shown that the one step ahead
forward selection of D-vine quantile regression is usually more accurate than other
benchmark methods. Therefore, we use the one step ahead algorithms for C- and
D-vine models as the primary benchmark. As an additional reference we consider
the linear quantile regression defined in Section 3.3.

In case study one, the two step ahead algorithm shows a consistently better per-
formance than both, the one step ahead algorithm and linear quantile regression,
with regard to all goodness of fit measures. Even more, the one step ahead algorithm
performed worse than linear quantile regression based on the OMSE and IMSE mea-
sures. Kraus and Czado (2017) note that on specific data sets it can happen that the
one step ahead algorithm does not over perform linear quantile regression due to the
greedy selection procedure. In case study one, we encountered a similar situation
where the one step ahead algorithm failed to match the true order of predictors,
specifically because of the greedy estimation approach. The predictors U2 and U3

were chosen over U1 as the first predictor based on the one step ahead extension,
despite the fact that models having U1 as the first predictor have a significantly
better overall fit. The two step ahead algorithm avoids this problem by taking into
account the two step ahead extension and therefore, it recognizes the better overall
fits.

In case study two, the one step ahead algorithm showed a better cll than the two
step ahead algorithm. However, it failed to reproduce the same result when taking
into account the cllBIC and the OMSE. This is due to the fact that the one step
ahead algorithm over-fitted the data and therefore, produced a better cll score, while
it failed to estimate the response on the testing set as good as the other methods.
The over-fitting did not occur within the two step ahead algorithm due to using the
BIC penalization for pair copula estimations. Taking into account the over-fitting
of the one step ahead algorithm, again the two step ahead algorithm performs sig-
nificantly better than both benchmark algorithms. This is supported by the vastly
better cllBIC , IMSE and OMSE scores.

Considering the orders of the estimated models, both the one step ahead algorithm
and the two step ahead algorithm are very consistent in including the ”best” predic-
tors very early in the order. Additionally, the small number of different orders, when
considering only the first few covariates which have a significant influence of the fit,
shows that the algorithms tend to give approximately the same output models for
data following the same distribution.
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The batch algorithms showed significant inconsistencies between the output models.
In both case studies they managed to find the best fits on several occasions, but also
some of the worst fits were given by the batch algorithms. However, such results are
expected due to the small batch size and relatively small number of predictors.

Finally, we conclude that the two step algorithm performs significantly better then
both benchmark algorithms, for both C- and D-vines.
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Part IV

Conclusion
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In this master thesis, we are concerned with the development of new models for
quantile regression. Given the shortfalls and the strict assumptions of linear quan-
tile regression, we are introducing new methods for vine copulas based quantile
regression.

Building upon the ideas in Kraus and Czado (2017), we propose an algorithm which
allows for more flexibility and which in particular is less greedy, given the intention
to obtain a globally optimal D-vine fit. The already existing algorithm builds the
D-vine step by step, starting with an empty vine consisting of only the response
variable on the u-scale, V , and in each step is adding one of the predictors to the
tree so that the model fit of the one-step-ahead vine is improved the most. In our
newly proposed algorithm we also sequentially build the vine, but based on the
model fit in the next two trees, which is the main idea of the less greedy approach.
To make the vine based quantile regression even more flexible in estimating depen-
dence structures, we extend both approaches to include the class of C-vine copulas.
To unify the approaches for both C- and D-vines, new theoretical concepts of C- and
D-vine quantile regression classes are introduced. Further, to make the derivation
of conditional distribution functions in the set up of quantile regression tractable,
we defined the concept of orders on C- and D-vine quantile regression classes. Ad-
ditionally, detailed illustrations of both the one step ahead and the two step ahead
algorithms for C- and D-vine copulas are provided.

The two step ahead algorithm being less greedy comes with the price of a higher
computational complexity. Section 6.1 provides an extensive discussion on this topic
and comparisons of computational times for the two vine copula based approaches
are given. Furthermore, to adapt the two step ahead algorithm for large data sets
two new stochastic versions of the algorithm are introduced.

Finally, all new methods are put to a test in a simulation study. The new methods
are compared to the already existing one step ahead D-vine algorithm and linear
quantile regression. The simulation study has shown a significant improvement when
using the two step ahead algorithm compared to the one step ahead algorithm. Kraus
and Czado (2017) note in their simulation study that the one step ahead algorithm
is usually more accurate then other benchmark methods. However, they also indi-
cate the possibility of the one step ahead algorithm to fail in certain conditions due
to the greedy selection procedure. Case study one shows that the two step ahead
algorithm can improve the fit significantly also in such conditions.

In addition to developing the theoretical background to C- and D-vine based quantile
regression, we implemented all proposed methods in the statistical software R.
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Appendix A

Illustrations on Gaussian data

A.1 Illustration of Algorithm 2 on Gaussian data

In this section, we give a step by step illustration of the algorithm introduced in
Section 5.1 on a simulated 5-dimensional data set. Further, detailed estimates of
pair copulas and their corresponding log likelihoods are provided, as well as the
intermediate optimal models at each step.

Input: We consider a five dimensional data set
(
y(i), x

(i)
1 , x

(i)
2 , x

(i)
3 , x

(i)
4

)T
, i = 1, . . . , 500,

sampled from (Y,X1, X2, X3, X4) ∼ N5 (0,Σ) with

Σ =


1 0.75 0.8 0.2 0

0.75 1 0.4 0.3 0
0.8 0.4 1 0.4 0
0.2 0.3 0.4 1 0
0 0 0 0 1

 . (A.1)

Data preprocessing:

We compute the margins F̂Y and F̂Xj j = 1, . . . , 4 using the kernel smoothing
estimator from Section 4.2. For this we use the function kde1d implemented
in the package kde1d.

With the margins estimated the data is transformed to pseudo copula data(
v̂(i), û

(i)
1 , û

(i)
2 , û

(i)
3 , û

(i)
4

)T
.

Initialization: To model the given data we decide to use a vine copula model from
the C-vine class Cp with p ≤ 4.

Step 1:

First, we estimate the pair copulas CV Uj for j = 1, . . . , 4. For this we use the
function bicop from the package rvinecopulib, using the default selection
criteria for bivariate copula estimation BIC.
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Pair copulas ĈV U1 ĈV U2 ĈV U3 ĈV U4

Family Gauss Gauss Gauss Indep.
Parameter 0.74 0.8 0.22 0

Table A.1: Estimated bivariate copulas with their parameters.

Then, we can compute the conditional log likelihood for the estimated pair
copulas, which in the first step is just the log likelihood of the corresponding
pair copula.

Pair copulas ĈV U1 ĈV U2 ĈV U3 ĈV U4

Conditional log likelihood 201.1717 259.7633 13.17153 0

Table A.2: Conditional log likelihood of the estimated pair copulas.

Since the copula ĈV U2 has the greatest conditional log likelihood we choose U2

as the first predictor to be included in the order. Thus, our estimated C-vine
copula model after the first step is C∗ ∈ C1 with order

O (C∗) = (V, U2) .

Before we continue with the second step, we estimate the pseudo copula data
needed for fitting pair copulas in the second tree.

û
(i)
V |U2

= hV |U2

(
v̂(i)|û(i)

2

)
.

This is done using the function hbicop from the package rvinecopulib.

Step 2:

Now, for j = 1, 3, 4, in order to estimate the conditional log likelihood of the
copulas Cj ∈ C2 with order O (Cj) = (V, U2, Uj) we first have to fit the pair

copulas ĈU2Uj and ĈV Uj ;U2 .

The pair copulas ĈU2Uj have to be estimated in order to obtain the pseudo
copula data

û
(i)
Uj |U2

= hUj |U2

(
û

(i)
j |û

(i)
2

)
.

Then, we can estimate ĈV Uj ;U2 using the pseudo copula data û
(i)
V |U2

and û
(i)
Uj |U2

.

Now, we can calculate the conditional log likelihood of the C-vine models Cj
which are given as

cll (Cj, v̂, (û2, ûj)) = cll (C∗, v̂, (û2)) + l
(
ĈV Uj ;U2

)
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Pair copulas ĈU2U1 ĈV U1;U2 ĈU2U3 ĈV U3;U2 ĈU2U4 ĈV U4;U2

Family Gauss Gauss Gauss Clayton(90) Indep. Indep.
Parameter 0.39 0.78 0.4 0.21 0 0
Log likelihood - 235.7242 8.651463 - 0

Table A.3: Estimated pair copulas in Step 2.

Candidate models C1 C3 C4

Conditional log likelihood 495.4875 268.4148 235.7242

Table A.4: Conditional log likelihood of candidate C-vine models.

Further, we apply the conditional likelihood ratio test 4.12 to the C-vine model
with the greatest conditional log likelihood. That is, we check

cll (Cj, v̂, (û2, ûj))− cll (C∗, v̂, (û2)) > χ2
0.95,1.

Since the model C1 has the greatest conditional log likelihood, it follows that

cll (C1, v̂, (û2, û1))− cll (C∗, v̂, (û2)) = 235.7242 > 3.841459 = χ2
0.95,1.

Thus, it is justified to add U1 to the model.

We update our optimal fit C∗ to the model C1. This means that we add U1 as
the next predictor, thus our estimated C-vine copula model after the second
step is C∗ ∈ C2 with order

O (C∗) = (V, U2, U1) .

Again, we calculate the pseudo copula data needed for the next step,

û
(i)
V |U2,U1

= hV |U1;U2

(
û

(i)
V |U2
|û(i)
U1|U2

)
.

Step 3:

For j = 3, 4, in order to estimate the condition log likelihood of the C-vine
model Cj ∈ C3 with order O (Cj) = (V, U2, U1, Uj) we first have to fit the pair

copulas ĈUjU1;U2 and ĈV Uj ;U2,U1 .

Similarly as in Step 2, the copulas ĈUjU1;U2 are fitted only to obtain the pseudo
copula data

û
(i)
Uj |U2,U1

= hUj |U1;U2

(
û

(i)
Uj |U2
|û(i)
U1|U2

)
,

so that we can estimate ĈV Uj ;U2,U1 with the pseudo data û
(i)
V |U2,U1

and û
(i)
Uj |U2,U1

.

We calculate the conditional log likelihood for the C-vine models Cj
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Pair copulas ĈU3U1;U2 ĈV U3;U2,U1 ĈU4U1;U2 ĈV U4;U2,U1

Family Gumbel Gauss Indep. Indep.
Parameter 1.15 0.53 0 0
Log likelihood - 82.98469 - 0

Table A.5: Estimated pair copulas in Step 3.

Candidate models C3 C4

Conditional log likelihood 578.4722 495.4875

Table A.6: Conditional log likelihood of candidate C-vine models.

Obviously, C3 has the greatest conditional log likelihood. Again, we have to
apply the conditional likelihood ratio test which yields

cll (C3, v̂, (û2, û1, û3))− cll (C∗, v̂, (û2, û1)) = 82.98469 > 3.841459 = χ2
0.95,1.

Thus, it is justified to add U3 to the model.

We update our optimal fit C∗ to the C-vine model C3. Thus, our estimated
C-vine copula model after the third step is C∗ ∈ C3 with order

O (C∗) = (V, U2, U1, U3) .

Calculate the pseudo copula data needed for the next step,

û
(i)
V |U2,U1,U3

= hV |U3;U2,U1

(
û

(i)
V |U2,U1

|û(i)
U3|U2,U1

)
.

Step 4:

At this point only one predictor is remaining. We have to decide whether to
add U4 to the model or not.

The copula ĈV U4;U2,U1,U3 is estimated to be the Independence copula.

Thus, adding U4 to the model will not change the conditional log likelihood
and therefore, we do not include U4 in the model.

Output: The optimal C-vine copula model C∗ ∈ C3, which was last updated at Step
3, with order

O (C∗) = (V, U2, U1, U3) .

The conditional log likelihood of C∗ is 578.4722.
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A.2 Illustration of Algorithm 2 on Gaussian data

In this section, we give a step by step illustration of the algorithm introduced in
Section 5.2 on a simulated 5-dimensional data set. Further, detailed estimates of
pair copulas and their corresponding log likelihoods are provided, as well as the
intermediate optimal models at each step.

Input: We consider the same five dimensional data set
(
y(i), x

(i)
1 , x

(i)
2 , x

(i)
3 , x

(i)
4

)T
,

i = 1, . . . , 500, sampled from (Y,X1, X2, X3, X4) ∼ N5 (0,Σ) with Σ defined as in
equation (A.1).

Data preprocessing: We compute the margins F̂Y and F̂Xj j = 1, . . . , 4 using the
kernel smoothing estimator from Section 4.2. For this we use the function kde1d

implemented in the package kde1d. Then the data is transformed to pseudo copula
data (

v̂(i), û
(i)
1 , û

(i)
2 , û

(i)
3 , û

(i)
4

)T
.

Initialization:

To model the given data we decide to use a vine copula model from the C-vine
class.

The number of candidates k also has to be predefined. We choose k = 2 for
this particular example.

Step 1:

To obtain the candidates in the first step we estimate the Kendall’s tau values
between the response and all possible predictors, denoted by τ̂V Uj for j =
1, . . . 4 based on {

v(i), u
(i)
j |i = 1, . . . , 500

}
.

For this we use the function cor from the package stats.

τ̂V U1 τ̂V U2 τ̂V U3 τ̂V U4

0.5308377 0.5919038 0.1421403 0.02154709

Table A.7: Estimated Kendall’s tau values.

k = 2 predictors with the greatest estimated absolute Kendall’s tau values are
chosen as candidate predictors. In this case, that are U2 and U1, as can be seen
from Table A.7, and the set of candidate indices is then K = {2, 1}.

For c ∈ K the conditional log likelihoods of interest are those of the two step
ahead copulas Cc,j ∈ C2 for j ∈ {1, . . . , 4}\{c} with orderO (Cc,j) = (V, Uc, Uj).
Those cll’s are obtained as

cll (Cc,j, v̂, (ûc, ûj)) = l
(
ĈV Uc , (v̂, ûj)

)
+ l
(
ĈV Uj ;Uc ,

(
ûV |Uc , ûUj |Uc

))
, (A.2)
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where ûV |Uc and ûUj |Uc are the pseudo copula data defined as

ûV |Uc : =hV |Uc (v̂|ûc) and ûUj |Uc : =hUj |Uc (ûj|ûc) .

In order to obtain the desired conditional log likelihoods, equation (A.2) im-
plies that we have to estimate the pair copulas CV Uc and CV Uj ;Uc , because their
log likehoods contribute to the cll. However, we also have to estimate the pair
copulas CUcUj , since they are needed to obtain the pseudo copula data ûUj |Uc
which is used in the estimation of CV Uj ;Uc .

Pair copulas ĈV U2 ĈU2U1 ĈV U1;U2 ĈU2U3 ĈV U3;U2 ĈU2U4 ĈV U4;U2

Family Gauss Gauss Gauss Gauss Clayton(90) Indep. Indep.
Parameter 0.8 0.39 0.78 0.4 0.21 0 0
Loglik 259.7633 - 235.7242 - 8.651463 - 0

Table A.8: Estimated pair copulas for c = 2.

Pair copulas ĈV U1 ĈU1U2 ĈV U2;U1 ĈU1U3 ĈV U3;U1 ĈU1U4 ĈV U4;U1

Family Gauss Gauss Gauss Gumbel Indep. Indep. Indep.
Parameter 0.74 0.39 0.83 1.24 0 0 0
Loglik 201.1717 - 294.317 - 0 - 0

Table A.9: Estimated pair copulas for c = 1.

The log likehoods of the copulas CUcUj were omitted since they are not con-
tributing to the cll of the models.

Following equation (A.2) we calculate the conditional log likelihoods of the
two step ahead vine models

Candidate predictor U2 U1

Candidate models C2,1 C2,3 C2,4 C1,2 C1,3 C1,4

cll 495.4875 268.4148 259.7633 495.4887 201.1717 201.1717

Table A.10: Conditional log likelihood of the candidate models.

Since the greatest cll is associated with the candidate model C1,2, the corre-
sponding candidate predictor, U1, is added first to the C-vine model. Conse-
quently, the current optimal fit C∗ ∈ C1 is the C-vine model with order

O (C∗) = (V, U1) .

The cll of C∗ is 201.1717.
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Step 2:

In the second step, the candidates are obtained using the empirical partial
correlations. Namely, we choose the k = 2 candidates based on |ρ̂V,Uj ;U1| for
j = 2, 3, 4.

ρ̂V,U2;U1 ρ̂V,U3;U1 ρ̂V,U4;U1

0.8118951 -0.02416175 -0.01078996

Table A.11: Estimated partial correlations .

The partial correlations are calculated using the function pcor from the pack-
age ppcor.

Since U2 and U3 have the greatest absolute partial correlations with V , they
are the candidate predictors at step two and the set of candidate indices is
consequently K = {2, 3}.

The conditional log likelihoods of interest now are those of the two step
ahead models Cc,j for c ∈ K and j ∈ {2, 3, 4} \ {c}, with order O (Cc,j) =
(V, U1, Uc, Uj). The cll’s of interest are then calculated as

cll (Cc,j, v̂, (û1, ûc, ûj)) = cll (C∗, v̂, (û1)) + l
(
ĈV Uc;U1 ,

(
ûV |U1 , ûUc|U1

))
+ l
(
ĈV Uj ;U1,Uc ,

(
ûV |Uc;U1 , ûUj |Uc;U1

))
,

(A.3)

where the pseudo copula data is obtained as

ûV |U1 : =hV |U1 (v̂|û1) , ûUc|U1 : =hUc|U1 (ûc|û1) , ûUj |U1 : =hUj |U1 (ûj|û1) ,
(A.4)

and

ûV |Uc;U1 : =hV |Uc;U1

(
ûV |U1|ûUc|U1

)
, ûUj |Uc;U1 : =hUj |Uc;U1

(
ûUj |U1|ûUc|U1

)
.

(A.5)

In order to be able to estimate the pseudo copula data from equation (A.4),
(A.5) and consequently the cll, the pair copulas associated with the h− func-
tions need to be estimated. Namely, the associated pair copulas with the h-
functions of equation (A.4) are CV U1 , CUcU1 and CUjU1 , respectively. The as-
sociated pair copulas with the h-functions of equation (A.5) are CV Uc;U1 and
CUcUj ;U1 , respectively.

Additionally, also the pair copulas whose log likelihood contributes to the cll
need to be estimated. Those pair copulas are CV Uj ;U1,Uc and CV Uc;U1 , as can be
seen from equation (A.3).
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Pair copulas ĈV U2;U1 ĈU2U3;U1 ĈV U3;U1,U2 ĈU2U4;U1 ĈV U4;U1,U2

Family Gauss Gauss Gauss Indep. Indep.
Parameter 0.83 0.3 -0.53 0 0
Loglik - 82.83771 - 0

Table A.12: Estimated pair copulas for c = 2.

Pair copulas ĈV U3;U1 ĈU3U2;U1 ĈV U2;U1,U3 ĈU3U4;U1 ĈV U4;U1,U3

Family Indep. Gauss Gauss Indep. Indep.
Parameter 0 0.3 0.88 0 0
Loglik 0 - 376.1752 - 0

Table A.13: Estimated pair copulas for c = 3.

The pair copulas CV U1 , CUcU1 and CUjU1 are already estimated in step 1 and
can be found in the Table A.9. The pair copulas which need to be additionally
estimated are given in the following tables.

The conditional log likelihood of the two step ahead models are calculated and
given as:

Candidate predictor U2 U3

Candidate models C2,3 C2,4 C3,2 C3,4

cll 578.3264 495.4887 577.3469 201.1717

Table A.14: Conditional log likelihood of the candidate models.

The greatest cll is associated with the candidate model C2,3. Thus, we check
whether updating the current optimal fit C∗ ∈ C1 with order O (C∗) = (V, U1)
to C2 ∈ C2 which will have order O (C2) = (V, U1, U2) will increase the cll
significantly. Namely, we employ the conditional log likelihood ratio test, and
since

cll (C2, v̂, (û1, û2))− cll (C∗, v̂, (û1)) = 294.317 > 3.841459 = χ2
0.95,1,

we reject H0 at level 0.05. Thus, updating the optimal fit to C2 will improve
the model fit significantly.

The current optimal fit C∗ is updated to C∗ ∈ C2 with order

O (C2) = (V, U1, U2) .

The cll of C∗ is 495.4887.
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Step 3:

Now, only two more possible predictors are left, and since the number of possi-
ble predictors is less or equal to k, we do not calculate the partial correlations.
Instead, we take all remaining possible predictors as candidates. Thus, now
K = {3, 4}.

The conditional log likelihoods of interest now are those of the two step
ahead models Cc,j for c ∈ K and j ∈ {3, 4} \ {c}, with order O (Cc,j) =
(V, U1, U2, Uc, Uj). The cll’s of interest are then calculated as

cll (Cc,j, v̂, (û1, û2, ûc, ûj)) = cll (C∗, v̂, (û1, û2))

+ l
(
ĈV Uc;U1,U2 ,

(
ûV |U2;U1 , ûUc|U2;U1

))
+ l
(
ĈV Uj ;U1,U2,Uc ,

(
ûV |Uc;U1,U2 , ûUj |Uc;U1,U2

))
,

where

ûV |U2;U1 : =hV |U2;U1

(
ûV |U1|ûU2|U1

)
, ûUc|U2;U1 : =hUc|U2;U1

(
ûUc|U1|ûU2|U1

)
and

ûV |Uc;U1,U2 : =hV |Uc;U1,U2

(
ûV |U2;U1|ûUc|U2;U1

)
,

ûUj |Uc;U1,U2 : =hUj |Uc;U1,U2

(
ûUj |U2;U1|ûUc|U2;U1

)
.

The pair copulas that are not estimated in the first two steps, and the pair
copulas that will be contributing to the cll’s are given in the table below.

Candidate predictor U3 U4

Candidate models C3,4 C4,3

Pair copulas ĈU4U3;U1,U2 ĈV U3;U1,U2 ĈV U4;U1,U2,U3 ĈV U4;U1,U2 ĈV U3;U1,U2,U4

Family Indep Gauss Indep. Indep. Gauss
Parameter 0 -0.53 0 0 -0.53
Loglik. - 82.83771 0 0 82.83771
Conditional loglik. 82.83771 82.83771

Table A.15: Estimated pair copulas and conditional log likelihoods.

From Table A.15 we see that both candidate predictors have the same maximal
cll among their respective candidate models. Thus, we choose the candidate
with the best cll at the one step ahead model. Comparing CV,U3;U1,U2 and
CV,U4;U1,U2 , we see that the copula CV,U4;U1,U2 is estimated to be the Indepen-
dence copula, and thus we choose CV,U3;U1,U2 . In this case, the chosen candidate
then becomes U3.
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Before we add U3 to the model, we employ the conditional log likelihood ratio
test. Namely, we check whether updating the current optimal fit C∗ ∈ C2

with order O (C∗) = (V, U1, U2) to C3 ∈ C3 which will have order O (C3) =
(V, U1, U2, U3) will increase the cll significantly. Since

cll (C3, v̂, (û1, û2, û3))− cll (C∗, v̂, (û1, û2)) = 82.83771 > 3.841459 = χ2
0.95,1,

we reject H0 at level 0.05. Thus, updating the optimal fit to C3 will improve
the model fit significantly.

The current optimal fit C∗ is updated to C∗ ∈ C3 with order

O (C3) = (V, U1, U2, U3) .

The cll of C∗ is 578.3264.

Step 4:

At this point only one predictor is remaining. Thus, we can not calculate any
two step ahead cll’s and the only thing left is to decide whether to add U4 to
the model or not.

The copula ĈV U4;U1,U2,U3 is estimated to be the Independence copula.

Thus, adding U4 to the model will not change the conditional log likelihood
and therefore, we do not include U4 in the model.

Output: The optimal C-vine copula model C∗ ∈ C3 which was last updated at Step
3 and has order

O (C∗) = (V, U1, U2, U3) .

The conditional log likelihood of C∗ is 578.3264.
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Comment:
The two illustrations on Gaussian data reveal that if the underlying model is close to
a mutlivariate gaussian copula there is no big difference in conditional log likelihoods
of the models obtained from Algorithm 1 (”Forward selection of C- and D-vine
quantile regression models” Section 5.1) and Algorithm 2 (”Two step ahead forward
selection of C- and D-vine quantile regression models” Section 5.2). Algorithm 1
fitted a C-vine model

CAG1 ∈ C3, with order O (CAG1) = (V, U2, U1, U3) and cll (CAG1) = 578.4722,

while Algorithm 2 fitted a model with

CAG2 ∈ C3, with order O (CAG2) = (V, U1, U2, U3) and cll (CAG2) = 578.3264.

There is almost no difference between the conditional log likelihoods of the two fits.
Despite the fact that their order is different both models are almost identical in
performance, since on Gaussian data the order of predictors in the model is less
important and with the two step ahead approach of Algorithm 2 there is no room
for much improvement. The difference in conditional log likelihoods is due to an
estimation error.
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Appendix B

Results from the simulation study

B.1 Case study I results

The following tables provide the order of the estimated models up to 7 predictors,
the cll, cllAIC , the IMSE for α = 0.5 and the OMSE for α = 0.1, 0.5, 0.9 for each
iteration.
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id order cll cllAIC imse0.5t omse0.1 omse0.5t omse0.9

1 U1, U2, U3, U4, U5, U9, U20 718.77 -772.67 0.0079 0.0060 0.0019 0.0095
2 U3, U1, U2, U5, U4, U8, U16 524.88 -398.39 0.0518 0.0327 0.017 0.0367
3 U1, U2, U3, U4, U5, U9, U6 737.96 -795.54 0.0083 0.0074 0.0032 0.0083
4 U1, U2, U3, U10, U5, U7, U12 706.81 -751.68 0.0096 0.0103 0.0031 0.0081
5 U1, U2, U3, U4, U5, U10, U20 696.06 -745.11 0.017 0.0117 0.0035 0.0093
6 U1, U2, U3, U4, U8, U9, U5 700.2 -730.48 0.0083 0.0147 0.0053 0.0122
7 U1, U2, U3, U4, U5, U6, U8 727.16 -777.92 0.0077 0.0102 0.0051 0.0114
8 U1, U2, U3, U5, U9, U15, U17 690.13 -686.65 0.0124 0.0182 0.0059 0.0117
9 U1, U2, U3, U4, U7, U9, U5 641.97 -617.58 0.0126 0.0195 0.0061 0.0117
10 U1, U2, U3, U4, U5, U10, U6 720.19 -776.99 0.0085 0.0088 0.0023 0.0079
11 U1, U2, U3, U4, U9, U11, U5 713.35 -745.3 0.0097 0.0065 0.0034 0.0125
12 U1, U2, U3, U4, U5, U11, U12 730.47 -800.51 0.0077 0.0094 0.0035 0.0073
13 U1, U2, U3, U4, U5, U9, U6 778.45 -894.07 0.0066 0.0068 0.0020 0.0052
14 U1, U2, U3, U4, U5, U7, U9 752.12 -817.25 0.0084 0.0052 0.0027 0.0099
15 U3, U1, U2, U4, U7, U5, U12 558.21 -432.46 0.034 0.0269 0.0143 0.0275
16 U1, U2, U3, U4, U5, U14, U9 690.7 -692.68 0.0162 0.01063 0.0066 0.0164
17 U1, U2, U3, U4, U5, U16, U6 721.19 -774.98 0.0081 0.0124 0.0050 0.0103
18 U1, U2, U3, U4, U7, U8, U5 669.69 -677.14 0.0120 0.0145 0.0044 0.0122
19 U1, U2, U3, U4, U5, U6, U9 723.83 -795.53 0.0087 0.0081 0.0037 0.0116
20 U1, U2, U3, U4, U5, U11, U9 711.46 -739.73 0.0082 0.0158 0.0062 0.0097

Table B.1: Two step ahead forward selection algorithm statistics.
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id order cll cllAIC imse0.5t omse0.1 omse0.5t omse0.9

1 U3, U1, U2, U4, U10, U5, U9 500.82 -331.63 0.0534 0.0406 0.0132 0.0361
2 U3, U1, U4, U2, U5, U9, U8 504.39 -348.77 0.0418 0.0355 0.0189 0.0438
3 U3, U1, U2, U4, U5, U9, U6 521.87 -395.75 0.0476 0.0451 0.0163 0.0638
4 U3, U1, U2, U4, U5, U6, U9 492.55 -335.09 0.0513 0.0366 0.0172 0.0434
5 U3, U1, U2, U4, U5, U6, U10 511.4 -368.8 0.0485 0.0399 0.0172 0.0542
6 U3, U1, U2, U4, U5, U6, U19 537.98 -437.97 0.0422 0.0456 0.0328 0.0577
7 U3, U1, U4, U2, U9, U6, U5 510.45 -358.9 0.0578 0.0435 0.0254 0.0745
8 U3, U1, U2, U4, U5, U6, U11 521.94 -371.89 0.0337 0.0313 0.0204 0.0466
9 U3, U1, U2, U4, U5, U6, U8 530.51 -397.01 0.0416 0.0427 0.0247 0.0402
10 U3, U1, U4, U2, U7, U9, U6 469.77 -263.53 0.0586 0.0518 0.0267 0.0619
11 U3, U1, U4, U2, U17, U14, U11 457.43 -244.86 0.0702 0.0466 0.0251 0.0794
12 U2, U3, U1, U4, U11, U5, U6 416.68 -181.35 0.0736 0.0567 0.0147 0.0730
13 U2, U3, U4, U1, U5, U6, U8 445.66 -235.31 0.0486 0.0647 0.0198 0.0554
14 U3, U1, U2, U4, U7, U5, U6 500.88 -343.76 0.0525 0.0319 0.0136 0.0377
15 U3, U1, U2, U4, U5, U9, U13 536.68 -441.35 0.0351 0.0252 0.0130 0.0304
16 U2, U3, U1, U4, U5, U12, U6 463.43 -274.86 0.0399 0.0480 0.0168 0.0540
17 U3, U1, U2, U4, U9, U5, U6 525.72 -409.43 0.0419 0.0349 0.0156 0.0262
18 U3, U1, U4, U2, U9, U8, U6 461.75 -267.51 0.0728 0.0413 0.0234 0.0507
19 U3, U1, U2, U4, U5, U9, U14 505.82 -355.65 0.0484 0.0493 0.0330 0.0651
20 U3, U1, U2, U4, U6, U9, U8 501.26 -360.53 0.0519 0.0780 0.0293 0.0624

Table B.2: One step ahead forward selection algorithm statistics.
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id order cll cllAIC imse0.5t omse0.1 omse0.5t omse0.9

1 U1, U2, U3, U4, U5, U9, U20 718.6 -780.32 0.0078 0.0070 0.0020 0.0099
2 U1, U2, U3, U4, U5, U19, U6 669.19 -693 0.0110 0.0122 0.0038 0.0104
3 U1, U2, U3, U4, U5, U9, U6 738.11 -809.84 0.0082 0.0072 0.0032 0.0082
4 U5, U3, U4, U1, U2, U9, U6 426.76 -181.57 0.0818 0.0638 0.0357 0.0939
5 U1, U2, U7, U3, U4, U6, U5 654.75 -662.48 0.0215 0.0230 0.0065 0.0134
6 U3, U7, U1, U2, U4, U5, U10 523.72 -377.51 0.0452 0.0470 0.0292 0.0581
7 U1, U2, U3, U4, U5, U6, U8 727.29 -772.18 0.0076 0.0101 0.0050 0.0113
8 U2, U3, U1, U5, U8, U4, U9 429.43 -177.25 0.0522 0.0588 0.0205 0.0700
9 U3, U1, U2, U4, U7, U8, U5 470.59 -280.82 0.0548 0.0705 0.0328 0.0760
10 U1, U2, U3, U4, U8, U9, U10 719.55 -783.73 0.0082 0.0093 0.0025 0.0081
11 U1, U2, U3, U4, U5, U11, U12 712.42 -769.45 0.0094 0.0063 0.0027 0.0113
12 U3, U1, U2, U4, U11, U6, U8 459.11 -239.79 0.0702 0.0508 0.0137 0.0479
13 U5, U3, U1, U2, U4, U14, U9 471.31 -279.79 0.0572 0.0461 0.0171 0.0424
14 U3, U1, U2, U4, U5, U7, U9 502.32 -327.64 0.0610 0.0400 0.0190 0.0494
15 U3, U1, U2, U4, U13, U7, U5 557.85 -419.76 0.0334 0.0262 0.0145 0.0283
16 U1, U2, U3, U4, U7, U8, U5 696.8 -716.87 0.0150 0.0103 0.0071 0.0172
17 U1, U2, U3, U4, U5, U14, U16 719.5 -789.6 0.0091 0.0119 0.0055 0.0110
18 U1, U2, U3, U4, U7, U8, U5 671.87 -667.52 0.0109 0.0132 0.0035 0.0110
19 U3, U7, U4, U1, U2, U5, U6 452.87 -223.61 0.0704 0.0304 0.0388 0.0799
20 U1, U3, U2, U4, U5, U11, U7 476.02 -280.85 0.0455 0.0496 0.0165 0.0415

Table B.3: Batch maximum algorithm statistics.
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id order cll cllAIC imse0.5t omse0.1 omse0.5t omse0.9

1 U3, U1, U2, U4, U5, U7, U9 492.62 -306.35 0.0584 0.0317 0.0129 0.0348
2 U3, U1, U2, U5, U4, U10, U16 521.45 -371.52 0.0412 0.0323 0.0176 0.0364
3 U3, U1, U2, U4, U5, U9, U6 508.69 -365.00 0.0445 0.0423 0.0149 0.0291
4 U3, U1, U2, U5, U8, U4, U12 452.08 -224.22 0.0783 0.0725 0.0290 0.0777
5 U3, U1, U2, U4, U5, U7, U10 499.21 -343.41 0.0631 0.0408 0.0209 0.0396
6 U3, U1, U2, U4, U5, U16, U11 546.78 -437.64 0.0404 0.0445 0.0277 0.0430
7 U3, U1, U2, U5, U7, U8, U6 518.39 -342.38 0.0525 0.0445 0.0247 0.0498
8 U3, U1, U2, U5, U9, U8, U11 513.30 -341.00 0.0383 0.0309 0.0192 0.0463
9 U3, U1, U2, U4, U7, U8, U5 468.46 -264.55 0.0545 0.0675 0.0325 0.0727
10 U3, U1, U2, U4, U10, U5, U8 517.70 -364.02 0.0487 0.0436 0.0209 0.0498
11 U3, U1, U2, U4, U17, U11, U19 488.72 -298.06 0.0637 0.0422 0.0218 0.0789
12 U2, U3, U1, U4, U11, U5, U9 399.89 -133.65 0.0685 0.0695 0.0137 0.0746
13 U2, U3, U1, U4, U7, U8, U5 437.13 -209.43 0.0511 0.0619 0.0199 0.0611
14 U3, U1, U2, U4, U7, U5, U14 510.02 -351.04 0.0511 0.0392 0.0194 0.0423
15 U3, U1, U2, U4, U5, U9, U13 549.11 -420.27 0.0358 0.0248 0.0142 0.0291
16 U3, U1, U4, U2, U5, U19, U14 453.99 -227.24 0.0663 0.0594 0.0322 0.0774
17 U3, U1, U2, U5, U6, U7, U15 509.68 -355.96 0.0451 0.0367 0.0150 0.0298
18 U3, U1, U2, U4, U7, U5, U9 454.33 -238.43 0.0735 0.0545 0.0289 0.0668
19 U2, U1, U3, U4, U19, U8, U6 419.58 -153.04 0.0690 0.0814 0.0374 0.0935
20 U2, U3, U1, U4, U5, U12, U11 453.86 -226.53 0.0440 0.0823 0.0215 0.0543

Table B.4: Batch average algorithm statistics.
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id order imse0.5t omse0.1 omse0.5t omse0.9

1 U3, U1, U2, U5, U4, U6, U7 0.0815 0.0218 0.0218 0.0220
2 U3, U1, U2, U6, U4, U9, U7 0.0604 0.0203 0.0206 0.0208
3 U3, U1, U2, U4, U9, U5, U6 0.0692 0.0342 0.0346 0.0348
4 U3, U1, U2, U8, U6, U5, U9 0.0682 0.0319 0.0322 0.0324
5 U3, U1, U2, U4, U7, U8, U11 0.0674 0.0215 0.0219 0.0223
6 U3, U1, U2, U4, U5, U9, U13 0.0578 0.0274 0.0278 0.0284
7 U3, U1, U2, U4, U5, U6, U9 0.0561 0.0320 0.0330 0.0336
8 U3, U1, U2, U8, U6, U5, U9 0.0579 0.0330 0.0324 0.0322
9 U3, U1, U2, U4, U6, U8, U5 0.0620 0.0283 0.0291 0.0293
10 U3, U1, U2, U6, U4, U8, U7 0.0481 0.0227 0.0227 0.0226
11 U3, U1, U2, U8, U5, U6, U4 0.0664 0.0203 0.0205 0.0203
12 U3, U1, U2, U5, U4, U6, U9 0.0916 0.0195 0.0201 0.0204
13 U3, U1, U2, U6, U4, U8, U9 0.0636 0.0256 0.0254 0.0253
14 U3, U1, U2, U4, U6, U7, U9 0.0673 0.0243 0.0243 0.0251
15 U3, U1, U2, U4, U5, U6, U9 0.0543 0.0203 0.0202 0.0202
16 U3, U1, U2, U4, U6, U8, U9 0.0631 0.0250 0.0252 0.0256
17 U3, U1, U2, U4, U6, U11, U7 0.0565 0.0246 0.0251 0.0262
18 U3, U1, U2, U6, U4, U8, U9 0.0790 0.0224 0.0223 0.0227
19 U3, U1, U2, U6, U8, U4, U7 0.0645 0.0291 0.0298 0.0310
20 U3, U1, U2, U6, U9, U7, U4 0.0591 0.0182 0.0194 0.0201

Table B.5: Linear quantile regression statistics.
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B.2 Case study II results

The following tables provide the order of the estimated models up to 7 predictors,
the cll, cllAIC , the IMSE for α = 0.5 and the OMSE for α = 0.1, 0.5, 0.9 for each
iteration.
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id order cll cllAIC imse0.5t omse0.1 omse0.5t omse0.9

1 U1, U4, U6, U2, U7, U16, U3 1006.83 -1823.27 0.0899 0.0326 0.0259 0.0274
2 U1, U4, U3, U11, U6, U5, U2 1039.38 -1878.07 0.0814 0.0227 0.0240 0.0274
3 U1, U4, U5, U2, U7, U11, U8 1019.85 -1861.56 0.0557 0.0321 0.0284 0.0253
4 U1, U4, U5, U2, U8, U7, U3 1023.86 -1861.97 0.1051 0.0194 0.0181 0.0183
5 U1, U3, U2, U6, U11, U7, U4 1000.98 -1834.58 0.1289 0.0226 0.0201 0.0247
6 U1, U3, U2, U6, U7, U13, U11 998.83 -1815.74 0.0945 0.0334 0.0348 0.0386
7 U1, U3, U2, U4, U11, U7, U13 983.31 -1787.1 0.1271 0.0538 0.0300 0.0367
8 U1, U3, U2, U6, U11, U4, U7 1043.19 -1904.2 0.2059 0.0627 0.0684 0.0803
9 U1, U3, U2, U4, U13, U6, U8 1004.96 -1835.45 0.0800 0.0243 0.0229 0.0250
10 U1, U3, U2, U7, U13, U6, U8 1073.44 -1959.87 0.1214 0.0327 0.0317 0.0436
11 U1, U4, U5, U2, U7, U3, U8 1048.22 -1911.14 0.0633 0.0208 0.0199 0.0201
12 U1, U3, U2, U4, U8, U6, U7 1029.82 -1881.98 0.0727 0.0280 0.0271 0.0290
13 U1, U3, U2, U4, U6, U11, U7 1024.19 -1880.27, 0.1796 0.0360 0.0384 0.0503
14 U1, U3, U2, U4, U8, U7, U11 1041.74 -1902.99 0.0893 0.0201 0.0208 0.0229
15 U1, U4, U5, U2, U8, U7, U17 1019.72 -1845.91 0.0625 0.0196 0.0177 0.0179
16 U1, U4, U5, U2, U8, U3, U6 1034.95 -1885.57 0.0704 0.0175 0.0195 0.0238
17 U1, U3, U2, U6, U7, U8, U11 1053.58 -1926.91 0.0800 0.0183 0.0194 0.0228
18 U1, U4, U5, U2, U8, U3, U11 1003.67 -1829.07 0.0869 0.0164 0.0174 0.0207
19 U1, U3, U6, U2, U4, U7, U13 959.02 -1743.45 0.1944 0.0807 0.0538 0.1021
20 U1, U3, U2, U8, U6, U7, U11 1009.03 -1855.41 0.1019 0.0203 0.0212 0.0244

Table B.6: Two step ahead forward selection algorithm statistics.
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id order cll cllAIC imse0.5t omse0.1 omse0.5t omse0.9

1 U1, U2, U3, U6, U5, U7, U4 1303.28 -1960.57 0.0811 0.0197 0.0204 0.0224
2 U1, U2, U4, U7, U8, U5, U3 1286.7 -1905.39 0.0886 0.0287 0.0299 0.0317
3 U1, U2, U3, U6, U7, U8, U4 1332.4 -2020.8 0.0683 0.0279 0.0271 0.0269
4 U1, U2, U4, U7, U6, U3, U8 1371.54 -2097.07 0.0858 0.0291 0.0211 0.0181
5 U1, U2, U3, U6, U8, U7, U4 1271.84 -1877.68 0.2159 0.0485 0.0546 0.0606
6 U1, U2, U3, U6, U5, U8, U7 1226.23 -1812.46 0.0809 0.0397 0.0400 0.0472
7 U1, U2, U3, U6, U5, U8, U4 1211.98 -1795.96 0.9849 0.2141 0.2087 0.2021
8 U1, U2, U3, U6, U5, U8, U11 1262.86 -1873.72 0.1302 0.0511 0.0535 0.0552
9 U1, U2, U3, U6, U7, U8, U4 1352.05 -2054.09 0.0770 0.0309 0.0260 0.0256
10 U1, U2, U3, U6, U5, U9, U8 1297.48 -1956.95 0.0549 0.0360 0.0300 0.0272
11 U1, U2, U4, U7, U8, U5, U6 1259.59 -1871.18 0.6066 0.1780 0.1769 0.1721
12 U1, U2, U3, U6, U5, U8, U7 1286.66 -1929.31 0.0530 0.0369 0.0300 0.0316
13 U1, U2, U3, U6, U7, U8, U4 1455.87 -2257.73 0.1889 0.0393 0.0405 0.0417
14 U1, U2, U4, U7, U8, U3, U5 1468.29 -2260.57 0.0695 0.0257 0.0231 0.0226
15 U1, U2, U3, U6, U7, U8, U12 1330.99 -2013.98 0.0906 0.0261 0.0235 0.0248
16 U1, U2, U4, U7, U8, U3, U6 1466.52 -2281.03 0.0676 0.0222 0.0218 0.0206
17 U1, U2, U4, U7, U3, U6, U5 1330.91 -2007.83 0.0862 0.0242 0.0225 0.0242
18 U1, U2, U3, U6, U5, U7, U4 1731.62 -2821.23 0.0897 0.0243 0.0247 0.0251
19 U1, U2, U3, U6, U5, U8, U7 1245.23 -1816.47 0.0975 0.0211 0.0197 0.0200
20 U1, U2, U3, U6, U7, U8, U4 1276 -1911.99 0.1166 0.0426 0.0339 0.0361

Table B.7: One step ahead forward selection algorithm statistics.
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id order cll cllAIC imse0.5t omse0.1 omse0.5t omse0.9

1 U1, U5, U2, U4, U7, U8, U12 1024.03 -1877.65 0.0656 0.0210 0.0190 0.0198
2 U1, U3, U4, U2, U5, U8, U14 1032.98 -1865.28 0.0544 0.0377 0.0362 0.0377
3 U1, U5, U3, U2, U11, U8, U14 1010 -1825.86 0.1081 0.0446 0.0437 0.0447
4 U7, U1, U3, U4, U5, U2, U8 890.89 -1580.02 0.1993 0.0261 0.0255 0.0284
5 U1, U7, U5, U2, U8, U4, U3 1006.72 -1830.06 0.0615 0.0189 0.0195 0.0217
6 U1, U4, U5, U2, U8, U7, U3 974.83 -1767.74 0.1021 0.0349 0.0352 0.0386
7 U1, U5, U4, U2, U8, U6, U7 991.26 -1803 0.1282 0.0263 0.0248 0.0253
8 U1, U3, U2, U6, U4, U11, U5 1039.79 -1899.39 0.0820 0.0232 0.0232 0.0253
9 U1, U5, U2, U8, U7, U4, U11 1037.95 -1897.41 0.0724 0.0244 0.0246 0.0268
10 U1, U11, U3, U6, U2, U16, U13 1037.11 -1889.21 0.0677 0.0416 0.0354 0.0401
11 U1, U5, U3, U8, U3, U4, U6 1070.5 -1945.7 0.1633 0.1396 0.1047 0.0491
12 U1, U3, U2, U6, U7, U4, U11 1028.42 -1877.19 0.0977 0.0295 0.0282 0.0361
13 U7, U1, U3, U2, U4, U6, U11 977.91 -1755.7 0.1009 0.0348 0.0336 0.0369
14 U7, U11, U4, U5, U2, U1, U8 911.13 -1621.78 0.0736 0.0285 0.0285 0.0323
15 U1, U3, U2, U7, U6, U8, U4 979.21 -1774.88 0.1274 0.0715 0.0483 0.0212
16 U1, U4, U9, U6, U11, U3, U2 1026.87 -1855.41 0.0633 0.0185 0.0169 0.0190
17 U1, U5, U2, U8, U7, U17, U9 1085.65 -1991.05 0.0822 0.0199 0.0167 0.0158
18 U1, U7, U5, U2, U8, U3, U6 1011.3 -1846.33 0.0494 0.0200 0.0186 0.0204
19 U1, U4, U11, U6, U5, U2, U3 939.37 -1702.15 0.3151 0.1920 0.1008 0.0454
20 U1, U4, U11, U3, U6, U2, U16 1000.25 = -1839.85 0.0840 0.0345 0.0330 0.0343

Table B.8: Batch maximum algorithm statistics.
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id order cll cllAIC imse0.5t omse0.1 omse0.5t omse0.9

1 U1, U5, U2, U4, U6, U7, U3 1021.31 -1872.21 0.0602 0.0161 0.0163 0.0185
2 U1, U5, U2, U3, U8, U4, U6 1053.26 -1915.83 0.0667 0.0195 0.0208 0.0236
3 U1, U5, U3, U2, U4, U11, U7 1011.76 -1839.39 0.0517 0.0350 0.0313 0.0296
4 U1, U5, U2, U4, U7, U8, U11 1026.78 -1885.81 0.0930 0.0201 0.0180 0.0182
5 U1, U5, U2, U3, U4, U7, U6 1013.72 -1858.07 0.0863 0.0178 0.0187 0.0216
6 U1, U5, U2, U3, U4, U7, U9 1010.38 -1846.84 0.0796 0.0342 0.0347 0.0369
7 U1, U5, U2, U4, U8, U6, U7 1000.1 -1830.68 0.1052 0.0265 0.0252 0.0258
8 U1, U5, U2, U4, U7, U6, U8 1076.95 -1973.71 0.0624 0.0241 0.0248 0.0268
9 U1, U5, U2, U3, U8, U6, U11 1038.71 -1880.95 0.0734 0.0243 0.0249 0.0292
10 U1, U5, U2, U3, U6, U4, U8 1095.93 -1998.84 0.0559 0.0275 0.0268 0.0273
11 U1, U5, U2, U4, U3, U6, U8 1061.72 -1940.14 0.0612 0.0294 0.0223 0.0218
12 U1, U5, U2, U3, U7, U8, U6 1040.13 -1894.61 0.0578 0.0263 0.0266 0.0285
13 U1, U5, U2, U3, U4, U7, U8 1040.89 -1909.67 0.0837 0.0310 0.0270 0.0559
14 U1, U5, U2, U4, U8, U6, U7 1050.57 -1928.66 0.0784 0.0194 0.0195 0.0208
15 U1, U5, U2, U3, U7, U8, U4 1014.32 -1849.12 0.0448 0.0275 0.0199 0.0215
16 U1, U5, U2, U4, U8, U11, U7 1034.43 -1890.53 0.0442 0.0201 0.0189 0.0191
17 U1, U5, U2, U4, U8, U7, U6 1078.17 -1982.09 0.0702 0.0143 0.0158 0.0212
18 U1, U5, U2, U4, U3, U6, U8 1008.2 -1858.12 0.1762 0.1130 0.0916 0.0807
19 U1, U5, U2, U8, U4, U3, U6 990.18 -1809.76 0.0848 0.0282 0.0202 0.0181
20 U1, U5, U2, U3, U8, U6, U4 1025.67 -1896.7 0.0763 0.0194 0.0203 0.0224

Table B.9: Batch average algorithm statistics.
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id order imse0.5t omse0.1 omse0.5t omse0.9

1 U1, U2, U7, U5, U6, U8, U17 0.0146 0.0337 0.0337 0.0337
2 U1, U2, U4, U7, U5, U17, U3 0.0132 0.0268 0.0268 0.0268
3 U1, U2, U5, U8, U3, U6, U7 0.0114 0.0410 0.0410 0.0410
4 U1, U2, U4, U7, U5, U8, U17 0.0153 0.0431 0.0431 0.0431
5 U1, U2, U5, U7, U4, U8, U6 0.0143 0.0376 0.0376 0.0376
6 U1, U2, U5, U4, U8, U6, U7 0.0163 0.0439 0.0439 0.0439
7 U1, U2, U5, U7, U9, U3, U8 0.0156 0.0461 0.0461 0.0461
8 U1, U2, U4, U5, U8, U7, U9 0.0108 0.0436 0.0436 0.0436
9 U1, U2, U4, U5, U11, U7, U3 0.0166 0.0386 0.0386 0.0386
10 U1, U2, U5, U7, U3, U11, U8 0.0110 0.0453 0.0453 0.0453
11 U1, U2, U7, U3, U5, U8, U11 0.0127 0.0380 0.0380 0.0380
12 U1, U2, U5, U4, U11, U3, U6 0.0123 0.0444 0.0444 0.0444
13 U1, U2, U5, U7, U8, U17, U3 0.0131 0.0339 0.0339 0.0339
14 U1, U2, U5, U4, U7, U8, U3 0.0127 0.0291 0.0291 0.0291
15 U1, U2, U5, U4, U6, U11, U3 0.0132 0.0330 0.0330 0.0330
16 U1, U2, U4, U5, U3, U8, U7 0.0114 0.0353 0.0353 0.0353
17 U1, U2, U7, U5, U4, U11, U17 0.0155 0.0337 0.0337 0.0337
18 U1, U2, U3, U7, U8, U11, U17 0.0146 0.0319 0.0319 0.0319
19 U1, U2, U5, U7, U6, U17, U8 0.0143 0.0330 0.0330 0.0330
20 U1, U2, U4, U5, U7, U3, U6 0.0171 0.0307 0.0307 0.0307

Table B.10: Linear quantile regression statistics.
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